WO2020155289A1 - 升降压电路及其控制方法 - Google Patents

升降压电路及其控制方法 Download PDF

Info

Publication number
WO2020155289A1
WO2020155289A1 PCT/CN2019/077014 CN2019077014W WO2020155289A1 WO 2020155289 A1 WO2020155289 A1 WO 2020155289A1 CN 2019077014 W CN2019077014 W CN 2019077014W WO 2020155289 A1 WO2020155289 A1 WO 2020155289A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
tar
bat
turned
buck
Prior art date
Application number
PCT/CN2019/077014
Other languages
English (en)
French (fr)
Inventor
王永进
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Priority to US17/426,614 priority Critical patent/US11894773B2/en
Priority to EP19913662.3A priority patent/EP3920400A4/en
Publication of WO2020155289A1 publication Critical patent/WO2020155289A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load

Definitions

  • the present disclosure relates to the field of direct current conversion, in particular to a buck-boost circuit and a control method thereof.
  • a buck-boost circuit can effectively reduce system power consumption by adjusting the output voltage.
  • a circuit that can achieve fast buck-boost is needed to ensure smooth communication and help reduce system power consumption.
  • the existing buck-boost buck-boost structure takes too long to realize the buck-boost conversion time, resulting in a relatively long voltage stabilization time when adjusting the output voltage, especially when switching from the buck mode to the boost mode, the intermediate switching process is long , Resulting in the voltage stabilization time being too long to meet the requirements of system communication, resulting in reduced signal sensitivity during system application and communication failure.
  • the present disclosure proposes a buck-boost circuit and a control method thereof, which can quickly and stably realize the voltage regulation process.
  • a buck-boost circuit including a first switch, a second switch, a third switch, a fourth switch, a first inductor, a first capacitor, and a second capacitor;
  • the first terminal of the first switch is connected to the positive pole of the input power source
  • the first terminal of the second switch is connected to the positive pole of the input power source
  • the first terminal of the third switch is connected to the first terminal of the first capacitor.
  • the terminal is connected to the second terminal of the first switch
  • the second terminal of the third switch is connected to the negative terminal of the input power source
  • the first terminal of the fourth switch the second terminal of the first capacitor
  • the first end of the first inductor is connected to the second end of the second switch
  • the second end of the fourth switch is connected to the negative electrode of the input power source
  • the second end of the first inductor is connected to The positive pole of the output power supply is connected
  • the second capacitor is connected in parallel between the positive pole and the negative pole of the output power supply.
  • the buck-boost circuit further includes a fifth switch, and the fifth switch is connected between the second terminal of the first capacitor and the second terminal of the second switch.
  • the buck-boost circuit further includes a sixth switch, and the sixth switch is connected in parallel with the first capacitor.
  • the buck-boost circuit further includes a seventh switch, and the seventh switch is connected in parallel with the first inductor.
  • the buck-boost circuit further includes a control module, and the control module controls the switch according to the relationship between the target voltage V tar and the input voltage V BAT :
  • V BAT- ⁇ V ⁇ V tar ⁇ V BAT + ⁇ V open the first switch, the third switch, and the fourth switch, and close the second switch;
  • the buck-boost circuit further includes a control module, and the control module controls the switch according to the relationship between the target voltage V tar and the input voltage V BAT :
  • the buck-boost circuit further includes a control module, and the control module controls the switch according to the relationship between the target voltage V tar and the input voltage V BAT :
  • the buck-boost circuit further includes a control module, and the control module controls the switch according to the relationship between the target voltage V tar and the input voltage V BAT :
  • V BAT- ⁇ V ⁇ V tar ⁇ V BAT + ⁇ V open the first switch, the third switch, and the fourth switch, and close the second switch and the sixth switch;
  • the buck-boost circuit further includes a control module, which is based on the relationship between the output voltage V out and the target voltage V tar , and the relationship between the target voltage V tar and the input voltage V BAT The relationship controls the switch:
  • V out When V out ⁇ V tar - ⁇ V and V tar ⁇ V BAT , the fourth switch is opened, and the second switch and the seventh switch are closed to connect the output terminal of the buck-boost circuit
  • the first working mode includes:
  • V BAT- ⁇ V ⁇ V tar ⁇ V BAT + ⁇ V open the first switch, the third switch, and the fourth switch, and close the second switch;
  • the cooperation of the capacitor and the switch can generate twice the input power voltage at one end of the inductor, so that the buck-boost circuit of the present disclosure can quickly increase the output voltage in the boost mode, thereby reducing the regulation output of the buck-boost circuit.
  • the voltage stabilization time when voltage is used to realize the voltage regulation process quickly and stably.
  • Fig. 1 shows a structural diagram of a buck-boost circuit according to an embodiment of the present disclosure.
  • Fig. 2 shows a switch state diagram of the buck-boost circuit in Fig. 1 working in a buck mode and a voltage diagram at point LX.
  • Fig. 3 shows a switch state diagram of the buck-boost circuit in Fig. 1 working in a through mode and a voltage diagram at point LX.
  • Fig. 4 shows a switch state diagram of the buck-boost circuit in Fig. 1 working in a boost mode and a voltage diagram at point LX.
  • Fig. 5 shows a structural diagram of a buck-boost circuit according to an embodiment of the present disclosure.
  • Fig. 6 shows a switch state diagram of the buck-boost circuit in Fig. 5 working in a buck mode and a voltage diagram at point LX.
  • FIG. 7 shows the switch state diagram and the voltage diagram at the LX point when the buck-boost circuit in FIG. 5 works in the buck-boost simultaneous working mode.
  • Fig. 8 shows a switch state diagram of the buck-boost circuit in Fig. 5 working in a boost mode and a voltage diagram at the LX point.
  • FIG. 9 shows another switch state diagram and a voltage diagram at the LX point when the buck-boost circuit in FIG. 5 works in the buck-boost simultaneous working mode.
  • Fig. 10 shows a structural diagram of a buck-boost circuit according to an embodiment of the present disclosure.
  • FIG. 11 shows a switch state diagram of the buck-boost circuit in FIG. 10 working in a buck mode and a voltage diagram at point LX.
  • Fig. 12 shows a switch state diagram of the buck-boost circuit in Fig. 10 working in a through mode and a voltage diagram at point LX.
  • Fig. 13 shows a switch state diagram of the buck-boost circuit in Fig. 10 operating in a boost mode and a voltage diagram at point LX.
  • FIG. 14 shows a structural diagram of a buck-boost circuit according to an embodiment of the present disclosure.
  • FIG. 15 shows an output voltage diagram and a switch state diagram of the boosting process of the buck-boost circuit in FIG. 14.
  • FIG. 16 shows an output voltage diagram and a switch state diagram of the step-down process of the buck-boost circuit in FIG. 14.
  • FIG. 17 shows a structural diagram of a buck-boost circuit according to an embodiment of the present disclosure.
  • FIG. 18 shows an output voltage diagram and a switch state diagram of the step-up process of the buck-boost circuit in FIG. 17.
  • FIG. 19 shows a structural diagram of a buck-boost circuit according to an embodiment of the present disclosure.
  • FIG. 20 shows an output voltage diagram and a switch state diagram of the step-down process of the buck-boost circuit in FIG. 19.
  • Fig. 1 shows a structural diagram of a buck-boost circuit according to an embodiment of the present disclosure.
  • the buck-boost circuit includes a first switch S1, a second switch S2, a third switch S3, a fourth switch S4, a first inductor L1, a first capacitor C1 and a second capacitor C2.
  • the first terminal of the first switch S1 is connected to the positive pole of the input power supply V BAT
  • the first terminal of the second switch S2 is connected to the positive pole of the input power supply V BAT
  • the first terminal of the third switch S3 is connected to the first capacitor C1.
  • the first terminal is connected to the second terminal of the first switch S1, the second terminal of the third switch S3 is connected to the negative electrode of the input power supply V BAT (for example, grounded), the first terminal of the fourth switch S4 and the first terminal of the first capacitor C1
  • the two ends and the first end of the first inductor L1 are connected to the second end of the second switch S2, the second end of the fourth switch S4 is connected to the negative electrode of the input power supply V BAT (for example, grounded), and the second end of the first inductor L1
  • the terminal is connected to the positive electrode of the output power source V out , and the second capacitor C2 is connected in parallel between the positive electrode and the negative electrode of the output power source V out .
  • the state of each switch can be controlled by the control module according to the relationship between the target voltage V tar and the input voltage V BAT , so as to realize the buck-boost mode of the circuit.
  • the control module can be implemented in the buck-boost circuit, or can be independent of the buck-boost circuit, and can execute the control method in each embodiment of the present disclosure according to a predetermined program or external instruction to control the switch. Switches not mentioned in the control mode are in the off state by default.
  • ⁇ V is the set voltage difference, which is defined according to requirements, such as 100mV, 200mV...
  • the first switch S1 and the third switch S3 are turned off, so that S1 and S3 are in the closed state at the same time, and the second switch S2 and the fourth switch S4 are complementarily turned on.
  • the initial state of each switch is the off state by default.
  • V out (t on /T) ⁇ V BAT (1).
  • t on represents the time of the second switch is turned on
  • the duty ratio t on / T is the control voltage of the second switch.
  • the circuit works in bypass mode.
  • the first switch S1 and the third switch S3 are in the off state at the same time, the second switch S2 is in the normally open state (that is, the state of continuous conduction), and the fourth switch S4 is in the normally off state.
  • the circuit works in BOOST boost mode.
  • the fourth switch S4 is in the off state
  • the second switch S2 and the third switch S3 work at the same time
  • the second switch S2 and the first switch S1 are complementarily turned on, that is, the third switch S3 It is also turned on complementary to the first switch S1.
  • the voltage at LX is V BAT , and the inductor current in the first inductor L1 increases linearly; when the second switch S2 and the third switch S3 are turned off, the first switch S1 When turned on, the first inductor L1 charges the first capacitor C1 so that the voltage at LX reaches 2V BAT .
  • V OUT (1 + t on / T) ⁇ V BAT (2): Executed the second, known calculation formula according to the output voltage.
  • the cooperation of the capacitor and the switch can generate twice the input power voltage at one end of the inductor, so that the buck-boost circuit in this embodiment can quickly increase the output voltage in the boost mode, thereby reducing the buck-boost circuit Adjust the voltage stabilization time when the output voltage is adjusted, and realize the voltage regulation process quickly and stably.
  • switches provided in the embodiments of the present disclosure may be semiconductor transistors, such as bipolar transistors, field effect transistors, or any other types of switches.
  • Fig. 5 shows a structural diagram of a buck-boost circuit according to an embodiment of the present disclosure.
  • the buck-boost circuit compared with the buck-boost circuit in FIG. 1 adds a fifth switch S5.
  • the fifth switch S5 is connected in series with the first capacitor C1, and is connected between the second terminal of the first capacitor C1 and the second terminal of the second switch, that is, the second terminal of the first capacitor C1 of the first capacitor C1 and the first capacitor C1. Between the first end of the inductor L1.
  • the first control method of the buck-boost circuit in Figure 5 is as follows:
  • the circuit works in BUCK mode at this time.
  • the fifth switch S5 is in the off state
  • the second switch S2 and the fourth switch S4 are complementarily turned on
  • the states of the first switch S1 and the third switch S3 are opposite or both are off. Yes, that is, it can be that S1 is on and S3 is off, or S3 is on and S1 is off, or S1 and S3 are off at the same time.
  • the voltage at LX is V BAT and the inductor current in the first inductor L1 increases linearly; while the second switch S2 is off and the fourth switch S4 is on, the voltage at LX is 0 Since the inductor current cannot change suddenly, it forms a loop through the fourth switch S4 to charge the second capacitor C2.
  • the voltage at LX is 2V BAT , and the turn-on time of the first switch S1 is t on1 , that is, the time that the first switch S1 is turned on at the same time is t on1 ;
  • the switch S1 is turned off and the second switch S2 starts to be turned on
  • the voltage at LX is V BAT and the conduction time of the second switch S2 is t on2
  • the fourth switch S4 starts to be turned on
  • the voltage at LX Is 0. Achieve the desired output voltage by controlling the time of ton1 and ton2.
  • the calculation formula of the output voltage is:
  • V out (t on1 /T) ⁇ 2V BAT + (t on2 /T) ⁇ V BAT (3).
  • This control method is different from the first one only when V BAT - ⁇ V ⁇ V tar ⁇ V BAT + ⁇ V, and it is the same in other cases.
  • the circuit works in the buck-boost mode.
  • the first switch S1 and the third switch S3 are complementarily turned on
  • the fourth switch S4 and the fifth switch S5 are complementarily turned on
  • the second switch S2 is turned on during the period from when the fourth switch S4 is turned off to when the first switch S1 is turned on.
  • the fourth switch S4 is turned on, the voltage at LX is 0; when the fourth switch S4 is turned off and the second switch S2 starts to turn on, the voltage at LX is V BAT and the second switch S2 is turned on.
  • the on time is t on2 ; when the first switch S1 starts to be turned on, the voltage at LX is 2V BAT , and the on time of the first switch S1 is t on1 .
  • the calculation of the output voltage is the same as formula (3).
  • Fig. 10 shows a structural diagram of a buck-boost circuit according to an embodiment of the present disclosure.
  • the buck-boost circuit has a sixth switch S6.
  • the sixth switch S6 is connected in parallel with the first capacitor C1, and is connected between the second end of the first switch S1 and the first end of the first inductor.
  • the circuit works in BUCK mode at this time.
  • the sixth switch S6 is closed, the first switch S1 and the second switch S2 work simultaneously, the third switch S3 and the fourth switch S4 work simultaneously, and the first switch S1 and the third switch S3 are complementary Conduction.
  • the voltage at LX is V BAT ; while the first switch S1 and the second switch S2 are off, and the third switch and the fourth switch S4 are on, the voltage at LX The voltage is 0.
  • the circuit works in BOOST boost mode.
  • the fourth switch S4 and the sixth switch S6 are turned off, the second switch S2 and the third switch S3 work at the same time, and the second switch S2 and the first switch S1 are complementarily turned on.
  • the voltage at LX is 2V BAT ;
  • the sixth switch is in the normally-off state, which is the same as the BOOST boost mode in FIG. 1.
  • FIG. 14 shows a structural diagram of a buck-boost circuit according to an embodiment of the present disclosure.
  • the buck-boost circuit adds a seventh switch S7.
  • the seventh switch S7 is connected in parallel with the first inductor L1 and connected to the second end of the second switch S1. Between and the positive pole of the output power supply.
  • the seventh switch S7 When the seventh switch S7 is in the normally closed state, the circuit is completely consistent with Figure 1. When the circuit output voltage is required to be adjusted, the seventh switch S7 is closed to quickly charge and discharge the output capacitor, so that the output voltage can be quickly adjusted to the target voltage.
  • the control module controls the switch according to the relationship between the output voltage V out and the target voltage V tar , and the relationship between the target voltage V tar and the input voltage V BAT :
  • the first working mode includes:
  • FIG. 15 shows the output voltage diagram and the switch state diagram of the boosting process of the buck-boost circuit in this embodiment.
  • V out ⁇ V tar - ⁇ V, and V tar ⁇ V BAT as shown in the first half of the output voltage curve in Figure 15, the circuit is essentially a step-down circuit, and the actual output voltage is smaller than the target voltage.
  • the target voltage is reached after the boost process, that is, the output voltage is in a boost state.
  • the fourth switch S4 is first opened, and the second switch S2 and the seventh switch S7 are closed to quickly perform fast operation on the second capacitor C2 connected to the output terminal of the buck-boost circuit Recharge.
  • the output voltage rises rapidly.
  • V out V tar - ⁇ V
  • the control process of the buck-boost circuit in FIG. 1 is to enter the first working mode, and the output voltage is gradually adjusted to the target voltage V tar and a stable output V tar is maintained.
  • the circuit When the output voltage reaches a difference of ⁇ V from the target voltage, the first switch S1 and the seventh switch S7 are turned off, the circuit returns to the structure in Figure 1, and enters the control process of the buck-boost circuit in Figure 1, that is, enters the first Working mode The first working mode.
  • FIG. 16 shows the output voltage diagram and the switch state diagram of the step-down process of the buck-boost circuit in this embodiment.
  • V out >V tar + ⁇ V as shown in the output voltage curve in Figure 16, the actual output voltage is higher than the target voltage, and the target voltage needs to be reduced through a step-down process, that is, the output voltage is in a step-down state.
  • FIG. 17 shows a structural diagram of a buck-boost circuit according to an embodiment of the present disclosure.
  • the buck-boost circuit compared with the buck-boost circuit in Figure 5 adds a seventh switch S7.
  • the seventh switch S7 is connected in parallel with the first inductor L1 and connected to the second end of the second switch S1. Between and the positive pole of the output power supply.
  • the seventh switch S7 When the seventh switch S7 is in the normally-off state, the circuit is completely consistent with FIG. 5.
  • the fifth switch S5 needs to be closed, and the control method is shown in FIG. 18.
  • the control mode of the first switch S1, the second switch S2, the third switch S3, and the seventh switch S7 is the same as that of the step-up process of the buck-boost circuit in FIG. 14.
  • FIG. 19 shows a structural diagram of a buck-boost circuit according to an embodiment of the present disclosure.
  • the buck-boost circuit adds a seventh switch S7.
  • the seventh switch S7 is connected in parallel with the first inductor L1 and connected to the second end of the second switch S1. Between and the positive pole of the output power supply.
  • the circuit is completely consistent with FIG. 10.
  • the sixth switch S6 is in the open state, the working state is similar to that of the buck-boost circuit of FIG. 14, except that the control module is also used to close the sixth switch S6 and S6 when V out >V tar + ⁇ V.
  • the control method is shown in FIG. 20.
  • the control mode of the fourth switch S4 and the seventh switch S7 is the same as the control mode of the step-down process of the buck-boost circuit in FIG. 14.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本公开涉及升降压电路及其控制方法。在该升降压电路中,第一开关的第一端与输入电源的正极连接,第二开关的第一端与输入电源的正极连接,第三开关的第一端和第一电容的第一端与第一开关的第二端连接,第三开关的第二端与输入电源的负极连接,第四开关的第一端、第一电容的第二端以及第一电感的第一端与第二开关的第二端连接,第四开关的第二端与输入电源的负极连接,第一电感的第二端与输出电源的正极连接,第二电容并联在输出电源的正极和负极之间。电容与开关配合工作可在电感的一端产生两倍的输入电源电压,使得本公开的升降压电路在升压模式时能够快速实现输出电压的升高,从而减少了调节输出电压时电压的稳定时间,快速稳定地实现调压过程。

Description

升降压电路及其控制方法 技术领域
本公开涉及直流电变换领域,尤其涉及一种升降压电路及其控制方法。
背景技术
升降压电路(buck-boost)能够通过调节输出电压的高低有效降低系统功耗。随着5G通信时代的到来,需要能实现快速升降压的电路来保障通信顺畅并协助降低系统功耗。
现有的升降压buck-boost结构在实现升降压的转换时间太长,导致在调节输出电压时电压的稳定时间比较长,尤其是从降压模式转换到升压模式,中间切换过程长,导致电压的稳定时间太长达不到系统通信要求,造成系统应用时信号敏感度降低,导致通信失败。
因此,如何能够减少升降压电路在调节电压时电压的稳定时间、快速实现调压过程成了当下亟待解决的一大问题。
发明内容
有鉴于此,本公开提出了一种升降压电路及其控制方法,能够快速稳定地实现调压过程。
根据本公开的一方面,提供了一种升降压电路,包括第一开关、第二开关、第三开关、第四开关、第一电感、第一电容和第二电容;
所述第一开关的第一端与输入电源的正极连接,所述第二开关的第一端与输入电源的正极连接,所述第三开关的第一端和所述第一电容的第一端与所述第一开关的第二端连接,所述第三开关的第二端与所述输入电源的负极连接,所述第四开关的第一端、所述第一电容的第二端以及所述第一电感的第一端与所述第二开关的第二端连接,所述第四开关的第二端与所述输入电源的负极连接,所述第一电感的第二端与所述输出电源的正极连接,所述第二电容并联在所述输出电源的正极和负极之间。
在一种可能的实现方式中,所述升降压电路还包括第五开关,所述第五开关连接在所述第一电容的第二端和所述第二开关的第二端之间。
在一种可能的实现方式中,所述升降压电路还包括第六开关,所述第六开关与所述第一电容并联。
在一种可能的实现方式中,所述升降压电路还包括第七开关,所述第七开关与所述第一电感并联。
在一种可能的实现方式中,所述升降压电路还包括控制模块,所述控制模块根据目标电压V tar与输入电压V BAT之间的关系对开关进行控制:
当V tar<V BAT-△V时,断开所述第一开关和第三开关,所述第二开关和第四开关互补导通,其中,△V为设定电压差;
当V BAT-△V≤V tar≤V BAT+△V时,断开所述第一开关、第三开关、第四开关,闭合所述第二开关;
当V tar>V BAT+△V时,断开所述第四开关,所述第二开关和所述第三开关同时工作,所述第二开关和所述第一开关互补导通。
在一种可能的实现方式中,所述升降压电路还包括控制模块,所述控制模块根据目标电压V tar与输入电压V BAT之间的关系对开关进行控制:
当V tar<V BAT-△V时,断开所述第五开关,所述第一开关和第三开关状态相反或者同时断开,所述第二开关和第四开关互补导通,其中,△V为设定电压差;
当V BAT-△V≤V tar≤V BAT+△V时,所述第一开关和第三开关互补导通,所述第四开关和第五开关互补导通,所述第二开关从所述第一开关断开起至所述第四开关闭合期间导通;
当V tar>V BAT+△V时,闭合所述第五开关,断开所述第四开关,所述第二开关和所述第三开关同时工作,所述第二开关和所述第一开关互补导通。
在一种可能的实现方式中,所述升降压电路还包括控制模块,所述控制模块根据目标电压V tar与输入电压V BAT之间的关系对开关进行控制:
当V tar<V BAT-△V时,断开所述第五开关,所述第一开关和第三开关状态相反或者同时断开,所述第二开关和第四开关互补导通,其中,△V为设定电压差;
当V BAT-△V≤V tar≤V BAT+△V时,所述第一开关和第三开关互补导通,所述第四开关和第五开关互补导通,所述第二开关从所述第四开关断开起至所述第一开关闭合期间导通;
当V tar>V BAT+△V时,闭合所述第五开关,断开所述第四开关,所述第二开关和所述第三开关同时工作,所述第二开关和所述第一开关互补导通。
在一种可能的实现方式中,所述升降压电路还包括控制模块,所述控制模块根据目标电压V tar与输入电压V BAT之间的关系对开关进行控制:
当V tar<V BAT-△V时,闭合所述第六开关,所述第一开关和所述第二开关同时工作,所述第三开关和所述第四开关同时工作,所述第一开关和第三开关互补导通,其中,△V为设定电压差;
当V BAT-△V≤V tar≤V BAT+△V时,断开所述第一开关、第三开关、第四开关,闭合所述第二开关和第六开关;
当V tar>V BAT+△V时,断开所述第四开关和所述第六开关,所述第二开关和所述第三开关同时工作,所述第二开关和所述第一开关互补导通。
在一种可能的实现方式中,所述升降压电路还包括控制模块,所述控制模块根据输出电压V out与目标电压V tar的关系,以及目标电压V tar与输入电压V BAT之间的关系对开关进行控制:
当V out<V tar-△V,且V tar≤V BAT时,断开所述第四开关,闭合所述第二开关和第七开关以对与所述升降压电路的输出端连接的第二电容进行充电,在输出电压升高至V out=V tar-△V时断开所述第七开关,进入第一工作模式,其中△V为设定电压差;
当V out<V tar-△V,且V tar>V BAT时,闭合所述第二开关、第三开关和第七开关以对所述第二电容进行充电,在输出电压升高至V out=V BAT时断开所述第二开关和第三开关,同时闭合所述第一开关通过所述第一电容对所述第二电容进行充电,并在输出电压升高至V out=V tar-△V时断开所述第一开关和第七开关,进入所述第一工作模式;
当V out>V tar+△V时,闭合所述第七开关、第四开关进行放电,在输出电压下降至V out=V tar+△V时断开所述第七开关、第四开关,进入所述第一工作模式;
当V tar-△V≤V out≤V tar+△V时,进入所述第一工作模式;
所述第一工作模式包括:
当V tar<V BAT-△V时,断开所述第一开关和第三开关,所述第二开关和第四开关互补导通,其中, △V为设定电压差;
当V BAT-△V≤V tar≤V BAT+△V时,断开所述第一开关、第三开关、第四开关,闭合所述第二开关;
当V tar>V BAT+△V时,断开所述第四开关,所述第二开关和所述第三开关同时工作,所述第二开关和所述第一开关互补导通。
在一种可能的实现方式中,所述控制模块还用于在V out<V tar-△V,且V tar>V BAT时,闭合所述第五开关,在输出电压升高至V out=V BAT时断开所述第五开关。
在一种可能的实现方式中,所述控制模块还用于在V out>V tar+△V时,还闭合所述第六开关和所述第三开关进行放电,在输出电压下降至V out=V tar+△V时断开所述第六开关和所述第三开关。
电容与开关配合工作可在电感的一端产生两倍的输入电源电压,使得本公开的升降压电路在升压模式时能够快速实现输出电压的升高,从而减少了升降压电路在调节输出电压时电压的稳定时间,快速稳定地实现调压过程。
根据下面参考附图对示例性实施例的详细说明,本公开的其它特征及方面将变得清楚。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本公开的示例性实施例、特征和方面,并且用于解释本公开的原理。
图1示出根据本公开一实施方式的升降压电路的结构图。
图2示出图1中的升降压电路工作在降压模式的开关状态图及LX点处的电压图。
图3示出图1中的升降压电路工作在直通模式的开关状态图及LX点处的电压图。
图4示出图1中的升降压电路工作在升压模式的开关状态图及LX点处的电压图。
图5示出根据本公开一实施方式的升降压电路的结构图。
图6示出图5中的升降压电路工作在降压模式的开关状态图及LX点处的电压图。
图7示出图5中的升降压电路工作在升降压同时工作模式的开关状态图及LX点处的电压图。
图8示出图5中的升降压电路工作在升压模式的开关状态图及LX点处的电压图。
图9示出图5中的升降压电路工作在升降压同时工作模式的另一种开关状态图及LX点处的电压图。
图10示出根据本公开一实施方式的升降压电路的结构图。
图11示出图10中的升降压电路工作在降压模式的开关状态图及LX点处的电压图。
图12示出图10中的升降压电路工作在直通模式的开关状态图及LX点处的电压图。
图13示出图10中的升降压电路工作在升压模式的开关状态图及LX点处的电压图。
图14示出根据本公开一实施方式的升降压电路的结构图。
图15示出图14中的升降压电路升压过程的输出电压图及开关状态图。
图16示出图14中的升降压电路降压过程的输出电压图及开关状态图。
图17示出根据本公开一实施方式的升降压电路的结构图。
图18示出图17中的升降压电路升压过程的输出电压图及开关状态图。
图19示出根据本公开一实施方式的升降压电路的结构图。
图20示出图19中的升降压电路降压过程的输出电压图及开关状态图。
具体实施方式
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本公开,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本公开同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本公开的主旨。
图1示出根据本公开一实施方式的升降压电路的结构图。如图1所示,该升降压电路包括第一开关S1、第二开关S2、第三开关S3、第四开关S4、第一电感L1和第一电容C1和第二电容C2。
其中,第一开关S1的第一端与输入电源V BAT的正极连接,第二开关S2的第一端与输入电源V BAT的正极连接,第三开关S3的第一端和第一电容C1的第一端与第一开关S1的第二端连接,第三开关S3的第二端与输入电源V BAT的负极连接(例如接地),第四开关S4的第一端、第一电容C1的第二端以及第一电感L1的第一端与第二开关S2的第二端连接,第四开关S4的第二端与输入电源V BAT的负极连接(例如接地),第一电感L1的第二端与输出电源V out的正极连接,第二电容C2并联在所述输出电源V out的正极和负极之间。
可以通过控制模块根据目标电压V tar与输入电压V BAT之间的关系对各个开关的状态进行控制,从而实现电路的升降压模式。控制模块可以在升降压电路中实现,也可以独立于升降压电路,可以根据预定的程序或外部指令,执行本公开各实施例中的控制方法,对开关进行控制。在控制方式中未提及的开关默认处于断开状态。
图1中的升降压电路的控制方式如下:
当V tar<V BAT-△V时,断开第一开关S1和第三开关S3,第二开关S2和第四开关S4互补导通,其中,△V为设定电压差;
当V BAT-△V≤V tar≤V BAT+△V时,断开第一开关S1、第三开关S3、第四开关S4,闭合第二开关S2;
当V tar>V BAT+△V时,断开第四开关S4,第二开关S2和第三开关S3同时工作,第二开关S2和第一开关S1互补导通。
也即,当V tar<V BAT-△V时,此时电路工作在BUCK降压模式。其中,△V为设定电压差,根据需求定义,例如100mV、200mV……。参照图2所示的开关状态图,断开第一开关S1和第三开关S3,使S1和S3同时处于关闭状态,第二开关S2和第四开关S4互补导通。在第二开关S2导通期间,LX处的电压为V BAT,第一电感L1中的电感电流线性增加;在第二开关S2断开,第四开关S4导通期间,LX处的电压为0,由于电感电流不能突变,经过第四开关S4形成回路,给第二电容C2充电。其中,各个开关的初始状态默认为断开状态。
根据秒伏法则,可知输出电压的计算公式为:V out=(t on/T)×V BAT(1)。其中,表示t on表示第二 开关的导通时间,t on/T即为第二开关的控制电压的占空比。
当V BAT-△V≤V tar≤V BAT+△V时,电路工作在bypass直通模式。参照图3所示的开关状态图,第一开关S1、第三开关S3同时处于断开状态,第二开关S2处于常开状态(即持续导通的状态),第四开关S4处于常关状态。由于第二开关S4始终导通,LX处的电压始终为V BAT,因此输出电压V out=V BAT
当V tar>V BAT+△V时,电路工作在BOOST升压模式。参照图4所示的开关状态图,第四开关S4处于断开状态,第二开关S2和第三开关S3同时工作,第二开关S2和第一开关S1互补导通,也即第三开关S3也与第一开关S1互补导通。在第二开关S2和第三开关S3导通时,LX处的电压为V BAT,第一电感L1中的电感电流线性增加;在第二开关S2、第三开关S3断开,第一开关S1导通时,第一电感L1向第一电容C1充电,使得LX处的电压达到2V BAT
根据秒伏法则,可知输出电压的计算公式为:V OUT=(1+t on/T)×V BAT(2)。
电容与开关配合工作可在电感的一端产生两倍的输入电源电压,使得本实施例中的升降压电路在升压模式时能够快速实现输出电压的升高,从而减少了升降压电路在调节输出电压时电压的稳定时间,快速稳定地实现调压过程。
需要说明的是,本公开实施例提供的各个开关可以为半导体晶体管,如双极性晶体管、场效应晶体管,或其他任意类型的开关。
图5示出根据本公开一实施方式的升降压电路的结构图。如图5所示,该升降压电路与图1中的升降压电路相比增加了第五开关S5。第五开关S5与第一电容C1串联,连接在第一电容C1的第二端与第二开关的第二端之间,也即第一电容C1的第一电容C1的第二端与第一电感L1的第一端之间。
当第五开关S5处于常开状态,该升降压电路的工作状态与图1完全一致。根据应用场景,适时调节S5的开关,可以使电路应用更加灵活。
图5中的升降压电路的第一种控制方式如下:
当V tar<V BAT-△V时,断开第五开关S5,第一开关S1和第三开关S3状态相反或者同时断开,第二开关S2和第四开关S4互补导通,其中,△V为设定电压差;
当V BAT-△V≤V tar≤V BAT+△V时,第一开关S1和第三开关S3互补导通,第四开关S4和第五开关S5互补导通,第二开关S2从第一开关S1断开起至第四开关S4闭合期间导通;
当V tar>V BAT+△V时,闭合第五开关S5,断开第四开关S4,第二开关S2和第三开关S3同时工作,第二开关S2和第一开关S1互补导通。
也即,当V tar<V BAT-△V时,此时电路工作在BUCK降压模式。参照图6所示的开关状态图,第五开关S5处于断开状态,第二开关S2和第四开关S4互补导通,第一开关S1和第三开关S3的状态相反或都为断开即可,也就是说,既可以是S1导通S3断开,也可以是S3导通S1断开,或者S1,S3同时为断开。在第二开关S2导通期间,LX处的电压为V BAT,第一电感L1中的电感电流线性增加;在第二开关S2断开,第四开关S4导通期间,LX处的电压为0,由于电感电流不能突变,经过第四开关S4形成回路,给第二电容C2充电。
当V BAT-△V≤V tar≤V BAT+△V时,电路工作在升降压同时工作模式,控制方式参见图7。第一开关S1和第三开关S3互补导通,第四开关S4和第五开关S5互补导通,第二开关S2从第一开关S1断 开起至第四开关S4闭合期间导通。当第一开关S1和第五开关S5同时导通期间,在LX处的电压为2V BAT,第一开关S1的导通时间为t on1,也即同时导通的时间为t on1;当第一开关S1断开,第二开关S2开始导通时,在LX处的电压为V BAT,第二开关S2的导通时间为t on2;当第四开关S4开始导通时,在LX处的电压为0。通过控制ton1与ton2的时间达到想要的输出电压。输出电压的计算公式为:
V out=(t on1/T)×2V BAT+(t on2/T)×V BAT  (3)。
当V tar>V BAT+△V时,此时电路工作在BOOST升压模式。参照图8所示的开关状态图,闭合第五开关S5,断开第四开关S4,第二开关S2和第三开关S3同时工作,第二开关S2和第一开关S1互补导通。该工作模式与图1中的BOOST升压模式相同。
图5中的升降压电路的第二种控制方式如下:
当V tar<V BAT-△V时,断开第五开关S5,第一开关S1和第三开关S3状态相反或者同时断开,第二开关S2和第四开关S4互补导通,其中,△V为设定电压差;
当V BAT-△V≤V tar≤V BAT+△V时,第一开关S1和第三开关S3互补导通,第四开关S4和第五开关S5互补导通,第二开关S2从第四开关S4断开起至第一开关S1闭合期间导通;
当V tar>V BAT+△V时,闭合第五开关S5,断开第四开关S4,第二开关S2和第三开关S3同时工作,第二开关S2和第一开关S1互补导通。
该控制方式仅在V BAT-△V≤V tar≤V BAT+△V时与第一种有所区别,其他情况下是相同的。
当V BAT-△V≤V tar≤V BAT+△V时,电路工作在升降压同时工作模式。控制方式参见图9。第一开关S1和第三开关S3互补导通,第四开关S4和第五开关S5互补导通,第二开关S2从第四开关S4断开起至第一开关S1闭合期间导通。当第四开关S4导通时,在LX处的电压为0;当第四开关S4断开,并且第二开关S2开始导通时,在LX处的电压为V BAT,第二开关S2的导通时间为t on2;当第一开关S1开始导通时,在LX处的电压为2V BAT,第一开关S1的导通时间为t on1。同样,通过控制ton1与ton2的时间达到想要的输出电压,输出电压的计算与公式(3)相同。
图10示出根据本公开一实施方式的升降压电路的结构图。如图10所示,该升降压电路与图1中的升降压电路相比增加了第六开关S6。第六开关S6与第一电容C1并联,连接在第一开关S1的第二端与第一电感的第一端之间。
当第六开关S6处于常关状态(即始终断开),该升降压电路的工作状态与图1完全一致。
图10中的升降压电路的控制方式如下:
当V tar<V BAT-△V时,闭合第六开关S6,第一开关S1和第二开关S2同时工作,第三开关S3和第四开关S4同时工作,第一开关S1和第三开关S3互补导通,其中,△V为设定电压差;
当V BAT-△V≤V tar≤V BAT+△V时,断开第一开关S1、第三开关S3、第四开关S4,闭合第二开关S2和第六开关S6;
当V tar>V BAT+△V时,断开第四开关S4和第六开关S6,第二开关S2和第三开关S3同时工作,第二开关S2和第一开关S1互补导通。
也即,当V tar<V BAT-△V时,此时电路工作在BUCK降压模式。参照图11所示的开关状态图,闭合第六开关S6,第一开关S1和第二开关S2同时工作,第三开关S3和第四开关S4同时工作,第一开关S1 和第三开关S3互补导通。在第一开关S1、第二开关S2导通期间,LX处的电压为V BAT;在第一开关S1、第二开关S2断开,第三开关、第四开关S4导通期间,LX处的电压为0。
当V BAT-△V≤V tar≤V BAT+△V时,电路工作在bypass直通模式。参照图12所示的开关状态图,断开第一开关S1、第三开关S3、第四开关S4,闭合第二开关S2和第六开关S6。
当V tar>V BAT+△V时,电路工作在BOOST升压模式。参照图13所示的开关状态图,断开第四开关S4和第六开关S6,第二开关S2和第三开关S3同时工作,第二开关S2和第一开关S1互补导通。在第一开关S1导通时,LX处的电压为2V BAT;在第一开关S1断开,第二开关S2和第三开关S3导通时,LX处的电压为V BAT。即,第六开关处于常关状态,与图1中的BOOST升压模式相同。
图14示出根据本公开一实施方式的升降压电路的结构图。如图14所示,该升降压电路与图1中的升降压电路相比增加了第七开关S7,第七开关S7与第一电感L1并联,连接在第二开关S1的第二端与输出电源的正极之间。
当第七开关S7处于常关状态,该电路与图1是完全一致的。在要求电路输出电压调整时,通过闭合第七开关S7,使其快速对输出电容冲放电,能够实现输出电压快速调整到目标电压的目的。
控制模块根据输出电压V out与目标电压V tar的关系,以及目标电压V tar与输入电压V BAT之间的关系对开关进行控制:
当V out<V tar-△V,且V tar≤V BAT时,断开第四开关S4,闭合第二开关S2和第七开关S7以对与升降压电路的输出端连接的第二电容C2进行充电,在输出电压升高至V out=V tar-△V时断开第七开关S7,进入第一工作模式,其中△V为设定电压差;
当V out<V tar-△V,且V tar>V BAT时,闭合第二开关S2、第三开关S3和第七开关S7以对第二电容C2进行充电,在输出电压升高至V out=V BAT时断开第二开关S2和第三开关S3,同时闭合第一开关S1通过第一电容C1对第二电容C2进行充电,并在输出电压升高至V out=V tar-△V时断开第一开关S1和第七开关S7,进入第一工作模式;
当V out>V tar+△V时,闭合第七开关S7、第四开关S4进行放电,在输出电压下降至V out=V tar+△V时断开第七开关S7、第四开关S4,进入第一工作模式;
当V tar-△V≤V out≤V tar+△V时,进入第一工作模式。
所述第一工作模式包括:
当V tar<V BAT-△V时,断开第一开关S1和第三开关S3,第二开关S2和第四开关S4互补导通,其中,△V为设定电压差;
当V BAT-△V≤V tar≤V BAT+△V时,断开第一开关S1、第三开关S3、第四开关S4,闭合第二开关S2;
当V tar>V BAT+△V时,断开第四开关S4,第二开关S2和第三开关S3同时工作,第二开关S2和第一开关互补导通。
图15示出本实施例中的升降压电路升压过程的输出电压图及开关状态图。当V out<V tar-△V,且V tar≤V BAT时,如图15中输出电压曲线的前半段所示,该电路实质上为降压电路,并且实际输出电压比目标电压小,需要经过升压过程达到目标电压,也即输出电压处于升压状态。
在初始阶段,电源电压V BAT高于输出电压,首先断开第四开关S4,闭合第二开关S2、第七开关S7以对所述升降压电路的输出端连接的第二电容C2进行快速充电。输出电压快速升高,当输出达到与目 标电压还差△V时,也即V out=V tar-△V时,断开第七开关S7停止快速充电,电路恢复为图1中的结构,进入图1中升降压电路的控制过程,即进入第一工作模式,输出电压逐渐调整为目标电压V tar并保持稳定输出V tar
当V tar>V BAT时,如图15中输出电压曲线的后半段所示,该电路实质上为升压电路,并且实际输出电压需要经过升压过程达到目标电压,也即输出电压处于升压状态。首先闭合第二开关S2、第三开关S3和第七开关S7,将输出电压冲到V BAT时断开第二开关S2和第三开关S3,同时闭合第一开关S1,利用第一电容C1继续对第二电容C2进行快速充电。当输出电压达到与目标电压还差△V时,断开第一开关S1和第七开关S7,电路恢复为图1中的结构,进入图1中升降压电路的控制过程,即进入第一工作模式第一工作模式。
图16示出本实施例中的升降压电路降压过程的输出电压图及开关状态图。当V out>V tar+△V时,如图16中输出电压曲线所示,实际输出的电压高于目标电压,需要经过降压过程达到目标电压,也即输出电压处于降压状态。
首先闭合第七开关S7、第四开关S4以对输出端连接的第二电容C2进行放电,当电压降低到距离目标电压还差△V时,即V out=V tar+△V时,断开第七开关S7、第四开关S4,电路恢复为图1中的结构,进入图1中升降压电路的控制过程,即进入第一工作模式第一工作模式。
图17示出根据本公开一实施方式的升降压电路的结构图。如图17所示,该升降压电路与图5中的升降压电路相比增加了第七开关S7,第七开关S7与第一电感L1并联,连接在第二开关S1的第二端与输出电源的正极之间。
当第七开关S7处于常关状态,该电路与图5是完全一致的。当第五开关S7处于常开状态,工作状态与图14中的升降压电路相似,不同之处在于,控制模块还用于在V out<V tar-△V,且V tar>V BAT时,闭合第五开关S5,在输出电压升高至V out=V BAT时断开第五开关S5。
也即,在升压过程中,当目标输出电压V out>V BAT时,第五开关S5需要闭合,控制方式如图18所示。其中第一开关S1、第二开关S2、第三开关S3和第七开关S7的控制方式与图14中的升降压电路升压过程的控制方式相同。
图19示出根据本公开一实施方式的升降压电路的结构图。如图19所示,该升降压电路与图10中的升降压电路相比增加了第七开关S7,第七开关S7与第一电感L1并联,连接在第二开关S1的第二端与输出电源的正极之间。
当第七开关S7处于常关状态,该电路与图10是完全一致的。当第六开关S6处于断开状态,工作状态与图14的升降压电路相似,不同之处在于,控制模块还用于在V out>V tar+△V时,还闭合第六开关S6和第三开关S3进行放电,在输出电压下降至V out=V tar+△V时断开第六开关S6和第三开关S3。
也即,放电过程中,闭合第三开关S3和第六开关S6,以使放电速度更快,控制方式如图20所示。其中第四开关S4和第七开关S7的控制方式与图14中的升降压电路降压过程的控制方式相同。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际 应用或对市场中的技术的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (11)

  1. 一种升降压电路,其特征在于,包括第一开关、第二开关、第三开关、第四开关、第一电感、第一电容和第二电容;
    所述第一开关的第一端与输入电源的正极连接,所述第二开关的第一端与输入电源的正极连接,所述第三开关的第一端和所述第一电容的第一端与所述第一开关的第二端连接,所述第三开关的第二端与所述输入电源的负极连接,所述第四开关的第一端、所述第一电容的第二端以及所述第一电感的第一端与所述第二开关的第二端连接,所述第四开关的第二端与所述输入电源的负极连接,所述第一电感的第二端与所述输出电源的正极连接,所述第二电容并联在所述输出电源的正极和负极之间。
  2. 根据权利要求1所述的升降压电路,其特征在于,还包括第五开关,所述第五开关连接在所述第一电容的第二端和所述第二开关的第二端之间。
  3. 根据权利要求1所述的升降压电路,其特征在于,还包括第六开关,所述第六开关与所述第一电容并联。
  4. 根据权利要求1-3中任意一项所述的升降压电路,其特征在于,还包括第七开关,所述第七开关与所述第一电感并联。
  5. 根据权利要求1所述的升降压电路,其特征在于,还包括控制模块,所述控制模块根据目标电压V tar与输入电压V BAT之间的关系对开关进行控制:
    当V tar<V BAT-△V时,断开所述第一开关和第三开关,所述第二开关和第四开关互补导通,其中,△V为设定电压差;
    当V BAT-△V≤V tar≤V BAT+△V时,断开所述第一开关、第三开关、第四开关,闭合所述第二开关;
    当V tar>V BAT+△V时,断开所述第四开关,所述第二开关和所述第三开关同时工作,所述第二开关和所述第一开关互补导通。
  6. 根据权利要求2所述的升降压电路,其特征在于,还包括控制模块,所述控制模块根据目标电压V tar与输入电压V BAT之间的关系对开关进行控制:
    当V tar<V BAT-△V时,断开所述第五开关,所述第一开关和第三开关状态相反或者同时断开,所述第二开关和第四开关互补导通,其中,△V为设定电压差;
    当V BAT-△V≤V tar≤V BAT+△V时,所述第一开关和第三开关互补导通,所述第四开关和第五开关互补导通,所述第二开关从所述第一开关断开起至所述第四开关闭合期间导通;
    当V tar>V BAT+△V时,闭合所述第五开关,断开所述第四开关,所述第二开关和所述第三开关同时工作,所述第二开关和所述第一开关互补导通。
  7. 根据权利要求2所述的升降压电路,其特征在于,还包括控制模块,所述控制模块根据目标电压V tar与输入电压V BAT之间的关系对开关进行控制:
    当V tar<V BAT-△V时,断开所述第五开关,所述第一开关和第三开关状态相反或者同时断开,所述第二开关和第四开关互补导通,其中,△V为设定电压差;
    当V BAT-△V≤V tar≤V BAT+△V时,所述第一开关和第三开关互补导通,所述第四开关和第五开关互补导通,所述第二开关从所述第四开关断开起至所述第一开关闭合期间导通;
    当V tar>V BAT+△V时,闭合所述第五开关,断开所述第四开关,所述第二开关和所述第三开关同时工作,所述第二开关和所述第一开关互补导通。
  8. 根据权利要求3所述的升降压电路,其特征在于,还包括控制模块,所述控制模块根据目标电压V tar与输入电压V BAT之间的关系对开关进行控制:
    当V tar<V BAT-△V时,闭合所述第六开关,所述第一开关和所述第二开关同时工作,所述第三开关和所述第四开关同时工作,所述第一开关和第三开关互补导通,其中,△V为设定电压差;
    当V BAT-△V≤V tar≤V BAT+△V时,断开所述第一开关、第三开关、第四开关,闭合所述第二开关和第六开关;
    当V tar>V BAT+△V时,断开所述第四开关和所述第六开关,所述第二开关和所述第三开关同时工作,所述第二开关和所述第一开关互补导通。
  9. 根据权利要求4所述的升降压电路,其特征在于,还包括控制模块,所述控制模块根据输出电压V out与目标电压V tar的关系,以及目标电压V tar与输入电压V BAT之间的关系对开关进行控制:
    当V out<V tar-△V,且V tar≤V BAT时,断开所述第四开关,闭合所述第二开关和第七开关以对与所述升降压电路的输出端连接的第二电容进行充电,在输出电压升高至V out=V tar-△V时断开所述第七开关,进入第一工作模式,其中△V为设定电压差;
    当V out<V tar-△V,且V tar>V BAT时,闭合所述第二开关、第三开关和第七开关以对所述第二电容进行充电,在输出电压升高至V out=V BAT时断开所述第二开关和第三开关,同时闭合所述第一开关通过所述第一电容对所述第二电容进行充电,并在输出电压升高至V out=V tar-△V时断开所述第一开关和第七开关,进入所述第一工作模式;
    当V out>V tar+△V时,闭合所述第七开关、第四开关进行放电,在输出电压下降至V out=V tar+△V时断开所述第七开关、第四开关,进入所述第一工作模式;
    当V tar-△V≤V out≤V tar+△V时,进入所述第一工作模式;
    所述第一工作模式包括:
    当V tar<V BAT-△V时,断开所述第一开关和第三开关,所述第二开关和第四开关互补导通,其中,△V为设定电压差;
    当V BAT-△V≤V tar≤V BAT+△V时,断开所述第一开关、第三开关、第四开关,闭合所述第二开关;
    当V tar>V BAT+△V时,断开所述第四开关,所述第二开关和所述第三开关同时工作,所述第二开关和所述第一开关互补导通。
  10. 根据权利要求9所述的升降压电路,其特征在于,所述控制模块还用于在V out<V tar-△V,且 V tar>V BAT时,闭合所述第五开关,在输出电压升高至V out=V BAT时断开所述第五开关。
  11. 根据权利要求9所述的升降压电路,其特征在于,所述控制模块还用于在V out>V tar+△V时,还闭合所述第六开关和所述第三开关进行放电,在输出电压下降至V out=V tar+△V时断开所述第六开关和所述第三开关。
PCT/CN2019/077014 2019-01-28 2019-03-05 升降压电路及其控制方法 WO2020155289A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/426,614 US11894773B2 (en) 2019-01-28 2019-03-05 Buck-boost circuit and control method therefor
EP19913662.3A EP3920400A4 (en) 2019-01-28 2019-03-05 BUCK-UP CIRCUIT AND CONTROL METHOD THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910081697.2A CN111293883B (zh) 2019-01-28 2019-01-28 升降压电路及其控制方法
CN201910081697.2 2019-01-28

Publications (1)

Publication Number Publication Date
WO2020155289A1 true WO2020155289A1 (zh) 2020-08-06

Family

ID=71027501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077014 WO2020155289A1 (zh) 2019-01-28 2019-03-05 升降压电路及其控制方法

Country Status (4)

Country Link
US (1) US11894773B2 (zh)
EP (1) EP3920400A4 (zh)
CN (1) CN111293883B (zh)
WO (1) WO2020155289A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114285280B (zh) * 2021-12-29 2022-08-09 广东工业大学 一种混合型无缝模式过渡的降压-升压开关电源转换器
EP4297259A1 (en) * 2022-06-22 2023-12-27 Abb Schweiz Ag Method for operating a dc/dc converter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242970B1 (en) * 1999-09-04 2001-06-05 Texas Instruments Incorporated Charge-pump device and method of sequencing charge-pump switches
CN101057386A (zh) * 2004-11-12 2007-10-17 皇家飞利浦电子股份有限公司 电源变换器
CN201682416U (zh) * 2010-04-02 2010-12-22 江苏丽恒电子有限公司 电荷泵

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10243885A1 (de) * 2002-09-21 2004-04-01 Philips Intellectual Property & Standards Gmbh Konverterschaltung und Ansteuerverfahren hierfür
GB2479445B (en) 2006-08-31 2011-11-30 Wolfson Microelectronics Plc DC-DC converter circuits and methods and apparatus including such circuits
CN101309048A (zh) * 2007-05-17 2008-11-19 比亚迪股份有限公司 一种电荷泵装置及电源电路
US7795761B2 (en) * 2008-12-19 2010-09-14 Active-Semi, Inc. Power converters with switched capacitor buck/boost
FR2959624A1 (fr) 2010-04-28 2011-11-04 St Ericsson Sa Circuit de conversion de tension continue
CN102594133B (zh) 2012-01-20 2014-10-22 圣邦微电子(北京)股份有限公司 升压方法和电路
US9608517B2 (en) 2013-05-09 2017-03-28 Maxim Integrated Products, Inc. System and method to eliminate transition losses in DC/DC converters
KR102515751B1 (ko) * 2018-02-14 2023-04-03 삼성전자주식회사 단일 유도성 소자를 이용하여 벅-부스트 변환을 수행하는 전자 회로
US11606032B2 (en) * 2018-11-15 2023-03-14 Qualcomm Incorporated Adaptive combination power supply circuit and charging architecture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242970B1 (en) * 1999-09-04 2001-06-05 Texas Instruments Incorporated Charge-pump device and method of sequencing charge-pump switches
CN101057386A (zh) * 2004-11-12 2007-10-17 皇家飞利浦电子股份有限公司 电源变换器
CN201682416U (zh) * 2010-04-02 2010-12-22 江苏丽恒电子有限公司 电荷泵

Also Published As

Publication number Publication date
EP3920400A1 (en) 2021-12-08
EP3920400A4 (en) 2022-10-19
CN111293883A (zh) 2020-06-16
US11894773B2 (en) 2024-02-06
US20220094268A1 (en) 2022-03-24
CN111293883B (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
US9419509B2 (en) Shared bootstrap capacitor for multiple phase buck converter circuit and methods
US5998977A (en) Switching power supplies with linear precharge, pseudo-buck and pseudo-boost modes
US8000117B2 (en) Buck boost function based on a capacitor bootstrap input buck converter
CN105075090B (zh) 具有降压-升压过渡切换控制的降压-升压转换器
US9054705B2 (en) Self-powered source driving circuit and switching power supply thereof
TWM472362U (zh) 降壓型切換式電源供應器
US7872546B1 (en) Multi mode modulator and method with improved dynamic load regulation
CN104836421A (zh) 一种开关电源的供电电路和供电方法
CN104660041A (zh) 低损耗增压及减压电压转换器
US9923465B2 (en) Power conversion circuit and associated operating method
US10116216B2 (en) Ultrasonic control system and method for a buck-boost power converter
US8729877B2 (en) Fast startup algorithm for low noise power management
JP2014023272A (ja) スイッチング電源回路
JP2017514445A (ja) 電荷リサイクル回路
WO2008027038A1 (en) Charge pump controller and method therefor
WO2020155289A1 (zh) 升降压电路及其控制方法
CN114744869A (zh) 一种三电平降压直流变换器
WO2020155288A1 (zh) 升降压电路及控制方法
CN112398335A (zh) 开关型调节器的控制电路和控制方法及开关型调节器
US20130162234A1 (en) Buck regulation of a boost regulator
WO2022047795A1 (zh) 降压型开关电源、电子设备和控制方法
US7915880B2 (en) Step-up DC-DC converter
CN218514276U (zh) 自举电容稳压辅助电路及具有自举电容稳压辅助电路的电源转换器
CN113541444B (zh) 一种电流回收电路、开关变换器和集成电路
EP3459167A1 (en) Power stage for a dc-dc converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019913662

Country of ref document: EP

Effective date: 20210830