WO2020155203A1 - 光学膜层和显示装置 - Google Patents

光学膜层和显示装置 Download PDF

Info

Publication number
WO2020155203A1
WO2020155203A1 PCT/CN2019/075379 CN2019075379W WO2020155203A1 WO 2020155203 A1 WO2020155203 A1 WO 2020155203A1 CN 2019075379 W CN2019075379 W CN 2019075379W WO 2020155203 A1 WO2020155203 A1 WO 2020155203A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
optical
optical axis
refractive index
Prior art date
Application number
PCT/CN2019/075379
Other languages
English (en)
French (fr)
Inventor
单剑锋
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Publication of WO2020155203A1 publication Critical patent/WO2020155203A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Definitions

  • This application relates to an optical film layer and a display device.
  • VA-type liquid crystal panels have higher production efficiency and lower production efficiency.
  • the manufacturing cost is advantageous, but in terms of optical properties, compared with IPS liquid crystal panels, there are more obvious defects in optical properties.
  • large-size panels require a larger viewing angle for commercial applications.
  • the VA-type liquid crystal panel drives the brightness of the large viewing angle to quickly saturate with the voltage, which causes the viewing angle image quality contrast and color shift compared to the front view image quality to deteriorate more seriously, resulting in visual role shift.
  • the exemplary VA-type liquid crystal panel has the problem of large viewing angle image quality contrast and color shift compared to the front view image quality, resulting in a problem of viewing role shift.
  • an optical film layer and a display device are provided.
  • An optical film layer comprising:
  • a first single optical axis optical layer, a plurality of grooves are formed on one side of the first single optical axis optical layer;
  • the second single-optical axis optical layer includes a plate-shaped part and a plurality of convex structures that are attached to one side of the plate-shaped part and matched with the shape and size of the groove.
  • the second single-optical axis optical layer The ordinary refractive index of the layer is smaller than the extraordinary refractive index of the first single-optical axis optical layer. In the arrangement direction of the plurality of convex structures, the width of the convex structure is within the wavelength range of the incident light .
  • the extraordinary refractive index of the first single optical axis optical layer is 1.0-2.5.
  • the ordinary refractive index of the second single optical axis optical layer is 1.0-2.5.
  • the difference between the extraordinary refractive index of the first single optical axis optical layer and the ordinary refractive index of the second single optical axis optical layer is 0.01-2.
  • the width of the protrusion structure is less than or equal to 1000 nm.
  • the protruding structure is a quadrangular prism structure, and one side of the quadrangular prism is attached to the plate-shaped portion to extend, the extension directions of a plurality of protruding structures are parallel, and two adjacent convex structures Start the structure interval setting.
  • the convex structure is a quadrangular prism structure, a plurality of the convex structures are arranged in a two-dimensional matrix array, and two adjacent convex structures are arranged at intervals.
  • the material of the first single optical axis optical layer includes nematic liquid crystal molecular material.
  • the material of the second single optical axis optical layer includes nematic liquid crystal molecular material.
  • An optical film layer comprising:
  • a first single optical axis optical layer, a plurality of grooves are formed on one side of the first single optical axis optical layer;
  • the second single-optical axis optical layer includes a plate-shaped part and a plurality of convex structures that are attached to one side of the plate-shaped part and matched with the shape and size of the groove.
  • the second single-optical axis optical layer The ordinary refractive index of the layer is less than the extraordinary refractive index of the first single optical axis optical layer, and the width of the convex structure is less than or equal to 1000 nm in the arrangement direction of the plurality of convex structures;
  • the extraordinary refractive index of the first single optical axis optical layer is 1.0-2.5
  • the ordinary refractive index of the second single optical axis optical layer is 1.0-2.5
  • the The difference between the extraordinary refractive index and the ordinary refractive index of the second single optical axis optical layer is 0.01-2.
  • a display device includes:
  • Backlight module used to provide incident light
  • a display panel placed above the backlight module, for receiving the incident light and displaying images
  • the display panel includes:
  • a first substrate and a second substrate disposed oppositely;
  • a first grating layer disposed on the first substrate on the side away from the second substrate;
  • a display layer provided between the first substrate and the second substrate
  • a second grating layer arranged between the display layer and the second substrate;
  • optical film layer as described above disposed between the second grating layer and the second substrate, and the first single optical axis optical layer is disposed on the side of the second grating layer;
  • the first grating layer includes a plurality of strip-shaped metal layers formed on the first substrate, and the plurality of metal layers are spaced apart and arranged in parallel.
  • the second grating layer includes a transparent substrate and a plurality of strip-shaped metal layers formed on the transparent substrate, and the plurality of metal layers are spaced apart and arranged in parallel.
  • the width of the metal layer of the first grating layer is 50nm-150nm
  • the thickness of the metal layer is 100nm-200nm
  • the distance between two adjacent metal layers is 100nm-200nm.
  • the width of the metal layer of the second grating layer is 50nm-150nm
  • the thickness of the metal layer is 100nm-200nm
  • the distance between two adjacent metal layers is 100nm-200nm.
  • the photoresist layer is disposed between the optical film layer and the second substrate, and the display panel further includes:
  • a compensation film layer arranged between the display layer and the second grating layer
  • a compensation film layer arranged between the display layer and the first substrate.
  • the photoresist layer is disposed between the optical film layer and the second substrate, and the display panel further includes:
  • a compensation film layer arranged between the display layer and the second grating layer.
  • the photoresist layer is disposed between the optical film layer and the second substrate, and the display panel further includes:
  • a compensation film layer arranged between the display layer and the first substrate.
  • the photoresist layer is disposed between the first substrate and the display layer; the display panel further includes:
  • a compensation film layer arranged between the display layer and the second grating layer
  • a compensation film layer arranged between the photoresist layer and the first substrate.
  • the photoresist layer is disposed between the first substrate and the display layer; the display panel further includes:
  • a compensation film layer arranged between the display layer and the second grating layer;
  • a compensation film layer arranged between the photoresist layer and the first substrate.
  • FIG. 1 is a schematic diagram of the structure of an optical film layer according to an embodiment
  • Fig. 2 is a schematic diagram of the refraction effect on the interface perpendicular to the light advancing direction
  • FIG. 3 is a schematic diagram of a three-dimensional structure of a second single optical axis optical layer according to an embodiment
  • FIG. 4 is a schematic diagram of a cross-sectional structure of a second single optical axis optical layer corresponding to FIG. 3;
  • FIG. 5 is a schematic diagram of a three-dimensional structure of a second single optical axis optical layer in another embodiment
  • FIG. 6 is a schematic diagram of a cross-sectional structure of a second single optical axis optical layer corresponding to FIG. 5;
  • FIG. 7 is a schematic structural diagram of a display device according to an embodiment
  • FIG. 8 is a schematic structural diagram of the backlight module of the display device shown in FIG. 7;
  • FIG. 9 is a schematic structural diagram of a display panel of an embodiment of the display device shown in FIG. 7;
  • FIG. 10 is a schematic structural diagram of a display panel of an embodiment of the display device shown in FIG. 7;
  • FIG. 11 is a schematic diagram of the structure of a first grating layer according to an embodiment
  • FIG. 12 is a schematic structural diagram of a display panel corresponding to another embodiment of FIG. 9;
  • FIG. 13 is a schematic structural diagram of a display panel corresponding to another embodiment of FIG. 9;
  • FIG. 14 is a schematic structural diagram of a display panel corresponding to another embodiment of FIG. 9;
  • FIG. 15 is a schematic structural diagram of a display panel corresponding to another embodiment of FIG. 10;
  • FIG. 16 is a schematic structural diagram of a display panel corresponding to another embodiment of FIG. 10;
  • FIG. 17 is a schematic structural diagram of a display panel corresponding to another embodiment of FIG. 10.
  • FIG. 1 is a schematic diagram of the structure of the optical film layer in this embodiment.
  • the optical film layer 250 includes a first single optical axis optical layer 251 and a second single optical axis optical layer 252.
  • a plurality of grooves are formed on one side of the first single optical axis optical layer 251, and the first single optical axis optical layer 251 has optical anisotropy and has an extraordinary refractive index ne 1 and an ordinary refractive index no 1 .
  • the extraordinary refractive index ne 1 is the equivalent refractive index of the first single optical axis optical layer 251 when the light polarization direction is parallel to the optical axis;
  • the ordinary refractive index no 1 is the first single optical axis optical layer 251 when the light polarization direction is parallel to the optical axis
  • With the equivalent refractive index perpendicular to the optical axis when light passes through the first single optical axis optical layer 251, birefringence occurs.
  • ne 1 >no 1 that is, the first single optical axis optical layer 251 is a positive single optical axis optical layer.
  • nx 1 is the refractive index of the first single optical axis optical layer 251 in the x direction
  • ny 1 is the refractive index of the first single optical axis optical layer 251 in the y direction
  • nz 1 is the first single optical axis
  • the refractive index of the optical axis optical layer 251 in the z direction, the z direction is the extension direction of the film thickness of the first single optical axis optical layer 251 (perpendicular to the light incident surface of the first single optical axis optical layer 251)
  • the ordinary refractive index no 1 of the first single optical axis optical layer 251 is 1.0-2.5.
  • the extraordinary refractive index ne 1 of the first single optical axis optical layer 251 is 1.0-2.5.
  • the material of the first single optical axis optical layer 251 includes but is not limited to nematic liquid crystal molecular materials.
  • the second single-optical axis optical layer 252 has optical anisotropy and has an extraordinary refractive index ne 2 and an ordinary refractive index no 2.
  • the extraordinary refractive index ne 2 is the second single optical axis optical layer 252 when the light is polarized.
  • the equivalent refractive index of the direction parallel to the optical axis; ordinary refractive index no 2 is the equivalent refractive index of the second single-axis optical layer 252 when the light polarization direction is perpendicular to the optical axis, when the light passes through the second single-axis optical layer 252 will produce birefringence.
  • ne 2 >no 2 that is, the second single optical axis optical layer 252 is a positive single optical axis optical layer.
  • nx 2 is the refractive index of the second single optical axis optical layer 252 in the x direction
  • ny 2 is the refractive index of the second single optical axis optical layer 252 in the y direction
  • nz 2 is the second single optical axis
  • the refractive index of the optical axis optical layer 252 in the z direction, the z direction is the extension direction of the film thickness of the second single optical axis optical layer 252 (perpendicular to the light exit surface of the second single optical axis optical layer 252)
  • the extraordinary refractive index ne 2 of the second single optical axis optical layer 252 is 1.0-2.5.
  • the ordinary refractive index no 2 of the second single optical axis optical layer 252 is 1.0-2.5.
  • the material of the second single optical axis optical layer 252 includes but is not limited to nematic liquid crystal molecular materials.
  • the ordinary refractive index no 2 of the second single optical axis optical layer 252 is smaller than the extraordinary refractive index ne 1 of the first single optical axis optical layer 251.
  • the difference between no 2 and ne 1 is 0.01-2.
  • the optical axis arrangement direction in the second single optical axis optical layer 252 is perpendicular to the optical axis arrangement direction in the first single optical axis optical layer 251.
  • the ordinary refractive index no 2 of the second single optical axis optical layer 252 is the refractive index in the 0/180 degree direction
  • the extraordinary refractive index ne 2 of the second single optical axis optical layer 252 is the 90/270 degree direction.
  • the ordinary refractive index no 2 of the second single optical axis optical layer 252 is the refractive index in the 90/270 degree direction
  • the extraordinary refractive index ne 2 of the second single optical axis optical layer 252 is the 0/180 degree direction.
  • the refractive index. wherein, the surface formed by the 0/180 degree direction and the 90/270 degree direction is parallel to the light incident surface of the first single optical axis optical layer 251.
  • a plurality of grooves are formed on one side of the first single optical axis optical layer 251, and the second single optical axis optical layer 252 includes a plate portion 2521 and a plate attached to one side of the plate portion 2521.
  • the width of the raised structure 2522 is less than or equal to 1000 nm. In one embodiment, the width of the raised structure 2522 is greater than or equal to 300 nm and less than or equal to 1000 nm.
  • the groove The interface with the convex structure 2522 forms a light-dense to light-sparse grating interface. Polarized light is diffracted on the grating interface, which makes the angle of light travel (see Figure 2) to form a positive viewing angle light-type energy distribution Optical phenomenon of large viewing angle.
  • the convex structures are arranged periodically, that is, the diffractive parts constructed by the convex structures are arranged periodically.
  • the protruding structure 2522 is a quadrangular prism structure, the quadrangular prism structure has multiple sides, and one side of the quadrangular prism structure extends in contact with the plate-shaped portion 2521, and the extending direction of the plurality of protruding structures 2522 In parallel, two adjacent protrusion structures 2522 are arranged at intervals. Specifically, please refer to FIG.
  • the width of the side surface of the plate-shaped portion 2521 is 2rx 1
  • the thickness of the convex structure 2522 is d 1
  • the thickness of the second single optical axis optical layer 252 is D 1
  • d 1 is not 0, and D 1 ⁇ d 1 .
  • 2rx 1 is within the wavelength range of the incident light, and 2rx 1 is less than or equal to 1000 nm. In one embodiment, 2rx 1 is greater than or equal to 300 nm and less than or equal to 1000 nm.
  • the protruding structure 2522 is a quadrangular prism structure, and the plurality of protruding structures 2522 are arranged in a two-dimensional matrix array, and two adjacent protruding structures 2522 are arranged at intervals to more effectively combine
  • the front-view light energy is distributed to the two-dimensional direction, making the full-view viewing more uniform.
  • FIG. 6 Please refer to FIG. 6 together.
  • the width of the side surface of the plate-shaped portion 2521 is 2ry 2
  • the thickness of the convex structure 2522 is d 2
  • the thickness of the second single optical axis optical layer 252 is D 2
  • d 2 is not 0, and D 2 ⁇ d 2 .
  • both 2rx 2 and 2ry 2 are within the wavelength range of the incident light, and both 2rx 2 and 2ry 2 are less than or equal to 1000 nm. In one embodiment, both 2rx 2 and 2ry 2 are greater than or equal to 300 nm and less than or equal to 1000 nm.
  • the optical film layer provided by this embodiment includes a first single optical axis optical layer 251 and a second single optical axis optical layer 252.
  • the equivalent refractive index is ne 1 .
  • the equivalent refractive index of the second single optical axis optical layer 252 is no 2 , and since ne 1 >no 2 , the interface between the first single optical axis optical layer 251 and the second single optical axis optical layer 252 sees light.
  • the light-dense medium is directed to the light-thin medium to produce diffraction.
  • the optical film layer distributes the energy of the positive viewing angle light type to the optical phenomenon of large viewing angles, and improves the visual role deviation.
  • FIG. 7 is a schematic structural diagram of the display device in this embodiment.
  • the display device 10 includes a backlight module 100 and a display panel 200.
  • the backlight module 100 provides a collimated light emitting backlight source (collimate light emitting BL), so that the energy of the light is concentrated in the positive viewing angle for output.
  • the backlight module 100 has a highly directional backlight light output, including a reflective sheet 110, a light guide plate 120, a prism film 130, and an LED light source 140, the reflective sheet 110 and the light guide plate 120, and a prism
  • the films 130 are stacked in sequence
  • the light guide plate 120 has a light incident surface 121
  • the LED light source 140 is arranged opposite to the light incident surface 121
  • the light guide plate 120 is provided with a strip-shaped first groove 122 on the side close to the reflective sheet 110.
  • the cross section of 122 is V-shaped, the extending direction of the first groove 122 is perpendicular to the light emitting direction of the LED light source 140, the light guide plate 120 is provided with a strip-shaped second groove 123 on the side close to the prism film 130, and the second groove 123
  • the cross section of the second groove 123 is V-shaped, and the extending direction of the second groove 123 is parallel to the light emitting direction of the LED light source 140.
  • the prism side of the prism film 130 is laminated on the light guide plate 120.
  • FIG. 9 and FIG. 10 are schematic diagrams of the structure of the display panel in this embodiment.
  • the display panel 200 includes a first grating layer 210, a first substrate 220, a display layer 230, a second grating layer 240, an optical film layer 250, a photoresist layer 260, and a second substrate 270.
  • the first substrate 220 and the second substrate 270 are disposed oppositely; the first grating layer 210 is disposed on the first substrate 220 on the side away from the second substrate 270; the display layer 230 is disposed between the first substrate 220 and the second substrate 270 The second grating layer 240 is provided between the display layer 230 and the second substrate 270; the optical film layer 250 is provided between the second grating layer 240 and the second substrate 270, wherein the first single optical axis optical layer is provided The second grating layer 240 side; the photoresist layer 260 is disposed between the optical film layer 250 and the second substrate 270, or between the first substrate 220 and the display layer 230.
  • the display panel 200 includes a first grating layer 210, a first substrate 220, a display layer 230, a second grating layer 240, an optical film layer 250, and a photoresist layer which are sequentially stacked. 260 and a second substrate 270; in another embodiment, referring to FIG. 10, the display panel 200 includes a first grating layer 210, a first substrate 220, a photoresist layer 260, a display layer 230, and a second grating layered in sequence. The layer 240, the optical film layer 250 and the second substrate 270.
  • the first grating layer 210 is disposed on the first substrate 220 away from the second substrate 270, and the first grating layer 210 can convert natural light into polarized light.
  • the thickness of the first grating layer 210 is generally less than 20 ⁇ m.
  • the first grating layer 210 includes a transparent substrate 2101 and a plurality of strip-shaped metal layers 2102 formed on the transparent substrate 2101, and the plurality of metal layers 2102 are arranged in parallel and spaced apart.
  • the transparent substrate 2101 includes but is not limited to one of a glass substrate, a silica gel substrate, a silicon dioxide substrate, a silicon nitride substrate, a polymethyl methacrylate substrate, and a polyethylene terephthalate substrate.
  • the metal layer 2102 includes but is not limited to gold, aluminum, and copper.
  • the metal layer 2102 is formed on the transparent substrate 2101, and a plurality of metal layers 2102 are spaced and evenly arranged along a straight line, and the extension directions of the plurality of metal layers 2102 are parallel to each other to form a grating.
  • the width of the metal layer 2102 is 50nm-150nm; the thickness of the metal layer 2102 is 100nm-200nm; the distance between two adjacent metal layers 2102 is 100nm-200nm.
  • the first grating layer 210 is divided into electromagnetic waves whose vibration direction is perpendicular to the extension direction of the metal layer and electromagnetic waves whose vibration direction is parallel to the extension direction of the metal layer.
  • the first grating layer 210 absorbs or reflects electromagnetic wave vibration components and
  • the electromagnetic wave component parallel to the extension direction of the metal layer only penetrates the electromagnetic wave component perpendicular to the extension direction of the metal layer, and obtains the same effect as the polarizer, passing only the polarized light perpendicular to the extension direction of the polarizer.
  • the light is composed of horizontal polarization (0/180 degree direction of electric field vibration) and vertical polarization (90/270 degree direction of electric field vibration), and the first grating layer 210 has the function of absorbing and penetrating polarized light.
  • the arrangement direction of the metal layers of the first grating layer 210 is parallel to the 0/180 degree direction, and the extension direction of the metal layers of the first grating layer 210 is parallel to the 90/270 degree direction, it is expected that horizontally polarized light can pass through the first grating layer 210
  • the arrangement direction of the metal layer of the first grating layer 210 is parallel to the 90/270degree direction
  • the extension direction of the metal layer of the first grating layer 210 is parallel to the 0/180degree direction, and it is expected that vertically polarized light can pass through the first grating layer 210. Therefore, the first grating layer 210 can replace the lower polarizer in the traditional structure (the thickness of a single layer of the traditional polarizer is about 200
  • the first substrate 220 and the second substrate 270 are disposed oppositely, and the materials of the first substrate 220 and the second substrate 270 are not limited, and specifically, a glass substrate may be selected.
  • the display layer 230 includes a liquid crystal material layer and electrode layers disposed on the upper and lower surfaces of the liquid crystal material layer, wherein the material of the electrode layer may be indium tin oxide.
  • the second grating layer 240 includes a transparent substrate and a plurality of strip-shaped metal layers formed on the transparent substrate, and the plurality of metal layers are arranged in parallel and spaced apart.
  • the transparent substrate includes but is not limited to one of a glass substrate, a silica gel substrate, a silicon dioxide substrate, a silicon nitride substrate, a polymethyl methacrylate substrate, and a polyethylene terephthalate substrate.
  • the metal layer includes but is not limited to gold, aluminum, and copper. The metal layer is formed on the transparent substrate, and the multiple metal layers are spaced and evenly arranged along a straight line, and the extension directions of the multiple metal layers are parallel to each other to form a grating.
  • the width of the metal layer is 50 nm-150 nm; the thickness of the metal layer is 100 nm-200 nm; and the distance between two adjacent metal layers is 100 nm-200 nm.
  • the second grating layer 240 is arranged opposite to the first grating layer 210 of the optical film layer 250, that is, the multiple metal layers of the second grating layer 240 correspond to the multiple metal layers of the first grating layer 210.
  • the structure and function of the second grating layer 240 are similar to those of the first grating layer 210, and have the function of absorbing and penetrating polarized light, which can replace the traditional upper polarizer and make the display panel 200 thinner.
  • the arrangement direction of the metal layers of the second grating layer 240 is parallel to the 0/180 degree direction, and the extension direction of the metal layers of the second grating layer 240 is parallel to the 90/270 degree direction, it is expected that horizontally polarized light can pass through the second grating layer 240
  • the equivalent refractive index of the horizontally polarized light passing through the first single optical axis optical layer 251 is ne 1
  • the equivalent refractive index of the horizontally polarized light passing through the second single optical axis optical layer 252 is no 2 , because ne 1 >no 2.
  • the interface between the first single optical axis optical layer 251 and the second single optical axis optical layer 252 sees that horizontally polarized light is diffracted from the optically dense medium to the optically thinner medium, which makes the positive viewing angle light type.
  • the equivalent refractive index of the vertically polarized light passing through the first single optical axis optical layer 251 is ne 1
  • the vertically polarized light passing through the second single optical axis optical layer 252 The effective refractive index is no 2 , because ne 1 >no 2 , the interface between the first single optical axis optical layer 251 and the second single optical axis optical layer 252 sees the vertically polarized light from the optically dense medium to the optically thinner medium.
  • the optical film layer 250 refers to the related description of the previous embodiment, which will not be repeated here.
  • the optical film layer 250 can distribute the positive viewing angle light type energy to a large viewing angle, and improve the viewing angle deviation.
  • the photoresist layer 260 is used to provide hue for the display panel, so that the display panel forms a colorful display image.
  • the photoresist layer 260 may be disposed between the second grating layer 240 and the second substrate 270, or may also be disposed between the first substrate 220 and the display layer 230.
  • the display panel may further include: a compensation film layer disposed between the display layer 230 and the second grating layer 240; and/or a compensation film layer disposed between the display layer 230 and the first substrate 220.
  • the display panel can also It includes: a compensation film layer disposed between the display layer 230 and the second grating layer 240; and/or a compensation film layer disposed between the photoresist layer 260 and the first substrate 220.
  • the display panel 200 is not limited to the above-mentioned laminated structure, and different layers can be added with materials with special functions according to different requirements. For example, other functional materials are added to a single-function film layer to obtain a multi-functional film layer.
  • the stacking order of the various film layers in the display panel 200 can be changed according to the required functions, and at the same time, other functional film layers and the like can be added as required.
  • the display device 10 provided by this embodiment includes a backlight module 100 with a high directivity backlight output, and a thin display panel 200 with a large viewing angle and improved color shift.
  • the display panel 200 can distribute the light-type energy of the front viewing angle to a large viewing angle through the arrangement of the optical film layer 250 on the one hand, and solve the problem of the large viewing angle of the display panel 200 without dividing each sub-pixel into a main pixel.
  • both the first grating layer 210 and the second grating layer 240 can turn natural light into polarized light, instead of a thicker polarizing plate, so that the display panel 200
  • the thickness is relatively thin, so that the display device 10 has a light and thin volume, a low display color shift rate and a high display efficiency, which can improve the user experience.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

本申请涉及一种光学膜层和显示装置。光学膜层包括:第一单光轴光学层,所述第一单光轴光学层的一侧上形成有多个凹槽;第二单光轴光学层,包括板状部和贴合在所述板状部一侧上的多个与所述凹槽形状、尺寸相匹配的凸起结构,所述第二单光轴光学层的寻常光折射率小于所述第一单光轴光学层的非常光折射率,在多个所述凸起结构的排布方向上,所述凸起结构的宽度在入射光的波长范围内。

Description

光学膜层和显示装置
本申请要求于2019-01-30提交中国专利局,申请号为2019100905459,申请名称为“光学膜层和显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种光学膜层和显示装置。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有技术。
现行大尺寸液晶显示面板通常采用VA(Vertical Alignment,垂直排列)液晶面板或者IPS(In-Plane Switching,平面转换)液晶面板,VA型液晶面板相较于IPS液晶面板存在较高的生产效率及低制造成本得优势,但光学性质上相较于IPS液晶面板存在较明显得光学性质缺陷,尤其是大尺寸面板在商业应用方面需要较大的视角呈现。例如,VA型液晶面板驱动在大视角亮度随电压快速饱和而造成视角画质对比及色偏相较于正视画质品质恶化严重,产生视角色偏。
因此,范例性的VA型液晶面板存在大视角画质对比及色偏相较于正视画质品质恶化严重,产生视角色偏的问题。
发明内容
根据本申请公开的各种实施例,提供一种光学膜层和显示装置。
一种光学膜层,包括:
第一单光轴光学层,所述第一单光轴光学层的一侧上形成有多个凹槽;
第二单光轴光学层,包括板状部和贴合在所述板状部一侧上的多个与所述凹槽形状、尺寸相匹配的凸起结构,所述第二单光轴光学层的寻常光折射率小于所述第一单光轴光学层的非常光折射率,在多个所述凸起结构的排布方向上,所述凸起结构的宽度在入射光的波长范围内。
在其中一个实施例中,所述第一单光轴光学层的非常光折射率为1.0-2.5。
在其中一个实施例中,所述第二单光轴光学层的寻常光折射率为1.0-2.5。
在其中一个实施例中,所述第一单光轴光学层的非常光折射率与所述第二单光轴光学层的寻常光折射率之差为0.01-2。
在其中一个实施例中,在多个所述凸起结构的排布方向上,所述凸起结构的宽度小于或等于1000nm。
在其中一个实施例中,所述凸起结构为四棱柱结构,且四棱柱的一侧面贴合所述板状部延伸,多个所述凸起结构的延伸方向平行,相邻的两个凸起结构间隔设置。
在其中一个实施例中,所述凸起结构为四棱柱结构,多个所述凸起结构呈二维矩阵阵列排布,相邻的两个凸起结构间隔设置。
在其中一个实施例中,所述第一单光轴光学层的材料包括向列相液晶分子材料。
在其中一个实施例中,所述第二单光轴光学层的材料包括向列相液晶分子材料。
一种光学膜层,包括:
第一单光轴光学层,所述第一单光轴光学层的一侧上形成有多个凹槽;
第二单光轴光学层,包括板状部和贴合在所述板状部一侧上的多个与所述凹槽形状、尺寸相匹配的凸起结构,所述第二单光轴光学层的寻常光折射率小于所述第一单光轴光学层的非常光折射率,在多个所述凸起结构的排布方向上,所述凸起结构的宽度小于或等于1000nm;
其中,所述第一单光轴光学层的非常光折射率为1.0-2.5,所述第二单光轴光学层的寻常光折射率为1.0-2.5,所述第一单光轴光学层的非常光折射率与所述第二单光轴光学层的寻常光折射率之差为0.01-2。
一种显示装置,包括:
背光模组,用于提供入射光;
显示面板,置于所述背光模组上方,用于接收所述入射光并显示画面;
其中,所述显示面板包括:
相对设置的第一基板和第二基板;
设置在所述第一基板上远离所述第二基板一侧的第一光栅层;
设置在所述第一基板和所述第二基板之间的显示层;
设置在所述显示层和所述第二基板之间的第二光栅层;
设置在所述第二光栅层和所述第二基板之间的如上所述的光学膜层,所述第一单光轴光学层设置在所述第二光栅层侧;
设置在所述光学膜层和所述第二基板之间的光阻层,或者设置在所述第一基板和所述显示层之间的光阻层。
在其中一个实施例中,所述第一光栅层包括形成在所述第一基板上的多个条形的金属层,多个所述金属层间隔且平行设置。
在其中一个实施例中,所述第二光栅层包括透明基板和形成在所述透明基板上的多个条形的金属层,多个所述金属层间隔且平行设置。
在其中一个实施例中,所述第一光栅层金属层的宽度为50nm-150nm,金属层的厚度为100nm-200nm,相邻的两个所述金属层的间距为100nm-200nm。
在其中一个实施例中,所述第二光栅层金属层的宽度为50nm-150nm,金属层的厚度为100nm-200nm,相邻的两个所述金属层的间距为100nm-200nm。
在其中一个实施例中,所述光阻层设置在所述光学膜层和所述第二基板之间,所述显示面板还包括:
设置在所述显示层和所述第二光栅层之间的补偿膜层;以及
设置在所述显示层和所述第一基板之间的补偿膜层。
在其中一个实施例中,所述光阻层设置在所述光学膜层和所述第二基板之间,所述显示面板还包括:
设置在所述显示层和所述第二光栅层之间的补偿膜层。
在其中一个实施例中,所述光阻层设置在所述光学膜层和所述第二基板之间,所述显示面板还包括:
设置在所述显示层和所述第一基板之间的补偿膜层。
在其中一个实施例中,所述光阻层设置在所述第一基板和所述显示层之间;所述显示面板还包括:
设置在所述显示层和所述第二光栅层之间的补偿膜层;以及
设置在所述光阻层和所述第一基板之间的补偿膜层。
在其中一个实施例中,所述光阻层设置在所述第一基板和所述显示层之间;所述显示面板还包括:
设置在所述显示层和所述第二光栅层之间的补偿膜层;或
设置在所述光阻层和所述第一基板之间的补偿膜层。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为一实施方式的光学膜层的结构示意图;
图2为与光前进方向垂直的交接面产生折射效应的示意图;
图3为一实施方式的第二单光轴光学层的立体结构示意图;
图4为对应图3的第二单光轴光学层的横截面结构示意图;
图5为另一实施方式的第二单光轴光学层的立体结构示意图;
图6为对应图5的第二单光轴光学层的横截面结构示意图;
图7为一实施方式的显示装置的结构示意图;
图8为图7所示的显示装置的背光模组的结构示意图;
图9为图7所示的显示装置中一实施例的显示面板的结构示意图;
图10为图7所示的显示装置中一实施例的显示面板的结构示意图;
图11为一实施例的第一光栅层的结构示意图;
图12为对应图9另一实施方式的显示面板的结构示意图;
图13为对应图9另一实施方式的显示面板的结构示意图;
图14为对应图9另一实施方式的显示面板的结构示意图;
图15为对应图10另一实施方式的显示面板的结构示意图;
图16为对应图10另一实施方式的显示面板的结构示意图;
图17为对应图10另一实施方式的显示面板的结构示意图。
具体实施方式
为了使本申请的技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
参见图1,图1为本实施例中的光学膜层的结构示意图。
在本实施例中,光学膜层250包括第一单光轴光学层251和第二单光轴光学层252。
其中,第一单光轴光学层251一侧上形成有多个凹槽,第一单光轴光学层251具有光学各向异性,具备非常光折射率ne 1和寻常光折射率no 1。非寻常光折射率ne 1为第一单光轴光学层251当光线偏振方向与光轴平行的等效折射率;寻常光折射率no 1为第一单光轴光学层251当光线偏振方向与光轴垂直的等效折射率,当光通过第一单光轴光学层251会产生双折射现象。
在一实施例中,ne 1>no 1,即第一单光轴光学层251为正型单光轴光学层。具体地,建立xyz坐标系,nx 1为第一单光轴光学层251在x方向的折射率,ny 1为第一单光轴光学层251在y方向的折射率,nz 1为第一单光轴光学层251在z方向的折射率,z方向为第一单光轴光学层251的膜厚的延伸方向(垂直于第一单光轴光学层251的入光面),ne 1=nx 1>no 1=ny 1或者ne 1=ny 1>no 1=nx 1,no 1=nz 1。在一个实施例中,第一单光轴光学层251的寻常光折射率no 1为1.0-2.5。在一个实施例中,第一单光轴光学层251的非常光折射率ne 1为1.0-2.5。在一个实施例中,第一单光轴光学层251的材料包括但不限于向列相液晶分子材料。
其中,第二单光轴光学层252具有光学各向异性,具备非常光折射率ne 2和寻常光折射率no 2,非寻常光折射率ne 2为第二单光轴光学层252当光线偏振方向与光轴平行的等效折射率;寻常光折射率no 2为第二单光轴光学层252当光线偏振方向与光轴垂直的等效折射率,当光通过第二单光轴光学层252会产生双折射现象。
在一个实施例中,ne 2>no 2,即第二单光轴光学层252为正型单光轴光学层。具体地, 建立xyz坐标系,nx 2为第二单光轴光学层252在x方向的折射率,ny 2为第二单光轴光学层252在y方向的折射率,nz 2为第二单光轴光学层252在z方向的折射率,z方向为第二单光轴光学层252的膜厚的延伸方向(垂直于第二单光轴光学层252的出光面),ne 2=nx 2>no 2=ny 2或者ne 2=ny 2>no 2=nx 2,no 2=nz 2。在一个实施例中,第二单光轴光学层252的非常光折射率ne 2为1.0-2.5。第二单光轴光学层252的寻常光折射率no 2为1.0-2.5。在一个实施例中,第二单光轴光学层252的材料包括但不限于向列相液晶分子材料。
具体地,第二单光轴光学层252的寻常光折射率no 2小于第一单光轴光学层251的非常光折射率ne 1。在一个实施例中,no 2和ne 1之差为0.01-2。当no 2和ne 1之差越大,越容易将正视光能量分配到大视角。第二单光轴光学层252中的光轴排布方向与第一单光轴光学层251中的光轴排布方向垂直。在一个实施例中,第二单光轴光学层252的寻常光折射率no 2为0/180degree方向的折射率,第二单光轴光学层252的非常光折射率ne 2为90/270degree方向的折射率。在一个实施例中,第二单光轴光学层252的寻常光折射率no 2为90/270degree方向的折射率,第二单光轴光学层252的非常光折射率ne 2为0/180degree方向的折射率。其中,0/180degree方向和90/270degree方向构成的面平行于第一单光轴光学层251的入光面。
在本实施例中,第一单光轴光学层251的一侧上形成有多个凹槽,第二单光轴光学层252包括板状部2521和贴合在板状部2521一侧上的多个与凹槽形状、尺寸相匹配的凸起结构2522,且在多个凸起结构2522的排布方向上,凸起结构2522的宽度在入射光的波长范围内。具体地,凸起结构2522的宽度小于或等于1000nm,在一实施例中,凸起结构2522的宽度大于或等于300nm,小于或等于1000nm。由于第二单光轴光学层252的寻常光折射率no 2小于第一单光轴光学层的寻常光折射率ne 1,且凸起结构2522的宽度接近入射光的波长的大小,因此凹槽与凸起结构2522的交接面形成由光密到光疏的光栅介面,在光栅介面偏振光产生绕射现象,由此让光行进产生角度变化(参见图2),形成正视角光型能量分配大视角的光学现象。具体地,凸起结构呈周期性排列,即由凸起结构构建的绕射部呈周期性排列。
在一个实施例中,参见图3,凸起结构2522为四棱柱结构,四棱柱结构具有多个侧面,且四棱柱结构的一侧面贴合板状部2521延伸,多个凸起结构2522的延伸方向平行, 相邻的两个凸起结构2522间隔设置。具体地,请一并参见图4,贴合板状部2521的侧面的宽度为2rx 1,相邻的两个凸起结构2522贴合板状部2521的侧面的中心之间的距离为Px 1,Px 1≥2rx 1,当Px 1=2rx 1时,相邻的两个凸起结构贴合设置。凸起结构2522的厚度为d 1,第二单光轴光学层252的厚度为D 1,d 1不为0,且D 1≥d 1。其中,2rx 1在入射光的波长范围内,2rx 1小于或等于1000nm,在一实施例中,2rx 1大于或等于300nm,小于或等于1000nm。
在一个实施例中,参见图5,凸起结构2522为四棱柱结构,多个凸起结构2522呈二维矩阵阵列排布,相邻的两个凸起结构2522间隔设置,以更有效的将正视角光能量分配到二维方向,使得全视角观赏更加匀。具体地,请一并参见图6,在x方向上,贴合板状部2521的侧面的宽度为2rx 2,相邻的两个凸起结构2522贴合板状部2521的侧面的中心之间的距离为Px 2,Px 2≥2r x 2,当Px 2=2r x 2时,相邻的两个凸起结构在x方向上贴合设置。在y方向上,贴合板状部2521的侧面的宽度为2ry 2,相邻的两个凸起结构2522贴合板状部2521的侧面的中心之间的距离为Py 2,Py 2≥2ry 2,当Py 2=2ry 2时,相邻的两个凸起结构在y方向上贴合设置。凸起结构2522的厚度为d 2,第二单光轴光学层252的厚度为D 2,d 2不为0,且D 2≥d 2。其中,2rx 2和2ry 2均在入射光的波长范围内,2rx 2和2ry 2均小于或等于1000nm,在一实施例中,2rx 2和2ry 2均大于或等于300nm,小于或等于1000nm。在一个实施例中,四棱柱为正四棱柱,2rx 2=2ry 2
本实施例提供的光学膜层,包括第一单光轴光学层251、第二单光轴光学层252,当光通过第一单光轴光学层251的等效折射率为ne 1,该光通过第二单光轴光学层252的等效折射率为no 2,由于ne 1>no 2,第一单光轴光学层251和第二单光轴光学层252的交接面看到的是光由光密介质射向光疏介质而产生绕射的作用,由此,光学膜层使正视角光型能量分配大视角的光学现象,改善视角色偏。
参见图7,图7为本实施例中的显示装置的结构示意图。
在本实施例中,显示装置10包括背光模组100和显示面板200。其中,背光模组100提供准直出光背光光源(collimate light emitting BL),以使光的能量集中在正视角输出。
在本实施例中,参见图8,背光模组100具有指向性高的背光光型输出,包括反射片 110、导光板120、棱镜膜130及LED光源140,反射片110与导光板120、棱镜膜130依次层叠,导光板120具有入光面121,LED光源140与入光面121相对设置,导光板120靠近反射片110的一侧开设有条形的第一凹槽122,第一凹槽122的截面呈V形,第一凹槽122的延伸方向与LED光源140的出光方向垂直,导光板120靠近棱镜膜130的一侧开设有条形的第二凹槽123,第二凹槽123的截面呈V形,第二凹槽123的延伸方向与LED光源140的出光方向平行。可选的,棱镜膜130的棱镜一侧层叠在导光板120上。
在本实施例中,参见图9和图10,图9和图10为本实施例中的显示面板的结构示意图。
本实施例中,显示面板200包括第一光栅层210、第一基板220、显示层230、第二光栅层240、光学膜层250、光阻层260以及第二基板270。
具体地,第一基板220和第二基板270相对设置;第一光栅层210设置在第一基板220上远离第二基板270一侧;显示层230设置在第一基板220和第二基板270之间;第二光栅层240设置在显示层230和第二基板270之间;光学膜层250设置在第二光栅层240和第二基板270之间,其中,第一单光轴光学层设置在第二光栅层240侧;光阻层260设置在光学膜层250和第二基板270之间,或者设置在第一基板220和显示层230之间。
即,在一实施例中,参见图9,显示面板200包括依次叠层设置的第一光栅层210、第一基板220、显示层230、第二光栅层240、光学膜层250、光阻层260以及第二基板270;在另一个实施例中,参见图10,显示面板200包括依次叠层设置的第一光栅层210、第一基板220、光阻层260、显示层230、第二光栅层240、光学膜层250以及第二基板270。
在本实施例中,第一光栅层210设置在第一基板220上远离第二基板270一侧,第一光栅层210能够将自然光变成偏振光。其中,第一光栅层210的厚度一般小于20μm。
具体地,参见图11,第一光栅层210包括透明基板2101和形成在透明基板2101上的多个条形的金属层2102,多个金属层2102间隔且平行设置。透明基板2101包括但不限于玻璃基板、硅胶基板、二氧化硅基板、氮化硅基板、聚甲基丙烯酸甲酯基板及聚对苯二甲酸乙二酯基板中的一种。金属层2102包括但不限于金、铝及铜。金属层2102形成在透明基板2101上,多个金属层2102沿一直线间隔并均匀排布,且多个金属层2102的延 伸方向相互平行,而形成光栅。可选的,金属层2102的宽度为50nm-150nm;金属层2102的厚度为100nm-200nm;相邻的两个金属层2102的间距为100nm-200nm。
在本实施例中,第一光栅层210分为振动方向与金属层的延伸方向垂直的电磁波及振动方向与金属层的延伸方向平行的电磁波,第一光栅层210会吸收或者反射电磁波振动分量与金属层延伸方向平行的电磁波分量,只有电磁波振动分量与金属层延伸方向垂直的电磁波分量穿透,获得与偏光板相同的作用,仅通过垂直于偏光板拉伸方向的偏振光。
具体地,光由水平偏振(电场振动方向0/180degree方向)及垂直偏振(电场振动方向90/270degree方向)构成,第一光栅层210对于偏振光具备吸收跟穿透的作用。当第一光栅层210的金属层的排布方向平行于0/180degree方向时,第一光栅层210的金属层的延伸方向平行于90/270degree方向,预计水平偏振光可以通过第一光栅层210;当第一光栅层210的金属层的排布方向平行于90/270degree方向时,第一光栅层210的金属层的延伸方向平行于0/180degree方向,预计垂直偏振光可以通过第一光栅层210。由此,第一光栅层210可以取代传统结构中的下偏光板(传统的偏光板单层厚度大约为200μm),使显示面板200的厚度较薄。
在本实施例中,第一基板220与第二基板270相对设置,第一基板220和第二基板270的材料不做限制,具体可以选用玻璃基板。显示层230包括液晶材料层和设置在液晶材料层上下表面上的电极层,其中,电极层的材料可选为氧化铟锡。
在本实施例中,第二光栅层240包括透明基板和形成在透明基板上的多个条形的金属层,多个金属层间隔且平行设置。透明基板包括但不限于玻璃基板、硅胶基板、二氧化硅基板、氮化硅基板、聚甲基丙烯酸甲酯基板及聚对苯二甲酸乙二酯基板中的一种。金属层包括但不限于金、铝及铜。金属层形成在透明基板上,多个金属层沿一直线间隔并均匀排布,且多个金属层的延伸方向相互平行,而形成光栅。可选的,金属层的宽度为50nm-150nm;金属层的厚度为100nm-200nm;相邻的两个金属层的间距为100nm-200nm。可选的,第二光栅层240与光学膜层250的第一光栅层210相对设置,即第二光栅层240的多个金属层与第一光栅层210的多个金属层相对应。
第二光栅层240与第一光栅层210的结构和功能相似,对于偏振光具备吸收跟穿透的作用,能够替代传统的上偏光板,使显示面板200更薄。
当第二光栅层240的金属层的排布方向平行于0/180degree方向时,第二光栅层240的金属层的延伸方向平行于90/270degree方向,预计水平偏振光可以通过第二光栅层240,该水平偏振光通过第一单光轴光学层251的等效折射率为ne 1,该水平偏振光通过第二单光轴光学层252的等效折射率为no 2,由于ne 1>no 2,第一单光轴光学层251和第二单光轴光学层252的交接面看到的是水平偏振光由光密介质射向光疏介质而产生绕射的作用,使正视角光型能量分配大视角的光学现象。
当当第二光栅层240的金属层的排布方向平行于90/270degree方向时,当第二光栅层240的金属层的延伸方向平行于0/180degree方向。预计垂直偏振光可以通过当第二光栅层240,该垂直偏振光通过第一单光轴光学层251的等效折射率为ne 1,该垂直偏振光通过第二单光轴光学层252的等效折射率为no 2,由于ne 1>no 2,第一单光轴光学层251和第二单光轴光学层252的交接面看到的是垂直偏振光由光密介质射向光疏介质而产生绕射的作用,使正视角光型能量分配大视角的光学现象。
在本实施例中,光学膜层250参见上一实施例的相关描述,在此不再赘述。光学膜层250能够将正视角光型能量分配大视角,改善视角色偏。
在本实施例中,光阻层260用于为显示面板提供色相,使显示面板形成彩色的显示画面。光阻层260可以设置在第二光栅层240和第二基板270之间,或者也可以设置在第一基板220和显示层230之间。
请一并参见图12-图14(图中网格层为补偿膜层),在一个实施例中,当光阻层260设置在第二光栅层240和第二基板270之间时,显示面板还可以包括:设置在显示层230和第二光栅层240之间的补偿膜层;和/或设置在显示层230和第一基板220之间的补偿膜层。
请一并参见图15-图17(图中网格层为补偿膜层),在一个实施例中,当光阻层260设置在第一基板220和显示层230之间时,显示面板还可以包括:设置在显示层230和第二光栅层240之间的补偿膜层;和/或设置在光阻层260和第一基板220之间的补偿膜层。
需要说明的是,显示面板200不限于上述层叠结构,不同层可以根据不同需求增加特殊功能的材料,例如,在单功能膜层中增加其他功能材料,而得到多功能膜层。另外,显示面板200中各个膜层的层叠顺序可以根据所需要的功能进行改变,同时,还可以根据需 要加入其他功能膜层等等。
本实施例提供的显示装置10,包括指向性高的背光光型输出的背光模组100,以及具有大视角且色偏得到改善、薄型化的显示面板200。其中,显示面板200一方面通过光学膜层250的设置,能将正视角的光型能量分配到大视角,解决显示面板200的大视角色偏问题,而不需要将各子像素划分为主像素及次像素结构,避免了再设计金属走线或薄膜晶体管元件来驱动次像素以及可透光开口区牺牲,从而具有高的面板透率,增加了出光能量,可以达到节能的效益,同时维持了显示面板200的显示解析度和驱动频率;另一方面,第一光栅层210和第二光栅层240均能够使自然光变成偏振光,而替代厚度较厚的偏光板,而使显示面板200的厚度较薄,从而显示装置10体积轻薄、显示色偏率低且具有高的显示效率,能够提高用户的体验度。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种光学膜层,包括:
    第一单光轴光学层,所述第一单光轴光学层的一侧上形成有多个凹槽;
    第二单光轴光学层,包括板状部和贴合在所述板状部一侧上的多个与所述凹槽形状、尺寸相匹配的凸起结构,所述第二单光轴光学层的寻常光折射率小于所述第一单光轴光学层的非常光折射率,在多个所述凸起结构的排布方向上,所述凸起结构的宽度在入射光的波长范围内。
  2. 根据权利要求1所述的光学膜层,其中,所述第一单光轴光学层的非常光折射率为1.0-2.5。
  3. 根据权利要求1所述的光学膜层,其中,所述第二单光轴光学层的寻常光折射率为1.0-2.5。
  4. 根据权利要求1所述的光学膜层,其中,所述第一单光轴光学层的非常光折射率与所述第二单光轴光学层的寻常光折射率之差为0.01-2。
  5. 根据权利要求1所述的光学膜层,其中,在多个所述凸起结构的排布方向上,所述凸起结构的宽度小于或等于1000nm。
  6. 根据权利要求1所述的光学膜层,其中,所述凸起结构为四棱柱结构,且四棱柱的一侧面贴合所述板状部延伸,多个所述凸起结构的延伸方向平行,相邻的两个凸起结构间隔设置。
  7. 根据权利要求1所述的光学膜层,其中,所述凸起结构为四棱柱结构,多个所述凸起结构呈二维矩阵阵列排布,相邻的两个凸起结构间隔设置。
  8. 根据权利要求1所述的光学膜层,其中,所述第一单光轴光学层的材料包括向列相液晶分子材料。
  9. 根据权利要求1所述的光学膜层,其中,所述第二单光轴光学层的材料包括向列相液晶分子材料。
  10. 一种光学膜层,包括:
    第一单光轴光学层,所述第一单光轴光学层的一侧上形成有多个凹槽;
    第二单光轴光学层,包括板状部和贴合在所述板状部一侧上的多个与所述凹槽形状、 尺寸相匹配的凸起结构,所述第二单光轴光学层的寻常光折射率小于所述第一单光轴光学层的非常光折射率,在多个所述凸起结构的排布方向上,所述凸起结构的宽度小于或等于1000nm;
    其中,所述第一单光轴光学层的非常光折射率为1.0-2.5,所述第二单光轴光学层的寻常光折射率为1.0-2.5,所述第一单光轴光学层的非常光折射率与所述第二单光轴光学层的寻常光折射率之差为0.01-2。
  11. 一种显示装置,包括:
    背光模组,用于提供入射光;
    显示面板,置于所述背光模组上方,用于接收所述入射光并显示画面;
    其中,所述显示面板包括:
    相对设置的第一基板和第二基板;
    设置在所述第一基板上远离所述第二基板一侧的第一光栅层;
    设置在所述第一基板和所述第二基板之间的显示层;
    设置在所述显示层和所述第二基板之间的第二光栅层;
    设置在所述第二光栅层和所述第二基板之间的如权利要求1所述的光学膜层,所述第一单光轴光学层设置在所述第二光栅层侧;
    设置在所述光学膜层和所述第二基板之间的光阻层,或者设置在所述第一基板和所述显示层之间的光阻层。
  12. 根据权利要求11所述的显示装置,其中,所述第一光栅层包括形成在所述第一基板上的多个条形的金属层,多个所述金属层间隔且平行设置。
  13. 根据权利要求11所述的显示装置,其中,所述第二光栅层包括透明基板和形成在所述透明基板上的多个条形的金属层,多个所述金属层间隔且平行设置。
  14. 根据权利要求12所述的显示装置,其中,所述第一光栅层金属层的宽度为50nm-150nm,金属层的厚度为100nm-200nm,相邻的两个所述金属层的间距为100nm-200nm。
  15. 根据权利要求13所述的显示装置,其中,所述第二光栅层金属层的宽度为50nm-150nm,金属层的厚度为100nm-200nm,相邻的两个所述金属层的间距为 100nm-200nm。
  16. 根据权利要求11所述的显示装置,其中,所述光阻层设置在所述光学膜层和所述第二基板之间,所述显示面板还包括:
    设置在所述显示层和所述第二光栅层之间的补偿膜层;以及
    设置在所述显示层和所述第一基板之间的补偿膜层。
  17. 根据权利要求11所述的显示装置,其中,所述光阻层设置在所述光学膜层和所述第二基板之间,所述显示面板还包括:
    设置在所述显示层和所述第二光栅层之间的补偿膜层。
  18. 根据权利要求11所述的显示装置,其中,所述光阻层设置在所述光学膜层和所述第二基板之间,所述显示面板还包括:
    设置在所述显示层和所述第一基板之间的补偿膜层。
  19. 根据权利要求11所述的显示装置,其中,所述光阻层设置在所述第一基板和所述显示层之间;所述显示面板还包括:
    设置在所述显示层和所述第二光栅层之间的补偿膜层;以及
    设置在所述光阻层和所述第一基板之间的补偿膜层。
  20. 根据权利要求11所述的显示装置,其中,所述光阻层设置在所述第一基板和所述显示层之间;所述显示面板还包括:
    设置在所述显示层和所述第二光栅层之间的补偿膜层;或
    设置在所述光阻层和所述第一基板之间的补偿膜层。
PCT/CN2019/075379 2019-01-30 2019-02-18 光学膜层和显示装置 WO2020155203A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910090545.9A CN109633985A (zh) 2019-01-30 2019-01-30 光学膜层和显示装置
CN201910090545.9 2019-01-30

Publications (1)

Publication Number Publication Date
WO2020155203A1 true WO2020155203A1 (zh) 2020-08-06

Family

ID=66062827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075379 WO2020155203A1 (zh) 2019-01-30 2019-02-18 光学膜层和显示装置

Country Status (2)

Country Link
CN (1) CN109633985A (zh)
WO (1) WO2020155203A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109031496A (zh) * 2018-07-19 2018-12-18 深圳市华星光电技术有限公司 一种纳米金属光栅的制作方法及纳米金属光栅
CN109085718A (zh) * 2018-10-30 2018-12-25 惠科股份有限公司 光学复合膜和显示面板
CN109212652A (zh) * 2018-09-30 2019-01-15 惠科股份有限公司 偏光板及显示装置
CN109239968A (zh) * 2018-10-30 2019-01-18 惠科股份有限公司 光学复合膜层、显示面板和显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101158778A (zh) * 2007-11-14 2008-04-09 友达光电(苏州)有限公司 广视角膜与应用该广视角膜的液晶显示装置
CN109031501A (zh) * 2018-09-30 2018-12-18 惠科股份有限公司 偏光结构、显示面板及显示装置
CN109164531A (zh) * 2018-09-30 2019-01-08 惠科股份有限公司 偏光结构及显示装置
CN109212823B (zh) * 2018-10-30 2021-06-18 惠科股份有限公司 光学复合膜、显示面板和显示装置
CN109283747A (zh) * 2018-10-30 2019-01-29 惠科股份有限公司 光学复合膜、显示面板和显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109031496A (zh) * 2018-07-19 2018-12-18 深圳市华星光电技术有限公司 一种纳米金属光栅的制作方法及纳米金属光栅
CN109212652A (zh) * 2018-09-30 2019-01-15 惠科股份有限公司 偏光板及显示装置
CN109085718A (zh) * 2018-10-30 2018-12-25 惠科股份有限公司 光学复合膜和显示面板
CN109239968A (zh) * 2018-10-30 2019-01-18 惠科股份有限公司 光学复合膜层、显示面板和显示装置

Also Published As

Publication number Publication date
CN109633985A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
WO2020087620A1 (zh) 光学复合膜、显示面板和显示装置
WO2020155206A1 (zh) 光学膜层和显示装置
WO2020087638A1 (zh) 光学复合膜、显示面板及显示装置
WO2020087634A1 (zh) 光学复合膜层、显示面板和显示装置
WO2020087625A1 (zh) 光学复合膜、显示面板和显示装置
WO2020087635A1 (zh) 光学复合膜、显示面板和显示装置
WO2020087624A1 (zh) 光学复合膜、显示面板和显示装置
WO2020155279A1 (zh) 光学膜层和显示装置
WO2020155281A1 (zh) 光学膜层和显示装置
WO2020062587A1 (zh) 偏光板及显示装置
WO2020062603A1 (zh) 偏光结构及显示装置
WO2020062577A1 (zh) 偏光片和显示装置
WO2020062591A1 (zh) 偏光板及显示装置
WO2020087632A1 (zh) 光学复合膜、显示面板和显示装置
WO2020087630A1 (zh) 光学复合膜、显示面板和显示装置
WO2020062578A1 (zh) 偏光结构及显示装置
WO2020155280A1 (zh) 光学膜层和显示装置
WO2020155271A1 (zh) 光学膜层和显示装置
WO2020155207A1 (zh) 光学膜层和显示装置
WO2020155272A1 (zh) 光学膜层和显示装置
WO2020155278A1 (zh) 光学膜层和显示装置
WO2020155220A1 (zh) 光学膜层和显示装置
WO2020155273A1 (zh) 光学膜层和显示装置
WO2020155203A1 (zh) 光学膜层和显示装置
WO2020155246A1 (zh) 光学膜层和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913281

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19913281

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19913281

Country of ref document: EP

Kind code of ref document: A1