WO2023093059A1 - 供电电路及其控制方法 - Google Patents

供电电路及其控制方法 Download PDF

Info

Publication number
WO2023093059A1
WO2023093059A1 PCT/CN2022/103461 CN2022103461W WO2023093059A1 WO 2023093059 A1 WO2023093059 A1 WO 2023093059A1 CN 2022103461 W CN2022103461 W CN 2022103461W WO 2023093059 A1 WO2023093059 A1 WO 2023093059A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
power supply
switches
supply circuit
load
Prior art date
Application number
PCT/CN2022/103461
Other languages
English (en)
French (fr)
Inventor
陈保国
蒋华
黄奕毅
董辉
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Publication of WO2023093059A1 publication Critical patent/WO2023093059A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks

Definitions

  • the present application relates to the field of energy technology, and more specifically, to a power supply circuit and a control method thereof.
  • the communication power supply of the communication base station generally supplies power to multiple load units of different types through multiple output terminals.
  • some or all of the load units can be turned off through the power supply circuit to meet energy-saving needs, and at the same time reduce the loss and operating costs of the communication base station.
  • the power supply circuit in the related art usually adopts a plurality of contactors (that is, large-capacity contactors) with a strong ability to cut off the load units to implement hierarchical power-off of the plurality of load units.
  • each contactor needs to be provided with an arc extinguishing device for reducing the probability of the contactor generating an arc, the power supply circuit is large in size and high in cost.
  • the present application provides a power supply circuit and a control method thereof.
  • a plurality of first switches, a plurality of second switches and a third switch are provided, so that the power supply circuit is small in size and low in cost.
  • hierarchical power-off of multiple load units is realized (that is, multiple load units are powered off sequentially, and partial shutdown of load units is realized. work or completely stop working, that is, some or all load units are disconnected from the DC power supply in turn).
  • the present application provides a power supply circuit, which may include a plurality of first switches, a plurality of second switches, and a third switch.
  • the plurality of first switches may correspond to the plurality of load units one-to-one
  • the plurality of second switches may correspond to the plurality of load units one-to-one.
  • each first switch can be connected to the first end of the DC power supply
  • the second end of each first switch can be connected to the first end of the corresponding load unit in the plurality of load units
  • each first The first end of the second switch can be connected to the first end of the corresponding load unit
  • the second end of each second switch can be connected to the second end of the third switch
  • the first end of the third switch can be connected to the first end of the DC power supply.
  • the second end of the DC power supply can be connected to the second end of each load unit in the plurality of load units.
  • the power supply circuit provided by this application is provided with a plurality of first switches, a plurality of second switches, and a third switch.
  • the third switch provides a power-off path for each load unit, and also That is to say, the third switch is a common switch, so that the power supply circuit is small in size and low in cost.
  • the power supply circuit provided by the present application can not only realize hierarchical power-off of multiple load units, thereby realizing energy saving requirements, but also reducing loss and operating costs of communication base stations.
  • the power supply circuit provided by the present application can also realize hierarchical power-on of multiple load units through a plurality of first switches (that is, multiple load units are powered on in sequence to realize that some or all of the load units start to work, that is, some or all of the load units start to work. All the load units are connected to the DC power supply in turn, and the power supply of some or all of the load units is realized through the DC power supply), reducing the impact on the power supply circuit and the DC power supply.
  • the power supply circuit provided in the embodiment of the present application may further include a control unit.
  • the control unit may be connected to each of the plurality of first switches, each of the plurality of second switches, and the third switch.
  • control unit can be used to control at least two first switches among the plurality of first switches, and at least two corresponding second switches and third switches among the plurality of second switches. to implement hierarchical power-off of at least two corresponding load units among the plurality of load units.
  • each first switch may be a mechanical switch such as a relay or a contactor.
  • each of the above-mentioned first switches may also use other switches with relatively small losses, which is not limited in this embodiment of the present application.
  • each second switch may adopt a relay, a contactor or a semiconductor switch (ie, any one of a relay, a contactor and a semiconductor switch).
  • each second switch may also use other switches, which is not limited in this embodiment of the present application.
  • the third switch may be a relay (a relay with a strong ability to cut off the load unit), a contactor, or a semiconductor switch (that is, any one of a relay, a contactor, and a semiconductor switch).
  • a relay a relay with a strong ability to cut off the load unit
  • a contactor a contactor
  • a semiconductor switch that is, any one of a relay, a contactor, and a semiconductor switch.
  • other switches may also be used as the third switch, which is not limited in this embodiment of the present application.
  • the semiconductor switch may use an insulated gate bipolar transistor (insulated gate bipolar transistor, IGBT), an insulated gate field effect transistor (metal-oxide-semiconductor field-effect transistor, MOSFET) or a triode.
  • IGBT insulated gate bipolar transistor
  • MOSFET metal-oxide-semiconductor field-effect transistor
  • a triode a triode.
  • other switches may also be used as the semiconductor switch, which is not limited in this embodiment of the present application.
  • the power supply circuit provided in the present application may further include a sink circuit, and the sink circuit may be connected in parallel with the third switch.
  • the snubber circuit may include a resistor and a capacitor.
  • a resistor can be connected in series with a capacitor.
  • the snubber circuit can also be called a snubber circuit, which can be used to buffer the voltage and current that the third switch bears when it is turned on (or closed) and turned off (or disconnected).
  • the present application provides a communication power supply, which may include the power supply circuit provided in the first aspect and possible implementation manners of the DC power supply above.
  • the DC power supply can be connected to the power supply circuit, and the DC power supply and the power supply circuit can be respectively connected to a plurality of load units.
  • the communication power supply can be used to: supply power to each load unit of the plurality of load units through the DC power supply and the power supply circuit.
  • the present application provides a communication base station, which may include multiple load units and the communication power supply as provided in the second aspect above.
  • a communication power supply may be connected to each load unit of the plurality of load units.
  • the present application provides a method for controlling a power supply circuit, which is used to control the power supply circuit provided in the first aspect and possible implementations thereof, so as to realize hierarchical power-off or power-off of at least two load units among multiple load units. Hierarchical power-up.
  • control methods may include:
  • the hierarchical power-off of at least two load units can be realized, thereby reducing the loss and operation cost of the communication base station.
  • the power supply circuit does not need to be provided with an arc extinguishing device, so that the volume of the power supply circuit is small and the cost is low. At the same time, the reliability and safety of the power supply circuit can be improved.
  • the method for controlling a power supply circuit can realize hierarchical power-off of multiple load units by controlling the closing and opening sequences of multiple first switches, multiple second switches, and third switches.
  • control method provided in this application may also perform the following process:
  • the first switch corresponding to the first load unit and the first switch corresponding to the second load unit are controlled to be sequentially turned on, so as to implement hierarchical power-on of the first load unit and the second load unit.
  • load units among the multiple load units can implement hierarchical power-on according to the above process, which will not be described in detail in this application.
  • FIG. 1 is a schematic structural diagram of a power supply circuit in an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a power supply circuit in an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a power supply circuit in an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a power supply circuit in an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a power supply circuit in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a power supply circuit in an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication power supply in an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication base station in an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a method for controlling a power supply circuit in an embodiment of the present application.
  • At least one (item) means one or more, and “multiple” means two or more.
  • “And/or” is used to describe the association relationship of associated objects, indicating that there can be three types of relationships, for example, “A and/or B” can mean: only A exists, only B exists, and A and B exist at the same time , where A and B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c ", where a, b, c can be single or multiple.
  • Load units can be divided into important loads and secondary loads.
  • the important load may generally be transmission equipment (such as microwave transmission equipment and optical transmission equipment, etc.).
  • Secondary loads can usually be business equipment (such as wireless transmitting equipment).
  • the communication power supply of the communication base station generally supplies power to multiple load units of different types through multiple output terminals. During periods of relatively less business traffic, some or all of the load units can be turned off through the power supply circuit to meet energy-saving needs, and at the same time reduce the loss and operating costs of the communication base station.
  • a power supply circuit that uses a plurality of contactors (that is, large-capacity contactors) with a strong ability to cut off load units to realize hierarchical power-off of multiple load units, due to the large number of contactors, and each contactor needs to be set for
  • the arc extinguishing device that reduces the probability of arcing in the contactor results in a large power supply circuit and high cost.
  • the power supply circuit 10 may include N first switches A (including the first switch A1 in FIG. 1, the first switch A2, ..., the first switch AN), N second switches B (including the second switch in FIG. 1 B1, the second switch B2, . . . , the second switch BN) and the third switch C.
  • the N first switches may be in one-to-one correspondence with the N load units, and the N second switches may also be in one-to-one correspondence with the N load units.
  • the first switch A1 may correspond to a load unit (load unit, LU) 1
  • the second switch B1 may also correspond to the load unit LU1.
  • the first switch A2 may correspond to the load unit LU2, and the second switch B2 may also correspond to the load unit LU2.
  • the first switch AN may correspond to the load unit LUN
  • the second switch BN may also correspond to the load unit LUN.
  • each first switch (that is, the upper end of each first switch in FIG. 1 ) can be connected to the first end of a direct current power supply (DCPS) (that is, the upper end of the direct current power supply DCPS in FIG. 1 ),
  • the second end of each first switch (that is, the lower end of each first switch in FIG. 1 ) may be connected to the first end of the corresponding load unit among the N load units.
  • the first end of each second switch ie, the left end of each second switch in Figure 1) can be connected to the first end of the corresponding load unit (ie, the second end of each first switch and the second end of each second switch)
  • the first end is respectively connected to the first end of the corresponding load unit), the second end of each second switch (i.e.
  • each second switch in Fig. 1 can be connected to the second end of the third switch C (i.e. The lower end of the third switch C in Fig. 1), the first end of the third switch C (i.e. the upper end of the third switch C in Fig.
  • the lower end of the DC power supply (DCPS) in FIG. 1 can be connected to the second end of each load unit in the N load units.
  • the power supply circuit provided by the embodiment of the present application is provided with a plurality of first switches, a plurality of second switches, and a third switch.
  • the third switch provides a power-off path for each load unit. , that is to say, the third switch is a common switch, so that the power supply circuit is small in size and low in cost.
  • power off can be used to instruct the load unit to stop working, that is, the load unit is disconnected from the DC power supply.
  • hierarchical power-off can be used to instruct multiple load power supplies to be powered off sequentially, to realize partial or complete shutdown of the load units, that is, partial or all load units are disconnected from the DC power supply sequentially.
  • power-on can be used to instruct the load unit to start working, that is, the load unit is connected to a DC power supply.
  • hierarchical power-on can be used to instruct multiple load units to be powered on in sequence, so that some or all of the load units start to work, that is, some or all of the load units are connected to the DC power supply in turn, and some or all of the load units are realized through the DC power supply. power supply.
  • the power supply circuit provided by the embodiment of the present application can not only realize hierarchical power-off of multiple load units, thereby realizing energy saving requirements, but also reducing loss and operating costs of communication base stations.
  • the power supply circuit provided by the embodiment of the present application can also implement hierarchical power-on of multiple load units through multiple first switches, reducing the impact on the power supply circuit and the DC power supply.
  • the power supply circuit 10 provided in the embodiment of the present application may further include a control unit (control unit, CU). It should be noted that the control unit CU is not shown in FIG. 1 .
  • control unit CU may be connected to each of the N first switches, each of the N second switches, and the third switch C.
  • control unit can be used to: control at least two first switches (such as the first switch A1 and the second switch A2) among the N first switches, and at least two corresponding ones among the N second switches.
  • the closing or opening of the second switch (such as the second switch B1 and the second switch B2) and the third switch C realizes at least two corresponding load units (such as the load unit LU1 and the load unit LU2) in the N load units. power-off at different levels.
  • each first switch may be a mechanical switch such as a relay or a contactor.
  • each of the above-mentioned first switches may also use other switches, which are not limited in this embodiment of the present application.
  • each second switch may adopt a relay, a contactor or a semiconductor switch (ie, any one of a relay, a contactor and a semiconductor switch).
  • each second switch may also use other switches, which is not limited in this embodiment of the present application.
  • the third switch C may be a relay (a relay with a strong ability to cut off the load unit), a contactor or a semiconductor switch (that is, any one of a relay, a contactor and a semiconductor switch).
  • a relay a relay with a strong ability to cut off the load unit
  • a contactor a contactor or a semiconductor switch
  • other switches may also be used for the third switch C, which is not limited in this embodiment of the present application.
  • the semiconductor switch may use an insulated gate bipolar transistor (insulated gate bipolar transistor, IGBT), an insulated gate field effect transistor (metal-oxide-semiconductor field-effect transistor, MOSFET) or a triode.
  • IGBT insulated gate bipolar transistor
  • MOSFET metal-oxide-semiconductor field-effect transistor
  • a triode a triode.
  • other switches may also be used as the semiconductor switch, which is not limited in this embodiment of the present application.
  • the power supply circuit 10 provided in the embodiment of the present application may further include a sink circuit D.
  • the snubber circuit D can be connected in parallel with the third switch C.
  • the snubber circuit D may include a resistor R and a capacitor C1.
  • the resistor R can be connected in series with the capacitor C1.
  • the snubber circuit can also be called a snubber circuit, which can be used to buffer the voltage and current that the third switch bears when it is turned on (or closed) and turned off (or disconnected).
  • each first switch and each second switch adopting a relay as an example, and taking the third switch adopting an insulated gate field effect transistor (referred to as a MOS transistor) including an antiparallel diode as an example, the implementation of the present application will be introduced.
  • a MOS transistor insulated gate field effect transistor
  • the power supply circuit 10 may include N first switches A (including the first switch A1 in FIG. 3, the first switch A2, ..., the first switch AN), N second switches B (including 3 in the second switch B1, the second switch B2, ..., the second switch BN) and the MOS tube (that is, the third switch).
  • the N first switches, the N second switches and the N load units may be in one-to-one correspondence.
  • the first switch A1 may correspond to the second switch B1 and the load unit LU1.
  • the first switch A2 may correspond to the second switch B2 and the load unit LU2.
  • the first switch AN may correspond to the second switch BN and the load unit LUN.
  • each first switch i.e. the upper end of each first switch in Figure 3
  • the first end of each first switch can be connected to the first end of the 48V DC power supply (i.e. the negative end of the 48V DC power supply in Figure 3), and the first end of each first switch
  • the second end (that is, the lower end of each first switch in FIG. 3 ) may be connected to the first end (which may be the negative end of the load unit) of the corresponding load unit among the N load units.
  • the first end of each second switch ie, the left end of each second switch in FIG. 3
  • each second switch can be connected to the second end of the MOS tube (ie, the drain terminal of the MOS tube in Figure 3), and the first end of the MOS tube (ie, the source terminal of the MOS tube in Figure 3) can be connected to 48V DC
  • the first end of the power supply (that is, the negative end of the 48V DC power supply in Figure 3), and the second end of the 48V DC power supply (that is, the positive end of the 48V DC power supply in Figure 1) can be connected to the first end of each load unit in the N load units
  • Two terminals can be the positive terminal of the load unit).
  • each first switch, each second switch and a MOS transistor in Fig. 3 can be connected to the control unit CU. That is to say, the control unit CU can control each first switch and each second switch in FIG. 3 to be turned on and off, and can also control a MOS transistor in FIG. 3 to be turned on and off.
  • the power supply circuit shown in Figure 3 is provided with N first switches, N second switches, and a MOS tube.
  • the MOS tube provides a power-off path for each load unit, and also That is to say, the MOS tube is a common switch, so that the power supply circuit is small in size and low in cost.
  • the power supply circuit described in FIG. 3 of the embodiment of the present application can not only realize hierarchical power-off of multiple load units, thereby realizing energy saving requirements, but also reducing loss and operating costs of communication base stations.
  • the power supply circuit 10 shown in FIG. 3 may further include a control unit CU (not shown in FIG. 3 ).
  • control unit CU may be connected to each of the N first switches, each of the N second switches, and the MOS transistors. It should be noted that the control unit CU can be connected to the control terminal of the MOS transistor.
  • control unit CU can be used to: control at least two first switches (such as the first switch A1 and the second switch A2) of the N first switches, and the corresponding ones of the N second switches.
  • the closing or opening of at least two second switches (such as the second switch B1 and the second switch B2) and the third switch C realizes at least two corresponding load units (such as the load unit LU1 and the load unit LU2) is powered off hierarchically.
  • the power supply circuit 10 provided in the embodiment of the present application may further include a sink circuit D.
  • the snubber circuit D can be connected in parallel with the relay.
  • the snubber circuit D may include a resistor R and a capacitor C1.
  • the resistor R can be connected in series with the capacitor C1.
  • the snubber circuit can also be called a buffer circuit, which can be used to buffer the voltage and current that the relay (ie, the third switch) bears at the turn-on moment and the turn-off moment.
  • the power supply circuit provided in the embodiment of the present application may include multiple third switches (that is, there may be multiple third switches C in FIG. 1 ).
  • the power supply circuit will be introduced by taking each first switch and each second switch using a relay as an example, and taking two MOS transistors (including MOS1 and MOS2, that is, two third switches) as an example.
  • each first switch (that is, the upper end of each first switch in Figure 5) can be connected to the first end of a 48V DC power supply (that is, the 48V DC power supply in Figure 5
  • the second end of each first switch (that is, the lower end of each first switch in Figure 3) can be connected to the first end of the corresponding load unit in the N load units (which can be the first end of the load unit negative extreme).
  • the first end of each second switch (ie, the left end of each second switch in FIG. 3 ) can be connected to the first end of the corresponding load unit. That is to say, the second end of each first switch and the first end of each second switch are respectively connected to the first end of the corresponding load unit.
  • the source of MOS1 (that is, the first end of MOS1) can be connected to the first end of the 48V DC power supply, and the drain of MOS1 (that is, the second end of MOS1) can be connected to the MOS2
  • the source ie, the first terminal of MOS2
  • the drain of MOS2 ie, the second terminal of MOS2
  • the power supply circuit 10 shown in FIG. 5 may also include a control unit CU, and each first switch, each second switch, MOS1 and MOS2 may be connected to the control unit CU, that is, the control unit CU.
  • the closing and opening of each first switch and each second switch in FIG. 5 can be controlled, and the on and off of MOS1 and MOS2 in FIG. 5 can also be controlled, so as to realize at least two of the corresponding N load units Hierarchical power-off of load units (such as load unit LU1 and load unit LU2).
  • control unit CU can be connected to the control terminal of MOS1 and the control terminal of MOS2.
  • the above power supply circuit provided in real time by the present application can realize the hierarchical power-off of at least two load units among the multiple load units, and can also realize the hierarchical power-on of at least two load units among the multiple load units. , Reduce the impact on the power supply circuit and DC power supply.
  • the power supply circuit 10 may include a first switch (that is, the first switch A1 in FIG. 6 ), a second switch (that is, the second switch in FIG. switch B1) and a third switch C.
  • the first end of the first switch A1 (that is, the upper end of the first switch A1 in FIG. 6 ) may be connected to the first end of the DC power supply DCPS (that is, the upper end of the DC power supply DCPS in FIG. 6 , which may be its negative terminal)
  • the second terminal of the first switch A1 (that is, the lower terminal of the first switch A1 in FIG. 6 ) may be connected to the first terminal of the load unit LU1 (which may be the negative terminal of the load unit LU1 ).
  • the first end of the second switch B1 (that is, the left end of the second switch B1 in FIG.
  • the first end of the load unit LU1 (that is, the second end of the first switch A1 and the first end of the second switch B1 are respectively connected to The first end of the load unit LU1 is connected)
  • the second end of the second switch B1 (that is, the right end of the second switch B1 in FIG. 6 ) can be connected to the second end of the third switch C (that is, the second end of the third switch C in FIG. 6 lower end)
  • the first end of the third switch C i.e. the upper end of the third switch C in FIG. , may be its positive end
  • the second end of the load unit LU1 may be the positive end of the load unit LU1).
  • the second switch B1 and the third switch C1 can be controlled to be sequentially closed first, and then the bypass formed by the second switch B1 and the third switch C1 can be turned on. , then there is no voltage across the first switch A1. At this time, no arc will be generated during the process of turning off the first switch A1. Therefore, no damage will be caused to the first switch A1.
  • the power supply circuit 10 does not need to be equipped with an arc extinguishing device, so that the power supply circuit 10 is small in size and low in cost. At the same time, the reliability and safety of the power supply circuit 10 can be improved.
  • the embodiment of the present application also provides a communication power supply, as shown in FIG. 7 .
  • the communication power supply S may include a direct current power supply DCPS and the power supply circuit 10 provided in the above-mentioned embodiments.
  • One end of the DC power supply DCPS (such as the negative terminal of the DC power supply DCPS) can be connected to the power supply circuit 10, and the other end of the DC power supply DCPS (such as the positive terminal of the DC power supply DCPS) and the power supply circuit 10 are respectively connected to a plurality of load units.
  • the communication power supply 100 can be used to control each load unit in the plurality of load units to supply power through the DC power supply DCPS and the power supply circuit.
  • the communication power supply provided in real time in the present application includes the power supply circuit provided in the above embodiment, so that the communication power supply has a lightning protection function. At the same time, the volume of the communication power supply can also be reduced, and the cost of the communication power supply can be reduced.
  • the embodiment of the present application also provides a communication base station.
  • the communication base station 1 may include N load units (ie, load unit LU1, load unit LU2, ..., load unit LUN in FIG. 8) and a communication power supply S .
  • a communication power supply S may be connected to each of a plurality of load units.
  • An embodiment of the present application provides a method for controlling a power supply circuit, which can be used to control the power supply circuit provided in the foregoing embodiments, and implement hierarchical power-off or hierarchical power-on of at least two load units among multiple load units.
  • control process 100 may include the following steps:
  • Step S101 Control the second switch (such as the second switch B1, taking a relay as an example) corresponding to the first load unit (such as the load unit LU1) of the at least two load units to close, and control the third switch (that is, the third switch C, taking the MOS tube as an example) conduction. Then sequentially control the first switch corresponding to the load unit LU1 (such as the first switch A1, taking a relay as an example) to turn off, the MOS tube to turn off and the second switch corresponding to the load unit LU1 (such as the second switch B1) to turn off in sequence, Power off the load unit LU1.
  • the second switch such as the second switch B1, taking a relay as an example
  • the third switch that is, the third switch C, taking the MOS tube as an example
  • Step S102 Control the second switch (such as the second switch B2, taking a relay as an example) corresponding to the second load unit (such as the load unit LU2) of the at least two load units to close, and control the conduction of the MOS tube, and then sequentially control
  • the first switch corresponding to the load unit LU2 (for example, the first switch A2, taking a relay as an example) is turned off, the MOS transistor is turned off, and the second switch B2 is turned off in sequence, so as to realize power-off of the load unit LU2.
  • the load unit LU1 and the load unit LU2 can be powered off in stages, thereby reducing the loss and operation cost of the communication base station.
  • load units among the multiple load units can implement hierarchical power-off according to the above process, which will not be described in this embodiment of the present application.
  • the power supply circuit does not need to be provided with an arc extinguishing device, so that the volume of the power supply circuit is small and the cost is low. At the same time, the reliability and safety of the power supply circuit can be improved.
  • the control method of the power supply circuit provided in the embodiment of the present application can realize hierarchical power-off of multiple load units by controlling the closing and opening sequences of multiple first switches, multiple second switches, and third switches.
  • control method provided in the embodiment of this application may also perform the following process:
  • load units among the multiple load units can implement hierarchical power-on according to the above process, which will not be described in this embodiment of the present application.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read only memory (Read Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other various media that can store program codes.

Abstract

本申请提供了一种供电电路及其控制方法,供电电路包括供电电路的体积小,且成本低。同时,通过控制多个第一开关、多个第二开关和第三开关的闭合和断开时序,实现多个负载单元的分级下电。供电电路可以包括多个第一开关、多个第二开关和第三开关。多个第一开关、可以与多个负载单元一一对应,多个第二开关可以与多个负载单元一一对应。每个第一开关各自的第一端和第三开关的第一端可以与直流电源的第一端连接,每个第一开关各自的第二端可以与对应的第二开关的第一端和对应的负载单元的第一端连接,每个第二开关的第二端可以与第三开关的第二端连接,直流电源的第二端可以与每个负载单元的第二端连接。

Description

供电电路及其控制方法
本申请要求于2021年11月29日提交中国专利局、申请号为202111431460.6、申请名称为“供电电路及其控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及能源技术领域,并且更具体地,涉及一种供电电路及其控制方法。
背景技术
随着通信技术的快速发展,通信基站一般存在多个不同类型的负载单元。因此,通信基站的通信电源一般通过多个输出端为多个不同类型的负载单元供电。在业务流量相对较少的时段,可以通过供电电路关闭部分或者全部负载单元,以实现节能需要,同时也会降低通信基站的损耗和运营成本。
目前,相关技术中的供电电路通常采用多个切断负载单元能力较强的接触器(即大容量接触器)实现多个负载单元的分级下电。但是,由于每个接触器都需要设置用于减少接触器产生电弧几率的灭弧装置,导致供电电路体积大,成本高。
发明内容
本申请提供了一种供电电路及其控制方法,设置多个第一开关、多个第二开关和第三开关,使得供电电路的体积小,且成本低。同时,通过控制多个第一开关、多个第二开关和第三开关的闭合和断开时序,实现多个负载单元的分级下电(即多个负载单元依次下电,实现负载单元部分停止工作或者全部停止工作,也就是部分或者全部负载单元依次与直流电源断开)。
第一方面,本申请提供了一种供电电路,可以包括多个第一开关、多个第二开关和第三开关。多个第一开关可以与多个负载单元一一对应,多个第二开关可以与多个负载单元一一对应。
可选地,每个第一开关的第一端可以连接直流电源的第一端,每个第一开关的第二端可以连接多个负载单元中对应的负载单元的第一端,每个第二开关的第一端可以连接对应的负载单元的第一端,每个第二开关的第二端可以连接第三开关的第二端,第三开关的第 一端可以连接直流电源的第一端,直流电源的第二端可以连接多个负载单元中每个负载单元的第二端。
本申请提供的供电电路设置了多个第一开关、多个第二开关和第三开关,在多个负载单元分级下电的过程中,第三开关为每个负载单元提供下电通路,也就是说,第三开关为共用开关,使得供电电路的体积小,且成本低。
需要说明的是,本申请提供的供电电路不仅可以实现多个负载单元的分级下电,进而实现节能需要,同时降低通信基站的损耗和运营成本。同时,本申请提供的供电电路还可以通过多个第一开关实现多个负载单元的分级上电(即多个负载单元依次上电,实现负载单元部分开始工作或者全部开始工作,也就是部分或者全部负载单元依次接通直流电源,通过直流电源实现部分或者全部负载单元的供电),减小对供电电路和直流电源的冲击。
在一种可能的实现方式中,本申请实施例提供的供电电路还可以包括控制单元。控制单元可以与多个第一开关中的每个第一开关、多个第二开关中的每个第二开关以及第三开关均连接。
根据上述连接关系,可以理解到,控制单元可以用于控制多个第一开关中至少两个第一开关、多个第二开关中对应的至少两个第二开关和第三开关的闭合或断开,以实现多个负载单元中对应的至少两个负载单元的分级下电。
在一示例中,每个第一开关可以采用继电器或者接触器等机械开关。当然,除了继电器和接触器,上述每个第一开关还可以采用其他损耗比较小的开关,本申请实施例不做限定。
在另一示例中,每个第二开关可以采用继电器、接触器或者半导体开关(即继电器、接触器和半导体开关中的任意一项)。当然,每个第二开关还可以采用其他开关,本申请实施例不做限定。
在又一种示例中,第三开关可以采用继电器(切断负载单元能力强的继电器)、接触器或者半导体开关(即继电器、接触器和半导体开关中的任意一项)。当然,第三开关还可以采用其他开关,本申请实施例不做限定。
可选地,半导体开关可以采用绝缘栅双极型晶体管(insulated gate bipolar transistor,IGBT)、绝缘栅型场效应管(metal-oxide-semiconductor field-effect transistor,MOSFET)或者三极管(triode)。当然,半导体开关还可以采用其他开关,本申请实施例不做限定。
在一种可能的实现方式中,本申请提供的供电电路还可以包括吸收电路,吸收电路可以与第三开关并联。
可选地,吸收电路可以包括电阻和电容。电阻可以与电容串联。
需要说明的是,吸收电路也可以叫作缓冲电路,可以用于缓冲第三开关在开通(或者 闭合)时刻和关断(或者说断开)时刻所承受的电压和电流。
第二方面,本申请提供了一种通信电源,可以包括直流电源上述第一方面及其可能的实现方式提供的供电电路。
直流电源可以与供电电路连接,且直流电源和供电电路分别可以与多个负载单元连接。
于是,通信电源可以用于:通过直流电源和供电电路为多个负载单元中的每个负载单元供电。
第三方面,本申请提供了一种通信基站,可以包括多个负载单元和如上述第二方面提供的通信电源。通信电源可以与多个负载单元中的每个负载单元连接。
第四方面,本申请提供了一种供电电路的控制方法,用于控制上述第一方面及其可能的实现方式提供的供电电路,实现多个负载单元中至少两个负载单元的分级下电或者分级上电。
可选地,控制方法可以包括:
控制至少两个负载单元中的第一负载单元对应的第二开关和第三开关依次闭合,控制第一负载单元对应的第一开关、第三开关和第一负载单元对应的第二开关依次断开,实现第一负载单元的下电;
控制至少两个负载单元中的第二负载单元对应的第二开关和第三开关依次闭合,控制所述第二负载单元对应的第一开关、第三开关和第二负载单元对应的第二开关依次断开,实现第二负载单元的下电。
可以理解的,通过上述步骤可以实现至少两个负载单元的分级下电,进而降低通信基站的损耗和运营成本。
负载单元对应的第二开关闭合且第三开关闭合时,由第二开关和第三开关构成的旁路导通,第一开关两端无电压。此时,断开第一开关的过程中不会有电弧产生。因此,不会对第一开关造成损坏。同时供电电路无需设置灭弧装置,使供电电路的体积小,且成本低。同时,可以提高供电电路的可靠性和安全性。
本申请提供的供电电路的控制方法可以通过控制多个第一开关、多个第二开关和第三开关的闭合和断开时序,实现多个负载单元的分级下电。
在一种可能的实现方式中,本申请提供的控制方法还可以执行如下过程:
控制第一负载单元对应的第一开关和第二负载单元对应的第一开关依次闭合,实现第一负载单元和第二负载单元的分级上电。
需要说明的是,多个负载单元中其他负载单元都可以按照上述过程实现分级上电,本申请不做赘述。
应当理解的是,本申请的第二方面至第四方面与本申请的第一方面的技术方案一致,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图进行简单介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例中供电电路的一种示意性结构图;
图2为本申请实施例中供电电路的一种示意性结构图;
图3为本申请实施例中供电电路的一种示意性结构图;
图4为本申请实施例中供电电路的一种示意性结构图;
图5为本申请实施例中供电电路的一种示意性结构图;
图6为本申请实施例中供电电路的一种示意性结构图;
图7为本申请实施例中通信电源的一种示意性结构图;
图8为本申请实施例中通信基站的一种示意性结构图;
图9为本申请实施例中供电电路的控制方法的一种示意性流程图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书实施例和权利要求书及附图中的术语“第一”、“第二”等仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是 单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
随着通信技术的快速发展,通信基站一般存在多个不同类型的负载单元。负载单元可以分为重要负载和次要负载。其中,重要负载通常可以为传输设备(例如微波传输设备和光线传输设备等)。次要负载通常可以为业务设备(如无线发射设备)。
于是,通信基站的通信电源一般通过多个输出端为多个不同类型的负载单元供电。在业务流量相对较少的时段,可以通过供电电路关闭部分或者全部负载单元,以实现节能需要,同时也会降低通信基站的损耗和运营成本。
在采用多个切断负载单元能力较强的接触器(即大容量接触器)实现多个负载单元的分级下电的供电电路中,由于接触器数量多,且每个接触器都需要设置用于减少接触器产生电弧几率的灭弧装置,导致供电电路体积大,成本高。
为了克服供电电路的体积大且成本高的不足,本申请实施例提供了一种供电电路,如图1所示。供电电路10可以包括N个第一开关A(包括图1中的第一开关A1、第一开关A2、…、第一开关AN)、N个第二开关B(包括图1中的第二开关B1、第二开关B2、…、第二开关BN)和第三开关C。
可选地,N个第一开关可以与N个负载单元可以一一对应,N个第二开关也可以与N个负载单元可以一一对应。
例如,第一开关A1可以和负载单元(load unit,LU)1对应,第二开关B1也可以和负载单元LU1对应。
又例如,第一开关A2可以和负载单元LU2对应,第二开关B2也可以和负载单元LU2对应。
还例如,第一开关AN可以和负载单元LUN对应,第二开关BN也可以和负载单元LUN对应。
根据上述对应关系,进一步有:
每个第一开关的第一端(即图1中每个第一开关的上端)可以连接直流电源(direct current power supply,DCPS)的第一端(即图1中直流电源DCPS的上端),每个第一开关的第二端(即图1中每个第一开关的下端)可以连接N个负载单元中对应的负载单元的第一端。每个第二开关的第一端(即图1中每个第二开关的左端)可以连接对应的负载单元的第一端(即每个第一开关的第二端和每个第二开关的第一端分别与对应的负载单元的第一端连接),每个第二开关的第二端(即图1中每个第二开关的右端)可以连接第三开 关C的第二端(即图1中第三开关C的下端),第三开关C的第一端(即图1中第三开关C的上端)可以连接直流电源DCPS的第一端,直流电源DCPS的第二端(即图1中直流电源DCPS的下端)可以连接N个负载单元中每个负载单元的第二端。
本申请实施例提供的供电电路设置了多个第一开关、多个第二开关和第三开关,在多个负载单元分级下电的过程中,第三开关为每个负载单元提供下电通路,也就是说,第三开关为共用开关,使得供电电路的体积小,且成本低。
需要解释的是,下电可以用于指示负载单元停止工作,也就是负载单元与直流电源断开。那么,分级下电可以用于指示多个负载电源依次下电,实现负载单元部分停止工作或者全部停止工作,也就是部分或者全部负载单元依次与直流电源断开。
类似地,上电可以用于指示负载单元开始工作,也就是负载单元接通直流电源。那么,分级上电可以用于指示多个负载单元依次上电,实现负载单元部分开始工作或者全部开始工作,也就是部分或者全部负载单元依次接通直流电源,通过直流电源实现部分或者全部负载单元的供电。
还需要说明的是,本申请实施例提供的供电电路不仅可以实现多个负载单元的分级下电,进而实现节能需要,同时降低通信基站的损耗和运营成本。同时,本申请实施例提供的供电电路还可以通过多个第一开关实现多个负载单元的分级上电,减小对供电电路和直流电源的冲击。
在一种可能的实现方式中,本申请实施例提供的供电电路10还可以包括控制单元(control unit,CU)。需要说明的是,图1中未示出控制单元CU。
可选地,控制单元CU可以与N个第一开关中的每个第一开关、N个第二开关中的每个第二开关以及第三开关C均连接。
在上述连接关系的基础上,控制单元可以用于:控制N个第一开关中至少两个第一开关(如第一开关A1和第二开关A2)、N个第二开关中对应的至少两个第二开关(如第二开关B1和第二开关B2)和第三开关C的闭合或断开,实现N个负载单元中对应的至少两个负载单元(如负载单元LU1和负载单元LU2)的分级下电。
在一示例中,每个第一开关可以采用继电器或者接触器等机械开关。当然,除了继电器和接触器,上述每个第一开关还可以采用其他的开关,本申请实施例不做限定。
在另一示例中,每个第二开关可以采用继电器、接触器或者半导体开关(即继电器、接触器和半导体开关中的任意一项)。当然,每个第二开关还可以采用其他开关,本申请实施例不做限定。
在又一种示例中,第三开关C可以采用继电器(切断负载单元能力强的继电器)、接触器或者半导体开关(即继电器、接触器和半导体开关中的任意一项)。当然,第三开关 C还可以采用其他开关,本申请实施例不做限定。
可选地,半导体开关可以采用绝缘栅双极型晶体管(insulated gate bipolar transistor,IGBT)、绝缘栅型场效应管(metal-oxide-semiconductor field-effect transistor,MOSFET)或者三极管(triode)。当然,半导体开关还可以采用其他开关,本申请实施例不做限定。
在一种可能的实现方式中,本申请实施例提供的供电电路10还可以包括吸收电路D。如图2所示,吸收电路D可以与第三开关C并联。
可选地,参考图2,吸收电路D可以包括电阻R和电容C1。电阻R可以与电容C1串联。
需要说明的是,吸收电路也可以叫作缓冲电路,可以用于缓冲第三开关在开通(或者闭合)时刻和关断(或者说断开)时刻所承受的电压和电流。
下面以每个第一开关和每个第二开关分别采用继电器为例,并以第三开关采用包括反并联的二极管的绝缘栅型场效应管(简称为MOS管)为例,介绍本申请实施例提供的供电电路。
如图3所示,供电电路10可以包括N个第一开关A(包括图3中的第一开关A1、第一开关A2、…、第一开关AN)、N个第二开关B(包括图3中的第二开关B1、第二开关B2、…、第二开关BN)和MOS管(即第三开关)。
与图1类似,N个第一开关、N个第二开关与N个负载单元可以一一对应。
例如,第一开关A1可以与第二开关B1和负载单元LU1对应。
又例如,第一开关A2可以与第二开关B2和负载单元LU2对应。
还例如,第一开关AN可以与第二开关BN和负载单元LUN对应。
根据上述对应关系,进一步有:
每个第一开关的第一端(即图3中每个第一开关的上端)可以连接48V直流电源的第一端(即图3中48V直流电源的负极端),每个第一开关的第二端(即图3中每个第一开关的下端)可以连接N个负载单元中对应的负载单元的第一端(可以为负载单元的负极端)。每个第二开关的第一端(即图3中每个第二开关的左端)可以连接对应的负载单元的第一端。也就是说,每个第一开关的第二端和每个第二开关的第一端分别与对应的负载单元的第一端连接。每个第二开关的第二端可以连接MOS管的第二端(即图3中MOS管的漏极端),MOS管的第一端(即图3中MOS管的源极端)可以连接48V直流电源的第一端(即图3中48V直流电源的负极端),48V直流电源的第二端(即图1中48V直流电源的正极端)可以连接N个负载单元中每个负载单元的第二端(可以为负载单元的正极端)。
与图1类似,图3中的每个第一开关、每个第二开关和一个MOS管都可以与控制单 元CU连接。也就是说,控制单元CU可以控制图3中的每个第一开关和每个第二开关的闭合和断开,同时也可以控制图3中一个MOS管的导通和关断。
图3所示的供电电路设置了N个第一开关、N个第二开关和一个MOS管,在多个负载单元分级下电的过程中,MOS管为每个负载单元提供下电通路,也就是说,MOS管为共用开关,使得供电电路的体积小,且成本低。
需要说明的是,本申请实施例图3所述的供电电路不仅可以实现多个负载单元的分级下电,进而实现节能需要,同时降低通信基站的损耗和运营成本。
在一种可能的实现方式中,图3所示的供电电路10还可以包括控制单元CU(图3中未示出)。
可选地,控制单元CU可以与N个第一开关中的每个第一开关、N个第二开关中的每个第二开关以及MOS管均连接。需要说明的是,控制单元CU可以连接MOS管的控制端。
在上述连接关系的基础上,控制单元CU可以用于:通过控制N个第一开关中至少两个第一开关(如第一开关A1和第二开关A2)、N个第二开关中对应的至少两个第二开关(如第二开关B1和第二开关B2)和第三开关C的闭合或断开,实现N个负载单元中对应的至少两个负载单元(如负载单元LU1和负载单元LU2)的分级下电。
在一种可能的实现方式中,以第三开关采用继电器为例,本申请实施例提供的供电电路10还可以包括吸收电路D。如图4所示,吸收电路D可以与继电器并联。
可选地,参考图4,吸收电路D可以包括电阻R和电容C1。电阻R可以与电容C1串联。
需要说明的是,吸收电路也可以叫作缓冲电路,可以用于缓冲继电器(即第三开关)在开通时刻和关断时刻所承受的电压和电流。
在一种可能的实现方式中,本申请实施例提供的供电电路可以包括多个第三开关(即图1中的第三开关C可以为多个)。下面以每个第一开关和每个第二开关分别采用继电器为例,并以两个MOS管(包括MOS1和MOS2,也就是两个第三开关)为例介绍供电电路。
如图5所示,与图3类似的是,每个第一开关的第一端(即图5中每个第一开关的上端)可以连接48V直流电源的第一端(即图5中48V直流电源的负极端),每个第一开关的第二端(即图3中每个第一开关的下端)可以连接N个负载单元中对应的负载单元的第一端(可以为负载单元的负极端)。每个第二开关的第一端(即图3中每个第二开关的左端)可以连接对应的负载单元的第一端。也就是说,每个第一开关的第二端和每个第二开关的第一端分别与对应的负载单元的第一端连接。
继续参考图5,与图3不同的是,MOS1的源极(即MOS1的第一端)可以连接48V 直流电源的第一端,MOS1的漏极(即MOS1的第二端)可以连接MOS2的源极(即MOS2的第一端),MOS2的漏极(即MOS2的第二端)可以连接每个第二开关的第二端。
需要说明的是,图5所示的供电电路10也可以包括控制单元CU,每个第一开关、每个第二开关、MOS1和MOS2都可以与控制单元CU连接,也就是说,控制单元CU可以控制图5中每个第一开关和每个第二开关的闭合和断开,也可以控制图5中MOS1和MOS2的导通和关断,进而实现N个负载单元中对应的至少两个负载单元(如负载单元LU1和负载单元LU2)的分级下电。
需要说明的是,控制单元CU可以连接MOS1的控制端和MOS2的控制端。
需要说明的是,本申请实时提供的上述供电电路在实现多个负载单元中至少两个负载单元的分级下电的同时,还可以通过实现多个负载单元中至少两个负载单元的分级上电,减小对供电电路和直流电源的冲击。
在一示例中,如图6所示,本申请实施例提供的供电电路10可以包括一个第一开关(即图6中的第一开关A1)、一个第二开关(即图6中的第二开关B1)和一个第三开关C。
可选地,第一开关A1的第一端(即图6中第一开关A1的上端)可以连接直流电源DCPS的第一端(即图6中直流电源DCPS的上端,可以为其负极端),第一开关A1的第二端(即图6中第一开关A1的下端)可以连接负载单元LU1的第一端(可以为负载单元LU1的负极端)。第二开关B1的第一端(即图6中第二开关B1的左端)可以连接负载单元LU1的第一端(即第一开关A1的第二端和第二开关B1的第一端分别与负载单元LU1的第一端连接),第二开关B1的第二端(即图6中第二开关B1的右端)可以连接第三开关C的第二端(即图6中第三开关C的下端),第三开关C的第一端(即图6中第三开关C的上端)可以连接直流电源DCPS的第一端,直流电源DCPS的第二端(即图6中直流电源DCPS的下端,可以为其正极端)可以连接负载单元LU1的第二端(可以为负载单元LU1的正极端)。
可选地,在图6所示的分级电路10中,可以先控制第二开关B1和第三开关C1依次闭合,于是,由第二开关B1和第三开关C1构成的旁路则可以导通,那么第一开关A1两端无电压。此时,断开第一开关A1的过程中不会有电弧产生。因此,不会对第一开关A1造成损坏。同时供电电路10无需设置灭弧装置,使供电电路10的体积小,且成本低。同时,可以提高供电电路10的可靠性和安全性。
本申请实施例还提供了一种通信电源,如图7所示。图7中,通信电源S可以包括直流电源DCPS和上述实施例提供的供电电路10。直流电源DCPS的一端(如直流电源DCPS的负极端)可以与供电电路10连接,且直流电源DCPS的另一端(如直流电源DCPS的 正极端)和供电电路10分别与多个负载单元连接。
根据上述连接关系,可以理解到,通信电源100可以用于通过直流电源DCPS和供电电路控制多个负载单元中的每个负载单元供电。
需要说明的是,关于供电电路10的详细介绍,可以参考上文,本申请实施例不做赘述。
还需要说明的是,本申请实时提供的通信电源包括上述实施例提供的供电电路,使得通信电源具有防雷作用。同时,也可以减小通信电源的体积,并降低通信电源的成本。
本申请实施例还提供一种通信基站,如图8所示,通信基站1可以包括N个负载单元(即图8中的负载单元LU1、负载单元LU2、…、负载单元LUN)和通信电源S。通信电源S可以与多个负载单元中的每个负载单元连接。
本申请实施例提供了一种供电电路的控制方法,可以用于控制上述实施例提供的供电电路,实现多个负载单元中至少两个负载单元的分级下电或者分级上电。
供电电路正常工作时,负载单元对应的第一开关闭合,实现负载单元的供电。如图9所示,控制过程100可以包括以下步骤:
步骤S101:控制至少两个负载单元中的第一负载单元(如负载单元LU1)对应的第二开关(如第二开关B1,以继电器为例)闭合,并控制第三开关(即第三开关C,以MOS管为例)导通。接着依次控制负载单元LU1对应的第一开关(如第一开关A1,以继电器为例)断开、MOS管关断和负载单元LU1对应的第二开关(如第二开关B1)依次断开,实现负载单元LU1的下电。
步骤S102:控制至少两个负载单元中的第二负载单元(如负载单元LU2)对应的第二开关(如第二开关B2,以继电器为例)闭合,并控制MOS管导通,接着依次控制负载单元LU2对应的第一开关(如第一开关A2,以继电器为例)断开、MOS管关断和第二开关B2依次断开,实现负载单元LU2的下电。
可以理解的,通过上述步骤可以实现负载单元LU1和负载单元LU2的分级下电,进而降低通信基站的损耗和运营成本。
需要说明的是,多个负载单元中其他负载单元都可以按照上述过程实现分级下电,本申请实施例不做赘述。
还需要说明的是,负载单元对应的第二开关闭合,且MOS管导通时,由第二开关和MOS管构成的旁路导通,第一开关两端无电压。此时,断开第一开关的过程中不会有电弧产生。因此,不会对第一开关造成损坏。同时供电电路无需设置灭弧装置,使供电电路的体积小,且成本低。同时,可以提高供电电路的可靠性和安全性。
本申请实施例提供的供电电路的控制方法可以通过控制多个第一开关、多个第二开关 和第三开关的闭合和断开时序,实现多个负载单元的分级下电。
在一种可能的实现方式中,本申请实施例提供的控制方法还可以执行如下过程:
控制第一负载单元(如负载单元LU1)对应的第一开关(如第一开关A1)和第二负载单元(如负载单元LU2)对应的第一开关(如第一开关A2)依次闭合,实现第负载单元LU1和负载单元LU2的分级上电。
需要说明的是,多个负载单元中其他负载单元都可以按照上述过程实现分级上电,本申请实施例不做赘述。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计 算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (11)

  1. 一种供电电路,其特征在于,包括多个第一开关、多个第二开关和第三开关,所述多个第一开关与多个负载单元一一对应,所述多个第二开关与所述多个负载单元一一对应;
    所述每个第一开关的第一端连接直流电源的第一端,所述每个第一开关的第二端连接所述多个负载单元中对应的负载单元的第一端,所述每个第二开关的第一端连接对应的负载单元的第一端,所述每个第二开关的第二端连接所述第三开关的第二端,所述第三开关的第一端连接所述直流电源的第一端,所述直流电源的第二端连接所述多个负载单元中每个负载单元的第二端。
  2. 根据权利要求1所述的供电电路,其特征在于,所述供电电路还包括控制单元;
    所述控制单元与所述多个第一开关中的每个第一开关、所述多个第二开关中的每个第二开关以及所述第三开关均连接;
    所述控制单元用于:控制所述多个第一开关中至少两个第一开关、所述多个第二开关中对应的至少两个第二开关和所述第三开关的闭合或断开。
  3. 根据权利要求1或2所述的供电电路,其特征在于,所述每个第一开关采用继电器或者接触器。
  4. 根据权利要求1至3中任一项所述的供电电路,其特征在于,所述每个第二开关采用继电器、接触器和半导体开关中的任意一项。
  5. 根据权利要求1至4中任一项所述的供电电路,其特征在于,所述第三开关采用继电器、接触器和半导体开关中的任意一项。
  6. 根据权利要求4或5所述的供电电路,其特征在于,所述半导体开关采用绝缘栅双极型晶体管、绝缘栅型场效应管或者三极管。
  7. 根据权利要求1至6中任一项所述的供电电路,其特征在于,所述下电电路还可以包括与所述第三开关并联的吸收电路;
    所述吸收电路包括串联的电阻和电容。
  8. 一种通信电源,其特征在于,包括直流电源和如权利要求1至7中任一项所述的供电电路;
    所述直流电源与所述供电电路连接,且所述直流电源和所述供电电路分别与多个负载单元连接;
    所述通信电源用于:通过所述直流电源和所述供电电路为所述多个负载单元中的每个负载单元供电。
  9. 一种通信基站,其特征在于,包括多个负载单元和如权利要求8所述的通信电源,所述通信电源与所述多个负载单元中的每个负载单元连接。
  10. 一种供电电路的控制方法,用于控制权利要求1至7中任一项所述的供电电路,其特征在于:所述方法包括:
    控制所述至少两个负载单元中的第一负载单元对应的第二开关和所述第三开关依次闭合,控制所述第一负载单元对应的第一开关、所述第三开关和所述第一负载单元对应的第二开关依次断开,实现所述第一负载单元的下电;
    控制所述至少两个负载单元中的第二负载单元对应的第二开关和所述第三开关依次闭合,控制所述第二负载单元对应的第一开关、所述第三开关和所述第二负载单元对应的第二开关依次断开,实现所述第二负载单元的下电。
  11. 根据权利要求10所述的控制方法,其特征在于,所述方法还包括:
    控制所述第一负载单元对应的第一开关和所述第二负载单元对应的第一开关依次闭合,实现所述第一负载单元和所述第二负载单元的分级上电。
PCT/CN2022/103461 2021-11-29 2022-07-01 供电电路及其控制方法 WO2023093059A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111431460.6A CN114256829A (zh) 2021-11-29 2021-11-29 供电电路及其控制方法
CN202111431460.6 2021-11-29

Publications (1)

Publication Number Publication Date
WO2023093059A1 true WO2023093059A1 (zh) 2023-06-01

Family

ID=80791315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103461 WO2023093059A1 (zh) 2021-11-29 2022-07-01 供电电路及其控制方法

Country Status (2)

Country Link
CN (1) CN114256829A (zh)
WO (1) WO2023093059A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114256829A (zh) * 2021-11-29 2022-03-29 华为数字能源技术有限公司 供电电路及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070014055A1 (en) * 2005-07-14 2007-01-18 Ness Keith D Apparatus and method for relay contact arc suppression
CN105553246A (zh) * 2015-12-17 2016-05-04 华为技术有限公司 上下电驱动电路及其控制方法
CN206894605U (zh) * 2017-07-11 2018-01-16 青岛海汇德电气有限公司 高压直流开关装置
CN212726857U (zh) * 2020-06-10 2021-03-16 合肥阳光新能源科技有限公司 一种多路负载的供电控制电路
CN113555863A (zh) * 2020-04-24 2021-10-26 青岛海尔智能技术研发有限公司 直流供电电路、用于直流供电电路的控制方法及装置
CN114256829A (zh) * 2021-11-29 2022-03-29 华为数字能源技术有限公司 供电电路及其控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201804798U (zh) * 2010-08-31 2011-04-20 比亚迪股份有限公司 一种继电器
CN107437834A (zh) * 2017-07-03 2017-12-05 深圳市沃特玛电池有限公司 一种双接触器控制电路及控制方法
CN207069572U (zh) * 2017-07-28 2018-03-02 尹向阳 一种适用于大功率的直流开关灭弧装置
CN107914582B (zh) * 2017-11-28 2019-06-21 成都雅骏新能源汽车科技股份有限公司 电动汽车上、下电安全系统及其控制方法
CN109904832A (zh) * 2019-04-23 2019-06-18 国网江苏省电力有限公司 一种直流断路器及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070014055A1 (en) * 2005-07-14 2007-01-18 Ness Keith D Apparatus and method for relay contact arc suppression
CN105553246A (zh) * 2015-12-17 2016-05-04 华为技术有限公司 上下电驱动电路及其控制方法
CN206894605U (zh) * 2017-07-11 2018-01-16 青岛海汇德电气有限公司 高压直流开关装置
CN113555863A (zh) * 2020-04-24 2021-10-26 青岛海尔智能技术研发有限公司 直流供电电路、用于直流供电电路的控制方法及装置
CN212726857U (zh) * 2020-06-10 2021-03-16 合肥阳光新能源科技有限公司 一种多路负载的供电控制电路
CN114256829A (zh) * 2021-11-29 2022-03-29 华为数字能源技术有限公司 供电电路及其控制方法

Also Published As

Publication number Publication date
CN114256829A (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
CN109617039B (zh) 受电设备及以太网供电系统
CN103594288B (zh) 继电器驱动装置及其驱动方法
CN103138376B (zh) 电源切换电路及其电源切换方法
WO2023093059A1 (zh) 供电电路及其控制方法
WO2017101647A1 (zh) 上下电驱动电路及其控制方法
EP4239822A1 (en) Power supply system, slow-start circuit, and control method
WO2013013555A1 (zh) 一种通信电源蓄电池接入控制装置
CN102064047B (zh) 适用于高压直流场合的继电器和开关管并联电路
CN216929868U (zh) 输入防冲击mos管保护电路
CN109660364B (zh) 一种供电系统
TW201840095A (zh) 電子裝置以及其供電方法
CN114301271B (zh) 功率变换系统及控制方法
CN202043032U (zh) 一种开关电源微功耗启动电路
CN206460600U (zh) 一种无线智能控制装置及系统
CN110970264B (zh) 继电器的驱动电路、方法、装置、存储介质及电子装置
CN111627735A (zh) 混合开关装置的控制方法、装置、设备和介质
US20180241201A1 (en) Protective device
CN109857180B (zh) 一种电源系统的控制方法及其设备
CN211183521U (zh) 双电池选择电路以及电子设备
CN114172258A (zh) 带有自动选择电池功能的切换电路及其供电装置
CN107482760B (zh) 开关装置
US6710994B1 (en) Low power gate trigger circuit for controlling a silicon-controlled rectifier circuit
CN109347315B (zh) 一种电力电子装置上电缓冲电路
CN101339417B (zh) 电路隔离模块以及电压切换电路
CN113472203B (zh) 一种电动汽车dc/dc变换器同步整流保护方法及电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897155

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022897155

Country of ref document: EP

Effective date: 20240429