WO2020155402A1 - 一种oled触控显示面板及其分时复用驱动方法 - Google Patents

一种oled触控显示面板及其分时复用驱动方法 Download PDF

Info

Publication number
WO2020155402A1
WO2020155402A1 PCT/CN2019/082707 CN2019082707W WO2020155402A1 WO 2020155402 A1 WO2020155402 A1 WO 2020155402A1 CN 2019082707 W CN2019082707 W CN 2019082707W WO 2020155402 A1 WO2020155402 A1 WO 2020155402A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
signal
display panel
thin film
film transistor
Prior art date
Application number
PCT/CN2019/082707
Other languages
English (en)
French (fr)
Inventor
李文齐
陈彩琴
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/470,246 priority Critical patent/US11169631B2/en
Publication of WO2020155402A1 publication Critical patent/WO2020155402A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/03Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes specially adapted for displays having non-planar surfaces, e.g. curved displays
    • G09G3/035Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes specially adapted for displays having non-planar surfaces, e.g. curved displays for flexible display surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens

Definitions

  • the present invention relates to the technical field of touch display, in particular to an OLED touch display panel and a time division multiplexing driving method thereof.
  • OLED Organic Light-Emitting Diode
  • AMOLED Active-matrix Organic light emitting diode, active matrix organic light emitting diode originated from OLED display technology.
  • AMOLED has the characteristics of self-luminescence, using very thin organic material coating and glass substrate, when there is current through, these organic materials will emit light.
  • AMOLED panels are self-luminous, unlike TFT-LCDs that require backlighting, so AMOLED panels have wide viewing angles and high color saturation, especially their low driving voltage and low power consumption, plus fast response, light weight, thin thickness, and simple structure. Low cost and regarded as one of the most promising products.
  • touch technology provides a new human-computer interaction interface, which is more direct and user-friendly in use. Integrating touch technology and flat display technology to form a touch display device can enable the flat display device to have a touch function, which can perform input through fingers, stylus, etc., and the operation is more intuitive and simple.
  • the common touch structure is an add-on or an on-cell.
  • the touch sensor is attached to the AMOLED, because the touch panel and the touch chip (Touch IC) cannot be integrated into the driver chip, which alone generates costs, which increases the cost of AMOLED, and more importantly, various problems such as peeling may occur during the bending process. Therefore, it is necessary to improve the process, develop low-temperature CVD and PVD processes, and directly coat AMOLED to produce a cover-surface touch display panel.
  • the OLED light-emitting material is sensitive to temperature (it will fail at about 80°C), the cover-surface touch The production of the display panel is very difficult.
  • Figure 1 is a structural diagram of an AMOLED touch display panel in the prior art
  • Figure 2A is a schematic diagram of the shape of a mutual capacitive sensor pad in the prior art
  • Figure 2B is a current
  • FIG. 3 is a driving timing diagram of mutual capacitance and self-capacitance in the prior art
  • FIG. 4 is a schematic diagram of the layout structure of voltage signal wiring in the prior art. The mutual capacitive sensor pads in FIG.
  • the self-capacitive sensor pads ) 221 is electrically connected to the touch chip (not shown in the figure) through the touch signal line (traces) 222;
  • the driving signal (TX1-TXn) electrodes in Figure 3 are used as pressure transmitters (transmitter) and sensing signals (RX1). )
  • the electrode is used as a receiver;
  • the layout of the voltage signal traces in Figure 4 includes the layout of the reset voltage signal (Vi) trace 41 and the power supply voltage signal (VDD) trace 42, where the reference number 43 is the display area (Active Area), number 44 is a driver chip IC.
  • the AMOLED touch display panel includes: a base substrate 10 (by depositing an array circuit layer on a glass substrate to form the base substrate 10, wherein the array circuit layer includes a buffer layer, an active layer, a gate Insulating layer, gate layer, interlayer insulating layer, and passivation layer); the planarization layer (PLN) 11, the source and drain layer (SD) 12, the anode layer (Anode) 13, and the pixel are sequentially arranged on the base substrate 10 Definition layer (PDL) 14, hole injection layer (HIL) 15, hole transport layer (HTL) 16, organic light emitting layer (OLED) 17, electron transport layer (ETL) 18, and cathode (Cathode) 19.
  • PDL definition layer
  • HIL hole injection layer
  • HTL hole transport layer
  • OLED organic light emitting layer
  • ETL electron transport layer
  • Cathode cathode
  • the uppermost cathode 19 of the AMOLED touch display panel is made by the common mask evaporation process, it is a whole surface structure, which completely shields the electric field lines of the finger touching the screen, so that the electric field cannot reach the structure under the cathode.
  • the in-cell touch structure in which the touch sensor is embedded inside the liquid crystal panel cannot be adopted.
  • the purpose of the present invention is to provide an OLED touch display panel and a time-division multiplexing driving method thereof, which can realize the use of an in-cell touch structure, save costs, and improve non-compliance in the bending process of the flexible screen problem.
  • the present invention provides an OLED touch display panel, which includes: a source and drain layer, a pixel definition layer, and touch electrodes embedded in the pixel definition layer provided in an array substrate;
  • the voltage signal traces of the source and drain layers are multiplexed as touch signal traces of the touch electrode, wherein the power supply voltage signal traces of the voltage signal traces are multiplexed
  • Use the touch drive signal wiring for the touch signal wiring and the reset voltage signal wiring of the voltage signal wiring to multiplex the touch sensing signal wiring for the touch signal wiring, or, so
  • the power supply voltage signal wiring of the voltage signal wiring is multiplexed as the touch sensing signal wiring of the touch signal wiring, and the reset voltage signal wiring of the voltage signal wiring is multiplexed as the touch signal wiring.
  • the touch drive signal trace of the line, or one of the power voltage signal trace or the reset voltage signal trace of the voltage signal trace is multiplexed as the touch signal trace; in the touch display Outside the display area of the panel, the input end of each touch signal wiring is provided with a time-division multiplexing circuit unit; when the touch display panel is in the display working period, the display driving module passes through the voltage signal wiring
  • the time-division multiplexing circuit unit inputs a voltage signal to the touch display panel to provide a voltage signal to the pixel circuit of the touch display panel; when the touch display panel is in a touch working period, the touch module passes
  • the touch signal trace inputs a touch drive signal or a touch drive synthesis signal to the touch display panel through the time division multiplexing circuit unit, and receives touches generated by the touch electrodes of the touch display panel. Control sensor signal or touch sensor composite signal.
  • the present invention also provides an OLED touch display panel, including: a source and drain layer, a pixel definition layer arranged in an array substrate, and touch electrodes embedded in the pixel definition layer;
  • the voltage signal traces of the source and drain layers are multiplexed as the touch signal traces of the touch electrodes; when the touch display panel is in the display working period, display The driving module inputs voltage signals to the touch display panel through the voltage signal traces, and provides voltage signals to the pixel circuits of the touch display panel; when the touch display panel is in the touch working period, the touch The module inputs touch drive signals or touch drive composite signals to the touch display panel through the touch signal traces, and receives touch sensing signals or touch sensing signals generated by touch electrodes of the touch display panel Synthetic signal.
  • the present invention also provides a time-division multiplexing driving method for an OLED touch display panel, the method includes: when the touch display panel is in a display working period, the display driving module passes through the touch The voltage signal in the display area of the control display panel is routed to input a voltage signal to the touch display panel to provide a voltage signal to the corresponding pixel circuit of the touch display panel; when the touch display panel is in a touch working period, The voltage signal traces are multiplexed into touch signal traces, and the touch module inputs touch driving signals or touch driving composite signals to the touch display panel through the touch signal traces, and receives the touch Control the touch sensing signal or the touch sensing composite signal generated by the corresponding touch electrode of the display panel.
  • the OLED touch display panel of the present invention uses the pixel definition layer of the existing LTPS array substrate to make touch electrodes on the basis of cathode patterning, and inputs through each touch signal trace outside the display area of the touch display panel
  • Add a time-division multiplexing circuit unit to the end to time-division multiplex the voltage signal traces of the source and drain layers of the existing LTPS array substrate, which can be the mutual capacitance of the in-cell touch display panel based on the OLED touch display panel
  • Type/self-contained structure design provides specific signal interface implementation circuit to realize the time-sharing input and output of the touch signal TX/RX and voltage signal Vi/VDD of the in-cell touch display panel; no additional layers are needed, and the pixel structure There is no need to add redundant wiring, save pixel space and cost, and further realize the in-cell touch display panel to improve the non-compliance problem in the bending process of the flexible screen.
  • the present invention is suitable for the integrated chip of touch control and display driver, and can
  • FIG. 1 is a structural diagram of an AMOLED touch display panel in the prior art
  • Fig. 2A is a schematic diagram of the shape of a mutual capacitive sensing pad in the prior art
  • Fig. 3 a driving timing diagram of mutual capacitance and self-capacitance in the prior art
  • FIG. 4 is a schematic diagram of the layout structure of voltage signal wiring in the prior art
  • FIG. 5A is a diagram of a mutual-capacitive time-division multiplexing architecture of the first embodiment of the OLED touch display panel of the present invention
  • FIG. 5B is a circuit diagram of a mutual capacitive time division multiplexing circuit of the first embodiment of an OLED touch display panel of the present invention.
  • FIG. 5D is a diagram of a mutual-capacitive time-division multiplexing architecture of the second embodiment of the OLED touch display panel of the present invention.
  • FIG. 7A is a diagram of a mutual capacitive time-division multiplexing architecture of the third embodiment of the OLED touch display panel of the present invention.
  • FIG. 7B is a circuit diagram of a mutual capacitive time division multiplexing circuit of the third embodiment of the OLED touch display panel of the present invention.
  • FIG. 7C is a time-division multiplexing driving timing diagram of the third embodiment of the OLED touch display panel of the present invention.
  • FIG. 7D is a diagram of the mutual-capacitive time-division multiplexing architecture of the fourth embodiment of the OLED touch display panel of the present invention.
  • FIG. 9A is a diagram of a mutual-capacitive time-division multiplexing architecture of the fifth embodiment of the OLED touch display panel of the present invention.
  • FIG. 9B is a circuit diagram of a mutual capacitive time division multiplexing circuit of a fifth embodiment of an OLED touch display panel of the present invention.
  • 9C is a timing diagram of time-division multiplexing driving of the fifth embodiment of the OLED touch display panel of the present invention.
  • FIG. 9D is a diagram of a mutual-capacitive time-division multiplexing architecture of the sixth embodiment of the OLED touch display panel of the present invention.
  • FIG. 11 is a flowchart of a time-division multiplexing driving method for an OLED touch display panel of the present invention.
  • the "above” or “below” of the first feature of the second feature may include the first and second features in direct contact, or may include the first and second features Not in direct contact but through other features between them.
  • “above”, “above” and “above” the second feature of the first feature include the first feature being directly above and obliquely above the second feature, or it simply means that the level of the first feature is higher than the second feature.
  • the “below”, “below” and “below” the first feature of the second feature include the first feature directly below and obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • the OLED touch display panel of the present invention includes: a source and drain layer, a pixel definition layer arranged in an array substrate, and touch electrodes embedded in the pixel definition layer; in the display area of the touch display panel, The voltage signal traces of the source and drain layers are multiplexed as touch signal traces of the touch electrode; when the touch display panel is in the display working period, the display driving module inputs through the voltage signal traces A voltage signal is applied to the touch display panel to provide voltage signals (power supply voltage signal VDD and/or reset voltage signal Vi) to the pixel circuit of the touch display panel; when the touch display panel is in a touch operation period , The touch module inputs a touch drive signal TX or a touch drive composite signal CK-TX to the touch display panel through the touch signal routing, and receives touches generated by the touch electrodes of the touch display panel Control sensing signal RX or touch sensing composite signal CK-RX.
  • the source and drain layers are electrically connected with the display driving module through the voltage signal wiring, and the touch electrodes are
  • the multiplexing of the voltage signal traces of the source and drain layers into the touch signal traces of the touch electrode adopts one of the following methods:
  • the power supply voltage signal (VDD) wiring of the voltage signal wiring is multiplexed as the touch driving signal (TX) wiring of the touch signal wiring, and the voltage signal wiring
  • the reset voltage signal (Vi) trace is multiplexed as the touch sensing signal (RX) trace of the touch signal trace; or, the power supply voltage signal (VDD) trace of the voltage signal trace is multiplexed as The touch sensing signal (RX) trace of the touch signal trace and the reset voltage signal (Vi) trace of the voltage signal trace are multiplexed into the touch drive signal ( TX) wiring;
  • the OLED touch display panel of the present invention is a self-capacitive touch display panel, one of the power supply voltage signal (VDD) wiring or the reset voltage signal (Vi) wiring of the voltage signal wiring
  • VDD power supply voltage signal
  • Vi reset voltage signal
  • the touch display panel is a mutual capacitive touch display panel
  • the voltage signal wiring is divided according to the size of the touch electrode, and the touch
  • the touch driving electrodes in the same row of the control electrodes are connected in series, and the touch sensing electrodes in the same column of the touch electrodes are connected in series.
  • a time-division multiplexing circuit unit is provided at the input end of each touch signal trace; when the touch display panel is in the display working period, the display The driving module separately inputs voltage signals to the touch display panel through all the time division multiplexing circuit units; when the touch display panel is in the touch working period, the touch module passes all the time division multiplexing
  • a circuit unit is used to respectively input a touch drive signal or a touch drive composite signal to the touch display panel, and receive a touch sensing signal or a touch sensing composite signal generated by a corresponding touch electrode of the touch display panel.
  • the array substrate may be an array substrate using low-temperature polysilicon technology.
  • FIG. 1 For a specific structure diagram of the touch display panel, refer to FIG. 1.
  • the display drive module and the touch control module can be integrated in the same chip (for example, a TDDI chip), or can be an independently controlled discrete IC (for example, an existing touch chip and a display drive chip are independently controlled by a separate IC).
  • a separate IC for example, an existing touch chip and a display drive chip are independently controlled by a separate IC.
  • Vertical IC Vertical IC
  • the OLED touch display panel of the present invention uses the pixel definition layer (PDL) of the existing LTPS array substrate on the basis of cathode (Cathode) patterning to produce touch electrodes (TX Sensor Pad, RX Sensor Pad); by adding a time-division multiplexing circuit unit to the input end of each voltage signal trace outside the display area of the touch display panel, time-division multiplexing the source and drain layers (SD) of the existing LTPS array substrate ) Voltage signal routing (that is, using the existing control signal as input), input the corresponding voltage signal from the display driver chip (Driver-IC, D-IC) to the touch display panel during the display working period: power supply voltage signal VDD and reset voltage signal Vi; the voltage signal traces are multiplexed as touch signal traces during the touch working period, and the touch signal traces are used to input the touch electrodes of the touch display panel from the touch chip (Touch-IC,
  • the touch drive signal TX (referred to as T-IC) and the touch sensing signal RX generated
  • the OLED touch display panel of the present invention can provide a specific signal interface realization circuit for the mutual-capacitive/self-capacitive structure design of the in-cell touch display panel based on the OLED touch display panel through the time-division multiplexing circuit unit.
  • the present invention is suitable for integrating the touch control chip and the display drive chip into a single chip. and Display Driver Integration, TDDI for short. It can also be realized by a discrete IC combination that is independently controlled by the existing touch chip (T-IC) and display driver chip (D-IC), eliminating the need to develop new high-cost TDDI chip.
  • FIG. 5A is a diagram of the mutual capacitance time division multiplexing architecture of the first embodiment of the OLED touch display panel of the present invention
  • FIG. 5B is the mutual capacitance of the first embodiment of the OLED touch display panel of the present invention
  • FIG. 5C is a timing diagram of mutual capacitance time-division multiplexing driving of the first embodiment of the OLED touch display panel of the present invention
  • FIG. 5D is the mutual capacitance of the second embodiment of the OLED touch display panel of the present invention Architecture diagram of time-sharing multiplexing.
  • the input end of each touch signal wiring is provided with a time division multiplexer Circuit unit 511;
  • the power supply voltage signal traces in the voltage signal traces of the source and drain layers are multiplexed into the touch sensing signal traces of the touch electrodes (as shown in the figure).
  • the trace number 521 integrates the power supply voltage signal VDD and the touch sensing signal RXi), and the reset voltage signal trace in the voltage signal trace of the source and drain layer is multiplexed as the touch driving signal TX trace of the touch electrode (As shown by the number 522 in the figure, the reset voltage signal Vi and the touch driving signal TXi are integrated on the trace).
  • the display driver chip (D-IC) When the touch display panel is in the display working period, the display driver chip (D-IC) inputs the power supply voltage signal VDD and the reset voltage signal Vi to the touch control through all the time division multiplexing circuit units 511, respectively.
  • the display panel provides a power supply voltage signal VDD or a reset voltage signal Vi to the corresponding pixel circuit of the touch display panel.
  • the display driver chip (D-IC) provides the reset voltage signal Vi to the pixel circuits of the same row of the touch display panel through the time division multiplexing circuit unit 511, and provides the reset voltage signal Vi through the time division multiplexing circuit unit 511.
  • the pixel circuits of the same column of the touch display panel provide the power supply voltage signal VDD.
  • the touch chip (T-IC) When the touch display panel is in the touch working period, the touch chip (T-IC) respectively inputs the touch driving synthesis signal CK-TXi to the touch control through all the time division multiplexing circuit units 511.
  • the touch control chip (T-IC) provides the touch drive synthesis signal CK-TXi to the same row of touch electrodes of the touch display panel through the time division multiplexing circuit unit 511, and the time division multiplexing circuit
  • the unit 511 receives the touch sensing composite signal CK-RXi generated by the touch electrodes of the same column of the touch display panel.
  • the voltage signal wiring is based on the touch electrode (sensor Pad) is divided in size, and touch driving electrodes in the same row are connected in series, and touch sensing electrodes in the same column are connected in series.
  • the time division multiplexing circuit unit 511 includes a first thin film transistor T1 and a second thin film transistor T2.
  • the gate (Gate) of the first thin film transistor T1 receives a touch drive synthesis signal CK-TXi synthesized by a first level signal CK and a touch drive signal Txi, or outputs a first level signal CK and a touch sensing signal
  • the touch sensing synthesis signal CK-RXi synthesized by RXi that is, the touch drive signal TXi output by the touch chip (T-IC) and the touch sensing signal RXi generated by the corresponding touch electrode of the touch display panel are both the same as the first Level signal CK is synthesized
  • its source (Source) receives the power supply voltage signal VDD or reset voltage signal Vi output by the display driver chip (D-IC)
  • its drain (Drain) is in the touch display panel
  • the power supply voltage signal VDD or the reset voltage signal Vi is output during the display working period, and its drain (Drain) further outputs
  • the gate (Gate) of the second thin film transistor T2 receives the second level signal XCK, its source (Source) is shorted to the gate of the first thin film transistor T1, and its drain (Drain) is shorted To the drain of the first thin film transistor T1 (that is, the two thin film transistors share the drain).
  • the first level signal CK and the second level signal XCK are reciprocal signals, and when the first level signal CK is a high level signal, the second level signal XCK is a low level signal Signal; when the first level signal CK is a low level signal, the second level signal XCK is a high level signal.
  • the first level signal CK and the second level signal XCK are both output by the touch chip.
  • the gate of the first thin film transistor T1 outputs the first level signal CK and the touch sensing
  • the touch sensing synthesis signal CK-RXi synthesized by the signal RXi its source (Source) receives the power supply voltage signal VDD output by the display driver chip (D-IC), and its drain (Drain) is in the touch display panel
  • the power supply voltage signal VDD is output during the display working period, and its drain (Drain) further receives the touch sensing composite signal CK-RXi when the touch display panel is in the touch working period.
  • the gate of the first thin film transistor T1 receives the first level signal CK and the touch drive signal TXi synthesized
  • the touch drive synthesis signal CK-TXi its source (Source) receives the reset voltage signal Vi output by the display driver chip (D-IC), and its drain (Drain) when the touch display panel is in the display working period
  • the reset voltage signal Vi is output, and its drain (Drain) further outputs the touch driving composite signal CK-TXi when the touch display panel is in a touch operation period.
  • the first thin film transistor T1 and the second thin film transistor T2 are both PMOS thin film transistors. In other embodiments, the first thin film transistor T1 and the second thin film transistor T2 may also All are NMOS thin film transistors.
  • the touch drive synthesis signal CK-TXi (CK-TX1, CK-TX2 are shown in the figure) CK-TX3) or the touch sensing synthesis signal CK-RXi is a low level signal, the first thin film transistor T1 is turned on; the second level signal XCK is a high level signal, and the second thin film transistor T2 is turned off; the display driver chip
  • the Vi signal of (D-IC) is input into the touch display panel (Panel) to provide reset signals for pixels, or the VDD signal of the display driver chip (D-IC) is input into the touch display panel to provide power signals for the pixels.
  • the touch driving synthesis signal CK-TXi or the touch sensing synthesis signal CK-RXi is a high-level signal, and the first film The transistor T1 is disconnected, and the voltage signal Vi/VDD cannot be input to the panel; the second level signal XCK is a low level signal, and the second thin film transistor T2 is turned on; the touch drive synthesis signal CK- of the touch chip (T-IC) TXi is input to the AA area of the touch display panel or the touch sensing composite signal CK-RXi of the corresponding touch electrode of the touch display panel is output; wherein in the touch working period, the timing corresponding to the touch driving composite signal CK-TXi is high The high-level signal is scanned at a high-frequency timing, and the timing corresponding to the touch-sensing synthesis signal CK-RXi is a high-frequency AC high-level signal.
  • the difference from the first embodiment shown in FIG. 5A is that in this embodiment, in the display area 52 of the touch display panel, the voltage signal traces in the source and drain layers are The power supply voltage signal traces are multiplexed as the touch drive signal TX traces of the touch electrodes (the traces shown as number 521 in the figure integrate the power supply voltage signal VDD and the touch drive signal TXi), and the voltage of the source and drain layers
  • the reset voltage signal traces in the signal traces are multiplexed as touch sensing signal traces of the touch electrodes (the traces indicated by number 522 in the figure integrate the reset voltage signal Vi and the touch sensing signal RXi).
  • the input signal of the time-division multiplexing circuit unit 511 is adjusted accordingly, and its working principle is similar to that of FIG. 5A, and will not be repeated here.
  • the present invention adds a time-division multiplexing circuit unit to the input end of each touch signal trace outside the display area of the touch display panel, and uses the existing D-IC to input the reset voltage signal Vi (or the power supply voltage signal VDD), Use the existing T-IC input touch drive signal TXi (or touch sensing signal RXi) to realize the reset voltage signal Vi (or power supply voltage signal VDD) routing of the display area shared between the display working period and the touch working period, Therefore, there is no need to fabricate two metal layers and two insulating layers of the touch electrode (Sensor Pad), so the touch display panel does not need to add layers, and the pixel structure does not need to add redundant wiring.
  • the present invention can not only adopt the D-IC+T-IC discrete solution, but also adopt the TDDI solution to complete the system design.
  • FIG. 6A is a self-capacitive time-division multiplexing architecture diagram of the first embodiment of the OLED touch display panel of the present invention
  • FIG. 6B is a self-contained time-division multiplexing architecture diagram of the first embodiment of the OLED touch display panel of the present invention Capacitive time division multiplexing circuit diagram.
  • each touch signal wiring is provided with a time division multiplexer Circuit unit 611; the difference from the mutual-capacitive time-division multiplexing architecture diagram of the first embodiment shown in FIG.
  • the OLED touch display panel is self-capacitive, and the touch display In the display area 62 of the panel, the voltage signal traces of the source and drain layers (one of the power supply voltage signal traces or the reset voltage signal traces) are multiplexed as the touch signal traces of the touch electrodes, That is, only one voltage signal trace is used to transmit the touch signal TP (as shown by the number 621 in the figure, one of the power voltage signal VDD or the reset voltage signal Vi is integrated with the touch signal TPi).
  • the difference from the mutual capacitance time division multiplexing circuit diagram of the first embodiment shown in FIG. 5B is that, in this embodiment, the gate of the first thin film transistor T1 transmits and receives the first
  • the touch synthesis signal CK-TPi (that is, the touch signal TPi output by the touch chip (T-IC) is synthesized with the first level signal CK) is a touch synthesis signal CK-TPi synthesized by a level signal and a touch signal.
  • its circuit connection mode, working principle and circuit sequence are similar to those of the mutual-capacitive OLED touch display panel shown in FIGS. 5A-5C, and will not be repeated here.
  • FIG. 7A is a diagram of the mutual capacitance time division multiplexing architecture of the third embodiment of the OLED touch display panel of the present invention
  • FIG. 7B is the mutual capacitance of the third embodiment of the OLED touch display panel of the present invention
  • 7C is a time-division multiplexing driving timing diagram of the third embodiment of the OLED touch display panel of the present invention
  • FIG. 7D is the mutual-capacitive time-division multiplexing driving sequence diagram of the fourth embodiment of the OLED touch display panel of the present invention Reuse architecture diagram.
  • the difference from the mutual-capacitive time-division multiplexing architecture diagram of the first embodiment shown in FIG. 5A is that in this embodiment, the first level signal CK and the touch drive signal TXi are input Before the time division multiplexing circuit unit 511 are two separate signals, the first level signal CK and the touch drive signal TXi are synthesized by the time division multiplexing circuit unit 511, so the input panel is the touch drive synthesis signal CK -Txi; similarly, the first level signal CK and the touch sensing signal RXi are two separate signals before being input to the time-division multiplexing circuit unit 511, and the first level signal CK is transferred through the time-division multiplexing circuit unit 511 Combined with the touch sensing signal RXi, the corresponding touch electrode obtained from the touch display panel generates a touch sensing composite signal CK-RXi.
  • the time division multiplexing circuit unit 511 includes a first thin film transistor T1, a second thin film transistor T2, and a third thin film transistor T3.
  • the gate (Gate) of the first thin film transistor T1 receives the first level signal CK, and the source (Source) receives the power supply voltage signal VDD or the reset voltage signal Vi output by the display driver chip (D-IC), and its The drain (Drain) outputs the power supply voltage signal VDD or the reset voltage signal Vi when the touch display panel is in the display working period, and its drain (Drain) is further when the touch display panel is in touch operation
  • the touch driving composite signal CK-TXi is output or the touch sensing composite signal CK-RXi is received (that is, the drain is electrically connected to the source and drain layer on the array substrate and the touch electrode).
  • the gate (Gate) of the second thin film transistor T2 receives the second level signal XCK, its source (Source) is shorted to the gate of the first thin film transistor T1, and its drain (Drain) is shorted To the drain of the first thin film transistor T1.
  • the gate (Gate) of the third thin film transistor T1 is short-connected to the gate of the second thin film transistor T2 (receiving the second level signal XCK), and its source (Source) receives the touch drive signal TXi or outputs Touch sensing signal RXi, and its drain (Drain) is shorted to the gate of the first thin film transistor T1.
  • the first level signal CK and the second level signal XCK are reciprocal signals, and when the first level signal CK is a high level signal, the second level signal XCK is a low level signal Signal; when the first level signal CK is a low level signal, the second level signal XCK is a high level signal.
  • the first level signal CK and the second level signal XCK are both output by the touch chip.
  • the source of the first thin film transistor T1 receives the output of the display driver chip (D-IC)
  • the power supply voltage signal VDD, and its drain (Drain) outputs the power supply voltage signal VDD when the touch display panel is in the display operation period, and its drain (Drain) is further when the touch display panel is in touch operation
  • the touch sensing composite signal CK-RXi is received during the time period; the source of the third thin film transistor T3 outputs the touch sensing signal RXi.
  • the source of the first thin film transistor T1 receives the reset voltage signal Vi output by the display driver chip (D-IC) , And its drain (Drain) outputs the reset voltage signal Vi when the touch display panel is in the display working period, and its drain (Drain) further outputs the reset voltage signal Vi when the touch display panel is in the touch working period.
  • the touch drive synthesis signal CK-TXi; the source of the third thin film transistor T3 receives the touch drive signal TXi.
  • the first thin film transistor T1 and the second thin film transistor T2 are both PMOS thin film transistors. In other embodiments, the first thin film transistor T1 and the second thin film transistor T2 may also All are NMOS thin film transistors.
  • the first level signal CK is a low level signal, and the first thin film transistor T1 is turned on;
  • the two-level signal XCK is a high-level signal, the second thin film transistor T2 and the third thin film transistor T3 are disconnected;
  • the Vi signal of the display driver chip (D-IC) is input into the touch display panel (Panel) to provide reset for the pixels.
  • the signal, or the VDD signal of the display driver chip (D-IC) is input into the touch display panel to provide power signals for the pixels.
  • the first level signal CK is a high level signal, the first thin film transistor T1 is off, and the voltage signal Vi/VDD cannot Input panel;
  • the second level signal XCK is a low level signal, the second thin film transistor T2 and the third thin film transistor T3 are turned on;
  • the touch drive signal TXi of the touch chip (T-IC) and the first level signal CK The touch sensing signal RXi and the first level signal CK synthesized into the touch sensing synthesized signal CK-TXi input to the AA area of the touch display panel or the corresponding touch electrode of the touch display panel are synthesized into the touch sensing synthesized signal CK- RXi output; during the touch working period, the timing corresponding to the touch drive synthesis signal CK-TXi is a high-frequency timing scan high signal, and the timing corresponding to the touch sensing synthesis signal CK-RXi is a high-frequency AC high signal.
  • the difference from the third embodiment shown in FIG. 7A is that in this embodiment, in the display area 52 of the touch display panel, the voltage signal traces of the source and drain layers are The power supply voltage signal traces are multiplexed as the touch drive signal TX traces of the touch electrodes (the traces shown as number 521 in the figure integrate the power supply voltage signal VDD and the touch drive signal TXi), and the voltage of the source and drain layers
  • the reset voltage signal traces in the signal traces are multiplexed as touch sensing signal traces of the touch electrodes (the traces indicated by number 522 in the figure integrate the reset voltage signal Vi and the touch sensing signal RXi).
  • the input signal of the time-division multiplexing circuit unit 511 is adjusted accordingly, and its working principle is similar to that of FIG. 7A, and will not be repeated here.
  • the present invention adds a time-division multiplexing circuit unit to the input end of each touch signal trace outside the display area of the touch display panel, and uses the existing D-IC to input the reset voltage signal Vi (or the power supply voltage signal VDD), Use the existing T-IC input touch drive signal TXi (or touch sensing signal RXi) to realize the reset voltage signal Vi (or power supply voltage signal VDD) routing of the display area shared between the display working period and the touch working period, Therefore, there is no need to fabricate two metal layers and two insulating layers of the touch electrode (Sensor Pad), so the touch display panel does not need to add layers, and the pixel structure does not need to add redundant wiring.
  • the present invention can not only adopt the D-IC+T-IC discrete solution, but also adopt the TDDI solution to complete the system design.
  • FIG. 8A is a self-capacitive time-division multiplexing architecture diagram of the second embodiment of the OLED touch display panel of the present invention
  • FIG. 8B is a self-contained time-division multiplexing architecture diagram of the second embodiment of the OLED touch display panel of the present invention Capacitive time division multiplexing circuit diagram.
  • each touch signal wiring is provided with a time division multiplexer The circuit unit 611; the difference from the mutual-capacitive time-division multiplexing architecture diagram of the third embodiment shown in FIG.
  • the OLED touch display panel is self-capacitive, and the touch display In the display area 62 of the panel, the voltage signal traces of the source and drain layers (one of the power supply voltage signal traces or the reset voltage signal traces) are multiplexed as the touch signal traces of the touch electrodes, That is, only one voltage signal trace is used to transmit the touch signal TP (as shown by the number 621 in the figure, one of the power voltage signal VDD or the reset voltage signal Vi is integrated with the touch signal TPi).
  • the difference from the mutual-capacitive time-division multiplexing circuit diagram of the third embodiment shown in FIG. 7B is that in this embodiment, the source of the third thin film transistor T3 receives and receives contacts.
  • T-IC control chip
  • its circuit connection mode, working principle and circuit sequence are similar to those of the mutual-capacitive OLED touch display panel shown in FIGS. 7A-7C, and will not be repeated here.
  • FIG. 9A is a diagram of the mutual capacitance time division multiplexing architecture of the fifth embodiment of the OLED touch display panel of the present invention
  • FIG. 9B is the mutual capacitance of the fifth embodiment of the OLED touch display panel of the present invention
  • 9C is a timing diagram of mutual capacitance time division multiplexing driving of the fifth embodiment of the OLED touch display panel of the present invention
  • FIG. 9D is the mutual capacitance of the sixth embodiment of the OLED touch display panel of the present invention Architecture diagram of time-sharing multiplexing.
  • each voltage signal wiring input terminal is provided with a time-division multiplexing circuit unit 511;
  • the power supply voltage signal traces in the voltage signal traces of the source and drain layers are multiplexed into the touch sensing signal traces of the touch electrodes (the traces are integrated as shown by the number 521 in the figure).
  • the power supply voltage signal VDD and the touch sensing signal RXi), the reset voltage signal traces in the voltage signal traces of the source and drain layers are multiplexed as the touch driving signal TX traces of the touch electrodes (as shown by the number 522 in the figure)
  • the trace integrates the reset voltage signal Vi and the touch drive signal TXi).
  • the display driver chip (D-IC) When the touch display panel is in the display working period, the display driver chip (D-IC) inputs the power supply voltage signal VDD and the reset voltage signal Vi to the touch control through all the time division multiplexing circuit units 511, respectively.
  • the display panel provides a power supply voltage signal VDD or a reset voltage signal Vi to the corresponding pixel circuit of the touch display panel.
  • the display driver chip (D-IC) provides the reset voltage signal Vi to the pixel circuits of the same row of the touch display panel through the time division multiplexing circuit unit 511, and provides the reset voltage signal Vi through the time division multiplexing circuit unit 511.
  • the pixel circuits of the same column of the touch display panel provide the power supply voltage signal VDD.
  • the touch chip (T-IC) When the touch display panel is in the touch working period, the touch chip (T-IC) inputs a touch drive signal TXi to the touch display panel through all the time division multiplexing circuit units 511, respectively, And receiving touch sensing signals RXi generated by corresponding touch electrodes of the touch display panel.
  • the touch control chip (T-IC) provides the touch drive signal TXi to the same row of touch electrodes of the touch display panel through the time division multiplexing circuit unit 511, and receives the touch drive signal TXi through the time division multiplexing circuit unit 511.
  • the touch sensing signals RXi generated by the touch electrodes in the same column of the touch display panel.
  • the voltage signal wiring is based on the touch electrode (sensor Pad) is divided in size, and touch driving electrodes in the same row are connected in series, and touch sensing electrodes in the same column are connected in series.
  • the time division multiplexing circuit unit 511 includes a first thin film transistor T1 and a second thin film transistor T2.
  • the gate (Gate) of the first thin film transistor T1 receives the first level signal CK, and the source (Source) receives the touch drive signal TXi output by the touch chip (T-IC) or outputs the touch display
  • the touch sensing signal RXi generated by the corresponding touch electrode of the panel, and its drain (Drain) outputs the power supply voltage signal VDD or the reset voltage signal Vi in the voltage signal when the touch display panel is in the display working period.
  • the drain further outputs the touch drive signal TXi or receives the touch sensing signal RXi when the touch display panel is in the touch operation period (that is, electrically connected to the source and drain layers on the array substrate and the touch electrode).
  • the gate (Gate) of the second thin film transistor T2 receives the second level signal XCK, and the source (Source) receives the power supply voltage signal VDD or the reset voltage signal Vi output by the display driver chip (D-IC), and its The drain is short-circuited to the drain of the first thin film transistor (that is, the two thin film transistors share the drain).
  • the first level signal CK and the second level signal XCK are reciprocal signals, and when the first level signal CK is a high level signal, the second level signal XCK is a low level signal Signal; when the first level signal CK is a low level signal, the second level signal XCK is a high level signal.
  • the first level signal CK and the second level signal XCK are both output by the touch chip.
  • the source of the first thin film transistor T1 outputs the touch sensing signal RXi
  • the second The source of the thin film transistor T2 receives the power supply voltage signal VDD output by the display driver chip (D-IC), and the drains of the two thin film transistors T1 and T2 output when the touch display panel is in the display working period
  • the power supply voltage signal VDD and the drain further receive the touch sensing signal RXi when the touch display panel is in a touch operation period.
  • the source of the first thin film transistor T1 receives the touch drive signal TXi
  • the second thin film transistor T2 receives the reset voltage signal Vi output by the display driver chip (D-IC), and the drains of the two thin film transistors T1 and T2 output the reset voltage when the touch display panel is in the display working period Signal Vi, the drain further outputs the touch driving signal TXi when the touch display panel is in a touch working period.
  • the first thin film transistor T1 and the second thin film transistor T2 are both PMOS thin film transistors. In other embodiments, the first thin film transistor T1 and the second thin film transistor T2 may also All are NMOS thin film transistors.
  • the first level signal CK is a high level signal, and the first thin film transistor T1 is turned off;
  • the two-level signal XCK is a low-level signal, and the second thin film transistor T2 is turned on;
  • the Vi signal of the display driver chip (D-IC) is input into the touch display panel (Panel) to provide a reset signal for the pixel, or the display driver chip
  • the (D-IC) VDD signal is input into the touch display panel to provide power signals for the pixels.
  • the first level signal CK is a low level signal, and the first thin film transistor T1 is turned on;
  • the touch drive signal TXi of the touch chip (T-IC) is input to the AA area of the touch display panel or the touch display panel
  • the touch sensing signal RXi of the corresponding touch electrode is output.
  • the difference from the fifth embodiment shown in FIG. 9A is that in this embodiment, in the display area 52 of the touch display panel, the voltage signal traces in the source and drain layers are The power supply voltage signal traces are multiplexed as the touch drive signal TX traces of the touch electrodes (the traces shown as number 521 in the figure integrate the power supply voltage signal VDD and the touch drive signal TXi), and the voltage of the source and drain layers
  • the reset voltage signal traces in the signal traces are multiplexed as touch sensing signal traces of the touch electrodes (the traces indicated by number 522 in the figure integrate the reset voltage signal Vi and the touch sensing signal RXi).
  • the input signal of the time-division multiplexing circuit unit 511 is adjusted accordingly, and its working principle is similar to that of FIG. 9A, and will not be repeated here.
  • the present invention adds a time-division multiplexing circuit unit to the input end of each touch signal trace outside the display area of the touch display panel, and uses the existing D-IC to input the reset voltage signal Vi (or the power supply voltage signal VDD), and uses The input touch drive signal TXi (or touch sensing signal RXi) of the existing T-IC realizes the routing of the reset voltage signal Vi (or the power supply voltage signal VDD) of the display area shared between the display working period and the touch working period, thereby There is no need to fabricate two metal layers and two insulating layers of the touch electrode (Sensor Pad), so the touch display panel does not need to add layers, and the pixel structure does not need to add redundant wiring.
  • the present invention can not only adopt the D-IC+T-IC discrete solution, but also adopt the TDDI solution to complete the system design.
  • FIG. 10A is a self-capacitive time-division multiplexing architecture diagram of the third embodiment of the OLED touch display panel of the present invention
  • FIG. 10B is a self-contained time-division multiplexing architecture diagram of the third embodiment of the OLED touch display panel of the present invention Capacitive time division multiplexing circuit diagram.
  • each touch signal wiring is provided with a time-division multiplexer Circuit unit 611; the difference from the mutual-capacitive time-division multiplexing architecture diagram of the fifth embodiment shown in FIG.
  • the OLED touch display panel is self-capacitive, and the touch display In the display area 62 of the panel, the voltage signal traces of the source and drain layers (one of the power supply voltage signal traces or the reset voltage signal traces) are multiplexed as the touch signal traces of the touch electrodes, That is, only one voltage signal trace is used to transmit the touch signal TP (as shown by the number 621 in the figure, one of the power voltage signal VDD or the reset voltage signal Vi is integrated with the touch signal TPi).
  • the difference from the mutual-capacitive time-division multiplexing circuit diagram of the fifth embodiment shown in FIG. 9B is that in this embodiment, the source of the first thin film transistor T1 transmits and receives contacts.
  • T-IC control chip
  • the circuit connection mode, working principle and circuit sequence are similar to the mutual-capacitive OLED touch display panel shown in FIGS. 9A-9C, and will not be repeated here.
  • a flowchart of a time-division multiplexing driving method for an OLED touch display panel of the present invention includes: S111: when the touch display panel is in the display working period, the display driving module inputs voltage signals to the touch display panel through all the voltage signal traces in the display area of the touch display panel, respectively The corresponding pixel circuits of the touch display panel provide voltage signals; S112: when the touch display panel is in the touch working period, the voltage signal traces are multiplexed into touch signal traces, and the touch module passes through all the touch signals.
  • the control signal wiring respectively inputs a touch drive signal or a touch drive composite signal to the touch display panel, and receives a touch sensing signal or a touch sensing composite signal generated by a corresponding touch electrode of the touch display panel.
  • the multiplexing of the voltage signal traces of the source and drain layers into the touch signal traces of the touch electrode adopts one of the following methods:
  • the power supply voltage signal (VDD) wiring of the voltage signal wiring is multiplexed as the touch driving signal (TX) wiring of the touch signal wiring, and the voltage signal wiring
  • the reset voltage signal (Vi) trace is multiplexed as the touch sensing signal (RX) trace of the touch signal trace; or, the power supply voltage signal (VDD) trace of the voltage signal trace is multiplexed as The touch sensing signal (RX) trace of the touch signal trace and the reset voltage signal (Vi) trace of the voltage signal trace are multiplexed into the touch drive signal ( TX) wiring;
  • the OLED touch display panel of the present invention is a self-capacitive touch display panel, one of the power supply voltage signal (VDD) wiring or the reset voltage signal (Vi) wiring of the voltage signal wiring
  • VDD power supply voltage signal
  • Vi reset voltage signal
  • the touch display panel includes: a source and drain layer, a pixel definition layer provided in an array substrate, and touch electrodes embedded in the pixel definition layer; in the display area of the touch display panel Inside, the power supply voltage signal wiring in the voltage signal wiring of the source-drain layer is multiplexed as the touch sensing signal wiring of the touch electrode, and the reset in the voltage signal wiring of the source-drain layer
  • the voltage signal wiring is multiplexed as the touch driving signal wiring of the touch electrode; or the power supply voltage signal wiring in the voltage signal wiring of the source and drain layer is multiplexed as the touch control of the touch electrode Driving signal wiring, the reset voltage signal wiring in the voltage signal wiring of the source-drain layer is multiplexed as the touch sensing signal wiring of the touch electrode; the source-drain layer passes the voltage signal
  • the trace is electrically connected with the display driving module, and the touch electrode is electrically connected with the touch module through the touch signal trace.
  • the array substrate may be an array substrate using low-temperature polysilicon technology.
  • the display driving module and the touch control module may be integrated in the same chip, or may be discrete ICs that are independently controlled.
  • a time division multiplexing circuit unit is provided at the input end of each touch signal trace; the method further includes: when the touch display panel is in display operation During the time period, the display drive module separately inputs voltage signals (power supply voltage signal VDD and reset voltage signal Vi) to the touch display panel through all the time division multiplexing circuit units; when the touch display panel is in touch During the control working period, the touch control module separately inputs the touch drive signal TXi or the touch drive composite signal CK-TXi to the touch display panel through all the time-division multiplexing circuit units, and receives the touch control The touch sensing signal RXi or the touch sensing composite signal CK-RXi generated by the corresponding touch electrodes of the display panel.
  • the subject of this application can be manufactured and used in industry and has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Hardware Design (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

本发明揭露一种OLED触控显示面板及其分时复用驱动方法,在阴极图形化基础上,利用现有LTPS 阵列基板的像素定义层制作触控电极,通过在所述触控显示面板的显示区外的每条触控信号走线输入端增加一分时复用电路单元,分时复用现有LTPS 阵列基板的源漏极层的电压信号走线,改善了内嵌式触控显示面板柔性屏弯折过程中的不服帖问题。

Description

一种OLED触控显示面板及其分时复用驱动方法 技术领域
本发明涉及触控显示技术领域,尤其涉及一种OLED触控显示面板及其分时复用驱动方法。
背景技术
近年来OLED(Organic Light-Emitting Diode,有机发光二极管)显示技术的快速发展,推动曲面和柔性显示触控产品迅速进入市场,相关领域技术更新也是日新月异。OLED是指利用有机半导体材料和发光材料在电场驱动下,通过载流子注入和复合导致发光的二极管。
AMOLED(Active-matrix organic light emitting diode,有源矩阵有机发光二极管) 起源于OLED显示技术。AMOLED具有自发光的特性,采用非常薄的有机材料涂层和玻璃基板,当有电流通过时,这些有机材料就会发光。AMOLED面板是自发光,不像TFT-LCD需要背光,因此AMOLED面板视角广、色饱和度高,尤其是其驱动电压低且功耗低,加上反应快、重量轻、厚度薄,构造简单,成本低等,被视为最具前途的产品之一。
随着便携式电子显示设备的发展,触控技术提供了一种新的人机互动界面,其在使用上更直接、更人性化。将触控技术与平面显示技术整合在一起,形成触控显示装置,能够使平面显示装置具有触控功能,可通过手指、触控笔等执行输入,操作更加直观、简便。OLED触控显示面板(Panel)的结构中,常见触控结构是外挂式(Add-on)或覆盖表面式(On-Cell)。
技术问题
但随着AMOLED柔性或折叠屏的需求增加,将触控传感器贴附在AMOLED上,因触控面板(Touch panel)和触控芯片(Touch IC)不能集成进驱动芯片,单独产生成本,造成AMOLED成本增加,更重要的是在弯折过程中可能产生不服帖(peeling)等各种问题。故而需要改进制程,开发低温CVD、PVD制程,在AMOLED上直接镀膜制作覆盖表面式触控显示面板,但由于OLED发光材料对温度敏感(约80℃左右即会失效),因此覆盖表面式触控显示面板的制作难度很大。
参考图1、图2A-2B、图3-4,其中,图1为现有技术中AMOLED触控显示面板结构图,图2A是现有技术中互容式感应垫形状示意图,图2B是现有技术中自容式感应垫形状示意图,图3为现有技术中互容和自容式的驱动时序图,图4为现有技术中电压信号走线的布局结构示意图。图2A中互容式感应垫(sensor pads)以横向为驱动信号(TX)走线211、纵向为感应信号(RX)走线212为例进行示意;图2B中自容式感应垫(sensor pads)221通过触控信号线(traces)222与触控芯片(未示于图中)电性连接;图3中驱动信号(TX1-TXn)电极作为压力变送器(transmitter)、感应信号(RX1)电极作为接收器(receiver);图4中电压信号走线布局(Layout)包括复位电压信号(Vi)走线41和电源电压信号(VDD)走线42的布局,其中,标号43为显示区(Active Area)、标号44为驱动芯片IC。
如图1所示,所述的AMOLED触控显示面板包括:衬底基板10(通过在玻璃基板上沉积阵列电路层以形成衬底基板10,其中阵列电路层包括缓冲层、有源层、栅绝缘层、栅极层、层间绝缘层以及钝化层);依次设于衬底基板10上的平坦层(PLN)11、源漏极层(SD)12、阳极层(Anode)13、像素定义层(PDL)14、空穴注入层(HIL)15、空穴传输层(HTL)16、有机发光层(OLED)17、电子传输层(ETL)18以及阴极(Cathode)19。由于AMOLED触控显示面板最上层阴极19采用通用层掩膜(Common Mask)蒸镀工艺制作,为整面结构,完全屏蔽手指接触屏幕的电场线,使得电场无法达到阴极之下的结构,因而其无法采用在液晶面板内部嵌入触控传感器的内嵌式(In-Cell)的触控结构。
因此,如何在AMOLED触控显示面板阴极图形化基础上,利用低温多晶硅技术(Low Temperature Poly-silicon,简称LTPS),实现采用内嵌式的触控结构,以在节省成本的同时,改善柔性屏弯折过程中的不服帖问题,是触控显示面板技术发展过程中亟待解决的问题。
技术解决方案
本发明的目的在于,提供一种OLED触控显示面板及其分时复用驱动方法,可以实现采用内嵌式的触控结构,在节省成本的同时,改善柔性屏弯折过程中的不服帖问题。
为实现上述目的,本发明提供了一种OLED触控显示面板,包括:设于阵列基板中的源漏极层、像素定义层,嵌入到所述像素定义层中的触控电极;在所述触控显示面板的显示区内,所述源漏极层的电压信号走线复用为所述触控电极的触控信号走线,其中,所述电压信号走线的电源电压信号走线复用为所述触控信号走线的触控驱动信号走线、所述电压信号走线的复位电压信号走线复用为所述触控信号走线的触控感应信号走线,或,所述电压信号走线的电源电压信号走线复用为所述触控信号走线的触控感应信号走线、所述电压信号走线的复位电压信号走线复用为所述触控信号走线的触控驱动信号走线,或,所述电压信号走线的电源电压信号走线或复位电压信号走线的其中之一复用为所述触控信号走线;在所述触控显示面板的显示区外,每条触控信号走线的输入端设有一分时复用电路单元;当所述触控显示面板处于显示工作时段时,显示驱动模块通过所述电压信号走线经由所述分时复用电路单元输入电压信号至所述触控显示面板,给所述触控显示面板的像素电路提供电压信号;当所述触控显示面板处于触控工作时段时,触控模块通过所述触控信号走线经由所述分时复用电路单元输入触控驱动信号或触控驱动合成信号至所述触控显示面板、以及接收所述触控显示面板的触控电极产生的触控感应信号或触控感应合成信号。
为实现上述目的,本发明还提供了一种OLED触控显示面板,包括:设于阵列基板中的源漏极层、像素定义层,嵌入到所述像素定义层中的触控电极;在所述触控显示面板的显示区内,所述源漏极层的电压信号走线复用为所述触控电极的触控信号走线;当所述触控显示面板处于显示工作时段时,显示驱动模块通过所述电压信号走线输入电压信号至所述触控显示面板,给所述触控显示面板的像素电路提供电压信号;当所述触控显示面板处于触控工作时段时,触控模块通过所述触控信号走线输入触控驱动信号或触控驱动合成信号至所述触控显示面板、以及接收所述触控显示面板的触控电极产生的触控感应信号或触控感应合成信号。
为实现上述目的,本发明还提供了一种OLED触控显示面板的分时复用驱动方法,所述方法包括:当所述触控显示面板处于显示工作时段时,显示驱动模块通过所述触控显示面板显示区的电压信号走线输入电压信号至所述触控显示面板,给所述触控显示面板的相应像素电路提供电压信号;当所述触控显示面板处于触控工作时段时,所述电压信号走线复用为触控信号走线,触控模块通过所述触控信号走线输入触控驱动信号或触控驱动合成信号至所述触控显示面板,以及接收所述触控显示面板的相应触控电极产生的触控感应信号或触控感应合成信号。
有益效果
本发明OLED触控显示面板在阴极图形化基础上,利用现有LTPS 阵列基板的像素定义层制作触控电极,通过在所述触控显示面板的显示区外的每条触控信号走线输入端增加一分时复用电路单元,分时复用现有LTPS 阵列基板的源漏极层的电压信号走线,即可为基于OLED 触控显示面板的内嵌式触控显示面板的互容式/自容式结构设计提供具体的信号接口实现电路,实现内嵌式触控显示面板的触控信号TX/RX与电压信号Vi/VDD的分时输入输出;无需增加图层,且像素结构不需要增加多余的走线,节省像素空间以及节省成本的同时,进一步实现了内嵌式触控显示面板改善柔性屏弯折过程中的不服帖问题。本发明适用于触控与显示驱动器集成芯片,也可以通过现有的触控芯片和显示驱动芯片独立控制的分立式IC组合实现。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1,现有技术中AMOLED触控显示面板结构图;
图2A,现有技术中互容式感应垫形状示意图;
图2B,现有技术中自容式感应垫形状示意图;
图3,现有技术中互容和自容式的驱动时序图;
图4,现有技术中电压信号走线的布局结构示意图;
图5A,本发明OLED触控显示面板第一实施例的互容式分时复用架构图;
图5B,本发明OLED触控显示面板第一实施例的互容式分时复用电路图;
图5C,本发明OLED触控显示面板第一实施例的分时复用驱动时序图;
图5D,本发明OLED触控显示面板第二实施例的互容式分时复用架构图;
图6A,本发明OLED触控显示面板第一实施例的自容式分时复用架构图;
图6B,本发明OLED触控显示面板第一实施例的自容式分时复用电路图;
图7A,本发明OLED触控显示面板第三实施例的互容式分时复用架构图;
图7B,本发明OLED触控显示面板第三实施例的互容式分时复用电路图;
图7C,本发明OLED触控显示面板第三实施例的分时复用驱动时序图;
图7D,本发明OLED触控显示面板第四实施例的互容式分时复用架构图;
图8A,本发明OLED触控显示面板第二实施例的自容式分时复用架构图;
图8B,本发明OLED触控显示面板第二实施例的自容式分时复用电路图;
图9A,本发明OLED触控显示面板第五实施例的互容式分时复用架构图;
图9B,本发明OLED触控显示面板第五实施例的互容式分时复用电路图;
图9C,本发明OLED触控显示面板第五实施例的分时复用驱动时序图;
图9D,本发明OLED触控显示面板第六实施例的互容式分时复用架构图;
图10A,本发明OLED触控显示面板第三实施例的自容式分时复用架构图;
图10B,本发明OLED触控显示面板第三实施例的自容式分时复用电路图;
图11,本发明OLED触控显示面板分时复用驱动方法流程图。
本发明的实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
本发明OLED触控显示面板,包括:设于阵列基板中的源漏极层、像素定义层,嵌入到所述像素定义层中的触控电极;在所述触控显示面板的显示区内,所述源漏极层的电压信号走线复用为所述触控电极的触控信号走线;当所述触控显示面板处于显示工作时段时,显示驱动模块通过所述电压信号走线输入电压信号至所述触控显示面板,给所述触控显示面板的像素电路提供电压信号(电源电压信号VDD和/或复位电压信号Vi);当所述触控显示面板处于触控工作时段时,触控模块通过所述触控信号走线输入触控驱动信号TX或触控驱动合成信号CK-TX至所述触控显示面板、以及接收所述触控显示面板的触控电极产生的触控感应信号RX或触控感应合成信号CK-RX。所述源漏极层通过所述电压信号走线与显示驱动模块电性连接,所述触控电极通过所述触控信号走线与触控模块电性连接。
所述源漏极层的电压信号走线复用为所述触控电极的触控信号走线的走线复用方式采用以下方式的其中之一:当本发明OLED触控显示面板为互容式触控显示面板时,所述电压信号走线的电源电压信号(VDD)走线复用为所述触控信号走线的触控驱动信号(TX)走线,以及所述电压信号走线的复位电压信号(Vi)走线复用为所述触控信号走线的触控感应信号(RX)走线;或,所述电压信号走线的电源电压信号(VDD)走线复用为所述触控信号走线的触控感应信号(RX)走线,以及所述电压信号走线的复位电压信号(Vi)走线复用为所述触控信号走线的触控驱动信号(TX)走线;当本发明OLED触控显示面板为自容式触控显示面板时,所述电压信号走线的电源电压信号(VDD)走线或复位电压信号(Vi)走线的其中之一复用为所述触控信号(TP)走线。
当所述触控显示面板为互容式触控显示面板时,在所述触控显示面板的显示区内,所述电压信号走线根据所述触控电极的大小分割开,且所述触控电极中同一行的触控驱动电极串联,所述触控电极中同一列的触控感应电极串联。
优选的,在所述触控显示面板的显示区外,每条触控信号走线的输入端设有一分时复用电路单元;当所述触控显示面板处于显示工作时段时,所述显示驱动模块通过所有所述分时复用电路单元分别输入电压信号至所述触控显示面板;当所述触控显示面板处于触控工作时段时,所述触控模块通过所有所述分时复用电路单元分别输入触控驱动信号或触控驱动合成信号至所述触控显示面板、以及接收所述触控显示面板的相应触控电极产生的触控感应信号或触控感应合成信号。
所述阵列基板可以为利用低温多晶硅技术的阵列基板,具体的触控显示面板结构图可参考图1所示。
所述显示驱动模块与所述触控模块可以集成在同一芯片内(例如TDDI芯片),也可以为独立控制的分立式IC(例如采用现有的触控芯片和显示驱动芯片独立控制的分立式IC)。
本发明OLED触控显示面板在阴极(Cathode)图形化基础上,利用现有LTPS 阵列基板的像素定义层(PDL),制作触控电极(TX Sensor Pad、RX Sensor Pad);通过在所述触控显示面板的显示区外的每条电压信号走线输入端增加一分时复用电路单元,分时复用现有LTPS 阵列基板的源漏极层(SD)的电压信号走线(即利用现有的控制信号作为输入),在显示工作时段给触控显示面板输入来自显示驱动芯片(Driver-IC,简称D-IC)的相应电压信号:电源电压信号VDD和复位电压信号Vi;在触控工作时段电压信号走线复用为触控信号走线,利用触控信号走线给触控显示面板的触控电极输入来自触控芯片(Touch-IC,简称T-IC)的触控驱动信号TX和接收所述触控显示面板的相应触控电极产生的触控感应信号RX,以检测触控电极的自电容/互电容是否发生变化。本发明OLED触控显示面板通过分时复用电路单元,即可为基于OLED 触控显示面板的内嵌式触控显示面板的互容式/自容式结构设计提供具体的信号接口实现电路,实现互容式内嵌式触控显示面板的触控信号TX/RX与电压信号Vi/VDD的分时输入输出,或自容式内嵌式触控显示面板的触控信号TP与电压信号Vi或VDD的分时输入输出;无需增加图层,且像素结构不需要增加多余的走线,节省像素空间以及节省成本的同时,进一步实现了内嵌式触控显示面板改善柔性屏弯折过程中的不服帖问题。本发明适用于把触控芯片与显示驱动芯片整合进单一芯片中的触控与显示驱动器集成(Touch and Display Driver Integration,简称TDDI )芯片,也可以通过现有的触控芯片(T-IC)和显示驱动芯片(D-IC)独立控制的分立式IC组合实现,从而无需再开发新型高成本TDDI芯片。
参考图5A-5D,其中,图5A为本发明OLED触控显示面板第一实施例的互容式分时复用架构图,图5B为本发明OLED触控显示面板第一实施例的互容式分时复用电路图,图5C为本发明OLED触控显示面板第一实施例的互容式分时复用驱动时序图,图5D为本发明OLED触控显示面板第二实施例的互容式分时复用架构图。
如图5A所示,在本实施例中,在所述触控显示面板的显示区外(如图中标号51所示区域),每条触控信号走线的输入端设有一分时复用电路单元511;在所述触控显示面板的显示区52内,源漏极层的电压信号走线中的电源电压信号走线复用为触控电极的触控感应信号走线(如图中标号521所示走线上集成电源电压信号VDD和触控感应信号RXi),源漏极层的电压信号走线中的复位电压信号走线复用为触控电极的触控驱动信号TX走线(如图中标号522所示走线上集成复位电压信号Vi和触控驱动信号TXi)。
当所述触控显示面板处于显示工作时段时,所述显示驱动芯片(D-IC)通过所有所述分时复用电路单元511分别输入电源电压信号VDD以及复位电压信号Vi至所述触控显示面板,给所述触控显示面板的相应像素电路提供电源电压信号VDD或复位电压信号Vi。具体的,所述显示驱动芯片(D-IC)通过分时复用电路单元511给所述触控显示面板的同一行像素电路提供复位电压信号Vi,通过分时复用电路单元511给所述触控显示面板的同一列像素电路提供电源电压信号VDD。当所述触控显示面板处于触控工作时段时,所述触控芯片(T-IC)通过所有所述分时复用电路单元511分别输入触控驱动合成信号CK-TXi至所述触控显示面板,以及接收所述触控显示面板的相应触控电极产生的触控感应合成信号CK-RXi。具体的,所述触控芯片(T-IC)通过分时复用电路单元511给所述触控显示面板的同一行触控电极提供触控驱动合成信号CK-TXi,通过分时复用电路单元511接收所述触控显示面板的同一列触控电极产生的触控感应合成信号CK-RXi。
具体的,在所述触控显示面板的显示区52内,所述电压信号走线根据所述触控电极(sensor Pad)的大小分割开,且同一行的触控驱动电极串联,同一列的触控感应电极串联。
如图5B所示,所述分时复用电路单元511包括第一薄膜晶体管T1和第二薄膜晶体管T2。所述第一薄膜晶体管T1的栅极(Gate)接收第一电平信号CK与触控驱动信号Txi合成的触控驱动合成信号CK-TXi、或输出第一电平信号CK与触控感应信号RXi合成的触控感应合成信号CK-RXi(即触控芯片(T-IC)输出的触控驱动信号TXi以及所述触控显示面板相应触控电极产生的触控感应信号RXi均与第一电平信号CK进行合成),其源极(Source)接收显示驱动芯片(D-IC)输出的电源电压信号VDD或复位电压信号Vi,而其漏极(Drain)在所述触控显示面板处于显示工作时段时输出所述电源电压信号VDD或所述复位电压信号Vi,其漏极(Drain)进一步在所述触控显示面板处于触控工作时段时输出所述触控驱动合成信号CK-TXi或接收所述触控感应合成信号CK-RXi(即其漏极分别电性连接阵列基板上的源漏极层和触控电极)。所述第二薄膜晶体管T2的栅极(Gate)接收第二电平信号XCK,其源极(Source)短接至所述第一薄膜晶体管T1的栅极,而其漏极(Drain)短接至所述第一薄膜晶体管T1的漏极(即两薄膜晶体管共漏极)。其中,所述第一电平信号CK与所述第二电平信号XCK为互反信号,当第一电平信号CK为高电平信号时、所述第二电平信号XCK为低电平信号;当第一电平信号CK为低电平信号时、所述第二电平信号XCK为高电平信号。所述第一电平信号CK与所述第二电平信号XCK均由触控芯片输出。
具体的,当所述分时复用电路单元511接在触控感应信号走线的输入端时,所述第一薄膜晶体管T1的栅极(Gate)输出第一电平信号CK与触控感应信号RXi合成的触控感应合成信号CK-RXi,其源极(Source)接收显示驱动芯片(D-IC)输出的电源电压信号VDD,而其漏极(Drain)在所述触控显示面板处于显示工作时段时输出所述电源电压信号VDD,其漏极(Drain)进一步在所述触控显示面板处于触控工作时段时接收所述触控感应合成信号CK-RXi。当所述分时复用电路单元511接在触控信号走线的输入端时,所述第一薄膜晶体管T1的栅极(Gate)接收第一电平信号CK与触控驱动信号TXi合成的触控驱动合成信号CK-TXi,其源极(Source)接收显示驱动芯片(D-IC)输出的复位电压信号Vi,而其漏极(Drain)在所述触控显示面板处于显示工作时段时输出所述复位电压信号Vi,其漏极(Drain)进一步在所述触控显示面板处于触控工作时段时输出所述触控驱动合成信号CK-TXi。
本实施例中,所述第一薄膜晶体管T1和所述第二薄膜晶体管T2均为PMOS型薄膜晶体管,在其它实施例中,所述第一薄膜晶体管T1和所述第二薄膜晶体管T2也可以均为NMOS型薄膜晶体管。
如图5C所示,在所述触控显示面板的显示工作时段(如图示中A表示的阶段)时:触控驱动合成信号CK-TXi(图中示意出CK-TX1、CK-TX2、CK-TX3)或触控感应合成信号CK-RXi为低电平信号,第一薄膜晶体管T1导通;第二电平信号XCK为高电平信号,第二薄膜晶体管T2断开;显示驱动芯片(D-IC)的Vi信号输入到触控显示面板(Panel)内部给像素提供复位信号,或者显示驱动芯片(D-IC)的VDD信号输入到触控显示面板内部给像素提供电源信号。在所述触控显示面板的触控工作时段(如图示中T表示的阶段)时:触控驱动合成信号CK-TXi或触控感应合成信号CK-RXi为高电平信号,第一薄膜晶体管T1断开,电压信号Vi/VDD无法输入面板;第二电平信号XCK为低电平信号,第二薄膜晶体管T2导通;触控芯片(T-IC)的触控驱动合成信号CK-TXi输入触控显示面板的AA区或触控显示面板的相应触控电极的触控感应合成信号CK-RXi输出;其中在触控工作时段,触控驱动合成信号CK-TXi对应的时序是高频时序扫描高位信号,触控感应合成信号CK-RXi对应的时序是高频交流高位信号。
如图5D所示,与图5A所示第一实施例的不同之处在于,在本实施例中,在所述触控显示面板的显示区52内,源漏极层的电压信号走线中的电源电压信号走线复用为触控电极的触控驱动信号TX走线(如图中标号521所示走线上集成电源电压信号VDD和触控驱动信号TXi),源漏极层的电压信号走线中的复位电压信号走线复用为触控电极的触控感应信号走线(如图中标号522所示走线上集成复位电压信号Vi和触控感应信号RXi)。相应的,所述分时复用电路单元511的输入信号也做相应调整,其工作原理与图5A相似,此处不再赘述。
本发明在触控显示面板显示区外的每条触控信号走线的输入端增加一分时复用电路单元,利用现有的D-IC输入复位电压信号Vi(或者电源电压信号VDD),利用现有的T-IC的输入触控驱动信号TXi(或者触控感应信号RXi),实现显示工作时段和触控工作时段共用显示区的复位电压信号Vi(或者电源电压信号VDD)走线,从而无需制作触控电极(Sensor Pad)的两层金属层和两层绝缘层,因而触控显示面板无需增加图层,且像素结构不需要增加多余的走线。本发明既可以采用D-IC+T-IC分立式解决方案,也可以采用TDDI解决方案完成系统设计。
参考图6A-图6B,其中,图6A为本发明OLED触控显示面板第一实施例的自容式分时复用架构图,图6B为本发明OLED触控显示面板第一实施例的自容式分时复用电路图。
如图6A所示,在本实施例中,在所述触控显示面板的显示区外(如图中标号61所示区域),每条触控信号走线的输入端设有一分时复用电路单元611;与图5A所示第一实施例的互容式分时复用架构图不同之处在于,在本实施例中,OLED触控显示面板为自容式,在所述触控显示面板的显示区62内,所述源漏极层的电压信号走线(电源电压信号走线或复位电压信号走线的其中之一)复用为所述触控电极的触控信号走线,也即仅用一条电压信号走线传输触控信号TP(如图中标号621所示走线上电源电压信号VDD或复位电压信号Vi的其中之一与触控信号TPi集成)。
如图6B所示,与图5B所示第一实施例的互容式分时复用电路图不同之处在于,在本实施例中,所述第一薄膜晶体管T1的栅极(Gate)收发第一电平信号与触控信号合成的触控合成信号CK-TPi(即触控芯片(T-IC)输出的触控信号TPi与第一电平信号CK进行合成)。在本实施例自容式OLED触控显示面板,其电路连接方式、工作原理以及电路时序与图5A-5C所示的互容式OLED触控显示面板相似,此处不再赘述。
参考图7A-7D,其中,图7A为本发明OLED触控显示面板第三实施例的互容式分时复用架构图,图7B为本发明OLED触控显示面板第三实施例的互容式分时复用电路图,图7C为本发明OLED触控显示面板第三实施例的分时复用驱动时序图,图7D为本发明OLED触控显示面板第四实施例的互容式分时复用架构图。
如图7A所示,与图5A所示第一实施例的互容式分时复用架构图不同之处在于,在本实施例中,第一电平信号CK与触控驱动信号TXi在输入分时复用电路单元511前为分开的两个信号,经分时复用电路单元511将第一电平信号CK与触控驱动信号TXi合成起来,因此输入面板的是触控驱动合成信号CK-Txi;同样的,第一电平信号CK与触控感应信号RXi在输入分时复用电路单元511前为分开的两个信号,经分时复用电路单元511将第一电平信号CK与触控感应信号RXi合成起来,因此从所述触控显示面板获取的,相应触控电极产生的是触控感应合成信号CK-RXi。
如图7B所示,所述分时复用电路单元511包括第一薄膜晶体管T1、第二薄膜晶体管T2和第三薄膜晶体管T3。所述第一薄膜晶体管T1的栅极(Gate)接收第一电平信号CK,其源极(Source)接收显示驱动芯片(D-IC)输出的电源电压信号VDD或复位电压信号Vi,而其漏极(Drain)在所述触控显示面板处于显示工作时段时输出所述电源电压信号VDD或所述复位电压信号Vi,其漏极(Drain)进一步在所述触控显示面板处于触控工作时段时输出所述触控驱动合成信号CK-TXi或接收所述触控感应合成信号CK-RXi(即其漏极分别电性连接阵列基板上的源漏极层和触控电极)。所述第二薄膜晶体管T2的栅极(Gate)接收第二电平信号XCK,其源极(Source)短接至所述第一薄膜晶体管T1的栅极,而其漏极(Drain)短接至所述第一薄膜晶体管T1的漏极。所述第三薄膜晶体管T1的栅极(Gate)短接至所述第二薄膜晶体管T2的栅极(接收第二电平信号XCK),其源极(Source)接收触控驱动信号TXi或输出触控感应信号RXi,而其漏极(Drain)短接至所述第一薄膜晶体管T1的栅极。其中,所述第一电平信号CK与所述第二电平信号XCK为互反信号,当第一电平信号CK为高电平信号时、所述第二电平信号XCK为低电平信号;当第一电平信号CK为低电平信号时、所述第二电平信号XCK为高电平信号。所述第一电平信号CK与所述第二电平信号XCK均由触控芯片输出。
具体的,当所述分时复用电路单元511接在触控感应信号走线的输入端时,所述第一薄膜晶体管T1的源极(Source)接收显示驱动芯片(D-IC)输出的电源电压信号VDD,而其漏极(Drain)在所述触控显示面板处于显示工作时段时输出所述电源电压信号VDD,其漏极(Drain)进一步在所述触控显示面板处于触控工作时段时接收所述触控感应合成信号CK-RXi;所述第三薄膜晶体管T3的源极(Source)输出触控感应信号RXi。当所述分时复用电路单元511接在触控信号走线的输入端时,所述第一薄膜晶体管T1的源极(Source)接收显示驱动芯片(D-IC)输出的复位电压信号Vi,而其漏极(Drain)在所述触控显示面板处于显示工作时段时输出所述复位电压信号Vi,其漏极(Drain)进一步在所述触控显示面板处于触控工作时段时输出所述触控驱动合成信号CK-TXi;所述第三薄膜晶体管T3的源极(Source)接收触控驱动信号TXi。
本实施例中,所述第一薄膜晶体管T1和所述第二薄膜晶体管T2均为PMOS型薄膜晶体管,在其它实施例中,所述第一薄膜晶体管T1和所述第二薄膜晶体管T2也可以均为NMOS型薄膜晶体管。
如图7C所示,在所述触控显示面板的显示工作时段(如图示中A表示的阶段)时:第一电平信号CK为低电平信号,第一薄膜晶体管T1导通;第二电平信号XCK为高电平信号,第二薄膜晶体管T2、第三薄膜晶体管T3断开;显示驱动芯片(D-IC)的Vi信号输入到触控显示面板(Panel)内部给像素提供复位信号,或者显示驱动芯片(D-IC)的VDD信号输入到触控显示面板内部给像素提供电源信号。在所述触控显示面板的触控工作时段(如图示中T表示的阶段)时:第一电平信号CK为高电平信号,第一薄膜晶体管T1断开,电压信号Vi/VDD无法输入面板;第二电平信号XCK为低电平信号,第二薄膜晶体管T2、第三薄膜晶体管T3导通;触控芯片(T-IC)的触控驱动信号TXi与第一电平信号CK合成为触控驱动合成信号CK-TXi输入触控显示面板的AA区或触控显示面板的相应触控电极的触控感应信号RXi与第一电平信号CK合成为触控感应合成信号CK-RXi输出;其中在触控工作时段,触控驱动合成信号CK-TXi对应的时序是高频时序扫描高位信号,触控感应合成信号CK-RXi对应的时序是高频交流高位信号。
如图7D所示,与图7A所示第三实施例的不同之处在于,在本实施例中,在所述触控显示面板的显示区52内,源漏极层的电压信号走线中的电源电压信号走线复用为触控电极的触控驱动信号TX走线(如图中标号521所示走线上集成电源电压信号VDD和触控驱动信号TXi),源漏极层的电压信号走线中的复位电压信号走线复用为触控电极的触控感应信号走线(如图中标号522所示走线上集成复位电压信号Vi和触控感应信号RXi)。相应的,所述分时复用电路单元511的输入信号也做相应调整,其工作原理与图7A相似,此处不再赘述。
本发明在触控显示面板显示区外的每条触控信号走线的输入端增加一分时复用电路单元,利用现有的D-IC输入复位电压信号Vi(或者电源电压信号VDD),利用现有的T-IC的输入触控驱动信号TXi(或者触控感应信号RXi),实现显示工作时段和触控工作时段共用显示区的复位电压信号Vi(或者电源电压信号VDD)走线,从而无需制作触控电极(Sensor Pad)的两层金属层和两层绝缘层,因而触控显示面板无需增加图层,且像素结构不需要增加多余的走线。本发明既可以采用D-IC+T-IC分立式解决方案,也可以采用TDDI解决方案完成系统设计。
参考图8A-图8B,其中,图8A为本发明OLED触控显示面板第二实施例的自容式分时复用架构图,图8B为本发明OLED触控显示面板第二实施例的自容式分时复用电路图。
如图8A所示,在本实施例中,在所述触控显示面板的显示区外(如图中标号61所示区域),每条触控信号走线的输入端设有一分时复用电路单元611;与图7A所示第三实施例的互容式分时复用架构图不同之处在于,在本实施例中,OLED触控显示面板为自容式,在所述触控显示面板的显示区62内,所述源漏极层的电压信号走线(电源电压信号走线或复位电压信号走线的其中之一)复用为所述触控电极的触控信号走线,也即仅用一条电压信号走线传输触控信号TP(如图中标号621所示走线上电源电压信号VDD或复位电压信号Vi的其中之一与触控信号TPi集成)。
如图8B所示,与图7B所示第三实施例的互容式分时复用电路图不同之处在于,在本实施例中,所述第三薄膜晶体管T3的源极(Source)收发触控芯片(T-IC)输出的触控信号TPi。在本实施例自容式OLED触控显示面板,其电路连接方式、工作原理以及电路时序与图7A-7C所示的互容式OLED触控显示面板相似,此处不再赘述。
参考图9A-9D,其中,图9A为本发明OLED触控显示面板第五实施例的互容式分时复用架构图,图9B为本发明OLED触控显示面板第五实施例的互容式分时复用电路图,图9C为本发明OLED触控显示面板第五实施例的互容式分时复用驱动时序图,图9D为本发明OLED触控显示面板第六实施例的互容式分时复用架构图。
如图9A所示,在所述触控显示面板的显示区外(如图中标号51所示区域),每条电压信号走线输入端设有一分时复用电路单元511;在所述触控显示面板的显示区52内,源漏极层的电压信号走线中的电源电压信号走线复用为触控电极的触控感应信号走线(如图中标号521所示走线上集成电源电压信号VDD和触控感应信号RXi),源漏极层的电压信号走线中的复位电压信号走线复用为触控电极的触控驱动信号TX走线(如图中标号522所示走线上集成复位电压信号Vi和触控驱动信号TXi)。
当所述触控显示面板处于显示工作时段时,所述显示驱动芯片(D-IC)通过所有所述分时复用电路单元511分别输入电源电压信号VDD以及复位电压信号Vi至所述触控显示面板,给所述触控显示面板的相应像素电路提供电源电压信号VDD或复位电压信号Vi。具体的,所述显示驱动芯片(D-IC)通过分时复用电路单元511给所述触控显示面板的同一行像素电路提供复位电压信号Vi,通过分时复用电路单元511给所述触控显示面板的同一列像素电路提供电源电压信号VDD。当所述触控显示面板处于触控工作时段时,所述触控芯片(T-IC)通过所有所述分时复用电路单元511分别输入触控驱动信号TXi至所述触控显示面板,以及接收所述触控显示面板的相应触控电极产生的触控感应信号RXi。具体的,所述触控芯片(T-IC)通过分时复用电路单元511给所述触控显示面板的同一行触控电极提供触控驱动信号TXi,通过分时复用电路单元511接收所述触控显示面板的同一列触控电极产生的触控感应信号RXi。
具体的,在所述触控显示面板的显示区52内,所述电压信号走线根据所述触控电极(sensor Pad)的大小分割开,且同一行的触控驱动电极串联,同一列的触控感应电极串联。
如图9B所示,所述分时复用电路单元511包括第一薄膜晶体管T1和第二薄膜晶体管T2。所述第一薄膜晶体管T1的栅极(Gate)接收第一电平信号CK,其源极(Source)接收触控芯片(T-IC)输出的触控驱动信号TXi或输出所述触控显示面板相应触控电极产生的触控感应信号RXi,而其漏极(Drain)在所述触控显示面板处于显示工作时段时输出所述电压信号中的电源电压信号VDD或复位电压信号Vi,其漏极进一步在所述触控显示面板处于触控工作时段时输出所述触控驱动信号TXi或接收所述触控感应信号RXi(即分别电性连接阵列基板上的源漏极层和触控电极)。所述第二薄膜晶体管T2的栅极(Gate)接收第二电平信号XCK,其源极(Source)接收显示驱动芯片(D-IC)输出的电源电压信号VDD或复位电压信号Vi,而其漏极(Drain)短接至所述第一薄膜晶体管的漏极(即两薄膜晶体管共漏极)。其中,所述第一电平信号CK与所述第二电平信号XCK为互反信号,当第一电平信号CK为高电平信号时、所述第二电平信号XCK为低电平信号;当第一电平信号CK为低电平信号时、所述第二电平信号XCK为高电平信号。所述第一电平信号CK与所述第二电平信号XCK均由触控芯片输出。
具体的,当所述分时复用电路单元511接在触控感应信号走线的输入端时,所述第一薄膜晶体管T1的源极(Source)输出触控感应信号RXi,所述第二薄膜晶体管T2的源极(Source)接收显示驱动芯片(D-IC)输出的电源电压信号VDD,两薄膜晶体管T1、T2的漏极(Drain)在所述触控显示面板处于显示工作时段时输出所述电源电压信号VDD,该漏极(Drain)进一步在所述触控显示面板处于触控工作时段时接收所述触控感应信号RXi。当所述分时复用电路单元511接在触控信号走线的输入端时,所述第一薄膜晶体管T1的源极(Source)接收触控驱动信号TXi,所述第二薄膜晶体管T2的源极(Source)接收显示驱动芯片(D-IC)输出的复位电压信号Vi,两薄膜晶体管T1、T2的漏极(Drain)在所述触控显示面板处于显示工作时段时输出所述复位电压信号Vi,该漏极(Drain)进一步在所述触控显示面板处于触控工作时段时输出所述触控驱动信号TXi。
本实施例中,所述第一薄膜晶体管T1和所述第二薄膜晶体管T2均为PMOS型薄膜晶体管,在其它实施例中,所述第一薄膜晶体管T1和所述第二薄膜晶体管T2也可以均为NMOS型薄膜晶体管。
如图9C所示,在所述触控显示面板的显示工作时段(如图示中A表示的阶段)时:第一电平信号CK为高电平信号,第一薄膜晶体管T1断开;第二电平信号XCK为低电平信号,第二薄膜晶体管T2导通;显示驱动芯片(D-IC)的Vi信号输入到触控显示面板(Panel)内部给像素提供复位信号,或者显示驱动芯片(D-IC)的VDD信号输入到触控显示面板内部给像素提供电源信号。在所述触控显示面板的触控工作时段(如图示中T表示的阶段)时:第一电平信号CK为低电平信号,第一薄膜晶体管T1导通;第二电平信号XCK为高电平信号,第二薄膜晶体管T2断开,电压信号Vi/VDD无法输入面板;触控芯片(T-IC)的触控驱动信号TXi输入触控显示面板的AA区或触控显示面板的相应触控电极的触控感应信号RXi输出。
如图9D所示,与图9A所示第五实施例的不同之处在于,在本实施例中,在所述触控显示面板的显示区52内,源漏极层的电压信号走线中的电源电压信号走线复用为触控电极的触控驱动信号TX走线(如图中标号521所示走线上集成电源电压信号VDD和触控驱动信号TXi),源漏极层的电压信号走线中的复位电压信号走线复用为触控电极的触控感应信号走线(如图中标号522所示走线上集成复位电压信号Vi和触控感应信号RXi)。相应的,所述分时复用电路单元511的输入信号也做相应调整,其工作原理与图9A相似,此处不再赘述。
本发明在触控显示面板显示区外的每条触控信号走线输入端增加一分时复用电路单元,利用现有的D-IC输入复位电压信号Vi(或者电源电压信号VDD),利用现有的T-IC的输入触控驱动信号TXi(或者触控感应信号RXi),实现显示工作时段和触控工作时段共用显示区的复位电压信号Vi(或者电源电压信号VDD)走线,从而无需制作触控电极(Sensor Pad)的两层金属层和两层绝缘层,因而触控显示面板无需增加图层,且像素结构不需要增加多余的走线。本发明既可以采用D-IC+T-IC分立式解决方案,也可以采用TDDI解决方案完成系统设计。
参考图10A-图10B,其中,图10A为本发明OLED触控显示面板第三实施例的自容式分时复用架构图,图10B为本发明OLED触控显示面板第三实施例的自容式分时复用电路图。
如图10A所示,在本实施例中,在所述触控显示面板的显示区外(如图中标号61所示区域),每条触控信号走线的输入端设有一分时复用电路单元611;与图9A所示第五实施例的互容式分时复用架构图不同之处在于,在本实施例中,OLED触控显示面板为自容式,在所述触控显示面板的显示区62内,所述源漏极层的电压信号走线(电源电压信号走线或复位电压信号走线的其中之一)复用为所述触控电极的触控信号走线,也即仅用一条电压信号走线传输触控信号TP(如图中标号621所示走线上电源电压信号VDD或复位电压信号Vi的其中之一与触控信号TPi集成)。
如图10B所示,与图9B所示第五实施例的互容式分时复用电路图不同之处在于,在本实施例中,所述第一薄膜晶体管T1的源极(Source)收发触控芯片(T-IC)输出的触控信号TPi。在本实施例自容式OLED触控显示面板,其电路连接方式、工作原理以及电路时序与图9A-9C所示的互容式OLED触控显示面板相似,此处不再赘述。
参考图11,本发明OLED触控显示面板分时复用驱动方法流程图。所述方法包括:S111:当触控显示面板处于显示工作时段时,显示驱动模块通过所述触控显示面板显示区的所有电压信号走线分别输入电压信号至所述触控显示面板,给所述触控显示面板的相应像素电路提供电压信号;S112:当触控显示面板处于触控工作时段时,所述电压信号走线复用为触控信号走线,触控模块通过所有所述触控信号走线分别输入触控驱动信号或触控驱动合成信号至所述触控显示面板,以及接收所述触控显示面板的相应触控电极产生的触控感应信号或触控感应合成信号。
所述源漏极层的电压信号走线复用为所述触控电极的触控信号走线的走线复用方式采用以下方式的其中之一:当本发明OLED触控显示面板为互容式触控显示面板时,所述电压信号走线的电源电压信号(VDD)走线复用为所述触控信号走线的触控驱动信号(TX)走线,以及所述电压信号走线的复位电压信号(Vi)走线复用为所述触控信号走线的触控感应信号(RX)走线;或,所述电压信号走线的电源电压信号(VDD)走线复用为所述触控信号走线的触控感应信号(RX)走线,以及所述电压信号走线的复位电压信号(Vi)走线复用为所述触控信号走线的触控驱动信号(TX)走线;当本发明OLED触控显示面板为自容式触控显示面板时,所述电压信号走线的电源电压信号(VDD)走线或复位电压信号(Vi)走线的其中之一复用为所述触控信号(TP)走线。
具体的,所述触控显示面板,包括:设于阵列基板中的源漏极层、像素定义层,嵌入到所述像素定义层中的触控电极;在所述触控显示面板的显示区内,所述源漏极层的电压信号走线中的电源电压信号走线复用为所述触控电极的触控感应信号走线,所述源漏极层的电压信号走线中的复位电压信号走线复用为所述触控电极的触控驱动信号走线;或所述源漏极层的电压信号走线中的电源电压信号走线复用为所述触控电极的触控驱动信号走线,所述源漏极层的电压信号走线中的复位电压信号走线复用为所述触控电极的触控感应信号走线;所述源漏极层通过所述电压信号走线与显示驱动模块电性连接,所述触控电极通过所述触控信号走线与触控模块电性连接。所述阵列基板可以为利用低温多晶硅技术的阵列基板,具体的触控显示面板结构图可参考图1所示。所述显示驱动模块与所述触控模块可以集成在同一芯片内,也可以为独立控制的分立式IC。
优选的,在所述触控显示面板的显示区外,每条触控信号走线的输入端设有一分时复用电路单元;所述方法进一步包括:当所述触控显示面板处于显示工作时段时,所述显示驱动模块通过所有所述分时复用电路单元分别输入电压信号(电源电压信号VDD以及复位电压信号Vi)至所述触控显示面板;当所述触控显示面板处于触控工作时段时,所述触控模块通过所有所述分时复用电路单元分别输入触控驱动信号TXi或触控驱动合成信号CK-TXi至所述触控显示面板,以及接收所述触控显示面板的相应触控电极产生的触控感应信号RXi或触控感应合成信号CK-RXi。
工业实用性
本申请的主题可以在工业中制造和使用,具备工业实用性。

Claims (20)

  1. 一种OLED触控显示面板,其中,包括:设于阵列基板中的源漏极层、像素定义层,嵌入到所述像素定义层中的触控电极;在所述触控显示面板的显示区内,所述源漏极层的电压信号走线复用为所述触控电极的触控信号走线,其中,所述电压信号走线的电源电压信号走线复用为所述触控信号走线的触控驱动信号走线、所述电压信号走线的复位电压信号走线复用为所述触控信号走线的触控感应信号走线,或,所述电压信号走线的电源电压信号走线复用为所述触控信号走线的触控感应信号走线、所述电压信号走线的复位电压信号走线复用为所述触控信号走线的触控驱动信号走线,或,所述电压信号走线的电源电压信号走线或复位电压信号走线的其中之一复用为所述触控信号走线;在所述触控显示面板的显示区外,每条触控信号走线的输入端设有一分时复用电路单元;当所述触控显示面板处于显示工作时段时,显示驱动模块通过所述电压信号走线经由所述分时复用电路单元输入电压信号至所述触控显示面板,给所述触控显示面板的像素电路提供电压信号;当所述触控显示面板处于触控工作时段时,触控模块通过所述触控信号走线经由所述分时复用电路单元输入触控驱动信号或触控驱动合成信号至所述触控显示面板、以及接收所述触控显示面板的触控电极产生的触控感应信号或触控感应合成信号。
  2. 如权利要求1所述的OLED触控显示面板,其中,当所述触控显示面板为互容式触控显示面板时,在所述触控显示面板的显示区内,所述电压信号走线根据所述触控电极的大小分割开,且所述触控电极中同一行的触控驱动电极串联,所述触控电极中同一列的触控感应电极串联。
  3. 如权利要求1所述的OLED触控显示面板,其中,所述分时复用电路单元包括第一薄膜晶体管和第二薄膜晶体管;所述第一薄膜晶体管的栅极接收第一电平信号与触控驱动信号合成的触控驱动合成信号、或输出第一电平信号与触控感应信号合成的触控感应合成信号,其源极接收所述电压信号中的电源电压信号或复位电压信号,而其漏极在所述触控显示面板处于显示工作时段时输出所述电源电压信号或所述复位电压信号,其漏极进一步在所述触控显示面板处于触控工作时段时输出所述触控驱动合成信号或接收所述触控感应合成信号;所述第二薄膜晶体管的栅极接收第二电平信号,其源极短接至所述第一薄膜晶体管的栅极,而其漏极短接至所述第一薄膜晶体管的漏极;其中,所述第一电平信号与所述第二电平信号为互反信号。
  4. 如权利要求1所述的OLED触控显示面板,其中,所述分时复用电路单元包括第一薄膜晶体管和第二薄膜晶体管;所述第一薄膜晶体管的栅极收发第一电平信号与触控信号合成的触控合成信号,其源极接收所述电压信号中的电源电压信号或复位电压信号,而其漏极在所述触控显示面板处于显示工作时段时输出所述电源电压信号或所述复位电压信号,其漏极进一步在所述触控显示面板处于触控工作时段时收发所述触控合成信号;所述第二薄膜晶体管的栅极接收第二电平信号,其源极短接至所述第一薄膜晶体管的栅极,而其漏极短接至所述第一薄膜晶体管的漏极;其中,所述第一电平信号与所述第二电平信号为互反信号。
  5. 如权利要求1所述的OLED触控显示面板,其中,所述分时复用电路单元包括第一薄膜晶体管、第二薄膜晶体管和第三薄膜晶体管;所述第一薄膜晶体管的栅极接收第一电平信号,其源极接收所述电压信号中的电源电压信号或复位电压信号,而其漏极在所述触控显示面板处于显示工作时段时输出所述电源电压信号或所述复位电压信号,其漏极进一步在所述触控显示面板处于触控工作时段时输出所述触控驱动合成信号或接收所述触控感应合成信号;所述第二薄膜晶体管的栅极接收第二电平信号,其源极短接至所述第一薄膜晶体管的栅极,而其漏极短接至所述第一薄膜晶体管的漏极;所述第三薄膜晶体管的栅极短接至所述第二薄膜晶体管的栅极,其源极接收触控驱动信号或输出触控感应信号,而其漏极短接至所述第一薄膜晶体管的栅极;其中,所述第一电平信号与所述第二电平信号为互反信号。
  6. 如权利要求1所述的OLED触控显示面板,其中,所述分时复用电路单元包括第一薄膜晶体管、第二薄膜晶体管和第三薄膜晶体管;所述第一薄膜晶体管的栅极接收第一电平信号,其源极接收所述电压信号中的电源电压信号或复位电压信号,而其漏极在所述触控显示面板处于显示工作时段时输出所述电源电压信号或所述复位电压信号,其漏极进一步在所述触控显示面板处于触控工作时段时输出所述触控驱动合成信号或接收所述触控感应合成信号;所述第二薄膜晶体管的栅极接收第二电平信号,其源极短接至所述第一薄膜晶体管的栅极,而其漏极短接至所述第一薄膜晶体管的漏极;所述第三薄膜晶体管的栅极短接至所述第二薄膜晶体管的栅极,其源极收发触控信号,而其漏极短接至所述第一薄膜晶体管的栅极;其中,所述第一电平信号与所述第二电平信号为互反信号。
  7. 如权利要求1所述的OLED触控显示面板,其中,所述分时复用电路单元包括第一薄膜晶体管和第二薄膜晶体管;所述第一薄膜晶体管的栅极接收第一电平信号,其源极接收所述触控驱动信号或输出所述触控感应信号,而其漏极在所述触控显示面板处于显示工作时段时输出所述电压信号中的电源电压信号或复位电压信号,其漏极进一步在所述触控显示面板处于触控工作时段时输出所述触控驱动信号或接收所述触控感应信号;所述第二薄膜晶体管的栅极接收第二电平信号,其源极接收所述电源电压信号或所述复位电压信号,而其漏极短接至所述第一薄膜晶体管的漏极;其中,所述第一电平信号与所述第二电平信号为互反信号。
  8. 一种OLED触控显示面板,其中,包括:设于阵列基板中的源漏极层、像素定义层,嵌入到所述像素定义层中的触控电极;在所述触控显示面板的显示区内,所述源漏极层的电压信号走线复用为所述触控电极的触控信号走线;当所述触控显示面板处于显示工作时段时,显示驱动模块通过所述电压信号走线输入电压信号至所述触控显示面板,给所述触控显示面板的像素电路提供电压信号;当所述触控显示面板处于触控工作时段时,触控模块通过所述触控信号走线输入触控驱动信号或触控驱动合成信号至所述触控显示面板、以及接收所述触控显示面板的触控电极产生的触控感应信号或触控感应合成信号。
  9. 如权利要求8所述的OLED触控显示面板,其中,所述源漏极层的电压信号走线复用为所述触控电极的触控信号走线的走线复用方式采用以下方式的其中之一:所述电压信号走线的电源电压信号走线复用为所述触控信号走线的触控驱动信号走线,以及所述电压信号走线的复位电压信号走线复用为所述触控信号走线的触控感应信号走线;或所述电压信号走线的电源电压信号走线复用为所述触控信号走线的触控感应信号走线,以及所述电压信号走线的复位电压信号走线复用为所述触控信号走线的触控驱动信号走线;或所述电压信号走线的电源电压信号走线或复位电压信号走线的其中之一复用为所述触控信号走线。
  10. 如权利要求8所述的OLED触控显示面板,其中,当所述触控显示面板为互容式触控显示面板时,在所述触控显示面板的显示区内,所述电压信号走线根据所述触控电极的大小分割开,且所述触控电极中同一行的触控驱动电极串联,所述触控电极中同一列的触控感应电极串联。
  11. 如权利要求8所述的OLED触控显示面板,其中,在所述触控显示面板的显示区外,每条触控信号走线的输入端设有一分时复用电路单元;当所述触控显示面板处于显示工作时段时,所述显示驱动模块通过所有所述分时复用电路单元分别输入电压信号至所述触控显示面板;当所述触控显示面板处于触控工作时段时,所述触控模块通过所有所述分时复用电路单元分别输入触控驱动信号或触控驱动合成信号至所述触控显示面板、以及接收所述触控显示面板的相应触控电极产生的触控感应信号或触控感应合成信号。
  12. 如权利要求11所述的OLED触控显示面板,其中,所述分时复用电路单元包括第一薄膜晶体管和第二薄膜晶体管;所述第一薄膜晶体管的栅极接收第一电平信号与触控驱动信号合成的触控驱动合成信号、或输出第一电平信号与触控感应信号合成的触控感应合成信号,其源极接收所述电压信号中的电源电压信号或复位电压信号,而其漏极在所述触控显示面板处于显示工作时段时输出所述电源电压信号或所述复位电压信号,其漏极进一步在所述触控显示面板处于触控工作时段时输出所述触控驱动合成信号或接收所述触控感应合成信号;所述第二薄膜晶体管的栅极接收第二电平信号,其源极短接至所述第一薄膜晶体管的栅极,而其漏极短接至所述第一薄膜晶体管的漏极;其中,所述第一电平信号与所述第二电平信号为互反信号。
  13. 如权利要求11所述的OLED触控显示面板,其中,所述分时复用电路单元包括第一薄膜晶体管和第二薄膜晶体管;所述第一薄膜晶体管的栅极收发第一电平信号与触控信号合成的触控合成信号,其源极接收所述电压信号中的电源电压信号或复位电压信号,而其漏极在所述触控显示面板处于显示工作时段时输出所述电源电压信号或所述复位电压信号,其漏极进一步在所述触控显示面板处于触控工作时段时收发所述触控合成信号;所述第二薄膜晶体管的栅极接收第二电平信号,其源极短接至所述第一薄膜晶体管的栅极,而其漏极短接至所述第一薄膜晶体管的漏极;其中,所述第一电平信号与所述第二电平信号为互反信号。
  14. 如权利要求11所述的OLED触控显示面板,其中,所述分时复用电路单元包括第一薄膜晶体管、第二薄膜晶体管和第三薄膜晶体管;所述第一薄膜晶体管的栅极接收第一电平信号,其源极接收所述电压信号中的电源电压信号或复位电压信号,而其漏极在所述触控显示面板处于显示工作时段时输出所述电源电压信号或所述复位电压信号,其漏极进一步在所述触控显示面板处于触控工作时段时输出所述触控驱动合成信号或接收所述触控感应合成信号;所述第二薄膜晶体管的栅极接收第二电平信号,其源极短接至所述第一薄膜晶体管的栅极,而其漏极短接至所述第一薄膜晶体管的漏极;所述第三薄膜晶体管的栅极短接至所述第二薄膜晶体管的栅极,其源极接收触控驱动信号或输出触控感应信号,而其漏极短接至所述第一薄膜晶体管的栅极;其中,所述第一电平信号与所述第二电平信号为互反信号。
  15. 如权利要求11所述的OLED触控显示面板,其中,所述分时复用电路单元包括第一薄膜晶体管、第二薄膜晶体管和第三薄膜晶体管;所述第一薄膜晶体管的栅极接收第一电平信号,其源极接收所述电压信号中的电源电压信号或复位电压信号,而其漏极在所述触控显示面板处于显示工作时段时输出所述电源电压信号或所述复位电压信号,其漏极进一步在所述触控显示面板处于触控工作时段时输出所述触控驱动合成信号或接收所述触控感应合成信号;所述第二薄膜晶体管的栅极接收第二电平信号,其源极短接至所述第一薄膜晶体管的栅极,而其漏极短接至所述第一薄膜晶体管的漏极;所述第三薄膜晶体管的栅极短接至所述第二薄膜晶体管的栅极,其源极收发触控信号,而其漏极短接至所述第一薄膜晶体管的栅极;其中,所述第一电平信号与所述第二电平信号为互反信号。
  16. 如权利要求11所述的OLED触控显示面板,其中,所述分时复用电路单元包括第一薄膜晶体管和第二薄膜晶体管;所述第一薄膜晶体管的栅极接收第一电平信号,其源极接收所述触控驱动信号或输出所述触控感应信号,而其漏极在所述触控显示面板处于显示工作时段时输出所述电压信号中的电源电压信号或复位电压信号,其漏极进一步在所述触控显示面板处于触控工作时段时输出所述触控驱动信号或接收所述触控感应信号;所述第二薄膜晶体管的栅极接收第二电平信号,其源极接收所述电源电压信号或所述复位电压信号,而其漏极短接至所述第一薄膜晶体管的漏极;其中,所述第一电平信号与所述第二电平信号为互反信号。
  17. 如权利要求8所述的OLED触控显示面板,其中,所述显示驱动模块与所述触控模块集成在同一芯片内。
  18. 一种OLED触控显示面板的分时复用驱动方法,其中,所述方法包括:当所述触控显示面板处于显示工作时段时,显示驱动模块通过所述触控显示面板显示区的电压信号走线输入电压信号至所述触控显示面板,给所述触控显示面板的相应像素电路提供电压信号;当所述触控显示面板处于触控工作时段时,所述电压信号走线复用为触控信号走线,触控模块通过所述触控信号走线输入触控驱动信号或触控驱动合成信号至所述触控显示面板,以及接收所述触控显示面板的相应触控电极产生的触控感应信号或触控感应合成信号。
  19. 如权利要求18所述的分时复用驱动方法,其中,所述源漏极层的电压信号走线复用为所述触控电极的触控信号走线的走线复用方式采用以下方式的其中之一:所述电压信号走线的电源电压信号走线复用为所述触控信号走线的触控驱动信号走线,以及所述电压信号走线的复位电压信号走线复用为所述触控信号走线的触控感应信号走线;所述电压信号走线的电源电压信号走线复用为所述触控信号走线的触控感应信号走线,以及所述电压信号走线的复位电压信号走线复用为所述触控信号走线的触控驱动信号走线;或所述电压信号走线的电源电压信号走线或复位电压信号走线的其中之一复用为所述触控信号走线。
  20. 如权利要求18所述的分时复用驱动方法,其中,在所述触控显示面板的显示区外,每条触控信号走线的输入端设有一分时复用电路单元;所述方法进一步包括:当所述触控显示面板处于显示工作时段时,所述显示驱动模块通过所有所述分时复用电路单元分别输入电压信号至所述触控显示面板;当所述触控显示面板处于触控工作时段时,所述触控模块通过所有所述分时复用电路单元分别输入触控驱动信号或触控驱动合成信号至所述触控显示面板,以及接收所述触控显示面板的相应触控电极产生的触控感应信号或触控感应合成信号。
PCT/CN2019/082707 2019-01-30 2019-04-15 一种oled触控显示面板及其分时复用驱动方法 WO2020155402A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/470,246 US11169631B2 (en) 2019-01-30 2019-04-15 Organic light emitting diode touch display panel and method for driving time division multiplexing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910094258.5A CN109634466B (zh) 2019-01-30 2019-01-30 一种oled触控显示面板及其分时复用驱动方法
CN201910094258.5 2019-01-30

Publications (1)

Publication Number Publication Date
WO2020155402A1 true WO2020155402A1 (zh) 2020-08-06

Family

ID=66064455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082707 WO2020155402A1 (zh) 2019-01-30 2019-04-15 一种oled触控显示面板及其分时复用驱动方法

Country Status (3)

Country Link
US (1) US11169631B2 (zh)
CN (1) CN109634466B (zh)
WO (1) WO2020155402A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110109571B (zh) * 2019-04-29 2024-02-23 福建华佳彩有限公司 一种内嵌式触控显示结构
CN111796712A (zh) * 2020-06-04 2020-10-20 上海天马微电子有限公司 触控装置及触控检测方法
CN111722756A (zh) * 2020-06-29 2020-09-29 南京中电熊猫液晶显示科技有限公司 一种内嵌触控模组及其驱动方法、触控面板
CN113064513B (zh) * 2021-03-12 2023-07-04 武汉华星光电半导体显示技术有限公司 触控面板及显示装置
CN113436573A (zh) * 2021-06-16 2021-09-24 合肥维信诺科技有限公司 显示面板、显示面板驱动方法及显示装置
CN113778261B (zh) 2021-09-13 2023-09-05 武汉华星光电半导体显示技术有限公司 可拉伸显示模组及可拉伸显示设备
CN114265524B (zh) * 2021-12-17 2023-08-22 武汉华星光电半导体显示技术有限公司 一种显示面板

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103500747A (zh) * 2013-09-30 2014-01-08 京东方科技集团股份有限公司 阵列基板、阵列基板驱动方法和显示装置
CN108874213A (zh) * 2018-06-01 2018-11-23 武汉华星光电半导体显示技术有限公司 触控显示面板及电子设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101365779B1 (ko) * 2006-12-26 2014-02-20 엘지디스플레이 주식회사 유기발광다이오드 표시장치
TW201019203A (en) * 2008-11-10 2010-05-16 Asustek Comp Inc Resistive touch panel
CN103699284B (zh) * 2013-12-27 2016-09-21 京东方科技集团股份有限公司 一种电容式内嵌触摸屏及其制备方法、显示装置
CN104102402B (zh) * 2014-06-25 2017-01-25 京东方科技集团股份有限公司 触控基板及显示装置
CN104731436B (zh) * 2015-04-15 2017-11-21 京东方科技集团股份有限公司 柔性显示装置及其驱动方法
EP3347801A4 (en) * 2015-09-11 2019-03-13 BOE Technology Group Co., Ltd. ARRAYSUBSTRAT FOR CAPACITIVE TOUCH SCREEN IN THE CELL AND CONTROL PROCEDURES FOR IT, ASSOCIATED DISPLAY TABLES AND RELATED DISPLAY DEVICE
US10503308B2 (en) * 2016-12-13 2019-12-10 Novatek Microelectronics Corp. Touch apparatus and touch detection integrated circuit thereof
CN107452781A (zh) * 2017-08-07 2017-12-08 京东方科技集团股份有限公司 显示基板、显示面板、显示装置及其控制方法
CN108807715B (zh) * 2018-05-31 2020-09-01 武汉华星光电半导体显示技术有限公司 触控显示面板
US20190369768A1 (en) 2018-05-31 2019-12-05 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Touch display panel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103500747A (zh) * 2013-09-30 2014-01-08 京东方科技集团股份有限公司 阵列基板、阵列基板驱动方法和显示装置
CN108874213A (zh) * 2018-06-01 2018-11-23 武汉华星光电半导体显示技术有限公司 触控显示面板及电子设备

Also Published As

Publication number Publication date
CN109634466A (zh) 2019-04-16
CN109634466B (zh) 2020-11-24
US20210181878A1 (en) 2021-06-17
US11169631B2 (en) 2021-11-09

Similar Documents

Publication Publication Date Title
CN109634466B (zh) 一种oled触控显示面板及其分时复用驱动方法
CN108110031B (zh) 柔性电致发光显示装置
US20200348788A1 (en) Display device with integrated touch screen
CN107797687B (zh) 显示面板、显示装置、集成驱动电路和驱动方法
CN108091669B (zh) 有机发光显示装置
KR102476468B1 (ko) 터치 스크린을 구비하는 표시장치
US10976848B2 (en) Display apparatus with touch sensor
KR102430806B1 (ko) 터치 스크린을 구비하는 표시장치
US11307696B2 (en) Display device with integrated touch screen and method of manufacturing the same
KR20150039933A (ko) 터치 스크린 표시 장치
CN107275379A (zh) 触控式oled显示面板以及显示装置
TW201349033A (zh) 觸控顯示面板
CN112789582B (zh) 触控显示面板、驱动电路板、触控显示装置及其驱动方法
CN108807715B (zh) 触控显示面板
CN109062459B (zh) 电容触控显示装置及其驱动方法
KR102172899B1 (ko) 패드부를 포함하는 터치표시장치
CN118484098A (zh) 具有频分复用的显示装置
CN114527888A (zh) 显示装置
KR20180071470A (ko) 전계발광 표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913987

Country of ref document: EP

Kind code of ref document: A1