WO2020155308A1 - 广域系统保护装置的同步方法、装置、厂站及拓扑架构 - Google Patents

广域系统保护装置的同步方法、装置、厂站及拓扑架构 Download PDF

Info

Publication number
WO2020155308A1
WO2020155308A1 PCT/CN2019/077490 CN2019077490W WO2020155308A1 WO 2020155308 A1 WO2020155308 A1 WO 2020155308A1 CN 2019077490 W CN2019077490 W CN 2019077490W WO 2020155308 A1 WO2020155308 A1 WO 2020155308A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
data frame
plant
factory
plant station
Prior art date
Application number
PCT/CN2019/077490
Other languages
English (en)
French (fr)
Inventor
尹积军
陈庆
吴争
陆晓
罗建裕
李海峰
李雪明
张莉
薛峰
罗凯明
刘林
颜云松
任建锋
夏海峰
Original Assignee
国网江苏省电力有限公司
国电南瑞科技股份有限公司
南京千智电气科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网江苏省电力有限公司, 国电南瑞科技股份有限公司, 南京千智电气科技有限公司 filed Critical 国网江苏省电力有限公司
Publication of WO2020155308A1 publication Critical patent/WO2020155308A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0008Synchronisation information channels, e.g. clock distribution lines
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0647Synchronisation among TDM nodes
    • H04J3/065Synchronisation among TDM nodes using timestamps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0016Arrangements for synchronising receiver with transmitter correction of synchronization errors
    • H04L7/0033Correction by delay
    • H04L7/0041Delay of data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/37Hardware or software details of the signal processing chain

Definitions

  • the present disclosure relates to the technical field of power systems, for example, to a synchronization method, device, plant, and topology of a wide area system protection device.
  • the wide-area system protection device is a control device installed in a power plant or substation to ensure the stability of the power system when encountering large disturbances, so as to realize machine cut, load cut, rapid output reduction, and emergency increase or return of DC power.
  • the downgrade function is an important facility to maintain the safe and stable operation of the power system.
  • the network topology of the wide area system protection device is usually composed of two or more plants through communication, so as to realize the stable control of the regional or larger power system. Therefore, in order to avoid the problem of oscillation in different frequency bands of the power grid and facilitate the process inversion after a fault, it is necessary to keep time synchronization between plants and stations.
  • the time synchronization method of the system protection device in the related technology is usually based on a global positioning system (Global Positioning System, GPS) or a synchronous digital hierarchy (Synchronous Digital Hierarchy, SDH) method.
  • GPS Global Positioning System
  • SDH Synchronous Digital Hierarchy
  • the present disclosure provides a synchronization method, device, plant and topology structure of a wide area system protection device, which can realize the time of the wide area system protection device without changing the physical structure and channel configuration of the system protection device in the related technology. Synchronize to save production costs.
  • the present disclosure provides a synchronization method for a wide area system protection device.
  • the network topology of the wide area system protection device at least includes a first plant station and a second plant station.
  • the station sends a data frame
  • the second plant station sends a data frame to the first plant station at regular intervals, the method includes:
  • the first factory station sends a first data frame to the second factory station, where the first data frame includes at least the sequence number p of the first data frame and the transmission time stamp T st[p] of the first data frame;
  • the first factory station receives the second data frame sent by the second factory station, and records the receiving timestamp T sr[q] of the second data frame.
  • the second data frame includes the sequence number q of the second data frame, and the second data frame Sending time stamp T mt[q] and receiving time stamp T mr[p] of the first data frame, the first data frame and the second data frame are adjacent to the second factory station;
  • the first factory station according to the sending time stamp T st[p] of the first data frame, the receiving time stamp T mr[p] of the first data frame, the sending time stamp T mt[q] of the second data frame and the second data Frame reception time stamp T sr[q] , calculate the time phase difference ⁇ s and crystal oscillator frequency deviation ⁇ f p between the first plant and the second plant;
  • the first plant station adjusts the time of the first plant station according to the time phase difference ⁇ s, and adjusts the clock frequency of the first plant station according to the crystal oscillator frequency deviation ⁇ f p .
  • the formula for calculating the time phase difference ⁇ s includes:
  • T d[m ⁇ s] is the transmission delay from the second plant to the first plant
  • T d[s ⁇ m] is the transmission delay from the first plant to the second plant.
  • the transmission delay T d[s ⁇ m] from the first plant station to the second plant station is equal to the transmission delay T d[m ⁇ s] from the second plant station to the first plant station equal to the first plant station.
  • the first plant station adjusts the time of the first plant station according to the time phase difference ⁇ s, and adjusts the clock frequency of the first plant station according to the crystal oscillator frequency deviation ⁇ f p , including:
  • the first station calculates the transmission delay T d between the first station and the second station, where the formula for calculating the transmission delay T d includes:
  • the first plant station judges whether the transmission delay T d is less than or equal to the preset transmission delay T s , and the preset transmission delay T s is calculated by the first plant station using the GPS time synchronization method;
  • the first plant station In response to the judgment result that the transmission delay T d is less than or equal to the preset transmission delay T s , the first plant station adjusts the time of the first plant station according to the time phase difference ⁇ s, and adjusts the first station according to the crystal oscillator frequency deviation ⁇ f p The clock frequency of the plant station.
  • the formula for calculating the crystal frequency deviation ⁇ f p includes:
  • T is the period of calculating the crystal oscillator frequency deviation.
  • the above method further includes:
  • the first plant calculates the average crystal frequency deviation ⁇ f mean , where the formula for calculating the average crystal frequency deviation ⁇ f mean includes: M is a positive integer;
  • the first plant station adjusts the clock frequency of the first plant station according to the crystal oscillator frequency deviation ⁇ f p , including:
  • the first plant station adjusts the clock frequency of the first plant station according to the average crystal oscillator frequency deviation ⁇ f mean .
  • the first plant station is the master station and the second plant station is the slave station; or, the first plant station is the slave station and the second plant station is the master station.
  • the present disclosure also provides a device with a wide-area synchronization function.
  • the device is set in the first factory station and includes: a sending module, a receiving module, a calculation module, and a synchronization module;
  • the sending module is configured to send the first data frame to the second factory station, the first data frame includes at least the sequence number p of the first data frame, and the sending time stamp T st[p] of the first data frame;
  • the receiving module is configured to receive the second data frame sent by the second factory station and record the receiving time stamp T sr[q] of the second data frame.
  • the second data frame includes the sequence number q of the second data frame, and the second data frame.
  • the sending timestamp T mt[q] of the first data frame, and the receiving timestamp T mr[p] of the first data frame, the first data frame and the second data frame are adjacent to the second factory station;
  • the calculation module is set to be based on the transmission time stamp T st[p] of the first data frame, the reception time stamp T mr[p] of the first data frame, the transmission time stamp T mt[q] of the second data frame and the second The receiving time stamp T sr[q] of the data frame, calculating the time phase difference ⁇ s and crystal frequency deviation ⁇ f p between the first plant and the second plant;
  • the synchronization module is set to adjust the time of the first factory station according to the time phase difference ⁇ s, and adjust the clock frequency of the first factory station according to the crystal oscillator frequency deviation ⁇ f p .
  • the calculation module is configured to calculate the time phase difference ⁇ s through the following formula:
  • T d[m ⁇ s] is the transmission delay from the second plant to the first plant
  • T d[s ⁇ m] is the transmission delay from the first plant to the second plant.
  • the transmission delay T d[s ⁇ m] from the first plant station to the second plant station is equal to the transmission delay T d[m ⁇ s] from the second plant station to the first plant station equal to the first plant station.
  • the transmission time delay T d between the plant station and the second plant station; the synchronization module is set to:
  • the preset transmission delay T s is calculated by the first plant station using the GPS time synchronization method
  • the first plant station In response to the judgment result that the transmission delay T d is greater than the preset transmission delay T s , the first plant station adjusts the time of the first plant station according to the time phase difference ⁇ s, and adjusts the first station according to the crystal oscillator frequency deviation ⁇ f p The clock frequency of the plant station.
  • the calculation module is configured to calculate the crystal oscillator frequency deviation ⁇ f p through the following formula:
  • T is the period of calculating the crystal oscillator frequency deviation.
  • the calculation module is further configured to calculate the average crystal oscillator frequency deviation ⁇ f mean , wherein the formula for calculating the average crystal oscillator frequency deviation ⁇ f mean includes: M is a positive integer;
  • the synchronization module is set to adjust the clock frequency of the first plant station according to the crystal oscillator frequency deviation ⁇ f p as follows: adjust the clock frequency of the first plant station according to the average crystal oscillator frequency deviation ⁇ f mean .
  • the first plant station is the master station and the second plant station is the slave station; or, the first plant station is the slave station and the second plant station is the master station.
  • the present disclosure also provides a network topology architecture of a wide-area system protection device, which includes at least a first plant station and a second plant station.
  • the first plant station sends a data frame to the second plant station at regular intervals
  • the second plant station sends a data frame to the first plant station at regular intervals, where the first plant station includes any of the above-mentioned devices with a wide area synchronization function.
  • the present disclosure also provides a factory station, including:
  • At least one processor At least one processor
  • Memory set to store at least one program
  • the at least one processor When at least one program is executed by at least one processor, the at least one processor implements any one of the aforementioned methods for synchronizing a wide area system protection device.
  • the present disclosure also provides a computer-readable storage medium that stores a computer program, and when the computer program is executed by a processor, it realizes the synchronization method of any wide area system protection device as described above.
  • time stamp information is interacted with data frames in the SDH 2M channel, it does not rely on an external GPS system, and there is no need to build an IEEE-1588 time synchronization system based on SDH to provide an external clock source. Therefore, without changing the physical architecture and channel configuration of the system protection device in the related technology, the time synchronization of the wide area system protection device is realized to save production costs.
  • FIG. 1 is a schematic diagram of a network topology architecture of a wide area system protection device provided by an embodiment
  • FIG. 2 is a schematic flowchart of a synchronization method of a wide area system protection device provided by an embodiment
  • FIG. 3 is a schematic diagram of data frame interaction between a first plant station and a second plant station according to an embodiment
  • FIG. 4 is a schematic structural diagram of a device with a wide area synchronization function according to an embodiment
  • Fig. 5 is a schematic structural diagram of a plant station provided by an embodiment.
  • system and “network” are often used interchangeably herein.
  • the "and/or” mentioned in the embodiments of the present disclosure means “including any and all combinations of one or more related listed items.
  • the term “first” in the specification, claims and drawings of the present disclosure , “Second”, etc. are used to distinguish different objects, not to limit a specific order.
  • Figure 1 is a schematic diagram of a network topology architecture of a wide area system protection device provided by an embodiment.
  • the network topology architecture of the wide area system protection device includes at least two plant stations, each of which can be connected to the GPS network separately, as shown in Figure 1 It is drawn based on the example of the network topology of the wide-area system protection device including five plants. It can be seen from Figure 1 that the above-mentioned plant stations are divided into three levels, plant station 1 is at the top level, plant station 2 and plant station 3 are at the middle level, and plant station 4 and plant station 5 are at the bottom level. Data communication is carried out between plant station 1, plant station 2 and plant station 3 through the SDH network.
  • plant station 1 Since plant station 1 is located on the upper level of plant station 2 and plant station 3, plant station 1 and plant station 2, plant station 1 and plant station 3 have a master-slave relationship, that is, plant station 1 is the master station of plant station 2.
  • plant station 2, plant station 4, and plant station 5 also carry out data communication through the SDH network.
  • plant station 2 Since plant station 2 is located on the upper level of plant station 4 and plant station 5, plant station 2 and plant station 4, plant station 2 and plant station 5 have a master-slave relationship, that is, plant station 2 is the master station of plant station 4, Station 4 is the slave station of Station 2; Station 2 is the master station of Station 5, and Station 5 is the slave station of Station 2.
  • the clock of the master station can be called the master clock
  • the clock of the slave station can be called the slave clock.
  • the synchronization method of the wide area system protection device provided in the present disclosure can be based on the master clock and the slave clock is synchronized to the master clock, or can be based on the slave clock, and the master clock is synchronized to the slave clock. The present disclosure does not specifically limit this.
  • FIG. 2 is a schematic flowchart of a synchronization method of a wide area system protection device according to an embodiment.
  • the method disclosed in this embodiment is applicable to the first plant station, where the first plant station can be any plant station in the network topology of the wide area system protection device shown in FIG. 1.
  • the first plant If the station is plant station 2, the second plant station can be plant station 1, plant station 4 or plant station 5.
  • the method may include the following steps.
  • the first factory station sends a first data frame to the second factory station, where the first data frame at least includes the sequence number p of the first data frame and the sending time stamp T st[p] of the first data frame.
  • the synchronization method of the wide area system protection device can be based on the master clock and the slave clock is synchronized to the master clock, or can be based on the slave clock, the master clock is synchronized to the slave clock. Therefore, the first factory station It can be the master station and the second station as the slave station; or, the first station can be the slave station and the second station as the master station.
  • both the first plant and the second plant can send data frames to the opposite device according to a fixed frame length and a fixed time interval.
  • the first plant station and the second plant station send and receive data frames through the SDH 2M channel to ensure that the physical layer interface and coding remain unchanged in terms of the data link layer of communication transmission.
  • Fig. 3 is a schematic diagram of data frame interaction between a first plant station and a second plant station according to an embodiment.
  • the first plant station sends a data frame to the second plant station at regular intervals.
  • the number of the data frame is ⁇ ...p-1, p, p+1, .. . ⁇ ;
  • the second plant station will also send a data frame to the first plant station at regular intervals.
  • the number of the data frame is ⁇ ...q-1, q, q+1,. .. ⁇ . Since the start-up time of the first plant and the second plant cannot be exactly the same, the p-value sequence and the q-value sequence are in asynchronous operation. And the first plant station and the second plant station send data frames at the same time interval, so in theory, both parties can receive a data frame from each other at regular intervals.
  • the number of the data frame can be cycled within a certain field range. For example, set the number of the data frame to 0-99, a total of 100 numbers, when the number of data frames is greater than 100, the number of the data frame is cycled within 0-99, the first plant station and/or the second plant station pass the reading
  • the number of the data frame can be used to identify the number of the data frame adjacent to the data frame.
  • the data frame further includes the received time stamp of the previous data frame received and the transmission time stamp of the currently sent data frame.
  • the first plant station sends the first data frame to the second plant station at a fixed time interval, the first data frame includes the sequence number p of the first data frame, and the transmission time stamp of the first data frame T st[p] , and the receiving timestamp of the data frame with sequence number q-1.
  • the first factory station receives the second data frame sent by the second factory station, and records the receiving timestamp T sr[q] of the second data frame, the second data frame includes the sequence number q of the second data frame, and the second data
  • the transmission time stamp T mt[q] of the frame and the reception time stamp T mr[p] of the first data frame, the first data frame and the second data frame are adjacent to the second plant.
  • the second plant site can record the receiving timestamp T mr[p] of the first data frame, And write the receiving time stamp T mr[p] of the first data frame into the second data frame q, so that the second data frame received by the first factory station includes the sequence number q of the second data frame, and the second data frame
  • the first factory station can also record the receiving timestamp T sr[q] of the second data frame.
  • the first plant station in each time interval can gather the time stamp set ⁇ T st[p] , T mr[p] required to calculate the time phase difference and crystal frequency deviation between the master and the slave . , T mt[q] , T sr[q] ⁇ .
  • the receiving time stamp T sr[q] of the data frame calculate the time phase difference ⁇ s and crystal frequency deviation ⁇ f p between the first plant station and the second plant station.
  • the process of calculating the time phase difference ⁇ s between the first plant and the second plant by the first plant may adopt the following formula:
  • T d[m ⁇ s] is the transmission delay from the second plant to the first plant
  • T d[s ⁇ m] is the transmission delay from the first plant to the second plant.
  • the transmission delay T d[m ⁇ s] from the second plant to the first plant is equal to the transmission delay T d[s ⁇ m] from the first plant to the second plant is equal to the first plant
  • the first plant station may also calculate the transmission delay T d between the first plant station and the second plant station.
  • the formula for calculating the transmission delay T d includes:
  • both the first plant and the second plant can use GPS to pair Time method calculates and learns to obtain the current reasonable and stable line delay, and multiplies the obtained line delay by an influencing factor coefficient as the preset transmission delay T s .
  • the first plant determines whether the transmission delay T d is less than or equal to the preset transmission delay T s , and responds to the transmission delay T d greater than the preset transmission delay T s As a result of the judgment, the first plant discards the time phase difference ⁇ s, thereby eliminating the influence of link switching jitter on time synchronization. If the subsequently calculated transmission delay T d is continuously greater than the preset transmission delay T s , it should be considered that the channel delay has been adjusted normally, and the time synchronization logic needs to be re-entered after confirmation by the communication manager.
  • the time stamp set ⁇ T st[p] , T mr[p] , T mt[q] , T sr[q] ⁇ can calculate the first plant station in addition to the time phase difference ⁇ s The crystal frequency deviation ⁇ f p between the second plant and the station.
  • the formula for calculating the crystal oscillator frequency deviation ⁇ f p by the first factory station includes:
  • T is the period of calculating the crystal oscillator frequency deviation. T can be selected according to the adjustment period.
  • the first factory station may store multiple sets of frequency deviation values within a certain time window, and calculate Average crystal frequency deviation ⁇ f mean .
  • the formula for calculating the average crystal oscillator frequency deviation ⁇ f mean includes: M is a positive integer.
  • the largest crystal oscillator frequency deviation and the smallest crystal oscillator frequency deviation can be removed and then the average value can be taken.
  • the first plant station adjusts the time of the first plant station according to the time phase difference ⁇ s, and adjusts the clock frequency of the first plant station according to the crystal oscillator frequency deviation ⁇ f p .
  • the time of the first plant station can be adjusted according to the time phase difference ⁇ s, and the clock frequency of the first plant station can be adjusted according to the crystal oscillator frequency deviation ⁇ f p , Realize the wide area time synchronization of the system protection device.
  • the first factory station may adjust the clock frequency of the first factory station according to the average crystal oscillator frequency deviation ⁇ f mean .
  • the first plant station adjusts the time of the first plant station according to the time phase difference ⁇ s, and adjusts the clock frequency of the first plant station according to the crystal oscillator frequency deviation ⁇ f p , including: the first plant station calculates the first plant station The transmission delay T d between the station and the second plant station, where the formula for calculating the transmission delay T d includes: The first station judges whether the transmission delay T d is less than or equal to the preset transmission delay T s .
  • the preset transmission delay T s is calculated by the first station using the GPS time synchronization method; in response to the transmission delay T d If the judgment result is less than or equal to the preset transmission delay T s , the first plant station adjusts the time of the first plant station according to the time phase difference ⁇ s, and adjusts the clock frequency of the first plant station according to the crystal oscillator frequency deviation ⁇ f p .
  • This embodiment provides a method for synchronizing a wide area system protection device.
  • the first factory station obtains the transmission time stamp T st[p] of the first data frame, the reception time stamp T mr[p] of the first data frame, and the first data frame.
  • the sending time stamp T mt[q] of the second data frame and the receiving time stamp T sr[q] of the second data frame calculate the time phase difference ⁇ s and crystal frequency deviation ⁇ f p between the first plant and the second plant ; And according to the time phase difference ⁇ s, adjust the time of the first plant station, and adjust the clock frequency of the first plant station according to the crystal oscillator frequency deviation ⁇ f p .
  • time stamp information is interacted with data frames in the SDH 2M channel, it does not rely on an external GPS system, and there is no need to build an IEEE-1588 time synchronization system based on SDH to provide an external clock source, so that the related technology will not be changed.
  • the time synchronization of the wide area system protection device is realized to save production costs.
  • Fig. 4 is a schematic structural diagram of a device with a wide area synchronization function provided by an embodiment.
  • the device can be installed in the first plant described in the above embodiment.
  • the device provided in this embodiment includes: The sending module 10, the receiving module 11, the calculation module 12 and the synchronization module 13.
  • the sending module 10 is configured to send the first data frame to the second factory station.
  • the first data frame includes at least the sequence number p of the first data frame and the sending time stamp T st[p] of the first data frame;
  • the receiving module 11 is set To receive the second data frame sent by the second factory station, and record the receiving timestamp T sr[q] of the second data frame, the second data frame includes the sequence number q of the second data frame, and the sending timestamp of the second data frame T mt[q] and the receiving timestamp T mr[p] of the first data frame, the first data frame and the second data frame are adjacent to the second factory station;
  • the calculation module 12 is set to be based on the first data frame
  • the calculation module 12 calculates the time phase difference ⁇ s through the following formula:
  • T d[m ⁇ s] is the transmission delay from the second plant to the first plant
  • T d[s ⁇ m] is the transmission delay from the first plant to the second plant
  • the synchronization module 13 is configured to calculate the transmission time between the first plant station and the second plant station Delay T d , where the formula for calculating the transmission delay T d includes: Determine whether the transmission delay T d is less than or equal to the preset transmission delay T s , the preset transmission delay T s is calculated by the first station using the GPS time synchronization method; in response to the transmission delay T d greater than the preset transmission As a result of the judgment of the time delay T s , the first plant station adjusts the time of the first plant station according to the time phase difference ⁇ s, and adjusts the clock frequency of the first plant station according to the crystal oscillator frequency deviation ⁇ f p .
  • the formula for calculating the crystal frequency deviation ⁇ f p includes: Among them, T is the period of calculating the crystal oscillator frequency deviation.
  • the calculation module 12 is further configured to calculate the average crystal oscillator frequency deviation ⁇ f mean , wherein the formula for calculating the average crystal oscillator frequency deviation ⁇ f mean includes: M is a positive integer; the synchronization module 13 is set to adjust the clock frequency of the first plant according to the crystal oscillator frequency deviation ⁇ f p in the following way: adjust the clock frequency of the first plant according to the average crystal oscillator frequency deviation ⁇ f mean .
  • the first plant station is the master station and the second plant station is the slave station; or, the first plant station is the slave station and the second plant station is the master station.
  • the calculation module 12 may correspond to a module having the function of calculating time deviation and crystal frequency deviation.
  • the above device with wide-area synchronization function provided in this embodiment can perform the steps performed by the first plant in the synchronization method of the wide-area system protection device provided by the above method embodiment, and has the corresponding functional modules and benefits for executing the method. effect.
  • Fig. 5 is a schematic structural diagram of a plant station provided by an embodiment.
  • the factory station includes a processor 20, a memory 21, an input interface 22, and an output interface 23; the number of processors 20 in the factory station can be one or more.
  • one processor 20 is taken as an example ;
  • the processor 20, the memory 21, the input interface 22, and the output interface 23 in the factory station can be connected by a bus or other means.
  • the connection by a bus is taken as an example.
  • the bus represents one or more of several types of bus structures, including a memory bus or a memory controller, a peripheral bus, a graphics acceleration port, a processor, or a local bus using any bus structure among multiple bus structures.
  • the memory 21 can be configured to store software programs, computer-executable programs, and modules, such as the program instructions/modules corresponding to the synchronization method of the wide area system protection device in the foregoing embodiment.
  • the processor 20 executes at least one functional application and data processing of the factory station by running the software programs, instructions, and modules stored in the memory 21, that is, realizes the aforementioned synchronization method of the wide area system protection device.
  • the memory 21 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal.
  • the memory 21 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 21 may include a memory remotely provided with respect to the processor 20, and these remote memories may be connected to a factory station through a network. Examples of the aforementioned networks include but are not limited to the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input interface 22 can be configured to receive input digital or character information and generate key signal inputs related to user settings and function control of the factory station.
  • the output interface 23 may include a display device such as a display screen.
  • This embodiment also provides a network topology architecture of a wide area system protection device, which includes at least a first plant station and a second plant station.
  • the first plant station sends a data frame to the second plant station at regular intervals.
  • the second plant station sends a data frame to the first plant station at regular intervals.
  • the first factory station includes a device with a wide area synchronization function as described in the above embodiment.
  • This embodiment also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the method for synchronizing a wide area system protection device as described in the above embodiment is realized.
  • the computer storage medium of this embodiment may adopt any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program, and the program may be used by or in combination with the instruction execution system, apparatus, or device.
  • the computer-readable signal medium may include a data signal propagated in baseband or as a part of a carrier wave, and the computer-readable program code is carried in the data signal. This propagated data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer-readable signal medium may also be any computer-readable medium other than the computer-readable storage medium.
  • the computer-readable medium may send, propagate, or transmit for use by the instruction execution system, apparatus, or device, or use with the instruction execution system, A program used in conjunction with a device or device.
  • the program code contained on the computer-readable medium can be transmitted by any suitable medium, including but not limited to wireless, wire, optical cable, radio frequency (RF), etc., or any suitable combination of the above.
  • any suitable medium including but not limited to wireless, wire, optical cable, radio frequency (RF), etc., or any suitable combination of the above.
  • the computer program code used to perform the operations of the present disclosure can be written in one or more programming languages or a combination of multiple programming languages.
  • the programming languages include object-oriented programming languages-such as Java, Smalltalk, C++, and Conventional procedural programming language-such as "C" language or similar programming language.
  • the program code can be executed entirely on the user's computer, partly on the user's computer, executed as an independent software package, partly on the user's computer and partly executed on a remote computer, or entirely executed on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network-including Local Area Network (LAN) or Wide Area Network (WAN)-or it can be connected to an external computer ( For example, use an Internet service provider to connect via the Internet).
  • LAN Local Area Network
  • WAN Wide Area Network

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

一种广域系统保护装置的同步方法、装置、厂站及拓扑架构。该方法包括:第一厂站(2)向第二厂站(1、4、5)发送第一数据帧,第一数据帧至少包括第一数据帧的序号p,第一数据帧的发送时间戳Tst[p](S1010);接收第二厂站(1、4、5)发送的第二数据帧,并记录第二数据帧的接收时间戳Tsr[q],第二数据帧包括第二数据帧的序号q,第二数据帧的发送时间戳T mt[q]及第一数据帧的接收时间戳Tmr[p],第一数据帧与第二数据帧在第二厂站(1、4、5)上相邻(S1020);计算第一厂站(2)与第二厂站(1、4、5)之间的时间相位差Δs和晶振频率偏差Δfp(S1030);根据时间相位差Δs调整第一厂站(2)的时间,以及晶振频率偏差Δfp调整第一厂站(2)的时钟频率(S1040)。

Description

广域系统保护装置的同步方法、装置、厂站及拓扑架构
本公开要求在2019年02月01日提交中国专利局、申请号为201910103517.6的中国专利申请的优先权,该申请的全部内容通过引用结合在本公开中。
技术领域
本公开涉及电力系统技术领域,例如涉及一种广域系统保护装置的同步方法、装置、厂站及拓扑架构。
背景技术
广域系统保护装置是一种为保证电力系统在遇到大扰动时的稳定性而在电厂或变电站内装设的控制设备,以实现切机、切负荷、快速减出力、直流功率紧急提升或回降等功能,是保持电力系统安全稳定运行的重要设施。广域系统保护装置的网络拓扑架构通常由两个及以上厂站通过通信联络构成,从而实现区域或更大范围的电力系统稳定控制。因此,为了避免电网不同频段的振荡问题以及方便故障后的过程反演,需要厂站间保持时间同步。
相关技术中的系统保护装置的时间同步方法通常是基于全球定位系统(Global Positioning System,GPS)的方式,或者同步数字体系(Synchronous Digital Hierarchy,SDH)的方式。然而,GPS的方式一旦在某些厂站丢失GPS的情况下,就失去了全局时钟同步的功能,与之相关的系统保护控制功能就得闭锁;SDH的方式均需要依照电气和电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)-1588对时协议,配备专用的支持SDH传输的交换机和支持IEEE-1588协议的对时设备,成本高昂且不实用。
发明内容
本公开提供一种广域系统保护装置的同步方法、装置、厂站及拓扑架构, 能够在不改变相关技术中的系统保护装置物理架构和通道配置的情况下,实现广域系统保护装置的时间同步,以节约生产成本。
本公开提供了一种广域系统保护装置的同步方法,广域系统保护装置的网络拓扑架构至少包括第一厂站和第二厂站,第一厂站每隔固定的时间间隔向第二厂站发送一帧数据帧,第二厂站每隔固定的时间间隔向第一厂站发送一帧数据帧,方法包括:
第一厂站向第二厂站发送第一数据帧,第一数据帧至少包括第一数据帧的序号p,第一数据帧的发送时间戳T st[p]
第一厂站接收第二厂站发送的第二数据帧,并记录第二数据帧的接收时间戳T sr[q],第二数据帧包括第二数据帧的序号q,第二数据帧的发送时间戳T mt[q],及第一数据帧的接收时间戳T mr[p],第一数据帧与第二数据帧在第二厂站上相邻;
第一厂站根据第一数据帧的发送时间戳T st[p]、第一数据帧的接收时间戳T mr[p]、第二数据帧的发送时间戳T mt[q]和第二数据帧的接收时间戳T sr[q],计算第一厂站和第二厂站之间的时间相位差Δs和晶振频率偏差Δf p
第一厂站根据时间相位差Δs,调整第一厂站的时间,以及根据晶振频率偏差Δf p,调整第一厂站的时钟频率。
在一实施例中,计算时间相位差Δs的公式包括:
Figure PCTCN2019077490-appb-000001
其中,T d[m→s]为第二厂站到第一厂站的传输时延,T d[s→m]为第一厂站到第二厂站的传输时延。
在一实施例中,第一厂站到第二厂站的传输时延T d[s→m]等于第二厂站到第一厂站的传输时延T d[m→s]等于第一厂站和第二厂站之间的传输时延T d
第一厂站根据时间相位差Δs,调整第一厂站的时间,以及根据晶振频率偏差Δf p,调整第一厂站的时钟频率包括:
第一厂站计算第一厂站和第二厂站之间的传输时延T d,其中,计算传输时延T d的公式包括:
Figure PCTCN2019077490-appb-000002
第一厂站判断传输时延T d是否小于或者等于预设传输时延T s,预设传输时延T s是第一厂站采用GPS对时方法计算得到的;
响应于传输时延T d小于或者等于预设传输时延T s的判断结果,第一厂站根据时间相位差Δs,调整第一厂站的时间,以及根据晶振频率偏差Δf p,调整第一厂站的时钟频率。
在一实施例中,计算晶振频率偏差Δf p的公式包括:
Figure PCTCN2019077490-appb-000003
其中,T为计算晶振频率偏差的周期。
在一实施例中,上述方法还包括:
第一厂站计算平均晶振频率偏差Δf mean,其中,计算平均晶振频率偏差Δf mean的公式包括:
Figure PCTCN2019077490-appb-000004
M为正整数;
第一厂站根据晶振频率偏差Δf p,调整第一厂站的时钟频率,包括:
第一厂站根据平均晶振频率偏差Δf mean,调整第一厂站的时钟频率。
第一厂站为主厂站,第二厂站为从厂站;或者,第一厂站为从厂站,第二厂站为主厂站。
本公开还提供了一种具备广域同步功能的装置,该装置设置于第一厂站中,包括:发送模块、接收模块、计算模块和同步模块;
发送模块,设置为向第二厂站发送第一数据帧,第一数据帧至少包括第一数据帧的序号p,第一数据帧的发送时间戳T st[p]
接收模块,设置为接收第二厂站发送的第二数据帧,并记录第二数据帧的接收时间戳T sr[q],第二数据帧包括第二数据帧的序号q,第二数据帧的发送时间戳T mt[q],及第一数据帧的接收时间戳T mr[p],第一数据帧与第二数据帧在第二厂站上相邻;
计算模块,设置为根据第一数据帧的发送时间戳T st[p]、第一数据帧的接收时间戳T mr[p]、第二数据帧的发送时间戳T mt[q]和第二数据帧的接收时间戳T sr[q],计算第一厂站和第二厂站之间的时间相位差Δs和晶振频率偏差Δf p
同步模块,设置为根据时间相位差Δs,调整第一厂站的时间,以及根据晶振频率偏差Δf p,调整第一厂站的时钟频率。
在一实施例中,计算模块是设置为通过如下公式计算时间相位差Δs:
Figure PCTCN2019077490-appb-000005
其中,T d[m→s]为第二厂站到第一厂站的传输时延,T d[s→m]为第一厂站到第二厂站的传输时延。
在一实施例中,第一厂站到第二厂站的传输时延T d[s→m]等于第二厂站到第一厂站的传输时延T d[m→s]等于第一厂站和第二厂站之间的传输时延T d;所述同步模块是设置为:
计算第一厂站和第二厂站之间的传输时延T d,其中,计算传输时延T d的公式包括:
Figure PCTCN2019077490-appb-000006
判断传输时延T d是否小于或者等于预设传输时延T s,预设传输时延T s是第一厂站采用GPS对时方法计算得到的;
响应于传输时延T d大于预设传输时延T s的判断结果,第一厂站根据时间相位差Δs,调整第一厂站的时间,以及根据所述晶振频率偏差Δf p,调整第一厂站的时钟频率。
在一实施例中,计算模块是设置为通过如下公式计算晶振频率偏差Δf p
Figure PCTCN2019077490-appb-000007
其中,T为计算晶振频率偏差的周期。
在一实施例中,计算模块,还设置为计算平均晶振频率偏差Δf mean,其中,计算平均晶振频率偏差Δf mean的公式包括:
Figure PCTCN2019077490-appb-000008
M为正整数;
同步模块,是设置为通过如下根据晶振频率偏差Δf p,调整第一厂站的时钟频率:根据平均晶振频率偏差Δf mean,调整第一厂站的时钟频率。
在一实施例中,第一厂站为主厂站,第二厂站为从厂站;或者,第一厂站为从厂站,第二厂站为主厂站。
本公开还提供了一种广域系统保护装置的网络拓扑架构,至少包括第一厂站和第二厂站,第一厂站每隔固定的时间间隔向第二厂站发送一帧数据帧,第二厂站每隔固定的时间间隔向第一厂站发送一帧数据帧,其中,第一厂站包括如上所述的任一种具备广域同步功能的装置。
本公开还提供了一种厂站,包括:
至少一个处理器;
存储器,设置为存储至少一个程序;
当至少一个程序被至少一个处理器执行,使得至少一个处理器实现如上所述的任一的广域系统保护装置的同步方法。
本公开还提供了一种计算机可读存储介质,存储有计算机程序,该计算机程序被处理器执行时实现如本上所述的任一的广域系统保护装置的同步方法。
本公开提供的技术方案,由于上述时间戳信息均是在SDH 2M通道内利用数据帧进行交互的,不依赖于外部GPS系统,同时无需搭建基于SDH的IEEE-1588时间同步系统来提供外部时钟源,从而在不改变相关技术中的系统保 护装置物理架构和通道配置的基础上,实现广域系统保护装置的时间同步,以节约生产成本。
附图说明
图1是一实施例提供的一种广域系统保护装置的网络拓扑架构示意图;
图2是一实施例提供的一种广域系统保护装置的同步方法流程示意图;
图3是一实施例提供的一种第一厂站和第二厂站的数据帧交互示意图;
图4是一实施例提供的一种具备广域同步功能的装置结构示意图;
图5是一实施例提供的一种厂站的结构示意图。
具体实施方式
下面结合附图和实施例对本公开进行说明。此处所描述的具体实施例仅仅用于解释本公开,而非对本公开的限定。另外,为了便于描述,附图中仅示出了与本公开相关的部分而非全部结构。
本公开中术语“系统”和“网络”在本文中常被可互换使用。本公开实施例中提到的“和/或”是指”包括一个或更多个相关所列项目的任何和所有组合。本公开的说明书和权利要求书及附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于限定特定顺序。
图1为一实施例提供的一种广域系统保护装置的网络拓扑架构示意图,广域系统保护装置的网络拓扑架构包括至少两个厂站,每个厂站可以分别接入GPS网络,图1是以广域系统保护装置的网络拓扑架构包括五个厂站为例进行绘制的。从图1可以看出,上述厂站被划分为三级,厂站1位于最上层一级,厂站2和厂站3位于中间一级,厂站4和厂站5位于最下层一级。厂站1、厂站2和厂站3之间通过SDH网络进行数据通信。由于厂站1位于厂站2和厂站3 的上层,因此厂站1与厂站2、厂站1与厂站3存在主从关系,即厂站1是厂站2的主厂站,厂站2是厂站1的从厂站;厂站1是厂站3的主厂站,厂站3是厂站1的从厂站。同理,厂站2、厂站4和厂站5之间也通过SDH网络进行数据通信。由于厂站2位于厂站4和厂站5的上层,因此厂站2与厂站4、厂站2与厂站5存在主从关系,即厂站2是厂站4的主厂站,厂站4是厂站2的从厂站;厂站2是厂站5的主厂站,厂站5是厂站2的从厂站。
主厂站的时钟可以称为主时钟,从厂站的时钟可以称为从时钟。本公开提供的广域系统保护装置的同步方法既可以以主时钟为准,从时钟向主时钟同步,也可以以从时钟为准,主时钟向从时钟同步,本公开对此不作具体限制。
下面,对广域系统保护装置的同步方法,装置、厂站及其技术效果进行描述。
图2为一实施例提供的一种广域系统保护装置的同步方法流程示意图。本实施例公开的方法适用于第一厂站,其中,第一厂站可以为图1所示的广域系统保护装置的网络拓扑架构中的任意一个厂站,示例性的,若第一厂站为厂站2,则第二厂站可以为厂站1、厂站4或者厂站5。如图2所示,该方法可以包括如下步骤。
S1010、第一厂站向第二厂站发送第一数据帧,第一数据帧至少包括第一数据帧的序号p,第一数据帧的发送时间戳T st[p]
由于本实施例提供的广域系统保护装置的同步方法既可以以主时钟为准,从时钟向主时钟同步,也可以以从时钟为准,主时钟向从时钟同步,因此,第一厂站可以为主厂站,第二厂站为从厂站;或者,第一厂站可以为从厂站,第二厂站为主厂站。
第一厂站和第二厂站开机以后,第一厂站和第二厂站均可以按照固定的帧长、固定的时间间隔,向对端设备发送数据帧。本实施例中,第一厂站和第二厂站之间是通过SDH 2M通道收发数据帧的,以保证在通信传输的数据链路层方面,物理层接口和编码不变。
图3为一实施例提供的一种第一厂站和第二厂站的数据帧交互示意图。如图3所示,第一厂站每隔固定的时间间隔,都会向第二厂站发送一帧数据帧,数据帧的编号为{...p-1,p,p+1,...};相应的,第二厂站每隔固定的时间间隔,也会向第一厂站发送一帧数据帧,数据帧的编号为{...q-1,q,q+1,...}。由于第一厂站和第二厂站开机运行的时间不可能完全一致,因此p值序列和q值序列处于异步运行状态。并且第一厂站和第二厂站发送数据帧的时间间隔一致,因此理论上双方在每隔固定的时间间隔都能收到一帧来自对方的数据帧。
数据帧的编号可以在一定的字段范围内循环。例如,设定数据帧的编号为0-99共100个编号,当数据帧的数量大于100时,数据帧的编号在0-99内循环,第一厂站和/或第二厂站通过读取数据帧的编号,可以识别与该数据帧相邻的数据帧的编号。
在一实施例中,数据帧还包括接收的上一帧数据帧的接收时戳和当前发送的数据帧的发送时戳。在一实施例中,第一厂站在某个固定的时间间隔,向第二厂站发送第一数据帧,第一数据帧包括第一数据帧的序号p,第一数据帧的发送时间戳T st[p],以及序号为q-1的数据帧的接收时间戳。
S1020、第一厂站接收第二厂站发送的第二数据帧,并记录第二数据帧的接收时间戳T sr[q],第二数据帧包括第二数据帧的序号q,第二数据帧的发送时间戳T mt[q],及第一数据帧的接收时间戳T mr[p],第一数据帧与第二数据帧在第二厂站上相邻。
从图3可以看出,在第二厂站侧,第一数据帧p与第二数据帧q相邻,因此,第二厂站可以记录第一数据帧的接收时间戳T mr[p],并将第一数据帧的接收时间戳T mr[p]写入第二数据帧q内,从而使得第一厂站接收到的第二数据帧包括第二数据帧的序号q,第二数据帧的发送时间戳T mt[q],第一数据帧的接收时间戳T mr[p]。同时,第一厂站还可以记录下第二数据帧的接收时间戳T sr[q]
因此在正常情况下,每个时间间隔第一厂站都能集齐进行主从机之间计算时间相位差和晶振频率偏差所需的时戳集合{T st[p],T mr[p],T mt[q],T sr[q]}。
S1030、第一厂站根据第一数据帧的发送时间戳T st[p]、第一数据帧的接收时间戳T mr[p]、第二数据帧的发送时间戳T mt[q]和第二数据帧的接收时间戳T sr[q],计算第一厂站和第二厂站之间的时间相位差Δs和晶振频率偏差Δf p
在一实施例中,第一厂站计算第一厂站和第二厂站之间的时间相位差Δs的过程可以采用如下公式:
Figure PCTCN2019077490-appb-000009
求解上述公式可得,
Figure PCTCN2019077490-appb-000010
其中,T d[m→s]为第二厂站到第一厂站的传输时延,T d[s→m]为第一厂站到第二厂站的传输时延。
通常情况下,第二厂站到第一厂站的传输时延T d[m→s]等于第一厂站到第二厂站的传输时延T d[s→m]等于第一厂站和第二厂站之间的传输时延T d,因此,时间相位差
Figure PCTCN2019077490-appb-000011
在一实施例中,第一厂站还可以计算第一厂站和第二厂站之间的传输时延 T d。在一实施例中,计算传输时延T d的公式包括:
Figure PCTCN2019077490-appb-000012
由于时间相位差Δs的精度跟第二厂站到第一厂站的传输时延T d[m→s]、第一厂站到第二厂站的传输时延T d[s→m]的实际值是否严格对称强相关。考虑到实际SDH网络发生链路切换期间产生的时延不一致可能造成系统时间相位差计算值抖动过大的问题,在系统保护装置部署初期,第一厂站和第二厂站均可以采用GPS对时方法计算、学习得到当前合理、稳定的线路延时,并将得到的线路延时乘以一个影响因子系数作为预设传输时延T s。后续在GPS网络去除后的时间同步过程中,第一厂站判断传输时延T d是否小于或者等于预设传输时延T s,响应于传输时延T d大于预设传输时延T s的判断结果,第一厂站丢弃时间相位差Δs,从而消除了链路切换抖动对时间同步的影响。如果后续计算得出的传输时延T d持续大于预设传输时延T s,则要考虑通道时延发生了正常调整,需要经过通信管理方确认后重新进入对时逻辑。
在一实施例中,时戳集合{T st[p],T mr[p],T mt[q],T sr[q]}除了可以计算时间相位差Δs外,还可以计算第一厂站和第二厂站之间的晶振频率偏差Δf p
在一实施例中,第一厂站计算晶振频率偏差Δf p的公式包括:
Figure PCTCN2019077490-appb-000013
其中,T为计算晶振频率偏差的周期。T可以根据调整周期进行取值。
在一实施例中,为了减小频率调整波动性过大甚至造成发散,导致无法同步的问题,在一实施例中,第一厂站可以在一定的时间窗内存储多组频率偏差值,计算平均晶振频率偏差Δf mean。在一实施例中,计算平均晶振频率偏差Δf mean的公式包括:
Figure PCTCN2019077490-appb-000014
M为正整数。在一实施例中,计算平均晶振频率偏差Δf mean时可以去除最大的晶振频率偏差和最小的晶振频率偏差后取平均值。
S1040、第一厂站根据时间相位差Δs,调整第一厂站的时间,以及根据晶振频率偏差Δf p,调整第一厂站的时钟频率。
第一厂站在计算得到时间相位差Δs和晶振频率偏差Δf p后,可以根据时间相位差Δs,调整第一厂站的时间,以及根据晶振频率偏差Δf p,调整第一厂站的时钟频率,实现系统保护装置的广域时间同步。
在一实施例中,若上述步骤S1030中计算得出了平均晶振频率偏差Δf mean,则第一厂站可以根据平均晶振频率偏差Δf mean,调整第一厂站的时钟频率。
在一实施例中,第一厂站根据时间相位差Δs,调整第一厂站的时间,以及根据晶振频率偏差Δf p,调整第一厂站的时钟频率包括:第一厂站计算第一厂站和第二厂站之间的传输时延T d,其中,计算传输时延T d的公式包括:
Figure PCTCN2019077490-appb-000015
第一厂站判断传输时延T d是否小于或者等于预设传输时延T s,预设传输时延T s是第一厂站采用GPS对时方法计算得到的;响应于传输时延T d小于或者等于预设传输时延T s的判断结果,第一厂站根据时间相位差Δs,调整第一厂站的时间,以及根据晶振频率偏差Δf p,调整第一厂站的时钟频率。
本实施例提供一种广域系统保护装置的同步方法,通过第一厂站获取第一数据帧的发送时间戳T st[p]、第一数据帧的接收时间戳T mr[p]、第二数据帧的发送时间戳T mt[q]和第二数据帧的接收时间戳T sr[q],计算第一厂站和第二厂站之间的时间相位差Δs和晶振频率偏差Δf p;并根据时间相位差Δs,调整第一厂站的时间,以及根据晶振频率偏差Δf p,调整第一厂站的时钟频率。由于上述时间戳信息均是在SDH 2M通道内利用数据帧进行交互的,不依赖于外部GPS系统,同时无需搭建基于SDH的IEEE-1588时间同步系统来提供外部时钟源,从而在不改变相关技术中的系统保护装置物理架构和通道配置的基础上,实现广域系统保护 装置的时间同步,以节约生产成本。
图4为一实施例提供的一种具备广域同步功能的装置结构示意图,本实施例中,该装置可以设置于上述实施例所描述的第一厂站中,本实施例提供的装置包括:发送模块10,接收模块11,计算模块12和同步模块13。
发送模块10,设置为向第二厂站发送第一数据帧,第一数据帧至少包括第一数据帧的序号p,第一数据帧的发送时间戳T st[p];接收模块11,设置为接收第二厂站发送的第二数据帧,并记录第二数据帧的接收时间戳T sr[q],第二数据帧包括第二数据帧的序号q,第二数据帧的发送时间戳T mt[q],及第一数据帧的接收时间戳T mr[p],第一数据帧与第二数据帧在第二厂站上相邻;计算模块12,设置为根据第一数据帧的发送时间戳T st[p]、第一数据帧的接收时间戳T mr[p]、第二数据帧的发送时间戳T mt[q]和第二数据帧的接收时间戳T sr[q],计算第一厂站和第二厂站之间的时间相位差Δs和晶振频率偏差Δf p;同步模块13,设置为根据时间相位差Δs,调整第一厂站的时间,以及根据晶振频率偏差Δf p,调整第一厂站的时钟频率。
在一实施例中,计算模块12是通过如下公式计算时间相位差Δs:
Figure PCTCN2019077490-appb-000016
本实施例中,T d[m→s]为第二厂站到第一厂站的传输时延,T d[s→m]为第一厂站到第二厂站的传输时延。
在一实施例中,结合图4,T d[s→m]=T d[m→s]=T d,同步模块13是设置为计算第一厂站和第二厂站之间的传输时延T d,其中,计算传输时延T d的公式包括:
Figure PCTCN2019077490-appb-000017
判断传输时延T d是否小于或者等于预设传输时延T s,预设传输时延T s是第一厂站采用GPS对时方法计算得到的;响应于传输时延T d大于预设传输时延T s的判断结果,第一厂站根据时间相位差Δs,调整第一厂站的时间,以及根据晶振频率偏差Δf p,调整第一厂站的时钟频率。
在一实施例中,计算晶振频率偏差Δf p的公式包括:
Figure PCTCN2019077490-appb-000018
其中,T为计算晶振频率偏差的周期。
在一实施例中,计算模块12,还设置为计算平均晶振频率偏差Δf mean,其中,计算平均晶振频率偏差Δf mean的公式包括:
Figure PCTCN2019077490-appb-000019
M为正整数;同步模块13,是设置为通过如下方式根据晶振频率偏差Δf p,调整第一厂站的时钟频率:根据平均晶振频率偏差Δf mean,调整第一厂站的时钟频率。
在一实施例中,第一厂站为主厂站,第二厂站为从厂站;或者,第一厂站为从厂站,第二厂站为主厂站。
在一实施例中,计算模块12可以对应具备时间偏差及晶振频率偏差计算功能的模块。
本实施例提供的以上具备广域同步功能的装置,可执行上述方法实施例所提供的广域系统保护装置的同步方法中第一厂站所执行的步骤,具备执行方法相应的功能模块和有益效果。
图5为一实施例提供的一种厂站的结构示意图。如图5所示,该厂站包括处理器20、存储器21、输入接口22和输出接口23;厂站中处理器20的数量可以是一个或多个,图5中以一个处理器20为例;厂站中的处理器20、存储器21、输入接口22和输出接口23可以通过总线或其他方式连接,图5中以通过 总线连接为例。总线表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。
存储器21作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如上述实施例中的广域系统保护装置的同步方法对应的程序指令/模块。处理器20通过运行存储在存储器21中的软件程序、指令以及模块,从而执行厂站的至少一种功能应用以及数据处理,即实现上述的广域系统保护装置的同步方法。
存储器21可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器21可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器21可包括相对于处理器20远程设置的存储器,这些远程存储器可以通过网络连接至厂站。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入接口22可设置为接收输入的数字或字符信息,以及产生与厂站的用户设置以及功能控制有关的键信号输入。输出接口23可包括显示屏等显示设备。
本实施例还提供一种广域系统保护装置的网络拓扑架构,至少包括第一厂站和第二厂站,第一厂站每隔固定的时间间隔向第二厂站发送一帧数据帧,第二厂站每隔固定的时间间隔向第一厂站发送一帧数据帧。其中,第一厂站包括具有如上述实施例描述的具备广域同步功能的装置。
本实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有 计算机程序,该程序被处理器执行时实现如上述实施例描述的广域系统保护装置的同步方法。
本实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦式可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)或闪存、光纤、便携式紧凑磁盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与指令执行系统、装置或者器件结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,数据信号中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与指令执行系统、装置或者器件结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于无线、电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或多种程序设计语言组合来编写用于执行本公开操作的计算机程序代码,程序设计语言包括面向对象的程序设计语言-诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言-诸如”C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(Local Area Network,LAN)或广域网(Wide Area Network,WAN)-连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。

Claims (10)

  1. 一种广域系统保护装置的同步方法,所述广域系统保护装置的网络拓扑架构至少包括第一厂站和第二厂站,所述第一厂站每隔固定的时间间隔向所述第二厂站发送一帧数据帧,所述第二厂站每隔固定的时间间隔向所述第一厂站发送一帧数据帧,所述方法包括:
    所述第一厂站向所述第二厂站发送第一数据帧,所述第一数据帧至少包括第一数据帧的序号p,第一数据帧的发送时间戳T st[p]
    所述第一厂站接收所述第二厂站发送的第二数据帧,并记录第二数据帧的接收时间戳T sr[q],所述第二数据帧包括第二数据帧的序号q,第二数据帧的发送时间戳T mt[q],及第一数据帧的接收时间戳T mr[p],所述第一数据帧与所述第二数据帧在所述第二厂站上相邻;
    所述第一厂站根据所述第一数据帧的发送时间戳T st[p]、所述第一数据帧的接收时间戳T mr[p]、所述第二数据帧的发送时间戳T mt[q]和所述第二数据帧的接收时间戳T sr[q],计算所述第一厂站和所述第二厂站之间的时间相位差Δs和晶振频率偏差Δf p
    所述第一厂站根据所述时间相位差Δs,调整所述第一厂站的时间,以及根据所述晶振频率偏差Δf p,调整所述第一厂站的时钟频率。
  2. 根据权利要求1所述的方法,其中,计算所述时间相位差Δs的公式包括:
    Figure PCTCN2019077490-appb-100001
    其中,T d[m→s]为所述第二厂站到所述第一厂站的传输时延,T d[s→m]为所述第一厂站到所述第二厂站的传输时延。
  3. 根据权利要求2所述的方法,其中,所述第一厂站到所述第二厂站的传输时延T d[s→m]等于所述第二厂站到所述第一厂站的传输时延T d[m→s]等于所述第一厂站和所述第二厂站之间的传输时延T d
    所述第一厂站根据所述时间相位差Δs,调整所述第一厂站的时间,以及根据所述晶振频率偏差Δf p,调整所述第一厂站的时钟频率包括:
    所述第一厂站计算所述第一厂站和所述第二厂站之间的传输时延T d,其中,计算所述传输时延T d的公式包括:
    Figure PCTCN2019077490-appb-100002
    所述第一厂站判断所述传输时延T d是否小于或者等于预设传输时延T s,所述预设传输时延T s是所述第一厂站采用GPS对时方法计算得到的;响应于所述传输时延Td小于或者等于所述预设传输时延T s的判断结果,所述第一厂站根据所述时间相位差Δs,调整所述第一厂站的时间,以及根据所述晶振频率偏差Δf p,调整所述第一厂站的时钟频率。
  4. 根据权利要求1、2或3所述的方法,其中,所述计算所述晶振频率偏差Δf p的公式包括:
    Figure PCTCN2019077490-appb-100003
    其中,T为计算所述晶振频率偏差的周期。
  5. 根据权利要求4所述的方法,还包括:
    所述第一厂站计算平均晶振频率偏差Δf mean,其中,计算所述平均晶振频率偏差Δf mean的公式包括:
    Figure PCTCN2019077490-appb-100004
    M为正整数;
    所述第一厂站根据所述晶振频率偏差Δf p,调整所述第一厂站的时钟频率,包括:
    所述第一厂站根据所述平均晶振频率偏差Δf mean,调整所述第一厂站的时钟频率。
  6. 根据权利要求1-5中任一项所述的方法,其中,所述第一厂站为主厂站,所述箕二厂站为从厂站;或者,所述箕一厂站为从厂站,所述箕二厂站为主厂站。
  7. 一种具备广域同步功能的装置,设置于第一厂站中,包括:发送模块、接收模块、计算模块和同步模块;
    所述发送模块,设置为向第二厂站发送第一数据帧,所述第一数据帧至少包括第一数据帧的序号p,第一数据帧的发送时间戳T st[p]
    所述接收模块,设置为接收所述第二厂站发送的第二数据帧,并记录第二数据帧的接收时间戳T sr[q],所述第二数据帧包括第二数据帧的序号q,第二数据帧的发送时间戳T mt[q],及第一数据帧的接收时间戳T mr[p],所述第一数据帧与所述第二数据帧在所述第二厂站上相邻;
    所述计算模块,设置为根据所述第一数据帧的发送时间戳T st[p]、所述第一数据帧的接收时间戳T mr[p]、所述第二数据帧的发送时间戳T mt[q]和所述第二数据帧的接收时间戳T sr[q],计算所述第一厂站和所述第二厂站之间的时间相位差Δs和晶振频率偏差Δf p
    所述同步模块,设置为根据所述计算得到的时间相位差Δs,调整所述第一厂站的时间,以及根据所述计算得到的晶振频率偏差Δf p,调整所述第一厂站的时钟频率。
  8. 一种厂站,包括:
    至少一个处理器;
    存储器,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-6中任一所述的广域系统保护装置的同步方法。
  9. 一种广域系统保护装置的网络拓扑架构,至少包括第一厂站和第二厂站,所述第一厂站每隔固定的时间间隔向所述第二厂站发送一帧数据帧,所述第二 厂站每隔固定的时间间隔向所述第一厂站发送一帧数据帧,所述第一厂站包括如权利要求7所述的具备广域同步功能的装置。
  10. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-6中任一所述的广域系统保护装置的同步方法。
PCT/CN2019/077490 2019-02-01 2019-03-08 广域系统保护装置的同步方法、装置、厂站及拓扑架构 WO2020155308A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910103517.6 2019-02-01
CN201910103517.6A CN109818700B (zh) 2019-02-01 2019-02-01 广域系统保护装置的同步方法、装置、厂站及拓扑架构

Publications (1)

Publication Number Publication Date
WO2020155308A1 true WO2020155308A1 (zh) 2020-08-06

Family

ID=66605144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077490 WO2020155308A1 (zh) 2019-02-01 2019-03-08 广域系统保护装置的同步方法、装置、厂站及拓扑架构

Country Status (3)

Country Link
US (1) US10615952B1 (zh)
CN (1) CN109818700B (zh)
WO (1) WO2020155308A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112860603B (zh) * 2019-11-28 2024-03-19 北京百度网讯科技有限公司 定位数据发送方法、硬件在环测试装置和电子设备
CN113890664B (zh) * 2021-09-24 2024-01-30 锐盟(深圳)医疗科技有限公司 体域网内数据同步方法、检测终端及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162860A (zh) * 2015-04-27 2016-11-23 华为技术有限公司 一种时间同步的方法及系统、网络设备
CN107634812A (zh) * 2017-09-06 2018-01-26 深圳磊诺科技有限公司 一种lte微基站及其检测帧头偏移的方法和同步方法
US20180343183A1 (en) * 2017-05-26 2018-11-29 Solarflare Communications, Inc. Time Stamping Network Device
CN109039514A (zh) * 2018-07-19 2018-12-18 烽火通信科技股份有限公司 一种提高ieee1588时间戳精度的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6330236B1 (en) * 1998-06-11 2001-12-11 Synchrodyne Networks, Inc. Packet switching method with time-based routing
US7103124B1 (en) * 1999-12-30 2006-09-05 Telefonaktiebolaget Lm Ericsson (Publ) Synchronization of nodes
US7088782B2 (en) * 2001-04-24 2006-08-08 Georgia Tech Research Corporation Time and frequency synchronization in multi-input, multi-output (MIMO) systems
US7903540B2 (en) * 2007-08-02 2011-03-08 Alvarion Ltd. Method and device for synchronization in wireless networks
CN101686093A (zh) * 2008-09-28 2010-03-31 大唐移动通信设备有限公司 传输网时钟同步的方法、设备及系统
CN101867469B (zh) * 2010-06-10 2014-09-24 北京东土科技股份有限公司 一种精密同步时钟的实现方法
US9210674B2 (en) * 2012-03-26 2015-12-08 Avago Technologies General Ip (Singapore) Pte. Ltd. Base station timing control using synchronous transport signals
JP6125714B2 (ja) * 2013-12-03 2017-05-10 スマート エナジー インスツルメンツ インコーポレイテッド 分散型電力系統測定のための通信システムおよび方法
US9854548B2 (en) * 2014-10-17 2017-12-26 Qulsar, Inc. Method for constructing a distributed boundary clock over a dedicated communication channel
CN109246664B (zh) * 2017-06-13 2021-07-23 上海大唐移动通信设备有限公司 一种语音测试方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162860A (zh) * 2015-04-27 2016-11-23 华为技术有限公司 一种时间同步的方法及系统、网络设备
US20180343183A1 (en) * 2017-05-26 2018-11-29 Solarflare Communications, Inc. Time Stamping Network Device
CN107634812A (zh) * 2017-09-06 2018-01-26 深圳磊诺科技有限公司 一种lte微基站及其检测帧头偏移的方法和同步方法
CN109039514A (zh) * 2018-07-19 2018-12-18 烽火通信科技股份有限公司 一种提高ieee1588时间戳精度的方法

Also Published As

Publication number Publication date
CN109818700A (zh) 2019-05-28
CN109818700B (zh) 2021-02-12
US10615952B1 (en) 2020-04-07

Similar Documents

Publication Publication Date Title
EP1827036B1 (en) Interface apparatus for connecting master base station with radio remote unit
CN104052589B (zh) 容错时钟网络
JP5515735B2 (ja) 時刻同期システム、マスタノード、スレーブノード、中継装置、時刻同期方法及び時刻同期用プログラム
EP1256197A2 (en) Reference time distribution over a network
CN104464767A (zh) 同步多个播放装置的音频播放的方法及音频播放系统
US8565270B2 (en) Phase and frequency re-lock in synchronous ethernet devices
WO2020155308A1 (zh) 广域系统保护装置的同步方法、装置、厂站及拓扑架构
WO2010111963A1 (zh) 时间同步装置、方法和系统
US20140241381A1 (en) Time control device, time control method, and program
CN106656397B (zh) 时钟同步方法及装置
CN102075317B (zh) 一种家庭基站系统中可靠的时频同步方法及系统
CN105099594A (zh) 无线网络内的时间戳复制
CN108028817A (zh) 用于具有限回程的小小区的定时同步
WO2020087370A1 (zh) 时间同步方法、设备及存储介质
CN103686982B (zh) 一种基于时钟信息的时间同步方法以及节点设备
CN104092528B (zh) 一种时钟同步方法和装置
CN101795190B (zh) 用于调整时钟信号的方法和装置
EP2897312B1 (en) Clock synchronization method, system and device
CN105007134B (zh) 一种抑制分组网络pdv噪声的方法、装置及从时钟设备
JPH03114333A (ja) パケット伝送におけるクロック同期方式とパケット送信装置およびパケット受信装置
CN110620630B (zh) 时间同步方法、装置、网络设备及计算机可读存储介质
US11835999B2 (en) Controller which adjusts clock frequency based on received symbol rate
CN105099646A (zh) 同步链路确定方法及装置
JP6274918B2 (ja) 通信システム
WO2021164541A1 (zh) 一种通信设备及时钟同步的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912553

Country of ref document: EP

Kind code of ref document: A1