WO2020155473A1 - 一种色彩可控的高能可见光滤波器的设计方法 - Google Patents

一种色彩可控的高能可见光滤波器的设计方法 Download PDF

Info

Publication number
WO2020155473A1
WO2020155473A1 PCT/CN2019/087538 CN2019087538W WO2020155473A1 WO 2020155473 A1 WO2020155473 A1 WO 2020155473A1 CN 2019087538 W CN2019087538 W CN 2019087538W WO 2020155473 A1 WO2020155473 A1 WO 2020155473A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
filter
nanometers
transmittance
optimized
Prior art date
Application number
PCT/CN2019/087538
Other languages
English (en)
French (fr)
Inventor
陈铂
杨骏臣
Original Assignee
北京以色佳科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京以色佳科技有限公司 filed Critical 北京以色佳科技有限公司
Publication of WO2020155473A1 publication Critical patent/WO2020155473A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level

Definitions

  • the invention relates to a design method of a color-controllable high-energy visible light filter.
  • high-energy visible light that is, visible light with a shorter wavelength, usually around 380 nanometers to 480 nanometers
  • the human eye can be divided into two parts: the retina composed of photoreceptor cells (rod cells and cone cells), and the refractive system composed of cornea, aqueous humor, lens, and vitreous.
  • the photoreceptor cells of the eye absorb and perceive light
  • the visual pigment molecules arranged on the outer small disk lose their color (bleaching). They need to go through a metabolic process before they can absorb and perceive light again. This metabolic process is called the visual cycle.
  • high-energy visible light filters such as anti-blue glasses
  • the existing patents and methods mainly filter this short-wave visible light through two methods: absorption (such as US8882267B2) and reflection (such as CN1564052A).
  • absorption such as US8882267B2
  • reflection such as CN1564052A
  • the lens filters out part of the high-energy visible light through absorption the observer will find that the user’s lens is yellow; when the lens filters out part of the high-energy visible light through reflection, the observer will find the user’s lens There is blue reflection at different angles.
  • the user wears anti-blue glasses to filter out short-wave visible light, depending on the wavelength of the filtered short-wave and how much, the field of view will have varying degrees of yellowish distortion. These bring unnaturalness and inconvenience to the appearance and use of the product. At present, there is no suitable method to solve the yellowish vision problem of anti-blue glasses.
  • the purpose of the present invention is to provide a design method for a color-controllable high-energy visible light filter, which can effectively optimize the transmission spectrum and effectively solve the user's yellow vision caused by filtering blue light while filtering blue light.
  • Step 1 Select a filter, the filter contains dyes that absorb short-wave visible light, and the transmittance T of the filter is expressed as a function of each parameter of the optical device;
  • Step 2 Select the light source, and select one color or a color group composed of multiple colors, and express the color perception parameters of the color or color group to be optimized as a function including the light source D and the filter transmittance T;
  • Step 3 Based on the expression of each color sense parameter obtained in step 2, in the 1976 CIE L * a * b * color sense space, select the optimization vector according to the chromaticity to be optimized The comprehensive chromatic aberration of the color group projected on the chromaticity plane to be optimized is expressed as the E optimized color axis, T ;
  • Step 4 Optimize the color axis according to the color perception parameters required to optimize the transmission spectrum and E optimize the color axis, T perform multi-objective optimization, and select the appropriate solution, namely the transmittance T of the filter, and then optimize the design of the filter based on the function expressed by the transmittance T The parameters of the optical device.
  • step 1 the transmittance T( ⁇ ) of the filter at each wavelength is expressed as the following function:
  • N is the total number of effective light absorption component i
  • l is the effective total thickness of all dielectric layers distributed by the effective light absorption component i
  • ⁇ i is the molar absorption coefficient of the effective light absorption component i
  • c i is the effective component i distributed in it
  • the average concentration in all dielectric layers, ⁇ is the wavelength of visible light;
  • M is the total number of effective reflective interfaces, and
  • f j is the reflectivity of the effective reflective interface j.
  • step 1 one or more dyes with absorption peaks at 380-480 nm or 380-780 nm are used for dyes that absorb short-wave visible light;
  • the dyes can be selected as follows but not limited to the following dyes:
  • step 1 one or more dyes with absorption peaks at 380-480 nanometers or 380-780 nanometers are used for dyes that absorb short-wave visible light.
  • each color perception parameter of the color or color group to be optimized is expressed as a function including the light source D and the filter transmittance T, which is achieved by the following method:
  • U is any color
  • MC is the reflectance of the selected color
  • I the observer's color matching function
  • L * identifies the lightness or brightness coordinates
  • a * and b * are the chromaticity coordinates on two contrasting chromaticities
  • X k , Y k , Z k are the tristimulus values of the color U k ; k Mark the different colors in the selected color group.
  • step 2 the white point displacement expression after the light source D passes through the filter is obtained by the following method:
  • the tristimulus values of the white point after the filter are expressed as X n,T , Y n,T , Z n,T ;
  • the brightness of the standard illuminating body passing through the filter at the full reflector is expressed as L * 0 ;
  • the integrated brightness that is, the brightness of the standard illuminating body passing through the filter at the full reflector is expressed as L * 0,T ;
  • the white point displacement wp after using the filter is expressed as follows:
  • step 3 after using the filter T, E optimizes the color axis, and T is obtained by the following method:
  • the color difference of the selected color or color group on the chromaticity plane to be optimized is:
  • the comprehensive color difference of the selected color or color group on the chromaticity plane to be optimized is:
  • the comprehensive color difference of the selected color or color group on the chromaticity plane to be optimized is:
  • the color perception parameters required to optimize the transmission spectrum include one or more combinations of the following parameters:
  • Brightness L * 0,T white point displacement wp, setting the degree of filtering in the short-wave area, the lowest transmittance at a specific wavelength and/or wavelength interval
  • T performs multi-objective optimization, and selects the appropriate solution, namely the transmittance T of the filter.
  • step 4 the degree of setting of said filter integrated short-wavelength region is characterized by a degree of filtration S T, S T comprehensive degree of filtration is expressed as:
  • the filtering degree of the set shortwave area is characterized by one of the following parameters or a combination of several parameters:
  • the transmittance of one or several specific wavelengths in the range of 380 to 480 nanometers;
  • the comprehensive transmittance of one or several specific wavelengths in the range of 380 to 480 nanometers and the transmittance of one or several specific wavelengths in the range of 380 to 480 nanometers are provided.
  • an expression of multi-objective optimization is to optimize the color perception parameters required by the transmission spectrum and the E to optimize the color axis.
  • T the optical device composed of N dyes and M reflective interfaces is optimized to achieve maximum brightness.
  • L * 0,T the maximum comprehensive color difference E optimizes the color axis, T , the minimum white point displacement wp, and the maximum comprehensive filtering degree S T of the shortwave area concerned.
  • This multi-objective optimization can choose to optimize one or several according to needs Or all the above goals are the goal equation:
  • the short-wave transmittance at any wavelength within the range of 380 to 480 nanometers is at least G, and 0% ⁇ G ⁇ 80%; and there is 1 line in the range of 380 to 480 nanometers, 2 or more optical stop bands; and limited to L * 0, T ⁇ 40 or L * 0, T ⁇ 88 under D65 light source;
  • the optimized transmission spectrum meets the following requirements:
  • optical stop bands there are one, two or more optical stop bands in the range of 380 to 480 nanometers, and the peak transmittance of the optical stop band is ⁇ G.
  • step 4 limit L * 0, T ⁇ 45 under D65 light source; and there is at least one optical stop band in the interval of 380 to 480 nanometers; and the white point displacement d' 0, T ⁇ 0.07 under D65 light source ; And choose red and green as the optimized color axis for multi-objective optimization;
  • the optimized transmission spectrum satisfies the following requirements: there is at least one optical stop band in the range of 380 to 480 nanometers; and in the range of 480 to 620 nanometers, there are only two with the lowest transmittance below 10%.
  • the first optical stop band is in the wavelength range of 480 nanometers to 550 nanometers; the second optical stop band is in the wavelength range of 550 nanometers to 620 nanometers.
  • step 4 there is at least one optical stop band within the range of 380 to 480 nanometers; and L * 0, T ⁇ 78 under the D65 light source, and the white point displacement d' 0, T ⁇ 0.15 under the D65 light source ; And choose red and green as the optimized color axis for multi-objective optimization; the optimized transmission spectrum meets the following requirements: there is at least one optical stop band in the range of 380 to 480 nanometers; and in the range of 480 to 620 nanometers, only There is an optical stop band with a minimum transmittance of less than 20%, and the optical stop band is between 550 nm and 620 nm.
  • step 4 there is at least one optical stop band within the range of 380 to 480 nanometers; and L * 0, T ⁇ 88 under the D65 light source; and the white point displacement d' 0, T ⁇ 0.01 under the D65 light source ; And do not select any color axis as the optimized color axis for multi-objective optimization; the optimized transmission spectrum meets the following requirements: there is at least one optical stop band in the range of 380 to 480 nanometers; and in the range of 500 nanometers to 600 nanometers , There are at least two optical stop bands with the lowest transmittance between 55% and 82%.
  • the present invention selects a filter, the filter contains a dye that absorbs short-wave visible light, and the transmittance T of the filter is expressed as a function of each parameter of the optical device; the light source is selected, and a color or a color group composed of multiple colors is selected , Express the color perception parameters of the color or color group to be optimized as a function including the light source D and the filter transmittance T; based on the obtained color perception parameter expression, in the 1976 CIE L * a * b * color perception space, According to the chromaticity to be optimized, select the optimized vector The comprehensive color difference of the color or color group projected on the chromaticity plane to be optimized is expressed as E optimized color axis, T ; according to the color perception parameters required to optimize the transmission spectrum and E optimized color axis, T performs multi-objective optimization, and Choose an appropriate solution, namely the transmittance T of the filter, and then optimize the design of the filter optical device parameters based on the function expressed by the transmittance T.
  • the present invention optimizes the color axis based on E , and selects a suitable filter transmittance T for T, and then optimizes the design of various parameters of the filter optical device based on the function expressed by the transmittance T, so that the filter can improve or eliminate this while filtering blue light. This is because the user’s yellow vision is caused by filtering blue light.
  • the present invention optimizes the color perception parameters required by the transmission spectrum and the E optimized color axis, and T performs multi-objective optimization. On the basis of effectively solving the yellow vision problem after filtering blue light, It can also realize the adjustment of the color perception of other colors.
  • the color perception parameters required for optimizing the transmission spectrum of the present invention include one or more combinations of the following parameters: brightness L * 0,T , white point displacement wp, setting the degree of filtering in the short-wave region, at a specific wavelength and/or wavelength The lowest transmittance of the interval, by changing the weight of each parameter to adjust the optimization goal and degree, this method can give the designer more freedom.
  • FIG. 1 is a diagram of the working principle of the filter of the present invention.
  • FIG. 2 is a schematic diagram of the first structure of the filter lens of the present invention.
  • FIG. 3 is a schematic diagram of the second structure of the filter lens of the present invention.
  • Figure 4 is the first spectrum diagram of the optimized transmission spectrum 3 of the present invention.
  • Fig. 5 is the second spectrum diagram of the optimized transmission spectrum 3 of the present invention.
  • Figure 6 is a third spectrum diagram of the optimized transmission spectrum 3 of the present invention.
  • Fig. 7 is the first spectrum diagram of the optimized transmission spectrum 2 of the present invention.
  • Fig. 8 is a second spectrum diagram of the optimized transmission spectrum 2 of the present invention.
  • Fig. 9 is the first spectrum diagram of the optimized transmission spectrum 1 of the present invention.
  • Fig. 10 is a second spectrum diagram of the optimized transmission spectrum 1 of the present invention.
  • Fig. 11 is a spectrum diagram of the optimized transmission spectrum 4 of the present invention.
  • Step 1 Select a filter.
  • the filter contains dyes that absorb short-wave visible light.
  • the transmittance T of the filter is expressed as a function of each parameter of the optical device.
  • the transmittance T( ⁇ ) of the filter at each wavelength is expressed as the following function:
  • N is the total number of effective light absorption component i
  • l is the effective total thickness of all dielectric layers distributed by the effective light absorption component i
  • ⁇ i is the molar absorption coefficient of the effective light absorption component i
  • c i is the effective component i distributed in it
  • the average concentration in all dielectric layers, ⁇ is the wavelength of visible light;
  • M is the total number of effective reflective interfaces, and
  • f j is the reflectivity of the effective reflective interface j.
  • one or more dyes with absorption peaks at 380-480 nm or 380-780 nm are used.
  • one or more dyes with absorption peaks at 380-480 nm are used.
  • the dye can be selected as follows but not limited to the following dyes: chlorophyll a; chlorophyll b; acridine yellow; disperse yellow; coloring agent all(stains-all); 3-ethyl-2-[3-(3-ethyl-3H) -Benzoxazole-2-ylidene)prop-1-enyl]benzoxazole iodide; iodide-3,3'-diethyloxadicarbocyanine; iodo 3,3'-di Hexoxycarbocyanine; erioglaucine; Malachite green; compounds of metal ions and porphine or pyridine, where metal ions include but are not limited to zinc, magnesium, copper, iron cations; metals Compounds of ions and porphyrins or porphyrin derivatives, where metal ions include but are not limited to zinc, magnesium, copper, and iron cations, where porphyrin derivatives include but are not limited to oct
  • the media material can be selected as follows but not limited to the following media: polycarbonate; polymethyl methacrylate; copolymer of allyl diethylene glycol carbonate and diisopropyl peroxycarbonate; polyurethane derivatives, Such as PPG Silicone gel and its derivatives, such as dimethylvinylsiloxy polymethylsiloxane; and the surface of the dielectric layer can be added with anti-reflection coating, and/or scratch-resistant coating, and/or ultraviolet absorption as required Coating; and the medium layer can be mixed with ultraviolet absorbers; the dye can be dispersed in the medium layer or in the coating on the surface of the medium layer. As shown in Figure 2, the dye is distributed in the dielectric layer; as shown in Figure 3, the dye is distributed in the coating on the surface of the dielectric layer.
  • the thickness of the dielectric layer is 2 mm
  • the material of the dielectric layer is polycarbonate mixed with ultraviolet absorbing molecules.
  • the surface of the medium layer is coated with an anti-reflection coating and an anti-scratch coating with a total thickness of less than 0.2 mm.
  • 4 dyes should be selected from the following set: chlorophyll a, chlorophyll b, acridine yellow, disperse yellow, colorant all(stains-all), 3-ethyl-2-[3-(3-ethyl-3H-) Benzoxazole-2-ylidene)prop-1-enyl]benzoxazole iodide, 3,3 ⁇ -diethyloxadicarbocyanine iodide, 3,3'-dihexyl iodide Oxycarbocyanine, erioglaucine, Malachite green.
  • the dielectric layer has multiple effective reflective interfaces, and the combined effective reflectance of the reflective interfaces is 0.1033. which is:
  • Step 2 Select the light source, and select one color or a color group composed of multiple colors, and express the color perception parameters of the color or color group to be optimized as a function including the light source D and the filter transmittance T.
  • the light source can be selected as follows but not limited to the following light sources: International Optics Council standard luminous body A series, D series, F series and L series.
  • the International Optics Council standard luminous body D65 is selected as the light source.
  • the position of any one or more colors in the color space can be selected among 1296 Munsell colors to study the influence of the filter T on various color perception parameters.
  • the 15 Farsworth colors used for the color blindness test and the other 5 Munsell pastel colors 10B5/4, 10Y5/4, 10R5/4, 10RP5/4 and 10PB5/4 are selected.
  • the color group of 20 colors is referred to as "20 color group" here.
  • the color perception parameters of the color or color group to be optimized are expressed as a function including the light source D and the filter transmittance T, which is achieved by the following method:
  • U is any color in "20 color group”
  • MC is all Selected color Reflectance
  • L * identifies the brightness or brightness coordinates
  • a * and b * are the chromaticity coordinates on two contrasting chromaticities
  • X k , Y k , Z k are the three colors of color U k Stimulus value
  • k indicates different colors in the "20 color group”.
  • each of the above functions can be expressed in the form after removing the subscript T.
  • the white point displacement expression of light source D after passing through the filter is obtained by the following method,
  • the tristimulus values of the white point after the filter are expressed as X n,T , Y n,T , Z n,T ;
  • the brightness of the standard illuminating body passing through the filter at the full reflector is expressed as L * 0 ;
  • the integrated brightness that is, the brightness of the standard illuminating body passing through the filter at the full reflector is expressed as L * 0,T ;
  • the white point displacement wp after using the filter is expressed as follows:
  • the white point displacement wp is specified in the following way:
  • Step 3 Based on the expression of each color sense parameter obtained in step 2, in the 1976 CIE L * a * b * color sense space, select the optimization vector according to the chromaticity to be optimized The comprehensive color difference of the color group projected on the chromaticity plane to be optimized is expressed as the E optimized color axis, T.
  • T is obtained by the following method:
  • the color difference of the selected color or color group on the chromaticity plane to be optimized is:
  • the comprehensive color difference of the selected color or color group on the chromaticity plane to be optimized is:
  • the comprehensive color difference of the selected color or color group on the chromaticity plane to be optimized is:
  • E optimizes the color axis, and T is obtained by the following method:
  • the color difference of the selected color (group) on the chromaticity plane to be optimized is:
  • Step 4 Optimize the color axis according to the color perception parameters required to optimize the transmission spectrum and E optimize the color axis, T perform multi-objective optimization, and select the appropriate solution, the transmittance T of the filter, and then optimize the design of the filter based on the function expressed by the transmittance T The parameters of the optical device.
  • the color perception parameters required for optimizing the transmission spectrum include one or more combinations of the following parameters: brightness L * 0,T , white point displacement wp, setting the degree of filtering in the short-wave region, and the value at a specific wavelength and/or wavelength interval The lowest transmittance.
  • Brightness L * 0,T , white point displacement wp, setting the degree of filtering in the short-wave region, and the lowest transmittance at a specific wavelength and/or wavelength interval can be expressed as a function of the transmission spectrum T with respect to f j and c i .
  • T performs multi-objective optimization, and selects the appropriate solution, namely the transmittance T of the filter.
  • the filtering degree of the set shortwave area is characterized by one of the following parameters or a combination of several parameters,
  • the transmittance of one or several specific wavelengths in the range of 380 to 480 nanometers;
  • the comprehensive transmittance of one or several specific wavelengths in the range of 380 to 480 nanometers and the transmittance of one or several specific wavelengths in the range of 380 to 480 nanometers are provided.
  • the short-wave transmittance at any wavelength within the range of 415 to 480 nanometers is at least 7.5%, and there are any number of optical resistors in the range of 415 to 480 nanometers. band.
  • Limit the comprehensive filtering degree of the shortwave area of interest to be expressed as:
  • Multi-objective optimization refers to the optimization of optical devices composed of N dyes and M reflection interfaces to achieve the maximum brightness L after a given constraint phase (color perception parameters required to optimize the transmission spectrum and E optimization color axis, T ) * 0,T , the maximum comprehensive color difference E optimizes the color axis, T , the minimum white point displacement wp, and the maximum comprehensive filtering degree S T of the shortwave area concerned.
  • This kind of multi-objective optimization can choose to optimize one or several or all of the above objectives as the objective equation according to the needs:
  • the short-wave transmittance at any wavelength within the range of 380 to 480 nanometers is at least G, and 0% ⁇ G ⁇ 80%; and there are one, two or more optical resistors in the range of 380 to 480 nanometers With; and limited to L* 0, T ⁇ 40 or L* 0, T ⁇ 88 under D65 light source;
  • the optimized transmission spectrum meets the following requirements:
  • optical stop bands there are one, two or more optical stop bands in the range of 380 to 480 nanometers, and the peak transmittance of the optical stop band is ⁇ G.
  • the optical stop band can be unimodal or multimodal.
  • T transmittance
  • T left and right T satisfies the relationship that the two peaks are present in more than one stop-band optical absorption peak .
  • the two absorption peaks are considered to belong to two adjacent optical stop bands.
  • T maximum ⁇ 0.05+max (T left , T right ) -0.025 ⁇ (T left + T right )
  • the shortwave transmittance at any wavelength within the range of 380 to 480 nanometers is at least G, and 0% ⁇ G ⁇ 80%; and there is only one optical stop band in the range of 380 to 480 nanometers; And limit L * 0, T ⁇ 88 under D65 light source.
  • the optimized transmission spectrum meets the following requirements: there is only one optical stop band in the range of 380 to 480 nanometers, and the peak transmittance of the optical stop band is ⁇ G.
  • the short-wave transmittance at any wavelength within the range of 380 to 480 nanometers is at least G, and 0% ⁇ G ⁇ 80%; and there is only one optical stop band in the range of 380 to 480 nanometers; and Under D65 light source, L * 0, T ⁇ 40.
  • the optimized transmission spectrum meets the following requirements: there is only one optical stop band in the range of 380 to 480 nanometers, and the peak transmittance of the optical stop band is ⁇ G.
  • the short-wave transmittance at any wavelength within the range of 380 to 480 nanometers is at least G, and 0% ⁇ G ⁇ 80%; and there are W optical stop bands in the range of 380 to 480 nanometers, and W It is a positive integer ⁇ 2; and it is limited to L * 0 and T ⁇ 88 under the D65 light source.
  • the optimized transmission spectrum meets the following requirements: there are only W optical stop bands in the interval of 380 to 480 nanometers, and the peak transmittance of all optical stop bands is ⁇ G.
  • the short-wave transmittance at any wavelength within the range of 380 to 480 nanometers is at least G, and 0% ⁇ G ⁇ 80%; and there are W optical stop bands in the range of 380 to 480 nanometers, and W It is a positive integer ⁇ 2; and it is limited to L * 0 and T ⁇ 40 under D65 light source.
  • the optimized transmission spectrum meets the following requirements: there are only W optical stop bands in the interval of 380 to 480 nanometers, and the peak transmittance of all optical stop bands is ⁇ G.
  • step 4 limit L * 0, T ⁇ 45 under D65 light source; and there is at least one optical stop band in the interval of 380 to 480 nanometers; and the white point displacement d' 0, T ⁇ 0.07 under D65 light source; and select Red and green are multi-objective optimization for the optimized color axis.
  • the optimized transmission spectrum satisfies the following requirements: there is at least one optical stop band in the range of 380 to 480 nanometers; and in the range of 480 to 620 nanometers, there are only two with the lowest transmittance below 10%.
  • the first optical stop band is in the wavelength range of 480 nanometers to 550 nanometers; the second optical stop band is in the wavelength range of 550 nanometers to 620 nanometers.
  • step 4 there is at least one optical stop band within the range of 380 to 480 nanometers; and L * 0, T ⁇ 78 under D65 light source, and the white point displacement d' 0, T ⁇ 0.15 under D65 light source; and select Red and green are optimized color axes for multi-objective optimization; the optimized transmission spectrum meets the following requirements: there is at least one optical stop band in the range of 380 to 480 nanometers; and there is only one minimum in the range of 480 to 620 nanometers An optical stop band with a transmittance lower than 20%, and the optical stop band is between 550 nanometers and 620 nanometers.
  • step 4 there is at least one optical stop band within the range of 380 to 480 nanometers; and L* 0, T ⁇ 88 under the D65 light source; and the white point displacement d' 0, T ⁇ 0.01 under the D65 light source; and no Choose any color axis as the optimized color axis for multi-objective optimization; the optimized transmission spectrum meets the following requirements: there is at least one optical stop band in the range of 380 to 480 nanometers; and at least in the range of 500 to 600 nanometers Two optical stop bands with minimum transmission between 55% and 82%.
  • the short-wave transmittance at any wavelength within the range of 405 to 480 nanometers is at least 7.5%; L * 0, T ⁇ 50; S T ⁇ 0.8; and the white point displacement of the D65 light source is d' 0, T ⁇ 0.075.
  • Multi-objective optimization is performed on the following color perception parameters: maximum brightness L * 0,T , maximum comprehensive color difference E, optimized color axis, T , minimum white point displacement wp, and maximum comprehensive filtering degree S T of the shortwave area concerned.
  • the selected optimization targets are linearly superimposed through the weight variable w.
  • the objective equation is as follows:

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Filters (AREA)
  • Polarising Elements (AREA)

Abstract

一种色彩可控的高能可见光滤波器的设计方法,包括如下步骤:选取滤波器,所说滤波器含有对短波可见光吸收的染料,滤波器的透射率T表达为光学器件各参数的一个函数;选择光源,并选取一种颜色或多种颜色组成的颜色组,将所需优化的颜色或颜色组的各色感参数表达为包括光源D和滤波器透射率T的函数;在1976CIE L*a*b*色感空间中,根据所需优化的色度,选择优化矢量r̅ 将颜色或颜色组投影在所需优化的色度平面上的综合色差表达为E 优化色轴,T ;根据优化透射光谱所需的色感参数和E 优化色轴,T 进行多目标优化,并选取合适的解即滤波器的透射率T,进而基于透射率T所表达的函数优化设计滤波器光学器件的各参数。

Description

一种色彩可控的高能可见光滤波器的设计方法 技术领域
本发明涉及一种色彩可控的高能可见光滤波器的设计方法。
背景技术
最近的研究表明高能可见光(high energy visible light)即波长较短的可见光,通常在380纳米到480纳米左右,对人眼尤其是视网膜具有伤害作用。其中一种较为熟知的伤害作用为高能可见光引起和加速的老年性视网膜黄斑变性(age related macular degeneration)。人的眼可分为感光细胞(视杆细胞和视锥细胞)组成的视网膜,和角膜、房水、晶状体以及玻璃体组成的折光系统两部分。当眼睛的感光细胞吸收和感知光线后,其外段小盘上排列着的视色素分子会失去其颜色(漂白)。他们便需要经过一个代谢过程才可以再次对光进行吸收和感知。这个代谢过程被称为视觉循环。最近的研究表明(Shabanand and Richter,“A2E and blue light in the retina:the paradigm of age-related macular degeneration”Biol.Chem.Vol.383 Pages 537~545,2002;Mainster and Sparrow,“How Much Blue Light Should an IOL Transmit?”Br.J.Ophthalmol.,2003,v.87,pp.1523-29),人眼对短波可见光的吸收可以过早的逆转视觉循环的过程。这种过早的逆转导致视网膜色素上皮中色素脂褐素以及其衍生物的累积。随着这种代谢物增加以及人体新陈代谢能力的减退,这种 由短波可见光引起的色素脂褐素及其衍生物的累积便导致和加速了老年性视网膜黄斑变性。
因此高能可见光滤波器,如防蓝光眼镜,开始受到广泛关注并大量使用。来达到这种效果,现有专利和方法主要是通过吸收(如US8882267B2)和反射(如CN1564052A)两种方法对这种短波可见光进行过滤。通常情况下,如果镜片是通过吸收作用来过滤掉部分高能可见光时,观察者会发现使用者的镜片为黄色;当镜片是通过反射作用过滤掉部分高能可见光时,观察者会发现使用者的镜片在不同角度下有蓝色反光。而使用者因为佩带的防蓝光眼镜过滤掉短波可见光,取决于过滤掉的短波的波长与多少,其视野会出现不同程度的偏黄失真现象。这些对产品的外观和使用感受带来了不自然与不便。目前,尚未有一种合适的方法来解决防蓝光眼镜视野偏黄的问题。
发明内容
本发明的发明目的在于提供一种色彩可控的高能可见光滤波器的设计方法,能够有效优化透射光谱,在过滤掉蓝光的同时有效解决因为过滤蓝光引起的使用者黄色视野。
实现本发明目的的技术方案:
一种色彩可控的高能可见光滤波器的设计方法,其特征在于,包括如下步骤:
步骤1:选取滤波器,所说滤波器含有对短波可见光吸收的染料,滤波器的透射率T表达为光学器件各参数的一个函数;
步骤2:选择光源,并选取一种颜色或多种颜色组成的颜色组,将所需优化的颜色或颜色组的各色感参数表达为包括光源D和滤波器透射率T的函数;
步骤3:基于步骤2获得的各色感参数表达,在1976 CIE L *a *b *色感空间中,根据所需优化的色度,选择优化矢量
Figure PCTCN2019087538-appb-000001
将颜色组投影在所需优化的色度平面上的综合色差表达为E 优化色轴,T
步骤4:根据优化透射光谱所需的色感参数和E 优化色轴,T进行多目标优化,并选取合适的解即滤波器的透射率T,进而基于透射率T所表达的函数优化设计滤波器光学器件的各参数。
进一步地,步骤1中,将滤波器在各波长下的透射率T(λ)表达为如下函数:
Figure PCTCN2019087538-appb-000002
其中,N为有效吸光成分i总数目,l是有效吸光成分i所分布的所有介质层有效总厚度,ε i为有效吸光成分i的摩尔吸光系数,c i为有效成分i在其所分布的所有介质层中的平均浓度,λ为可见光波波长;M为有效反光介面总数目,f j是有效反光介面j的反光率。
步骤1中,对短波可见光吸收的染料采用吸收峰在380-480纳米或380-780纳米的一种或多种染料;
染料可以选择如下但不局限于如下染料:
叶绿素a;叶绿素b;吖啶黄;分散黄;着色剂all(stains-all);3-乙基-2-[3-(3-乙基-3H-苯并恶唑-2-亚基)丙-1-烯基]苯并恶唑碘化物;碘化-3,3ˊ-二乙基氧杂二羰花青;碘代3,3'-二己氧基羰花青;羊毛罂(erioglaucine);孔雀石绿(Malachite green);金属离子与卟吩或吡啶的化合物,其中金属离子包括但不局限于锌,镁,铜, 铁正离子;金属离子与卟啉或卟啉衍生物的化合物,其中金属离子包括但不局限于锌,镁,铜,铁正离子,其中卟啉衍生物包括但不局限于八乙基卟啉,四甲基卟啉,四苯基卟啉,四苯酚卟啉;金属离子与四氮杂卟啉或四氮杂卟啉衍生物的化合物,其中金属离子包括但不局限于锌,镁,铜,铁正离子,其中四氮杂卟啉衍生物包括但不局限于硫代四氮杂卟啉及其衍生物,酞菁,四叔丁基酞菁及其它烷基酞菁衍生物;花青染料及其衍生物;香豆素及其衍生物;氧杂蒽及其衍生物;恶嗪及其衍生物;染料可以为自主合成的如上染料,也可以为以上述一种或几种成分为主要滤光成分的商业化染料。
进一步地,步骤1中,对短波可见光吸收的染料采用吸收峰在380-480纳米或380-780纳米的一种或多种染料。
进一步地,步骤2中,将所需优化的颜色或颜色组的各色感参数表达为包括光源D和滤波器透射率T的函数,通过如下方法实现:
U k,T(λ)=D(λ)·T(λ)·MC k(λ);
Figure PCTCN2019087538-appb-000003
Figure PCTCN2019087538-appb-000004
Figure PCTCN2019087538-appb-000005
Figure PCTCN2019087538-appb-000006
其中
Figure PCTCN2019087538-appb-000007
其中,U为任意颜色;MC为所选择的颜色反光率;
Figure PCTCN2019087538-appb-000008
为观察者颜色匹配函数;L *标识明度或亮度坐标;a *和b *为两个对比色度上的彩度坐标;X k,Y k,Z k为颜色U k的三色刺激值;k标注所选择颜色组中不同的颜色。
进一步地,步骤2中,光源D通过滤波器后的白点位移表达通过如下方法获得,
X n,Y n,Z n为标准照明体在全满反射体的三色刺激值,客观白点在光源D照射下光谱表示为U 0,T(λ)=D(λ)·T,使用滤波器后白点三色刺激值表示为X n,T,Y n,T,Z n,T
未使用滤波器时,标准照明体在全满反射体通过滤光器的亮度表示为L * 0
使用滤波器后综合亮度,即标准照明体在全满反射体通过滤光器的亮度表示为L * 0,T
使用滤波器后白点位移wp表达如下:
Figure PCTCN2019087538-appb-000009
Figure PCTCN2019087538-appb-000010
Figure PCTCN2019087538-appb-000011
进一步地,步骤3中,使用滤波器T后,E 优化色轴,T通过如下方法获得:
颜色U k,T色相色度矢量
Figure PCTCN2019087538-appb-000012
优化矢量
Figure PCTCN2019087538-appb-000013
其中0°≤α≤360°;
所选择颜色或颜色组在所需优化的色度平面上的色差为:
Figure PCTCN2019087538-appb-000014
使用滤波器后,所选择颜色或颜色组在所需优化的色度平面上的综合色差为:
Figure PCTCN2019087538-appb-000015
未使用滤波器时,所选择颜色或颜色组在所需优化的色度平面上的综合色差为:
Figure PCTCN2019087538-appb-000016
进一步地,步骤4中,所说优化透射光谱所需的色感参数包括以下参数的一个或多个组合,
亮度L * 0,T、白点位移wp、设定短波区域的过滤程度、在特定波长和/或波长区间的最低透射率,
根据上述色感参数和E 优化色轴,T进行多目标优化,选取合适的解即滤波器的透射率T。
进一步地,步骤4中,所说设定短波区域的过滤程度通过综合过滤程度S T表征,综合过滤程度S T表达为:
Figure PCTCN2019087538-appb-000017
其中380nm≤μ<η≤480nm。
进一步地,步骤4中,所说设定短波区域的过滤程度通过以下一种参数或几种参数的组合进行表征,
在380到480纳米区间内某个或某几个特定波长的透射率;
在380到480纳米区间内某个或某几个特定波长区间的综合透射率;
在380到480纳米区间内某个或某几个特定波长区间的综合透射率并同时限定在380到480纳米区间内某个或某几个特定波长的透射率。
进一步地,多目标优化的一种表达方式为在优化透射光谱所需的色感参数和E 优化色轴,T后,对N种染料和M种反射介面组成的光学器件进行优化以达到最大亮度L * 0,T,最大综合色差E 优化色轴,T,最小白点位移wp,和所关心的短波区域的最大综合过滤程度S T,这种多目标优化可以根据需要选择优化一个或几个或以上全部目标为目标方程:
Figure PCTCN2019087538-appb-000018
也可以根据需要通过权重变量w将各选择的优化目标线性叠加,如下为这种线性叠加的目标方程的一种表示方法:
Figure PCTCN2019087538-appb-000019
其中,权重变量的取值范围为0≤w≤1且∑w=1。
进一步地,步骤4中,限定在380到480纳米的区间内的任意波长下的短波透射率至少为G,且0%≤G≤80%;并且在380到480纳米的区间内存在1条、2条或多条光学阻带;并且限定D65光源下L * 0,T≥40或L * 0,T≥88;
优化后的透射光谱满足以下要求:
在380到480纳米的区间内存在1条、2条或多条光学阻带,且该光学阻带的峰值的透射率≥G。
进一步地,步骤4中,限定D65光源下L * 0,T≥45;并且在380到480纳米的区间内至少存在一条光学阻带;并且D65光源下的白点位移d' 0,T≤0.07;并且选择红绿色为优化色轴进行多目标优化;
优化后的透射光谱满足以下要求:在380到480纳米的区间内至少存在一条光学阻带;并且在480纳米到620纳米的区间中,同时存在并只存在两条最低透射率低于10%的光学阻带,第一条光学阻带在480纳米到550纳米的波长区间内;第二条光学阻带在550纳米到620纳米的波长区间内。
进一步地,步骤4中,限定在380到480纳米的区间内至少存在一条光学阻带;并且D65光源下L * 0,T≥78,并且D65光源下的白点位移d' 0,T≤0.15;并且选择红绿色为优化色轴进行多目标优化;优化后的透射光谱满足以下要求:在380到480纳米的区间内至少存在一条光学阻带;并且在480纳米到620纳米的区间中,只存在一条最低透射率低于20%的光学阻带,且该光学阻带在550纳米和620纳米之间。
进一步地,步骤4中,限定在380到480纳米的区间内至少存在一条光学阻带;并且D65光源下L * 0,T≥88;并且D65光源下的白点位移d' 0,T≤0.01;并且不选择任何色轴为优化色轴进行多目标优化;优化后的透射光谱满足以下要求:在380到480纳米的区间内至少存在一条光学阻带;并且在500纳米到600纳米的区间中,至少存在两条最低透射率在55%和82%之间的光学阻带。
本发明具有的有益效果:
本发明选取滤波器,所说滤波器含有对短波可见光吸收的染料,滤波器的透射率T表达为光学器件各参数的一个函数;选择光源,并选 取一种颜色或多种颜色组成的颜色组,将所需优化的颜色或颜色组的各色感参数表达为包括光源D和滤波器透射率T的函数;基于获得的各色感参数表达,在1976 CIE L *a *b *色感空间中,根据所需优化的色度,选择优化矢量
Figure PCTCN2019087538-appb-000020
将颜色或颜色组投影在所需优化的色度平面上的综合色差表达为E 优化色轴,T;根据优化透射光谱所需的色感参数和E 优化色轴,T进行多目标优化,并选取合适的解即滤波器的透射率T,进而基于透射率T所表达的函数优化设计滤波器光学器件的各参数。本发明基于E 优化色轴,T选取合适的滤波器透射率T,进而基于透射率T所表达的函数优化设计滤波器光学器件的各参数,使得滤波器在过滤掉蓝光的同时改善或消除这种因为过滤蓝光引起的使用者黄色视野,而且,本发明将优化透射光谱所需的色感参数和E 优化色轴,T进行多目标优化,在有效解决过滤蓝光后的黄色视野问题基础上,还可实现对其它颜色色彩感知的调控。本发明所说优化透射光谱所需的色感参数包括以下参数的一个或多个组合,亮度L * 0,T、白点位移wp、设定短波区域的过滤程度、在特定波长和/或波长区间的最低透射率,通过改变各参数的权重调整优化的目标和程度,这样的方法可以给予设计师更多的自由度。
附图说明
图1为本发明滤波器工作原理图;
图2为本发明滤波器镜片的第一种结构示意图;
图3为本发明滤波器镜片的第二种结构示意图;
图4为本发明优化后的透射光谱三的第一种光谱图;
图5为本发明优化后的透射光谱三的第二种光谱图;
图6为本发明优化后的透射光谱三的第三种光谱图;
图7为本发明优化后的透射光谱二的第一种光谱图;
图8为本发明优化后的透射光谱二的第二种光谱图;
图9为本发明优化后的透射光谱一的第一种光谱图;
图10为本发明优化后的透射光谱一的第二种光谱图;
图11是本发明优化后的透射光谱四的光谱图。
具体实施方式
一种色彩可控的高能可见光滤波器的设计方法,其特征在于,包括如下步骤:
步骤1:选取滤波器,所说滤波器含有对短波可见光吸收的染料,滤波器的透射率T表达为光学器件各参数的一个函数。
将滤波器在各波长下的透射率T(λ)表达为如下函数:
Figure PCTCN2019087538-appb-000021
其中,N为有效吸光成分i总数目,l是有效吸光成分i所分布的所有介质层有效总厚度,ε i为有效吸光成分i的摩尔吸光系数,c i为有效成分i在其所分布的所有介质层中的平均浓度,λ为可见光波波长;M为有效反光介面总数目,f j是有效反光介面j的反光率。
对短波可见光吸收的染料采用吸收峰在380-480纳米或380-780纳米的一种或多种染料。本实施例中,采用吸收峰在380-480纳米的一种或多种染料。染料可以选择如下但不局限于如下染料:叶绿素a;叶绿素b;吖啶黄;分散黄;着色剂all(stains-all);3-乙基-2-[3-(3-乙基-3H-苯并恶唑-2-亚基)丙-1-烯基]苯并恶唑碘化物;碘化-3,3ˊ-二乙基氧杂二羰花青;碘代3,3'-二己氧基羰花青;羊毛罂(erioglaucine);孔雀石绿(Malachite green);金属离子与卟吩或吡啶的化合物,其中金属离子包括但不局限于锌,镁,铜,铁正离 子;金属离子与卟啉或卟啉衍生物的化合物,其中金属离子包括但不局限于锌,镁,铜,铁正离子,其中卟啉衍生物包括但不局限于八乙基卟啉,四甲基卟啉,四苯基卟啉,四苯酚卟啉;金属离子与四氮杂卟啉或四氮杂卟啉衍生物的化合物,其中金属离子包括但不局限于锌,镁,铜,铁正离子,其中四氮杂卟啉衍生物包括但不局限于硫代四氮杂卟啉及其衍生物,酞菁,四叔丁基酞菁及其它烷基酞菁衍生物;花青染料及其衍生物;香豆素及其衍生物;氧杂蒽及其衍生物;恶嗪及其衍生物;染料可以为自主合成的如上染料,也可以为以上述一种或几种成分为主要滤光成分的商业化染料。
介质材料可以选择如下但不局限于如下介质:聚碳酸酯;聚甲基丙烯酸甲酯;烯丙二甘醇碳酸酯与二异丙基过氧化碳酸酯共聚物;聚氨基甲酸酯衍生物,如PPG公司的
Figure PCTCN2019087538-appb-000022
硅凝胶及其衍生物,如二甲基乙烯基硅氧基聚甲基硅氧烷;并且介质层表面可以根据需要添加防反射涂层、和/或防刮涂层、和/或紫外线吸收涂层;并且介质层内可混有紫外线吸收物;染料可以分散在介质层中,也可以分散在介质层表面的涂层中。如图2所示,染料分布在介质层中;如图3所示,染料分布在介质层表面的涂层中。
本实施例中,规定所有染料分布在单一的介质层中,该介质层厚度为2毫米且该介质层材料为混有紫外线吸收分子的聚碳酸酯。在该介质层表面涂有总厚度小于0.2毫米的防反射涂层和防刮涂层。规定在如下集合中选取4种染料:叶绿素a,叶绿素b,吖啶黄,分散黄,着色剂all(stains-all),3-乙基-2-[3-(3-乙基-3H-苯并恶唑-2-亚基)丙-1-烯基]苯并恶唑碘化物,碘化-3,3ˊ-二乙基氧杂二羰花青,碘代3,3'-二己氧基羰花青,羊毛罂(erioglaucine),孔雀石绿(Malachite green)。
介质层有多个有效的反光介面,且反光介面综合有效反光率为0.1033。即:
Figure PCTCN2019087538-appb-000023
步骤2:选择光源,并选取一种颜色或多种颜色组成的颜色组,将所需优化的颜色或颜色组的各色感参数表达为包括光源D和滤波器透射率T的函数。
选择任何发光体、反光体作为光源。光源可以选择如下但不局限于如下光源:国际光学理事会标准发光体A系列、D系列、F系列以及L系列。本实施例中,选择国际光学理事会标准发光体D65为光源。
可以在1296个孟塞尔颜色中选择任意一种或多种颜色在色彩空间中的位置来研究滤波器T对各色感参数的影响。本实施例中,选择用于色盲色弱测试的15个法斯沃斯颜色和另外5个孟塞尔柔和色10B5/4,10Y5/4,10R5/4,10RP5/4和10PB5/4所组成的20个颜色的色彩组,此处简称为“20色彩组”。
选择国际光学理事会2度或10度标准观察者的颜色匹配函数来计算在色感空间1976 CIE L *a *b *、和/或1976 CIE L *u *v *中各孟塞尔颜色或颜色组的色感参数。
将所需优化的颜色或颜色组的各色感参数表达为包括光源D和滤波器透射率T的函数,通过如下方法实现:
U k,T(λ)=D(λ)·T(λ)·MC k(λ);
Figure PCTCN2019087538-appb-000024
Figure PCTCN2019087538-appb-000025
Figure PCTCN2019087538-appb-000026
Figure PCTCN2019087538-appb-000027
其中
Figure PCTCN2019087538-appb-000028
其中,U为“20色彩组”中任意颜色;MC为所
Figure PCTCN2019087538-appb-000029
选择的颜色
Figure PCTCN2019087538-appb-000030
的反光率;为观察者颜色匹配函数;L *标识明度或亮度坐标;a *和b *为两个对比色度上的彩度坐标;X k,Y k,Z k为颜色U k的三色刺激值;k标注“20色彩组”中不同的颜色。
在使用滤波器T时,以T做为脚标表明上述变量在使用透镜T后的表达。在未使用滤波器T时,各如上函数可表示为其去掉脚标T以后的形式。
光源D通过滤波器后的白点位移表达通过如下方法获得,
X n,Y n,Z n为标准照明体在全满反射体的三色刺激值,客观白点在光源D照射下光谱表示为U 0,T(λ)=D(λ)·T,使用滤波器后白点三色刺激值表示为X n,T,Y n,T,Z n,T
未使用滤波器时,标准照明体在全满反射体通过滤光器的亮度表示为L * 0
使用滤波器后综合亮度,即标准照明体在全满反射体通过滤光器的亮度表示为L * 0,T
使用滤波器后白点位移wp表达如下:
Figure PCTCN2019087538-appb-000031
Figure PCTCN2019087538-appb-000032
Figure PCTCN2019087538-appb-000033
本实施例中,白点位移wp规定以如下方式表达:
Figure PCTCN2019087538-appb-000034
步骤3:基于步骤2获得的各色感参数表达,在1976 CIE L *a *b *色感空间中,根据所需优化的色度,选择优化矢量
Figure PCTCN2019087538-appb-000035
将颜色组投影在所需优化的色度平面上的综合色差表达为E 优化色轴,T
使用滤波器T后,E 优化色轴,T通过如下方法获得:
颜色U k,T色相色度矢量
Figure PCTCN2019087538-appb-000036
优化矢量
Figure PCTCN2019087538-appb-000037
其中0°≤α≤360°;
所选择颜色或颜色组在所需优化的色度平面上的色差为:
Figure PCTCN2019087538-appb-000038
使用滤波器后,所选择颜色或颜色组在所需优化的色度平面上的综合色差为:
Figure PCTCN2019087538-appb-000039
未使用滤波器时,所选择颜色或颜色组在所需优化的色度平面上的综合色差为:
Figure PCTCN2019087538-appb-000040
本实施例中,选择红绿色轴为优化色轴,即优化红绿色色差,即 优化矢量中α=0°和α=180°。根据步骤3,使用滤波器T后,E 优化色轴,T通过如下方法获得:
颜色U k,T色相色度矢量
Figure PCTCN2019087538-appb-000041
优化矢量
Figure PCTCN2019087538-appb-000042
其中α为0°和180°;
所选择颜色(组)在所需优化的色度平面上的色差为:
Figure PCTCN2019087538-appb-000043
步骤4:根据优化透射光谱所需的色感参数和E 优化色轴,T进行多目标优化,并选取合适的解即滤波器的透射率T,进而基于透射率T所表达的函数优化设计滤波器光学器件的各参数。
所说优化透射光谱所需的色感参数包括以下参数的一个或多个组合,亮度L * 0,T、白点位移wp、设定短波区域的过滤程度、在特定波长和/或波长区间的最低透射率。亮度L * 0,T、白点位移wp、设定短波区域的过滤程度、在特定波长和/或波长区间的最低透射率可表达为透射光谱T关于f j与c i的函数。根据上述色感参数和E 优化色轴,T进行多目标优化,选取合适的解即滤波器的透射率T。
所说设定短波区域的过滤程度通过综合过滤程度S T表征,综合过滤程度S T表达为:
Figure PCTCN2019087538-appb-000044
其中380nm≤μ<η≤480nm。
所说设定短波区域的过滤程度通过以下一种参数或几种参数的组合进行表征,
在380到480纳米区间内某个或某几个特定波长的透射率;
在380到480纳米区间内某个或某几个特定波长区间的综合透射率;
在380到480纳米区间内某个或某几个特定波长区间的综合透射率并同时限定在380到480纳米区间内某个或某几个特定波长的透射率。
本实施例中,在380到480纳米区间内,限定在415到480纳米的区间内的任意波长下的短波透射率至少为7.5%,且在415到480纳米的区间内存在任意多条光学阻带。限定将所关心的短波区域的综合过滤程度表达为:
Figure PCTCN2019087538-appb-000045
多目标优化是指在给定约束相(优化透射光谱所需的色感参数和E 优化色轴,T)后,对N种染料和M种反射介面组成的光学器件进行优化以达到最大亮度L * 0,T,最大综合色差E 优化色轴,T,最小白点位移wp,和所关心的短波区域的最大综合过滤程度S T。这种多目标优化可以根据需要选择优化一个或几个或以上全部目标为目标方程:
Figure PCTCN2019087538-appb-000046
也可以根据需要通过权重变量w将各选择的优化目标线性叠加,如下为这种线性叠加的目标方程的一种表示方法:
Figure PCTCN2019087538-appb-000047
其中,权重变量的取值范围为0≤w≤1且∑w=1。
限定在380到480纳米的区间内的任意波长下的短波透射率至少为G,且0%≤G≤80%;并且在380到480纳米的区间内存在1条、2条 或多条光学阻带;并且限定D65光源下L* 0,T≥40或L* 0,T≥88;
优化后的透射光谱满足以下要求:
在380到480纳米的区间内存在1条、2条或多条光学阻带,且该光学阻带的峰值的透射率≥G。
所说光学阻带可以是单峰的,也可以是多峰的。当相邻的两个吸收峰之间的最高透射率T 最高,与这两个相邻吸收峰T 和T 满足如下关系时,认为这两个吸收峰存在于一个多吸收峰的光学阻带。当如下条件不满足时,认为这两个吸收峰分别从属于相邻的两个光学阻带。
T 最高<0.05+max(T ,T )-0.025·(T +T )
具体而言,限定在380到480纳米的区间内的任意波长下的短波透射率至少为G,且0%≤G≤80%;并且在380到480纳米的区间内只存在一条光学阻带;并且限定D65光源下L * 0,T≥88。优化后的透射光谱满足以下要求:在380到480纳米的区间内只存在一条光学阻带,且该光学阻带的峰值的透射率≥G。
或者,限定在380到480纳米的区间内的任意波长下的短波透射率至少为G,且0%≤G≤80%;并且在380到480纳米的区间内只存在一条光学阻带;并且限定D65光源下L * 0,T≥40。优化后的透射光谱满足以下要求:在380到480纳米的区间内只存在一条光学阻带,且该光学阻带的峰值的透射率≥G。
或者,限定在380到480纳米的区间内的任意波长下的短波透射率至少为G,且0%≤G≤80%;并且在380到480纳米的区间内存在W条光学阻带,且W为≥2的正整数;并且限定D65光源下L * 0,T≥88。优化后的透射光谱满足以下要求:在380到480纳米的区间内只存在W条光学阻带,且所有光学阻带的峰值的透射率≥G。
或者,限定在380到480纳米的区间内的任意波长下的短波透射 率至少为G,且0%≤G≤80%;并且在380到480纳米的区间内存在W条光学阻带,且W为≥2的正整数;并且限定D65光源下L * 0,T≥40。优化后的透射光谱满足以下要求:在380到480纳米的区间内只存在W条光学阻带,且所有光学阻带的峰值的透射率≥G。
优化后的透射光谱一:
步骤4中,限定D65光源下L * 0,T≥45;并且在380到480纳米的区间内至少存在一条光学阻带;并且D65光源下的白点位移d' 0,T≤0.07;并且选择红绿色为优化色轴进行多目标优化。
优化后的透射光谱满足以下要求:在380到480纳米的区间内至少存在一条光学阻带;并且在480纳米到620纳米的区间中,同时存在并只存在两条最低透射率低于10%的光学阻带,第一条光学阻带在480纳米到550纳米的波长区间内;第二条光学阻带在550纳米到620纳米的波长区间内。
优化后的透射光谱二:
步骤4中,限定在380到480纳米的区间内至少存在一条光学阻带;并且D65光源下L * 0,T≥78,并且D65光源下的白点位移d' 0,T≤0.15;并且选择红绿色为优化色轴进行多目标优化;优化后的透射光谱满足以下要求:在380到480纳米的区间内至少存在一条光学阻带;并且在480纳米到620纳米的区间中,只存在一条最低透射率低于20%的光学阻带,且该光学阻带在550纳米和620纳米之间。
优化后的透射光谱三:
步骤4中,限定在380到480纳米的区间内至少存在一条光学阻带;并且D65光源下L* 0,T≥88;并且D65光源下的白点位移d' 0,T≤0.01;并且不选择任何色轴为优化色轴进行多目标优化;优化后的透射光谱满足以下要求:在380到480纳米的区间内至少存在一条光学阻带; 并且在500纳米到600纳米的区间中,至少存在两条最低透射率在55%和82%之间的光学阻带。
优化后的透射光谱四:
步骤4中,限定在405到480纳米的区间内的任意波长下的短波透射率至少为7.5%;L * 0,T≥50;S T≥0.8;且D65光源的白点位移d' 0,T≤0.075。对如下色感参数进行多目标优化:最大亮度L * 0,T,最大综合色差E 优化色轴,T,最小白点位移wp,和所关心的短波区域的最大综合过滤程度S T。通过权重变量w将各选择的优化目标线性叠加。目标方程如下:
Figure PCTCN2019087538-appb-000048
其中w1=0.1;w2=0.05;w3=0.05;w4=0.8;

Claims (14)

  1. 一种色彩可控的高能可见光滤波器的设计方法,其特征在于,包括如下步骤:
    步骤1:选取滤波器,所说滤波器含有对短波可见光吸收的染料,滤波器的透射率T表达为光学器件各参数的一个函数;
    步骤2:选择光源,并选取一种颜色或多种颜色组成的颜色组,将所需优化的颜色或颜色组的各色感参数表达为包括光源D和滤波器透射率T的函数;
    步骤3:基于步骤2获得的各色感参数表达,在1976 CIE L *a *b *色感空间中,根据所需优化的色度,选择优化矢量
    Figure PCTCN2019087538-appb-100001
    将颜色或颜色组投影在所需优化的色度平面上的综合色差表达为E 优化色轴,T
    步骤4:根据优化透射光谱所需的色感参数和E 优化色轴,T进行多目标优化,并选取合适的解即滤波器的透射率T,进而基于透射率T所表达的函数优化设计滤波器光学器件的各参数。
  2. 根据权利要求1所述的方法,其特征在于,步骤1中,将滤波器在各波长下的透射率T(λ)表达为如下函数:
    Figure PCTCN2019087538-appb-100002
    其中,N为有效吸光成分i总数目,l是有效吸光成分i所分布的所有介质层有效总厚度,ε i为有效吸光成分i的摩尔吸光系数,c i为有效成分i在其所分布的所有介质层中的平均浓度,λ为可见光波波长;M为有效反光介面总数目,f j是有效反光介面j的反光率。
  3. 根据权利要求1所述的方法,其特征在于,步骤1中,对短 波可见光吸收的染料采用吸收峰在380-480纳米或380-780纳米的一种或多种染料;
    染料可以选择如下但不局限于如下染料:
    叶绿素a;叶绿素b;吖啶黄;分散黄;着色剂all(stains-all);3-乙基-2-[3-(3-乙基-3H-苯并恶唑-2-亚基)丙-1-烯基]苯并恶唑碘化物;碘化-3,3ˊ-二乙基氧杂二羰花青;碘代3,3'-二己氧基羰花青;羊毛罂(erioglaucine);孔雀石绿(Malachitegreen);金属离子与卟吩或吡啶的化合物,其中金属离子包括但不局限于锌,镁,铜,铁正离子;金属离子与卟啉或卟啉衍生物的化合物,其中金属离子包括但不局限于锌,镁,铜,铁正离子,其中卟啉衍生物包括但不局限于八乙基卟啉,四甲基卟啉,四苯基卟啉,四苯酚卟啉;金属离子与四氮杂卟啉或四氮杂卟啉衍生物的化合物,其中金属离子包括但不局限于锌,镁,铜,铁正离子,其中四氮杂卟啉衍生物包括但不局限于硫代四氮杂卟啉及其衍生物,酞菁,四叔丁基酞菁及其它烷基酞菁衍生物;花青染料及其衍生物;香豆素及其衍生物;氧杂蒽及其衍生物;恶嗪及其衍生物;染料可以为自主合成的如上染料,也可以为以上述一种或几种成分为主要滤光成分的商业化染料。
  4. 根据权利要求1所述的方法,其特征在于,步骤2中,将所需优化的颜色或颜色组的各色感参数表达为包括光源D和滤波器透射率T的函数,通过如下方法实现:
    U k,T(λ)=D(λ)·T(λ)·MC k(λ);
    Figure PCTCN2019087538-appb-100003
    Figure PCTCN2019087538-appb-100004
    Figure PCTCN2019087538-appb-100005
    Figure PCTCN2019087538-appb-100006
    Figure PCTCN2019087538-appb-100007
    Figure PCTCN2019087538-appb-100008
    其中
    Figure PCTCN2019087538-appb-100009
    其中,U为任意颜色;MC为所选择的颜色反光
    Figure PCTCN2019087538-appb-100010
    率;为观察者颜色匹配函数;L *标识明度或亮度坐标;a *和b *为两个对比色度上的彩度坐标;X k,Y k,Z k为颜色U k的三色刺激值;k标注所选择颜色组中不同的颜色。
  5. 根据权利要求4所述的方法,其特征在于,步骤2中,光源D通过滤波器后的白点位移表达通过如下方法获得,
    X n,Y n,Z n为标准照明体在全满反射体的三色刺激值,客观白点在光源D照射下光谱表示为U 0,T(λ)=D(λ)·T,使用滤波器后白点三色刺激值表示为X n,T,Y n,T,Z n,T
    未使用滤波器时,标准照明体在全满反射体通过滤光器的亮度表示为L * 0
    使用滤波器后综合亮度,即标准照明体在全满反射体通过滤光器的亮度表示为L * 0,T
    使用滤波器后白点位移wp表达如下:
    Figure PCTCN2019087538-appb-100011
    Figure PCTCN2019087538-appb-100012
    Figure PCTCN2019087538-appb-100013
  6. 根据权利要求5所述的方法,其特征在于,步骤3中,使用滤波器T后,E 优化色轴,T通过如下方法获得:
    颜色U k,T色相色度矢量
    Figure PCTCN2019087538-appb-100014
    优化矢量
    Figure PCTCN2019087538-appb-100015
    其中0°≤α≤360°;
    所选择颜色或颜色组在所需优化的色度平面上的色差为:
    Figure PCTCN2019087538-appb-100016
    使用滤波器后,所选择颜色或颜色组在所需优化的色度平面上的综合色差为:
    Figure PCTCN2019087538-appb-100017
    未使用滤波器时,所选择颜色或颜色组在所需优化的色度平面上的综合色差为:
    Figure PCTCN2019087538-appb-100018
  7. 根据权利要求6所述的方法,其特征在于,步骤4中,所说优化透射光谱所需的色感参数包括以下参数的一个或多个组合,
    亮度L * 0,T、白点位移wp、设定短波区域的过滤程度、在特定波长 和/或波长区间的最低透射率,
    根据上述色感参数和E 优化色轴,T进行多目标优化,选取合适的解即滤波器的透射率T。
  8. 根据权利要求7所述的方法,其特征在于,步骤4中,所说设定短波区域的过滤程度通过综合过滤程度S T表征,综合过滤程度S T表达为:
    Figure PCTCN2019087538-appb-100019
    其中380nm≤μ<η≤480nm。
  9. 根据权利要求7所述的方法,其特征在于,步骤4中,所说设定短波区域的过滤程度通过以下一种参数或几种参数的组合进行表征,
    在380到480纳米区间内某个或某几个特定波长的透射率;
    在380到480纳米区间内某个或某几个特定波长区间的综合透射率;
    在380到480纳米区间内某个或某几个特定波长区间的综合透射率并同时限定在380到480纳米区间内某个或某几个特定波长的透射率。
  10. 根据权利要求7所述的方法,其特征在于,多目标优化的一种表达方式为在优化透射光谱所需的色感参数和E 优化色轴,T后,对N种染料和M种反射介面组成的光学器件进行优化以达到最大亮度L * 0,T,最大综合色差E 优化色轴,T,最小白点位移wp,和所关心的短波区域的最大综合过滤程度S T,这种多目标优化可以根据需要选择优化一个或几个或以上全部目标为目标方程:
    Figure PCTCN2019087538-appb-100020
    也可以根据需要通过权重变量w将各选择的优化目标线性叠加,如下为这种线性叠加的目标方程的一种表示方法:
    Figure PCTCN2019087538-appb-100021
    其中,权重变量的取值范围为0≤w≤1且∑w=1。
  11. 根据权利要求7所述的方法,其特征在于,步骤4中,限定在380到480纳米的区间内的任意波长下的短波透射率至少为G,且0%≤G≤80%;并且在380到480纳米的区间内存在1条、2条或多条光学阻带;并且限定D65光源下L * 0,T≥40或L * 0,T≥88;
    优化后的透射光谱满足以下要求:
    在380到480纳米的区间内存在1条、2条或多条光学阻带,且该光学阻带的峰值的透射率≥G。
  12. 根据权利要求7所述的方法,其特征在于,步骤4中,限定D65光源下L * 0,T≥45;并且在380到480纳米的区间内至少存在一条光学阻带;并且D65光源下的白点位移d' 0,T≤0.07;并且选择红绿色为优化色轴进行多目标优化;
    优化后的透射光谱满足以下要求:在380到480纳米的区间内至少存在一条光学阻带;并且在480纳米到620纳米的区间中,同时存在并只存在两条最低透射率低于10%的光学阻带,第一条光学阻带在480纳米到550纳米的波长区间内;第二条光学阻带在550纳米到620纳米的波长区间内。
  13. 根据权利要求7所述的方法,其特征在于,步骤4中,限定在380到480纳米的区间内至少存在一条光学阻带;并且D65光源下L * 0,T≥78,并且D65光源下的白点位移d' 0,T≤0.15;并且选择红绿色为优化色轴进行多目标优化;
    优化后的透射光谱满足以下要求:在380到480纳米的区间内至少存在一条光学阻带;并且在480纳米到620纳米的区间中,只存在一条最低透射率低于20%的光学阻带,且该光学阻带在550纳米和620纳米之间。
  14. 根据权利要求7所述的方法,其特征在于,步骤4中,限定在380到480纳米的区间内至少存在一条光学阻带;并且D65光源下L * 0,T≥88;并且D65光源下的白点位移d' 0,T≤0.01;并且不选择任何色轴为优化色轴进行多目标优化;
    优化后的透射光谱满足以下要求:在380到480纳米的区间内至少存在一条光学阻带;并且在500纳米到600纳米的区间中,至少存在两条最低透射率在55%和82%之间的光学阻带。
PCT/CN2019/087538 2019-01-29 2019-05-20 一种色彩可控的高能可见光滤波器的设计方法 WO2020155473A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910085240.9 2019-01-29
CN201910085240.9A CN109598100B (zh) 2019-01-29 2019-01-29 一种色彩可控的高能可见光滤波器的设计方法

Publications (1)

Publication Number Publication Date
WO2020155473A1 true WO2020155473A1 (zh) 2020-08-06

Family

ID=65966737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087538 WO2020155473A1 (zh) 2019-01-29 2019-05-20 一种色彩可控的高能可见光滤波器的设计方法

Country Status (2)

Country Link
CN (1) CN109598100B (zh)
WO (1) WO2020155473A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110542941B (zh) * 2018-05-29 2022-05-17 北京以色佳科技有限公司 滤镜的色彩感知的优化方法及透射光谱
CN109598100B (zh) * 2019-01-29 2023-09-19 北京以色佳科技有限公司 一种色彩可控的高能可见光滤波器的设计方法
US20230374306A1 (en) * 2022-05-23 2023-11-23 Alcon Inc. Uv/hevl-filtering contact lenses

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2591396A1 (en) * 2010-07-06 2013-05-15 High Performance Optics, Inc. High energy visible light filter systems with yellowness index values
CN107735701A (zh) * 2015-06-29 2018-02-23 埃西勒国际通用光学公司 光学过滤器
CN207636866U (zh) * 2017-12-28 2018-07-20 广州邦士度眼镜有限公司 一种新型防蓝光保护眼镜
CN109598100A (zh) * 2019-01-29 2019-04-09 北京以色佳科技有限公司 一种色彩可控的高能可见光滤波器的设计方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4793669A (en) * 1987-09-11 1988-12-27 Coherent, Inc. Multilayer optical filter for producing colored reflected light and neutral transmission
USRE33729E (en) * 1987-09-11 1991-10-29 Coherent, Inc. Multilayer optical filter for producing colored reflected light and neutral transmission
JP5764434B2 (ja) * 2010-09-15 2015-08-19 セイコーインスツル株式会社 照明装置及びこれを備えるカラー表示装置
CN105842877B (zh) * 2016-05-31 2018-12-11 杭州灯之塔科技有限公司 一种色觉矫正镜片、色觉矫正装备及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2591396A1 (en) * 2010-07-06 2013-05-15 High Performance Optics, Inc. High energy visible light filter systems with yellowness index values
CN107735701A (zh) * 2015-06-29 2018-02-23 埃西勒国际通用光学公司 光学过滤器
CN207636866U (zh) * 2017-12-28 2018-07-20 广州邦士度眼镜有限公司 一种新型防蓝光保护眼镜
CN109598100A (zh) * 2019-01-29 2019-04-09 北京以色佳科技有限公司 一种色彩可控的高能可见光滤波器的设计方法

Also Published As

Publication number Publication date
CN109598100B (zh) 2023-09-19
CN109598100A (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
US11774783B2 (en) High performance selective light wavelength filtering providing improved contrast sensitivity
US10610472B2 (en) High energy visible light filter systems with yellowness index values
JP7357368B2 (ja) 改善した装飾的外観を有する人間の色覚を向上させるための光学デバイス
CN101501553B (zh) 具有选择性光抑制的色平衡的眼科系统
WO2020155473A1 (zh) 一种色彩可控的高能可见光滤波器的设计方法
CN104360495B (zh) 选择性过滤特定的蓝光波长的光色眼科系统
US9377569B2 (en) Photochromic ophthalmic systems that selectively filter specific blue light wavelengths
CN111292615B (zh) 提供改进的对比灵敏度的高性能选择性光波长过滤
CN106772744B (zh) 一种色平衡的防蓝光镜片、眼镜、装备及其制造方法
US20080186448A1 (en) High performance selective light wavelength filtering providing improved contrast sensitivity
CN111108429B (zh) 带有具有不对称反射率的中性透射涂层的有色光学制品
EP2095177A1 (en) High performance selective light wavelength filtering providing improved contrast sensitivity
JP2009530687A (ja) 眼科用構成要素を青色光波長阻止機能および色平衡化機能と組み合わせる眼科用システム
WO2014055513A1 (en) Selective blue light filtered optic
CN113946064B (zh) 眼科透镜
CN108132545B (zh) 一种高透过率的防蓝光镜片、眼镜、装备及其制造方法
CN206863264U (zh) 一种色平衡的防蓝光镜片、眼镜、装备
JP3227172U (ja) 色彩強調光学レンズ装置
CN220795605U (zh) 护眼设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913560

Country of ref document: EP

Kind code of ref document: A1