JP7313616B2 - thermoelectric converter - Google Patents

thermoelectric converter Download PDF

Info

Publication number
JP7313616B2
JP7313616B2 JP2019008750A JP2019008750A JP7313616B2 JP 7313616 B2 JP7313616 B2 JP 7313616B2 JP 2019008750 A JP2019008750 A JP 2019008750A JP 2019008750 A JP2019008750 A JP 2019008750A JP 7313616 B2 JP7313616 B2 JP 7313616B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion device
temperature difference
electrolytic
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019008750A
Other languages
Japanese (ja)
Other versions
JP2020120474A (en
Inventor
バン トアン ヴェン
崇人 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2019008750A priority Critical patent/JP7313616B2/en
Priority to PCT/JP2020/001961 priority patent/WO2020153359A1/en
Publication of JP2020120474A publication Critical patent/JP2020120474A/en
Application granted granted Critical
Publication of JP7313616B2 publication Critical patent/JP7313616B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/36Deferred-action cells containing electrolyte and made operational by physical means, e.g. thermal cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、熱電変換装置に関する。 The present invention relates to thermoelectric conversion devices.

従来、工場等の排熱や地熱、太陽熱、化石燃料の燃焼熱、海水の温度勾配などを利用して電気エネルギーを得ることができる熱電変換装置が開発され、利用されている。熱電変換装置としては、例えば、熱電素子を利用したものや、水素吸蔵合金を利用したもの、反応ガスを利用したものなどがある(例えば、特許文献1または2参照)。 2. Description of the Related Art Conventionally, thermoelectric conversion devices have been developed and used that can obtain electric energy using waste heat from factories, geothermal heat, solar heat, combustion heat of fossil fuels, temperature gradients of seawater, and the like. Thermoelectric converters include, for example, those using thermoelectric elements, those using hydrogen storage alloys, those using reaction gases, and the like (see, for example, Patent Documents 1 and 2).

なお、近年、ナノサイズの孔(以下、ナノチャンネルともいう)が、様々な用途に利用されている。ナノチャンネルは、孔の直径がデバイ長(Debye length)に近いとき、スケール効果が大きくなるため、ナノチャンネルの表面が電解質溶液に接すると、ナノチャンネルの孔壁に沿って電気二重層が形成される。その電気二重層の厚みはデバイ長に依存し、また、電解質溶液のイオン濃度が増加するとデバイ長が減少する。このような液相におけるナノチャンネルの振る舞いを利用して、分子ろ過やイオン輸送、発電装置などが開発されている(例えば、非特許文献1乃至3参照)。また、ナノチャンネルは、陽極酸化法やナノインプリント、イオンミリング、電子線リソグラフィ(EB lithography)、深掘りエッチング(Deep-RIE)、MacEtch(metal-assisted chemical etching)法などにより形成することができる(例えば、非特許文献2、4または5参照)。 In recent years, nano-sized pores (hereinafter also referred to as nanochannels) have been used for various purposes. Nanochannels have a large scale effect when the pore diameter is close to the Debye length, so when the surface of the nanochannel is in contact with the electrolyte solution, an electric double layer is formed along the pore wall of the nanochannel. The thickness of the electric double layer depends on the Debye length, and the Debye length decreases as the ion concentration of the electrolyte solution increases. Utilizing such behavior of nanochannels in a liquid phase, molecular filtration, ion transport, power generators, etc. have been developed (see, for example, Non-Patent Documents 1 to 3). Also, nanochannels can be formed by anodic oxidation, nanoimprinting, ion milling, electron beam lithography (EB lithography), deep etching (Deep-RIE), MacEtch (metal-assisted chemical etching), or the like (see, for example, Non-Patent Documents 2, 4, or 5).

特開2004-63656号公報JP-A-2004-63656 特開2007-282449号公報JP 2007-282449 A

Q. Yang, X. Lin, and B. Su, “Molecular filtration by ultrathin and highly porous silica nanochannel membranes: permeability and selectivity”, Anal. Chem., 2016, 88, p.10252-10258Q. Yang, X. Lin, and B. Su, “Molecular filtration by ultrathin and highly porous silica nanochannel membranes: permeability and selectivity”, Anal. Chem., 2016, 88, p.10252-10258 N.V. Toan, N. Inomata, M. Toda, and T. Ono, “Ion transport by gating voltage to nanopores produced via metal-assisted chemical etching method”, Nanotechnology, 2018, 29, 195301N.V. Toan, N. Inomata, M. Toda, and T. Ono, “Ion transport by gating voltage to nanopores produced via metal-assisted chemical etching method”, Nanotechnology, 2018, 29, 195301 F. H. J. V. D. Heyden, D.J. Bonthuis, D. Stein, C. Meyer, and C. Dekker, “Power generation by pressure-driven transport of ions in nanofluidic channels”, Nano Lett., 2007, 4, p.1022-1025F. H. J. V. D. Heyden, D.J. Bonthuis, D. Stein, C. Meyer, and C. Dekker, “Power generation by pressure-driven transport of ions in nanofluidic channels”, Nano Lett., 2007, 4, p.1022-1025 W. Guan, R. Fan, and M.A. Reed, “Field-effect reconfigurable nanofluidic ion diodes”, Nature communication, 2011, 2, 506W. Guan, R. Fan, and M.A. Reed, “Field-effect reconfigurable nanofluidic ion diodes”, Nature communication, 2011, 2, 506 益田秀樹、柳下崇、近藤敏彰、西尾和之、「陽極酸化プロセスによるアルミナナノホールアレーの作製と表面ナノ構造制御への応用」、J. Vac. Soc. Jpn.、2009年、Vol. 5、No. 4、p.207-211Hideki Masuda, Takashi Yanagishita, Toshiaki Kondo, Kazuyuki Nishio, "Fabrication of Alumina Nanohole Array by Anodic Oxidation Process and Application to Surface Nanostructure Control", J. Vac. Soc. Jpn., 2009, Vol. 5, No. 4, p.207-211

特許文献1および2に記載のような従来の熱電変換装置は、熱電素子や水素吸蔵合金、反応ガス等の材料の性能や特性等により、使用状態によっては、十分な変換効率が得られないことがあるという課題があった。また、優れた変換効率を有する熱電変換装置で、ナノチャンネルを利用したものは、未だ存在していない。 Conventional thermoelectric conversion devices such as those described in Patent Documents 1 and 2 have the problem that sufficient conversion efficiency may not be obtained depending on the usage conditions due to the performance and characteristics of materials such as thermoelectric elements, hydrogen storage alloys, and reaction gases. In addition, there is no thermoelectric conversion device with excellent conversion efficiency that utilizes nanochannels.

本発明は、このような課題に着目してなされたもので、ナノサイズの貫通孔を利用して、比較的優れた変換効率を有する熱電変換装置を提供することを目的とする。 The present invention has been made in view of such problems, and an object of the present invention is to provide a thermoelectric conversion device that utilizes nano-sized through-holes and has relatively excellent conversion efficiency.

上記目的を達成するために、本発明に係る熱電変換装置は、厚みを貫通して設けられたナノサイズの複数の貫通孔を有する膜体と、内部に電解質溶液を収納しており、前記膜体を挟んで、前記複数の貫通孔で互いに連通するよう設けられた1対の電解槽と、各電解槽に設けられた1対の電極と、各電解槽に収納された前記電解質溶液に温度差を発生させるよう、少なくとも一方の電解槽を加熱または冷却可能に設けられた温度調整手段とを有し、各電解槽に収納された前記電解質溶液に、前記温度調整手段で温度差を発生させたとき、各電極間に起電力が発生するよう構成されていることを特徴とする。 In order to achieve the above object, a thermoelectric conversion device according to the present invention includes a membrane body having a plurality of nano-sized through-holes provided through a thickness thereof, an electrolyte solution accommodated therein, a pair of electrolytic cells provided to communicate with each other through the plurality of through-holes with the membrane body sandwiched therebetween, a pair of electrodes provided in each electrolytic cell, and a temperature adjustment device capable of heating or cooling at least one of the electrolytic cells so as to generate a temperature difference between the electrolyte solution contained in each electrolytic cell. and means for generating an electromotive force between the electrodes when a temperature difference is generated in the electrolyte solution contained in each electrolytic cell by the temperature adjusting means.

本発明に係る熱電変換装置は、以下の原理により稼働するよう構成されている。すなわち、図1に示すように、内部に電解質溶液を収納した1対の電解槽が、ナノサイズの孔(ナノチャンネル)で互いに連通している系を考える。ここでは一例として、電解質溶液は、塩化カリウム(KCl)水溶液とし、ナノチャンネルは、アルミナ(Al)を貫通して形成された貫通孔とする。 A thermoelectric conversion device according to the present invention is configured to operate according to the following principle. That is, as shown in FIG. 1, a system is considered in which a pair of electrolytic cells each containing an electrolyte solution communicate with each other through nano-sized pores (nanochannels). Here, as an example, the electrolyte solution is a potassium chloride (KCl) aqueous solution, and the nanochannels are through holes formed through alumina (Al 2 O 3 ).

図1(a)に示すように、各電解槽の間に温度差がないときには、ナノチャンネルの孔壁に沿って、Kイオンが層状に並び、電気二重層が形成される。これにより、ナノチャンネル内の通路が狭くなり、イオンが通過しにくくなる。ナノチャンネルの孔径が所定の径の範囲であれば、形成された電気二重層により、KイオンもClイオンも通過できなくなる。 As shown in FIG. 1(a), when there is no temperature difference between the electrolytic cells, K + ions are arranged in layers along the pore walls of the nanochannels to form an electric double layer. This narrows the path in the nanochannel, making it difficult for ions to pass through. If the pore size of the nanochannel is within a predetermined range, the formed electric double layer prevents the passage of K + ions and Cl ions.

次に、図1(b)に示すように、各電解槽の間に温度差を与えると、電気二重層が薄くなり、ナノチャンネル内の通路が広がる。図1(b)では、電気二重層の厚みが一定であるが、実際には、温度が高い方の電解槽側(HOT SIDE)の電気二重層の方が、温度が低い方の電解槽側(COLD SIDE)よりも薄くなる。これにより、主に熱浸透現象が発現し、図1(c)に示すように、温度が低い方の電解槽側(COLD SIDE)から温度が高い方の電解槽側(HOT SIDE)に向かって、Kイオンが移動する。その結果、各電解槽に設けられた1対の電極の間に、起電力が発生する。 Next, as shown in FIG. 1(b), when a temperature difference is applied between the electrolytic cells, the electric double layer becomes thinner and the paths in the nanochannels widen. In FIG. 1(b), the thickness of the electric double layer is constant, but in reality, the electric double layer on the side of the electrolytic cell where the temperature is higher (HOT SIDE) is thinner than that on the side of the electrolytic cell where the temperature is lower (COLD SIDE). As a result, the heat penetration phenomenon mainly occurs, and as shown in Fig. 1(c), the K + ions move from the electrolytic cell side with a lower temperature (COLD SIDE) toward the electrolytic cell side with a higher temperature (HOT SIDE). As a result, an electromotive force is generated between a pair of electrodes provided in each electrolytic cell.

このように、本発明に係る熱電変換装置は、図1に示す原理により、ナノサイズの貫通孔を利用して、温度差を電気エネルギーに変換することができる。また、本発明に係る熱電変換装置は、比較的優れた変換効率を有している。本発明に係る熱電変換装置は、例えば、工場等の排熱や地熱、太陽熱、化石燃料の燃焼熱、海水の温度勾配などの熱や温度差を利用して、温度調整手段により1対の電解槽の間に温度差を与えることにより、各電極間に起電力を発生させて、電気エネルギーを得ることができる。 As described above, the thermoelectric conversion device according to the present invention can convert a temperature difference into electric energy by utilizing nano-sized through-holes according to the principle shown in FIG. Moreover, the thermoelectric conversion device according to the present invention has relatively excellent conversion efficiency. The thermoelectric conversion device according to the present invention can obtain electric energy by generating an electromotive force between the electrodes by applying a temperature difference between a pair of electrolytic cells with a temperature control means, for example, using heat and temperature difference such as waste heat from factories, geothermal heat, solar heat, combustion heat of fossil fuel, and temperature gradient of seawater.

本発明に係る熱電変換装置は、各電解槽に収納された前記電解質溶液に温度差がないとき、前記電気二重層により、前記電解質溶液中のイオンが前記複数の貫通孔を通過できないよう構成されていてもよい。この場合、各電解槽に温度差を与えてイオンを移動させた後、各電解槽の温度差をなくすことにより、各電解槽にそれぞれ+イオンまたは-イオンを蓄えることができ、キャパシタのような動作を行うことができる。また、本発明に係る熱電変換装置は、各電解槽に収納された前記電解質溶液に、前記温度調整手段で温度差を発生させた後、その温度差をなくすことにより、少なくともいずれか一方の電解槽に、+イオンまたは-イオンを蓄えて、蓄電可能に構成されていてもよい。この場合にも、キャパシタのような動作を行うことができる。 The thermoelectric conversion device according to the present invention may be configured such that ions in the electrolyte solution cannot pass through the plurality of through-holes due to the electric double layer when there is no temperature difference between the electrolyte solutions stored in the respective electrolytic cells. In this case, by giving a temperature difference to each electrolytic cell to move ions and then eliminating the temperature difference in each electrolytic cell, each electrolytic cell can store + ions or − ions, and can operate like a capacitor. Further, the thermoelectric conversion device according to the present invention may be configured so that + ions or − ions can be stored in at least one of the electrolytic cells by generating a temperature difference in the electrolyte solution contained in each electrolytic cell by the temperature adjusting means, and then eliminating the temperature difference. In this case also, it can operate like a capacitor.

本発明に係る熱電変換装置で、前記膜体および前記電解質溶液は、前記複数の貫通孔の孔壁に沿って、電気二重層を形成可能に構成されていることが好ましい。また、前記複数の貫通孔は、電気二重層によりイオンの流れを制御できるよう、直径が1nm乃至100nmであることが好ましい。また、複数の貫通孔は、膜体に高密度で設けられていることが好ましい。前記膜体は、ケイ素、酸化物、窒化物、金属または金属ガラスから成ることが好ましい。膜体が金属や金属ガラスから成る場合には、内部抵抗を抑制することができる。前記電解質溶液は、例えば、塩化カリウムまたは塩化ナトリウムなど、いかなる電解質を含んでいてもよい。 In the thermoelectric conversion device according to the present invention, it is preferable that the membrane and the electrolyte solution are configured to be capable of forming an electric double layer along the walls of the plurality of through holes. Also, the plurality of through-holes preferably have a diameter of 1 nm to 100 nm so that the flow of ions can be controlled by an electric double layer. Moreover, it is preferable that the plurality of through-holes are provided in the membrane body at a high density. The membrane is preferably made of silicon, oxide, nitride, metal or metallic glass. When the film is made of metal or metallic glass, internal resistance can be suppressed. The electrolyte solution may contain any electrolyte, for example potassium chloride or sodium chloride.

本発明によれば、ナノサイズの貫通孔を利用して、比較的優れた変換効率を有する熱電変換装置を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the thermoelectric conversion apparatus which has comparatively excellent conversion efficiency using a nanosize through-hole can be provided.

本発明に係る熱電変換装置の稼働原理を示す(a)各電解槽の間に温度差がなく、電気二重層が形成された状態、(b)各電解槽の間に温度差を与え、電気二重層が薄くなった状態、(c)それによりKイオンが移動し、起電力が発生した状態を示す断面図である。FIG. 2 is a cross-sectional view showing the operating principle of the thermoelectric conversion device according to the present invention: (a) a state in which there is no temperature difference between the electrolytic cells and an electric double layer is formed; (b) a state in which a temperature difference is provided between the electrolytic cells and the electric double layer is thin; 本発明の実施の形態の熱電変換装置を示す正面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a front view which shows the thermoelectric converter of embodiment of this invention. 図2に示す熱電変換装置の(a)膜体および支持体の断面、(b)膜体の表面、(c)膜体の断面、(d)膜体と支持体との境界付近の断面の顕微鏡写真である。3 is a micrograph of (a) a cross section of a membrane and a support, (b) the surface of the membrane, (c) a cross section of the membrane, and (d) a cross section near the boundary between the membrane and the support of the thermoelectric conversion device shown in FIG. 図2に示す熱電変換装置の、一方の電解槽を加熱した後、自然放熱したときの、各電解槽(Hot chamber、Cold chamber)の温度変化および出力電圧(Output voltage)の変化を示すグラフである。3 is a graph showing temperature changes and output voltage changes in each electrolytic cell (hot chamber, cold chamber) when one electrolytic cell is heated and then naturally radiated in the thermoelectric conversion device shown in FIG. 2. FIG. 図2に示す熱電変換装置の、各電解槽に温度差を与えたときの、負荷抵抗(Load resistance)と、出力電圧の絶対値(Absolute output voltage)および出力電力(Output power)との関係を示すグラフである。3 is a graph showing the relationship between load resistance, absolute output voltage, and output power when a temperature difference is applied to each electrolytic cell of the thermoelectric conversion device shown in FIG. 2. FIG. 図2に示す熱電変換装置の、各電解槽の温度差(Temperature difference)を変化させたときの、各電解槽の温度差と、出力電圧の絶対値および電力密度(Power density)との関係を示すグラフである。3 is a graph showing the relationship between the temperature difference of each electrolytic cell, the absolute value of the output voltage, and the power density when the temperature difference of each electrolytic cell is changed in the thermoelectric conversion device shown in FIG. 2. FIG. 図2に示す熱電変換装置の、各電解槽に温度差を与えたときの、電解質の濃度(Electrolyte concentration)と出力電圧の絶対値との関係を示すグラフである。3 is a graph showing the relationship between the concentration of electrolyte (Electrolyte concentration) and the absolute value of the output voltage when a temperature difference is applied to each electrolytic cell of the thermoelectric conversion device shown in FIG. 2. FIG. 図2に示す熱電変換装置の、一方の電解槽を加熱した後、各電解槽の温度差をなくしたときの、出力電圧(Output voltage)の変化を示すグラフである。FIG. 3 is a graph showing changes in output voltage of the thermoelectric conversion device shown in FIG. 2 when one of the electrolytic cells is heated and then the temperature difference between the electrolytic cells is eliminated. 図2に示す熱電変換装置の、図8で各電解槽の温度差がなくなった後の経過時間と電位差(Absolute output voltage)との関係を示すグラフである。9 is a graph showing the relationship between the elapsed time and the potential difference (absolute output voltage) of the thermoelectric conversion device shown in FIG. 2 after the temperature difference between the electrolytic cells in FIG. 8 disappears.

以下、図面に基づいて、本発明の実施の形態について説明する。
図2乃至図9は、本発明の実施の形態の熱電変換装置を示している。
図2に示すように、熱電変換装置10は、膜体11と支持体12と1対の電解槽13a、13bと1対の電極14a、14bと温度調整手段15とを有している。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below based on the drawings.
2 to 9 show thermoelectric conversion devices according to embodiments of the present invention.
As shown in FIG. 2, the thermoelectric conversion device 10 has a membrane 11, a support 12, a pair of electrolytic cells 13a and 13b, a pair of electrodes 14a and 14b, and temperature control means 15.

膜体11は、厚みを貫通して設けられたナノサイズの複数の貫通孔11aを有している。図2に示す具体的な一例では、膜体11は、陽極酸化された酸化アルミニウム(AAO;anodized aluminum oxide)製の膜から成り、厚みが約3μmであり、各貫通孔11aの直径は約10nmである。なお、膜体11は、酸化アルミニウム製のものに限らず、他の酸化物やケイ素、窒化物、金属または金属ガラスから成っていてもよい。 The film body 11 has a plurality of nano-sized through-holes 11a provided through its thickness. In a specific example shown in FIG. 2, the membrane body 11 is made of an anodized aluminum oxide (AAO) membrane, has a thickness of about 3 μm, and each through-hole 11a has a diameter of about 10 nm. The film body 11 is not limited to being made of aluminum oxide, and may be made of other oxides, silicon, nitride, metal, or metallic glass.

支持体12は、シリコン(Si)基板12aと、そのシリコン基板12aの一方の表面に形成されたSiO膜12bとから成っている。支持体12は、SiO膜12bのシリコン基板12aとは反対側の表面に、膜体11が設けられている。支持体12は、シリコン基板12aの膜体11とは反対側の表面から膜体11まで貫通して、膜体11の複数の貫通孔11aに連通する連通孔12cを有している。図2に示す具体的な一例では、シリコン基板12aは、厚みが300μmであり、大きさが2×2cmのシリコンウエハから成っている。SiO膜12bは、厚みが300nmである。 The support 12 consists of a silicon (Si) substrate 12a and a SiO 2 film 12b formed on one surface of the silicon substrate 12a. The supporting body 12 has the film body 11 provided on the surface of the SiO 2 film 12b opposite to the silicon substrate 12a. The support 12 has communication holes 12c that penetrate from the surface of the silicon substrate 12a opposite to the membrane 11 to the membrane 11 and communicate with the plurality of through holes 11a of the membrane 11 . In a specific example shown in FIG. 2, the silicon substrate 12a is a silicon wafer having a thickness of 300 μm and a size of 2×2 cm 2 . The SiO 2 film 12b has a thickness of 300 nm.

図2に示す膜体11および支持体12は、以下のようにして製造されている。すなわち、まず、シリコン基板12aの表面に、プラズマCVD法により、SiO膜12bを形成し、さらにその上に、スパッタリングにより、アルミニウム膜を成膜する。次に、そのアルミニウム膜に対し、非特許文献2に従って、陽極酸化法を用いて、複数の貫通孔11aを有する酸化アルミニウム(AAO)製の膜体11を形成する。次に、深堀り反応性イオンエッチング(deep RIE)により、シリコン基板12aおよびSiO膜12bをエッチングして連通孔12cを形成する。 The membrane 11 and support 12 shown in FIG. 2 are manufactured as follows. First, a SiO 2 film 12b is formed on the surface of a silicon substrate 12a by plasma CVD, and an aluminum film is formed thereon by sputtering. Next, according to Non-Patent Document 2, the aluminum oxide (AAO) film body 11 having a plurality of through-holes 11a is formed on the aluminum film using an anodic oxidation method. Next, by deep reactive ion etching (deep RIE), the silicon substrate 12a and the SiO 2 film 12b are etched to form a communication hole 12c.

図3(a)~(d)に、実際に製造した膜体11および支持体12の断面等の顕微鏡写真を示す。図3(b)に示すように、膜体11の表面に、直径約10nmの複数の孔が高密度で存在していることが確認できる。また、図3(c)および(d)に示すように、膜体11中に、巾約10nmの複数の孔が、膜厚方向に沿って伸びていることが確認できる。図3から、膜体11に、直径約10nmの複数の貫通孔11aが高密度で形成されていることが確認できる。 FIGS. 3(a) to 3(d) show micrographs of cross sections and the like of the membrane 11 and the support 12 which were actually manufactured. As shown in FIG. 3B, it can be confirmed that a plurality of pores with a diameter of about 10 nm exist at a high density on the surface of the membrane 11 . Also, as shown in FIGS. 3(c) and 3(d), it can be confirmed that a plurality of holes with a width of about 10 nm extend in the film body 11 along the film thickness direction. From FIG. 3, it can be confirmed that a plurality of through holes 11a having a diameter of about 10 nm are formed in the film body 11 at high density.

1対の電解槽13a、13bは、膜体11および支持体12を挟んで、複数の貫通孔11aおよび連通孔12cで互いに連通するよう設けられている。各電解槽13a、13bは、内部に電解質溶液13cを収納している。図2に示す具体的な一例では、各電解槽13a、13bは、それぞれ別々のテフロン(登録商標)製の板材に形成された穴から成っている。各電解槽13a、13bは、各板材を、穴の開口側を対向させた状態で、膜体11および支持体12を挟むようにして配置することにより、形成されている。また、電解質溶液13cは、塩化カリウム(KCl)溶液から成っている。なお、電解質溶液13cは、塩化カリウムに限らず、塩化ナトリウムなど、いかなる電解質を含んでいてもよい。 A pair of electrolytic cells 13a and 13b are provided to communicate with each other through a plurality of through holes 11a and communication holes 12c with membrane 11 and support 12 interposed therebetween. Each electrolytic bath 13a, 13b contains an electrolyte solution 13c therein. In a specific example shown in FIG. 2, each of the electrolytic cells 13a and 13b consists of holes formed in separate Teflon (registered trademark) plates. Each of the electrolytic cells 13a and 13b is formed by arranging each plate material so as to sandwich the membrane 11 and the support 12 with the opening sides of the holes facing each other. Also, the electrolyte solution 13c consists of a potassium chloride (KCl) solution. The electrolyte solution 13c may contain any electrolyte such as sodium chloride without being limited to potassium chloride.

1対の電極14a、14bは、各電解槽13a、13bに設けられている。図2に示す具体的な一例では、各電極14a、14bは銀(Ag)製であり、各電解槽13a、13b(板材の穴)の膜体11とは反対側に取り付けられている。温度調整手段15は、各電解槽13a、13bに収納された電解質溶液13cに温度差を発生させるよう、一方の電解槽13aを加熱可能に設けられている。図2に示す具体的な一例では、温度調整手段15は、ペルチェ素子を有し、そのペルチェ素子を一方の電解槽13aの外壁に接触させて、その電解槽13a中の電解質溶液13cを加熱するよう構成されている。 A pair of electrodes 14a, 14b are provided in each electrolytic bath 13a, 13b. In a specific example shown in FIG. 2, the electrodes 14a and 14b are made of silver (Ag) and are attached to the sides of the electrolytic cells 13a and 13b (holes in the plate material) opposite to the membrane 11 side. The temperature adjusting means 15 is provided so as to be able to heat one of the electrolytic baths 13a and 13b so as to generate a temperature difference in the electrolyte solution 13c contained in each of the electrolytic baths 13a and 13b. In a specific example shown in FIG. 2, the temperature adjustment means 15 has a Peltier element, and is configured to bring the Peltier element into contact with the outer wall of one electrolytic bath 13a to heat the electrolyte solution 13c in the electrolytic bath 13a.

本発明の実施の形態の熱電変換装置10は、図1に示す原理により稼働することができる。このことを調べるために、以下の実験を行った。 The thermoelectric conversion device 10 according to the embodiment of the invention can operate according to the principle shown in FIG. In order to investigate this, the following experiment was conducted.

図2に示す熱電変換装置10を用いて、各電解槽13a、13bの間に温度差を与え、それにより得られる電気エネルギーを測定する実験を行った。実験では、図2に示すように、各電極14a、14bの間に負荷抵抗21およびデータロガー22を並列に接続し、各電極14a、14bの間の出力電圧の測定を行った。また、実験中、各電解槽13a、13bの温度を熱電対で測定した。 Using the thermoelectric conversion device 10 shown in FIG. 2, an experiment was conducted in which a temperature difference was applied between the electrolytic cells 13a and 13b and the electric energy obtained thereby was measured. In the experiment, as shown in FIG. 2, a load resistor 21 and a data logger 22 were connected in parallel between the electrodes 14a and 14b, and the output voltage between the electrodes 14a and 14b was measured. Also, during the experiment, the temperature of each electrolytic cell 13a, 13b was measured with a thermocouple.

まず、一方の電解槽13a中の電解質溶液13cをペルチェ素子で加熱し、その後、ペルチェ素子を取り外して加熱を停止し、自然放熱したときの、各電解槽13a、13bの温度変化および出力電圧(Output voltage)の変化を測定した。測定時の負荷抵抗21を47kΩ、電解質(KCl)の濃度を10-4Mとした。測定結果を、図4に示す。 First, the electrolytic solution 13c in one of the electrolytic cells 13a was heated by a Peltier element, then the Peltier element was removed to stop the heating, and the temperature change and the output voltage change of each of the electrolytic cells 13a and 13b were measured when the heat was naturally released. The load resistance 21 during measurement was 47 kΩ, and the electrolyte (KCl) concentration was 10 −4 M. The measurement results are shown in FIG.

図4に示すように、加熱前には、電気二重層により、各貫通孔11aの通路が狭くなってイオンが通過しないため、出力電圧(Output voltage)は0mVになっている。加熱すると、電解槽13a(Hot chamber)と電解槽13b(Cold chamber)との温度差が大きくなるに従って、出力電圧の絶対値も大きくなっている。これは、温度差が大きくなるに従って、各貫通孔11aの通路が広がり、主に熱浸透現象により、電解槽13b(Cold chamber)から電解槽13a(Hot chamber)に向かってKイオンが移動し、各電極14a、14bの間に起電力が発生するためであると考えられる。なお、加熱中は、電解槽13a(Hot chamber)から電解槽13b(Cold chamber)への熱拡散により、電解槽13b(Cold chamber)の温度も徐々に上昇している。 As shown in FIG. 4, the output voltage is 0 mV before heating because the passage of each through-hole 11a is narrowed by the electric double layer and ions do not pass through. When heated, the absolute value of the output voltage increases as the temperature difference between the electrolytic bath 13a (hot chamber) and the electrolytic bath 13b (cold chamber) increases. This is probably because the passage of each through-hole 11a widens as the temperature difference increases, mainly due to the heat penetration phenomenon, K + ions move from the electrolytic bath 13b (cold chamber) toward the electrolytic bath 13a (hot chamber), and an electromotive force is generated between the electrodes 14a and 14b. During heating, the temperature of the electrolytic bath 13b (cold chamber) is also gradually increased due to thermal diffusion from the electrolytic bath 13a (hot chamber) to the electrolytic bath 13b (cold chamber).

約15分(900秒)間加熱すると、電解槽13a(Hot chamber)の温度が一定となり、出力電圧の絶対値が最大値の23mVとなった。このとき、電解槽13a(Hot chamber)と電解槽13b(Cold chamber)との温度差は、約17℃である。なお、このときも電解槽13b(Cold chamber)の温度は徐々に上昇している。その後、加熱を停止すると、電解槽13a(Hot chamber)および電解槽13b(Cold chamber)の温度が低下して、それらの間の温度差が小さくなっていくに従って、出力電圧の絶対値も小さくなっていき、最終的には0mVになっている。これは、温度差が小さくなるに従って、各貫通孔11aの通路が狭くなっていき、熱浸透現象によるKイオンの移動量が減少するが、その間、負荷抵抗21による放電は続くためであると考えられる。 After heating for about 15 minutes (900 seconds), the temperature of the electrolytic bath 13a (hot chamber) became constant, and the absolute value of the output voltage reached the maximum value of 23 mV. At this time, the temperature difference between the electrolytic bath 13a (hot chamber) and the electrolytic bath 13b (cold chamber) is about 17.degree. Also at this time, the temperature of the electrolytic bath 13b (cold chamber) is gradually rising. After that, when the heating is stopped, the temperature of the electrolytic bath 13a (hot chamber) and the electrolytic bath 13b (cold chamber) decreases, and as the temperature difference between them decreases, the absolute value of the output voltage also decreases, and finally reaches 0 mV. This is thought to be because as the temperature difference decreases, the passage of each through-hole 11a becomes narrower, and the amount of movement of K + ions due to the thermal penetration phenomenon decreases.

次に、負荷抵抗21を様々に変えて同様の実験を行い、出力電圧を測定した。測定時の電解質(KCl)の濃度を10-4Mとした。各電解槽13a、13bの間の温度差が17℃のときの、負荷抵抗(Load resistance)21と出力電圧の絶対値(Absolute output voltage)との関係を、図5に示す。図5には、出力電力(Output power)[=(出力電圧)/負荷抵抗]も示している。図5に示すように、負荷抵抗21が47kΩのとき、最大電圧23mV、最大出力12.2nWが得られることが確認された。 Next, the same experiment was conducted by changing the load resistance 21 variously, and the output voltage was measured. The concentration of electrolyte (KCl) at the time of measurement was set to 10 −4 M. FIG. 5 shows the relationship between the load resistance 21 and the absolute output voltage when the temperature difference between the electrolytic cells 13a and 13b is 17.degree. Output power [=(output voltage) 2 /load resistance] is also shown in FIG. As shown in FIG. 5, it was confirmed that a maximum voltage of 23 mV and a maximum output of 12.2 nW were obtained when the load resistance 21 was 47 kΩ.

また、負荷抵抗21が47kΩのときの、各電解槽13a、13bの間の温度差(Temperature difference)と出力電圧の絶対値との関係を、図6に示す。図6には、電力密度(Power density)[=出力電力/膜体11の有効面積]も示している。図6に示すように、出力電圧および電力密度は、各電解槽13a、13bの間の温度差が大きくなるに従って、大きくなることが確認された。例えば、温度差が30℃のとき、出力電圧50mV、電力密度255μW/cmが得られている。 FIG. 6 shows the relationship between the temperature difference between the electrolytic cells 13a and 13b and the absolute value of the output voltage when the load resistance 21 is 47 kΩ. FIG. 6 also shows the power density [=output power/effective area of membrane 11]. As shown in FIG. 6, it was confirmed that the output voltage and power density increased as the temperature difference between the electrolytic cells 13a and 13b increased. For example, when the temperature difference is 30° C., an output voltage of 50 mV and a power density of 255 μW/cm 2 are obtained.

次に、電解質(KCl)の濃度を様々に変えて同様の実験を行い、出力電圧を測定した。測定時の負荷抵抗21を47kΩとした。各電解槽13a、13bの間の温度差が17℃のときの、電解質の濃度(Electrolyte concentration)と出力電圧の絶対値との関係を、図7に示す。図7に示すように、電解質の濃度が高くなるに従って、出力電圧が小さくなることが確認された。これは、電解質の濃度が高くなるに従って電気二重層が薄くなり、熱浸透現象により移動したKイオンが逆流しやすくなるためであると考えられる。 Next, the same experiment was conducted by changing the concentration of the electrolyte (KCl) variously, and the output voltage was measured. The load resistance 21 during measurement was set to 47 kΩ. FIG. 7 shows the relationship between the electrolyte concentration and the absolute value of the output voltage when the temperature difference between the electrolytic cells 13a and 13b is 17.degree. As shown in FIG. 7, it was confirmed that the higher the electrolyte concentration, the lower the output voltage. This is probably because the electric double layer becomes thinner as the concentration of the electrolyte becomes higher, and the K + ions that have migrated due to the thermal osmosis phenomenon tend to flow back.

以上の結果から、熱電変換装置10は、ナノサイズの貫通孔11aを利用して、温度差を電気エネルギーに変換することができるといえる。このため、熱電変換装置10は、例えば、工場等の排熱や地熱、太陽熱、化石燃料の燃焼熱、海水の温度勾配などの熱や温度差を利用して、温度調整手段15により1対の電解槽13a、13bの間に温度差を与えることにより、各電極14a、14bの間に起電力を発生させて、電気エネルギーを得ることができる。 From the above results, it can be said that the thermoelectric conversion device 10 can convert the temperature difference into electrical energy using the nano-sized through holes 11a. For this reason, the thermoelectric conversion device 10 can obtain electric energy by generating an electromotive force between the electrodes 14a and 14b by applying a temperature difference between the pair of electrolytic cells 13a and 13b with the temperature adjustment means 15, using heat and temperature differences such as exhaust heat, geothermal heat, solar heat, combustion heat of fossil fuel, and temperature gradient of seawater, for example, from factories and the like.

熱電変換装置10は、各電解槽13a、13bに収納された電解質溶液13cに温度差がないとき、電気二重層により、電解質溶液13c中のイオンが複数の貫通孔11aを通過できないよう構成されていてもよい。この場合、各電解槽13a、13bに温度差を与えてイオンを移動させた後、各電解槽13a、13bの温度差をなくすことにより、各電解槽13a、13bにそれぞれ+イオンまたは-イオンを蓄えることができ、キャパシタのような動作を行うことができる。
このことを調べるために、以下の実験を行った。
The thermoelectric conversion device 10 may be configured such that ions in the electrolyte solution 13c cannot pass through the plurality of through-holes 11a due to the electric double layer when there is no temperature difference between the electrolyte solutions 13c contained in the respective electrolytic cells 13a and 13b. In this case, by giving a temperature difference to each electrolytic bath 13a, 13b to move ions, and then eliminating the temperature difference between each electrolytic bath 13a, 13b, + ions or − ions can be stored in each electrolytic bath 13a, 13b, and can operate like a capacitor.
In order to investigate this, the following experiment was conducted.

図2に示す熱電変換装置10を用い、各電解槽13a、13bの間に温度差を与えた後、温度差をなくしたときの、各電極14a、14bの間の出力電圧(電位差)の測定を行った。実験では、約23分(1380秒)間加熱して、各電解槽13a、13bの間に、17℃の最大温度差を与えた後、各電解槽13a、13bを同じ温度にして温度差をなくした。なお、電解質(KCl)の濃度を10-4Mとし、出力には負荷抵抗21を取り付けず、開放とした。このときの出力電圧(Output voltage)の測定結果を、図8に示す。 Using the thermoelectric conversion device 10 shown in FIG. 2, after applying a temperature difference between the electrolytic cells 13a and 13b, the output voltage (potential difference) between the electrodes 14a and 14b when the temperature difference was eliminated was measured. In the experiment, after heating for about 23 minutes (1380 seconds) to give a maximum temperature difference of 17° C. between the electrolytic cells 13a and 13b, the temperature difference was eliminated by bringing the electrolytic cells 13a and 13b to the same temperature. The concentration of the electrolyte (KCl) was set to 10 −4 M, and the load resistor 21 was not attached to the output and left open. FIG. 8 shows the measurement results of the output voltage at this time.

図8に示すように、加熱により、各電解槽13a、13bの間に約180mVの電位差が生じ、温度差がなくなった後、自然放電により、徐々に電位差(出力電圧の絶対値)が小さくなっていくことが確認された。温度差がなくなった後の経過時間と電位差(Absolute output voltage)との関係を、図9に示す。図9に示すように、温度差がなくなった当初は、時間の経過と共に、急激に電位差が小さくなっていくが、数時間経過後は、徐々に電位差の減少率が小さくなることが確認された。また、2日(48時間)経過後でも、60%以上の電位差が残っていることが確認された。以上の結果から、熱電変換装置10は、キャパシタのような動作を行うことができるといえる。 As shown in FIG. 8, it was confirmed that a potential difference of about 180 mV was generated between the electrolytic cells 13a and 13b by heating, and after the temperature difference disappeared, the potential difference (absolute value of the output voltage) gradually decreased due to natural discharge. FIG. 9 shows the relationship between the elapsed time after the temperature difference disappeared and the potential difference (absolute output voltage). As shown in FIG. 9, when the temperature difference disappeared, the potential difference rapidly decreased with the passage of time, but after several hours, the potential difference decrease rate gradually decreased. It was also confirmed that a potential difference of 60% or more remained even after 2 days (48 hours). From the above results, it can be said that the thermoelectric conversion device 10 can operate like a capacitor.

10 熱電変換装置
11 膜体
11a 貫通孔
12 支持体
12a シリコン基板
12b SiO
12c 連通孔
13a、13b 電解槽
14a、14b 電極
15 温度調整手段

21 負荷抵抗
22 データロガー
REFERENCE SIGNS LIST 10 thermoelectric converter 11 membrane body 11a through hole 12 support 12a silicon substrate 12b SiO 2 film 12c communication hole 13a, 13b electrolytic bath 14a, 14b electrode 15 temperature control means

21 load resistance 22 data logger

Claims (7)

厚みを貫通して設けられたナノサイズの複数の貫通孔を有する膜体と、
内部に電解質溶液を収納しており、前記膜体を挟んで、前記複数の貫通孔で互いに連通するよう設けられた1対の電解槽と、
各電解槽に設けられた1対の電極と、
各電解槽に収納された前記電解質溶液に温度差を発生させるよう、少なくとも一方の電解槽を加熱または冷却可能に設けられた温度調整手段とを有し、
各電解槽に収納された前記電解質溶液に、前記温度調整手段で温度差を発生させたとき、各電極間に起電力が発生するよう構成されていることを
特徴とする熱電変換装置。
a film body having a plurality of nano-sized through-holes provided through its thickness;
a pair of electrolytic cells containing an electrolytic solution inside and provided to communicate with each other through the plurality of through-holes with the membrane sandwiched therebetween;
a pair of electrodes provided in each electrolytic cell;
a temperature adjusting means capable of heating or cooling at least one of the electrolytic cells so as to generate a temperature difference in the electrolyte solution contained in each electrolytic cell;
A thermoelectric conversion device, wherein an electromotive force is generated between electrodes when a temperature difference is generated in the electrolyte solution contained in each electrolytic cell by the temperature control means.
前記膜体および前記電解質溶液は、前記複数の貫通孔の孔壁に沿って、電気二重層を形成可能に構成されていることを特徴とする請求項1記載の熱電変換装置。 2. The thermoelectric conversion device according to claim 1, wherein said membrane and said electrolyte solution are configured to be capable of forming an electric double layer along the walls of said plurality of through holes. 各電解槽に収納された前記電解質溶液に温度差がないとき、前記電気二重層により、前記電解質溶液中のイオンが前記複数の貫通孔を通過できないよう構成されていることを特徴とする請求項2記載の熱電変換装置。 3. The thermoelectric conversion device according to claim 2, wherein the electric double layer prevents ions in the electrolyte solution from passing through the plurality of through-holes when there is no temperature difference between the electrolyte solutions stored in the respective electrolytic cells. 各電解槽に収納された前記電解質溶液に、前記温度調整手段で温度差を発生させた後、その温度差をなくすことにより、少なくともいずれか一方の電解槽に、+イオンまたは-イオンを蓄えて、蓄電可能に構成されていることを特徴とする請求項1乃至3のいずれか1項に記載の熱電変換装置。 The thermoelectric conversion device according to any one of claims 1 to 3, wherein the temperature difference is generated in the electrolyte solution contained in each electrolytic cell by the temperature adjusting means, and then the temperature difference is eliminated, thereby storing + ions or − ions in at least one of the electrolytic cells so as to store electricity. 前記膜体は、ケイ素、酸化物、窒化物、金属または金属ガラスから成ることを特徴とする請求項1乃至4のいずれか1項に記載の熱電変換装置。 5. The thermoelectric conversion device according to claim 1, wherein said film is made of silicon, oxide, nitride, metal or metallic glass. 前記電解質溶液は、塩化カリウムまたは塩化ナトリウムを含むことを特徴とする請求項1乃至5のいずれか1項に記載の熱電変換装置。 6. The thermoelectric conversion device according to claim 1, wherein the electrolyte solution contains potassium chloride or sodium chloride. 前記複数の貫通孔は、直径が1nm乃至100nmであることを特徴とする請求項1乃至6のいずれか1項に記載の熱電変換装置。
The thermoelectric conversion device according to any one of claims 1 to 6, wherein the plurality of through holes have a diameter of 1 nm to 100 nm.
JP2019008750A 2019-01-22 2019-01-22 thermoelectric converter Active JP7313616B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019008750A JP7313616B2 (en) 2019-01-22 2019-01-22 thermoelectric converter
PCT/JP2020/001961 WO2020153359A1 (en) 2019-01-22 2020-01-21 Thermoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019008750A JP7313616B2 (en) 2019-01-22 2019-01-22 thermoelectric converter

Publications (2)

Publication Number Publication Date
JP2020120474A JP2020120474A (en) 2020-08-06
JP7313616B2 true JP7313616B2 (en) 2023-07-25

Family

ID=71735468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019008750A Active JP7313616B2 (en) 2019-01-22 2019-01-22 thermoelectric converter

Country Status (2)

Country Link
JP (1) JP7313616B2 (en)
WO (1) WO2020153359A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022038262A (en) * 2020-08-26 2022-03-10 東京エレクトロン株式会社 Thermoelectric effect element, heat transfer device, semiconductor manufacturing equipment and method for controlling thermoelectric effect element
CN113838674B (en) * 2021-10-08 2022-12-06 洛阳理工学院 Preparation method of all-solid-state flexible thermoelectric conversion device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7227235B2 (en) * 2003-11-18 2007-06-05 Lucent Technologies Inc. Electrowetting battery having a nanostructured electrode surface
US20060141346A1 (en) * 2004-11-23 2006-06-29 Gordon John H Solid electrolyte thermoelectrochemical system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TOAN. N.V. , INOMOTO.N , TODA.M, ONO.T,Ion transport by gating voltage to nanopores produced via metal-assisted chemical etching method,Nanotechnology,vol.29, no.195301,日本,2018年03月16日,1-7ページ
VAN DER HYDEN. Frank H. J. , BONTHUIS. Douwe Jan, STEIN Derek ,MEYER Christine and DEKKER Cees,,Power Generation by pressure-Driven Transport of Ions in Nanofluidic Channel,NANO LETTERS,2007年01月24日,1022-1025ページ,図1-3

Also Published As

Publication number Publication date
WO2020153359A1 (en) 2020-07-30
JP2020120474A (en) 2020-08-06

Similar Documents

Publication Publication Date Title
Hwang et al. Thermal dependence of nanofluidic energy conversion by reverse electrodialysis
Fu et al. An atomically-thin graphene reverse electrodialysis system for efficient energy harvesting from salinity gradient
Macha et al. 2D materials as an emerging platform for nanopore-based power generation
Choi et al. Tunable reverse electrodialysis microplatform with geometrically controlled self-assembled nanoparticle network
Kim et al. Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels
Chiavazzo et al. Passive solar high-yield seawater desalination by modular and low-cost distillation
Guo et al. Energy harvesting with single‐ion‐selective nanopores: a concentration‐gradient‐driven nanofluidic power source
Mai et al. Boosting power generation from salinity gradient on high-density nanoporous membrane using thermal effect
Kim et al. Energy harvesting from salinity gradient by reverse electrodialysis with anodic alumina nanopores
Kwon et al. Energy harvesting system using reverse electrodialysis with nanoporous polycarbonate track‐etch membranes
JP7313616B2 (en) thermoelectric converter
Van Toan et al. Thermoelectric power battery using al2o3 nanochannels of 10 nm diameter for energy harvesting of low-grade waste heat
WO2015166751A1 (en) Limiting-current-type gas sensor, method of manufacturing same, and sensor network system
Zhang et al. Enhancing the efficiency of energy harvesting from salt gradient with ion-selective nanochannel
Van Toan et al. Ion transport by gating voltage to nanopores produced via metal-assisted chemical etching method
Li et al. A solar thermoelectric nanofluidic device for solar thermal energy harvesting
Lai et al. Desalination of saline water by nanochannel arrays through manipulation of electrical double layer
Kaur et al. Hydropower generation by transpiration from microporous alumina
Lim et al. Thermally chargeable supercapacitor working in a homogeneous, changing temperature field
Tsutsui et al. Sparse multi-nanopore osmotic power generators
Piwowar et al. High field asymmetric waveform for ultra-enhanced electroosmotic pumping of porous anodic alumina membranes
US10626511B2 (en) Nanoelectrodes for water splitting
Van Toan et al. Nanoengineered nanochannels for thermally ionic nanofluidic energy harvesting
Pascual et al. Waste heat recovery using thermally responsive ionic liquids through TiO 2 nanopore and macroscopic membranes
Li et al. Nanochannels for low-grade energy harvesting

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230704

R150 Certificate of patent or registration of utility model

Ref document number: 7313616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150