WO2020153359A1 - Thermoelectric conversion device - Google Patents

Thermoelectric conversion device Download PDF

Info

Publication number
WO2020153359A1
WO2020153359A1 PCT/JP2020/001961 JP2020001961W WO2020153359A1 WO 2020153359 A1 WO2020153359 A1 WO 2020153359A1 JP 2020001961 W JP2020001961 W JP 2020001961W WO 2020153359 A1 WO2020153359 A1 WO 2020153359A1
Authority
WO
WIPO (PCT)
Prior art keywords
conversion device
thermoelectric conversion
temperature difference
electrolytic
holes
Prior art date
Application number
PCT/JP2020/001961
Other languages
French (fr)
Japanese (ja)
Inventor
バン トアン ヴェン
崇人 小野
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Publication of WO2020153359A1 publication Critical patent/WO2020153359A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/36Deferred-action cells containing electrolyte and made operational by physical means, e.g. thermal cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect

Definitions

  • the present invention relates to a thermoelectric conversion device.
  • thermoelectric converters have been developed and used that can obtain electric energy by utilizing exhaust heat from factories, geothermal heat, solar heat, combustion heat of fossil fuels, and temperature gradient of seawater.
  • thermoelectric conversion device examples include a device using a thermoelectric element, a device using a hydrogen storage alloy, and a device using a reaction gas (see, for example, Patent Document 1 or 2).
  • nano-sized pores (hereinafter also referred to as nanochannels) have been used for various purposes.
  • the nanochannel has a large scale effect when the pore diameter is close to the Debye length, so that when the surface of the nanochannel comes into contact with the electrolyte solution, an electric double layer is formed along the pore wall of the nanochannel. It The thickness of the electric double layer depends on the Debye length, and the Debye length decreases as the ion concentration of the electrolyte solution increases. Utilizing such behavior of nanochannels in the liquid phase, molecular filtration, ion transport, power generators, etc. have been developed (for example, see Non-Patent Documents 1 to 3).
  • the nanochannel can be formed by anodization, nanoimprint, ion milling, electron beam lithography (EBlithography), deep etching (Deep-RIE), MacEtch (metal-assisted chemical etching), etc. (for example, , Non-Patent Documents 2, 4 or 5).
  • EBlithography electron beam lithography
  • Deep-RIE deep etching
  • MacEtch metal-assisted chemical etching
  • JP 2004-63656 A Japanese Patent Laid-Open No. 2007-282849
  • thermoelectric conversion devices as described in Patent Documents 1 and 2 may not have sufficient conversion efficiency depending on the usage conditions due to the performance and characteristics of materials such as thermoelectric elements, hydrogen storage alloys, and reaction gases. There was a problem that there is. Further, there is no thermoelectric conversion device having excellent conversion efficiency that uses nanochannels.
  • the present invention has been made in view of such problems, and an object thereof is to provide a thermoelectric conversion device having relatively excellent conversion efficiency by utilizing nano-sized through holes.
  • thermoelectric conversion device a membrane having a plurality of nano-sized through holes provided penetrating the thickness, and contains an electrolyte solution inside, the membrane, A pair of electrolytic cells provided so as to communicate with each other through the plurality of through-holes with the body sandwiched therebetween, a pair of electrodes provided in each electrolytic cell, and the electrolyte solution stored in each electrolytic cell with a temperature.
  • at least one of the electrolytic cells has a temperature adjusting means capable of heating or cooling, and in the electrolyte solution contained in each electrolytic cell, a temperature difference is generated by the temperature adjusting means. It is characterized in that an electromotive force is generated between the electrodes when the electrodes are turned on.
  • thermoelectric conversion device configured to operate according to the following principle. That is, as shown in FIG. 1, let us consider a system in which a pair of electrolyzers containing an electrolyte solution therein communicate with each other through nano-sized pores (nanochannels).
  • the electrolyte solution is a potassium chloride (KCl) aqueous solution
  • the nanochannel is a through hole formed by penetrating alumina (Al 2 O 3 ).
  • K + ions are arranged in layers along the pore walls of the nanochannel to form an electric double layer. This narrows the passage in the nanochannel, making it difficult for ions to pass through.
  • the pore diameter of the nanochannel is within a predetermined diameter range, neither K + ion nor Cl ⁇ ion can pass through due to the formed electric double layer.
  • thermoelectric conversion device can convert the temperature difference into electric energy by utilizing the nano-sized through holes according to the principle shown in FIG. Further, the thermoelectric conversion device according to the present invention has relatively excellent conversion efficiency.
  • the thermoelectric converter according to the present invention utilizes, for example, exhaust heat of a factory or the like, geothermal heat, solar heat, heat of combustion of fossil fuel, heat such as temperature gradient of seawater, or a temperature difference, and a pair of electrolyzers by a temperature adjusting means. By giving a temperature difference between the tanks, electromotive force can be generated between the electrodes to obtain electric energy.
  • thermoelectric conversion device is configured such that, when there is no temperature difference in the electrolyte solution housed in each electrolytic cell, the electric double layer prevents ions in the electrolyte solution from passing through the plurality of through holes. May be. In this case, by giving a temperature difference to each electrolytic cell to move the ions and then eliminating the temperature difference in each electrolytic cell, it is possible to store +ion or ⁇ ion in each electrolytic cell. You can take action.
  • thermoelectric conversion device the electrolyte solution stored in each electrolytic cell, after causing a temperature difference in the temperature adjusting means, by eliminating the temperature difference, at least one of the electrolysis
  • the tank may be configured to be capable of storing electricity by storing +ions or ⁇ ions. Also in this case, operation like a capacitor can be performed.
  • the membrane body and the electrolyte solution are configured to be able to form an electric double layer along the hole walls of the plurality of through holes.
  • the plurality of through holes preferably have a diameter of 1 nm to 100 nm so that the flow of ions can be controlled by the electric double layer.
  • the plurality of through holes are provided in the film body at a high density.
  • the film body is preferably made of silicon, oxide, nitride, metal or metallic glass. When the film body is made of metal or metallic glass, the internal resistance can be suppressed.
  • the electrolyte solution may contain any electrolyte such as potassium chloride or sodium chloride.
  • thermoelectric conversion device having relatively excellent conversion efficiency by utilizing nano-sized through holes.
  • thermoelectric conversion device The operation principle of the thermoelectric conversion device according to the present invention is shown (a) there is no temperature difference between the electrolytic cells and an electric double layer is formed, and (b) a temperature difference is given between the electrolytic cells to generate electricity.
  • FIG. 6 is a cross-sectional view showing a state in which the double layer is thinned, (c) a state in which K + ions move and an electromotive force is generated. It is a front view which shows the thermoelectric conversion device of embodiment of this invention. In the thermoelectric conversion device shown in FIG. 2, (a) the cross section of the membrane and the support, (b) the surface of the membrane, (c) the cross section of the membrane, and (d) the cross section near the boundary between the membrane and the support. It is a micrograph.
  • Fig. 2 is a graph showing changes in temperature and output voltage of each electrolyzer (Hotchamber, Coldchamber) when one of the electrolyzers of the thermoelectric converter shown in Fig. 2 is heated and then naturally radiated. is there.
  • Fig. 2 shows the relationship between the load resistance and the absolute value of output voltage (Absolute output voltage) and output power (Output power) when a temperature difference is applied to each electrolyzer in the thermoelectric converter. It is a graph shown.
  • Fig. 2 shows the relationship between the temperature difference of each electrolyzer and the absolute value of output voltage and power density when changing the temperature difference of each electrolyzer in the thermoelectric converter. It is a graph shown.
  • thermoelectric conversion device 3 is a graph showing the relationship between the electrolyte concentration (Electrolyte concentration) and the absolute value of the output voltage when a temperature difference is applied to each electrolytic cell of the thermoelectric conversion device shown in FIG. 2. It is a graph which shows the change of output voltage (Output voltage) when one electrolyzer of the thermoelectric conversion device shown in FIG. 2 is heated, and the temperature difference of each electrolyzer is eliminated. It is a graph which shows the relationship of the elapsed time after the temperature difference of each electrolysis cell in FIG. 8 disappears, and a potential difference (Absolute output voltage) of the thermoelectric converter shown in FIG.
  • thermoelectric conversion device 10 includes a film body 11, a support 12, a pair of electrolytic cells 13a and 13b, a pair of electrodes 14a and 14b, and a temperature adjusting unit 15.
  • the film body 11 has a plurality of nano-sized through holes 11 a that are provided so as to penetrate through the thickness.
  • the film body 11 is made of an anodized aluminum oxide (AAO; anodized aluminum oxide) film, has a thickness of about 3 ⁇ m, and each through hole 11 a has a diameter of about 10 nm.
  • AAO anodized aluminum oxide
  • the film body 11 is not limited to the one made of aluminum oxide, but may be made of another oxide, silicon, nitride, metal or metallic glass.
  • the support 12 is composed of a silicon (Si) substrate 12a and a SiO 2 film 12b formed on one surface of the silicon substrate 12a.
  • the support 12 is provided with the film body 11 on the surface of the SiO 2 film 12b opposite to the silicon substrate 12a.
  • the support 12 has a communication hole 12c that penetrates from the surface of the silicon substrate 12a opposite to the film body 11 to the film body 11 and communicates with the plurality of through holes 11a of the film body 11.
  • the silicon substrate 12a is a silicon wafer having a thickness of 300 ⁇ m and a size of 2 ⁇ 2 cm 2 .
  • the SiO 2 film 12b has a thickness of 300 nm.
  • the film body 11 and the support body 12 shown in FIG. 2 are manufactured as follows. That is, first, the SiO 2 film 12b is formed on the surface of the silicon substrate 12a by the plasma CVD method, and the aluminum film is further formed thereon by sputtering. Next, according to Non-Patent Document 2, an aluminum oxide (AAO) film body 11 having a plurality of through holes 11a is formed on the aluminum film by using an anodic oxidation method. Next, the silicon substrate 12a and the SiO 2 film 12b are etched by deep reactive ion etching (deep RIE) to form a communication hole 12c.
  • deep RIE deep reactive ion etching
  • FIGS. 3(a) to 3(d) show micrographs of the cross-sections of the membrane 11 and the support 12 actually manufactured.
  • FIG. 3B it can be confirmed that a plurality of pores having a diameter of about 10 nm are densely present on the surface of the film body 11.
  • FIGS. 3C and 3D it can be confirmed that a plurality of holes having a width of about 10 nm extend in the film body 11 along the film thickness direction. From FIG. 3, it can be confirmed that a plurality of through holes 11a having a diameter of about 10 nm are formed in the film body 11 at a high density.
  • the pair of electrolytic cells 13a and 13b are provided so as to communicate with each other through the plurality of through holes 11a and the communication holes 12c with the membrane body 11 and the support body 12 interposed therebetween.
  • Each of the electrolytic cells 13a and 13b contains an electrolyte solution 13c therein.
  • each electrolytic cell 13a, 13b is composed of a hole formed in a separate Teflon (registered trademark) plate material.
  • the electrolytic baths 13a and 13b are formed by arranging the plate members so that the opening sides of the holes face each other so as to sandwich the film body 11 and the support body 12 therebetween.
  • the electrolyte solution 13c is made of a potassium chloride (KCl) solution.
  • the electrolyte solution 13c is not limited to potassium chloride and may include any electrolyte such as sodium chloride.
  • a pair of electrodes 14a, 14b are provided in each electrolytic cell 13a, 13b.
  • the electrodes 14a and 14b are made of silver (Ag), and are attached to the electrolysis tanks 13a and 13b (holes of the plate material) on the opposite side of the film body 11.
  • the temperature adjusting means 15 is provided so that one of the electrolytic baths 13a can be heated so as to generate a temperature difference between the electrolyte solutions 13c stored in the electrolytic baths 13a and 13b.
  • the temperature adjusting means 15 has a Peltier element, and the Peltier element is brought into contact with the outer wall of one of the electrolytic baths 13a to heat the electrolyte solution 13c in the electrolytic bath 13a. It is configured as follows.
  • thermoelectric conversion device 10 according to the embodiment of the present invention can operate according to the principle shown in FIG. The following experiment was conducted in order to investigate this.
  • thermoelectric conversion device 10 Using the thermoelectric conversion device 10 shown in FIG. 2, an experiment was conducted in which a temperature difference was provided between the electrolytic cells 13a and 13b and the electric energy obtained thereby was measured.
  • the load resistance 21 and the data logger 22 were connected in parallel between the electrodes 14a and 14b, and the output voltage between the electrodes 14a and 14b was measured.
  • the temperature of each electrolytic cell 13a, 13b was measured with a thermocouple.
  • the electrolyte solution 13c in one of the electrolytic cells 13a is heated by a Peltier element, then the Peltier element is removed to stop the heating, and the temperature change and the output voltage of the electrolytic cells 13a and 13b when the heat is naturally radiated ( Output voltage) was measured.
  • the load resistance 21 was 47 k ⁇ and the concentration of the electrolyte (KCl) was 10 ⁇ 4 M. The measurement result is shown in FIG.
  • the electric double layer narrows the passage of each through hole 11a so that ions do not pass therethrough, so that the output voltage is 0 mV.
  • the absolute value of the output voltage increases as the temperature difference between the electrolytic cell 13a (Hot chamber) and the electrolytic cell 13b (Cold chamber) increases. This is because the passage of each through hole 11a expands as the temperature difference increases, and K + ions move from the electrolytic cell 13b (Cold chamber) to the electrolytic cell 13a (Hot chamber) mainly due to the heat permeation phenomenon. It is considered that electromotive force is generated between the electrodes 14a and 14b.
  • the temperature of the electrolytic cell 13b (Cold chamber) is gradually increased due to heat diffusion from the electrolytic cell 13a (Hot chamber) to the electrolytic cell 13b (Cold chamber).
  • the temperature of the electrolytic cell 13a (Hot chamber) became constant, and the absolute value of the output voltage reached the maximum value of 23 mV.
  • the temperature difference between the electrolytic bath 13a (Hot chamber) and the electrolytic bath 13b (Cold chamber) is about 17°C.
  • the temperature of the electrolytic cell 13b (Cold chamber) is gradually increasing. Then, when the heating is stopped, the temperatures of the electrolytic cell 13a (Hot chamber) and the electrolytic cell 13b (Cold chamber) decrease, and as the temperature difference between them decreases, the absolute value of the output voltage also decreases. It finally became 0 mV.
  • FIG. 5 shows the relationship between the load resistance 21 and the absolute value of the output voltage (Absolute output voltage) when the temperature difference between the electrolytic cells 13a and 13b is 17°C.
  • FIG. 6 shows the relationship between the temperature difference (Temperature difference) between the electrolytic cells 13a and 13b and the absolute value of the output voltage when the load resistance 21 is 47 k ⁇ .
  • the output voltage and the power density increased as the temperature difference between the electrolytic cells 13a and 13b increased. For example, when the temperature difference is 30° C., an output voltage of 50 mV and a power density of 255 ⁇ W/cm 2 are obtained.
  • FIG. 7 shows the relationship between the electrolyte concentration and the absolute value of the output voltage when the temperature difference between the electrolytic cells 13a and 13b is 17°C. As shown in FIG. 7, it was confirmed that the output voltage decreased as the electrolyte concentration increased. It is considered that this is because the electric double layer becomes thinner as the concentration of the electrolyte becomes higher, and the K + ions that have moved due to the thermal osmosis phenomenon easily flow back.
  • thermoelectric conversion device 10 can convert the temperature difference into electric energy by using the nano-sized through holes 11a. Therefore, the thermoelectric conversion device 10 uses, for example, exhaust heat of a factory or the like, geothermal heat, solar heat, heat of combustion of fossil fuels, heat such as a temperature gradient of seawater, or a temperature difference, and a pair of temperature adjusting means 15 is used. By giving a temperature difference between the electrolytic cells 13a and 13b, an electromotive force can be generated between the electrodes 14a and 14b to obtain electric energy.
  • the thermoelectric conversion device 10 is configured such that ions in the electrolyte solution 13c cannot pass through the plurality of through holes 11a due to the electric double layer when there is no temperature difference between the electrolyte solutions 13c stored in the electrolytic baths 13a and 13b. May be. In this case, a temperature difference is applied to each of the electrolytic cells 13a and 13b to move the ions, and then the temperature difference between the electrolytic cells 13a and 13b is eliminated, so that + ions or ⁇ ions are respectively supplied to the electrolytic cells 13a and 13b. It can be stored and behave like a capacitor. The following experiment was conducted in order to investigate this.
  • thermoelectric conversion device 10 can operate like a capacitor.
  • Thermoelectric Converter 11 Film Body 11a Through Hole 12 Support 12a Silicon Substrate 12b SiO 2 Film 12c Communication Hole 13a, 13b Electrolyzer 14a, 14b Electrode 15 Temperature Adjusting Means 21 load resistance 22 data logger

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Hybrid Cells (AREA)

Abstract

[Problem] To provide a thermoelectric conversion device that has a relatively excellent conversion efficiency using a nano-sized through holes. [Solution] According to the present invention, a filmmembrane body 11 has a plurality of nano-sized through-holes 11a provided to pass through the thickness thereof. A pair of electrolytic tanks 13a, 13b accommodate therein an electrolytic solutions 13c and are provided so as to communicate with each other via the plurality of through-holes 11a while sandwiching the filmmembrane body 11 is sandwiched therebetween. A pair of electrodes 14a, 14b are provided to the respective electrolytic tanks 13a, 13b. A temperature adjusting means 15 is provided so as to be capable of heating or cooling at least one electrolytic tank so that a temperature difference is generated in between the electrolytic solutions 13c accommodated in each of the respective electrolytic tanks 13a, 13b. When the temperature adjusting means 15 generates the temperature difference in between the electrolytic solutions 13c accommodated in each of the respective electrolytic tanks 13a, 13b, an electromotive force is generated between the electrodes 14a, 14b.

Description

熱電変換装置Thermoelectric converter
 本発明は、熱電変換装置に関する。 The present invention relates to a thermoelectric conversion device.
 従来、工場等の排熱や地熱、太陽熱、化石燃料の燃焼熱、海水の温度勾配などを利用して電気エネルギーを得ることができる熱電変換装置が開発され、利用されている。熱電変換装置としては、例えば、熱電素子を利用したものや、水素吸蔵合金を利用したもの、反応ガスを利用したものなどがある(例えば、特許文献1または2参照)。 Conventionally, thermoelectric converters have been developed and used that can obtain electric energy by utilizing exhaust heat from factories, geothermal heat, solar heat, combustion heat of fossil fuels, and temperature gradient of seawater. Examples of the thermoelectric conversion device include a device using a thermoelectric element, a device using a hydrogen storage alloy, and a device using a reaction gas (see, for example, Patent Document 1 or 2).
 なお、近年、ナノサイズの孔(以下、ナノチャンネルともいう)が、様々な用途に利用されている。ナノチャンネルは、孔の直径がデバイ長(Debye length)に近いとき、スケール効果が大きくなるため、ナノチャンネルの表面が電解質溶液に接すると、ナノチャンネルの孔壁に沿って電気二重層が形成される。その電気二重層の厚みはデバイ長に依存し、また、電解質溶液のイオン濃度が増加するとデバイ長が減少する。このような液相におけるナノチャンネルの振る舞いを利用して、分子ろ過やイオン輸送、発電装置などが開発されている(例えば、非特許文献1乃至3参照)。また、ナノチャンネルは、陽極酸化法やナノインプリント、イオンミリング、電子線リソグラフィ(EB lithography)、深掘りエッチング(Deep-RIE)、MacEtch(metal-assisted chemical etching)法などにより形成することができる(例えば、非特許文献2、4または5参照)。 In recent years, nano-sized pores (hereinafter also referred to as nanochannels) have been used for various purposes. The nanochannel has a large scale effect when the pore diameter is close to the Debye length, so that when the surface of the nanochannel comes into contact with the electrolyte solution, an electric double layer is formed along the pore wall of the nanochannel. It The thickness of the electric double layer depends on the Debye length, and the Debye length decreases as the ion concentration of the electrolyte solution increases. Utilizing such behavior of nanochannels in the liquid phase, molecular filtration, ion transport, power generators, etc. have been developed (for example, see Non-Patent Documents 1 to 3). Further, the nanochannel can be formed by anodization, nanoimprint, ion milling, electron beam lithography (EBlithography), deep etching (Deep-RIE), MacEtch (metal-assisted chemical etching), etc. (for example, , Non-Patent Documents 2, 4 or 5).
特開2004-63656号公報JP 2004-63656 A 特開2007-282449号公報Japanese Patent Laid-Open No. 2007-282849
 特許文献1および2に記載のような従来の熱電変換装置は、熱電素子や水素吸蔵合金、反応ガス等の材料の性能や特性等により、使用状態によっては、十分な変換効率が得られないことがあるという課題があった。また、優れた変換効率を有する熱電変換装置で、ナノチャンネルを利用したものは、未だ存在していない。 The conventional thermoelectric conversion devices as described in Patent Documents 1 and 2 may not have sufficient conversion efficiency depending on the usage conditions due to the performance and characteristics of materials such as thermoelectric elements, hydrogen storage alloys, and reaction gases. There was a problem that there is. Further, there is no thermoelectric conversion device having excellent conversion efficiency that uses nanochannels.
 本発明は、このような課題に着目してなされたもので、ナノサイズの貫通孔を利用して、比較的優れた変換効率を有する熱電変換装置を提供することを目的とする。 The present invention has been made in view of such problems, and an object thereof is to provide a thermoelectric conversion device having relatively excellent conversion efficiency by utilizing nano-sized through holes.
 上記目的を達成するために、本発明に係る熱電変換装置は、厚みを貫通して設けられたナノサイズの複数の貫通孔を有する膜体と、内部に電解質溶液を収納しており、前記膜体を挟んで、前記複数の貫通孔で互いに連通するよう設けられた1対の電解槽と、各電解槽に設けられた1対の電極と、各電解槽に収納された前記電解質溶液に温度差を発生させるよう、少なくとも一方の電解槽を加熱または冷却可能に設けられた温度調整手段とを有し、各電解槽に収納された前記電解質溶液に、前記温度調整手段で温度差を発生させたとき、各電極間に起電力が発生するよう構成されていることを特徴とする。 In order to achieve the above object, the thermoelectric conversion device according to the present invention, a membrane having a plurality of nano-sized through holes provided penetrating the thickness, and contains an electrolyte solution inside, the membrane, A pair of electrolytic cells provided so as to communicate with each other through the plurality of through-holes with the body sandwiched therebetween, a pair of electrodes provided in each electrolytic cell, and the electrolyte solution stored in each electrolytic cell with a temperature. In order to generate a difference, at least one of the electrolytic cells has a temperature adjusting means capable of heating or cooling, and in the electrolyte solution contained in each electrolytic cell, a temperature difference is generated by the temperature adjusting means. It is characterized in that an electromotive force is generated between the electrodes when the electrodes are turned on.
 本発明に係る熱電変換装置は、以下の原理により稼働するよう構成されている。すなわち、図1に示すように、内部に電解質溶液を収納した1対の電解槽が、ナノサイズの孔(ナノチャンネル)で互いに連通している系を考える。ここでは一例として、電解質溶液は、塩化カリウム(KCl)水溶液とし、ナノチャンネルは、アルミナ(Al)を貫通して形成された貫通孔とする。 The thermoelectric conversion device according to the present invention is configured to operate according to the following principle. That is, as shown in FIG. 1, let us consider a system in which a pair of electrolyzers containing an electrolyte solution therein communicate with each other through nano-sized pores (nanochannels). Here, as an example, the electrolyte solution is a potassium chloride (KCl) aqueous solution, and the nanochannel is a through hole formed by penetrating alumina (Al 2 O 3 ).
 図1(a)に示すように、各電解槽の間に温度差がないときには、ナノチャンネルの孔壁に沿って、Kイオンが層状に並び、電気二重層が形成される。これにより、ナノチャンネル内の通路が狭くなり、イオンが通過しにくくなる。ナノチャンネルの孔径が所定の径の範囲であれば、形成された電気二重層により、KイオンもClイオンも通過できなくなる。 As shown in FIG. 1( a ), when there is no temperature difference between the electrolytic cells, K + ions are arranged in layers along the pore walls of the nanochannel to form an electric double layer. This narrows the passage in the nanochannel, making it difficult for ions to pass through. When the pore diameter of the nanochannel is within a predetermined diameter range, neither K + ion nor Cl ion can pass through due to the formed electric double layer.
 次に、図1(b)に示すように、各電解槽の間に温度差を与えると、電気二重層が薄くなり、ナノチャンネル内の通路が広がる。図1(b)では、電気二重層の厚みが一定であるが、実際には、温度が高い方の電解槽側(HOT SIDE)の電気二重層の方が、温度が低い方の電解槽側(COLD SIDE)よりも薄くなる。これにより、主に熱浸透現象が発現し、図1(c)に示すように、温度が低い方の電解槽側(COLD SIDE)から温度が高い方の電解槽側(HOT SIDE)に向かって、Kイオンが移動する。その結果、各電解槽に設けられた1対の電極の間に、起電力が発生する。 Next, as shown in FIG. 1(b), when a temperature difference is applied between the electrolyzers, the electric double layer becomes thin and the passages in the nanochannel widen. In FIG. 1(b), the electric double layer has a constant thickness, but in reality, the electric double layer on the side of the electrolytic cell with the higher temperature (HOT SIDE) is on the side of the electrolytic cell with the lower temperature It becomes thinner than (COLD SIDE). As a result, a heat osmosis phenomenon mainly occurs, and as shown in FIG. 1(c), from the lower temperature electrolytic cell side (COLD SIDE) to the higher temperature electrolytic cell side (HOT SIDE). , K + ions move. As a result, an electromotive force is generated between the pair of electrodes provided in each electrolytic cell.
 このように、本発明に係る熱電変換装置は、図1に示す原理により、ナノサイズの貫通孔を利用して、温度差を電気エネルギーに変換することができる。また、本発明に係る熱電変換装置は、比較的優れた変換効率を有している。本発明に係る熱電変換装置は、例えば、工場等の排熱や地熱、太陽熱、化石燃料の燃焼熱、海水の温度勾配などの熱や温度差を利用して、温度調整手段により1対の電解槽の間に温度差を与えることにより、各電極間に起電力を発生させて、電気エネルギーを得ることができる。 As described above, the thermoelectric conversion device according to the present invention can convert the temperature difference into electric energy by utilizing the nano-sized through holes according to the principle shown in FIG. Further, the thermoelectric conversion device according to the present invention has relatively excellent conversion efficiency. The thermoelectric converter according to the present invention utilizes, for example, exhaust heat of a factory or the like, geothermal heat, solar heat, heat of combustion of fossil fuel, heat such as temperature gradient of seawater, or a temperature difference, and a pair of electrolyzers by a temperature adjusting means. By giving a temperature difference between the tanks, electromotive force can be generated between the electrodes to obtain electric energy.
 本発明に係る熱電変換装置は、各電解槽に収納された前記電解質溶液に温度差がないとき、前記電気二重層により、前記電解質溶液中のイオンが前記複数の貫通孔を通過できないよう構成されていてもよい。この場合、各電解槽に温度差を与えてイオンを移動させた後、各電解槽の温度差をなくすことにより、各電解槽にそれぞれ+イオンまたは-イオンを蓄えることができ、キャパシタのような動作を行うことができる。また、本発明に係る熱電変換装置は、各電解槽に収納された前記電解質溶液に、前記温度調整手段で温度差を発生させた後、その温度差をなくすことにより、少なくともいずれか一方の電解槽に、+イオンまたは-イオンを蓄えて、蓄電可能に構成されていてもよい。この場合にも、キャパシタのような動作を行うことができる。 The thermoelectric conversion device according to the present invention is configured such that, when there is no temperature difference in the electrolyte solution housed in each electrolytic cell, the electric double layer prevents ions in the electrolyte solution from passing through the plurality of through holes. May be. In this case, by giving a temperature difference to each electrolytic cell to move the ions and then eliminating the temperature difference in each electrolytic cell, it is possible to store +ion or −ion in each electrolytic cell. You can take action. Further, the thermoelectric conversion device according to the present invention, the electrolyte solution stored in each electrolytic cell, after causing a temperature difference in the temperature adjusting means, by eliminating the temperature difference, at least one of the electrolysis The tank may be configured to be capable of storing electricity by storing +ions or −ions. Also in this case, operation like a capacitor can be performed.
 本発明に係る熱電変換装置で、前記膜体および前記電解質溶液は、前記複数の貫通孔の孔壁に沿って、電気二重層を形成可能に構成されていることが好ましい。また、前記複数の貫通孔は、電気二重層によりイオンの流れを制御できるよう、直径が1nm乃至100nmであることが好ましい。また、複数の貫通孔は、膜体に高密度で設けられていることが好ましい。前記膜体は、ケイ素、酸化物、窒化物、金属または金属ガラスから成ることが好ましい。膜体が金属や金属ガラスから成る場合には、内部抵抗を抑制することができる。前記電解質溶液は、例えば、塩化カリウムまたは塩化ナトリウムなど、いかなる電解質を含んでいてもよい。 In the thermoelectric conversion device according to the present invention, it is preferable that the membrane body and the electrolyte solution are configured to be able to form an electric double layer along the hole walls of the plurality of through holes. Further, the plurality of through holes preferably have a diameter of 1 nm to 100 nm so that the flow of ions can be controlled by the electric double layer. Further, it is preferable that the plurality of through holes are provided in the film body at a high density. The film body is preferably made of silicon, oxide, nitride, metal or metallic glass. When the film body is made of metal or metallic glass, the internal resistance can be suppressed. The electrolyte solution may contain any electrolyte such as potassium chloride or sodium chloride.
 本発明によれば、ナノサイズの貫通孔を利用して、比較的優れた変換効率を有する熱電変換装置を提供することができる。 According to the present invention, it is possible to provide a thermoelectric conversion device having relatively excellent conversion efficiency by utilizing nano-sized through holes.
本発明に係る熱電変換装置の稼働原理を示す(a)各電解槽の間に温度差がなく、電気二重層が形成された状態、(b)各電解槽の間に温度差を与え、電気二重層が薄くなった状態、(c)それによりKイオンが移動し、起電力が発生した状態を示す断面図である。The operation principle of the thermoelectric conversion device according to the present invention is shown (a) there is no temperature difference between the electrolytic cells and an electric double layer is formed, and (b) a temperature difference is given between the electrolytic cells to generate electricity. FIG. 6 is a cross-sectional view showing a state in which the double layer is thinned, (c) a state in which K + ions move and an electromotive force is generated. 本発明の実施の形態の熱電変換装置を示す正面図である。It is a front view which shows the thermoelectric conversion device of embodiment of this invention. 図2に示す熱電変換装置の(a)膜体および支持体の断面、(b)膜体の表面、(c)膜体の断面、(d)膜体と支持体との境界付近の断面の顕微鏡写真である。In the thermoelectric conversion device shown in FIG. 2, (a) the cross section of the membrane and the support, (b) the surface of the membrane, (c) the cross section of the membrane, and (d) the cross section near the boundary between the membrane and the support. It is a micrograph. 図2に示す熱電変換装置の、一方の電解槽を加熱した後、自然放熱したときの、各電解槽(Hot chamber、Cold chamber)の温度変化および出力電圧(Output voltage)の変化を示すグラフである。Fig. 2 is a graph showing changes in temperature and output voltage of each electrolyzer (Hotchamber, Coldchamber) when one of the electrolyzers of the thermoelectric converter shown in Fig. 2 is heated and then naturally radiated. is there. 図2に示す熱電変換装置の、各電解槽に温度差を与えたときの、負荷抵抗(Load resistance)と、出力電圧の絶対値(Absolute output voltage)および出力電力(Output power)との関係を示すグラフである。Fig. 2 shows the relationship between the load resistance and the absolute value of output voltage (Absolute output voltage) and output power (Output power) when a temperature difference is applied to each electrolyzer in the thermoelectric converter. It is a graph shown. 図2に示す熱電変換装置の、各電解槽の温度差(Temperature difference)を変化させたときの、各電解槽の温度差と、出力電圧の絶対値および電力密度(Power density)との関係を示すグラフである。Fig. 2 shows the relationship between the temperature difference of each electrolyzer and the absolute value of output voltage and power density when changing the temperature difference of each electrolyzer in the thermoelectric converter. It is a graph shown. 図2に示す熱電変換装置の、各電解槽に温度差を与えたときの、電解質の濃度(Electrolyte concentration)と出力電圧の絶対値との関係を示すグラフである。3 is a graph showing the relationship between the electrolyte concentration (Electrolyte concentration) and the absolute value of the output voltage when a temperature difference is applied to each electrolytic cell of the thermoelectric conversion device shown in FIG. 2. 図2に示す熱電変換装置の、一方の電解槽を加熱した後、各電解槽の温度差をなくしたときの、出力電圧(Output voltage)の変化を示すグラフである。It is a graph which shows the change of output voltage (Output voltage) when one electrolyzer of the thermoelectric conversion device shown in FIG. 2 is heated, and the temperature difference of each electrolyzer is eliminated. 図2に示す熱電変換装置の、図8で各電解槽の温度差がなくなった後の経過時間と電位差(Absolute output voltage)との関係を示すグラフである。It is a graph which shows the relationship of the elapsed time after the temperature difference of each electrolysis cell in FIG. 8 disappears, and a potential difference (Absolute output voltage) of the thermoelectric converter shown in FIG.
 以下、図面に基づいて、本発明の実施の形態について説明する。
 図2乃至図9は、本発明の実施の形態の熱電変換装置を示している。
 図2に示すように、熱電変換装置10は、膜体11と支持体12と1対の電解槽13a、13bと1対の電極14a、14bと温度調整手段15とを有している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
2 to 9 show a thermoelectric conversion device according to an embodiment of the present invention.
As shown in FIG. 2, the thermoelectric conversion device 10 includes a film body 11, a support 12, a pair of electrolytic cells 13a and 13b, a pair of electrodes 14a and 14b, and a temperature adjusting unit 15.
 膜体11は、厚みを貫通して設けられたナノサイズの複数の貫通孔11aを有している。図2に示す具体的な一例では、膜体11は、陽極酸化された酸化アルミニウム(AAO;anodized aluminum oxide)製の膜から成り、厚みが約3μmであり、各貫通孔11aの直径は約10nmである。なお、膜体11は、酸化アルミニウム製のものに限らず、他の酸化物やケイ素、窒化物、金属または金属ガラスから成っていてもよい。 The film body 11 has a plurality of nano-sized through holes 11 a that are provided so as to penetrate through the thickness. In a specific example shown in FIG. 2, the film body 11 is made of an anodized aluminum oxide (AAO; anodized aluminum oxide) film, has a thickness of about 3 μm, and each through hole 11 a has a diameter of about 10 nm. Is. The film body 11 is not limited to the one made of aluminum oxide, but may be made of another oxide, silicon, nitride, metal or metallic glass.
 支持体12は、シリコン(Si)基板12aと、そのシリコン基板12aの一方の表面に形成されたSiO膜12bとから成っている。支持体12は、SiO膜12bのシリコン基板12aとは反対側の表面に、膜体11が設けられている。支持体12は、シリコン基板12aの膜体11とは反対側の表面から膜体11まで貫通して、膜体11の複数の貫通孔11aに連通する連通孔12cを有している。図2に示す具体的な一例では、シリコン基板12aは、厚みが300μmであり、大きさが2×2cmのシリコンウエハから成っている。SiO膜12bは、厚みが300nmである。 The support 12 is composed of a silicon (Si) substrate 12a and a SiO 2 film 12b formed on one surface of the silicon substrate 12a. The support 12 is provided with the film body 11 on the surface of the SiO 2 film 12b opposite to the silicon substrate 12a. The support 12 has a communication hole 12c that penetrates from the surface of the silicon substrate 12a opposite to the film body 11 to the film body 11 and communicates with the plurality of through holes 11a of the film body 11. In the specific example shown in FIG. 2, the silicon substrate 12a is a silicon wafer having a thickness of 300 μm and a size of 2×2 cm 2 . The SiO 2 film 12b has a thickness of 300 nm.
 図2に示す膜体11および支持体12は、以下のようにして製造されている。すなわち、まず、シリコン基板12aの表面に、プラズマCVD法により、SiO膜12bを形成し、さらにその上に、スパッタリングにより、アルミニウム膜を成膜する。次に、そのアルミニウム膜に対し、非特許文献2に従って、陽極酸化法を用いて、複数の貫通孔11aを有する酸化アルミニウム(AAO)製の膜体11を形成する。次に、深堀り反応性イオンエッチング(deep RIE)により、シリコン基板12aおよびSiO膜12bをエッチングして連通孔12cを形成する。 The film body 11 and the support body 12 shown in FIG. 2 are manufactured as follows. That is, first, the SiO 2 film 12b is formed on the surface of the silicon substrate 12a by the plasma CVD method, and the aluminum film is further formed thereon by sputtering. Next, according to Non-Patent Document 2, an aluminum oxide (AAO) film body 11 having a plurality of through holes 11a is formed on the aluminum film by using an anodic oxidation method. Next, the silicon substrate 12a and the SiO 2 film 12b are etched by deep reactive ion etching (deep RIE) to form a communication hole 12c.
 図3(a)~(d)に、実際に製造した膜体11および支持体12の断面等の顕微鏡写真を示す。図3(b)に示すように、膜体11の表面に、直径約10nmの複数の孔が高密度で存在していることが確認できる。また、図3(c)および(d)に示すように、膜体11中に、巾約10nmの複数の孔が、膜厚方向に沿って伸びていることが確認できる。図3から、膜体11に、直径約10nmの複数の貫通孔11aが高密度で形成されていることが確認できる。 FIGS. 3(a) to 3(d) show micrographs of the cross-sections of the membrane 11 and the support 12 actually manufactured. As shown in FIG. 3B, it can be confirmed that a plurality of pores having a diameter of about 10 nm are densely present on the surface of the film body 11. Further, as shown in FIGS. 3C and 3D, it can be confirmed that a plurality of holes having a width of about 10 nm extend in the film body 11 along the film thickness direction. From FIG. 3, it can be confirmed that a plurality of through holes 11a having a diameter of about 10 nm are formed in the film body 11 at a high density.
 1対の電解槽13a、13bは、膜体11および支持体12を挟んで、複数の貫通孔11aおよび連通孔12cで互いに連通するよう設けられている。各電解槽13a、13bは、内部に電解質溶液13cを収納している。図2に示す具体的な一例では、各電解槽13a、13bは、それぞれ別々のテフロン(登録商標)製の板材に形成された穴から成っている。各電解槽13a、13bは、各板材を、穴の開口側を対向させた状態で、膜体11および支持体12を挟むようにして配置することにより、形成されている。また、電解質溶液13cは、塩化カリウム(KCl)溶液から成っている。なお、電解質溶液13cは、塩化カリウムに限らず、塩化ナトリウムなど、いかなる電解質を含んでいてもよい。 The pair of electrolytic cells 13a and 13b are provided so as to communicate with each other through the plurality of through holes 11a and the communication holes 12c with the membrane body 11 and the support body 12 interposed therebetween. Each of the electrolytic cells 13a and 13b contains an electrolyte solution 13c therein. In a specific example shown in FIG. 2, each electrolytic cell 13a, 13b is composed of a hole formed in a separate Teflon (registered trademark) plate material. The electrolytic baths 13a and 13b are formed by arranging the plate members so that the opening sides of the holes face each other so as to sandwich the film body 11 and the support body 12 therebetween. Further, the electrolyte solution 13c is made of a potassium chloride (KCl) solution. The electrolyte solution 13c is not limited to potassium chloride and may include any electrolyte such as sodium chloride.
 1対の電極14a、14bは、各電解槽13a、13bに設けられている。図2に示す具体的な一例では、各電極14a、14bは銀(Ag)製であり、各電解槽13a、13b(板材の穴)の膜体11とは反対側に取り付けられている。温度調整手段15は、各電解槽13a、13bに収納された電解質溶液13cに温度差を発生させるよう、一方の電解槽13aを加熱可能に設けられている。図2に示す具体的な一例では、温度調整手段15は、ペルチェ素子を有し、そのペルチェ素子を一方の電解槽13aの外壁に接触させて、その電解槽13a中の電解質溶液13cを加熱するよう構成されている。 A pair of electrodes 14a, 14b are provided in each electrolytic cell 13a, 13b. In a specific example shown in FIG. 2, the electrodes 14a and 14b are made of silver (Ag), and are attached to the electrolysis tanks 13a and 13b (holes of the plate material) on the opposite side of the film body 11. The temperature adjusting means 15 is provided so that one of the electrolytic baths 13a can be heated so as to generate a temperature difference between the electrolyte solutions 13c stored in the electrolytic baths 13a and 13b. In a specific example shown in FIG. 2, the temperature adjusting means 15 has a Peltier element, and the Peltier element is brought into contact with the outer wall of one of the electrolytic baths 13a to heat the electrolyte solution 13c in the electrolytic bath 13a. It is configured as follows.
 本発明の実施の形態の熱電変換装置10は、図1に示す原理により稼働することができる。このことを調べるために、以下の実験を行った。 The thermoelectric conversion device 10 according to the embodiment of the present invention can operate according to the principle shown in FIG. The following experiment was conducted in order to investigate this.
 図2に示す熱電変換装置10を用いて、各電解槽13a、13bの間に温度差を与え、それにより得られる電気エネルギーを測定する実験を行った。実験では、図2に示すように、各電極14a、14bの間に負荷抵抗21およびデータロガー22を並列に接続し、各電極14a、14bの間の出力電圧の測定を行った。また、実験中、各電解槽13a、13bの温度を熱電対で測定した。 Using the thermoelectric conversion device 10 shown in FIG. 2, an experiment was conducted in which a temperature difference was provided between the electrolytic cells 13a and 13b and the electric energy obtained thereby was measured. In the experiment, as shown in FIG. 2, the load resistance 21 and the data logger 22 were connected in parallel between the electrodes 14a and 14b, and the output voltage between the electrodes 14a and 14b was measured. In addition, during the experiment, the temperature of each electrolytic cell 13a, 13b was measured with a thermocouple.
 まず、一方の電解槽13a中の電解質溶液13cをペルチェ素子で加熱し、その後、ペルチェ素子を取り外して加熱を停止し、自然放熱したときの、各電解槽13a、13bの温度変化および出力電圧(Output voltage)の変化を測定した。測定時の負荷抵抗21を47kΩ、電解質(KCl)の濃度を10-4Mとした。測定結果を、図4に示す。 First, the electrolyte solution 13c in one of the electrolytic cells 13a is heated by a Peltier element, then the Peltier element is removed to stop the heating, and the temperature change and the output voltage of the electrolytic cells 13a and 13b when the heat is naturally radiated ( Output voltage) was measured. At the time of measurement, the load resistance 21 was 47 kΩ and the concentration of the electrolyte (KCl) was 10 −4 M. The measurement result is shown in FIG.
 図4に示すように、加熱前には、電気二重層により、各貫通孔11aの通路が狭くなってイオンが通過しないため、出力電圧(Output voltage)は0mVになっている。加熱すると、電解槽13a(Hot chamber)と電解槽13b(Cold chamber)との温度差が大きくなるに従って、出力電圧の絶対値も大きくなっている。これは、温度差が大きくなるに従って、各貫通孔11aの通路が広がり、主に熱浸透現象により、電解槽13b(Cold chamber)から電解槽13a(Hot chamber)に向かってKイオンが移動し、各電極14a、14bの間に起電力が発生するためであると考えられる。なお、加熱中は、電解槽13a(Hot chamber)から電解槽13b(Cold chamber)への熱拡散により、電解槽13b(Cold chamber)の温度も徐々に上昇している。 As shown in FIG. 4, before heating, the electric double layer narrows the passage of each through hole 11a so that ions do not pass therethrough, so that the output voltage is 0 mV. When heated, the absolute value of the output voltage increases as the temperature difference between the electrolytic cell 13a (Hot chamber) and the electrolytic cell 13b (Cold chamber) increases. This is because the passage of each through hole 11a expands as the temperature difference increases, and K + ions move from the electrolytic cell 13b (Cold chamber) to the electrolytic cell 13a (Hot chamber) mainly due to the heat permeation phenomenon. It is considered that electromotive force is generated between the electrodes 14a and 14b. During heating, the temperature of the electrolytic cell 13b (Cold chamber) is gradually increased due to heat diffusion from the electrolytic cell 13a (Hot chamber) to the electrolytic cell 13b (Cold chamber).
 約15分(900秒)間加熱すると、電解槽13a(Hot chamber)の温度が一定となり、出力電圧の絶対値が最大値の23mVとなった。このとき、電解槽13a(Hot chamber)と電解槽13b(Cold chamber)との温度差は、約17℃である。なお、このときも電解槽13b(Cold chamber)の温度は徐々に上昇している。その後、加熱を停止すると、電解槽13a(Hot chamber)および電解槽13b(Cold chamber)の温度が低下して、それらの間の温度差が小さくなっていくに従って、出力電圧の絶対値も小さくなっていき、最終的には0mVになっている。これは、温度差が小さくなるに従って、各貫通孔11aの通路が狭くなっていき、熱浸透現象によるKイオンの移動量が減少するが、その間、負荷抵抗21による放電は続くためであると考えられる。 After heating for about 15 minutes (900 seconds), the temperature of the electrolytic cell 13a (Hot chamber) became constant, and the absolute value of the output voltage reached the maximum value of 23 mV. At this time, the temperature difference between the electrolytic bath 13a (Hot chamber) and the electrolytic bath 13b (Cold chamber) is about 17°C. Also at this time, the temperature of the electrolytic cell 13b (Cold chamber) is gradually increasing. Then, when the heating is stopped, the temperatures of the electrolytic cell 13a (Hot chamber) and the electrolytic cell 13b (Cold chamber) decrease, and as the temperature difference between them decreases, the absolute value of the output voltage also decreases. It finally became 0 mV. This is because the passage of each through hole 11a becomes narrower as the temperature difference becomes smaller, and the amount of movement of K + ions due to the thermal osmosis phenomenon decreases, but the discharge by the load resistor 21 continues during that period. Conceivable.
 次に、負荷抵抗21を様々に変えて同様の実験を行い、出力電圧を測定した。測定時の電解質(KCl)の濃度を10-4Mとした。各電解槽13a、13bの間の温度差が17℃のときの、負荷抵抗(Load resistance)21と出力電圧の絶対値(Absolute output voltage)との関係を、図5に示す。図5には、出力電力(Output power)[=(出力電圧)/負荷抵抗]も示している。図5に示すように、負荷抵抗21が47kΩのとき、最大電圧23mV、最大出力12.2nWが得られることが確認された。 Next, the load voltage 21 was changed variously, the same experiment was conducted, and the output voltage was measured. The concentration of the electrolyte (KCl) at the time of measurement was set to 10 −4 M. FIG. 5 shows the relationship between the load resistance 21 and the absolute value of the output voltage (Absolute output voltage) when the temperature difference between the electrolytic cells 13a and 13b is 17°C. FIG. 5 also shows the output power [=(output voltage) 2 /load resistance]. As shown in FIG. 5, it was confirmed that when the load resistance 21 was 47 kΩ, the maximum voltage was 23 mV and the maximum output was 12.2 nW.
 また、負荷抵抗21が47kΩのときの、各電解槽13a、13bの間の温度差(Temperature difference)と出力電圧の絶対値との関係を、図6に示す。図6には、電力密度(Power density)[=出力電力/膜体11の有効面積]も示している。図6に示すように、出力電圧および電力密度は、各電解槽13a、13bの間の温度差が大きくなるに従って、大きくなることが確認された。例えば、温度差が30℃のとき、出力電圧50mV、電力密度255μW/cmが得られている。 FIG. 6 shows the relationship between the temperature difference (Temperature difference) between the electrolytic cells 13a and 13b and the absolute value of the output voltage when the load resistance 21 is 47 kΩ. FIG. 6 also shows the power density [=output power/effective area of the film body 11]. As shown in FIG. 6, it was confirmed that the output voltage and the power density increased as the temperature difference between the electrolytic cells 13a and 13b increased. For example, when the temperature difference is 30° C., an output voltage of 50 mV and a power density of 255 μW/cm 2 are obtained.
 次に、電解質(KCl)の濃度を様々に変えて同様の実験を行い、出力電圧を測定した。測定時の負荷抵抗21を47kΩとした。各電解槽13a、13bの間の温度差が17℃のときの、電解質の濃度(Electrolyte concentration)と出力電圧の絶対値との関係を、図7に示す。図7に示すように、電解質の濃度が高くなるに従って、出力電圧が小さくなることが確認された。これは、電解質の濃度が高くなるに従って電気二重層が薄くなり、熱浸透現象により移動したKイオンが逆流しやすくなるためであると考えられる。 Next, the same experiment was conducted by changing the concentration of the electrolyte (KCl) variously, and the output voltage was measured. The load resistance 21 at the time of measurement was set to 47 kΩ. FIG. 7 shows the relationship between the electrolyte concentration and the absolute value of the output voltage when the temperature difference between the electrolytic cells 13a and 13b is 17°C. As shown in FIG. 7, it was confirmed that the output voltage decreased as the electrolyte concentration increased. It is considered that this is because the electric double layer becomes thinner as the concentration of the electrolyte becomes higher, and the K + ions that have moved due to the thermal osmosis phenomenon easily flow back.
 以上の結果から、熱電変換装置10は、ナノサイズの貫通孔11aを利用して、温度差を電気エネルギーに変換することができるといえる。このため、熱電変換装置10は、例えば、工場等の排熱や地熱、太陽熱、化石燃料の燃焼熱、海水の温度勾配などの熱や温度差を利用して、温度調整手段15により1対の電解槽13a、13bの間に温度差を与えることにより、各電極14a、14bの間に起電力を発生させて、電気エネルギーを得ることができる。 From the above results, it can be said that the thermoelectric conversion device 10 can convert the temperature difference into electric energy by using the nano-sized through holes 11a. Therefore, the thermoelectric conversion device 10 uses, for example, exhaust heat of a factory or the like, geothermal heat, solar heat, heat of combustion of fossil fuels, heat such as a temperature gradient of seawater, or a temperature difference, and a pair of temperature adjusting means 15 is used. By giving a temperature difference between the electrolytic cells 13a and 13b, an electromotive force can be generated between the electrodes 14a and 14b to obtain electric energy.
 熱電変換装置10は、各電解槽13a、13bに収納された電解質溶液13cに温度差がないとき、電気二重層により、電解質溶液13c中のイオンが複数の貫通孔11aを通過できないよう構成されていてもよい。この場合、各電解槽13a、13bに温度差を与えてイオンを移動させた後、各電解槽13a、13bの温度差をなくすことにより、各電解槽13a、13bにそれぞれ+イオンまたは-イオンを蓄えることができ、キャパシタのような動作を行うことができる。
 このことを調べるために、以下の実験を行った。
The thermoelectric conversion device 10 is configured such that ions in the electrolyte solution 13c cannot pass through the plurality of through holes 11a due to the electric double layer when there is no temperature difference between the electrolyte solutions 13c stored in the electrolytic baths 13a and 13b. May be. In this case, a temperature difference is applied to each of the electrolytic cells 13a and 13b to move the ions, and then the temperature difference between the electrolytic cells 13a and 13b is eliminated, so that + ions or − ions are respectively supplied to the electrolytic cells 13a and 13b. It can be stored and behave like a capacitor.
The following experiment was conducted in order to investigate this.
 図2に示す熱電変換装置10を用い、各電解槽13a、13bの間に温度差を与えた後、温度差をなくしたときの、各電極14a、14bの間の出力電圧(電位差)の測定を行った。実験では、約23分(1380秒)間加熱して、各電解槽13a、13bの間に、17℃の最大温度差を与えた後、各電解槽13a、13bを同じ温度にして温度差をなくした。なお、電解質(KCl)の濃度を10-4Mとし、出力には負荷抵抗21を取り付けず、開放とした。このときの出力電圧(Output voltage)の測定結果を、図8に示す。 Measurement of the output voltage (potential difference) between the electrodes 14a and 14b when the temperature difference is eliminated by applying the temperature difference between the electrolytic cells 13a and 13b using the thermoelectric conversion device 10 shown in FIG. I went. In the experiment, after heating for about 23 minutes (1380 seconds) to give a maximum temperature difference of 17° C. between the electrolysis cells 13a and 13b, the electrolysis cells 13a and 13b are set to the same temperature to make the temperature difference. Lost. The concentration of the electrolyte (KCl) was set to 10 −4 M, and the output was opened without the load resistor 21 being attached. The measurement result of the output voltage (Output voltage) at this time is shown in FIG.
 図8に示すように、加熱により、各電解槽13a、13bの間に約180mVの電位差が生じ、温度差がなくなった後、自然放電により、徐々に電位差(出力電圧の絶対値)が小さくなっていくことが確認された。温度差がなくなった後の経過時間と電位差(Absolute output voltage)との関係を、図9に示す。図9に示すように、温度差がなくなった当初は、時間の経過と共に、急激に電位差が小さくなっていくが、数時間経過後は、徐々に電位差の減少率が小さくなることが確認された。また、2日(48時間)経過後でも、60%以上の電位差が残っていることが確認された。以上の結果から、熱電変換装置10は、キャパシタのような動作を行うことができるといえる。 As shown in FIG. 8, a potential difference of about 180 mV is generated between the electrolytic cells 13a and 13b due to heating, and after the temperature difference disappears, the potential difference (absolute value of output voltage) gradually decreases due to spontaneous discharge. It was confirmed to go. Fig. 9 shows the relationship between the elapsed time after the temperature difference disappears and the potential difference (Absolute output voltage). As shown in FIG. 9, it was confirmed that the potential difference rapidly decreased with the passage of time when the temperature difference disappeared, but the reduction rate of the potential difference gradually decreased after several hours. .. It was also confirmed that a potential difference of 60% or more remained after 2 days (48 hours). From the above results, it can be said that the thermoelectric conversion device 10 can operate like a capacitor.
 10 熱電変換装置
 11 膜体
  11a 貫通孔
 12 支持体
  12a シリコン基板
  12b SiO
  12c 連通孔
 13a、13b 電解槽
 14a、14b 電極
 15 温度調整手段
 
 21 負荷抵抗
 22 データロガー
 
10 Thermoelectric Converter 11 Film Body 11a Through Hole 12 Support 12a Silicon Substrate 12b SiO 2 Film 12c Communication Hole 13a, 13b Electrolyzer 14a, 14b Electrode 15 Temperature Adjusting Means
21 load resistance 22 data logger

Claims (7)

  1.  厚みを貫通して設けられたナノサイズの複数の貫通孔を有する膜体と、
     内部に電解質溶液を収納しており、前記膜体を挟んで、前記複数の貫通孔で互いに連通するよう設けられた1対の電解槽と、
     各電解槽に設けられた1対の電極と、
     各電解槽に収納された前記電解質溶液に温度差を発生させるよう、少なくとも一方の電解槽を加熱または冷却可能に設けられた温度調整手段とを有し、
     各電解槽に収納された前記電解質溶液に、前記温度調整手段で温度差を発生させたとき、各電極間に起電力が発生するよう構成されていることを
     特徴とする熱電変換装置。
    A film body having a plurality of nano-sized through holes provided through the thickness,
    A pair of electrolytic baths that contain an electrolyte solution inside, and that are provided so as to communicate with each other through the plurality of through holes with the membrane body interposed therebetween;
    A pair of electrodes provided in each electrolytic cell,
    In order to generate a temperature difference in the electrolyte solution housed in each electrolytic cell, at least one of the electrolytic cell has a temperature adjusting means capable of heating or cooling,
    A thermoelectric conversion device, wherein an electromotive force is generated between the electrodes when a temperature difference is generated in the electrolytic solution stored in each electrolytic cell by the temperature adjusting means.
  2.  前記膜体および前記電解質溶液は、前記複数の貫通孔の孔壁に沿って、電気二重層を形成可能に構成されていることを特徴とする請求項1記載の熱電変換装置。 The thermoelectric conversion device according to claim 1, wherein the membrane body and the electrolyte solution are configured to be able to form an electric double layer along the hole walls of the plurality of through holes.
  3.  各電解槽に収納された前記電解質溶液に温度差がないとき、前記電気二重層により、前記電解質溶液中のイオンが前記複数の貫通孔を通過できないよう構成されていることを特徴とする請求項2記載の熱電変換装置。 When there is no temperature difference in the electrolyte solution stored in each electrolytic cell, the electric double layer is configured so that ions in the electrolyte solution cannot pass through the plurality of through holes. The thermoelectric conversion device according to 2.
  4.  各電解槽に収納された前記電解質溶液に、前記温度調整手段で温度差を発生させた後、その温度差をなくすことにより、少なくともいずれか一方の電解槽に、+イオンまたは-イオンを蓄えて、蓄電可能に構成されていることを特徴とする請求項1乃至3のいずれか1項に記載の熱電変換装置。 After generating a temperature difference in the electrolyte solution stored in each electrolytic cell by the temperature adjusting means, by eliminating the temperature difference, at least one of the electrolytic cells stores +ions or −ions. The thermoelectric conversion device according to any one of claims 1 to 3, wherein the thermoelectric conversion device is configured to be capable of storing electricity.
  5.  前記膜体は、ケイ素、酸化物、窒化物、金属または金属ガラスから成ることを特徴とする請求項1乃至4のいずれか1項に記載の熱電変換装置。 The thermoelectric conversion device according to any one of claims 1 to 4, wherein the film body is made of silicon, oxide, nitride, metal, or metallic glass.
  6.  前記電解質溶液は、塩化カリウムまたは塩化ナトリウムを含むことを特徴とする請求項1乃至5のいずれか1項に記載の熱電変換装置。 The thermoelectric conversion device according to any one of claims 1 to 5, wherein the electrolyte solution contains potassium chloride or sodium chloride.
  7.  前記複数の貫通孔は、直径が1nm乃至100nmであることを特徴とする請求項1乃至6のいずれか1項に記載の熱電変換装置。
     
    The thermoelectric conversion device according to any one of claims 1 to 6, wherein the plurality of through holes have a diameter of 1 nm to 100 nm.
PCT/JP2020/001961 2019-01-22 2020-01-21 Thermoelectric conversion device WO2020153359A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019008750A JP7313616B2 (en) 2019-01-22 2019-01-22 thermoelectric converter
JP2019-008750 2019-01-22

Publications (1)

Publication Number Publication Date
WO2020153359A1 true WO2020153359A1 (en) 2020-07-30

Family

ID=71735468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001961 WO2020153359A1 (en) 2019-01-22 2020-01-21 Thermoelectric conversion device

Country Status (2)

Country Link
JP (1) JP7313616B2 (en)
WO (1) WO2020153359A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113838674A (en) * 2021-10-08 2021-12-24 洛阳理工学院 Preparation method of all-solid-state flexible thermoelectric conversion device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022038262A (en) * 2020-08-26 2022-03-10 東京エレクトロン株式会社 Thermoelectric effect element, heat transfer device, semiconductor manufacturing equipment and method for controlling thermoelectric effect element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150119A (en) * 2003-11-18 2005-06-09 Lucent Technol Inc Electrowetting battery having nanostructured electrode surface
US20060141346A1 (en) * 2004-11-23 2006-06-29 Gordon John H Solid electrolyte thermoelectrochemical system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150119A (en) * 2003-11-18 2005-06-09 Lucent Technol Inc Electrowetting battery having nanostructured electrode surface
US20060141346A1 (en) * 2004-11-23 2006-06-29 Gordon John H Solid electrolyte thermoelectrochemical system

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
TOAN, NGYUYEN VAN ET AL.: "Thermoelectric power battery using al2o3 nanochannels of 10nm diameter for energy harvesting of low-grade waste heat", ENERGY CONVERSION AND MANAGEMENT, 28 August 2019 (2019-08-28), XP085843673 *
TOAN., N. V. ET AL.: "Ion transport by gating voltage to nanopores produced via metal-assisted chemical etching method", NANOTECHNOLOGY, vol. 29, no. 195301, 16 March 2018 (2018-03-16), pages 1 - 7, XP020326858 *
TRUNG, N. H. ET AL.: "Flexible Thermoelectric Power Generator Based on Electrochemical Deposition Process", PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY, 25 August 2016 (2016-08-25), pages 423 - 425, XP033003740, DOI: 10.1109/NANO.2016.7751434 *
TRUNG, N. H. ET AL.: "Flexible thermoelectric power generator with Y- type structure using electrochemical deposition process", APPLIED ENERGY, 16 May 2017 (2017-05-16), XP085303910 *
VAN DER HYDEN. ET AL.: "Power Generation by pressure-Driven Transport of Ions in Nanofluidic Channel", NANO LETTERS, 24 January 2007 (2007-01-24), pages 1022 - 1025, XP028312072 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113838674A (en) * 2021-10-08 2021-12-24 洛阳理工学院 Preparation method of all-solid-state flexible thermoelectric conversion device
CN113838674B (en) * 2021-10-08 2022-12-06 洛阳理工学院 Preparation method of all-solid-state flexible thermoelectric conversion device

Also Published As

Publication number Publication date
JP7313616B2 (en) 2023-07-25
JP2020120474A (en) 2020-08-06

Similar Documents

Publication Publication Date Title
Hwang et al. Thermal dependence of nanofluidic energy conversion by reverse electrodialysis
Macha et al. 2D materials as an emerging platform for nanopore-based power generation
Kim et al. Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels
Fu et al. An atomically-thin graphene reverse electrodialysis system for efficient energy harvesting from salinity gradient
WO2020153359A1 (en) Thermoelectric conversion device
Yan et al. An ultrathin and highly porous silica nanochannel membrane: toward highly efficient salinity energy conversion
Yang et al. Ultrathin Ti3C2Tx (MXene) membrane for pressure-driven electrokinetic power generation
Choi et al. Tunable reverse electrodialysis microplatform with geometrically controlled self-assembled nanoparticle network
Mai et al. Boosting power generation from salinity gradient on high-density nanoporous membrane using thermal effect
CN100445215C (en) Method and device for the purification, especially desalination, of water
WO2018230447A1 (en) Heat generating device and method for generating heat
Van Toan et al. Thermoelectric power battery using al2o3 nanochannels of 10 nm diameter for energy harvesting of low-grade waste heat
Lai et al. Desalination of saline water by nanochannel arrays through manipulation of electrical double layer
Zhang et al. Enhancing the efficiency of energy harvesting from salt gradient with ion-selective nanochannel
Christoulaki et al. Controlling the thickness of electrochemically produced porous alumina membranes: the role of the current density during the anodization
Cho et al. Confined cavity on a mass-producible wrinkle film promotes selective CO 2 reduction
Mandal et al. Gold-nanoparticle-embedded microchannel array for enhanced power generation
Kang et al. Investigation of pore shape effects of novel thin LGDLs for high-efficiency hydrogen/oxygen generation and energy storage
Sheehan et al. Concentration cell powered by a chemically asymmetric membrane: Experiment
Piwowar et al. High field asymmetric waveform for ultra-enhanced electroosmotic pumping of porous anodic alumina membranes
Pascual et al. Waste heat recovery using thermally responsive ionic liquids through TiO 2 nanopore and macroscopic membranes
Hamberg et al. Electrochemical micro actuator
Li et al. Nanochannels for low-grade energy harvesting
Kerman et al. Free standing yttria-doped zirconia membranes: Geometrical effects on stability
JP2006066390A (en) Surface electrolyte sefc for fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20744911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20744911

Country of ref document: EP

Kind code of ref document: A1