WO2020155862A1 - 自移动设备的工作方法及装置、自移动设备 - Google Patents

自移动设备的工作方法及装置、自移动设备 Download PDF

Info

Publication number
WO2020155862A1
WO2020155862A1 PCT/CN2019/124277 CN2019124277W WO2020155862A1 WO 2020155862 A1 WO2020155862 A1 WO 2020155862A1 CN 2019124277 W CN2019124277 W CN 2019124277W WO 2020155862 A1 WO2020155862 A1 WO 2020155862A1
Authority
WO
WIPO (PCT)
Prior art keywords
working
work
target
point
self
Prior art date
Application number
PCT/CN2019/124277
Other languages
English (en)
French (fr)
Inventor
贝拉托∙亚历山大
安德罗∙保罗
卡潘纳∙罗伯托
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Publication of WO2020155862A1 publication Critical patent/WO2020155862A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0011Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement
    • G05D1/0044Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement by providing the operator with a computer generated representation of the environment of the vehicle, e.g. virtual reality, maps
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention relates to the field of automatic working technology, in particular to a working method and device of a self-moving device, and a self-moving device.
  • the purpose of the present invention is to provide a working method and device for a self-moving device that can evenly cut the entire lawn, a self-moving device and an automatic working system for cutting the lawn using the working method.
  • the present invention provides a working method of a self-mobile device.
  • the self-mobile device walks and works within a working range defined by a boundary, which may include: receiving a marking message from a remote terminal, the marking message being used to select Multiple target operating points on the boundary; acquiring the work schedule of the self-mobile device starting from each of the multiple target operating points; starting from the target operating point and arranging at the work schedule respectively Walk and work within the working range.
  • acquiring the work schedule of the mobile device starting from each of the multiple target work points may include: receiving the work schedule from the remote terminal from each of the multiple target work points .
  • the multiple target working points can correspond to multiple working areas within the working range; correspondingly, starting from the target working point, walking and working within the working range according to the working schedule , May include: separately starting from the target working point, walking and working in the respective working areas.
  • determining multiple working areas within the working range in the following manner may include: determining multiple working areas within the working range based on the limits and/or channels within the working range meeting preset requirements .
  • the work schedule may include, but is not limited to, at least one of the following: working hours from the mobile device from each target working point, working frequency from the mobile device from each target working point, and The working area of the area.
  • the distance from the initial operating point of the self-mobile device to the target operating point is determined based on the multiple target operating points.
  • starting from the target working point and walking and working within the working range according to the working schedule may include: starting from the initial working point and traveling to the target working point according to the distance ; Taking the target working point as a starting point, walking and working within the working range according to the working schedule.
  • the initial working point may be a charging station.
  • selecting a plurality of target working points located on the boundary may include: obtaining a map of the working range; selecting the plurality of target working points in the map; Multiple target operating points are mapped to the operating range.
  • starting from the target work point and walking and working within the work range according to the work schedule may include: starting from the target work point mapped to the work range, and working in the work range. Walk and work within range.
  • starting from the target work point and walking and working within the work range according to the work schedule may include: starting from the first target work point, and work corresponding to the first target work point Walk and work in the area; return to the charging station for charging, and enter the work area corresponding to the next target work point, where the next target work point includes the first target work point.
  • the embodiment of the present invention also provides a self-moving device that walks and works within a working range defined by a limit.
  • the self-moving device may include: a housing; a walking mechanism that supports the housing and Drive the self-moving device to walk; a power module, which provides driving force for the self-moving device to walk and work; a working module, which is installed on the housing and performs a predetermined work; a control module, which is electrically connected to and controls the The power module is used to realize the automatic walking and automatic work of the self-mobile device; the self-mobile device also includes a communication module that receives the tag message from the remote terminal, and the self-mobile device obtains work Schedule, and transmit the marked message and work schedule to the control module. Based on the marked message and work schedule, the control module controls the lawn mower to start from the target work point and follow the work schedule. The schedule is to walk and work within the working range, and the mark message is used to select multiple target working points located on the boundary.
  • the communication module can receive the work schedule from each of the multiple target work points from the remote terminal.
  • the multiple target work points can correspond to multiple work areas within the work range.
  • the work schedule may include but is not limited to at least one of the following: starting from each target work point from the mobile device The working time of the work, the working frequency of the mobile device from each target working point, and the working area of each working area.
  • the self-moving device may further include a navigation mechanism for forming a map of the working area.
  • multiple target operating points located on the boundary can be determined.
  • the self-moving device may further include an energy module, the energy module may be used to be installed on the housing, and the energy module is used to provide energy for walking and working of the self-moving device.
  • the embodiment of the present invention also provides a working device for a self-moving device.
  • the self-moving device walks and works within a working range defined by a boundary, and may include: a working point receiving module, which may be used to receive marks from a remote terminal A message, the marked message is used to select multiple target operating points located on the boundary; a schedule acquisition module, which can be used to acquire a work schedule starting from each of the multiple target operating points; work module , Can be used to start from the target working point and walk and work within the working range according to the working schedule.
  • the embodiment of the present invention also provides an automatic working system, the self-moving device as described above; and the working device of the self-moving device as described above; the self-moving device works according to the method described above.
  • the present invention has the beneficial effects of: receiving, from a mobile device, a marked message from a remote terminal that selects multiple target operating points located on the boundary, acquiring the work schedule from each target operating point, and following The set work schedule arranges walking to different target work points to ensure that the grass in the work range can be evenly cut, which is conducive to the maintenance of the lawn and improves the overall work efficiency of the self-moving equipment.
  • the remote message is received from the mobile device, and the required message is received through communication with the external device, that is, the user can control the work of the self-mobile device through the external device without inputting corresponding control instructions on the self-mobile device, and the operation is more convenient , Save labor cost.
  • Fig. 1 is a schematic diagram of an automatic working system in an embodiment of the present invention.
  • Fig. 2 is a schematic diagram of a module structure of an automatic lawn mower in an embodiment of the present invention.
  • Fig. 3 is a flowchart of a working method of a self-mobile device according to an embodiment of the present invention.
  • Figures 4-7 are schematic diagrams of scenarios provided by this application.
  • Fig. 8 is a schematic structural diagram of a working device of a self-moving device according to an embodiment of the present invention.
  • the automatic working system of this specific embodiment may include a self-mobile device 1, a boundary 2 and a charging station 3.
  • the boundary 2 is used to limit the working range of the automatic working system.
  • the self-mobile device walks and works within the working range defined by the boundary 2, that is, walks and works within or between the boundaries, and the charging station 3 is used for The mobile device returns to supplement energy when the energy is insufficient.
  • Boundary 2 can be a collective term for boundaries and barriers.
  • the boundary can be the periphery of the working range of the self-mobile device, it can be physical, electronic, or non-existent, that is, it can be formed by entities such as walls and fences; it can also be a virtual boundary signal sent by a boundary signal generator. Such as electromagnetic signal or optical signal; or it can also be the case without any boundary.
  • Obstacles are parts or areas within the working range that cannot be walked on, such as indoor sofas and bed cabinets, or outdoor ponds and flower stands (the area surrounded by boundary 2 in the working range in Figure 1), etc. Similarly, obstacles can also be physical or electronic.
  • the physical obstacles can be formed by the aforementioned obstacles themselves, and the electronic obstacles can be formed by the boundary signal generating device sending out virtual obstacle signals.
  • the virtual boundary signal and the virtual obstacle signal can be the same signal or different signals, which are selected by specific requirements.
  • the self-mobile device detects its position with the boundary through the boundary detector in its own device.
  • the self-mobile device 1 may be an automatic lawn mower, a sweeping robot, an automatic snowplow, and other equipment suitable for unattended operation. They automatically walk on the ground or surface of the working range to perform grass cutting, dust collection or snow sweeping work.
  • the self-moving device 1 is not limited to an automatic lawn mower, a sweeping robot, or an automatic snow sweeper, and may also be other equipment suitable for unattended operation, which is not limited in this application.
  • the self-moving device is an automatic lawn mower for description.
  • the lawn mower 20 has a housing (not shown).
  • the lawn mower 20 may also include a walking mechanism 21, a working module 22, a power module 23, an energy module 28, a control module 24, a communication module 25, Navigation agency 26.
  • the control module 24 is connected to and controls the power module 23.
  • the traveling mechanism 21 includes a wheel set and a traveling motor driving the wheel set.
  • the wheel set includes a driving wheel driven by a walking motor and an auxiliary wheel that assists the support housing.
  • the number of driving wheels can be 1, 2, or more.
  • the auxiliary wheels can also be 1, 2, or more accordingly.
  • the right driving wheel and the left driving wheel are symmetrically arranged with respect to the central axis of the lawn mower 20.
  • the center of the auxiliary wheel is located on the central axis.
  • the right drive wheel and the left drive wheel are preferably located at the rear of the housing, and the auxiliary wheel is located at the front.
  • the driving wheels and auxiliary wheels can also be replaced.
  • the right drive wheel and the left drive wheel are each equipped with a drive motor to achieve differential output to control steering.
  • the drive motor can be directly connected to the drive wheel, but a transmission device can also be provided between the drive motor and the drive wheel, such as a planetary gear train commonly used in this technical field.
  • 2 driving wheels and 1 driving motor may be provided.
  • the driving motor drives the right driving wheel through the first transmission device, and the left driving wheel through the second transmission device. That is, the same motor drives the right drive wheel and the left drive wheel through different transmission devices.
  • the working module 22 is a mowing module, specifically a cutting component, such as a cutting blade.
  • the working module 22 is driven by a cutting motor (not shown).
  • the center of the working module 22 is located on the central axis of the lawn mower 20, is arranged under the casing, and is located between the auxiliary wheel and the driving wheel.
  • the energy module 28 can optionally be used to power the lawn mower, and the lawn mower can optionally charge the energy module 28.
  • the energy source of the energy module 28 may be gasoline, a battery pack, etc.
  • the energy module 28 includes a rechargeable battery pack arranged in a casing. When working, the battery pack releases electric energy to keep the lawn mower 20 working and walking. When not working, the battery pack can be connected to an external power source to supplement power.
  • the power module 23 may include a motor and a transmission structure connected to the motor.
  • the transmission mechanism is connected to the traveling mechanism.
  • the motor drives the transmission mechanism to work.
  • the transmission action of the transmission mechanism makes the traveling mechanism move.
  • the transmission mechanism may be a worm gear mechanism or a bevel gear mechanism. Wait.
  • the power module 23 may be provided with two sets of motors, one set of motors drives the walking mechanism to move, and the other set of motors drives the working module 22 to work. It is understandable that the number of motors in each group is not limited, for example, it can be one or two.
  • the control module 24 is, for example, a controller, which may be an embedded digital signal processor (Digital Signal Processor, DSP), a microprocessor (Micro Processor Unit, MPU), a specific integrated circuit (Application Specific Integrated Circuit, ASIC), and programmable logic Device (Programmable Logic Device, PLD) System on Chip (SOC), Central Processing Unit (CPU), Field Programmable Gate Array (Field Programmable Gate Array, FPGA), etc.
  • the control module 24 is electrically connected to and controls the power module 23 to realize automatic walking and automatic operation of the lawn mower 20.
  • the controller can control the work of the lawn mower according to a preset program or received instructions. Specifically, the controller can control the walking mechanism to walk according to a preset walking path within the working range of the lawnmower. While the walking mechanism drives the lawnmower to walk, the lawnmower performs tasks such as mowing. When the lawn mower walks in the preset path and completes the related work, the controller can control the lawn mower to stop the mowing work, and control the walking mechanism to walk, so that the walking mechanism drives the lawn mower out of the working range.
  • the walking path and parking position of the lawn mower can be set in the controller in advance, and the controller controls the walking mechanism to perform work.
  • Fig. 3 is a flowchart of a working method of a self-moving device (in this embodiment, the self-moving device takes a lawn mower as an example) according to an embodiment of the present invention, which may specifically include:
  • the mobile device may first receive the marking message sent by the remote terminal, and the marking message may be used to select multiple target operating points located on the boundary.
  • the remote terminal can include a hardware device with data information processing functions and the necessary software required to drive the hardware device; and can receive multiple target operating points sent by the client, and send the multiple target operating points to self-mobile Equipment; and multiple predetermined ports can be provided, and multiple target operating points provided by the client can be received through the predetermined ports and/or multiple target operating points can be sent to the mobile device.
  • network data interaction with the client and/or mobile device can be performed based on network protocols such as HTTP, TCP/IP, or FTP, and a network communication module.
  • the remote terminal can also be a client that can realize communication and have a data receiving and sending function in the local area network.
  • the client may be a terminal device that can access a communication network based on a network protocol and has a device information acquisition function.
  • the client may be a mobile smart phone, a computer (including a notebook computer, a desktop computer), a tablet electronic device, a personal digital assistant (PDA), or a smart wearable device.
  • the client can also be an APP running on any of the above-listed devices that can control the work of the mobile device, such as a sweeping app, a mowing app, a snow sweeping app, and a mopping app.
  • multiple target operating points can correspond to multiple working areas within the working range, that is, multiple target operating points located on the boundary can be used for mowing work performed by the mobile device.
  • the starting point when entering each work area.
  • the mobile device walks for the first time, it does not enter the mowing area to work but only marks the target working point corresponding to each work area, and then returns to the charging station.
  • the target operating point represents the initial operating point when starting from the charging station and entering each area to perform work.
  • multiple target operating points located on the boundary may be selected during the process of starting from the initial operating point of the mobile device and walking along the boundary.
  • the initial working point is the charging station.
  • the initial working point here may also be other fixed location points, which is not limited in this application.
  • the mobile application in the client for controlling the self-mobile device can be used to control the start and stop work of the self-mobile device.
  • the self-mobile device can access the network through a wireless network.
  • the user can press the "mark" key in the mobile application to receive the marking information in the client from the mobile device and select the target operating point on the boundary.
  • the self-mobile device can record the distance it walks from the initial working point, mark the position, and record the distance into the memory.
  • the mobile device first walks, it marks the target operating point corresponding to each work area, and records the distance from the initial operating point to each target operating point.
  • the self-moving device determines the above distance, it can be calculated according to its walking time and the speed of the walking mechanism. It can also be calculated by using a displacement sensor in a mobile device in combination with a gyroscope or a nine-axis sensor that detects the angle.
  • selecting multiple target operating points located on the boundary may include:
  • multiple beacons can be set on the boundary, and the map of the working range can be determined by obtaining the coordinate information of the beacons; or the coordinate information when the mobile device walks around the boundary can also be recorded by the positioning device, Draw a map of the working area according to the coordinate information, and store the map in the memory of the mobile device.
  • the self-mobile device may further include a navigation mechanism 26, and the navigation mechanism 26 may be used to form a work area map of the self-mobile device.
  • the navigation mechanism can include but is not limited to at least one of the following: ultrasonic sensors, radar sensors, optical sensors (laser or infrared sensors, etc.), UWB sensors, inertial navigation systems, etc., which can be used to provide environmental control data and control automatic cutting
  • the lawn mower works and is used to form a map of the working range of the automatic lawn mower.
  • S1-3 Map multiple target working points calibrated in the map to the working range.
  • multiple target operating points calibrated in the map by the user can be obtained from the mobile device, and the multiple target operating points calibrated in the map can be mapped according to the position relationship between the map and the actual working range To the scope of work. Therefore, the mobile device can then enter the corresponding work area to work according to the marked target work points. Similarly, when the user later chooses to allow the self-mobile device to work in a certain work area of the multiple work areas, the self-mobile device can enter the corresponding work area to work according to the target work point marked in the work area.
  • a start button (the button is a physical or virtual button) that controls the start of walking on the mobile device. After pressing the button according to preset requirements, the mobile device will start walking; And the Stop button (the button is a physical or virtual button) that controls it to stop walking. After pressing the button, the mobile device will pause its work.
  • the self-mobile device starts from the initial working point and walks along the boundary to the target working point, the user can trigger the stop button on the self-mobile device.
  • the self-mobile device can record the distance walked from the initial working point and mark the stop position , Record the distance into the memory of the self-mobile device; when you need to start again, you can press the start button, the self-mobile device will continue to walk to the next target working point, and record its walking from the initial working point to the next target
  • the distance of the working point and the stop position are marked, and the distance is recorded in the memory. Therefore, when the user chooses to allow the self-mobile device to work in a certain work area among the multiple work areas, the self-mobile device can enter the corresponding work area to work according to the target work point marked in the work area.
  • multiple target operating points located on the boundary are acquired, and the multiple target operating points respectively represent corresponding work areas.
  • the work schedule starting from each of the multiple target operating points from the mobile device may be based on the multiple target operating points received from the mobile device, combined with the local storage of the mobile device The area of the work area or the location information obtained when the map of the work area is formed or calculated from the default work schedule setting in the mobile device.
  • the work schedule obtained from the mobile device from each of the multiple target work points may be a situation where the work schedule is received from a remote terminal.
  • multiple target working points can represent multiple working areas within a working range.
  • the automatic lawn mower starts from each target operating point among multiple target operating points and works within the working range, there may or may not be overlapped between the various working areas of each target operating point to perform work. Preferably, there is no overlap between the determined multiple working areas.
  • the self-mobile device can work independently in each work area, and the mowing conditions in each work area do not affect each other, so that the self-mobile device can better realize even mowing in each work area.
  • each working area represented by the multiple target working points may be determined according to a boundary and/or a channel within the working range that meets preset requirements. Specifically, when there are channels with a width less than a preset threshold in the working range, multiple working areas may be determined according to multiple target working points, limits, and channels of the mobile device. Under normal circumstances, the narrow passages in the above working range that are smaller than the preset threshold can be regarded as obstacles, and then combined with multiple target working points located on the boundary in the working range, to divide the boundary of each working area. In principle, there is no narrow passage with a width smaller than the preset threshold, and the working area is divided.
  • the preset threshold can be determined based on the lateral distance between the boundary detectors of the mobile device. For example, if the lateral distance between the boundary detectors is 10cm, the preset threshold is 10cm or other devices that require multiple turns from the mobile device to pass The width of the channel is not limited in this application.
  • the self-mobile device can start from the target work point, walk and work in each work area represented by each target work point.
  • the self-moving device can cut the grass in the narrow passage in the process of going back and forth between multiple working areas. For example, in the process of walking along the boundary from the first target operating point to the next target operating point, the above-mentioned passage with a width less than a preset threshold may be cut on the way.
  • the automatic lawn mower may receive a work schedule from each of the multiple target work points from the remote terminal.
  • the work schedule may include, but is not limited to, at least one of the following: working hours from the mobile device to work from each target work point, working frequency from the mobile device to work from each target work point, and work in each work area area.
  • the above-mentioned work schedule may be user-defined and/or preset.
  • working time it can also be a working time percentage, where the sum of the working time percentage of each working area in multiple working areas is 100%
  • the user can set different settings for each area according to the growth of the lawn in each area of the courtyard Working hours. For example, if the lawn grows vigorously in the first area, you can set the working time to 5h; if the lawn grows poorly in the second area, you can set it to 1h.
  • the user can also directly adopt the default working time preset by the manufacturer in the mobile device.
  • the working method when the working schedule is a percentage of working time, this application will not repeat it here.
  • obtaining the work schedule may include:
  • S2-1-2 Determine the work of each work area corresponding to each target work point based on the work area of each work area.
  • the total working time corresponding to the area in the mobile device can be determined according to the area of the lawn of the user's home. Then the user can calculate and determine the work situation of the mobile device entering each area from the target work point according to the area of each area, and according to the work schedule, enter the work range from the mobile device to work.
  • receiving the work schedule starting from each of the multiple target work points from the remote terminal may include:
  • S2-2-2 Determine the work of each work area corresponding to each target work point according to the number of work.
  • the user can set the working times of each area according to the area area corresponding to each target working point, and set the working frequency percentage.
  • the working frequency percentage of each working area in multiple working areas The sum is 100%.
  • the number of work indicates the number of times the mobile device starts from the initial work point to each target work point.
  • step S301 after multiple target operating points have been obtained in step S301, the work schedule starting from each target operating point is obtained, so that the mobile device can start from each target operating point according to the actual situation of the lawn. ⁇ Walking and working within the working range according to the working schedule is conducive to the uniform cutting of the grass and improves the overall working efficiency of the self-moving equipment.
  • the mobile device after the mobile device obtains the target work point and the work schedule of each target work point, it can perform multi-region work, starting from the target work point and scheduling work according to the work schedule.
  • the self-mobile device may further include a communication module 25, and the self-mobile device may be connected to the wireless router device through the communication module 25, and communicate with the remote terminal through the communication module 25.
  • the communication module 25 can receive messages sent by the remote terminal. In this embodiment, it may include: receiving multiple target operating points on the boundary sent by the remote terminal through the communication module 25, and receiving self-moving sent by the remote terminal through the communication module 25 The working schedule of the device from each of the multiple target working points. After receiving the above messages, the communication module 25 sends these messages to the control module 24, so that the control module 24 controls the mobile device 20 from the target working point. Start, walk and work within the working range.
  • starting from the target working point and walking and working in each working area may include:
  • S3-1-1 Starting from the initial working point and driving to the target working point according to the distance;
  • S3-1-2 Take the target work point as the starting point, walk and work in each work area corresponding to the target work point.
  • the self-mobile device after the distance of each target working point and the working time corresponding to each target working point are obtained from the mobile device, when the self-mobile device is in the multi-region working mode, the self-mobile device will follow the working time input by the user Or the number of work, starting from the initial work point, randomly select one of the target work points according to each target work point marked in step S301, and based on the target work point and the corresponding distance, walk this distance along the limit to reach the corresponding target work Point, and then use the target operating point as the starting point to walk and work in the work area corresponding to the target operating point.
  • starting from the target working point and walking and working in each working area may include:
  • S3-2-2 Return to the charging station to charge and enter the next working area to walk and work.
  • the next working area includes the first working area.
  • the self-mobile device can start from the first target work point according to the work schedule input by the user (may be: work time, work frequency, work area, etc.), and work at the first target work point. Walk and work in the area until the battery is insufficient, and return to the charging station for charging; when the charging is completed, enter the work area corresponding to the next target work point and walk and work.
  • the next target work point may include but is not limited to the first target work point.
  • one of the target operating points can be randomly selected according to the target operating points marked in step S201, and based on the target operating point and the corresponding distance, walk along the boundary this distance to reach the corresponding work area, and then work with the target Point as the starting point, walk and work in the work area corresponding to the target work point.
  • the self-mobile device may start from the first target operating point and return to the charging station along the limit to charge when the power is insufficient in the work area corresponding to the first target operating point. After the charging station completes charging, it will walk to the next target working point randomly, and enter the corresponding next working area to walk and work. Among them, the next target operating point may be the first target operating point or other target operating points. After the mobile device is charged, it can first obtain the work schedule corresponding to each target working point. If the work in a certain working area has met the setting requirements, the target working point in the area can be excluded when the next target working point is randomly selected .
  • the mobile device when the mobile device is working in the work area corresponding to the first target work point, it may enter other work areas because the work area is connected to other work areas.
  • the work at this time can be: Working time, working frequency, working area, etc.
  • the mobile device Since the mobile device will work all the time until the working conditions of each target working point within the working range meet the working schedule required by the user.
  • the present invention has the beneficial effects of: receiving from the mobile device the marking message of multiple target operating points located on the boundary from the remote terminal, and setting the work schedule starting from each target operating point, and controlling The self-moving equipment walks to different target work points according to the set work schedule, ensuring that the grass in the working range can be evenly cut, which is beneficial to the maintenance of the lawn and improves the overall work efficiency of the self-moving equipment.
  • the remote message is received from the mobile device, and the required message is received through communication with the external device, that is, the user can control the work of the self-mobile device through the external device without inputting corresponding control instructions on the self-mobile device, and the operation is more convenient , Save labor cost.
  • FIGs 4-7 are schematic diagrams of scenarios provided by this application.
  • Xiao Wang wants to use client L to control his mobile device.
  • First, Xiao Wang selects the number of work areas that the mobile device will be divided into.
  • the mobile device After clicking the OK button in the client L, the mobile device starts to walk along the boundary.
  • the mobile device walks from the charging station to the corresponding area A.
  • Target operating point 1 (A, B, and C in the figure are just exemplary descriptions. In actual application, area A, area B and area C are not divided.
  • Target operating point 2.
  • Xiao Wang clicks the "mark" button to stop the mobile device and mark the target operating point 1.
  • Xiao Wang can click the "start” button to control the self-mobile device to continue walking. Further, as shown in Figure 5, he walks from the mobile device to the target operating point 2 in area B, and Xiao Wang clicks the "mark” button to control the self-mobile device to stop And mark the target working point 2. Similarly, Xiao Wang can click the "start” button to control the self-moving device to continue walking.
  • Xiao Wang chooses to enter the working hours of each area from the three target work points and save them. Specifically, as shown in Figure 7, the proportion of working time from target work point 1 into the work range is set to 30%, and the proportion of work time from target work point 2 into the work range is set to 20%. Point 3 is set to 50% of the working time that enters the working range. After that, the self-mobile device will walk and work within the working range according to the working time setting until the corresponding working time ratio is met.
  • the self-mobile device can start from the charging station and walk along the boundary, and select any one of the three target operating points to enter the work area. For example: enter the area corresponding to the target operating point 1 at the target operating point 1 and work according to the preset path, and when the power of the mobile device is insufficient, return to the charging station to charge, and record that the mobile device is working at the target Point 1 working hours. After charging, the mobile device will continue to walk along the boundary line from the charging station to detect whether the working time ratio of each marked position meets the above setting requirements.
  • the mobile device If it does not meet the requirements, select one of the marked position points, such as the target working point 2 When the corresponding position point enters the area corresponding to the target operating point 2 to work until the power is insufficient, it returns to the charging station for charging, and records the working time of the mobile device at the target operating point 2. Since the mobile device repeats the above actions until the working time meets the requirements of the time parameter setting, it returns to the charging station for charging.
  • FIG. 8 is a schematic structural diagram of a working device of a self-mobile device proposed by an embodiment of the present invention.
  • the working device of the self-moving device may include:
  • the working point receiving module 801 can be used to receive a marking message from a remote terminal, where the marking message is used to select multiple target working points located on the boundary;
  • the schedule obtaining module 802 can be used to obtain the work schedule starting from each target work point among multiple target work points;
  • the work module 803 may be used to start from the target work point and walk and work within the work range according to the work schedule.
  • the schedule acquisition module may include: receiving a work schedule from each of the multiple target work points from the remote terminal.
  • multiple target working points can correspond to multiple working areas within the working range; correspondingly, the area working module may include: separately starting from the target working point, walking and working in each working area.
  • the area work module determines multiple work areas within the work range in the following manner, which may include: determining multiple work areas within the work range based on limits and/or channels within the work range that meet preset requirements.
  • the work schedule may include, but is not limited to, at least one of the following: working hours from the mobile device to work from each target work point, work frequencies from the mobile device to work from each target work point, and Work area of the work area.
  • the distance from the initial operating point of the self-mobile device to the target operating point can be determined based on the multiple target operating points.
  • the area work module may include: a first travel unit, which can be used to start from the initial operating point and drive to the target operating point according to the distance; and the second travel unit, which can be used to start from the target operating point and follow The work schedule is arranged to walk and work within the work range.
  • the initial working point may be a charging station.
  • the working point receiving module may include: a map obtaining unit, which can be used to obtain a map of the working range; a working point calibration unit, which can be used to calibrate multiple target working points in the map; and a working point mapping unit, which can It is used to map multiple target working points calibrated in the map to the working range.
  • the regional work module may include: respectively starting from the target work point mapped to the work range, walking and working within the work range
  • the area work module may include: a third travel unit, which can be used to start from the first target work point, walk and work in the work area corresponding to the first target work point; the fourth travel unit can be used When returning to the charging station to charge and enter the work area corresponding to the next target work point to walk and work, the next target work point may include the first target work point.
  • An embodiment of the present invention further relates to an automatic working system, which may include the self-moving device as described above; the self-moving device works according to the method as described above.
  • the self-moving device is an automatic lawn mower.
  • the present invention has the beneficial effects of: receiving from the mobile device the marking message of multiple target operating points located on the boundary from the remote terminal, and setting the work schedule starting from each target operating point, and controlling The self-moving equipment walks to different target work points according to the set work schedule, ensuring that the grass in the working range can be evenly cut, which is beneficial to the maintenance of the lawn and improves the overall work efficiency of the self-moving equipment.
  • the remote message is received from the mobile device, and the required message is received through communication with the external device, that is, the user can control the work of the self-mobile device through the external device without inputting corresponding control instructions on the self-mobile device, and the operation is more convenient , Save labor cost.
  • the embodiments of the present application may also be computer program products, which include computer program instructions that, when run by a processor, cause the processor to execute the "self-mobile device" described in this specification.
  • the steps in the working method of the self-mobile device according to various embodiments of the present invention are described in the section "Working Method”.
  • the computer program product can be used to write program codes for performing the operations of the embodiments of the present application in any combination of one or more programming languages.
  • the programming languages include object-oriented programming languages, such as Java, C++, etc. , Also includes conventional procedural programming languages, such as "C" language or similar programming languages.
  • the program code can be executed entirely on the user's computing device, partly on the user's device, executed as an independent software package, partly on the user's computing device and partly executed on the remote computing device, or entirely on the remote computing device or server Executed on.
  • the embodiments of the present application may also be a computer-readable storage medium, on which computer program instructions are stored.
  • the processor executes the above-mentioned "work from a mobile device" in this specification.
  • the steps in the working method of the self-mobile device according to various embodiments of the present invention are described in the "Method" section.
  • the computer-readable storage medium may adopt any combination of one or more readable media.
  • the readable medium may be a readable signal medium or a readable storage medium.
  • the readable storage medium may include, but is not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or a combination of any of the above, for example. More specific examples (non-exhaustive list) of readable storage media include: electrical connections with one or more wires, portable disks, hard disks, random access memory (RAM), read only memory (ROM), erasable Type programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • each part of the present invention can be implemented by hardware, software, firmware or a combination thereof.
  • multiple steps or methods can be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a logic gate circuit for implementing logic functions on data signals
  • PGA programmable gate array
  • FPGA field programmable gate array
  • a person of ordinary skill in the art can understand that all or part of the steps carried in the method of the foregoing embodiments can be implemented by a program instructing related hardware to complete.
  • the program can be stored in a computer-readable storage medium. When executed, it includes one of the steps of the method embodiment or a combination thereof.
  • the functional units in the various embodiments of the present invention may be integrated into one processing module, or each unit may exist alone physically, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. If the integrated module is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer readable storage medium.
  • the storage medium mentioned above may be a read-only memory, a magnetic disk or an optical disk, etc.

Abstract

本发明提供了自移动设备的工作方法、自移动设备以及自动工作系统,所述方法包括:接收来自远程终端的标记消息,标记消息可以用于选定位于界限上的多个目标工作点;接收来自远程终端的从多个目标工作点中各个目标工作点出发的工作日程安排;分别从目标工作点出发、按照工作日程安排在工作范围内行走并工作。本发明的有益效果是:控制自移动设备从不同目标工作点出发、并按照设置的工作日程安排在工作范围内工作,保证工作范围内的草能被均匀切割,有利于草坪的维护,提高了自移动设备的整体工作效率。

Description

自移动设备的工作方法及装置、自移动设备
本申请要求了申请日为2019年02月02日,申请号为201910108055.7的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及自动工作技术领域,特别是涉及一种自移动设备的工作方法及装置、自移动设备。
背景技术
随着计算机技术和人工智能技术的不断进步,越来越多的人在日常生活中选择使用自动工作系统。在自动工作系统中自动工作的自移动设备,例如:智能割草机以及扫地机器人等,一般在进行一次设置之后,能自动在用户的草坪中或室内工作,从而将用户从清洁房间、维护草坪等繁琐枯燥费时的家务劳动中解放出来。
使用自移动设备工作时,通常采用在区域中随机路径行走的方式。当遇到工作范围中存在狭窄通道时,自移动设备要么无法通过该狭窄通道达到工作范围中的其他部分导致工作范围中某些区域切割不到;要么需要耗费大量时间才能成功通过狭窄通道,狭窄通道的占地面积小,自移动设备在狭窄通道内多次折返时重复切割导致切割不均匀,不利于草坪维护,也加快了能量损耗。
发明内容
本发明的目的在于提供一种能让整个草坪均匀切割的自移动设备的工作方法及装置、自移动设备以及使用该工作方法切割草坪的自动工作系统。
本发明提供了一种自移动设备的工作方法,所述自移动设备在界限所限定的工作范围内行走并工作,可以包括:接收来自远程终端的标记消息,所述标记消息用于选定位于所述界限上的多个目标工作点;获取所述自移动设备从多个目标工作点中各个目标工作点出发的工作日程安排;分别从所述目标工作点出发、按照所述工作日程安排在所述工作范围内行走并工作。
优选的,获取所述自移动设备从多个目标工作点中各个目标工作点出发的工作日程安排,可以包括:接收来自远程终端的从多个目标工作点中各个 目标工作点出发的工作日程安排。
优选的,所述多个目标工作点能对应所述工作范围内的多个工作区域;相应的,分别从所述目标工作点出发、按照所述工作日程安排在所述工作范围内行走并工作,可以包括:分别从所述目标工作点出发、在所述各个工作区域中行走并工作。
优选的,按照以下方式确定所述工作范围内的多个工作区域,可以包括:基于所述界限和/或所述工作范围内满足预设要求的通道确定所述工作范围内的多个工作区域。
优选的,所述多个工作区域之间无重叠。
优选的,所述工作日程安排可以包括但不限于以下至少之一:自移动设备从各个目标工作点出发工作的工作时间、自移动设备从各个目标工作点出发工作的工作频率、所述各个工作区域的工作面积。
优选的,基于所述多个目标工作点确定所述自移动设备从初始工作点出发沿所述界限行走至所述目标工作点的距离。
优选的,分别从所述目标工作点出发、按照所述工作日程安排在所述工作范围内行走并工作,可以包括:从所述初始工作点出发、根据所述距离行驶至所述目标工作点;以所述目标工作点为起点,按照所述工作日程安排在所述工作范围内行走并工作。
优选的,所述初始工作点可以为充电站。
优选的,选定位于所述界限上的多个目标工作点,可以包括:获取所述工作范围的地图;在所述地图中选定所述多个目标工作点;将所述地图中标记的多个目标工作点映射至所述工作范围中。
优选的,分别从所述目标工作点出发、按照所述工作日程安排在所述工作范围内行走并工作,可以包括:分别从映射至所述工作范围中的目标工作点出发,在所述工作范围内行走并工作。
优选的,分别从所述目标工作点出发、按照所述工作日程安排在所述工作范围内行走并工作,可以包括:从第一目标工作点出发,在所述第一目标工作点对应的工作区域中行走并工作;回归所述充电站充电,并进入下一目标工作点对应的工作区域中行走并工作,所述下一目标工作点包括所述第一目标工作点。
本发明实施例还提供了一种自移动设备,所述自移动设备在界限所限定 的工作范围内行走并工作,所述自移动设备可以包括:壳体;行走机构,支撑所述壳体并带动所述自移动设备行走;动力模块,为所述自移动设备提供行走及工作的驱动力;工作模块,安装在所述壳体上,执行预定工作;控制模块,电性连接并且控制所述所述动力模块,以实现所述自移动设备的自动行走及自动工作;所述自移动设备中还包含通信模块,所述通信模块接收来自远程终端的标记消息,以及所述自移动设备获取工作日程安排,并将所述标记消息以及工作日程安排传送给所述控制模块,所述控制模块基于所述标记消息以及工作日程安排控制割草机分别从所述目标工作点出发、按照所述工作日程安排在所述工作范围内行走并工作,所述标记消息用于选定位于所述界限上的多个目标工作点。
优选的,所述通信模块可以接收来自远程终端的从多个目标工作点中各个目标工作点出发的工作日程安排。
优选的,所述多个目标工作点能对应所述工作范围内的多个工作区域,相应的,所述工作日程安排可以包括但不限于以下至少之一:自移动设备从各个目标工作点出发工作的工作时间、自移动设备从各个目标工作点出发工作的工作频率、所述各个工作区域的工作面积。
优选的,所述自移动设备还可以包括:导航机构,所述导航机构用于形成所述工作范围的地图。
优选的,基于用户在所述地图上选定的多个目标工作点,可以确定位于所述界限上的多个目标工作点。
优选的,所述自移动设备还可以包括:能量模块,所述能量模块可以用于安装在所述壳体上,所述能量模块用于为所述自移动设备的行走和工作提供能量。
本发明实施例还提供了一种自移动设备的工作装置,所述自移动设备在界限所限定的工作范围内行走并工作,可以包括:工作点接收模块,可以用于接收来自远程终端的标记消息,所述标记消息用于选定位于所述界限上的多个目标工作点;日程安排获取模块,可以用于获取从多个目标工作点中各个目标工作点出发的工作日程安排;工作模块,可以用于分别从所述目标工作点出发、按照所述工作日程安排在所述工作范围内行走并工作。
本发明实施例还提供了一种自动工作系统,如上所述的自移动设备;以及如上所述的自移动设备的工作装置;所述自移动设备按照如上所述的方法 工作。
与现有技术相比,本发明的有益效果是:自移动设备接收来自远程终端的选定位于界限上多个目标工作点的标记消息,获取从各个目标工作点出发的工作日程安排,并按照设置的工作日程安排行走至不同目标工作点工作,保证工作范围内的草能被均匀切割,有利于草坪的维护,提高了自移动设备的整体工作效率。进一步的,自移动设备接收远程消息,通过与外部设备通信接收所需要的消息,即,用户可以通过外部设备控制自移动设备工作,而不需要在自移动设备上输入相应控制指令,操作更加简便,节省人力成本。
附图说明
以上所述的本发明解决的技术问题、技术方案以及有益效果可以通过下面的能够实现本发明的较佳的具体实施例的详细描述,同时结合附图描述而清楚地获得。
附图以及说明书中的相同的标号和符号用于代表相同的或者等同的元件。
图1是本发明一实施例中自动工作系统的示意图。
图2是本发明一实施例中自动割草机的模块结构示意图。
图3是本发明实施例的一种自移动设备的工作方法流程图。
图4-7是本申请提供的场景的示意图。
图8是本发明实施例的一种自移动设备的工作装置结构示意图。
其中,
1 自移动设备    2 界限    3 充电站    4 工作范围
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
如图1所示为本具体实施方式的自动工作系统,可以包括自移动设备1、界限2和充电站3。其中,界限2用于限制自动工作系统的工作范围,自移动设备在界限2所限定的工作范围内行走并工作,即在界限之中或界限之间行走并工作,充电站3用于供自移动设备在能源不足时返回补充能量。
界限2可以是边界和障碍的统称。边界可以是自移动设备工作范围的外围,可以是实体的、电子的,也可以是不存在的形式,即可以由墙壁、篱笆等实体形成边界;也可以由边界信号发生装置发出虚拟边界信号,如电磁信号或光信号;或者也可以是无任何边界存在的情况。障碍是位于工作范围内的无法在其上行走的部分或区域,如室内的沙发、床柜,或室外的水塘、花台(如图1中位于工作范围内的界限2所包围的区域)等,类似的,障碍也可以是实体的或者电子的,实体的障碍可以由前述的障碍物自身形成,电子的障碍可以由边界信号发生装置发出虚拟障碍信号形成。虚拟边界信号和虚拟障碍信号可以为同一种信号也可以为不同的信号,由具体需求选择。自移动设备通过自身设备中存在的边界检测器来检测其与边界的位置情况。
自移动设备1可以是自动割草机、扫地机器人、自动扫雪机等适合无人值守的设备,它们自动行走于工作范围的地面或表面上,进行割草、吸尘或者扫雪工作。当然,自移动设备1不限于自动割草机、扫地机器人、自动扫雪机,也可以为其它适合无人值守的设备,本申请对此不作限定。
在本申请下面的实施例中,以自移动设备为自动割草机进行说明。
如图2所示,割草机20具有壳体(图未示),割草机20还可以包括行走机构21、工作模块22、动力模块23、能量模块28、控制模块24、通信模块25、导航机构26。控制模块24连接并且控制动力模块23。
本实施例中,行走机构21包括轮组和驱动轮组的行走马达。轮组可以有多种设置方法。通常轮组包括由行走马达驱动的驱动轮和辅助支撑壳体的辅助轮,驱动轮的数量可以为1个、2个或者更多,辅助轮相应地也可以设为1个、2个或者多个。在本实施例中,割草机20的驱动轮为2个,分别为位于右侧的右驱动轮和位于左侧的左驱动轮。右驱动轮和左驱动轮关于割草机20的中轴线对称设置。辅助轮的中心位于中轴线上。右驱动轮和左驱动轮优选的位于壳体的后部,辅助轮位于前部。当然在其他实施例中所述驱动轮和辅助轮也可以替换设置。在本实施例中,右驱动轮和左驱动轮各自配接一个驱动马达,以实现差速输出以控制转向。驱动马达可以直接连接驱动轮,但也 可以在驱动马达和驱动轮之间设传动装置,如本技术领域内常见的行星轮系等。在其他的实施例中,也可设置驱动轮2个,驱动马达1个,这种情况下,驱动马达通过第一传动装置驱动右驱动轮,通过第二传动装置驱动左驱动轮。即同一个马达通过不同的传动装置驱动右驱动轮和左驱动轮。
工作模块22即为割草模块,具体为切割部件,如切割刀片。工作模块22由切割马达(图未示)驱动工作。工作模块22的中心位于割草机20的中轴线上,设置于壳体下方,位于辅助轮和驱动轮之间。能量模块28可选择的被用于给割草机供电,割草机可选择的给能量模块28充电。能量模块28的能源可以为汽油、电池包等,在本实施例中能量模块28包括在壳体内设置的可充电电池包。在工作的时候,电池包释放电能以维持割草机20工作和行走。在非工作的时候,电池包可以连接到外部电源以补充电能。特别地,出于更人性化的设计,当探测到电池包的电量不足时,割草机20会自动地寻找充电站补充电能。动力模块23可以包括电机及与电机连接的传动结构,传动机构与行走机构连接,电机驱动传动机构工作,传动机构的传动作用使得行走机构运动,其中,传动机构可以是蜗轮蜗杆机构、锥齿轮机构等。动力模块23可以设有两组电机,一组电机驱动行走机构运动,另一组电机驱动工作模块22工作。可理解的是,每组电机的数量不做限制,例如可以为一个或两个。
控制模块24例如为控制器,可以是嵌入式数字信号处理器(Digital Signal Processor,DSP)、微处理器(Micro Processor Unit,MPU)、特定集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Programmable Logic Device,PLD)芯上系统(System on Chip,SOC)、中央处理器(Central Processing Unit,CPU)或者现场可编程门阵列(Field Programmable Gate Array,FPGA)等。控制模块24电性连接并且控制动力模块23,以实现割草机20的自动行走及自动工作。
控制器可根据预设程序或接受到的指令控制割草机的工作。具体地,控制器可以控制行走机构在割草机的工作范围内按照预设的行走路径行走,在行走机构带动割草机行走的同时,割草机执行割草等工作。割草机在预设路径内行走完成并完成相关工作时,控制器可以控制割草机停止割草工作,并控制行走机构行走,使得行走机构带动割草机离开工作范围。割草机的行走路径和停靠位置可以提前在控制器中设定,并由控制器控制行走机构执行工作。
如图3所示为本发明实施例的一种自移动设备(在本实施例中,自移动设备以割草机为例)的工作方法流程图,具体可以包括:
S301:接收来自远程终端的标记消息。
在本申请的一个实施例中,自移动设备可以先接收远程终端发送的标记消息,该标记消息可以用于选定位于界限上的多个目标工作点。远程终端可以包括具有数据信息处理功能的硬件设备和驱动该硬件设备工作所需的必要的软件;且能接收客户端发送的多个目标工作点,并将该多个目标工作点发送给自移动设备;且可以提供多个预定端口,并通过预定端口可以接收客户端提供的多个目标工作点和/或将多个目标工作点发送给自移动设备。例如,可以基于HTTP、TCP/IP或FTP等网络协议以及网络通信模块与客户端和/或自移动设备进行网络数据交互。进一步的,当所连接的网络为某个局域网时,远程终端也可以为局域网内能实现通信具有数据收发功能的客户端。
在本实施例中,客户端可以为能够基于网络协议接入通信网络并具有设备信息获取功能的终端设备。具体的,例如,客户端可以为移动智能电话、计算机(包括笔记本电脑,台式电脑)、平板电子设备、个人数字助理(PDA)或者智能可穿戴设备等。此外,客户端还可以为运行于任一上述所列设备上的能控制自移动设备工作的APP,例如:扫地APP、割草APP、扫雪APP、拖地APP等。
在本申请的一个实施例中,多个目标工作点能对应工作范围内的多个工作区域,即,位于界限上的多个目标工作点可以为自移动设备执行割草工作时,从界限分别进入各个工作区域时的起点。自移动设备在初次行走时,不进入割草区域工作而是仅标记各个工作区域对应的目标工作点,然后回归充电站。对于自移动设备而言,该目标工作点代表了之后从充电站出发进入各个区域中执行工作时的初始工作点。
在本实施例中,可以在自移动设备从初始工作点出发沿所述界限行走的过程中选定位于界限上的多个目标工作点。同时,也可以在自移动设备处于工作状态或非工作状态时,远程预先设置多个目标工作点以及工作日程安排,从而实现即使用户不在家时也可以自动工作。并在选定各个目标工作点时,记录从初始工作点出发沿界限行走至目标工作点的距离。在一个实施例中, 初始工作点为充电站,当然,此处的初始工作点也可以是其他固定位置点,本申请对此不做限定。
作为本实施例的一种实现方式,可以通过客户端中用于控制该自移动设备的移动应用来控制自移动设备的启停工作,此时自移动设备可以通过无线网接入网络。当自移动设备移动至相应目标工作点时,用户可以按下移动应用中的“标记”键,自移动设备接收客户端中的标记信息,选定位于界限上的目标工作点。此时,自移动设备可以记录其从初始工作点出发行走的距离并标记该位置,将距离记录至内存中。自移动设备在初次行走时,标记各个工作区域对应的目标工作点,并记录其从初始工作点出发行走至各个目标工作点的距离。
自移动设备在确定上述距离时,可以根据其行走的时间以及行走机构的转速计算得到。也可以利用自移动设备中的位移传感器结合检测角度的陀螺仪或者九轴传感器计算得到。
在本申请的一个实施例中,选定位于界限上的多个目标工作点,可以包括:
S1-1:获取工作范围的地图。
在本申请的一个实施例中,可以在界限上设置多个信标,通过获取信标的坐标信息从而确定工作范围的地图;或者也可以通过定位设备记录自移动设备围绕界限行走时的坐标信息,根据该坐标信息绘制工作范围的地图,并将地图存储至自移动设备的存储器中。在本申请的另一个实施例中,自移动设备中还可以包括导航机构26,该导航机构26可以用于形成自移动设备的工作范围地图。具体的,导航机构可以包括但不限于以下至少之一:超声波传感器、雷达传感器、光学传感器(激光或红外传感器等)、UWB传感器、惯性导航系统等,可以用于提供环境控制数据,控制自动割草机工作,并用于形成自动割草机的工作范围地图。
S1-2:在地图中标定多个目标工作点。
S1-3:将地图中标定的多个目标工作点映射至工作范围中。
在本申请的一个实施例中,自移动设备可以获取用户在地图中标定的多个目标工作点,并可以根据该地图与实际工作范围的位置关系,将地图中标 定的多个目标工作点映射至工作范围中。从而,之后自移动设备能够根据所标记的各个目标工作点进入相应的工作区域工作。同样的,当之后用户选择让自移动设备在多个工作区域中的某一工作区域工作时,自移动设备能够根据该工作区域中所标记的目标工作点进入相应的工作区域工作。
作为本申请的另一种实现方式,自移动设备上存在控制其开始行走的start按键(该按键为物理或虚拟的按键),按照预设要求按下该按键后,自移动设备将开始行走;以及控制其停止行走的Stop按键(该按键为物理或虚拟的按键),按下该按键后,自移动设备将暂停工作。当自移动设备从初始工作点出发沿界限行走至目标工作点时,用户可以触发自移动设备上的停止按键,此时自移动设备可以记录其从初始工作点出发行走的距离并标记该停止位置,将距离记录至自移动设备的内存中;当需要再次出发时可以按下start按键后,自移动设备将继续行走至下一目标工作点,记录其从初始工作点出发行走至该下一目标工作点的距离并标记该停止位置,将距离记录至内存中。因而,当用户选择让自移动设备在多个工作区域中的某一工作区域工作时,自移动设备能够根据该工作区域中所标记的目标工作点进入相应的工作区域工作。
在本实施例中,获取位于界限上的多个目标工作点,该多个目标工作点分别代表了相应的工作区域。获取位于界限上的多个目标工作点,再根据该多个目标工作点所对应的多个工作区域,控制自移动设备分别在各个工作区域中工作,从而用户能根据实际的草地情况选取目标工作点,有利于草地的切割,提高了自移动设备的整体工作效率。
S302:获取自移动设备从多个目标工作点中各个目标工作点出发的工作日程安排。
在本申请的一个实施例中,自移动设备从多个目标工作点中各个目标工作点出发的工作日程安排可以为自移动设备基于接收到的多个目标工作点,结合自移动设备本地存储的工作范围面积或形成所述工作区域的地图时得到的位置信息或自移动设备中默认工作日程设置等计算得到的。
在本申请的另一个实施例中,获取自移动设备从多个目标工作点中各个目标工作点出发的工作日程安排可以为从远程终端接收工作日程安排的情 况。
在本申请的一个实施例中,多个目标工作点能代表工作范围内的多个工作区域。在自动割草机从多个目标工作点中各个目标工作点出发在工作范围内工作时,各个目标工作点出发进行工作的各个工作区域之间可以有重叠也可以无重叠。优选的,所确定的多个工作区域之间无重叠。这样,自移动设备可以在各个工作区域中独立的工作,各个工作区域中的割草情况互不影响,从而可以更佳的实现自移动设备在各个工作区域中的均匀割草。
在本申请的一个实施例中,多个目标工作点所代表的各个工作区域可以是根据界限和/或所述工作范围内满足预设要求的通道所确定的。具体的,当工作范围内存在宽度小于预设阈值的通道时,可以根据自移动设备的多个目标工作点、界限以及通道来确定多个工作区域。一般情况下,可以先将上述工作范围内小于预设阈值的狭窄通道视为障碍物,再结合工作范围内位于界限上的多个目标工作点,以划分后各个工作区域中首尾相接的界限内不存在宽度小于预设阈值的狭窄通道为原则,进行工作区域划分。该预设阈值可以基于自移动设备的边界检测器之间的横向距离确定,例如:边界检测器之间的横向距离为10cm,则预设阈值为10cm或者其他需要自移动设备多次折返才能通过的通道宽度,本申请对此不作限定。
自移动设备可以从目标工作点出发,分别在各个目标工作点所代表的各个工作区域中行走并工作。对于上述未进行工作区域划分的狭窄通道而言,自移动设备可以在往返多个工作区域的过程中对切割该狭窄通道中的草。例如:可以在沿着界限从第一目标工作点行走至下一目标工作点的过程中,对途中经过的上述宽度小于预设阈值的通道进行割草工作。
在本申请的一个实施例中,自动割草机可以接收来自远程终端的从多个目标工作点中各个目标工作点出发的工作日程安排。其中,工作日程安排可以包括但不限于以下至少之一:自移动设备从各个目标工作点出发工作的工作时间、自移动设备从各个目标工作点出发工作的工作频率、所述各个工作区域的工作面积。在自动割草机接收到工作日程安排之后,可以根据该工作日程安排通过软件计算的方式和/或硬件计算器计算的方式确定自移动设备从目标工作点出发进入工作范围时的工作情况。
在本实施例中,上述工作日程安排可以为:用户自定义和/或预先设定。对于工作时间(也可以为工作时间百分比,其中,多个工作区域中各个工作区域的工作时间百分比之和为100%)而言,用户可以根据庭院各个区域中草坪生长情况,针对各个区域设置不同的工作时间。例如:第一区域草坪生长旺盛,则可以设置工作时间为5h;第二区域草坪生长较差,则可以设置为1h。用户也可以直接采用自移动设备中由生产厂家预设设定好的默认工作时间。当工作日程安排为工作时间百分比时的工作方法,本申请在此不再赘述。
在本申请的一个实现方式中,当工作日程安排为各个区域的工作面积(也可以为工作面积百分比)时,获取工作日程安排可以包括:
S2-1-1:获取各个工作区域的工作面积;
S2-1-2:基于各个工作区域的工作面积,确定各个目标工作点对应的各个工作区域的工作。
可以根据用户家草坪的面积,确定自移动设备中与该面积对应的总的工作时间。然后用户可以根据各个区域的面积,分别计算确定自移动设备从目标工作点出发进入各个区域的工作情况,并根据该工作日程安排,自移动设备进入工作范围内工作。
在本申请的一个实现方式中,当工作日程安排为工作次数或工作频率时,接收来自远程终端的从多个目标工作点中各个目标工作点出发的工作日程安排,可以包括:
S2-2-1:获取多个目标工作点中各个目标工作点出发的工作次数;
S2-2-2:根据工作次数确定各个目标工作点对应的各个工作区域的工作。
和上述设置工作时间的原理类似,用户可以根据各个目标工作点对应的区域面积,分别设置各个区域的工作次数,并设置工作次数百分比,其中,多个工作区域中各个工作区域的工作次数百分比之和为100%。该工作次数表明自移动设备从初始工作点出发去各个目标工作点的次数。
在本实施例中,在步骤S301中已经获取了多个目标工作点之后,再获取从各个目标工作点出发的工作日程安排,从而自移动设备可以根据草坪的实际情况分别从各个目标工作点出发、按照该工作日程安排在工作范围内行走并工作,有利于草地的均匀切割,提高了自移动设备的整体工作效率。
S303:分别从目标工作点出发、按照工作日程安排在工作范围内行走并工作。
在本申请的一个实施例中,自移动设备在得到目标工作点以及各个目标工作点的工作日程安排之后,可以进行多区域工作,分别从目标工作点出发、根据该工作日程安排工作。
在本实施例中,自移动设备中还可以包括通信模块25,该自移动设备可以通过通信模块25连接至无线路由设备,并通过通信模块25与远程终端进行通信。通信模块25能接收远程终端发送的消息,在本实施例中,可以包括:通过通信模块25接收远程终端发送的位于界限上的多个目标工作点,通过通信模块25接收远程终端发送的自移动设备从多个目标工作点中各个目标工作点出发的工作日程安排,通信模块25在接收到上述消息后,将这些消息发送给控制模块24,从而控制模块24控制自移动设备20从目标工作点出发、在工作范围内行走并工作。
在本申请的一个实施例中,分别从目标工作点出发、在各个工作区域中行走并工作,可以包括:
S3-1-1:从初始工作点出发、根据距离行驶至目标工作点;
S3-1-2:以目标工作点为起点,在目标工作点对应的各个工作区域中行走并工作。
在本实施例中,在自移动设备得到各个目标工作点的距离以及各个目标工作点对应的工作时间之后,当自移动设备处于多区域工作模式时,自移动设备将按照用户所输入的工作时间或者工作次数,从初始工作点出发,根据步骤S301中标记的各个目标工作点,随机选择其中一个目标工作点,基于该目标工作点以及相应的距离,沿着界限行走此距离到达相应的目标工作点,然后以该目标工作点为起点,进入该目标工作点对应的工作区域中行走并工作。
在本申请的另一个实施例中,分别从目标工作点出发、在各个工作区域中行走并工作,可以包括:
S3-2-1:从第一目标工作点出发,在第一工作区域中行走并工作;
S3-2-2:回归充电站充电并进入下一工作区域中行走并工作,下一工作 区域包括第一工作区域。
在本实施例中,自移动设备可以根据用户所输入的工作日程安排(可以为:工作时间、工作频率、工作面积等),从第一目标工作点出发,在第一目标工作点对应的工作区域中行走并工作直至电量不足,回归充电站充电;当完成充电之后,进入下一目标工作点对应的工作区域中行走并工作,下一目标工作点可以包括但不限于第一目标工作点。同样的,可以根据步骤S201中标记的各个目标工作点,随机选择其中一个目标工作点,基于该目标工作点以及相应的距离,沿着界限行走此距离到达相应的工作区域,然后以该目标工作点为起点,进入该目标工作点对应的工作区域中行走并工作。
具体的,自移动设备可以从第一目标工作点出发,在第一目标工作点对应的工作区域中工作到电量不足时,沿着界限回归充电站充电。在充电站完成充电之后,随机行走至下一目标工作点,并进入相应的下一工作区域中行走并工作。其中,下一目标工作点可以为第一目标工作点,也可以为其他目标工作点。自移动设备在完成充电之后,可以先获取各个目标工作点对应的工作日程安排,若某个工作区域的工作已经满足设置要求,则随机选择下一目标工作点时可以排除该区域的目标工作点。值得注意的是,自移动设备在第一目标工作点对应的工作区域中工作时,有可能由于该工作区域与其他工作区域是相通的,而进入其他工作区域,此时的工作(可以为:工作时间、工作频率、工作面积等)仍计入该目标工作点对应的工作情况。自移动设备将一直工作直至在工作范围内从各个目标工作点出发工作时的工作情况满足用户要求的工作日程安排。
与现有技术相比,本发明的有益效果是:自移动设备接收来自远程终端的选定位于界限上多个目标工作点的标记消息,并设置从各个目标工作点出发的工作日程安排,控制自移动设备按照设置的工作日程安排行走至不同目标工作点工作,保证工作范围内的草能被均匀切割,有利于草坪的维护,提高了自移动设备的整体工作效率。进一步的,自移动设备接收远程消息,通过与外部设备通信接收所需要的消息,即,用户可以通过外部设备控制自移动设备工作,而不需要在自移动设备上输入相应控制指令,操作更加简便,节省人力成本。
下面通过具体的应用场景说明本申请的实施例方法。
图4-7是本申请提供的场景的示意图。小王想用客户端L控制自移动设备。首先小王选择自移动设备将被划分的工作区域数目,在客户端L中点击确定按键之后,自移动设备沿着界限开始行走,如图4所示自移动设备从充电站行走至区域A对应的目标工作点1(图中A、B、C只是一种示例性描述,实际应用时并不会划分出区域A、区域B以及区域C,图中A、B、C分别为与目标工作点1、目标工作点2、目标工作点3相对应的工作区域的一种情况),小王点击“标记”键控制自移动设备停止并标记该目标工作点1。然后小王可以点击“start”键控制自移动设备继续行走,进一步的,如图5所示自移动设备行走至区域B中的目标工作点2,小王点击“标记”键控制自移动设备停止并标记该目标工作点2。同样的,小王可以点击“start”键控制自移动设备继续行走,进一步的,如图6所示自移动设备行走至区域C中的目标工作点3,小王点击“标记”键控制自移动设备停止并标记该目标工作点3,这样整个工作范围中与“标记”键对应的工作区域可以为区域A、区域B以及区域C三个区域,自移动设备将沿着界限返回充电站。在划分完各个区域之后,客户端L中会跳转至如图7所示的多区域时间设置界面(在本应用场景中工作日程安排为基于时间设置的情况,也可以为本申请实施例中所描述的工作日程安排所包括的其他情况,本申请对此不作限定),小王分别选择从3个目标工作点分别进入个区域工作的工作时间并保存。具体的,如图7所示,从目标工作点1进入工作范围内工作的工作时间比例设置为30%,从目标工作点2进入工作范围内工作的工作时间比例设置为20%,从目标工作点3进入工作范围内工作的工作时间比例设置为50%。之后,自移动设备将按照该工作时间设置分别在工作范围内行走并工作直到满足相应的工作时间比例。
在进行上述参数设置之后,自移动设备可以从充电站出发沿界限行走,并选择三个目标工作点中的任一目标工作点进入工作区域工作。例如:在目标工作点1处进入与该目标工作点1相对应的区域中按照预设路径工作,在工作到自移动设备电量不足时,回归充电站充电,并记录自移动设备在该目标工作点1的工作时间。在充完电后,自移动设备继续从充电站出发沿边界线行走,检测各标记位置点的工作时间比例是否满足上述设置要求,若不满 足要求,则选择其中一个标记位置点,如目标工作点2对应的位置点进入与该目标工作点2相对应的区域中工作至电量不足时,回归充电站充电,并记录自移动设备在目标工作点2的工作时间。自移动设备重复上述动作直至工作时间满足时间参数设置的要求,回归充电站充电。
图8是本发明一实施例提出的自移动设备的工作装置的结构示意图。
参见图8,该自移动设备的工作装置可以包括:
工作点接收模块801,可以用于接收来自远程终端的标记消息,所述标记消息用于选定位于界限上的多个目标工作点;
日程安排获取模块802,可以用于获取从多个目标工作点中各个目标工作点出发的工作日程安排;
工作模块803,可以用于分别从所述目标工作点出发、按照所述工作日程安排在工作范围内行走并工作。
在一个实施例中,日程安排获取模块可以包括:接收来自远程终端的从多个目标工作点中各个目标工作点出发的工作日程安排。
在一个实施例中,多个目标工作点能对应工作范围内的多个工作区域;相应的,区域工作模块可以包括:分别从目标工作点出发、在各个工作区域中行走并工作。
在一个实施例中,区域工作模块按照以下方式确定工作范围内的多个工作区域,可以包括:基于界限和/或工作范围内满足预设要求的通道确定工作范围内的多个工作区域。
在一个实施例中,多个工作区域之间无重叠。
在一个实施例中,工作日程安排可以包括但不限于以下至少之一:自移动设备从各个目标工作点出发工作的工作时间、自移动设备从各个目标工作点出发工作的工作频率、所述各个工作区域的工作面积。
在一个实施例中,可以基于所述多个目标工作点确定所述自移动设备从初始工作点出发沿所述界限行走至所述目标工作点的距离。
在一个实施例中,区域工作模块可以包括:第一行驶单元,可以用于从初始工作点出发、根据距离行驶至目标工作点;第二行驶单元,可以用于以目标工作点为起点,按照所述工作日程安排在工作范围内行走并工作。
在一个实施例中,初始工作点可以为充电站。
在一个实施例中,工作点接收模块可以包括:地图获取单元,可以用于获取工作范围的地图;工作点标定单元,可以用于在地图中标定多个目标工作点;工作点映射单元,可以用于将地图中标定的多个目标工作点映射至工作范围中。
在一个实施例中,区域工作模块可以包括:分别从映射至工作范围中的目标工作点出发,在工作范围内行走并工作
在一个实施例中,区域工作模块可以包括:第三行驶单元,可以用于从第一目标工作点出发,在第一目标工作点对应的工作区域中行走并工作;第四行驶单元,可以用于回归充电站充电,并进入下一目标工作点对应的工作区域中行走并工作,下一目标工作点可以包括第一目标工作点。
本发明一实施例进一步涉及一种自动工作系统,可以包括如上所述的自移动设备;自移动设备按照如上所述的方法工作。
在上述自动工作系统中,所述自移动设备是自动割草机。
与现有技术相比,本发明的有益效果是:自移动设备接收来自远程终端的选定位于界限上多个目标工作点的标记消息,并设置从各个目标工作点出发的工作日程安排,控制自移动设备按照设置的工作日程安排行走至不同目标工作点工作,保证工作范围内的草能被均匀切割,有利于草坪的维护,提高了自移动设备的整体工作效率。进一步的,自移动设备接收远程消息,通过与外部设备通信接收所需要的消息,即,用户可以通过外部设备控制自移动设备工作,而不需要在自移动设备上输入相应控制指令,操作更加简便,节省人力成本。
除了上述方法和设备以外,本申请的实施例还可以是计算机程序产品,其包括计算机程序指令,所述计算机程序指令在被处理器运行时使得所述处理器执行本说明书上述“自移动设备的工作方法”部分中描述的根据本发明各种实施例的自移动设备的工作方法中的步骤。
所述计算机程序产品可以以一种或多种程序设计语言的任意组合来编写用于执行本申请实施例操作的程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、C++等,还包括常规的过程式程序设计语言,诸 如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。
此外,本申请的实施例还可以是计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令在被处理器运行时使得所述处理器执行本说明书上述“自移动设备的工作方法”部分中描述的根据本发明各种实施例的自移动设备的工作方法中的步骤。
所述计算机可读存储介质可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以包括但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模 块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
尽管本说明书中仅描述和图示了本发明的几个实施例,但是本领域技术人员应该容易预见用于执行这里描述的功能和/或获得这里描述的结构的其它手段或结构,每个这样的变化或者修改都视为在本发明的范围内。

Claims (20)

  1. 一种自移动设备的工作方法,其特征在于,所述自移动设备在界限所限定的工作范围内行走并工作,包括:
    接收来自远程终端的标记消息,所述标记消息用于选定位于所述界限上的多个目标工作点;
    获取所述自移动设备从多个目标工作点中各个目标工作点出发的工作日程安排;
    分别从所述目标工作点出发、按照所述工作日程安排在所述工作范围内行走并工作。
  2. 如权利要求1所述的方法,其特征在于,获取所述自移动设备从多个目标工作点中各个目标工作点出发的工作日程安排,包括:
    接收来自远程终端的从多个目标工作点中各个目标工作点出发的工作日程安排。
  3. 如权利要求1所述的方法,其特征在于,所述多个目标工作点能对应所述工作范围内的多个工作区域;
    相应的,
    分别从所述目标工作点出发、按照所述工作日程安排在所述工作范围内行走并工作,包括:
    分别从所述目标工作点出发、在所述各个工作区域中行走并工作。
  4. 如权利要求3所述的方法,其特征在于,按照以下方式确定所述工作范围内的多个工作区域,包括:
    基于所述界限和/或所述工作范围内满足预设要求的通道确定所述工作范围内的多个工作区域。
  5. 如权利要求3所述的方法,其特征在于,所述多个工作区域之间无重叠。
  6. 如权利要求3所述的方法,其特征在于,所述工作日程安排包括以下至少之一:自移动设备从各个目标工作点出发工作的工作时间、自移动设备从各个目标工作点出发工作的工作频率、所述各个工作区域的工作面积。
  7. 如权利要求1所述的方法,其特征在于,基于所述多个目标工作点确定所述自移动设备从初始工作点出发沿所述界限行走至所述目标工作点的距离。
  8. 如权利要求6所述的方法,其特征在于,分别从所述目标工作点出发、按照所述工作日程安排在所述工作范围内行走并工作,包括:
    从所述初始工作点出发、根据所述距离行驶至所述目标工作点;
    以所述目标工作点为起点,按照所述工作日程安排在所述工作范围内行走并工作。
  9. 如权利要求7-8中任一项所述的方法,其特征在于,所述初始工作点为充电站。
  10. 如权利要求1所述的方法,其特征在于,选定位于所述界限上的多个目标工作点,包括:
    获取所述工作范围的地图;
    在所述地图中选定所述多个目标工作点;
    将所述地图中标记的多个目标工作点映射至所述工作范围中。
  11. 如权利要求10所述的方法,其特征在于,分别从所述目标工作点出发、按照所述工作日程安排在所述工作范围内行走并工作,包括:
    分别从映射至所述工作范围中的目标工作点出发,在所述工作范围内行走并工作。
  12. 如权利要求1至11中任一项所述的方法,其特征在于,分别从所述目标工作点出发、按照所述工作日程安排在所述工作范围内行走并工作,包括:从第一目标工作点出发,在所述第一目标工作点对应的工作区域中行走并工作;
    回归所述充电站充电,并进入下一目标工作点对应的工作区域中行走并工作,所述下一目标工作点包括所述第一目标工作点。
  13. 一种自移动设备,所述自移动设备在界限所限定的工作范围内行走并工作,所述自移动设备包括:
    壳体;
    行走机构,支撑所述壳体并带动所述自移动设备行走;
    动力模块,为所述自移动设备提供行走及工作的驱动力;
    工作模块,安装在所述壳体上,执行预定工作;
    控制模块,电性连接并且控制所述所述动力模块,以实现所述自移动设备的自动行走及自动工作;其特征在于,
    所述自移动设备中还包含通信模块,所述通信模块接收来自远程终端的标记消息,以及所述自移动设备获取工作日程安排,并将所述标记消息以及工作日程安排传送给所述控制模块,所述控制模块基于所述标记消息以及工作日 程安排控制割草机分别从所述目标工作点出发、按照所述工作日程安排在所述工作范围内行走并工作,所述标记消息用于选定位于所述界限上的多个目标工作点。
  14. 如权利要求13所述的自移动设备,其特征在于,所述通信模块接收来自远程终端的从多个目标工作点中各个目标工作点出发的工作日程安排。
  15. 如权利要求13所述的自移动设备,其特征在于,所述多个目标工作点能对应所述工作范围内的多个工作区域,相应的,所述工作日程安排包括以下至少之一:自移动设备从各个目标工作点出发工作的工作时间、自移动设备从各个目标工作点出发工作的工作频率、所述各个工作区域的工作面积。
  16. 如权利要求13所述的自移动设备,其特征在于,所述自移动设备还包括:导航机构,所述导航机构用于形成所述工作范围的地图。
  17. 如权利要求16所述的自移动设备,其特征在于,基于用户在所述地图上选定的多个目标工作点,确定位于所述界限上的多个目标工作点。
  18. 如权利要求13所述的自移动设备,其特征在于,所述自移动设备还包括:能量模块,所述能量模块用于安装在所述壳体上,所述能量模块用于为所述自移动设备的行走和工作提供能量。
  19. 一种自移动设备的工作装置,其特征在于,所述自移动设备在界限所限定的工作范围内行走并工作,包括:
    工作点接收模块,用于接收来自远程终端的标记消息,所述标记消息用于选定位于所述界限上的多个目标工作点;
    日程安排获取模块,用于获取从多个目标工作点中各个目标工作点出发的工作日程安排;
    工作模块,用于分别从所述目标工作点出发、按照所述工作日程安排在所述工作范围内行走并工作。
  20. 一种自动工作系统,如权利要求13-18所述的自移动设备;以及如权利要求19所述的自移动设备的工作装置;所述自移动设备按照权利要求1至12中所述的方法工作。
PCT/CN2019/124277 2019-02-02 2019-12-10 自移动设备的工作方法及装置、自移动设备 WO2020155862A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910108055.7 2019-02-02
CN201910108055 2019-02-02

Publications (1)

Publication Number Publication Date
WO2020155862A1 true WO2020155862A1 (zh) 2020-08-06

Family

ID=71841892

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/124277 WO2020155862A1 (zh) 2019-02-02 2019-12-10 自移动设备的工作方法及装置、自移动设备
PCT/CN2020/074126 WO2020156519A1 (zh) 2019-02-02 2020-01-31 自移动设备的工作方法及装置、自移动设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074126 WO2020156519A1 (zh) 2019-02-02 2020-01-31 自移动设备的工作方法及装置、自移动设备

Country Status (2)

Country Link
CN (1) CN112204488A (zh)
WO (2) WO2020155862A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115328108A (zh) * 2021-04-23 2022-11-11 南京泉峰科技有限公司 智能割草设备及其运行控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106408136A (zh) * 2016-10-26 2017-02-15 广州极飞科技有限公司 确定无人机航线的方法及装置
CN106584472A (zh) * 2016-11-30 2017-04-26 北京贝虎机器人技术有限公司 用于控制自主移动式设备的方法及装置
CN106716288A (zh) * 2016-11-24 2017-05-24 深圳市大疆创新科技有限公司 农业无人飞行器的控制方法、地面控制端及存储介质
CN106767755A (zh) * 2016-11-30 2017-05-31 北京贝虎机器人技术有限公司 用于规划自主移动式设备工作点的方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5528888A (en) * 1993-12-27 1996-06-25 Fuji Jukogyo Kabushiki Kaisha Autonomous mowing vehicle and apparatus for detecting boundary of mowed field
IL124413A (en) * 1998-05-11 2001-05-20 Friendly Robotics Ltd System and method for area coverage with an autonomous robot
SE0600259L (sv) * 2006-02-07 2007-08-08 Hexagon Metrology Ab Förfarande för styrning av trädgårds- eller hushållsmaskiner, samt trädgårds- eller hushållsmaskin
CN104970741B (zh) * 2009-11-06 2017-08-29 艾罗伯特公司 用于通过自主型机器人完全覆盖表面的方法和系统
US9471063B2 (en) * 2011-08-11 2016-10-18 Chien Ouyang Robotic lawn mower with network sensors
CN106483881A (zh) * 2012-01-20 2017-03-08 苏州宝时得电动工具有限公司 自动工作设备
US9538702B2 (en) * 2014-12-22 2017-01-10 Irobot Corporation Robotic mowing of separated lawn areas
US10405488B2 (en) * 2014-12-23 2019-09-10 Husqvarna Ab Zone control system for a robotic vehicle
CN108226965B (zh) * 2016-12-15 2022-01-18 苏州宝时得电动工具有限公司 自移动设备的定位故障处理方法、装置和电子设备
CN108919814A (zh) * 2018-08-15 2018-11-30 杭州慧慧科技有限公司 割草机工作区域生成方法、装置及系统
CN109258060B (zh) * 2018-08-24 2020-04-21 宁波市德霖机械有限公司 基于特殊图像标识识别的地图构建智能割草机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106408136A (zh) * 2016-10-26 2017-02-15 广州极飞科技有限公司 确定无人机航线的方法及装置
CN106716288A (zh) * 2016-11-24 2017-05-24 深圳市大疆创新科技有限公司 农业无人飞行器的控制方法、地面控制端及存储介质
CN106584472A (zh) * 2016-11-30 2017-04-26 北京贝虎机器人技术有限公司 用于控制自主移动式设备的方法及装置
CN106767755A (zh) * 2016-11-30 2017-05-31 北京贝虎机器人技术有限公司 用于规划自主移动式设备工作点的方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115328108A (zh) * 2021-04-23 2022-11-11 南京泉峰科技有限公司 智能割草设备及其运行控制方法

Also Published As

Publication number Publication date
WO2020156519A1 (zh) 2020-08-06
CN112204488A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
EP3424395B1 (en) Method and apparatus for performing cleaning operation by cleaning device
US10405488B2 (en) Zone control system for a robotic vehicle
EP2342964B1 (en) Adaptive scheduling of a service robot
EP3234717B1 (en) Robot vehicle parcel navigation following a minimum workload path.
WO2021228040A1 (zh) 一种路径规划方法、自移动设备
US11470770B2 (en) Automatic lawn trimmer and automatic lawn trimming method
CN113766825B (zh) 节能草坪养护车辆
WO2020156519A1 (zh) 自移动设备的工作方法及装置、自移动设备
Balakrishna et al. Design of remote monitored solar powered grasscutter robot with obstacle avoidance using IoT
KR102272161B1 (ko) 이동 로봇 시스템 및 이동 로봇 시스템의 제어 방법
WO2021139685A1 (zh) 一种自动工作系统
CN112558597B (zh) 自移动设备
WO2019157841A1 (zh) 割草机器人、割草机工作区域生成系统、生成方法、避障装置及自动割草系统
US20240023474A1 (en) Display for controlling robotic tool
EP4311417A2 (en) Interconnecting a virtual reality environment with a robotic garden tool
US20240069561A1 (en) Mapping objects encountered by a robotic garden tool
EP4270137A1 (en) Creation of a virtual boundary for a robotic garden tool
CN114679951B (zh) 自驱动设备系统
EP4030255A1 (en) Automatic work system and turning method therefor, and self-moving device
US20230397526A1 (en) Display for scheduling operation of a robotic garden tool
US20240134394A1 (en) Automatic work system and turning method therefor, and self-moving device
WO2024017390A1 (zh) 自主工作装置、系统及控制方法
US20230397525A1 (en) Display for controlling and monitoring a robotic garden tool
US20240065144A1 (en) Creation of a virtual boundary for a robotic garden tool
CN114679950B (zh) 用于自驱动设备的数据交互系统及数据交互方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912983

Country of ref document: EP

Kind code of ref document: A1