WO2020153055A1 - Digital-analog conversion device, imaging device, and electronic equipment - Google Patents

Digital-analog conversion device, imaging device, and electronic equipment Download PDF

Info

Publication number
WO2020153055A1
WO2020153055A1 PCT/JP2019/049579 JP2019049579W WO2020153055A1 WO 2020153055 A1 WO2020153055 A1 WO 2020153055A1 JP 2019049579 W JP2019049579 W JP 2019049579W WO 2020153055 A1 WO2020153055 A1 WO 2020153055A1
Authority
WO
WIPO (PCT)
Prior art keywords
analog
signal
digital
gain
unit
Prior art date
Application number
PCT/JP2019/049579
Other languages
French (fr)
Japanese (ja)
Inventor
浩希 須藤
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2020153055A1 publication Critical patent/WO2020153055A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/50Analogue/digital converters with intermediate conversion to time interval
    • H03M1/56Input signal compared with linear ramp
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/70Automatic control for modifying converter range
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/74Simultaneous conversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array

Definitions

  • the present disclosure relates to a digital-analog conversion device, an imaging device, and an electronic device.
  • a single-slope analog-digital converter is used as an analog-digital converter that converts an analog pixel signal output from a pixel (pixel circuit) into a digital signal.
  • a so-called ramp (RAMP) wave reference signal whose level (voltage) monotonically decreases with time is used as a reference signal in analog-digital conversion.
  • a digital-analog converter (DAC; Digital Analog Converter) is used as a reference signal generation unit that generates a ramp wave reference signal (see, for example, Patent Document 1).
  • Patent Document 1 describes a current control type digital-analog conversion device.
  • the gain current I gain in the circuit changes when the analog gain (gain when performing analog-digital conversion) is changed.
  • the amplifier output current in the subsequent stage which receives the gain current I gain by the current mirror, also changes.
  • the initial voltage of the output voltage of the digital-analog converter at the time of changing the analog gain cannot be kept constant.
  • the present disclosure is directed to a digital-analog conversion device capable of maintaining a constant initial voltage of the output voltage of the digital-analog conversion device when an analog gain is changed, an imaging device including the digital-analog conversion device, and
  • An object is to provide an electronic device including an imaging device.
  • a digital-analog conversion device of the present disclosure (hereinafter, sometimes referred to as a “DA conversion device”) for achieving the above object is An analog signal output section that outputs an analog signal according to the value of the digital input signal, An analog gain adjusting section for adjusting the gain of the analog signal, and An initial potential control unit that is connected to the output node of the analog signal output unit and controls the initial potential of the analog signal is provided. And The initial potential control unit controls the initial potential of the analog signal to a constant potential regardless of the gain adjusted by the analog gain adjustment unit.
  • An imaging device of the present disclosure for achieving the above object is A pixel array section having a pixel circuit including a photoelectric conversion element, An analog-to-digital converter having a plurality of analog-to-digital converters for converting an analog pixel signal output from each pixel circuit of the pixel array section into a digital signal, and A reference signal generation unit that generates a ramp wave reference signal and supplies the reference signal to the analog-digital conversion unit;
  • the reference signal generation unit includes a digital-analog conversion device.
  • the digital-analog converter is An analog signal output section that outputs an analog signal according to the value of the digital input signal, An analog gain adjusting section for adjusting the gain of the analog signal, and An initial potential control unit that is connected to the output node of the analog signal output unit and controls the initial potential of the analog signal is provided. And The initial potential control unit controls the initial potential of the analog signal to a constant potential regardless of the gain adjusted by the analog gain adjustment unit.
  • an electronic device of the present disclosure for achieving the above object includes the image pickup apparatus having the above configuration.
  • FIG. 1 is a block diagram showing an outline of a basic configuration of a CMOS image sensor which is an example of the image pickup apparatus of the present disclosure.
  • FIG. 2 is a circuit diagram showing an example of the circuit configuration of the pixel circuit.
  • FIG. 3 is a block diagram showing an example of the configuration of a column parallel analog-digital conversion unit mounted on the CMOS image sensor.
  • FIG. 4 is a plan view showing an outline of a flat-type chip structure of a CMOS image sensor.
  • FIG. 5 is an exploded perspective view showing an outline of a stacked semiconductor chip structure of a CMOS image sensor.
  • FIG. 6 is a circuit diagram showing an example of the configuration of a digital-analog converter according to a conventional example.
  • FIG. 1 is a block diagram showing an outline of a basic configuration of a CMOS image sensor which is an example of the image pickup apparatus of the present disclosure.
  • FIG. 2 is a circuit diagram showing an example of the circuit configuration of the pixel circuit.
  • FIG. 7 is an explanatory diagram of fluctuations in the DC potential of the ramp wave output voltage when the analog gain is changed.
  • FIG. 8A is a circuit diagram showing a double-sided auto-zero type comparator
  • FIG. 8B is a circuit diagram showing a single-sided auto-zero type comparator.
  • FIG. 9 is an explanatory diagram of the dynamic range of the comparator.
  • FIG. 10 is a circuit diagram showing an example of the configuration of the digital-analog conversion device according to the first embodiment of the present disclosure.
  • FIG. 11 is a waveform diagram showing the output voltage of the digital-analog conversion device according to the first embodiment of the present disclosure.
  • FIG. 12 is a circuit diagram showing an example of the configuration of the digital-analog conversion device according to the second embodiment of the present disclosure.
  • FIG. 13 is a diagram illustrating an application example of the technology according to the present disclosure.
  • FIG. 14 is a block diagram showing an outline of a configuration example of an imaging system which is an example of the electronic device of the present disclosure.
  • FIG. 15 is a block diagram showing a schematic configuration example of a vehicle control system that is an example of a mobile body control system to which the technology according to the present disclosure can be applied.
  • FIG. 16 is a diagram illustrating an example of installation positions of the imaging unit and the vehicle exterior information detection unit in the mobile control system.
  • the analog signal output unit receives the gain control signal for adjusting the analog gain and outputs the output current according to the value of the digital input signal.
  • a voltage signal generated by current-voltage converting the generated output current may be output as an analog signal.
  • the gain current and the non-selection side current according to the value of the digital gain control signal are supplied to the analog gain adjusting section.
  • a voltage signal generated and current-voltage converted from the gain current may be supplied to the analog signal output unit as a gain control signal.
  • the initial potential control unit has a plurality of current sources, and the offset setting value based on the setting of the analog gain.
  • the correction current based on the non-selected side current is output to the output node of the analog signal output unit in the initial potential control unit.
  • the initial potential of the analog signal can be controlled to a constant potential.
  • the analog-digital converter is supplied from the analog pixel signal output from the pixel circuit and the reference signal generation unit.
  • a configuration having a comparator having two inputs of the ramp wave reference signal can be adopted. Then, the comparator can be configured such that the initialization operation is performed only on the input side of the analog pixel signal. Further, it is preferable that the analog-digital converter is provided corresponding to each pixel circuit of the pixel array section.
  • each of the first semiconductor chip in which each pixel circuit of the pixel array section is formed and each pixel circuit of the pixel array section It is possible to adopt a configuration having a laminated semiconductor chip structure in which at least two semiconductor chips of the second semiconductor chip in which the analog-digital converter is formed corresponding to the above are laminated.
  • CMOS Complementary Metal Oxide Semiconductor
  • CMOS image sensor which is a type of an XY addressing type image pickup device, will be described as an example of the image pickup device.
  • the CMOS image sensor is an image sensor manufactured by applying a CMOS process or partially using it.
  • FIG. 1 is a block diagram showing an outline of a basic configuration of a CMOS image sensor which is an example of the image pickup apparatus of the present disclosure.
  • the CMOS image sensor 1 is configured to include a pixel array section 11 and a peripheral circuit section of the pixel array section 11.
  • the pixel array unit 11 includes pixel circuits (pixels) 2 including a light receiving unit (photoelectric conversion unit) arranged two-dimensionally in the row direction and the column direction, that is, in a matrix.
  • the row direction means the arrangement direction of the pixel circuits 2 in the pixel row (so-called horizontal direction)
  • the column direction means the arrangement direction of the pixel circuits 2 in the pixel column (so-called vertical direction).
  • the pixel circuit 2 performs photoelectric conversion to generate and accumulate photocharges according to the amount of received light.
  • the peripheral circuit section of the pixel array section 11 includes, for example, a row selection section 12, a constant current source section 13, an analog-digital conversion section 14, a reference signal generation section 15, a horizontal transfer scanning section 16, a signal processing section 17, and timing. It is configured by the control unit 18 and the like. Then, as the reference signal generation unit 15, a DA converter to which the technology according to the present disclosure is applied (that is, the DA converter of the present disclosure) is used.
  • pixel control lines 31 1 to 31 m are arranged along the row direction for each pixel row in a matrix of pixel arrays. Is wired.
  • vertical signal lines 32 1 to 32 n (hereinafter, may be collectively referred to as “vertical signal line 32”) are arranged along the column direction for each pixel column.
  • the pixel control line 31 transmits a drive signal for driving when reading a signal from the pixel circuit 2.
  • the pixel control line 31 is illustrated as one wiring, but the number is not limited to one.
  • One end of the pixel control line 31 is connected to the output end corresponding to each row of the row selection unit 12.
  • the row selection unit 12 is composed of a shift register, an address decoder, and the like, and controls scanning of pixel rows and addresses of pixel rows when selecting each pixel circuit 2 of the pixel array unit 11. Although not specifically shown, the row selection unit 12 generally has two scanning systems, a read scanning system and a sweep scanning system.
  • the read scanning system sequentially selects and scans the pixel circuits 2 of the pixel array section 11 in units of rows in order to read pixel signals from the pixel circuits 2.
  • the pixel signal read from the pixel circuit 2 is an analog signal.
  • the sweep-out scanning system performs sweep-out scanning with respect to the read-out row in which the read-out scanning is performed by the read-out scanning system, prior to the read-out scanning by the shutter speed time.
  • the electronic shutter operation means an operation of discarding the photocharges of the photoelectric conversion unit and newly starting the exposure (starting the accumulation of the photocharges).
  • the constant current source unit 13 includes a plurality of current sources I each of which is composed of, for example, a MOS transistor and is connected to each of the vertical signal lines 32 1 to 32 n for each pixel column, and is selectively scanned by the row selection unit 12.
  • a bias current is supplied to each pixel circuit 2 in the pixel row through each of the vertical signal lines 32 1 to 32 n .
  • the analog-digital conversion unit 14 includes a set of a plurality of analog-digital converters provided corresponding to the pixel columns of the pixel array unit 11, for example, provided for each pixel column.
  • the analog-digital conversion unit 14 is a column parallel type analog-digital conversion unit that converts an analog pixel signal output through each of the vertical signal lines 32 1 to 32 n for each pixel column into a digital signal.
  • analog-to-digital converter in the column parallel analog-to-digital converter 14 for example, a single slope analog-to-digital converter which is an example of the reference signal comparison type analog-to-digital converter can be used.
  • the reference signal generation unit 15 includes a DA converter of the present disclosure to be described later, and generates a reference signal of a ramp (RAMP) wave whose level (voltage) monotonically decreases with time.
  • the reference signal of the ramp wave generated by the reference signal generation unit 15 is supplied to the analog-digital conversion unit 14 and used as a reference signal for analog-digital conversion.
  • the horizontal transfer scanning unit 16 is composed of a shift register, an address decoder, and the like, and controls the scanning of the pixel column and the address of the pixel column when reading the signal of each pixel circuit (pixel) 2 of the pixel array unit 11. Under the control of the horizontal transfer scanning unit 16, the pixel signal converted into a digital signal by the analog-digital conversion unit 14 is read out to the horizontal transfer line 19 in pixel column units.
  • the signal processing unit 17 performs predetermined signal processing on the digital pixel signal supplied through the horizontal transfer line 19 to generate two-dimensional image data. For example, the signal processing unit 17 corrects vertical line defects and point defects, clamps signals, and performs digital signal processing such as parallel-serial conversion, compression, encoding, addition, averaging, and intermittent operation. To go. The signal processing unit 17 outputs the generated image data as an output signal of the CMOS image sensor 1 to a device in the subsequent stage.
  • the timing control unit 18 generates various timing signals, clock signals, control signals, etc., and based on these generated signals, the row selection unit 12, the constant current source unit 13, the analog-digital conversion unit 14, see The drive control of the signal generation unit 15, the horizontal transfer scanning unit 16, the signal processing unit 17, and the like is performed.
  • FIG. 2 is a circuit diagram showing an example of the configuration of the pixel circuit 2.
  • the pixel circuit 2 has, for example, a photodiode 21 as a photoelectric conversion element which is a light receiving element.
  • the pixel circuit 2 has a configuration including a transfer transistor 22, a reset transistor 23, an amplification transistor 24, and a selection transistor 25 in addition to the photodiode 21.
  • the four transistors of the transfer transistor 22, the reset transistor 23, the amplification transistor 24, and the selection transistor 25, for example, N-channel MOS type field effect transistors (FETs) are used.
  • FETs N-channel MOS type field effect transistors
  • the combination of the conductivity types of the four transistors 22 to 25 illustrated here is merely an example, and the present invention is not limited to these combinations.
  • a plurality of pixel control lines are wired in common to each pixel circuit 2 in the same pixel row.
  • the plurality of pixel control lines are connected to the output end of the row selection unit 12 corresponding to each pixel row in pixel row units.
  • the row selection unit 12 appropriately outputs the transfer signal TRG, the reset signal RST, and the selection signal SEL to the plurality of pixel control lines.
  • the photodiode 21 has an anode electrode connected to a low-potential-side power source (eg, ground), and photoelectrically converts the received light into a photocharge (here, photoelectron) having a charge amount corresponding to the light amount thereof. Accumulates electric charge.
  • the cathode electrode of the photodiode 21 is electrically connected to the gate of the amplification transistor 24 via the transfer transistor 22.
  • the region where the gate of the amplification transistor 24 is electrically connected is the floating diffusion (floating diffusion region/impurity diffusion region) FD.
  • the floating diffusion FD is a charge-voltage converter that converts charges into a voltage.
  • the gate of the transfer transistor 22 is supplied with a transfer signal TRG that activates a high level (for example, V DD level) from the row selection unit 12.
  • a transfer signal TRG that activates a high level (for example, V DD level) from the row selection unit 12.
  • the transfer transistor 22 becomes conductive in response to the transfer signal TRG, it is photoelectrically converted by the photodiode 21 and transfers the photocharges accumulated in the photodiode 21 to the floating diffusion FD.
  • the reset transistor 23 is connected between the node of the high-potential-side power supply voltage V DD and the floating diffusion FD. To the gate of the reset transistor 23, the reset signal RST whose high level becomes active is given from the row selection unit 12. The reset transistor 23 becomes conductive in response to the reset signal RST, and resets the floating diffusion FD by discarding the charge of the floating diffusion FD to the node of the voltage V DD .
  • the gate of the amplification transistor 24 is connected to the floating diffusion FD, and the drain thereof is connected to the node of the high-potential-side power supply voltage V DD .
  • the amplification transistor 24 serves as an input unit of a source follower that reads out a signal obtained by photoelectric conversion in the photodiode 21. That is, the source of the amplification transistor 24 is connected to the vertical signal line 32 via the selection transistor 25.
  • the amplification transistor 24 and the current source I connected to one end of the vertical signal line 32 constitute a source follower that converts the voltage of the floating diffusion FD into the potential of the vertical signal line 32.
  • the drain of the selection transistor 25 is connected to the source of the amplification transistor 24, and the source is connected to the vertical signal line 32.
  • a selection signal SEL that activates a high level is applied to the gate of the selection transistor 25 from the row selection unit 12.
  • the selection transistor 25 is rendered conductive in response to the selection signal SEL, and thereby transmits the signal output from the amplification transistor 24 to the vertical signal line 32 by setting the pixel circuit 2 in the selected state.
  • the pixel circuit 2 has the 4Tr configuration including the transfer transistor 22, the reset transistor 23, the amplification transistor 24, and the selection transistor 25, that is, four transistors (Tr). , but not limited to this.
  • the selection transistor 25 may be omitted, and the amplification transistor 24 may have a 3Tr configuration in which the function of the selection transistor 25 is provided. If necessary, the number of transistors may be increased to 5Tr or more. ..
  • the analog-digital converter 14 in the CMOS image sensor 1 of the present disclosure is composed of a set of a plurality of single slope type analog-digital converters provided corresponding to each pixel circuit 2 of the pixel array unit 11.
  • the single-slope analog-digital converter 140 in the n-th column will be described as an example.
  • the single-slope analog-digital converter 140 has a circuit configuration including a comparator 141, a counter circuit 142, and a latch circuit 143.
  • the single-slope analog-to-digital converter 140 uses the ramp wave reference signal generated by the reference signal generation unit 19. Specifically, it is given as a reference signal to the comparator 141 provided for each pixel column.
  • the comparator 141 uses the analog pixel signal read from the pixel circuit 2 as a comparison input and the ramp wave reference signal generated by the reference signal generation unit 19 as a reference input, and compares the two signals. Then, for example, the output of the comparator 141 is in the first state (for example, high level) when the reference signal is larger than the pixel signal, and the output is in the second state (for example, when the reference signal is less than or equal to the pixel signal). , Low level). As a result, the comparator 141 outputs a pulse signal having a pulse width corresponding to the signal level of the pixel signal, specifically, the magnitude of the signal level, as the comparison result.
  • the first state for example, high level
  • the comparator 141 outputs a pulse signal having a pulse width corresponding to the signal level of the pixel signal, specifically, the magnitude of the signal level, as the comparison result.
  • the clock signal CLK is given to the counter circuit 142 from the timing control unit 18 at the same timing as the timing of starting the supply of the reference signal to the comparator 141. Then, the counter circuit 142 measures the pulse width period of the output pulse of the comparator 141, that is, the period from the start of the comparison operation to the end of the comparison operation by performing the counting operation in synchronization with the clock signal CLK.
  • the count result (count value) of the counter circuit 142 becomes a digital value obtained by digitizing an analog pixel signal.
  • the latch circuit 143 holds (latches) the digital value that is the count result of the counter circuit 142. Further, the latch circuit 143 is an example of noise removal processing by calculating the difference between the D-phase count value corresponding to the signal level pixel signal and the P-phase count value corresponding to the reset level pixel signal. , CDS (Correlated Double Sampling) processing. Then, under the drive of the horizontal transfer scanning unit 16, the latched digital value is output to the horizontal transfer line 19.
  • CDS Correlated Double Sampling
  • the reference signal of the linearly changing analog value generated by the reference signal generation unit 15 and the pixel A digital value is obtained from time information until the magnitude relationship with the analog pixel signal output from the circuit 2 changes.
  • the column parallel analog-to-digital conversion unit 14 has the configuration in which the analog-to-digital converter 140 is arranged in a one-to-one relationship with the pixel column. It is also possible to adopt a configuration in which the analog-digital converter 140 is arranged as a unit.
  • the semiconductor chip structure of the CMOS image sensor 1 having the above structure a flat semiconductor chip structure and a laminated semiconductor chip structure can be exemplified.
  • the pixel structure may be a back-illuminated pixel structure in which light emitted from the opposite back surface side is taken in when the substrate surface on the side where the wiring layer is formed is the front surface (front surface).
  • a front-illuminated pixel structure that takes in light emitted from the front side can also be used.
  • FIG. 4 is a plan view showing an outline of a flat-type chip structure of the CMOS image sensor 1.
  • a flat semiconductor chip structure that is, a flat structure, has a periphery of the pixel array unit 11 on the same semiconductor chip 41 as the pixel array unit 11 in which the pixel circuits 2 are arranged in a matrix. It has a structure in which each component of the circuit portion is formed.
  • the row selection unit 12 the constant current source unit 13, the analog-digital conversion unit 14, the reference signal generation unit 15, the horizontal transfer scanning unit 16, the signal processing unit. 17, a timing controller 18 and the like are formed.
  • FIG. 5 is an exploded perspective view showing an outline of a stacked semiconductor chip structure of the CMOS image sensor 1.
  • the laminated semiconductor chip structure so-called laminated structure, has a structure in which at least two semiconductor chips, that is, the first semiconductor chip 42 and the second semiconductor chip 43, are laminated.
  • the first semiconductor chip 42 of the first layer has a pixel array section 11 in which pixel circuits 2 including photoelectric conversion elements (for example, photodiodes 21) are two-dimensionally arranged in a matrix. It is the formed pixel chip.
  • the second semiconductor chip 43 in the second layer is an analog formed of a set of analog-digital converters (ADC) 140 arranged corresponding to the pixel circuits 2 arranged two-dimensionally in a matrix of the pixel array section 11.
  • Each pixel circuit 2 of the first semiconductor chip 42 of the first layer and each analog-digital converter 140 of the second semiconductor chip 43 of the second layer are connected to each other by Cu-Cu connection (copper-copper connection) or the like. Electrically connected through (not shown).
  • a process suitable for manufacturing the pixel circuit 2 can be applied to the first semiconductor chip 42 of the first layer, and a circuit portion can be manufactured to the second semiconductor chip 43 of the second layer. Suitable process can be applied. Thereby, in manufacturing the CMOS image sensor 1, the process can be optimized. In particular, when manufacturing a circuit portion, it is possible to apply an advanced process.
  • the digital-analog converter of the present disclosure used as the reference signal generator 15 is a current control type digital-analog converter.
  • a conventional example of a current control type digital-analog converter will be described.
  • FIG. 6 is a circuit diagram showing an example of the configuration of a conventional digital-analog conversion device 50A.
  • the digital-analog conversion device 50A is configured as a ground-reference DA conversion device, and has a configuration including an analog signal output unit 51, an analog gain adjustment unit 52, a counter decoder 53, and a gain decoder 54. ing.
  • the analog signal output unit 51 generates an output current according to the value of the digital input signal DI decoded by the counter decoder 53, and outputs a voltage signal obtained by current-voltage converting the generated output current as an analog signal. In addition, the analog signal output unit 51 adjusts the gain of the analog signal according to the bias voltage V bias that is the gain control signal supplied from the analog gain adjusting unit 52.
  • the analog signal output section 51 has the following circuit configuration. That is, the analog signal output unit 51 includes a differential transistor and a plurality of basic current source cells 511 1 to 511 including a current source transistor of the differential transistor, and a common bias voltage is supplied to the gate of the current source transistor. It is configured to have n .
  • the plurality of basic current source cells 511 1 to 511 n are formed by P-channel MOS transistors.
  • the analog signal output unit 51 has a plurality of basic current source cells 511 1 to 511 n , a selected output line 512, a non-selected output line 513, and a terminating resistor 514.
  • each of the basic current source cells 511 1 to 511 n of the analog signal output section 51 has a common configuration. That is, each of the basic current source cells 511 1 to 511 n includes a P-channel MOS transistor PT 11 forming a current source transistor, and P-channel MOS transistors PT 12 and PT 13 forming sources which are connected to each other to form a differential transistor. It is composed of.
  • the source of the P channel MOS transistor PT 11 is connected to the power source line L 1 of the power source voltage V DD , and the drain is connected to the sources of the P channel MOS transistors PT 12 and PT 13. ing.
  • the non-selected output line 513 is connected to the drain of the P-channel MOS transistor PT 12 .
  • the other end of the non-selected output line 513 is connected to the ground line L 2 of GND potential.
  • the ground line L 2 of GND potential has a parasitic wiring resistance 515 having a resistance value R 0 of about 1 ⁇ .
  • the selection output line 512 is connected to the drain of the P-channel MOS transistor PT 13 .
  • the other end of the selection output line 512 is connected to one end of a terminating resistor 514.
  • the other end of the terminating resistor 514 is connected to the ground line L 2 .
  • the terminating resistor 514 has a resistance value R 1 of about 100 ⁇ and performs current-voltage conversion.
  • the gate of the P-channel MOS transistor PT 11 is commonly connected to the supply line L 3 of the bias voltage V bias which is the gain control signal supplied from the analog gain adjusting section 52. Has been done.
  • the gate of the P-channel MOS transistor PT 12 is used as the input terminal of the digital signal Q in the gate of the P-channel MOS transistor PT 13 is in the input end of the digital signal Q in a reverse-phase signal xQ in.
  • the drain of one P-channel MOS transistor PT 13 of the differential transistors is commonly connected to the selection output line 512, and the drain of the other P-channel MOS transistor PT 12 is non-conductive. It is commonly connected to the selection output line 513.
  • the connection node becomes the output node ND 51 with a selected output line 512 and the terminating resistor 514, from the output node ND 51, the analog signal is derived which is the output signal of the analog signal output section 51. That is, the output node ND 51 is the output node of the analog signal output unit 51 and the output node of the digital-analog conversion device 50A.
  • one of the plurality of basic current source cells 511 1 to 511 n is selected as a P-channel MOS transistor PT 13 of the differential transistor according to the decode information of the counter decoder 53.
  • the current outputs of the selected basic current source cells are added and the resulting current flows to the selected output line 512 as the lamp output current I ramp .
  • the lamp output current I ramp is converted into a voltage signal by the terminating resistor 514 and output as an analog signal from the output node ND 51 .
  • the other P-channel MOS transistor PT 13 is selected according to the decode information of the counter decoder 53.
  • the current outputs of the selected basic current source cells are added and flown as the lamp non-output current I ramp_minus to the ground line L 2 via the non-selected output line 513.
  • the analog signal output section 51 generates the ramp output current I ramp according to the value of the digital input signal DI decoded by the counter decoder 53. Then, the number of selected basic current source cells is gradually reduced according to the value of the digital input signal DI, and the lamp output current I ramp at that time is subjected to current-voltage conversion to generate a voltage signal of a ramp wave. And output as a ramp wave analog signal.
  • the analog gain adjustment unit 52 generates a bias voltage V bias which is a gain control signal according to the value of the digital gain control signal DGI decoded by the gain decoder 54. Then, the analog gain adjustment unit 52 outputs the generated bias voltage V bias to the analog signal output unit 51 as a signal for adjusting the gain.
  • the analog gain adjusting unit 52 includes a differential transistor and a current source transistor of the differential transistor, and a plurality of basic current source cells 521 to which a bias voltage according to a common reference current is supplied to the gate of the current source transistor.
  • the configuration has 1 to 521 n .
  • the plurality of basic current source cells 521 1 to 521 n are formed by N-channel MOS transistors.
  • the analog gain adjusting section 52 has a selection line 522, a non-selection line 523, an N-channel MOS transistor DN 21 , and a P-channel MOS transistor DP 21 in addition to the plurality of basic current source cells 521 1 to 521 n. There is.
  • the N-channel MOS transistor DN 21 and the P-channel MOS transistor DP 21 have a diode connection configuration in which the gate and the drain are commonly connected.
  • the plurality of basic current source cells 521 1 to 521 n of the analog gain adjusting section 52 have a common configuration. That is, each of the basic current source cells 521 1 to 521 n has an N-channel MOS transistor NT 21 forming a current source transistor, and N-channel MOS transistors NT 22 and NT 33 having sources connected to each other to form a differential transistor. It is composed of.
  • the source of the N-channel MOS transistor NT 21 is connected to the ground line L 2 having the GND potential, and the drain is connected to each source of the N-channel MOS transistors NT 22 and NT 23 . ..
  • One end of the non-select line 523 is connected to the drain of the N-channel MOS transistor NT 22 .
  • the other end of the non-selection line 523 is connected to the power supply line L 1 of the power supply voltage V DD .
  • the drain of N-channel MOS transistor NT 23, one end of the selection line 522 are connected.
  • the other end of the selection line 522 is connected to the drain and gate of the P-channel MOS transistor DP 21 , and the connection node is connected to the gates of the current source transistors of the plurality of basic current source cells 511 1 to 511 n of the analog signal output section 51. It is connected.
  • the P-channel MOS transistor DP 21 of the analog gain adjusting section 52 and the P-channel MOS transistor PT 21 forming the current source transistors of the plurality of basic current source cells 511 1 to 511 n of the analog signal output section 51 are used for the current A mirror circuit is formed.
  • the gate of the N-channel MOS transistor NT 21 is commonly connected to the gate of the N-channel MOS transistor DN 21 having a diode connection configuration.
  • the source is connected to the ground line L 2
  • the drain and gate are connected to the supply line of the reference current I ref
  • the connection point (gate) is a plurality of basic current source cells 521 1 to 521 n is connected to the gate of each N-channel MOS transistor NT 21 .
  • the N-channel MOS transistor DN 21 converts the reference current I ref into a voltage and supplies it as a reference voltage V ref to the gates of the N-channel MOS transistors NT 21 of the plurality of basic current source cells 521 1 to 521 n .
  • the gate of N-channel MOS transistor NT 22 is connected to the supply line of the signal G in, the gate of the N-channel MOS transistor NT 23 is connected to the supply line of the signal xG in the signal G in opposite phase.
  • the drain of one N-channel MOS transistor NT 23 of the differential transistors is commonly connected to the select line 522, and the drain of the other N-channel MOS transistor NT 22 is unselected. Commonly connected to the line 523.
  • one N channel MOS transistor NT 23 of the differential transistors is selected according to the decoding information of the gain decoder 54.
  • the current outputs of the selected basic current source cells are added and flow to the selection line 522 as the gain current I gain .
  • the gain current I gain is converted into a voltage signal by the P-channel MOS transistor DP 21 and output to the analog signal output unit 51.
  • the other N-channel MOS transistor NT 22 is selected according to the decoding information of the gain decoder 54. In this case, the current outputs of the selected basic current source cells are added and the non-selected side current I gain_minus flows through the non-selected line 523.
  • the analog gain adjusting section 52 generates the gain current I gain and the non-selection side current I gain_minus according to the value of the digital gain control signal DGI decoded by the gain decoder 54. Then, the bias voltage V bias based on the gain current I gain is generated, the bias voltage V bias is the analog signal output section 51, is outputted as the gain control signal for adjusting the gain.
  • the analog gain adjusting unit 52 can change the slope of the output voltage of the digital-analog converter 50A by the gain current I gain .
  • the gain current I gain in the circuit changes when the analog gain of the analog-digital converter 14 is changed.
  • the gain current I gain of 0 dB is 2I
  • the gain current I gain of 6 dB becomes I.
  • the lamp output current I ramp of the analog signal output unit 51 at the subsequent stage which receives the gain current I gain by the current mirror, also changes from 2I (0 dB) to I (6 dB).
  • the DC potential of the output voltage of the digital-analog converter 50A at the output node ND 51 of the digital-analog converter 50A fluctuates between 0 dB and 6 dB as shown in FIG.
  • the output voltage of the digital-analog converter 50A cannot be kept constant. Further, due to the tolerance of the power supply voltage supplied from the outside of the semiconductor chip, the DC potential of the output voltage of the digital-analog converter 50A has individual differences.
  • the comparator 141 (see FIG. 3) of the analog-digital converter 140, which receives the pixel signal VSL output from the pixel circuit 2 and the reference signal RAMP of the ramp wave supplied from the reference signal generator 15 as two inputs. Will be described.
  • the comparator 141 includes a double-sided auto-zero type comparator and a single-sided auto-zero type comparator.
  • FIG. 8A A circuit diagram of a double-sided auto-zero type comparator is shown in FIG. 8A.
  • the double-sided auto-zero type comparator has a configuration including a differential amplifier 60, a first capacitive element C 31 , a second capacitive element C 32, a first switch transistor NT 33 , and a second switch transistor NT 34.
  • a differential amplifier 60 a differential amplifier 60
  • a first capacitive element C 31 a second capacitive element C 32
  • NT 33 a first switch transistor NT 33
  • second switch transistor NT 34 N-channel MOS transistors are used as the first switch transistor NT 33 and the second switch transistor NT 34 .
  • the differential amplifier 60 is composed of a first differential transistor NT 31 , a second differential transistor NT 32 , a current source transistor NT 35 , a first load transistor PT 31 and a second load transistor PT 32. ing.
  • N-channel MOS transistors are used as the first differential transistor NT 31 and the second differential transistor NT 32
  • P-channel MOS transistors are used as the first load transistor PT 31 and the second load transistor PT 32. ing.
  • the sources of the first differential transistor NT 31 and the second differential transistor NT 32 are commonly connected to form a differential pair that performs a differential operation.
  • the current source transistor NT 35 is connected between the source common connection node of the first differential transistor NT 31 and the second differential transistor NT 32 and the ground GND.
  • the first load transistor PT 31 has a diode connection configuration in which the gate and the drain are commonly connected, and is connected in series to the first differential transistor NT 31 . That is, the drains of the first load transistor PT 31 and the first differential transistor NT 31 are commonly connected.
  • the second load transistor PT 32 is connected in series with the second differential transistor NT 32 . That is, the drains of the second load transistor PT 32 and the second differential transistor NT 32 are commonly connected. The gates of the first load transistor PT 31 and the second load transistor PT 32 are commonly connected to form a current mirror circuit.
  • the node to which the drain of the second differential transistor NT 32 and the drain of the second load transistor PT 32 are connected is the output node N of the differential amplifier 60, and an output signal from the output node N is output. OUT is derived.
  • the sources of the first load transistor PT 31 and the second load transistor PT 32 are connected to the power supply line of the power supply voltage V DD .
  • the first capacitive element C 31 is connected between the input terminal of the ramp wave reference signal RAMP and the gate of the first differential transistor NT 31 . Then, the reference signal RAMP becomes one input of the differential amplifier 60 via the first capacitive element C 31 .
  • the second capacitive element C 32 is connected between the input terminal of the pixel signal VSL and the gate of the second differential transistor NT 32 . Then, the pixel signal VSL becomes the other input of the differential amplifier 60 via the second capacitive element C 32 .
  • the first switch transistor NT 33 is connected between the gate and the drain of the first differential transistor NT 31 .
  • the second switch transistor NT 34 is connected between the gate and the drain of the second differential transistor NT 32 . Then, the first switch transistor NT 33 and the second switch transistor NT 34 are ON (conductive)/OFF (non-conductive) controlled by the auto-zero signal AZ.
  • the auto-zero operation which is the initialization operation of the differential amplifier 60 is performed.
  • the auto-zero operation of the differential amplifier 60 is performed on both the input side of the reference signal RAMP of the ramp wave and the input side of the pixel signal VSL.
  • FIG. 8B A circuit diagram of a one-sided auto-zero type comparator is shown in FIG. 8B.
  • the one-sided auto-zero type comparator is the two-sided auto-zero type comparator shown in FIG. 8A, in which the first capacitive element C 31 and the first switch transistor NT 33 on the input side of the ramp wave reference signal RAMP are omitted.
  • the configuration other than is the same as the case of the double-sided auto-zero type.
  • the auto-zero operation of the differential amplifier 60 is performed only on one side of the input side of the pixel signal VSL. There is no problem with one-sided auto zero due to the circuit operation of the comparator.
  • the capacitive element occupies a large proportion. Therefore, in the case of the one-sided auto-zero type comparator, the circuit area can be reduced as compared with the two-sided auto-zero type comparator by the reduction of the first capacitive element C 31 .
  • a large number of analog-digital converters 140 including a comparator 141 are arranged corresponding to the pixel circuits 2. Therefore, the use of a one-sided auto-zero type comparator as the comparator 141 has a great effect of reducing the circuit scale of the analog-digital converter 140.
  • An explanatory view of the dynamic range of the comparator is shown in FIG.
  • the DC potential of the reference signal RAMP needs to be within the dynamic range of the comparator in FIG. 9, but the output voltage of the digital-analog converter 50A when the analog gain is changed is not constant. In this case, there is a possibility that the value may fall outside the lower limit range especially at high gain. This is a problem when using the digital-analog converter 50A according to the conventional example, and when the analog gain is changed, the output voltage of the digital-analog converter 50A (that is, the voltage of the reference signal of the ramp wave) is kept constant. That is why it is necessary.
  • the technology according to the present disclosure has been made to solve the above problems.
  • the analog signal output unit 51 is connected to the output node ND 51 , and the analog signal An initial potential control unit that controls the initial potential is provided. Then, the initial potential control unit controls the initial potential of the analog signal to be a constant potential regardless of the gain adjusted by the analog gain adjustment unit 52.
  • the digital-analog converter according to the present embodiment can be used as the analog-digital converter 140 of the analog-digital converter 14 in the above-described image pickup device (specifically, the CMOS image sensor 1). Accordingly, even if the comparator 141 of the analog-digital converter 140 is a one-sided auto-zero type comparator, it can be operated within the dynamic range of the comparator even if the analog gain is increased, so that a high-quality captured image can be obtained. You can
  • FIG. 10 is a circuit diagram showing an example of the configuration of the digital-analog conversion device according to the first embodiment of the present disclosure.
  • the digital-analog conversion device 50B includes an offset current source circuit that is an example of an initial potential control unit in addition to the analog signal output unit 51, the analog gain adjustment unit 52, the counter decoder 53, and the gain decoder 54. 55 and a manual offset decoder 56.
  • the analog signal output unit 51 and the analog gain adjustment unit 52 are the same as those in the case of the digital-analog conversion device 50A according to the conventional example shown in FIG.
  • the offset current source circuit 55 which is an example of the initial potential control unit, is connected to the output node ND 51 of the analog signal output unit 51 via the signal line S 1 and is controlled by the gain adjusted by the analog gain adjustment unit 52. Instead, the initial potential of the analog signal output from the output node ND 51 is controlled to be a constant potential.
  • the offset current source circuit 55 is configured to have a plurality of current source transistors CT 31 and the same number of switch transistors ST 31 .
  • the plurality of current source transistors CT 31 and the switch transistor ST 31 are P-channel MOS transistors, and are connected in series between the power supply line L 1 of the power supply voltage V DD and the output node ND 51 of the analog signal output unit 51. There is.
  • the offset current source circuit 55 further has a P-channel MOS transistor DP 31 and an N-channel MOS transistor DN 31 .
  • the P-channel MOS transistor DP 31 has a diode connection configuration in which a gate and a drain are commonly connected, and a current mirror circuit is formed by commonly connecting a plurality of current source transistors CT 31 and a gate. ing.
  • N-channel MOS transistor DN 31 is connected in series with the P-channel MOS transistor DP 31, and a gate receiving a reference current I ref of the analog gain adjustment unit 52.
  • the offset current source circuit 55 having the above configuration is externally applied based on the setting of the analog gain, and on/off-controls the plurality of switch transistors ST 31 according to the offset set value decoded by the manual offset decoder 56. .. As a result, a current flows from the current source transistor CT 31 to the output node ND 51 through the selected switch transistor ST 31 , and is supplied to the terminating resistor 514.
  • the offset current source circuit 55 which is an example of the initial potential control unit
  • the offset current corresponding to the correction current is manually set.
  • the output voltage of the digital-analog converter 50B as shown in FIG. 11 can be obtained.
  • R 0 is the resistance value of the parasitic wiring resistance 515
  • R 1 is the resistance value of the termination resistance 514.
  • the initial voltage of the output voltage of the digital-analog converter 50B when the analog gain is changed can be kept constant by the action of the offset current source circuit 55. ..
  • FIG. 12 is a circuit diagram showing an example of the configuration of the digital-analog conversion device according to the second embodiment of the present disclosure.
  • the digital-analog conversion device 50C includes a correction current amplification that is an example of an initial potential control unit in addition to the analog signal output unit 51, the analog gain adjustment unit 52, the counter decoder 53, and the gain decoder 54. It has a circuit 57.
  • the analog signal output unit 51 and the analog gain adjustment unit 52 are the same as those in the case of the digital-analog conversion device 50A according to the conventional example shown in FIG.
  • the correction current amplification circuit 57 is connected to the analog gain adjusting section 52 via the signal line L 4 and is connected to the output node ND 51 of the analog signal output section 51 via the signal line S 2 .
  • a correction current I corct that accurately compensates for the current fluctuation due to the change is generated.
  • the correction current amplifier circuit 57 supplies the generated correction current I corct to the output node ND 51 of the analog signal output unit 51 through the signal line S 2 .
  • the correction current I corct that accurately compensates for the amount of current fluctuation caused by changing the gain setting is added to the lamp output current I ramp of the analog signal output unit 51.
  • the total current consumption of the analog signal output unit 51 and the correction current amplification circuit 57 is kept constant regardless of the gain setting. Therefore, the current of the entire digital-analog converter 50C is kept constant regardless of the gain setting.
  • the correction current I corct is supplied to the output node ND 51 , is added to the lamp output current I ramp , and flows into the terminating resistor 514 having the resistance value R 1 .
  • the correction current I corct becomes 0, and the current flowing through the terminating resistor 514 becomes 2I.
  • the correction current I corct becomes 1. corct becomes I, and the current flowing through the terminating resistor 514 becomes 2I.
  • the correction current amplification circuit 57 has a configuration including a P-channel MOS transistor DP 41 as an IV conversion circuit, a P-channel MOS transistor PT 41 as a current source, and an output P-channel MOS transistor PT 42 .
  • the P-channel MOS transistor DP 41 is diode-connected and has the same function as the P-channel MOS transistor DP 21 of the analog gain adjusting section 52.
  • the P-channel MOS transistor PT 41 has the same function as the P-channel MOS transistor PT 11 as the current source of the basic current source cells 511 1 to 511 n of the analog signal output section 51.
  • the P-channel MOS transistor PT 42 has the same function as the P-channel MOS transistor PT 12 or PT 13 which is a differential transistor of the basic current source cells 511 1 to 511 n of the analog signal output section 51.
  • the number of parallel P-channel MOS transistors PT 41 and PT 42 is set in the same manner as the number n of the basic current source cells 511 1 to 511 n of the analog signal output section 51.
  • the P-channel MOS transistor DP 41 has a drain and a gate connected to the signal line L 5 , and a source connected to the power supply line L 1 of the power supply voltage V DD .
  • a bias voltage V bisa2 is applied to the gate of the P-channel MOS transistor DP 41 through the signal line L 5 .
  • the sources of the n P-channel MOS transistors PT 41 are connected to the power supply line L 1 of the power supply voltage V DD , and the drains are connected to the sources of the P-channel MOS transistors PT 41 .
  • the bias voltage V bisa2 is also applied to the gates of the n P-channel MOS transistors PT 41 , similarly to the P-channel MOS transistor DP 41 .
  • the gates of the n P-channel MOS transistors PT 42 are held at the ground potential and held in the ON state.
  • the drains of the n P-channel MOS transistors PT 42 are connected to the signal line S 2 for supplying the correction current I corct to the output node ND 51 of the analog signal output section 51.
  • the signal line S 2 of the correction current I corct is wired between the drains of the n P-channel MOS transistors PT 42 and the output node ND 51 of the analog signal output section 51.
  • a current mirror circuit is formed by the diode-connected P channel MOS transistor DP 41 and n P channel MOS transistors PT 41 .
  • the correction current amplification circuit 57 includes a P-channel MOS transistor DP 21 of the analog gain adjustment section 52 and a P-channel MOS transistor PT 11 as a current source of the basic current source cells 511 1 to 511 n of the analog signal output section 51. Current amplification is performed at the same ratio as the current mirror ratio of the formed current mirror circuit.
  • the correction current amplifier circuit 57 can keep the initial voltage of the output voltage of the digital-analog converter 50C constant when the analog gain is changed. Further, compared to the first embodiment, it is not necessary to manually adjust the offset current value, so that the usability for the user can be improved. Further, as compared with the first embodiment, since the non-selection side current I gain_minus and the offset current do not overlap each other, the power consumption can be reduced and the layout area can be saved .
  • the imaging device of the present disclosure described above can be used in various devices that sense light such as visible light, infrared light, ultraviolet light, and X-rays, as illustrated in FIG. 13, for example. Specific examples of various devices are listed below.
  • -A device that captures images used for viewing, such as a digital camera or a portable device with a camera function-For driving in front of a vehicle, for safe driving such as automatic stop, and recognition of the driver's condition
  • Devices used for traffic such as in-vehicle sensors that take images of the rear, surroundings, and inside the vehicle, surveillance cameras that monitor running vehicles and roads, ranging sensors that measure distances between vehicles, etc.
  • Devices used for home appliances such as TVs, refrigerators, and air conditioners in order to take images and operate the devices according to the gestures ⁇ Endoscopes, devices that take blood vessels by receiving infrared light, etc.
  • ⁇ Security devices such as security surveillance cameras and person authentication cameras
  • a device used for beauty such as a microscope
  • a device used for sports such as an action camera or wearable camera for sports purposes
  • a camera used for monitoring the condition of fields or crops Equipment used for agriculture
  • FIG. 14 is a block diagram illustrating a configuration example of an imaging system which is an example of the electronic device of the present disclosure.
  • an imaging system 100 includes an imaging optical system 101 including a lens group, an imaging unit 102, a DSP (Digital Signal Processor) circuit 103, a frame memory 104, a display device 105, and a recording device 106.
  • the DSP circuit 103, the frame memory 104, the display device 105, the recording device 106, the operation system 107, and the power supply system 108 are connected to each other via a bus line 109.
  • the imaging optical system 101 captures incident light (image light) from a subject and forms an image on the imaging surface of the imaging unit 102.
  • the imaging unit 102 converts the light amount of the incident light imaged on the imaging surface by the optical system 101 into an electric signal for each pixel and outputs the electric signal as a pixel signal.
  • the DSP circuit 103 performs general camera signal processing, such as white balance processing, demosaic processing, and gamma correction processing.
  • the frame memory 104 is used to appropriately store data in the process of signal processing in the DSP circuit 103.
  • the display device 105 includes a panel-type display device such as a liquid crystal display device and an organic EL (electroluminescence) display device, and displays a moving image or a still image captured by the image capturing unit 102.
  • the recording device 106 records the moving image or the still image captured by the image capturing unit 102 in a recording medium such as a portable semiconductor memory, an optical disc, or an HDD (Hard Disk Drive).
  • the operation system 107 issues operation commands for various functions of the imaging apparatus 100 under the operation of the user.
  • the power supply system 108 appropriately supplies various power supplies serving as operating power supplies of the DSP circuit 103, the frame memory 104, the display device 105, the recording device 106, and the operation system 107 to these supply targets.
  • an imaging device equipped with a digital-analog conversion device to which the technology according to the present disclosure is applied can be used as the imaging unit 102.
  • the initial voltage of the output voltage of the digital-analog conversion device when the analog gain is changed can be kept constant, so that a high-quality captured image is obtained. be able to.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure can be applied to any type of movement of an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, a robot, a construction machine, an agricultural machine (tractor), and the like. It may be realized as an image sensor mounted on the body.
  • FIG. 15 is a block diagram showing a schematic configuration example of a vehicle control system 7000 that is an example of a mobile body control system to which the technology according to the present disclosure can be applied.
  • the vehicle control system 7000 includes a plurality of electronic control units connected via a communication network 7010.
  • the vehicle control system 7000 includes a drive system control unit 7100, a body system control unit 7200, a battery control unit 7300, a vehicle exterior information detection unit 7400, a vehicle interior information detection unit 7500, and an integrated control unit 7600. ..
  • the communication network 7010 connecting these plural control units complies with any standard such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network) or FlexRay (registered trademark). It may be an in-vehicle communication network.
  • CAN Controller Area Network
  • LIN Local Interconnect Network
  • LAN Local Area Network
  • FlexRay registered trademark
  • Each control unit includes a microcomputer that performs arithmetic processing according to various programs, a storage unit that stores a program executed by the microcomputer or parameters used in various arithmetic operations, and a drive circuit that drives various controlled devices. Equipped with.
  • Each control unit is equipped with a network I/F for communicating with other control units via the communication network 7010, and also by wire communication or wireless communication with devices or sensors inside or outside the vehicle. A communication I/F for performing communication is provided. In FIG.
  • a microcomputer 7610 As the functional configuration of the integrated control unit 7600, a microcomputer 7610, a general-purpose communication I/F 7620, a dedicated communication I/F 7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle device I/F 7660, an audio image output unit 7670, An in-vehicle network I/F 7680 and a storage unit 7690 are illustrated.
  • the other control units also include a microcomputer, a communication I/F, a storage unit, and the like.
  • the drive system control unit 7100 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the drive system control unit 7100 includes a drive force generation device for generating a drive force of a vehicle such as an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to wheels, and a steering angle of the vehicle. It functions as a steering mechanism for adjusting and a control device such as a braking device for generating a braking force of the vehicle.
  • the drive system control unit 7100 may have a function as a control device such as ABS (Antilock Brake System) or ESC (Electronic Stability Control).
  • a vehicle state detection unit 7110 is connected to the drive system control unit 7100.
  • the vehicle state detection unit 7110 includes, for example, a gyro sensor that detects the angular velocity of the shaft rotational movement of the vehicle body, an acceleration sensor that detects the acceleration of the vehicle, an accelerator pedal operation amount, a brake pedal operation amount, or a steering wheel steering operation. At least one of sensors for detecting an angle, an engine speed, a wheel rotation speed, and the like is included.
  • the drive system control unit 7100 performs arithmetic processing using the signal input from the vehicle state detection unit 7110 to control the internal combustion engine, drive motor, electric power steering device, brake device, or the like.
  • the body system control unit 7200 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 7200 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a head lamp, a back lamp, a brake lamp, a winker, or a fog lamp.
  • the body system control unit 7200 may receive radio waves or signals of various switches transmitted from a portable device that substitutes for a key.
  • the body system control unit 7200 receives the input of these radio waves or signals and controls the vehicle door lock device, the power window device, the lamp, and the like.
  • the battery control unit 7300 controls the secondary battery 7310 that is the power supply source of the drive motor according to various programs. For example, to the battery control unit 7300, information such as the battery temperature, the battery output voltage, or the remaining capacity of the battery is input from the battery device including the secondary battery 7310. The battery control unit 7300 performs arithmetic processing using these signals to control the temperature adjustment of the secondary battery 7310 or the cooling device provided in the battery device.
  • the exterior information detection unit 7400 detects information outside the vehicle equipped with the vehicle control system 7000.
  • the image capturing unit 7410 and the vehicle exterior information detection unit 7420 is connected to the vehicle exterior information detection unit 7400.
  • the imaging unit 7410 includes at least one of a ToF (Time Of Flight) camera, a stereo camera, a monocular camera, an infrared camera, and other cameras.
  • the outside-vehicle information detection unit 7420 detects, for example, an environment sensor for detecting current weather or weather, or another vehicle around the vehicle equipped with the vehicle control system 7000, an obstacle, a pedestrian, or the like. At least one of the ambient information detection sensors of.
  • the environmental sensor may be, for example, at least one of a raindrop sensor that detects rainy weather, a fog sensor that detects fog, a sunshine sensor that detects the degree of sunshine, and a snow sensor that detects snowfall.
  • the ambient information detection sensor may be at least one of an ultrasonic sensor, a radar device, and a LIDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging) device.
  • the imaging unit 7410 and the vehicle exterior information detection unit 7420 may be provided as independent sensors or devices, or may be provided as a device in which a plurality of sensors or devices are integrated.
  • FIG. 16 shows an example of installation positions of the imaging unit 7410 and the vehicle exterior information detection unit 7420.
  • the imaging units 7910, 7912, 7914, 7916, 7918 are provided at at least one of the front nose of the vehicle 7900, the side mirrors, the rear bumper, the back door, and the upper part of the windshield inside the vehicle.
  • the image capturing unit 7910 provided on the front nose and the image capturing unit 7918 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 7900.
  • the imaging units 7912 and 7914 provided in the side mirrors mainly acquire images of the side of the vehicle 7900.
  • the imaging unit 7916 provided on the rear bumper or the back door mainly acquires an image of the rear of the vehicle 7900.
  • the imaging unit 7918 provided on the upper part of the windshield in the vehicle interior is mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic signal, a traffic sign, a lane, or the like.
  • FIG. 16 shows an example of the shooting ranges of the respective image pickup units 7910, 7912, 7914, 7916.
  • the imaging range a indicates the imaging range of the imaging unit 7910 provided on the front nose
  • the imaging ranges b and c indicate the imaging ranges of the imaging units 7912 and 7914 provided on the side mirrors
  • the imaging range d is The imaging range of the imaging part 7916 provided in the rear bumper or the back door is shown. For example, by overlaying the image data captured by the image capturing units 7910, 7912, 7914, and 7916, a bird's-eye view image of the vehicle 7900 viewed from above can be obtained.
  • the vehicle exterior information detection units 7920, 7922, 7924, 7926, 7928, 7930 provided on the front, rear, sides, corners of the vehicle 7900 and on the windshield inside the vehicle may be ultrasonic sensors or radar devices, for example.
  • the vehicle exterior information detection units 7920, 7926, 7930 provided on the front nose, rear bumper, back door, and upper windshield of the vehicle 7900 may be LIDAR devices, for example.
  • These vehicle exterior information detection units 7920 to 7930 are mainly used to detect a preceding vehicle, a pedestrian, an obstacle, or the like.
  • the vehicle exterior information detection unit 7400 causes the image capturing unit 7410 to capture an image of the vehicle exterior and receives the captured image data.
  • the vehicle exterior information detection unit 7400 receives detection information from the vehicle exterior information detection unit 7420 connected thereto.
  • the vehicle exterior information detection unit 7420 is an ultrasonic sensor, a radar device, or a LIDAR device
  • the vehicle exterior information detection unit 7400 transmits ultrasonic waves, electromagnetic waves, or the like, and receives information on the received reflected waves.
  • the vehicle exterior information detection unit 7400 may perform an object detection process or a distance detection process such as a person, a car, an obstacle, a sign, or characters on the road surface based on the received information.
  • the vehicle exterior information detection unit 7400 may perform environment recognition processing for recognizing rainfall, fog, road surface conditions, or the like based on the received information.
  • the vehicle exterior information detection unit 7400 may calculate the distance to an object outside the vehicle based on the received information.
  • the vehicle exterior information detection unit 7400 may also perform image recognition processing or distance detection processing for recognizing a person, a car, an obstacle, a sign, characters on the road surface, or the like based on the received image data.
  • the vehicle exterior information detection unit 7400 performs processing such as distortion correction or position adjustment on the received image data, combines the image data captured by different image capturing units 7410, and generates an overhead image or a panoramic image. Good.
  • the vehicle exterior information detection unit 7400 may perform viewpoint conversion processing using image data captured by different image capturing units 7410.
  • the in-vehicle information detection unit 7500 detects in-vehicle information.
  • the in-vehicle information detection unit 7500 is connected with, for example, a driver state detection unit 7510 that detects the state of the driver.
  • the driver state detecting unit 7510 may include a camera for capturing an image of the driver, a biometric sensor for detecting biometric information of the driver, a microphone for collecting voice in the vehicle interior, or the like.
  • the biometric sensor is provided on, for example, a seat surface or a steering wheel, and detects biometric information of an occupant sitting on a seat or a driver who holds the steering wheel.
  • the in-vehicle information detection unit 7500 may calculate the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 7510, or determine whether the driver is asleep. You may.
  • the in-vehicle information detection unit 7500 may perform processing such as noise canceling processing on the collected audio signal.
  • the integrated control unit 7600 controls overall operations in the vehicle control system 7000 according to various programs.
  • An input unit 7800 is connected to the integrated control unit 7600.
  • the input unit 7800 is realized by a device that can be input and operated by a passenger, such as a touch panel, a button, a microphone, a switch or a lever. Data obtained by voice recognition of voice input by a microphone may be input to the integrated control unit 7600.
  • the input unit 7800 may be, for example, a remote control device that uses infrared rays or other radio waves, or may be an external connection device such as a mobile phone or a PDA (Personal Digital Assistant) that supports the operation of the vehicle control system 7000. May be.
  • the input unit 7800 may be, for example, a camera, in which case the passenger can input information by gesture. Alternatively, data obtained by detecting the movement of the wearable device worn by the passenger may be input. Furthermore, the input unit 7800 may include, for example, an input control circuit that generates an input signal based on information input by a passenger or the like using the input unit 7800 and outputs the input signal to the integrated control unit 7600. A passenger or the like operates the input unit 7800 to input various data or instruct a processing operation to the vehicle control system 7000.
  • the storage unit 7690 may include a ROM (Read Only Memory) that stores various programs executed by the microcomputer, and a RAM (Random Access Memory) that stores various parameters, calculation results, sensor values, and the like.
  • the storage unit 7690 may be realized by a magnetic storage device such as an HDD (Hard Disc Drive), a semiconductor storage device, an optical storage device, a magneto-optical storage device, or the like.
  • the general-purpose communication I/F 7620 is a general-purpose communication I/F that mediates communication with various devices existing in the external environment 7750.
  • the general-purpose communication I/F 7620 is a cellular communication protocol such as GSM (registered trademark) (Global System of Mobile communications), WiMAX, LTE (Long Term Evolution) or LTE-A (LTE-Advanced), or a wireless LAN (Wi-Fi). (Also referred to as a registered trademark), Bluetooth (registered trademark), and other wireless communication protocols may be implemented.
  • the general-purpose communication I/F 7620 is connected to a device (for example, an application server or a control server) existing on an external network (for example, the Internet, a cloud network or a network unique to a business operator) via a base station or an access point, for example. You may.
  • the general-purpose communication I/F 7620 uses, for example, P2P (Peer To Peer) technology, and is a terminal existing in the vicinity of the vehicle (for example, a driver, a pedestrian or a shop terminal, or an MTC (Machine Type Communication) terminal). May be connected with.
  • P2P Peer To Peer
  • MTC Machine Type Communication
  • the dedicated communication I/F 7630 is a communication I/F that supports a communication protocol formulated for use in a vehicle.
  • the dedicated communication I/F 7630 uses a standard protocol such as WAVE (Wireless Access in Vehicle Environment), DSRC (Dedicated Short Range Communications), or a cellular communication protocol, which is a combination of a lower layer IEEE 802.11p and an upper layer IEEE 1609, for example. May be implemented.
  • the dedicated communication I/F 7630 is typically a vehicle-to-vehicle communication, a vehicle-to-infrastructure communication, a vehicle-to-home communication, and a vehicle-to-pedestrian communication. ) Perform V2X communications, a concept that includes one or more of the communications.
  • the positioning unit 7640 receives, for example, a GNSS signal from a GNSS (Global Navigation Satellite System) satellite (for example, a GPS signal from a GPS (Global Positioning System) satellite) to perform positioning, and the latitude, longitude, and altitude of the vehicle. Generate position information including.
  • the positioning unit 7640 may specify the current position by exchanging a signal with the wireless access point, or may acquire the position information from a terminal having a positioning function, such as a mobile phone, PHS, or smartphone.
  • the beacon receiving unit 7650 receives, for example, a radio wave or an electromagnetic wave transmitted from a wireless station or the like installed on the road, and acquires information such as the current position, traffic jam, traffic closure, or required time.
  • the function of the beacon receiving unit 7650 may be included in the dedicated communication I/F 7630 described above.
  • the in-vehicle device I/F 7660 is a communication interface that mediates a connection between the microcomputer 7610 and various in-vehicle devices 7760 existing in the vehicle.
  • the in-vehicle device I/F 7660 may establish a wireless connection using a wireless communication protocol such as wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication) or WUSB (Wireless USB).
  • a wireless communication protocol such as wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication) or WUSB (Wireless USB).
  • the in-vehicle device I/F 7660 is connected to a USB (Universal Serial Bus), HDMI (registered trademark) (High-Definition Multimedia Interface), or MHL (Mobile) via a connection terminal (and a cable if necessary) not shown.
  • Wired connection such as High-definition Link
  • the in-vehicle device 7760 may include, for example, at least one of a mobile device or a wearable device that the passenger has, or an information device that is carried in or attached to the vehicle.
  • the in-vehicle device 7760 may include a navigation device that searches for a route to an arbitrary destination.
  • the in-vehicle device I/F 7660 exchanges control signals or data signals with these in-vehicle devices 7760.
  • the in-vehicle network I/F 7680 is an interface that mediates communication between the microcomputer 7610 and the communication network 7010.
  • the in-vehicle network I/F 7680 transmits and receives signals and the like according to a predetermined protocol supported by the communication network 7010.
  • the microcomputer 7610 of the integrated control unit 7600 passes through at least one of the general-purpose communication I/F 7620, the dedicated communication I/F 7630, the positioning unit 7640, the beacon receiving unit 7650, the in-vehicle device I/F 7660, and the in-vehicle network I/F 7680.
  • the vehicle control system 7000 is controlled according to various programs based on the information acquired by the above. For example, the microcomputer 7610 calculates a control target value of the driving force generation device, the steering mechanism or the braking device based on the acquired information on the inside and outside of the vehicle, and outputs a control command to the drive system control unit 7100. Good.
  • the microcomputer 7610 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or impact mitigation of a vehicle, follow-up traveling based on an inter-vehicle distance, vehicle speed maintenance traveling, vehicle collision warning, vehicle lane departure warning, etc. You may perform the coordinated control aiming at.
  • the microcomputer 7610 controls the driving force generation device, the steering mechanism, the braking device, and the like based on the acquired information about the surroundings of the vehicle, so that the microcomputer 7610 automatically travels independently of the driver's operation. You may perform cooperative control for the purpose of driving etc.
  • ADAS Advanced Driver Assistance System
  • a general-purpose communication I/F 7620 a dedicated communication I/F 7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle device I/F 7660, and an in-vehicle network I/F 7680.
  • the microcomputer 7610 may generate a warning signal by predicting a danger such as a vehicle collision, a pedestrian or the like approaching a road or a closed road, based on the acquired information.
  • the warning signal may be, for example, a signal for generating a warning sound or lighting a warning lamp.
  • the voice image output unit 7670 transmits an output signal of at least one of a voice and an image to an output device capable of visually or audibly notifying information to a passenger of the vehicle or the outside of the vehicle.
  • an audio speaker 7710, a display unit 7720, and an instrument panel 7730 are illustrated as output devices.
  • the display unit 7720 may include at least one of an onboard display and a head-up display, for example.
  • the display unit 7720 may have an AR (Augmented Reality) display function.
  • the output device may be a device other than these devices, such as headphones, a wearable device such as a glasses-type display worn by a passenger, a projector, or a lamp.
  • the output device When the output device is a display device, the display device displays results obtained by various processes performed by the microcomputer 7610 or information received from another control unit in various formats such as text, images, tables, and graphs. Display it visually.
  • the output device is an audio output device, the audio output device converts an audio signal composed of reproduced audio data, acoustic data, or the like into an analog signal and outputs it audibly.
  • At least two control units connected via the communication network 7010 may be integrated as one control unit.
  • each control unit may be composed of a plurality of control units.
  • the vehicle control system 7000 may include another control unit not shown.
  • some or all of the functions of one of the control units may be given to another control unit. That is, if the information is transmitted and received via the communication network 7010, the predetermined arithmetic processing may be performed by any of the control units.
  • a sensor or device connected to one of the control units may be connected to another control unit, and a plurality of control units may send and receive detection information to and from each other via the communication network 7010. .
  • the technology according to the present disclosure can be applied to, for example, the imaging units 7910, 7912, 7914, 7916, 7918 and the vehicle exterior information detection units 7920, 7922, 7924, 7926, 7928, 7930 among the configurations described above. Then, by using the image pickup device equipped with the digital-analog converter to which the technology according to the present disclosure is applied as the image pickup unit or the vehicle exterior information detection unit, for example, a high-quality picked-up image is acquired as the information of the image pickup target.
  • a possible vehicle control system can be constructed.
  • An analog signal output section that outputs an analog signal according to the value of the digital input signal, An analog gain adjusting section for adjusting the gain of the analog signal, and An initial potential control unit that is connected to the output node of the analog signal output unit and controls the initial potential of the analog signal is provided.
  • the initial potential control unit controls the initial potential of the analog signal to a constant potential regardless of the gain adjusted by the analog gain adjustment unit, Digital-analog converter.
  • the analog signal output section receives the gain control signal for adjusting the analog gain, generates an output current according to the value of the digital input signal, and performs current-voltage conversion on the generated output current.
  • the digital-analog converter As analog signal, The digital-analog converter according to the above [A-1].
  • the analog gain adjusting section generates a gain current and a non-selection side current according to the value of the digital gain control signal, and outputs a voltage signal obtained by current-voltage converting the gain current to the analog signal output section. Supply as, The digital-analog converter according to the above [A-2].
  • the initial potential control unit has a plurality of current sources, and supplies a current from the current source corresponding to the offset setting value based on the setting of the analog gain to the output node of the analog signal output unit, Control the initial potential of the analog signal to a constant potential, The digital-analog converter according to the above [A-3].
  • the initial potential control unit controls the initial potential of the analog signal to a constant potential by supplying a correction current based on the non-selected side current to the output node of the analog signal output unit.
  • the digital-analog converter according to the above [A-3].
  • a pixel array section having a pixel circuit including a photoelectric conversion element, An analog-to-digital converter having a plurality of analog-to-digital converters for converting an analog pixel signal output from each pixel circuit of the pixel array section into a digital signal, and A reference signal generation unit that generates a ramp wave reference signal and supplies the reference signal to the analog-digital conversion unit;
  • the reference signal generation unit includes a digital-analog conversion device,
  • the digital-analog converter is An analog signal output section that outputs an analog signal according to the value of the digital input signal, An analog gain adjusting section for adjusting the gain of the analog signal, and An initial potential control unit that is connected to the output node of the analog signal output unit and controls the initial potential of the analog signal is provided.
  • the initial potential control unit controls the initial potential of the analog signal to a constant potential regardless of the gain adjusted by the analog gain adjustment unit, Imaging device.
  • the analog signal output unit receives the gain control signal for adjusting the analog gain, generates an output current according to the value of the digital input signal, and performs current-voltage conversion on the generated output current. Output voltage signal as analog signal, The imaging device according to the above [B-1].
  • the analog gain adjusting section generates a gain current and a non-selection side current according to the value of the digital gain control signal, and a voltage signal obtained by current-voltage converting the gain current is sent to the analog signal output section. Supply as, The imaging device according to the above [B-2].
  • the initial potential control unit has a plurality of current sources and supplies a current to the output node of the analog signal output unit from the current source corresponding to the offset setting value based on the setting of the analog gain, Control the initial potential of the analog signal to a constant potential, The imaging device according to the above [B-3].
  • the initial potential control unit controls the initial potential of the analog signal to a constant potential by supplying a correction current based on the non-selected side current to the output node of the analog signal output unit. The imaging device according to the above [B-3].
  • the analog-digital converter has a comparator that has two inputs, the analog pixel signal output from the pixel circuit and the reference signal of the ramp wave supplied from the reference signal generation unit, The comparator is initialized only on the input side of the analog pixel signal, The imaging device according to any one of [B-1] to [B-5].
  • An analog-digital converter is provided corresponding to each pixel circuit of the pixel array section, The imaging device according to the above [B-6].
  • [B-8] A first semiconductor chip in which each pixel circuit of the pixel array section is formed, and a second semiconductor chip in which an analog-digital converter is formed corresponding to each pixel circuit of the pixel array section A stacked semiconductor chip structure in which at least two semiconductor chips are stacked, The imaging device according to the above [B-7].
  • a pixel array section having a pixel circuit including a photoelectric conversion element, An analog-to-digital converter having a plurality of analog-to-digital converters for converting an analog pixel signal output from each pixel circuit of the pixel array section into a digital signal, and A reference signal generation unit that generates a ramp wave reference signal and supplies the reference signal to the analog-digital conversion unit;
  • the reference signal generation unit includes a digital-analog conversion device,
  • the digital-analog converter is An analog signal output section that outputs an analog signal according to the value of the digital input signal, An analog gain adjusting section for adjusting the gain of the analog signal, and An initial potential control unit that is connected to the output node of the analog signal output unit and controls the initial potential of the analog signal is provided.
  • the initial potential control unit controls the initial potential of the analog signal to a constant potential regardless of the gain adjusted by the analog gain adjustment unit, An electronic device having an imaging device.
  • the analog signal output unit receives the gain control signal for adjusting the analog gain, generates an output current according to the value of the digital input signal, and performs current-voltage conversion on the generated output current. Output voltage signal as analog signal, The electronic device according to the above [C-1].
  • the analog gain adjustment unit generates a gain current and a non-selected side current according to the value of the digital gain control signal, and a voltage signal obtained by current-voltage converting the gain current is sent to the analog signal output unit. Supply as, The electronic device according to the above [C-2].
  • the initial potential control unit has a plurality of current sources, and supplies a current from the current source corresponding to the offset setting value based on the setting of the analog gain to the output node of the analog signal output unit, Control the initial potential of the analog signal to a constant potential, The electronic device according to the above [C-3].
  • the initial potential control unit controls the initial potential of the analog signal to a constant potential by supplying a correction current based on the non-selected side current to the output node of the analog signal output unit. The electronic device according to the above [C-3].
  • the analog-digital converter has a comparator that has two inputs, the analog pixel signal output from the pixel circuit and the ramp wave reference signal supplied from the reference signal generation unit, The comparator is initialized only on the input side of the analog pixel signal, The electronic device according to any one of [C-1] to [C-5].
  • An analog-digital converter is provided corresponding to each pixel circuit of the pixel array section, The electronic device according to [C-6].
  • [C-8] A first semiconductor chip in which each pixel circuit of the pixel array section is formed, and a second semiconductor chip in which an analog-digital converter is formed corresponding to each pixel circuit of the pixel array section A stacked semiconductor chip structure in which at least two semiconductor chips are stacked, The electronic device according to [C-7].
  • Digital-analog converter according to the first embodiment, 50C ... Digital-analog converter according to the second embodiment, 51... Analog signal output section, 52... Analog gain adjusting section, 53... -Counter decoder, 54... Gain decoder, 55... Offset current source circuit, 56... Manual offset decoder, 57... Correction current amplification circuit, 140... Single slope type analog-digital converter , 141... Comparator, 142... Counter circuit, 143... Latch circuit

Abstract

A digital-analog conversion device of the present disclosure comprises: an analog signal output unit that outputs an analog signal according to a value of a digital input signal; an analog gain adjustment unit that adjusts the gain of the analog signal; and an initial potential control unit that is connected to an output node of the analog signal output unit and controls the initial potential of the analog signal. The initial potential control unit controls the initial potential of the analog signal to a certain potential regardless of the gain adjusted by the analog gain adjustment unit.

Description

デジタル-アナログ変換装置、撮像装置、及び、電子機器Digital-analog conversion device, imaging device, and electronic device
 本開示は、デジタル-アナログ変換装置、撮像装置、及び、電子機器に関する。 The present disclosure relates to a digital-analog conversion device, an imaging device, and an electronic device.
 撮像装置では、画素(画素回路)から出力されるアナログの画素信号をデジタル信号に変換するアナログ-デジタル変換器として、例えば、シングルスロープ型アナログ-デジタル変換器が用いられている。シングルスロープ型アナログ-デジタル変換器では、時間経過に応じてレベル(電圧)が単調減少する、所謂、ランプ(RAMP)波の参照信号が、アナログ-デジタル変換の際の基準信号として用いられる。そして、ランプ波の参照信号を生成する参照信号生成部として、デジタル-アナログ変換装置(DAC;Digital Analog Converter)が用いられている(例えば、特許文献1参照)。特許文献1には、電流制御型のデジタル-アナログ変換装置が記載されている。 In imaging devices, for example, a single-slope analog-digital converter is used as an analog-digital converter that converts an analog pixel signal output from a pixel (pixel circuit) into a digital signal. In the single-slope analog-digital converter, a so-called ramp (RAMP) wave reference signal whose level (voltage) monotonically decreases with time is used as a reference signal in analog-digital conversion. A digital-analog converter (DAC; Digital Analog Converter) is used as a reference signal generation unit that generates a ramp wave reference signal (see, for example, Patent Document 1). Patent Document 1 describes a current control type digital-analog conversion device.
特開2007-59991号公報JP, 2007-59991, A
 特許文献1に記載のデジタル-アナログ変換装置では、アナログゲイン(アナログ-デジタル変換を行うときのゲイン)の変更時に、回路中のゲイン電流Igainが変わる。これに伴い、ゲイン電流Igainをカレントミラーにより受けた後段のアンプ出力電流も同様に変化する。この結果、デジタル-アナログ変換装置の出力ノードでの出力電圧のDC電位が変動するため、アナログゲイン変更時のデジタル-アナログ変換装置の出力電圧の初期電圧を一定に保つことができない。 In the digital-analog conversion device described in Patent Document 1, the gain current I gain in the circuit changes when the analog gain (gain when performing analog-digital conversion) is changed. Along with this, the amplifier output current in the subsequent stage, which receives the gain current I gain by the current mirror, also changes. As a result, since the DC potential of the output voltage at the output node of the digital-analog converter changes, the initial voltage of the output voltage of the digital-analog converter at the time of changing the analog gain cannot be kept constant.
 そこで、本開示は、アナログゲイン変更時のデジタル-アナログ変換装置の出力電圧の初期電圧を一定に保つことができるデジタル-アナログ変換装置、当該デジタル-アナログ変換装置を備えた撮像装置、及び、当該撮像装置を有する電子機器を提供することを目的とする。 Therefore, the present disclosure is directed to a digital-analog conversion device capable of maintaining a constant initial voltage of the output voltage of the digital-analog conversion device when an analog gain is changed, an imaging device including the digital-analog conversion device, and An object is to provide an electronic device including an imaging device.
 上記の目的を達成するための本開示のデジタル-アナログ変換装置(以下、「DA変換装置」と記述する場合がある)は、
デジタル入力信号の値に応じたアナログ信号を出力するアナログ信号出力部、
 アナログ信号のゲインを調整するアナログゲイン調整部、及び、
 アナログ信号出力部の出力ノードに接続され、アナログ信号の初期電位を制御する初期電位制御部を備えている。そして、
 初期電位制御部は、アナログゲイン調整部によって調整されるゲインによらず、アナログ信号の初期電位を一定電位に制御する。
A digital-analog conversion device of the present disclosure (hereinafter, sometimes referred to as a “DA conversion device”) for achieving the above object is
An analog signal output section that outputs an analog signal according to the value of the digital input signal,
An analog gain adjusting section for adjusting the gain of the analog signal, and
An initial potential control unit that is connected to the output node of the analog signal output unit and controls the initial potential of the analog signal is provided. And
The initial potential control unit controls the initial potential of the analog signal to a constant potential regardless of the gain adjusted by the analog gain adjustment unit.
 上記の目的を達成するための本開示の撮像装置は、
光電変換素子を含む画素回路を有する画素アレイ部、
 画素アレイ部の各画素回路から出力されるアナログ画素信号をデジタル信号に変換する複数のアナログ-デジタル変換器を有するアナログ-デジタル変換部、及び、
 ランプ波の参照信号を生成し、アナログ-デジタル変換部に供給する参照信号生成部を有し、
 参照信号生成部は、デジタル-アナログ変換装置から成る。
 デジタル-アナログ変換装置は、
 デジタル入力信号の値に応じたアナログ信号を出力するアナログ信号出力部、
 アナログ信号のゲインを調整するアナログゲイン調整部、及び、
 アナログ信号出力部の出力ノードに接続され、アナログ信号の初期電位を制御する初期電位制御部を備えている。そして、
 初期電位制御部は、アナログゲイン調整部によって調整されるゲインによらず、アナログ信号の初期電位を一定電位に制御する。
 また、上記の目的を達成するための本開示の電子機器は、上記の構成の撮像装置を有する。
An imaging device of the present disclosure for achieving the above object is
A pixel array section having a pixel circuit including a photoelectric conversion element,
An analog-to-digital converter having a plurality of analog-to-digital converters for converting an analog pixel signal output from each pixel circuit of the pixel array section into a digital signal, and
A reference signal generation unit that generates a ramp wave reference signal and supplies the reference signal to the analog-digital conversion unit;
The reference signal generation unit includes a digital-analog conversion device.
The digital-analog converter is
An analog signal output section that outputs an analog signal according to the value of the digital input signal,
An analog gain adjusting section for adjusting the gain of the analog signal, and
An initial potential control unit that is connected to the output node of the analog signal output unit and controls the initial potential of the analog signal is provided. And
The initial potential control unit controls the initial potential of the analog signal to a constant potential regardless of the gain adjusted by the analog gain adjustment unit.
Further, an electronic device of the present disclosure for achieving the above object includes the image pickup apparatus having the above configuration.
図1は、本開示の撮像装置の一例であるCMOSイメージセンサの基本的な構成の概略を示すブロック図である。FIG. 1 is a block diagram showing an outline of a basic configuration of a CMOS image sensor which is an example of the image pickup apparatus of the present disclosure. 図2は、画素回路の回路構成の一例を示す回路図である。FIG. 2 is a circuit diagram showing an example of the circuit configuration of the pixel circuit. 図3は、CMOSイメージセンサに搭載される列並列アナログ-デジタル変換部の構成の一例を示すブロック図である。FIG. 3 is a block diagram showing an example of the configuration of a column parallel analog-digital conversion unit mounted on the CMOS image sensor. 図4は、CMOSイメージセンサの平置型のチップ構造の概略を示す平面図である。FIG. 4 is a plan view showing an outline of a flat-type chip structure of a CMOS image sensor. 図5は、CMOSイメージセンサの積層型の半導体チップ構造の概略を示す分解斜視図である。FIG. 5 is an exploded perspective view showing an outline of a stacked semiconductor chip structure of a CMOS image sensor. 図6は、従来例に係るデジタル-アナログ変換装置の構成の一例を示す回路図である。FIG. 6 is a circuit diagram showing an example of the configuration of a digital-analog converter according to a conventional example. 図7は、アナログゲインの変更時におけるランプ波出力電圧のDC電位の変動についての説明図である。FIG. 7 is an explanatory diagram of fluctuations in the DC potential of the ramp wave output voltage when the analog gain is changed. 図8Aは、両側オートゼロタイプのコンパレータを示す回路図であり、図8Bは、片側オートゼロタイプのコンパレータを示す回路図である。FIG. 8A is a circuit diagram showing a double-sided auto-zero type comparator, and FIG. 8B is a circuit diagram showing a single-sided auto-zero type comparator. 図9は、コンパレータのダイナミックレンジについての説明図である。FIG. 9 is an explanatory diagram of the dynamic range of the comparator. 図10は、本開示の実施例1に係るデジタル-アナログ変換装置の構成の一例を示す回路図である。FIG. 10 is a circuit diagram showing an example of the configuration of the digital-analog conversion device according to the first embodiment of the present disclosure. 図11は、本開示の実施例1に係るデジタル-アナログ変換装置の出力電圧を示す波形図である。FIG. 11 is a waveform diagram showing the output voltage of the digital-analog conversion device according to the first embodiment of the present disclosure. 図12は、本開示の実施例2に係るデジタル-アナログ変換装置の構成の一例を示す回路図である。FIG. 12 is a circuit diagram showing an example of the configuration of the digital-analog conversion device according to the second embodiment of the present disclosure. 図13は、本開示に係る技術の適用例を示す図である。FIG. 13 is a diagram illustrating an application example of the technology according to the present disclosure. 図14は、本開示の電子機器の一例である撮像システムの構成例の概略を示すブロック図である。FIG. 14 is a block diagram showing an outline of a configuration example of an imaging system which is an example of the electronic device of the present disclosure. 図15は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。FIG. 15 is a block diagram showing a schematic configuration example of a vehicle control system that is an example of a mobile body control system to which the technology according to the present disclosure can be applied. 図16は、移動体制御システムにおける撮像部及び車外情報検出部の設置位置の設置位置の例を示す図である。FIG. 16 is a diagram illustrating an example of installation positions of the imaging unit and the vehicle exterior information detection unit in the mobile control system.
 以下、本開示に係る技術を実施するための形態(以下、「実施形態」と記述する)について図面を用いて詳細に説明する。本開示に係る技術は実施形態に限定されるものではなく、実施形態における種々の数値などは例示である。以下の説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。尚、説明は以下の順序で行う。
 1.本開示のデジタル-アナログ変換装置、撮像装置、及び、電子機器、全般に関する説明
 2.本開示の撮像装置
  2-1.CMOSイメージセンサの構成例
  2-2.画素回路の構成例
  2-3.アナログ-デジタル変換部の構成例
  2-4.半導体チップ構造
   2-4-1.平置型の半導体チップ構造
   2-4-2.積層型の半導体チップ構造
 3.本開示のデジタル-アナログ変換装置
  3-1.従来例
  3-2.実施例1(オフセット電流源回路を用いる例)
  3-3.実施例2(補正用電流増幅回路を用いる例)
 4.変形例
 5.応用例
 6.本開示に係る技術の適用例
  6-1.本開示の電子機器(撮像装置の例)
  6-2.移動体への応用例
 7.本開示がとることができる構成
Hereinafter, modes for carrying out the technology according to the present disclosure (hereinafter, referred to as “embodiments”) will be described in detail with reference to the drawings. The technology according to the present disclosure is not limited to the embodiment, and various numerical values in the embodiment are examples. In the following description, the same elements or elements having the same function will be denoted by the same reference symbols, without redundant description. The description will be given in the following order.
1. 1. Description of digital-analog conversion device, imaging device, and electronic device according to the present disclosure Imaging device of the present disclosure 2-1. Configuration example of CMOS image sensor 2-2. Configuration example of pixel circuit 2-3. Configuration example of analog-digital conversion unit 2-4. Semiconductor chip structure 2-4-1. Flat type semiconductor chip structure 2-4-2. Stacked semiconductor chip structure 3. Digital-analog conversion device of the present disclosure 3-1. Conventional example 3-2. Example 1 (example using offset current source circuit)
3-3. Example 2 (example using a correction current amplifier circuit)
4. Modification 5. Application example 6. Application example of technology according to the present disclosure 6-1. Electronic device of the present disclosure (example of imaging device)
6-2. Application example to mobile unit 7. Configurations that the present disclosure can take
<本開示のDA変換装置、撮像装置、及び、電子機器、全般に関する説明>
 本開示のDA変換装置、撮像装置、及び、電子機器にあっては、アナログ信号出力部について、アナログゲインを調整するためのゲイン制御信号を受けて、デジタル入力信号の値に応じた出力電流を生成し、この生成した出力電流を電流-電圧変換した電圧信号をアナログ信号として出力する構成とすることができる。
<Description of DA Converter, Imaging Device, and Electronic Device of the Present Disclosure>
In the DA converter, the imaging device, and the electronic device of the present disclosure, the analog signal output unit receives the gain control signal for adjusting the analog gain and outputs the output current according to the value of the digital input signal. A voltage signal generated by current-voltage converting the generated output current may be output as an analog signal.
 また、上述した好ましい構成を含む本開示のDA変換装置、撮像装置、及び、電子機器にあっては、アナログゲイン調整部について、デジタルゲイン制御信号の値に応じたゲイン電流及び非選択側電流を生成し、ゲイン電流を電流-電圧変換した電圧信号をアナログ信号出力部にゲイン制御信号として供給する構成とすることができる。 Further, in the DA converter, the imaging device, and the electronic device of the present disclosure including the above-described preferable configuration, the gain current and the non-selection side current according to the value of the digital gain control signal are supplied to the analog gain adjusting section. A voltage signal generated and current-voltage converted from the gain current may be supplied to the analog signal output unit as a gain control signal.
 また、上述した好ましい構成を含む本開示のDA変換装置、撮像装置、及び、電子機器にあっては、初期電位制御部について、複数の電流源を有し、アナログゲインの設定に基づくオフセット設定値に対応した電流源から、アナログ信号出力部の出力ノードに電流を供給することで、アナログ信号の初期電位を一定電位に制御する構成とすることができる。 Further, in the DA conversion device, the imaging device, and the electronic device of the present disclosure including the above-described preferable configuration, the initial potential control unit has a plurality of current sources, and the offset setting value based on the setting of the analog gain. By supplying a current from the current source corresponding to the above to the output node of the analog signal output section, the initial potential of the analog signal can be controlled to a constant potential.
 また、上述した好ましい構成を含む本開示のDA変換装置、撮像装置、及び、電子機器にあっては、初期電位制御部について、非選択側電流に基づく補正電流を、アナログ信号出力部の出力ノードに電流を供給することで、アナログ信号の初期電位を一定電位に制御する構成とすることができる。 Further, in the DA converter, the imaging device, and the electronic device of the present disclosure including the above-described preferable configuration, the correction current based on the non-selected side current is output to the output node of the analog signal output unit in the initial potential control unit. By supplying a current to, the initial potential of the analog signal can be controlled to a constant potential.
 また、上述した好ましい構成を含む本開示の撮像装置、及び、電子機器にあっては、アナログ-デジタル変換器について、画素回路から出力されるアナログ画素信号、及び、参照信号生成部から供給されるランプ波の参照信号を2入力とするコンパレータを有する構成とすることができる。そして、コンパレータについて、アナログ画素信号の入力側のみで初期化動作が行われる構成とすることができる。また、アナログ-デジタル変換器について、画素アレイ部の各画素回路のそれぞれに対応して設けられている構成とすることが好ましい。 Further, in the image pickup apparatus and the electronic apparatus of the present disclosure including the above-described preferable configuration, the analog-digital converter is supplied from the analog pixel signal output from the pixel circuit and the reference signal generation unit. A configuration having a comparator having two inputs of the ramp wave reference signal can be adopted. Then, the comparator can be configured such that the initialization operation is performed only on the input side of the analog pixel signal. Further, it is preferable that the analog-digital converter is provided corresponding to each pixel circuit of the pixel array section.
 また、上述した好ましい構成を含む本開示の撮像装置、及び、電子機器にあっては、画素アレイ部の各画素回路が形成された第1半導体チップ、及び、画素アレイ部の各画素回路のそれぞれに対応してアナログ-デジタル変換器が形成された第2半導体チップの少なくとも2つの半導体チップが積層された積層型の半導体チップ構造を有する構成とすることができる。 In addition, in the imaging device and the electronic device of the present disclosure including the above-described preferable configuration, each of the first semiconductor chip in which each pixel circuit of the pixel array section is formed and each pixel circuit of the pixel array section It is possible to adopt a configuration having a laminated semiconductor chip structure in which at least two semiconductor chips of the second semiconductor chip in which the analog-digital converter is formed corresponding to the above are laminated.
<本開示の撮像装置>
 先ず、本開示に係る技術が適用されるDA変換装置を備える撮像装置(即ち、本開示の撮像装置)の基本的な構成について説明する。ここでは、撮像装置として、X-Yアドレス方式の撮像装置の一種であるCMOS(Complementary Metal Oxide Semiconductor)イメージセンサを例に挙げて説明する。CMOSイメージセンサは、CMOSプロセスを応用して、又は、部分的に使用して作製されたイメージセンサである。
<Imaging Device of the Present Disclosure>
First, a basic configuration of an imaging device (that is, an imaging device according to the present disclosure) including a DA conversion device to which the technology according to the present disclosure is applied will be described. Here, a CMOS (Complementary Metal Oxide Semiconductor) image sensor, which is a type of an XY addressing type image pickup device, will be described as an example of the image pickup device. The CMOS image sensor is an image sensor manufactured by applying a CMOS process or partially using it.
[CMOSイメージセンサの構成例]
 図1は、本開示の撮像装置の一例であるCMOSイメージセンサの基本的な構成の概略を示すブロック図である。
[Configuration example of CMOS image sensor]
FIG. 1 is a block diagram showing an outline of a basic configuration of a CMOS image sensor which is an example of the image pickup apparatus of the present disclosure.
 本例に係るCMOSイメージセンサ1は、画素アレイ部11及び当該画素アレイ部11の周辺回路部を有する構成となっている。画素アレイ部11は、受光部(光電変換部)を含む画素回路(画素)2が行方向及び列方向に、即ち、行列状に2次元配置されて成る。ここで、行方向とは、画素行の画素回路2の配列方向(所謂、水平方向)を言い、列方向とは、画素列の画素回路2の配列方向(所謂、垂直方向)を言う。画素回路2は、光電変換を行うことにより、受光した光量に応じた光電荷を生成し、蓄積する。 The CMOS image sensor 1 according to this example is configured to include a pixel array section 11 and a peripheral circuit section of the pixel array section 11. The pixel array unit 11 includes pixel circuits (pixels) 2 including a light receiving unit (photoelectric conversion unit) arranged two-dimensionally in the row direction and the column direction, that is, in a matrix. Here, the row direction means the arrangement direction of the pixel circuits 2 in the pixel row (so-called horizontal direction), and the column direction means the arrangement direction of the pixel circuits 2 in the pixel column (so-called vertical direction). The pixel circuit 2 performs photoelectric conversion to generate and accumulate photocharges according to the amount of received light.
 画素アレイ部11の周辺回路部は、例えば、行選択部12、定電流源部13、アナログ-デジタル変換部14、参照信号生成部15、水平転送走査部16、信号処理部17、及び、タイミング制御部18等によって構成されている。そして、参照信号生成部15として、本開示に係る技術が適用されるDA変換装置(即ち、本開示のDA変換装置)が用いられる。 The peripheral circuit section of the pixel array section 11 includes, for example, a row selection section 12, a constant current source section 13, an analog-digital conversion section 14, a reference signal generation section 15, a horizontal transfer scanning section 16, a signal processing section 17, and timing. It is configured by the control unit 18 and the like. Then, as the reference signal generation unit 15, a DA converter to which the technology according to the present disclosure is applied (that is, the DA converter of the present disclosure) is used.
 画素アレイ部11において、行列状の画素配列に対し、画素行毎に画素制御線311~31m(以下、総称して「画素制御線31」と記述する場合がある)が行方向に沿って配線されている。また、画素列毎に垂直信号線321~32n(以下、総称して「垂直信号線32」と記述する場合がある)が列方向に沿って配線されている。画素制御線31は、画素回路2から信号を読み出す際の駆動を行うための駆動信号を伝送する。図1では、画素制御線31について1本の配線として図示しているが、1本に限られるものではない。画素制御線31の一端は、行選択部12の各行に対応した出力端に接続されている。 In the pixel array unit 11, pixel control lines 31 1 to 31 m (hereinafter, may be collectively referred to as “pixel control line 31”) are arranged along the row direction for each pixel row in a matrix of pixel arrays. Is wired. Further, vertical signal lines 32 1 to 32 n (hereinafter, may be collectively referred to as “vertical signal line 32”) are arranged along the column direction for each pixel column. The pixel control line 31 transmits a drive signal for driving when reading a signal from the pixel circuit 2. In FIG. 1, the pixel control line 31 is illustrated as one wiring, but the number is not limited to one. One end of the pixel control line 31 is connected to the output end corresponding to each row of the row selection unit 12.
 以下に、画素アレイ部11の周辺回路部の各構成要素、即ち、行選択部12、定電流源部13、アナログ-デジタル変換部14、参照信号生成部15、水平転送走査部16、信号処理部17、及び、タイミング制御部18について説明する。 Below, each component of the peripheral circuit section of the pixel array section 11, that is, the row selection section 12, the constant current source section 13, the analog-digital conversion section 14, the reference signal generation section 15, the horizontal transfer scanning section 16, the signal processing. The unit 17 and the timing control unit 18 will be described.
 行選択部12は、シフトレジスタやアドレスデコーダなどによって構成され、画素アレイ部11の各画素回路2の選択に際して、画素行の走査や画素行のアドレスを制御する。この行選択部12は、その具体的な構成については図示を省略するが、一般的に、読出し走査系と掃出し走査系の2つの走査系を有する構成となっている。 The row selection unit 12 is composed of a shift register, an address decoder, and the like, and controls scanning of pixel rows and addresses of pixel rows when selecting each pixel circuit 2 of the pixel array unit 11. Although not specifically shown, the row selection unit 12 generally has two scanning systems, a read scanning system and a sweep scanning system.
 読出し走査系は、画素回路2から画素信号を読み出すために、画素アレイ部11の画素回路2を行単位で順に選択走査する。画素回路2から読み出される画素信号はアナログ信号である。掃出し走査系は、読出し走査系によって読出し走査が行われる読出し行に対して、その読出し走査よりもシャッタスピードの時間分だけ先行して掃出し走査を行う。 The read scanning system sequentially selects and scans the pixel circuits 2 of the pixel array section 11 in units of rows in order to read pixel signals from the pixel circuits 2. The pixel signal read from the pixel circuit 2 is an analog signal. The sweep-out scanning system performs sweep-out scanning with respect to the read-out row in which the read-out scanning is performed by the read-out scanning system, prior to the read-out scanning by the shutter speed time.
 この掃出し走査系による掃出し走査により、読出し行の画素回路2の光電変換部から不要な電荷が掃き出されることによって当該光電変換部がリセットされる。そして、この掃出し走査系による不要電荷の掃き出す(リセットする)ことにより、所謂、電子シャッタ動作が行われる。ここで、電子シャッタ動作とは、光電変換部の光電荷を捨てて、新たに露光を開始する(光電荷の蓄積を開始する)動作のことを言う。 By the sweep-out scanning by this sweep-out scanning system, unnecessary photoelectric charges are swept out from the photoelectric conversion section of the pixel circuit 2 in the readout row, and the photoelectric conversion section is reset. Then, by sweeping out (resetting) unnecessary charges by this sweeping scanning system, a so-called electronic shutter operation is performed. Here, the electronic shutter operation means an operation of discarding the photocharges of the photoelectric conversion unit and newly starting the exposure (starting the accumulation of the photocharges).
 定電流源部13は、画素列毎に垂直信号線321~32nの各々に接続された、例えばMOSトランジスタから成る複数の電流源Iを備えており、行選択部12によって選択走査された画素行の各画素回路2に対し、垂直信号線321~32nの各々を通してバイアス電流を供給する。 The constant current source unit 13 includes a plurality of current sources I each of which is composed of, for example, a MOS transistor and is connected to each of the vertical signal lines 32 1 to 32 n for each pixel column, and is selectively scanned by the row selection unit 12. A bias current is supplied to each pixel circuit 2 in the pixel row through each of the vertical signal lines 32 1 to 32 n .
 アナログ-デジタル変換部14は、画素アレイ部11の画素列に対応して設けられた、例えば、画素列毎に設けられた複数のアナログ-デジタル変換器の集合から成る。アナログ-デジタル変換部14は、画素列毎に垂直信号線321~32nの各々を通して出力されるアナログの画素信号を、デジタル信号に変換する列並列型のアナログ-デジタル変換部である。 The analog-digital conversion unit 14 includes a set of a plurality of analog-digital converters provided corresponding to the pixel columns of the pixel array unit 11, for example, provided for each pixel column. The analog-digital conversion unit 14 is a column parallel type analog-digital conversion unit that converts an analog pixel signal output through each of the vertical signal lines 32 1 to 32 n for each pixel column into a digital signal.
 列並列アナログ-デジタル変換部14におけるアナログ-デジタル変換器としては、例えば、参照信号比較型のアナログ-デジタル変換器の一例であるシングルスロープ型アナログ-デジタル変換器を用いることができる。 As the analog-to-digital converter in the column parallel analog-to-digital converter 14, for example, a single slope analog-to-digital converter which is an example of the reference signal comparison type analog-to-digital converter can be used.
 参照信号生成部15は、後述する本開示のDA変換装置から成り、時間経過に応じてレベル(電圧)が単調減少するランプ(RAMP)波の参照信号を生成する。参照信号生成部15で生成されたランプ波の参照信号は、アナログ-デジタル変換部14に供給され、アナログ-デジタル変換の際の基準信号として用いられる。 The reference signal generation unit 15 includes a DA converter of the present disclosure to be described later, and generates a reference signal of a ramp (RAMP) wave whose level (voltage) monotonically decreases with time. The reference signal of the ramp wave generated by the reference signal generation unit 15 is supplied to the analog-digital conversion unit 14 and used as a reference signal for analog-digital conversion.
 水平転送走査部16は、シフトレジスタやアドレスデコーダなどによって構成され、画素アレイ部11の各画素回路(画素)2の信号の読出しに際して、画素列の走査や画素列のアドレスを制御する。この水平転送走査部16による制御の下に、アナログ-デジタル変換部14でデジタル信号に変換された画素信号が画素列単位で水平転送線19に読み出される。 The horizontal transfer scanning unit 16 is composed of a shift register, an address decoder, and the like, and controls the scanning of the pixel column and the address of the pixel column when reading the signal of each pixel circuit (pixel) 2 of the pixel array unit 11. Under the control of the horizontal transfer scanning unit 16, the pixel signal converted into a digital signal by the analog-digital conversion unit 14 is read out to the horizontal transfer line 19 in pixel column units.
 信号処理部17は、水平転送線19を通して供給されるデジタルの画素信号に対して、所定の信号処理を行い、2次元の画像データを生成する。例えば、信号処理部17は、縦線欠陥、点欠陥の補正、又は、信号のクランプを行ったり、パラレル-シリアル変換、圧縮、符号化、加算、平均、及び、間欠動作などのデジタル信号処理を行ったりする。信号処理部17は、生成した画像データを、本CMOSイメージセンサ1の出力信号として後段の装置に出力する。 The signal processing unit 17 performs predetermined signal processing on the digital pixel signal supplied through the horizontal transfer line 19 to generate two-dimensional image data. For example, the signal processing unit 17 corrects vertical line defects and point defects, clamps signals, and performs digital signal processing such as parallel-serial conversion, compression, encoding, addition, averaging, and intermittent operation. To go. The signal processing unit 17 outputs the generated image data as an output signal of the CMOS image sensor 1 to a device in the subsequent stage.
 タイミング制御部18は、各種のタイミング信号、クロック信号、及び、制御信号等を生成し、これら生成した信号を基に、行選択部12、定電流源部13、アナログ-デジタル変換部14、参照信号生成部15、水平転送走査部16、及び、信号処理部17等の駆動制御を行う。 The timing control unit 18 generates various timing signals, clock signals, control signals, etc., and based on these generated signals, the row selection unit 12, the constant current source unit 13, the analog-digital conversion unit 14, see The drive control of the signal generation unit 15, the horizontal transfer scanning unit 16, the signal processing unit 17, and the like is performed.
[画素回路の構成例]
 図2は、画素回路2の構成の一例を示す回路図である。画素回路2は、受光素子である光電変換素子として、例えば、フォトダイオード21を有している。画素回路2は、フォトダイオード21に加えて、転送トランジスタ22、リセットトランジスタ23、増幅トランジスタ24、及び、選択トランジスタ25を有する構成となっている。
[Pixel circuit configuration example]
FIG. 2 is a circuit diagram showing an example of the configuration of the pixel circuit 2. The pixel circuit 2 has, for example, a photodiode 21 as a photoelectric conversion element which is a light receiving element. The pixel circuit 2 has a configuration including a transfer transistor 22, a reset transistor 23, an amplification transistor 24, and a selection transistor 25 in addition to the photodiode 21.
 転送トランジスタ22、リセットトランジスタ23、増幅トランジスタ24、及び、選択トランジスタ25の4つのトランジスタとしては、例えばNチャネルのMOS型電界効果トランジスタ(Field Effect Transistor;FET)を用いている。但し、ここで例示した4つのトランジスタ22~25の導電型の組み合わせは一例に過ぎず、これらの組み合わせに限られるものではない。 As the four transistors of the transfer transistor 22, the reset transistor 23, the amplification transistor 24, and the selection transistor 25, for example, N-channel MOS type field effect transistors (FETs) are used. However, the combination of the conductivity types of the four transistors 22 to 25 illustrated here is merely an example, and the present invention is not limited to these combinations.
 この画素回路2に対して、先述した画素制御線31として、複数の画素制御線が同一画素行の各画素回路2に対して共通に配線されている。これら複数の画素制御線は、行選択部12の各画素行に対応した出力端に画素行単位で接続されている。行選択部12は、複数の画素制御線に対して転送信号TRG、リセット信号RST、及び、選択信号SELを適宜出力する。 For this pixel circuit 2, as the above-mentioned pixel control line 31, a plurality of pixel control lines are wired in common to each pixel circuit 2 in the same pixel row. The plurality of pixel control lines are connected to the output end of the row selection unit 12 corresponding to each pixel row in pixel row units. The row selection unit 12 appropriately outputs the transfer signal TRG, the reset signal RST, and the selection signal SEL to the plurality of pixel control lines.
 フォトダイオード21は、アノード電極が低電位側電源(例えば、グランド)に接続されており、受光した光をその光量に応じた電荷量の光電荷(ここでは、光電子)に光電変換してその光電荷を蓄積する。フォトダイオード21のカソード電極は、転送トランジスタ22を介して増幅トランジスタ24のゲートと電気的に接続されている。ここで、増幅トランジスタ24のゲートが電気的に繋がった領域は、フローティングディフュージョン(浮遊拡散領域/不純物拡散領域)FDである。フローティングディフュージョンFDは、電荷を電圧に変換する電荷電圧変換部である。 The photodiode 21 has an anode electrode connected to a low-potential-side power source (eg, ground), and photoelectrically converts the received light into a photocharge (here, photoelectron) having a charge amount corresponding to the light amount thereof. Accumulates electric charge. The cathode electrode of the photodiode 21 is electrically connected to the gate of the amplification transistor 24 via the transfer transistor 22. Here, the region where the gate of the amplification transistor 24 is electrically connected is the floating diffusion (floating diffusion region/impurity diffusion region) FD. The floating diffusion FD is a charge-voltage converter that converts charges into a voltage.
 転送トランジスタ22のゲートには、高レベル(例えば、VDDレベル)がアクティブとなる転送信号TRGが行選択部12から与えられる。転送トランジスタ22は、転送信号TRGに応答して導通状態となることで、フォトダイオード21で光電変換され、当該フォトダイオード21に蓄積された光電荷をフローティングディフュージョンFDに転送する。 The gate of the transfer transistor 22 is supplied with a transfer signal TRG that activates a high level (for example, V DD level) from the row selection unit 12. When the transfer transistor 22 becomes conductive in response to the transfer signal TRG, it is photoelectrically converted by the photodiode 21 and transfers the photocharges accumulated in the photodiode 21 to the floating diffusion FD.
 リセットトランジスタ23は、高電位側電源電圧VDDのノードとフローティングディフュージョンFDとの間に接続されている。リセットトランジスタ23のゲートには、高レベルがアクティブとなるリセット信号RSTが行選択部12から与えられる。リセットトランジスタ23は、リセット信号RSTに応答して導通状態となり、フローティングディフュージョンFDの電荷を電圧VDDのノードに捨てることによってフローティングディフュージョンFDをリセットする。 The reset transistor 23 is connected between the node of the high-potential-side power supply voltage V DD and the floating diffusion FD. To the gate of the reset transistor 23, the reset signal RST whose high level becomes active is given from the row selection unit 12. The reset transistor 23 becomes conductive in response to the reset signal RST, and resets the floating diffusion FD by discarding the charge of the floating diffusion FD to the node of the voltage V DD .
 増幅トランジスタ24は、ゲートがフローティングディフュージョンFDに、ドレインが高電位側電源電圧VDDのノードにそれぞれ接続されている。増幅トランジスタ24は、フォトダイオード21での光電変換によって得られる信号を読み出すソースフォロワの入力部となる。すなわち、増幅トランジスタ24は、ソースが選択トランジスタ25を介して垂直信号線32に接続される。そして、増幅トランジスタ24と、垂直信号線32の一端に接続される電流源Iとは、フローティングディフュージョンFDの電圧を垂直信号線32の電位に変換するソースフォロワを構成している。 The gate of the amplification transistor 24 is connected to the floating diffusion FD, and the drain thereof is connected to the node of the high-potential-side power supply voltage V DD . The amplification transistor 24 serves as an input unit of a source follower that reads out a signal obtained by photoelectric conversion in the photodiode 21. That is, the source of the amplification transistor 24 is connected to the vertical signal line 32 via the selection transistor 25. The amplification transistor 24 and the current source I connected to one end of the vertical signal line 32 constitute a source follower that converts the voltage of the floating diffusion FD into the potential of the vertical signal line 32.
 選択トランジスタ25は、ドレインが増幅トランジスタ24のソースに接続され、ソースが垂直信号線32に接続されている。選択トランジスタ25のゲートには、高レベルがアクティブとなる選択信号SELが行選択部12から与えられる。選択トランジスタ25は、選択信号SELに応答して導通状態となることで、画素回路2を選択状態として増幅トランジスタ24から出力される信号を垂直信号線32に伝達する。 The drain of the selection transistor 25 is connected to the source of the amplification transistor 24, and the source is connected to the vertical signal line 32. A selection signal SEL that activates a high level is applied to the gate of the selection transistor 25 from the row selection unit 12. The selection transistor 25 is rendered conductive in response to the selection signal SEL, and thereby transmits the signal output from the amplification transistor 24 to the vertical signal line 32 by setting the pixel circuit 2 in the selected state.
 尚、上記の回路例では、画素回路2として、転送トランジスタ22、リセットトランジスタ23、増幅トランジスタ24、及び、選択トランジスタ25から成る、即ち4つのトランジスタ(Tr)から成る4Tr構成を例に挙げたが、これに限られるものではない。例えば、選択トランジスタ25を省略し、増幅トランジスタ24に選択トランジスタ25の機能を持たせる3Tr構成とすることもできるし、必要に応じて、トランジスタの数を増やした5Tr以上の構成とすることもできる。 In the above circuit example, the pixel circuit 2 has the 4Tr configuration including the transfer transistor 22, the reset transistor 23, the amplification transistor 24, and the selection transistor 25, that is, four transistors (Tr). , But not limited to this. For example, the selection transistor 25 may be omitted, and the amplification transistor 24 may have a 3Tr configuration in which the function of the selection transistor 25 is provided. If necessary, the number of transistors may be increased to 5Tr or more. ..
[アナログ-デジタル変換部の構成例]
 次に、列並列アナログ-デジタル変換部14の構成例について説明する。列並列アナログ-デジタル変換部14の構成の一例を図3に示す。本開示のCMOSイメージセンサ1におけるアナログ-デジタル変換部14は、画素アレイ部11の各画素回路2のそれぞれに対応して設けられた複数のシングルスロープ型アナログ-デジタル変換器の集合から成る。ここでは、n列目のシングルスロープ型アナログ-デジタル変換器140を例に挙げて説明する。
[Configuration example of analog-digital converter]
Next, a configuration example of the column parallel analog-digital conversion unit 14 will be described. An example of the configuration of the column parallel analog-digital conversion unit 14 is shown in FIG. The analog-digital converter 14 in the CMOS image sensor 1 of the present disclosure is composed of a set of a plurality of single slope type analog-digital converters provided corresponding to each pixel circuit 2 of the pixel array unit 11. Here, the single-slope analog-digital converter 140 in the n-th column will be described as an example.
 シングルスロープ型アナログ-デジタル変換器140は、コンパレータ141、カウンタ回路142、及び、ラッチ回路143を有する回路構成となっている。シングルスロープ型アナログ-デジタル変換器140では、参照信号生成部19で生成されるランプ波の参照信号が用いられる。具体的には、画素列毎に設けられたコンパレータ141に基準信号として与えられる。 The single-slope analog-digital converter 140 has a circuit configuration including a comparator 141, a counter circuit 142, and a latch circuit 143. The single-slope analog-to-digital converter 140 uses the ramp wave reference signal generated by the reference signal generation unit 19. Specifically, it is given as a reference signal to the comparator 141 provided for each pixel column.
 コンパレータ141は、画素回路2から読み出されるアナログの画素信号を比較入力とし、参照信号生成部19で生成されるランプ波の参照信号を基準入力とし、両信号を比較する。そして、コンパレータ141は、例えば、参照信号が画素信号よりも大きいときに出力が第1の状態(例えば、高レベル)になり、参照信号が画素信号以下のときに出力が第2の状態(例えば、低レベル)になる。これにより、コンパレータ141は、画素信号の信号レベルに応じた、具体的には、信号レベルの大きさに対応したパルス幅を持つパルス信号を比較結果として出力する。 The comparator 141 uses the analog pixel signal read from the pixel circuit 2 as a comparison input and the ramp wave reference signal generated by the reference signal generation unit 19 as a reference input, and compares the two signals. Then, for example, the output of the comparator 141 is in the first state (for example, high level) when the reference signal is larger than the pixel signal, and the output is in the second state (for example, when the reference signal is less than or equal to the pixel signal). , Low level). As a result, the comparator 141 outputs a pulse signal having a pulse width corresponding to the signal level of the pixel signal, specifically, the magnitude of the signal level, as the comparison result.
 カウンタ回路142には、コンパレータ141に対する参照信号の供給開始タイミングと同じタイミングで、タイミング制御部18からクロック信号CLKが与えられる。そして、カウンタ回路142は、クロック信号CLKに同期してカウント動作を行うことによって、コンパレータ141の出力パルスのパルス幅の期間、即ち、比較動作の開始から比較動作の終了までの期間を計測する。このカウンタ回路142のカウント結果(カウント値)が、アナログの画素信号をデジタル化したデジタル値となる。 The clock signal CLK is given to the counter circuit 142 from the timing control unit 18 at the same timing as the timing of starting the supply of the reference signal to the comparator 141. Then, the counter circuit 142 measures the pulse width period of the output pulse of the comparator 141, that is, the period from the start of the comparison operation to the end of the comparison operation by performing the counting operation in synchronization with the clock signal CLK. The count result (count value) of the counter circuit 142 becomes a digital value obtained by digitizing an analog pixel signal.
 ラッチ回路143は、カウンタ回路142のカウント結果であるデジタル値を保持(ラッチ)する。また、ラッチ回路143は、信号レベルの画素信号に対応するD相のカウント値と、リセットレベルの画素信号に対応するP相のカウント値との差分をとることにより、ノイズ除去処理の一例である、CDS(Correlated Double Sampling:相関二重サンプリング)処理を行う。そして、水平転送走査部16による駆動の下に、ラッチしたデジタル値を水平転送線19に出力する。 The latch circuit 143 holds (latches) the digital value that is the count result of the counter circuit 142. Further, the latch circuit 143 is an example of noise removal processing by calculating the difference between the D-phase count value corresponding to the signal level pixel signal and the P-phase count value corresponding to the reset level pixel signal. , CDS (Correlated Double Sampling) processing. Then, under the drive of the horizontal transfer scanning unit 16, the latched digital value is output to the horizontal transfer line 19.
 上述したように、シングルスロープ型アナログ-デジタル変換器140の集合から成る列並列アナログ-デジタル変換部14では、参照信号生成部15で生成される、線形に変化するアナログ値の参照信号と、画素回路2から出力されるアナログの画素信号との大小関係が変化するまでの時間情報からデジタル値を得る。 As described above, in the column parallel analog-to-digital conversion unit 14 including the set of the single slope type analog-to-digital converter 140, the reference signal of the linearly changing analog value generated by the reference signal generation unit 15 and the pixel A digital value is obtained from time information until the magnitude relationship with the analog pixel signal output from the circuit 2 changes.
 尚、上記の例では、列並列アナログ-デジタル変換部14として、画素列に対して1対1の関係でアナログ-デジタル変換器140が配置されて成る構成を例示したが、複数の画素列を単位としてアナログ-デジタル変換器140が配置されて成る構成とすることも可能である。 In the above example, the column parallel analog-to-digital conversion unit 14 has the configuration in which the analog-to-digital converter 140 is arranged in a one-to-one relationship with the pixel column. It is also possible to adopt a configuration in which the analog-digital converter 140 is arranged as a unit.
[半導体チップ構造]
 上記の構成のCMOSイメージセンサ1の半導体チップ構造としては、平置型の半導体チップ構造及び積層型の半導体チップ構造を例示することができる。また、画素構造については、配線層が形成される側の基板面を表面(正面)とするとき、その反対側の裏面側から照射される光を取り込む裏面照射型の画素構造とすることもできるし、表面側から照射される光を取り込む表面照射型の画素構造とすることもできる。
[Semiconductor chip structure]
As the semiconductor chip structure of the CMOS image sensor 1 having the above structure, a flat semiconductor chip structure and a laminated semiconductor chip structure can be exemplified. In addition, the pixel structure may be a back-illuminated pixel structure in which light emitted from the opposite back surface side is taken in when the substrate surface on the side where the wiring layer is formed is the front surface (front surface). However, a front-illuminated pixel structure that takes in light emitted from the front side can also be used.
 以下に、平置型の半導体チップ構造及び積層型の半導体チップ構造の概略について説明する。 Below, an outline of the flat type semiconductor chip structure and the laminated type semiconductor chip structure will be explained.
(平置型の半導体チップ構造)
 図4は、CMOSイメージセンサ1の平置型のチップ構造の概略を示す平面図である。図4に示すように、平置型の半導体チップ構造、所謂、平置構造は、画素回路2が行列状に配置されて成る画素アレイ部11と同じ半導体チップ41上に、画素アレイ部11の周辺回路部の各構成要素を形成した構造となっている。具体的には、画素アレイ部11と同じ半導体チップ41上に、行選択部12、定電流源部13、アナログ-デジタル変換部14、参照信号生成部15、水平転送走査部16、信号処理部17、及び、タイミング制御部18等が形成されている。
(Flat type semiconductor chip structure)
FIG. 4 is a plan view showing an outline of a flat-type chip structure of the CMOS image sensor 1. As shown in FIG. 4, a flat semiconductor chip structure, that is, a flat structure, has a periphery of the pixel array unit 11 on the same semiconductor chip 41 as the pixel array unit 11 in which the pixel circuits 2 are arranged in a matrix. It has a structure in which each component of the circuit portion is formed. Specifically, on the same semiconductor chip 41 as the pixel array unit 11, the row selection unit 12, the constant current source unit 13, the analog-digital conversion unit 14, the reference signal generation unit 15, the horizontal transfer scanning unit 16, the signal processing unit. 17, a timing controller 18 and the like are formed.
(積層型の半導体チップ構造)
 図5は、CMOSイメージセンサ1の積層型の半導体チップ構造の概略を示す分解斜視図である。図5に示すように、積層型の半導体チップ構造、所謂、積層構造は、第1半導体チップ42及び第2半導体チップ43の少なくとも2つの半導体チップが積層された構造となっている。
(Stacked semiconductor chip structure)
FIG. 5 is an exploded perspective view showing an outline of a stacked semiconductor chip structure of the CMOS image sensor 1. As shown in FIG. 5, the laminated semiconductor chip structure, so-called laminated structure, has a structure in which at least two semiconductor chips, that is, the first semiconductor chip 42 and the second semiconductor chip 43, are laminated.
 この積層型の半導体チップ構造において、1層目の第1半導体チップ42は、光電変換素子(例えば、フォトダイオード21)を含む画素回路2が行列状に2次元配置されて成る画素アレイ部11が形成された画素チップである。2層目の第2半導体チップ43は、画素アレイ部11の行列状に2次元配置された画素回路2のそれぞれに対応して配置されたアナログ-デジタル変換器(ADC)140の集合から成るアナログ-デジタル変換部14を含む回路部が形成された回路チップである。 In this laminated semiconductor chip structure, the first semiconductor chip 42 of the first layer has a pixel array section 11 in which pixel circuits 2 including photoelectric conversion elements (for example, photodiodes 21) are two-dimensionally arranged in a matrix. It is the formed pixel chip. The second semiconductor chip 43 in the second layer is an analog formed of a set of analog-digital converters (ADC) 140 arranged corresponding to the pixel circuits 2 arranged two-dimensionally in a matrix of the pixel array section 11. A circuit chip in which a circuit section including the digital conversion section 14 is formed.
 1層目の第1半導体チップ42の各画素回路2と、2層目の第2半導体チップ43の各アナログ-デジタル変換器140とは、Cu-Cu接続(カッパー-カッパー接続)等の接続部(図示せず)を通して電気的に接続される。 Each pixel circuit 2 of the first semiconductor chip 42 of the first layer and each analog-digital converter 140 of the second semiconductor chip 43 of the second layer are connected to each other by Cu-Cu connection (copper-copper connection) or the like. Electrically connected through (not shown).
 この積層型の半導体チップ構造によれば、1層目の第1半導体チップ42には画素回路2の作製に適したプロセスを適用でき、2層目の第2半導体チップ43には回路部分の作製に適したプロセスを適用できる。これにより、CMOSイメージセンサ1の製造に当たって、プロセスの最適化を図ることができる。特に、回路部分の作製に当たっては、先端プロセスの適用が可能になる。 According to this laminated semiconductor chip structure, a process suitable for manufacturing the pixel circuit 2 can be applied to the first semiconductor chip 42 of the first layer, and a circuit portion can be manufactured to the second semiconductor chip 43 of the second layer. Suitable process can be applied. Thereby, in manufacturing the CMOS image sensor 1, the process can be optimized. In particular, when manufacturing a circuit portion, it is possible to apply an advanced process.
<本開示のデジタル-アナログ変換装置>
 CMOSイメージセンサ1において、参照信号生成部15として用いられる本開示のデジタル-アナログ変換装置は、電流制御型のデジタル-アナログ変換装置である。本開示のデジタル-アナログ変換装置について説明する前に、電流制御型のデジタル-アナログ変換装置の従来例について説明する。
<Digital-Analog Converter of the Present Disclosure>
In the CMOS image sensor 1, the digital-analog converter of the present disclosure used as the reference signal generator 15 is a current control type digital-analog converter. Before describing the digital-analog converter of the present disclosure, a conventional example of a current control type digital-analog converter will be described.
[従来例]
 図6は、従来例に係るデジタル-アナログ変換装置50Aの構成の一例を示す回路図である。
[Conventional example]
FIG. 6 is a circuit diagram showing an example of the configuration of a conventional digital-analog conversion device 50A.
 従来例に係るデジタル-アナログ変換装置50Aは、グランド基準型DA変換装置として構成されており、アナログ信号出力部51、アナログゲイン調整部52、カウンタデコーダ53、及び、ゲインデコーダ54を有する構成となっている。 The digital-analog conversion device 50A according to the conventional example is configured as a ground-reference DA conversion device, and has a configuration including an analog signal output unit 51, an analog gain adjustment unit 52, a counter decoder 53, and a gain decoder 54. ing.
(アナログ信号出力部)
 アナログ信号出力部51は、カウンタデコーダ53でデコードされるデジタル入力信号DIの値に応じた出力電流を生成し、この生成した出力電流を電流-電圧変換した電圧信号をアナログ信号として出力する。また、アナログ信号出力部51は、アナログゲイン調整部52から供給されるゲイン制御信号であるバイアス電圧Vbiasに応じてアナログ信号のゲインを調整する。
(Analog signal output section)
The analog signal output unit 51 generates an output current according to the value of the digital input signal DI decoded by the counter decoder 53, and outputs a voltage signal obtained by current-voltage converting the generated output current as an analog signal. In addition, the analog signal output unit 51 adjusts the gain of the analog signal according to the bias voltage V bias that is the gain control signal supplied from the analog gain adjusting unit 52.
 アナログ信号出力部51は、次のような回路構成となっている。すなわち、アナログ信号出力部51は、差動トランジスタ、及び、この差動トランジスタの電流源トランジスタを含み、電流源トランジスタのゲートに共通のバイアス電圧が供給される複数の基本電流源セル5111~511nを有する構成となっている。 The analog signal output section 51 has the following circuit configuration. That is, the analog signal output unit 51 includes a differential transistor and a plurality of basic current source cells 511 1 to 511 including a current source transistor of the differential transistor, and a common bias voltage is supplied to the gate of the current source transistor. It is configured to have n .
 グランド基準型DA変換装置50Aの場合、複数の基本電流源セル5111~511nは、PチャネルMOSトランジスタによって形成される。アナログ信号出力部51は、複数の基本電流源セル5111~511nの他、選択出力線512、非選択出力線513、及び、終端抵抗514を有している。 In the case of the ground-referenced DA converter 50A, the plurality of basic current source cells 511 1 to 511 n are formed by P-channel MOS transistors. The analog signal output unit 51 has a plurality of basic current source cells 511 1 to 511 n , a selected output line 512, a non-selected output line 513, and a terminating resistor 514.
 アナログ信号出力部51の複数の基本電流源セル5111~511nはそれぞれ、共通した構成を有する。すなわち、各基本電流源セル5111~511nは、電流源トランジスタを形成するPチャネルMOSトランジスタPT11、及び、ソース同士が接続されて差動トランジスタを形成するPチャネルMOSトランジスタPT12,PT13から成る構成となっている。 The plurality of basic current source cells 511 1 to 511 n of the analog signal output section 51 have a common configuration. That is, each of the basic current source cells 511 1 to 511 n includes a P-channel MOS transistor PT 11 forming a current source transistor, and P-channel MOS transistors PT 12 and PT 13 forming sources which are connected to each other to form a differential transistor. It is composed of.
 基本電流源セル5111~511nにおいて、PチャネルMOSトランジスタPT11のソースが電源電圧VDDの電源線L1に接続され、ドレインがPチャネルMOSトランジスタPT12,PT13の各ソースに接続されている。 In the basic current source cells 511 1 to 511 n , the source of the P channel MOS transistor PT 11 is connected to the power source line L 1 of the power source voltage V DD , and the drain is connected to the sources of the P channel MOS transistors PT 12 and PT 13. ing.
 PチャネルMOSトランジスタPT12のドレインには、非選択出力線513の一端が接続されている。非選択出力線513の他端は、GND電位の接地線L2に接続されている。尚、GND電位の接地線L2は、1Ω程度の抵抗値R0の寄生配線抵抗515を持っている。 One end of the non-selected output line 513 is connected to the drain of the P-channel MOS transistor PT 12 . The other end of the non-selected output line 513 is connected to the ground line L 2 of GND potential. The ground line L 2 of GND potential has a parasitic wiring resistance 515 having a resistance value R 0 of about 1Ω.
 PチャネルMOSトランジスタPT13のドレインには、選択出力線512の一端が接続されている。選択出力線512の他端は、終端抵抗514の一端に接続されている。終端抵抗514の他端は、接地線L2に接続されている。終端抵抗514は、100Ω程度の抵抗値R1を有しており、電流-電圧変換を行う。 One end of the selection output line 512 is connected to the drain of the P-channel MOS transistor PT 13 . The other end of the selection output line 512 is connected to one end of a terminating resistor 514. The other end of the terminating resistor 514 is connected to the ground line L 2 . The terminating resistor 514 has a resistance value R 1 of about 100Ω and performs current-voltage conversion.
 複数の基本電流源セル5111~511nにおいて、PチャネルMOSトランジスタPT11のゲートが、アナログゲイン調整部52から供給されるゲイン制御信号であるバイアス電圧Vbiasの供給線L3に共通に接続されている。そして、PチャネルMOSトランジスタPT12のゲートがデジタル信号Qinの入力端となり、PチャネルMOSトランジスタPT13のゲートがデジタル信号Qinと逆相の信号xQinの入力端となっている。 In the plurality of basic current source cells 511 1 to 511 n , the gate of the P-channel MOS transistor PT 11 is commonly connected to the supply line L 3 of the bias voltage V bias which is the gain control signal supplied from the analog gain adjusting section 52. Has been done. The gate of the P-channel MOS transistor PT 12 is used as the input terminal of the digital signal Q in the gate of the P-channel MOS transistor PT 13 is in the input end of the digital signal Q in a reverse-phase signal xQ in.
 複数の基本電流源セル5111~511nにおいて、差動トランジスタの一方のPチャネルMOSトランジスタPT13のドレインが選択出力線512に共通に接続され、他方のPチャネルMOSトランジスタPT12のドレインが非選択出力線513に共通に接続されている。そして、選択出力線512と終端抵抗514との接続ノードが出力ノードND51となり、当該出力ノードND51から、アナログ信号出力部51の出力信号であるアナログ信号が導出される。すなわち、出力ノードND51は、アナログ信号出力部51の出力ノードであり、デジタル-アナログ変換装置50Aの出力ノードである。 In the plurality of basic current source cells 511 1 to 511 n , the drain of one P-channel MOS transistor PT 13 of the differential transistors is commonly connected to the selection output line 512, and the drain of the other P-channel MOS transistor PT 12 is non-conductive. It is commonly connected to the selection output line 513. The connection node becomes the output node ND 51 with a selected output line 512 and the terminating resistor 514, from the output node ND 51, the analog signal is derived which is the output signal of the analog signal output section 51. That is, the output node ND 51 is the output node of the analog signal output unit 51 and the output node of the digital-analog conversion device 50A.
 アナログ信号出力部51において、複数の基本電流源セル5111~511nは、カウンタデコーダ53のデコード情報に応じて、差動トランジスタの一方のPチャネルMOSトランジスタPT13が選択される。これにより、選択された基本電流源セルの電流出力が加算されてランプ出力電流Irampとして選択出力線512に流れる。そして、このランプ出力電流Irampが終端抵抗514で電圧信号に変換されて、出力ノードND51からアナログ信号として出力される。 In the analog signal output unit 51, one of the plurality of basic current source cells 511 1 to 511 n is selected as a P-channel MOS transistor PT 13 of the differential transistor according to the decode information of the counter decoder 53. As a result, the current outputs of the selected basic current source cells are added and the resulting current flows to the selected output line 512 as the lamp output current I ramp . Then, the lamp output current I ramp is converted into a voltage signal by the terminating resistor 514 and output as an analog signal from the output node ND 51 .
 また、複数の基本電流源セル5111~511nは、カウンタデコーダ53のデコード情報に応じて、他方のPチャネルMOSトランジスタPT13が選択される。この場合、選択された基本電流源セルの電流出力が加算されてランプ非出力電流Iramp_minusとして非選択出力線513を介して接地線L2に流される。 Further, in the plurality of basic current source cells 511 1 to 511 n , the other P-channel MOS transistor PT 13 is selected according to the decode information of the counter decoder 53. In this case, the current outputs of the selected basic current source cells are added and flown as the lamp non-output current I ramp_minus to the ground line L 2 via the non-selected output line 513.
 上述したように、アナログ信号出力部51では、カウンタデコーダ53でデコードされるデジタル入力信号DIの値に応じたランプ出力電流Irampが生成される。そして、デジタル入力信号DIの値に応じて、選択される基本電流源セルの数を徐々に減らし、そのときのランプ出力電流Irampを電流-電圧変換することで、ランプ波の電圧信号が生成され、ランプ波のアナログ信号として出力される。 As described above, the analog signal output section 51 generates the ramp output current I ramp according to the value of the digital input signal DI decoded by the counter decoder 53. Then, the number of selected basic current source cells is gradually reduced according to the value of the digital input signal DI, and the lamp output current I ramp at that time is subjected to current-voltage conversion to generate a voltage signal of a ramp wave. And output as a ramp wave analog signal.
(アナログゲイン調整部)
 アナログゲイン調整部52は、ゲインデコーダ54でデコードされるデジタルゲイン制御信号DGIの値に応じたゲイン制御信号であるバイアス電圧Vbiasを生成する。そして、アナログゲイン調整部52は、生成したバイアス電圧Vbiasをアナログ信号出力部51にゲインを調整するための信号として出力する。
(Analog gain adjuster)
The analog gain adjustment unit 52 generates a bias voltage V bias which is a gain control signal according to the value of the digital gain control signal DGI decoded by the gain decoder 54. Then, the analog gain adjustment unit 52 outputs the generated bias voltage V bias to the analog signal output unit 51 as a signal for adjusting the gain.
 アナログゲイン調整部52は、差動トランジスタ、及び、この差動トランジスタの電流源トランジスタを含み、電流源トランジスタのゲートに共通の基準電流に応じたバイアス電圧が供給される複数の基本電流源セル5211~521nを有する構成となっている。グランド基準型DA変換装置50Aの場合、複数の基本電流源セル5211~521nは、NチャネルMOSトランジスタによって形成される。 The analog gain adjusting unit 52 includes a differential transistor and a current source transistor of the differential transistor, and a plurality of basic current source cells 521 to which a bias voltage according to a common reference current is supplied to the gate of the current source transistor. The configuration has 1 to 521 n . In the case of the ground-referenced DA converter 50A, the plurality of basic current source cells 521 1 to 521 n are formed by N-channel MOS transistors.
 アナログゲイン調整部52は、複数の基本電流源セル5211~521nの他に、選択線522、非選択線523、NチャネルMOSトランジスタDN21、及び、PチャネルMOSトランジスタDP21を有している。NチャネルMOSトランジスタDN21及びPチャネルMOSトランジスタDP21は、ゲートとドレインが共通に接続されたダイオード接続構成となっている。 The analog gain adjusting section 52 has a selection line 522, a non-selection line 523, an N-channel MOS transistor DN 21 , and a P-channel MOS transistor DP 21 in addition to the plurality of basic current source cells 521 1 to 521 n. There is. The N-channel MOS transistor DN 21 and the P-channel MOS transistor DP 21 have a diode connection configuration in which the gate and the drain are commonly connected.
 アナログゲイン調整部52の複数の基本電流源セル5211~521nはそれぞれ、共通した構成を有している。すなわち、各基本電流源セル5211~521nは、電流源トランジスタを形成するNチャネルMOSトランジスタNT21、及び、ソース同士が接続されて差動トランジスタを形成するNチャネルMOSトランジスタNT22,NT33から成る構成となっている。 The plurality of basic current source cells 521 1 to 521 n of the analog gain adjusting section 52 have a common configuration. That is, each of the basic current source cells 521 1 to 521 n has an N-channel MOS transistor NT 21 forming a current source transistor, and N-channel MOS transistors NT 22 and NT 33 having sources connected to each other to form a differential transistor. It is composed of.
 基本電流源セル5211~521nにおいて、NチャネルMOSトランジスタNT21のソースがGND電位の接地線L2に接続され、ドレインがNチャネルMOSトランジスタNT22,NT23の各ソースに接続されている。 In the basic current source cells 521 1 to 521 n , the source of the N-channel MOS transistor NT 21 is connected to the ground line L 2 having the GND potential, and the drain is connected to each source of the N-channel MOS transistors NT 22 and NT 23 . ..
 NチャネルMOSトランジスタNT22のドレインには、非選択線523の一端が接続されている。非選択線523の他端は、電源電圧VDDの電源ラインL1に接続されている。NチャネルMOSトランジスタNT23のドレインには、選択線522の一端が接続されている。 One end of the non-select line 523 is connected to the drain of the N-channel MOS transistor NT 22 . The other end of the non-selection line 523 is connected to the power supply line L 1 of the power supply voltage V DD . The drain of N-channel MOS transistor NT 23, one end of the selection line 522 are connected.
 選択線522の他端は、PチャネルMOSトランジスタDP21のドレイン及びゲートに接続され、その接続ノードがアナログ信号出力部51の複数の基本電流源セル5111~511nの電流源トランジスタのゲートに接続されている。すなわち、アナログゲイン調整部52のPチャネルMOSトランジスタDP21と、アナログ信号出力部51の複数の基本電流源セル5111~511nの電流源トランジスタを形成するPチャネルMOSトランジスタPT21とにより、カレントミラー回路が形成されている。 The other end of the selection line 522 is connected to the drain and gate of the P-channel MOS transistor DP 21 , and the connection node is connected to the gates of the current source transistors of the plurality of basic current source cells 511 1 to 511 n of the analog signal output section 51. It is connected. In other words, the P-channel MOS transistor DP 21 of the analog gain adjusting section 52 and the P-channel MOS transistor PT 21 forming the current source transistors of the plurality of basic current source cells 511 1 to 511 n of the analog signal output section 51 are used for the current A mirror circuit is formed.
 複数の基本電流源セル5211~521nにおいて、NチャネルMOSトランジスタNT21のゲートは、ダイオード接続構成のNチャネルMOSトランジスタDN21のゲートに共通に接続されている。 In the plurality of basic current source cells 521 1 to 521 n , the gate of the N-channel MOS transistor NT 21 is commonly connected to the gate of the N-channel MOS transistor DN 21 having a diode connection configuration.
 NチャネルMOSトランジスタDN21は、ソースが接地線L2に接続され、ドレイン及びゲートが基準電流Irefの供給ラインに接続され、その接続点(ゲート)が、複数の基本電流源セル5211~521nの各NチャネルMOSトランジスタNT21のゲートに接続されている。 In the N-channel MOS transistor DN 21 , the source is connected to the ground line L 2 , the drain and gate are connected to the supply line of the reference current I ref , and the connection point (gate) is a plurality of basic current source cells 521 1 to 521 n is connected to the gate of each N-channel MOS transistor NT 21 .
 そして、NチャネルMOSトランジスタDN21は、基準電流Irefを電圧に変換し、基準電圧Vrefとして、複数の基本電流源セル5211~521nの各NチャネルMOSトランジスタNT21のゲートに与える。 Then, the N-channel MOS transistor DN 21 converts the reference current I ref into a voltage and supplies it as a reference voltage V ref to the gates of the N-channel MOS transistors NT 21 of the plurality of basic current source cells 521 1 to 521 n .
 NチャネルMOSトランジスタNT22のゲートが信号Ginの供給ラインに接続され、NチャネルMOSトランジスタNT23のゲートが信号Ginと逆相の信号xGinの供給ラインに接続されている。 The gate of N-channel MOS transistor NT 22 is connected to the supply line of the signal G in, the gate of the N-channel MOS transistor NT 23 is connected to the supply line of the signal xG in the signal G in opposite phase.
 複数の基本電流源セル5211~521nにおいて、差動トランジスタの一方のNチャネルMOSトランジスタNT23のドレインが選択線522に共通に接続され、他方のNチャネルMOSトランジスタNT22のドレインが非選択線523に共通に接続されている。 In the plurality of basic current source cells 521 1 to 521 n , the drain of one N-channel MOS transistor NT 23 of the differential transistors is commonly connected to the select line 522, and the drain of the other N-channel MOS transistor NT 22 is unselected. Commonly connected to the line 523.
 複数の基本電流源セル5211~521nにおいて、ゲインデコーダ54のデコード情報に応じて、差動トランジスタの一方のNチャネルMOSトランジスタNT23が選択される。これにより、選択された基本電流源セルの電流出力が加算されてゲイン電流Igainとして選択線522に流れる。そして、このゲイン電流IgainがPチャネルMOSトランジスタDP21で電圧信号に変換されてアナログ信号出力部51に出力される。 In the plurality of basic current source cells 521 1 to 521 n , one N channel MOS transistor NT 23 of the differential transistors is selected according to the decoding information of the gain decoder 54. As a result, the current outputs of the selected basic current source cells are added and flow to the selection line 522 as the gain current I gain . Then, the gain current I gain is converted into a voltage signal by the P-channel MOS transistor DP 21 and output to the analog signal output unit 51.
 また、複数の基本電流源セル5211~521nにおいて、ゲインデコーダ54のデコード情報に応じて、他方のNチャネルMOSトランジスタNT22が選択される。この場合、選択された基本電流源セルの電流出力が加算されて非選択側電流Igain_minusが非選択線523に流れる。 Further, in the plurality of basic current source cells 521 1 to 521 n , the other N-channel MOS transistor NT 22 is selected according to the decoding information of the gain decoder 54. In this case, the current outputs of the selected basic current source cells are added and the non-selected side current I gain_minus flows through the non-selected line 523.
 上述したように、アナログゲイン調整部52では、ゲインデコーダ54でデコードされるデジタルゲイン制御信号DGIの値に応じたゲイン電流Igain及び非選択側電流Igain_minusが生成される。そして、ゲイン電流Igainに基づくバイアス電圧Vbiasが生成され、当該バイアス電圧Vbiasが、アナログ信号出力部51に対して、ゲインを調整するためのゲイン制御信号として出力される。アナログゲイン調整部52は、ゲイン電流Igainによってデジタル-アナログ変換装置50Aの出力電圧の傾きを変えることができる。 As described above, the analog gain adjusting section 52 generates the gain current I gain and the non-selection side current I gain_minus according to the value of the digital gain control signal DGI decoded by the gain decoder 54. Then, the bias voltage V bias based on the gain current I gain is generated, the bias voltage V bias is the analog signal output section 51, is outputted as the gain control signal for adjusting the gain. The analog gain adjusting unit 52 can change the slope of the output voltage of the digital-analog converter 50A by the gain current I gain .
 上記の構成の従来例に係るデジタル-アナログ変換装置50Aでは、アナログ-デジタル変換部14のアナログゲインの変更時に、回路中のゲイン電流Igainが変わる。例えば、0dBのゲイン電流Igainを2Iとしたとき、6dBのゲイン電流IgainがIとなる。これに伴い、ゲイン電流Igainをカレントミラーにより受けた後段のアナログ信号出力部51のランプ出力電流Irampも同様に2I(0dB)からI(6dB)に変化する。この結果、デジタル-アナログ変換装置50Aの出力ノードND51でのデジタル-アナログ変換装置50Aの出力電圧は、図7に示すように、0dBと6dBでDC電位が変動するため、アナログゲイン変更時のデジタル-アナログ変換装置50Aの出力電圧を一定に保つことができない。また、半導体チップ外部から供給される電源電圧の公差により、デジタル-アナログ変換装置50Aの出力電圧のDC電位に個体差が生じる。 In the digital-analog converter 50A according to the conventional example having the above configuration, the gain current I gain in the circuit changes when the analog gain of the analog-digital converter 14 is changed. For example, when the gain current I gain of 0 dB is 2I, the gain current I gain of 6 dB becomes I. Along with this, the lamp output current I ramp of the analog signal output unit 51 at the subsequent stage, which receives the gain current I gain by the current mirror, also changes from 2I (0 dB) to I (6 dB). As a result, the DC potential of the output voltage of the digital-analog converter 50A at the output node ND 51 of the digital-analog converter 50A fluctuates between 0 dB and 6 dB as shown in FIG. The output voltage of the digital-analog converter 50A cannot be kept constant. Further, due to the tolerance of the power supply voltage supplied from the outside of the semiconductor chip, the DC potential of the output voltage of the digital-analog converter 50A has individual differences.
 ここで、そもそもアナログゲインの変更時に、デジタル-アナログ変換装置50Aの出力電圧を一定に保つ必要がある状況について説明する。 Here, the situation where the output voltage of the digital-analog converter 50A needs to be kept constant when the analog gain is changed will be described.
 先ず、画素回路2から出力される画素信号VSL、及び、参照信号生成部15から供給されるランプ波の参照信号RAMPを2入力とする、アナログ-デジタル変換器140のコンパレータ141(図3参照)について説明する。コンパレータ141には、両側オートゼロタイプのコンパレータと、片側オートゼロタイプのコンパレータとがある。 First, the comparator 141 (see FIG. 3) of the analog-digital converter 140, which receives the pixel signal VSL output from the pixel circuit 2 and the reference signal RAMP of the ramp wave supplied from the reference signal generator 15 as two inputs. Will be described. The comparator 141 includes a double-sided auto-zero type comparator and a single-sided auto-zero type comparator.
(両側オートゼロタイプのコンパレータ)
 両側オートゼロタイプのコンパレータの回路図を図8Aに示す。両側オートゼロタイプのコンパレータは、差動アンプ60、第1の容量素子C31、第2の容量素子C32第1のスイッチトランジスタNT33、及び、第2のスイッチトランジスタNT34を有する構成となっている。ここでは、第1のスイッチトランジスタNT33及び第2のスイッチトランジスタNT34として、例えば、NチャネルMOSトランジスタを用いている。
(Both side auto zero type comparator)
A circuit diagram of a double-sided auto-zero type comparator is shown in FIG. 8A. The double-sided auto-zero type comparator has a configuration including a differential amplifier 60, a first capacitive element C 31 , a second capacitive element C 32, a first switch transistor NT 33 , and a second switch transistor NT 34. There is. Here, for example, N-channel MOS transistors are used as the first switch transistor NT 33 and the second switch transistor NT 34 .
 差動アンプ60は、第1の差動トランジスタNT31、第2の差動トランジスタNT32、電流源トランジスタNT35、第1の負荷トランジスタPT31、及び、第2の負荷トランジスタPT32から構成されている。ここでは、第1の差動トランジスタNT31及び第2の差動トランジスタNT32としてNチャネルMOSトランジスタを用い、第1の負荷トランジスタPT31及び第2の負荷トランジスタPT32としてPチャネルMOSトランジスタを用いている。 The differential amplifier 60 is composed of a first differential transistor NT 31 , a second differential transistor NT 32 , a current source transistor NT 35 , a first load transistor PT 31 and a second load transistor PT 32. ing. Here, N-channel MOS transistors are used as the first differential transistor NT 31 and the second differential transistor NT 32 , and P-channel MOS transistors are used as the first load transistor PT 31 and the second load transistor PT 32. ing.
 差動アンプ60において、第1の差動トランジスタNT31及び第2の差動トランジスタNT32は、ソースが共通に接続されて差動動作をなす差動対を構成している。電流源トランジスタNT35は、第1の差動トランジスタNT31及び第2の差動トランジスタNT32のソース共通接続ノードとグランドGNDとの間に接続されている。第1の負荷トランジスタPT31は、ゲートとドレインとが共通に接続されたダイオード接続構成となっており、第1の差動トランジスタNT31に対して直列に接続されている。すなわち、第1の負荷トランジスタPT31及び第1の差動トランジスタNT31の各ドレインが共通に接続されている。 In the differential amplifier 60, the sources of the first differential transistor NT 31 and the second differential transistor NT 32 are commonly connected to form a differential pair that performs a differential operation. The current source transistor NT 35 is connected between the source common connection node of the first differential transistor NT 31 and the second differential transistor NT 32 and the ground GND. The first load transistor PT 31 has a diode connection configuration in which the gate and the drain are commonly connected, and is connected in series to the first differential transistor NT 31 . That is, the drains of the first load transistor PT 31 and the first differential transistor NT 31 are commonly connected.
 第2の負荷トランジスタPT32は、第2の差動トランジスタNT32に対して直列に接続されている。すなわち、第2の負荷トランジスタPT32及び第2の差動トランジスタNT32の各ドレインが共通に接続されている。そして、第1の負荷トランジスタPT31及び第2の負荷トランジスタPT32は、ゲートが共通に接続されることで、カレントミラー回路を形成している。 The second load transistor PT 32 is connected in series with the second differential transistor NT 32 . That is, the drains of the second load transistor PT 32 and the second differential transistor NT 32 are commonly connected. The gates of the first load transistor PT 31 and the second load transistor PT 32 are commonly connected to form a current mirror circuit.
 また、第2の差動トランジスタNT32のドレインと第2の負荷トランジスタPT32のドレインとが接続されたノードが、差動アンプ60の出力ノードNとなっており、当該出力ノードNから出力信号OUTが導出される。第1の負荷トランジスタPT31及び第2の負荷トランジスタPT32の各ソースは、電源電圧VDDの電源線に接続されている。 The node to which the drain of the second differential transistor NT 32 and the drain of the second load transistor PT 32 are connected is the output node N of the differential amplifier 60, and an output signal from the output node N is output. OUT is derived. The sources of the first load transistor PT 31 and the second load transistor PT 32 are connected to the power supply line of the power supply voltage V DD .
 第1の容量素子C31は、ランプ波の参照信号RAMPの入力端子と第1の差動トランジスタNT31のゲートとの間に接続されている。そして、参照信号RAMPは、第1の容量素子C31を介して差動アンプ60の一方の入力となる。第2の容量素子C32は、画素信号VSLの入力端子と第2の差動トランジスタNT32のゲートとの間に接続されている。そして、画素信号VSLは、第2の容量素子C32を介して差動アンプ60の他方の入力となる。 The first capacitive element C 31 is connected between the input terminal of the ramp wave reference signal RAMP and the gate of the first differential transistor NT 31 . Then, the reference signal RAMP becomes one input of the differential amplifier 60 via the first capacitive element C 31 . The second capacitive element C 32 is connected between the input terminal of the pixel signal VSL and the gate of the second differential transistor NT 32 . Then, the pixel signal VSL becomes the other input of the differential amplifier 60 via the second capacitive element C 32 .
 第1のスイッチトランジスタNT33は、第1の差動トランジスタNT31のゲートとドレインとの間に接続されている。第2のスイッチトランジスタNT34は、第2の差動トランジスタNT32のゲートとドレインとの間に接続されている。そして、第1のスイッチトランジスタNT33及び第2のスイッチトランジスタNT34は、オートゼロ信号AZによってオン(導通)/オフ(非導通)制御が行われる。 The first switch transistor NT 33 is connected between the gate and the drain of the first differential transistor NT 31 . The second switch transistor NT 34 is connected between the gate and the drain of the second differential transistor NT 32 . Then, the first switch transistor NT 33 and the second switch transistor NT 34 are ON (conductive)/OFF (non-conductive) controlled by the auto-zero signal AZ.
 すなわち、オートゼロ信号AZによる第1のスイッチトランジスタNT33及び第2のスイッチトランジスタNT34の制御によって、差動アンプ60の初期化動作であるオートゼロ動作が行われる。このように、本回路例のコンパレータでは、差動アンプ60のオートゼロ動作が、ランプ波の参照信号RAMPの入力側、及び、画素信号VSLの入力側の両側で行われる。 That is, by controlling the first switch transistor NT 33 and the second switch transistor NT 34 by the auto-zero signal AZ, the auto-zero operation which is the initialization operation of the differential amplifier 60 is performed. Thus, in the comparator of this circuit example, the auto-zero operation of the differential amplifier 60 is performed on both the input side of the reference signal RAMP of the ramp wave and the input side of the pixel signal VSL.
(片側オートゼロタイプのコンパレータ)
 片側オートゼロタイプのコンパレータの回路図を図8Bに示す。片側オートゼロタイプのコンパレータは、図8Aに示す両側オートゼロタイプのコンパレータにおいて、ランプ波の参照信号RAMPの入力側の第1の容量素子C31及び第1のスイッチトランジスタNT33が省略されており、それ以外の構成は、両側オートゼロタイプの場合と同じである。これにより、本回路例のコンパレータでは、差動アンプ60のオートゼロ動作が、画素信号VSLの入力側のみの片側で行われる。コンパレータの回路動作上、片側オートゼロでも問題ない。
(One side auto zero type comparator)
A circuit diagram of a one-sided auto-zero type comparator is shown in FIG. 8B. The one-sided auto-zero type comparator is the two-sided auto-zero type comparator shown in FIG. 8A, in which the first capacitive element C 31 and the first switch transistor NT 33 on the input side of the ramp wave reference signal RAMP are omitted. The configuration other than is the same as the case of the double-sided auto-zero type. As a result, in the comparator of this circuit example, the auto-zero operation of the differential amplifier 60 is performed only on one side of the input side of the pixel signal VSL. There is no problem with one-sided auto zero due to the circuit operation of the comparator.
 回路面積的に、容量素子が占める割合は大きい。従って、片側オートゼロタイプのコンパレータの場合、両側オートゼロタイプのコンパレータに比べて、第1の容量素子C31を削減している分だけ回路面積の縮小化を図ることができる。特に、図5に示す積層型の半導体チップ構造の場合、画素回路2に対応して、コンパレータ141を含むアナログ-デジタル変換器140が多数配置される。従って、コンパレータ141として、片側オートゼロタイプのコンパレータを用いることで、アナログ-デジタル変換器140の回路規模を縮小化できる効果は大きい。 In terms of circuit area, the capacitive element occupies a large proportion. Therefore, in the case of the one-sided auto-zero type comparator, the circuit area can be reduced as compared with the two-sided auto-zero type comparator by the reduction of the first capacitive element C 31 . In particular, in the case of the stacked semiconductor chip structure shown in FIG. 5, a large number of analog-digital converters 140 including a comparator 141 are arranged corresponding to the pixel circuits 2. Therefore, the use of a one-sided auto-zero type comparator as the comparator 141 has a great effect of reducing the circuit scale of the analog-digital converter 140.
 ところで、両側オートゼロタイプのコンパレータの場合、通常は、コンパレータのオートゼロ動作により、コンパレータの入力から見たランプ波の参照信号RAMPの電位は、参照信号RAMP自身のDC電位によらず一定となるために、特に問題にならない。しかし、参照信号RAMPの入力側に容量素子のない片側オートゼロタイプのコンパレータの場合、オートゼロ動作時の参照信号RAMPの電位が重要になる。 By the way, in the case of a two-sided auto-zero type comparator, normally, the potential of the reference signal RAMP of the ramp wave seen from the input of the comparator becomes constant irrespective of the DC potential of the reference signal RAMP itself due to the auto-zero operation of the comparator. , It doesn't matter. However, in the case of a one-sided auto-zero type comparator having no capacitive element on the input side of the reference signal RAMP, the potential of the reference signal RAMP during auto-zero operation becomes important.
 例えば、片側オートゼロタイプのコンパレータにおいて、電流源トランジスタNT35のオーバードライブ電圧Vovを0.2V、差動トランジスタNT31,NT32のゲート-ソース間電圧Vgsを0.6Vとすると、本コンパレータが飽和領域で動するための差動入力下限は、0.8V(=0.2V+0.6V)となる。 For example, in a one-sided auto-zero type comparator, if the overdrive voltage V ov of the current source transistor NT 35 is 0.2 V and the gate-source voltage V gs of the differential transistors NT 31 and NT 32 is 0.6 V, this comparator The lower limit of the differential input for moving in the saturation region is 0.8V (=0.2V+0.6V).
 また、例えば、電源電圧VDDを2.9V、負荷トランジスタPT31,PT32のゲート-ソース間電圧Vgsを0.6Vとすると、本コンパレータが飽和領域で動するための差動入力上限は、2.7V(=2.9V-0.6V-0.2V+0.6V)となる。コンパレータのダイナミックレンジについての説明図を図9に示す。 Further, for example, if the power supply voltage V DD is 2.9 V and the gate-source voltage V gs of the load transistors PT 31 and PT 32 is 0.6 V, the upper limit of the differential input for operating this comparator in the saturation region is set. It becomes 2.7V (=2.9V-0.6V-0.2V+0.6V). An explanatory view of the dynamic range of the comparator is shown in FIG.
 片側オートゼロタイプのコンパレータの場合、参照信号RAMPのDC電位が、図9のコンパレータのダイナミックレンジ内に収まっている必要があるが、アナログゲイン変更時のデジタル-アナログ変換装置50Aの出力電圧が一定でない場合、特に、高ゲインのときに下限範囲外に入ってしまう可能性がある。これが、従来例に係るデジタル-アナログ変換装置50Aを使用する場合の課題であり、アナログゲイン変更時に、デジタル-アナログ変換装置50Aの出力電圧(即ち、ランプ波の参照信号の電圧)を一定に保つ必要がある理由である。 In the case of a one-sided auto-zero type comparator, the DC potential of the reference signal RAMP needs to be within the dynamic range of the comparator in FIG. 9, but the output voltage of the digital-analog converter 50A when the analog gain is changed is not constant. In this case, there is a possibility that the value may fall outside the lower limit range especially at high gain. This is a problem when using the digital-analog converter 50A according to the conventional example, and when the analog gain is changed, the output voltage of the digital-analog converter 50A (that is, the voltage of the reference signal of the ramp wave) is kept constant. That is why it is necessary.
 上記の課題を解消するためになされたのが本開示に係る技術である。アナログゲイン変更時のデジタル-アナログ変換装置の出力電圧の初期電圧を一定に保つようにするために、本開示の実施形態では、アナログ信号出力部51の出力ノードND51に接続され、アナログ信号の初期電位を制御する初期電位制御部を備える。そして、初期電位制御部は、アナログゲイン調整部52によって調整されるゲインによらず、アナログ信号の初期電位が一定電位になるように制御する。 The technology according to the present disclosure has been made to solve the above problems. In order to keep the initial voltage of the output voltage of the digital-analog converter when the analog gain is changed, in the embodiment of the present disclosure, the analog signal output unit 51 is connected to the output node ND 51 , and the analog signal An initial potential control unit that controls the initial potential is provided. Then, the initial potential control unit controls the initial potential of the analog signal to be a constant potential regardless of the gain adjusted by the analog gain adjustment unit 52.
 そして、本実施形態に係るデジタル-アナログ変換装置を、先述した撮像装置(具体的には、CMOSイメージセンサ1)におけるアナログ-デジタル変換部14のアナログ-デジタル変換器140として用いることができる。これにより、アナログ-デジタル変換器140のコンパレータ141が片側オートゼロタイプのコンパレータであっても、アナログゲインを上げてもコンパレータのダイナミックレンジ内で動作させることができるため、高品位の撮像画像を得ることができる。 Then, the digital-analog converter according to the present embodiment can be used as the analog-digital converter 140 of the analog-digital converter 14 in the above-described image pickup device (specifically, the CMOS image sensor 1). Accordingly, even if the comparator 141 of the analog-digital converter 140 is a one-sided auto-zero type comparator, it can be operated within the dynamic range of the comparator even if the analog gain is increased, so that a high-quality captured image can be obtained. You can
 以下に、アナログゲイン変更時のデジタル-アナログ変換装置の出力電圧の初期電圧を一定に保つようにするための本実施形態に係るデジタル-アナログ変換装置の具体的な実施例について説明する。 A specific example of the digital-analog converter according to the present embodiment for keeping the initial voltage of the output voltage of the digital-analog converter when the analog gain is changed will be described below.
[実施例1]
 図10は、本開示の実施例1に係るデジタル-アナログ変換装置の構成の一例を示す回路図である。
[Example 1]
FIG. 10 is a circuit diagram showing an example of the configuration of the digital-analog conversion device according to the first embodiment of the present disclosure.
 実施例1に係るデジタル-アナログ変換装置50Bは、アナログ信号出力部51、アナログゲイン調整部52、カウンタデコーダ53、及び、ゲインデコーダ54の他に、初期電位制御部の一例であるオフセット電流源回路55、及び、マニュアルオフセットデコーダ56を有する構成となっている。アナログ信号出力部51及びアナログゲイン調整部52については、図6に示す従来例に係るデジタル-アナログ変換装置50Aの場合と同じである。 The digital-analog conversion device 50B according to the first embodiment includes an offset current source circuit that is an example of an initial potential control unit in addition to the analog signal output unit 51, the analog gain adjustment unit 52, the counter decoder 53, and the gain decoder 54. 55 and a manual offset decoder 56. The analog signal output unit 51 and the analog gain adjustment unit 52 are the same as those in the case of the digital-analog conversion device 50A according to the conventional example shown in FIG.
 初期電位制御部の一例であるオフセット電流源回路55は、信号線S1を介してアナログ信号出力部51の出力ノードND51に接続されており、アナログゲイン調整部52によって調整されるゲインによらず、出力ノードND51から出力されるアナログ信号の初期電位が一定電位になるように制御する。 The offset current source circuit 55, which is an example of the initial potential control unit, is connected to the output node ND 51 of the analog signal output unit 51 via the signal line S 1 and is controlled by the gain adjusted by the analog gain adjustment unit 52. Instead, the initial potential of the analog signal output from the output node ND 51 is controlled to be a constant potential.
 オフセット電流源回路55は、複数の電流源トランジスタCT31、及び、同数のスイッチトランジスタST31を有する構成となっている。複数の電流源トランジスタCT31及びスイッチトランジスタST31は、PチャネルMOSトランジスタから成り、電源電圧VDDの電源線L1とアナログ信号出力部51の出力ノードND51との間に直列に接続されている。 The offset current source circuit 55 is configured to have a plurality of current source transistors CT 31 and the same number of switch transistors ST 31 . The plurality of current source transistors CT 31 and the switch transistor ST 31 are P-channel MOS transistors, and are connected in series between the power supply line L 1 of the power supply voltage V DD and the output node ND 51 of the analog signal output unit 51. There is.
 オフセット電流源回路55は更に、PチャネルMOSトランジスタDP31、及び、NチャネルMOSトランジスタDN31を有している。PチャネルMOSトランジスタDP31は、ゲートとドレインとが共通に接続されたダイオード接続構成となっており、複数の電流源トランジスタCT31とゲートが共通に接続されることで、カレントミラー回路を形成している。NチャネルMOSトランジスタDN31は、PチャネルMOSトランジスタDP31に対して直列に接続され、アナログゲイン調整部52の基準電流Irefをゲート入力としている。 The offset current source circuit 55 further has a P-channel MOS transistor DP 31 and an N-channel MOS transistor DN 31 . The P-channel MOS transistor DP 31 has a diode connection configuration in which a gate and a drain are commonly connected, and a current mirror circuit is formed by commonly connecting a plurality of current source transistors CT 31 and a gate. ing. N-channel MOS transistor DN 31 is connected in series with the P-channel MOS transistor DP 31, and a gate receiving a reference current I ref of the analog gain adjustment unit 52.
 上記の構成のオフセット電流源回路55は、アナログゲインの設定に基づいて外部から与えられ、マニュアルオフセットデコーダ56でデコードされるオフセット設定値に応じて、複数のスイッチトランジスタST31をオン/オフ制御する。これにより、選択されたスイッチトランジスタST31を通して、電流源トランジスタCT31から出力ノードND51に電流が流し込まれ、終端抵抗514に供給される。 The offset current source circuit 55 having the above configuration is externally applied based on the setting of the analog gain, and on/off-controls the plurality of switch transistors ST 31 according to the offset set value decoded by the manual offset decoder 56. .. As a result, a current flows from the current source transistor CT 31 to the output node ND 51 through the selected switch transistor ST 31 , and is supplied to the terminating resistor 514.
 初期電位制御部の一例であるオフセット電流源回路55によれば、アナログゲインの変更によって、アナログ信号出力部51のランプ出力電流Irampが変動する場合に、補正電流相当のオフセット電流をマニュアル的に出力ノードND51を通して終端抵抗514に流し込むことにより、図11に示すようなデジタル-アナログ変換装置50Bの出力電圧を得ることができる。これにより、アナログゲインを変化させても、デジタル-アナログ変換装置50Bの出力電圧の初期電圧を一定に保つことができる。図11において、R0は、寄生配線抵抗515の抵抗値であり、R1は、終端抵抗514の抵抗値である。 According to the offset current source circuit 55, which is an example of the initial potential control unit, when the lamp output current I ramp of the analog signal output unit 51 changes due to the change of the analog gain, the offset current corresponding to the correction current is manually set. By flowing into the terminating resistor 514 through the output node ND 51, the output voltage of the digital-analog converter 50B as shown in FIG. 11 can be obtained. As a result, even if the analog gain is changed, the initial voltage of the output voltage of the digital-analog converter 50B can be kept constant. In FIG. 11, R 0 is the resistance value of the parasitic wiring resistance 515, and R 1 is the resistance value of the termination resistance 514.
 上述した実施例1に係るデジタル-アナログ変換装置50Bによれば、オフセット電流源回路55の作用により、アナログゲイン変更時のデジタル-アナログ変換装置50Bの出力電圧の初期電圧を一定に保つことができる。 According to the above-described digital-analog converter 50B according to the first embodiment, the initial voltage of the output voltage of the digital-analog converter 50B when the analog gain is changed can be kept constant by the action of the offset current source circuit 55. ..
[実施例2]
 図12は、本開示の実施例2に係るデジタル-アナログ変換装置の構成の一例を示す回路図である。
[Example 2]
FIG. 12 is a circuit diagram showing an example of the configuration of the digital-analog conversion device according to the second embodiment of the present disclosure.
 実施例2に係るデジタル-アナログ変換装置50Cは、アナログ信号出力部51、アナログゲイン調整部52、カウンタデコーダ53、及び、ゲインデコーダ54の他に、初期電位制御部の一例である補正用電流増幅回路57を有する構成となっている。アナログ信号出力部51及びアナログゲイン調整部52については、図6に示す従来例に係るデジタル-アナログ変換装置50Aの場合と同じである。 The digital-analog conversion device 50C according to the second embodiment includes a correction current amplification that is an example of an initial potential control unit in addition to the analog signal output unit 51, the analog gain adjustment unit 52, the counter decoder 53, and the gain decoder 54. It has a circuit 57. The analog signal output unit 51 and the analog gain adjustment unit 52 are the same as those in the case of the digital-analog conversion device 50A according to the conventional example shown in FIG.
 補正用電流増幅回路57は、信号線L4を介してアナログゲイン調整部52に接続されるとともに、信号線S2を介してアナログ信号出力部51の出力ノードND51に接続されている。補正用電流増幅回路57は、アナログゲイン調整部52の非選択側電流Igain_minusを、信号線L4を通して入力し、当該非選択側電流Igain_minusに基づいて、アナログゲイン調整部52でゲイン設定を変化させることによる電流変動分を、正確に補った補正電流Icorctを生成する。 The correction current amplification circuit 57 is connected to the analog gain adjusting section 52 via the signal line L 4 and is connected to the output node ND 51 of the analog signal output section 51 via the signal line S 2 . Correction current amplifying circuit 57, the unselected-side current I Gain_minus the analog gain adjustment unit 52, and input through the signal line L 4, based on the non-select side current I Gain_minus, the gain setting in the analog gain adjuster 52 A correction current I corct that accurately compensates for the current fluctuation due to the change is generated.
 補正用電流増幅回路57は、生成した補正電流Icorctを、信号線S2を通してアナログ信号出力部51の出力ノードND51に供給する。これにより、ゲイン設定を変化させることによる電流変動分を正確に補った補正電流Icorctは、アナログ信号出力部51のランプ出力電流Irampに加算される。その結果、アナログ信号出力部51及び補正用電流増幅回路57での消費電流の合計はゲイン設定によらず一定に保たれる。従って、デジタル-アナログ変換装置50C全体での電流はゲイン設定によらず一定に保たれる。 The correction current amplifier circuit 57 supplies the generated correction current I corct to the output node ND 51 of the analog signal output unit 51 through the signal line S 2 . As a result, the correction current I corct that accurately compensates for the amount of current fluctuation caused by changing the gain setting is added to the lamp output current I ramp of the analog signal output unit 51. As a result, the total current consumption of the analog signal output unit 51 and the correction current amplification circuit 57 is kept constant regardless of the gain setting. Therefore, the current of the entire digital-analog converter 50C is kept constant regardless of the gain setting.
 また、補正電流Icorctは、出力ノードND51に供給されることで、ランプ出力電流Irampに加算されて、抵抗値R1の終端抵抗514に流れ込む。これにより、0dBでは、ゲイン電流Igainを2Iとしたとき、補正電流Icorctが0となり、終端抵抗514に流れる電流は2Iとなり、6dBでは、ゲイン電流IgainをIとしたとき、補正電流IcorctがIとなり、終端抵抗514に流れる電流は2Iとなる。このことは、アナログゲインを変更しても、補正用電流増幅回路57の作用により、終端抵抗514に流れる電流は変わらないことを意味する。その結果、アナログゲイン変更時のデジタル-アナログ変換装置50Cの出力電圧の初期電圧を一定に保つことができる。 Further, the correction current I corct is supplied to the output node ND 51 , is added to the lamp output current I ramp , and flows into the terminating resistor 514 having the resistance value R 1 . Thus, at 0 dB, when the gain current I gain is 2I, the correction current I corct becomes 0, and the current flowing through the terminating resistor 514 becomes 2I. At 6 dB, when the gain current I gain is I, the correction current I corct becomes 1. corct becomes I, and the current flowing through the terminating resistor 514 becomes 2I. This means that even if the analog gain is changed, the current flowing through the terminating resistor 514 does not change due to the action of the correction current amplification circuit 57. As a result, the initial voltage of the output voltage of the digital-analog converter 50C at the time of changing the analog gain can be kept constant.
  補正用電流増幅回路57は、IV変換回路としてPチャネルMOSトランジスタDP41、電流源としてのPチャネルMOSトランジスタPT41、及び、出力用のPチャネルMOSトランジスタPT42を有する構成となっている。 The correction current amplification circuit 57 has a configuration including a P-channel MOS transistor DP 41 as an IV conversion circuit, a P-channel MOS transistor PT 41 as a current source, and an output P-channel MOS transistor PT 42 .
 PチャネルMOSトランジスタDP41は、ダイオード接続され、アナログゲイン調整部52のPチャネルMOSトランジスタDP21と同等の機能を有する。PチャネルMOSトランジスタPT41は、アナログ信号出力部51の基本電流源セル5111~511nの電流源としてのPチャネルMOSトランジスタPT11と同等の機能を有する。また、PチャネルMOSトランジスタPT42は、アナログ信号出力部51の基本電流源セル5111~511nの差動トランジスタのPチャネルMOSトランジスタPT12又はPT13と同等の機能を有する。 The P-channel MOS transistor DP 41 is diode-connected and has the same function as the P-channel MOS transistor DP 21 of the analog gain adjusting section 52. The P-channel MOS transistor PT 41 has the same function as the P-channel MOS transistor PT 11 as the current source of the basic current source cells 511 1 to 511 n of the analog signal output section 51. Further, the P-channel MOS transistor PT 42 has the same function as the P-channel MOS transistor PT 12 or PT 13 which is a differential transistor of the basic current source cells 511 1 to 511 n of the analog signal output section 51.
 補正用電流増幅回路57において、PチャネルMOSトランジスタPT41,PT42の並列数はアナログ信号出力部51の基本電流源セル5111~511nの数nと同様に設定される。 In the correction current amplifier circuit 57, the number of parallel P-channel MOS transistors PT 41 and PT 42 is set in the same manner as the number n of the basic current source cells 511 1 to 511 n of the analog signal output section 51.
 PチャネルMOSトランジスタDP41は、ドレイン及びゲートが信号線L5に接続され、ソースが電源電圧VDDの電源線L1に接続されている。PチャネルMOSトランジスタDP41のゲートには、信号線L5を通してバイアス電圧Vbisa2が与えられる。 The P-channel MOS transistor DP 41 has a drain and a gate connected to the signal line L 5 , and a source connected to the power supply line L 1 of the power supply voltage V DD . A bias voltage V bisa2 is applied to the gate of the P-channel MOS transistor DP 41 through the signal line L 5 .
 n個のPチャネルMOSトランジスタPT41は、ソースが電源電圧VDDの電源線L1に接続され、ドレインがPチャネルMOSトランジスタPT41のソースにそれぞれ接続されている。n個のPチャネルMOSトランジスタPT41のゲートにも、PチャネルMOSトランジスタDP41と同様に、バイアス電圧Vbisa2が与えられる。 The sources of the n P-channel MOS transistors PT 41 are connected to the power supply line L 1 of the power supply voltage V DD , and the drains are connected to the sources of the P-channel MOS transistors PT 41 . The bias voltage V bisa2 is also applied to the gates of the n P-channel MOS transistors PT 41 , similarly to the P-channel MOS transistor DP 41 .
 n個のPチャネルMOSトランジスタPT42は、ゲートがグランド電位に保持され、オン状態に保持されている。そして、n個のPチャネルMOSトランジスタPT42のドレインは、アナログ信号出力部51の出力ノードND51に補正電流Icorctを供給するための信号線S2に接続されている。換言すれば、補正電流Icorctの信号線S2は、n個のPチャネルMOSトランジスタPT42のドレインと、アナログ信号出力部51の出力ノードND51との間に配線されている。 The gates of the n P-channel MOS transistors PT 42 are held at the ground potential and held in the ON state. The drains of the n P-channel MOS transistors PT 42 are connected to the signal line S 2 for supplying the correction current I corct to the output node ND 51 of the analog signal output section 51. In other words, the signal line S 2 of the correction current I corct is wired between the drains of the n P-channel MOS transistors PT 42 and the output node ND 51 of the analog signal output section 51.
 補正用電流増幅回路57において、ダイオード接続されたPチャネルMOSトランジスタDP41とn個のPチャネルMOSトランジスタPT41によってカレントミラー回路が形成されている。補正用電流増幅回路57は、アナログゲイン調整部52のPチャネルMOSトランジスタDP21、及び、アナログ信号出力部51の基本電流源セル5111~511nの電流源としてのPチャネルMOSトランジスタPT11によって形成されるカレントミラー回路の電流ミラー比と同じ比率で電流増幅を行う。 In the correction current amplifier circuit 57, a current mirror circuit is formed by the diode-connected P channel MOS transistor DP 41 and n P channel MOS transistors PT 41 . The correction current amplification circuit 57 includes a P-channel MOS transistor DP 21 of the analog gain adjustment section 52 and a P-channel MOS transistor PT 11 as a current source of the basic current source cells 511 1 to 511 n of the analog signal output section 51. Current amplification is performed at the same ratio as the current mirror ratio of the formed current mirror circuit.
 上述した実施例2に係るデジタル-アナログ変換装置50Cによれば、補正用電流増幅回路57により、アナログゲイン変更時のデジタル-アナログ変換装置50Cの出力電圧の初期電圧を一定に保つことができる。また、実施例1に比べて、オフセット電流値のマニュアル調整が不要であるため、ユーザの使い勝手の向上を図ることができる。また、実施例1に比べて、非選択側電流Igain_minusとオフセット電流の重畳がなくなるため、低消費電力化を図ることができるとともに、レイアウトの省面積化が可能になる。 According to the digital-analog converter 50C according to the second embodiment described above, the correction current amplifier circuit 57 can keep the initial voltage of the output voltage of the digital-analog converter 50C constant when the analog gain is changed. Further, compared to the first embodiment, it is not necessary to manually adjust the offset current value, so that the usability for the user can be improved. Further, as compared with the first embodiment, since the non-selection side current I gain_minus and the offset current do not overlap each other, the power consumption can be reduced and the layout area can be saved .
<変形例>
 以上、本開示に係る技術について、好ましい実施形態に基づき説明したが、本開示に係る技術は当該実施形態に限定されるものではない。上記の実施形態において説明したデジタル-アナログ変換装置及び撮像装置の構成、構造は例示であり、適宜、変更することができる。
<Modification>
Although the technology according to the present disclosure has been described above based on the preferred embodiment, the technology according to the present disclosure is not limited to the embodiment. The configurations and structures of the digital-analog conversion device and the imaging device described in the above embodiments are examples, and can be changed as appropriate.
<応用例>
 以上説明した本開示の撮像装置は、例えば図13に示すように、可視光、赤外光、紫外光、X線等の光をセンシングする様々な装置に使用することができる。様々な装置の具体例について以下に列挙する。
<Application example>
The imaging device of the present disclosure described above can be used in various devices that sense light such as visible light, infrared light, ultraviolet light, and X-rays, as illustrated in FIG. 13, for example. Specific examples of various devices are listed below.
 ・デジタルカメラや、カメラ機能付きの携帯機器等の、鑑賞の用に供される画像を撮影する装置
 ・自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置
 ・ユーザのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、TVや、冷蔵庫、エアーコンディショナ等の家電に供される装置
 ・内視鏡や、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される装置
 ・防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置
 ・肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供され装置
 ・スポーツ用途等向けのアクションカメラやウェアラブルカメラ等の、スポーツの用に供される装置
 ・畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置
-A device that captures images used for viewing, such as a digital camera or a portable device with a camera function-For driving in front of a vehicle, for safe driving such as automatic stop, and recognition of the driver's condition Devices used for traffic such as in-vehicle sensors that take images of the rear, surroundings, and inside the vehicle, surveillance cameras that monitor running vehicles and roads, ranging sensors that measure distances between vehicles, etc. Devices used for home appliances such as TVs, refrigerators, and air conditioners in order to take images and operate the devices according to the gestures ・Endoscopes, devices that take blood vessels by receiving infrared light, etc. Used for medical care and healthcare ・Security devices such as security surveillance cameras and person authentication cameras ・Skin measuring devices for skin and scalp A device used for beauty, such as a microscope, a device used for sports, such as an action camera or wearable camera for sports purposes, a camera used for monitoring the condition of fields or crops, Equipment used for agriculture
<本開示に係る技術の適用例>
 本開示に係る技術は、様々な製品に適用することができる。以下に、より具体的な適用例について説明する。
<Application example of technology according to the present disclosure>
The technology according to the present disclosure can be applied to various products. A more specific application example will be described below.
[本開示の電子機器]
 ここでは、デジタルスチルカメラやビデオカメラ等の撮像システムや、携帯電話機などの撮像機能を有する携帯端末装置や、画像読取部に撮像装置を用いる複写機などの電子機器に適用する場合について説明する。
[Electronic device of the present disclosure]
Here, a case where the invention is applied to an image pickup system such as a digital still camera or a video camera, a mobile terminal device having an image pickup function such as a mobile phone, or an electronic device such as a copying machine using an image pickup device as an image reading unit will be described.
(撮像システム)
 図14は、本開示の電子機器の一例である撮像システムの構成例を示すブロック図である。図14に示すように、本例に係る撮像システム100は、レンズ群等を含む撮像光学系101、撮像部102、DSP(Digital Signal Processor)回路103、フレームメモリ104、表示装置105、記録装置106、操作系107、及び、電源系108等を有している。そして、DSP回路103、フレームメモリ104、表示装置105、記録装置106、操作系107、及び、電源系108がバスライン109を介して相互に接続された構成となっている。
(Imaging system)
FIG. 14 is a block diagram illustrating a configuration example of an imaging system which is an example of the electronic device of the present disclosure. As shown in FIG. 14, an imaging system 100 according to this example includes an imaging optical system 101 including a lens group, an imaging unit 102, a DSP (Digital Signal Processor) circuit 103, a frame memory 104, a display device 105, and a recording device 106. An operation system 107, a power supply system 108, and the like. The DSP circuit 103, the frame memory 104, the display device 105, the recording device 106, the operation system 107, and the power supply system 108 are connected to each other via a bus line 109.
 撮像光学系101は、被写体からの入射光(像光)を取り込んで撮像部102の撮像面上に結像する。撮像部102は、光学系101によって撮像面上に結像された入射光の光量を画素単位で電気信号に変換して画素信号として出力する。DSP回路103は、一般的なカメラ信号処理、例えば、ホワイトバランス処理、デモザイク処理、ガンマ補正処理などを行う。 The imaging optical system 101 captures incident light (image light) from a subject and forms an image on the imaging surface of the imaging unit 102. The imaging unit 102 converts the light amount of the incident light imaged on the imaging surface by the optical system 101 into an electric signal for each pixel and outputs the electric signal as a pixel signal. The DSP circuit 103 performs general camera signal processing, such as white balance processing, demosaic processing, and gamma correction processing.
 フレームメモリ104は、DSP回路103での信号処理の過程で適宜データの格納に用いられる。表示装置105は、液晶表示装置や有機EL(electro luminescence)表示装置等のパネル型表示装置から成り、撮像部102で撮像された動画または静止画を表示する。記録装置106は、撮像部102で撮像された動画または静止画を、可搬型の半導体メモリや、光ディスク、HDD(Hard Disk Drive)等の記録媒体に記録する。 The frame memory 104 is used to appropriately store data in the process of signal processing in the DSP circuit 103. The display device 105 includes a panel-type display device such as a liquid crystal display device and an organic EL (electroluminescence) display device, and displays a moving image or a still image captured by the image capturing unit 102. The recording device 106 records the moving image or the still image captured by the image capturing unit 102 in a recording medium such as a portable semiconductor memory, an optical disc, or an HDD (Hard Disk Drive).
 操作系107は、ユーザによる操作の下に、本撮像装置100が持つ様々な機能について操作指令を発する。電源系108は、DSP回路103、フレームメモリ104、表示装置105、記録装置106、及び、操作系107の動作電源となる各種の電源を、これら供給対象に対して適宜供給する。 The operation system 107 issues operation commands for various functions of the imaging apparatus 100 under the operation of the user. The power supply system 108 appropriately supplies various power supplies serving as operating power supplies of the DSP circuit 103, the frame memory 104, the display device 105, the recording device 106, and the operation system 107 to these supply targets.
 上記の構成の撮像システム100において、撮像部102として、本開示に係る技術が適用されるデジタル-アナログ変換装置を搭載した撮像装置(本開示の撮像装置)を用いることができる。本開示に係る技術が適用されるデジタル-アナログ変換装置によれば、アナログゲイン変更時のデジタル-アナログ変換装置の出力電圧の初期電圧を一定に保つことができるため、高品位の撮像画像を得ることができる。 In the imaging system 100 having the above configuration, an imaging device (an imaging device of the present disclosure) equipped with a digital-analog conversion device to which the technology according to the present disclosure is applied can be used as the imaging unit 102. According to the digital-analog conversion device to which the technology of the present disclosure is applied, the initial voltage of the output voltage of the digital-analog conversion device when the analog gain is changed can be kept constant, so that a high-quality captured image is obtained. be able to.
[移動体への応用例]
 本開示に係る技術は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット、建設機械、農業機械(トラクター)などのいずれかの種類の移動体に搭載される撮像素子として実現されてもよい。
[Application example to mobile]
The technology according to the present disclosure can be applied to various products. For example, the technology according to the present disclosure can be applied to any type of movement of an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, a robot, a construction machine, an agricultural machine (tractor), and the like. It may be realized as an image sensor mounted on the body.
 図15は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システム7000の概略的な構成例を示すブロック図である。車両制御システム7000は、通信ネットワーク7010を介して接続された複数の電子制御ユニットを備える。図15に示した例では、車両制御システム7000は、駆動系制御ユニット7100、ボディ系制御ユニット7200、バッテリ制御ユニット7300、車外情報検出ユニット7400、車内情報検出ユニット7500、及び統合制御ユニット7600を備える。これらの複数の制御ユニットを接続する通信ネットワーク7010は、例えば、CAN(Controller Area Network)、LIN(Local Interconnect Network)、LAN(Local Area Network)又はFlexRay(登録商標)等の任意の規格に準拠した車載通信ネットワークであってよい。 FIG. 15 is a block diagram showing a schematic configuration example of a vehicle control system 7000 that is an example of a mobile body control system to which the technology according to the present disclosure can be applied. The vehicle control system 7000 includes a plurality of electronic control units connected via a communication network 7010. In the example shown in FIG. 15, the vehicle control system 7000 includes a drive system control unit 7100, a body system control unit 7200, a battery control unit 7300, a vehicle exterior information detection unit 7400, a vehicle interior information detection unit 7500, and an integrated control unit 7600. .. The communication network 7010 connecting these plural control units complies with any standard such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network) or FlexRay (registered trademark). It may be an in-vehicle communication network.
 各制御ユニットは、各種プログラムにしたがって演算処理を行うマイクロコンピュータと、マイクロコンピュータにより実行されるプログラム又は各種演算に用いられるパラメータ等を記憶する記憶部と、各種制御対象の装置を駆動する駆動回路とを備える。各制御ユニットは、通信ネットワーク7010を介して他の制御ユニットとの間で通信を行うためのネットワークI/Fを備えるとともに、車内外の装置又はセンサ等との間で、有線通信又は無線通信により通信を行うための通信I/Fを備える。図15では、統合制御ユニット7600の機能構成として、マイクロコンピュータ7610、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660、音声画像出力部7670、車載ネットワークI/F7680及び記憶部7690が図示されている。他の制御ユニットも同様に、マイクロコンピュータ、通信I/F及び記憶部等を備える。 Each control unit includes a microcomputer that performs arithmetic processing according to various programs, a storage unit that stores a program executed by the microcomputer or parameters used in various arithmetic operations, and a drive circuit that drives various controlled devices. Equipped with. Each control unit is equipped with a network I/F for communicating with other control units via the communication network 7010, and also by wire communication or wireless communication with devices or sensors inside or outside the vehicle. A communication I/F for performing communication is provided. In FIG. 15, as the functional configuration of the integrated control unit 7600, a microcomputer 7610, a general-purpose communication I/F 7620, a dedicated communication I/F 7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle device I/F 7660, an audio image output unit 7670, An in-vehicle network I/F 7680 and a storage unit 7690 are illustrated. Similarly, the other control units also include a microcomputer, a communication I/F, a storage unit, and the like.
 駆動系制御ユニット7100は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット7100は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。駆動系制御ユニット7100は、ABS(Antilock Brake System)又はESC(Electronic Stability Control)等の制御装置としての機能を有してもよい。 The drive system control unit 7100 controls the operation of devices related to the drive system of the vehicle according to various programs. For example, the drive system control unit 7100 includes a drive force generation device for generating a drive force of a vehicle such as an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to wheels, and a steering angle of the vehicle. It functions as a steering mechanism for adjusting and a control device such as a braking device for generating a braking force of the vehicle. The drive system control unit 7100 may have a function as a control device such as ABS (Antilock Brake System) or ESC (Electronic Stability Control).
 駆動系制御ユニット7100には、車両状態検出部7110が接続される。車両状態検出部7110には、例えば、車体の軸回転運動の角速度を検出するジャイロセンサ、車両の加速度を検出する加速度センサ、あるいは、アクセルペダルの操作量、ブレーキペダルの操作量、ステアリングホイールの操舵角、エンジン回転数又は車輪の回転速度等を検出するためのセンサのうちの少なくとも一つが含まれる。駆動系制御ユニット7100は、車両状態検出部7110から入力される信号を用いて演算処理を行い、内燃機関、駆動用モータ、電動パワーステアリング装置又はブレーキ装置等を制御する。 A vehicle state detection unit 7110 is connected to the drive system control unit 7100. The vehicle state detection unit 7110 includes, for example, a gyro sensor that detects the angular velocity of the shaft rotational movement of the vehicle body, an acceleration sensor that detects the acceleration of the vehicle, an accelerator pedal operation amount, a brake pedal operation amount, or a steering wheel steering operation. At least one of sensors for detecting an angle, an engine speed, a wheel rotation speed, and the like is included. The drive system control unit 7100 performs arithmetic processing using the signal input from the vehicle state detection unit 7110 to control the internal combustion engine, drive motor, electric power steering device, brake device, or the like.
 ボディ系制御ユニット7200は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット7200は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット7200には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット7200は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 7200 controls the operation of various devices mounted on the vehicle body according to various programs. For example, the body system control unit 7200 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a head lamp, a back lamp, a brake lamp, a winker, or a fog lamp. In this case, the body system control unit 7200 may receive radio waves or signals of various switches transmitted from a portable device that substitutes for a key. The body system control unit 7200 receives the input of these radio waves or signals and controls the vehicle door lock device, the power window device, the lamp, and the like.
 バッテリ制御ユニット7300は、各種プログラムにしたがって駆動用モータの電力供給源である二次電池7310を制御する。例えば、バッテリ制御ユニット7300には、二次電池7310を備えたバッテリ装置から、バッテリ温度、バッテリ出力電圧又はバッテリの残存容量等の情報が入力される。バッテリ制御ユニット7300は、これらの信号を用いて演算処理を行い、二次電池7310の温度調節制御又はバッテリ装置に備えられた冷却装置等の制御を行う。 The battery control unit 7300 controls the secondary battery 7310 that is the power supply source of the drive motor according to various programs. For example, to the battery control unit 7300, information such as the battery temperature, the battery output voltage, or the remaining capacity of the battery is input from the battery device including the secondary battery 7310. The battery control unit 7300 performs arithmetic processing using these signals to control the temperature adjustment of the secondary battery 7310 or the cooling device provided in the battery device.
 車外情報検出ユニット7400は、車両制御システム7000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット7400には、撮像部7410及び車外情報検出部7420のうちの少なくとも一方が接続される。撮像部7410には、ToF(Time Of Flight)カメラ、ステレオカメラ、単眼カメラ、赤外線カメラ及びその他のカメラのうちの少なくとも一つが含まれる。車外情報検出部7420には、例えば、現在の天候又は気象を検出するための環境センサ、あるいは、車両制御システム7000を搭載した車両の周囲の他の車両、障害物又は歩行者等を検出するための周囲情報検出センサのうちの少なくとも一つが含まれる。 The exterior information detection unit 7400 detects information outside the vehicle equipped with the vehicle control system 7000. For example, at least one of the image capturing unit 7410 and the vehicle exterior information detection unit 7420 is connected to the vehicle exterior information detection unit 7400. The imaging unit 7410 includes at least one of a ToF (Time Of Flight) camera, a stereo camera, a monocular camera, an infrared camera, and other cameras. The outside-vehicle information detection unit 7420 detects, for example, an environment sensor for detecting current weather or weather, or another vehicle around the vehicle equipped with the vehicle control system 7000, an obstacle, a pedestrian, or the like. At least one of the ambient information detection sensors of.
 環境センサは、例えば、雨天を検出する雨滴センサ、霧を検出する霧センサ、日照度合いを検出する日照センサ、及び降雪を検出する雪センサのうちの少なくとも一つであってよい。周囲情報検出センサは、超音波センサ、レーダ装置及びLIDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)装置のうちの少なくとも一つであってよい。これらの撮像部7410及び車外情報検出部7420は、それぞれ独立したセンサないし装置として備えられてもよいし、複数のセンサないし装置が統合された装置として備えられてもよい。 The environmental sensor may be, for example, at least one of a raindrop sensor that detects rainy weather, a fog sensor that detects fog, a sunshine sensor that detects the degree of sunshine, and a snow sensor that detects snowfall. The ambient information detection sensor may be at least one of an ultrasonic sensor, a radar device, and a LIDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging) device. The imaging unit 7410 and the vehicle exterior information detection unit 7420 may be provided as independent sensors or devices, or may be provided as a device in which a plurality of sensors or devices are integrated.
 ここで、図16は、撮像部7410及び車外情報検出部7420の設置位置の例を示す。撮像部7910,7912,7914,7916,7918は、例えば、車両7900のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部のうちの少なくとも一つの位置に設けられる。フロントノーズに備えられる撮像部7910及び車室内のフロントガラスの上部に備えられる撮像部7918は、主として車両7900の前方の画像を取得する。サイドミラーに備えられる撮像部7912,7914は、主として車両7900の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部7916は、主として車両7900の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部7918は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 Here, FIG. 16 shows an example of installation positions of the imaging unit 7410 and the vehicle exterior information detection unit 7420. The imaging units 7910, 7912, 7914, 7916, 7918 are provided at at least one of the front nose of the vehicle 7900, the side mirrors, the rear bumper, the back door, and the upper part of the windshield inside the vehicle. The image capturing unit 7910 provided on the front nose and the image capturing unit 7918 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 7900. The imaging units 7912 and 7914 provided in the side mirrors mainly acquire images of the side of the vehicle 7900. The imaging unit 7916 provided on the rear bumper or the back door mainly acquires an image of the rear of the vehicle 7900. The imaging unit 7918 provided on the upper part of the windshield in the vehicle interior is mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic signal, a traffic sign, a lane, or the like.
 尚、図16には、それぞれの撮像部7910,7912,7914,7916の撮影範囲の一例が示されている。撮像範囲aは、フロントノーズに設けられた撮像部7910の撮像範囲を示し、撮像範囲b,cは、それぞれサイドミラーに設けられた撮像部7912,7914の撮像範囲を示し、撮像範囲dは、リアバンパ又はバックドアに設けられた撮像部7916の撮像範囲を示す。例えば、撮像部7910,7912,7914,7916で撮像された画像データが重ね合わせられることにより、車両7900を上方から見た俯瞰画像が得られる。 Note that FIG. 16 shows an example of the shooting ranges of the respective image pickup units 7910, 7912, 7914, 7916. The imaging range a indicates the imaging range of the imaging unit 7910 provided on the front nose, the imaging ranges b and c indicate the imaging ranges of the imaging units 7912 and 7914 provided on the side mirrors, and the imaging range d is The imaging range of the imaging part 7916 provided in the rear bumper or the back door is shown. For example, by overlaying the image data captured by the image capturing units 7910, 7912, 7914, and 7916, a bird's-eye view image of the vehicle 7900 viewed from above can be obtained.
 車両7900のフロント、リア、サイド、コーナ及び車室内のフロントガラスの上部に設けられる車外情報検出部7920,7922,7924,7926,7928,7930は、例えば超音波センサ又はレーダ装置であってよい。車両7900のフロントノーズ、リアバンパ、バックドア及び車室内のフロントガラスの上部に設けられる車外情報検出部7920,7926,7930は、例えばLIDAR装置であってよい。これらの車外情報検出部7920~7930は、主として先行車両、歩行者又は障害物等の検出に用いられる。 The vehicle exterior information detection units 7920, 7922, 7924, 7926, 7928, 7930 provided on the front, rear, sides, corners of the vehicle 7900 and on the windshield inside the vehicle may be ultrasonic sensors or radar devices, for example. The vehicle exterior information detection units 7920, 7926, 7930 provided on the front nose, rear bumper, back door, and upper windshield of the vehicle 7900 may be LIDAR devices, for example. These vehicle exterior information detection units 7920 to 7930 are mainly used to detect a preceding vehicle, a pedestrian, an obstacle, or the like.
 図15に戻って説明を続ける。車外情報検出ユニット7400は、撮像部7410に車外の画像を撮像させるとともに、撮像された画像データを受信する。また、車外情報検出ユニット7400は、接続されている車外情報検出部7420から検出情報を受信する。車外情報検出部7420が超音波センサ、レーダ装置又はLIDAR装置である場合には、車外情報検出ユニット7400は、超音波又は電磁波等を発信させるとともに、受信された反射波の情報を受信する。車外情報検出ユニット7400は、受信した情報に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。車外情報検出ユニット7400は、受信した情報に基づいて、降雨、霧又は路面状況等を認識する環境認識処理を行ってもよい。車外情報検出ユニット7400は、受信した情報に基づいて、車外の物体までの距離を算出してもよい。 Return to FIG. 15 and continue the explanation. The vehicle exterior information detection unit 7400 causes the image capturing unit 7410 to capture an image of the vehicle exterior and receives the captured image data. In addition, the vehicle exterior information detection unit 7400 receives detection information from the vehicle exterior information detection unit 7420 connected thereto. When the vehicle exterior information detection unit 7420 is an ultrasonic sensor, a radar device, or a LIDAR device, the vehicle exterior information detection unit 7400 transmits ultrasonic waves, electromagnetic waves, or the like, and receives information on the received reflected waves. The vehicle exterior information detection unit 7400 may perform an object detection process or a distance detection process such as a person, a car, an obstacle, a sign, or characters on the road surface based on the received information. The vehicle exterior information detection unit 7400 may perform environment recognition processing for recognizing rainfall, fog, road surface conditions, or the like based on the received information. The vehicle exterior information detection unit 7400 may calculate the distance to an object outside the vehicle based on the received information.
 また、車外情報検出ユニット7400は、受信した画像データに基づいて、人、車、障害物、標識又は路面上の文字等を認識する画像認識処理又は距離検出処理を行ってもよい。車外情報検出ユニット7400は、受信した画像データに対して歪補正又は位置合わせ等の処理を行うとともに、異なる撮像部7410により撮像された画像データを合成して、俯瞰画像又はパノラマ画像を生成してもよい。車外情報検出ユニット7400は、異なる撮像部7410により撮像された画像データを用いて、視点変換処理を行ってもよい。 The vehicle exterior information detection unit 7400 may also perform image recognition processing or distance detection processing for recognizing a person, a car, an obstacle, a sign, characters on the road surface, or the like based on the received image data. The vehicle exterior information detection unit 7400 performs processing such as distortion correction or position adjustment on the received image data, combines the image data captured by different image capturing units 7410, and generates an overhead image or a panoramic image. Good. The vehicle exterior information detection unit 7400 may perform viewpoint conversion processing using image data captured by different image capturing units 7410.
 車内情報検出ユニット7500は、車内の情報を検出する。車内情報検出ユニット7500には、例えば、運転者の状態を検出する運転者状態検出部7510が接続される。運転者状態検出部7510は、運転者を撮像するカメラ、運転者の生体情報を検出する生体センサ又は車室内の音声を集音するマイク等を含んでもよい。生体センサは、例えば、座面又はステアリングホイール等に設けられ、座席に座った搭乗者又はステアリングホイールを握る運転者の生体情報を検出する。車内情報検出ユニット7500は、運転者状態検出部7510から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。車内情報検出ユニット7500は、集音された音声信号に対してノイズキャンセリング処理等の処理を行ってもよい。 The in-vehicle information detection unit 7500 detects in-vehicle information. The in-vehicle information detection unit 7500 is connected with, for example, a driver state detection unit 7510 that detects the state of the driver. The driver state detecting unit 7510 may include a camera for capturing an image of the driver, a biometric sensor for detecting biometric information of the driver, a microphone for collecting voice in the vehicle interior, or the like. The biometric sensor is provided on, for example, a seat surface or a steering wheel, and detects biometric information of an occupant sitting on a seat or a driver who holds the steering wheel. The in-vehicle information detection unit 7500 may calculate the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 7510, or determine whether the driver is asleep. You may. The in-vehicle information detection unit 7500 may perform processing such as noise canceling processing on the collected audio signal.
 統合制御ユニット7600は、各種プログラムにしたがって車両制御システム7000内の動作全般を制御する。統合制御ユニット7600には、入力部7800が接続されている。入力部7800は、例えば、タッチパネル、ボタン、マイクロフォン、スイッチ又はレバー等、搭乗者によって入力操作され得る装置によって実現される。統合制御ユニット7600には、マイクロフォンにより入力される音声を音声認識することにより得たデータが入力されてもよい。入力部7800は、例えば、赤外線又はその他の電波を利用したリモートコントロール装置であってもよいし、車両制御システム7000の操作に対応した携帯電話又はPDA(Personal Digital Assistant)等の外部接続機器であってもよい。入力部7800は、例えばカメラであってもよく、その場合搭乗者はジェスチャにより情報を入力することができる。あるいは、搭乗者が装着したウェアラブル装置の動きを検出することで得られたデータが入力されてもよい。さらに、入力部7800は、例えば、上記の入力部7800を用いて搭乗者等により入力された情報に基づいて入力信号を生成し、統合制御ユニット7600に出力する入力制御回路などを含んでもよい。搭乗者等は、この入力部7800を操作することにより、車両制御システム7000に対して各種のデータを入力したり処理動作を指示したりする。 The integrated control unit 7600 controls overall operations in the vehicle control system 7000 according to various programs. An input unit 7800 is connected to the integrated control unit 7600. The input unit 7800 is realized by a device that can be input and operated by a passenger, such as a touch panel, a button, a microphone, a switch or a lever. Data obtained by voice recognition of voice input by a microphone may be input to the integrated control unit 7600. The input unit 7800 may be, for example, a remote control device that uses infrared rays or other radio waves, or may be an external connection device such as a mobile phone or a PDA (Personal Digital Assistant) that supports the operation of the vehicle control system 7000. May be. The input unit 7800 may be, for example, a camera, in which case the passenger can input information by gesture. Alternatively, data obtained by detecting the movement of the wearable device worn by the passenger may be input. Furthermore, the input unit 7800 may include, for example, an input control circuit that generates an input signal based on information input by a passenger or the like using the input unit 7800 and outputs the input signal to the integrated control unit 7600. A passenger or the like operates the input unit 7800 to input various data or instruct a processing operation to the vehicle control system 7000.
 記憶部7690は、マイクロコンピュータにより実行される各種プログラムを記憶するROM(Read Only Memory)、及び各種パラメータ、演算結果又はセンサ値等を記憶するRAM(Random Access Memory)を含んでいてもよい。また、記憶部7690は、HDD(Hard Disc Drive)等の磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス又は光磁気記憶デバイス等によって実現してもよい。 The storage unit 7690 may include a ROM (Read Only Memory) that stores various programs executed by the microcomputer, and a RAM (Random Access Memory) that stores various parameters, calculation results, sensor values, and the like. The storage unit 7690 may be realized by a magnetic storage device such as an HDD (Hard Disc Drive), a semiconductor storage device, an optical storage device, a magneto-optical storage device, or the like.
 汎用通信I/F7620は、外部環境7750に存在する様々な機器との間の通信を仲介する汎用的な通信I/Fである。汎用通信I/F7620は、GSM(登録商標)(Global System of Mobile communications)、WiMAX、LTE(Long Term Evolution)若しくはLTE-A(LTE-Advanced)などのセルラー通信プロトコル、又は無線LAN(Wi-Fi(登録商標)ともいう)、Bluetooth(登録商標)などのその他の無線通信プロトコルを実装してよい。汎用通信I/F7620は、例えば、基地局又はアクセスポイントを介して、外部ネットワーク(例えば、インターネット、クラウドネットワーク又は事業者固有のネットワーク)上に存在する機器(例えば、アプリケーションサーバ又は制御サーバ)へ接続してもよい。また、汎用通信I/F7620は、例えばP2P(Peer To Peer)技術を用いて、車両の近傍に存在する端末(例えば、運転者、歩行者若しくは店舗の端末、又はMTC(Machine Type Communication)端末)と接続してもよい。 The general-purpose communication I/F 7620 is a general-purpose communication I/F that mediates communication with various devices existing in the external environment 7750. The general-purpose communication I/F 7620 is a cellular communication protocol such as GSM (registered trademark) (Global System of Mobile communications), WiMAX, LTE (Long Term Evolution) or LTE-A (LTE-Advanced), or a wireless LAN (Wi-Fi). (Also referred to as a registered trademark), Bluetooth (registered trademark), and other wireless communication protocols may be implemented. The general-purpose communication I/F 7620 is connected to a device (for example, an application server or a control server) existing on an external network (for example, the Internet, a cloud network or a network unique to a business operator) via a base station or an access point, for example. You may. In addition, the general-purpose communication I/F 7620 uses, for example, P2P (Peer To Peer) technology, and is a terminal existing in the vicinity of the vehicle (for example, a driver, a pedestrian or a shop terminal, or an MTC (Machine Type Communication) terminal). May be connected with.
 専用通信I/F7630は、車両における使用を目的として策定された通信プロトコルをサポートする通信I/Fである。専用通信I/F7630は、例えば、下位レイヤのIEEE802.11pと上位レイヤのIEEE1609との組合せであるWAVE(Wireless Access in Vehicle Environment)、DSRC(Dedicated Short Range Communications)、又はセルラー通信プロトコルといった標準プロトコルを実装してよい。専用通信I/F7630は、典型的には、車車間(Vehicle to Vehicle)通信、路車間(Vehicle to Infrastructure)通信、車両と家との間(Vehicle to Home)の通信及び歩車間(Vehicle to Pedestrian)通信のうちの1つ以上を含む概念であるV2X通信を遂行する。 The dedicated communication I/F 7630 is a communication I/F that supports a communication protocol formulated for use in a vehicle. The dedicated communication I/F 7630 uses a standard protocol such as WAVE (Wireless Access in Vehicle Environment), DSRC (Dedicated Short Range Communications), or a cellular communication protocol, which is a combination of a lower layer IEEE 802.11p and an upper layer IEEE 1609, for example. May be implemented. The dedicated communication I/F 7630 is typically a vehicle-to-vehicle communication, a vehicle-to-infrastructure communication, a vehicle-to-home communication, and a vehicle-to-pedestrian communication. ) Perform V2X communications, a concept that includes one or more of the communications.
 測位部7640は、例えば、GNSS(Global Navigation Satellite System)衛星からのGNSS信号(例えば、GPS(Global Positioning System)衛星からのGPS信号)を受信して測位を実行し、車両の緯度、経度及び高度を含む位置情報を生成する。尚、測位部7640は、無線アクセスポイントとの信号の交換により現在位置を特定してもよく、又は測位機能を有する携帯電話、PHS若しくはスマートフォンといった端末から位置情報を取得してもよい。 The positioning unit 7640 receives, for example, a GNSS signal from a GNSS (Global Navigation Satellite System) satellite (for example, a GPS signal from a GPS (Global Positioning System) satellite) to perform positioning, and the latitude, longitude, and altitude of the vehicle. Generate position information including. The positioning unit 7640 may specify the current position by exchanging a signal with the wireless access point, or may acquire the position information from a terminal having a positioning function, such as a mobile phone, PHS, or smartphone.
 ビーコン受信部7650は、例えば、道路上に設置された無線局等から発信される電波あるいは電磁波を受信し、現在位置、渋滞、通行止め又は所要時間等の情報を取得する。尚、ビーコン受信部7650の機能は、上述した専用通信I/F7630に含まれてもよい。 The beacon receiving unit 7650 receives, for example, a radio wave or an electromagnetic wave transmitted from a wireless station or the like installed on the road, and acquires information such as the current position, traffic jam, traffic closure, or required time. The function of the beacon receiving unit 7650 may be included in the dedicated communication I/F 7630 described above.
 車内機器I/F7660は、マイクロコンピュータ7610と車内に存在する様々な車内機器7760との間の接続を仲介する通信インタフェースである。車内機器I/F7660は、無線LAN、Bluetooth(登録商標)、NFC(Near Field Communication)又はWUSB(Wireless USB)といった無線通信プロトコルを用いて無線接続を確立してもよい。また、車内機器I/F7660は、図示しない接続端子(及び、必要であればケーブル)を介して、USB(Universal Serial Bus)、HDMI(登録商標)(High-Definition Multimedia Interface)、又はMHL(Mobile High-definition Link)等の有線接続を確立してもよい。車内機器7760は、例えば、搭乗者が有するモバイル機器若しくはウェアラブル機器、又は車両に搬入され若しくは取り付けられる情報機器のうちの少なくとも1つを含んでいてもよい。また、車内機器7760は、任意の目的地までの経路探索を行うナビゲーション装置を含んでいてもよい。車内機器I/F7660は、これらの車内機器7760との間で、制御信号又はデータ信号を交換する。 The in-vehicle device I/F 7660 is a communication interface that mediates a connection between the microcomputer 7610 and various in-vehicle devices 7760 existing in the vehicle. The in-vehicle device I/F 7660 may establish a wireless connection using a wireless communication protocol such as wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication) or WUSB (Wireless USB). Further, the in-vehicle device I/F 7660 is connected to a USB (Universal Serial Bus), HDMI (registered trademark) (High-Definition Multimedia Interface), or MHL (Mobile) via a connection terminal (and a cable if necessary) not shown. Wired connection such as High-definition Link) may be established. The in-vehicle device 7760 may include, for example, at least one of a mobile device or a wearable device that the passenger has, or an information device that is carried in or attached to the vehicle. The in-vehicle device 7760 may include a navigation device that searches for a route to an arbitrary destination. The in-vehicle device I/F 7660 exchanges control signals or data signals with these in-vehicle devices 7760.
 車載ネットワークI/F7680は、マイクロコンピュータ7610と通信ネットワーク7010との間の通信を仲介するインタフェースである。車載ネットワークI/F7680は、通信ネットワーク7010によりサポートされる所定のプロトコルに則して、信号等を送受信する。 The in-vehicle network I/F 7680 is an interface that mediates communication between the microcomputer 7610 and the communication network 7010. The in-vehicle network I/F 7680 transmits and receives signals and the like according to a predetermined protocol supported by the communication network 7010.
 統合制御ユニット7600のマイクロコンピュータ7610は、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660及び車載ネットワークI/F7680のうちの少なくとも一つを介して取得される情報に基づき、各種プログラムにしたがって、車両制御システム7000を制御する。例えば、マイクロコンピュータ7610は、取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット7100に対して制御指令を出力してもよい。例えば、マイクロコンピュータ7610は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行ってもよい。また、マイクロコンピュータ7610は、取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行ってもよい。 The microcomputer 7610 of the integrated control unit 7600 passes through at least one of the general-purpose communication I/F 7620, the dedicated communication I/F 7630, the positioning unit 7640, the beacon receiving unit 7650, the in-vehicle device I/F 7660, and the in-vehicle network I/F 7680. The vehicle control system 7000 is controlled according to various programs based on the information acquired by the above. For example, the microcomputer 7610 calculates a control target value of the driving force generation device, the steering mechanism or the braking device based on the acquired information on the inside and outside of the vehicle, and outputs a control command to the drive system control unit 7100. Good. For example, the microcomputer 7610 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or impact mitigation of a vehicle, follow-up traveling based on an inter-vehicle distance, vehicle speed maintenance traveling, vehicle collision warning, vehicle lane departure warning, etc. You may perform the coordinated control aiming at. In addition, the microcomputer 7610 controls the driving force generation device, the steering mechanism, the braking device, and the like based on the acquired information about the surroundings of the vehicle, so that the microcomputer 7610 automatically travels independently of the driver's operation. You may perform cooperative control for the purpose of driving etc.
 マイクロコンピュータ7610は、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660及び車載ネットワークI/F7680のうちの少なくとも一つを介して取得される情報に基づき、車両と周辺の構造物や人物等の物体との間の3次元距離情報を生成し、車両の現在位置の周辺情報を含むローカル地図情報を作成してもよい。また、マイクロコンピュータ7610は、取得される情報に基づき、車両の衝突、歩行者等の近接又は通行止めの道路への進入等の危険を予測し、警告用信号を生成してもよい。警告用信号は、例えば、警告音を発生させたり、警告ランプを点灯させたりするための信号であってよい。 Information acquired by the microcomputer 7610 via at least one of a general-purpose communication I/F 7620, a dedicated communication I/F 7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle device I/F 7660, and an in-vehicle network I/F 7680. Based on the above, three-dimensional distance information between the vehicle and surrounding objects such as structures and people may be generated, and local map information including peripheral information of the current position of the vehicle may be created. In addition, the microcomputer 7610 may generate a warning signal by predicting a danger such as a vehicle collision, a pedestrian or the like approaching a road or a closed road, based on the acquired information. The warning signal may be, for example, a signal for generating a warning sound or lighting a warning lamp.
 音声画像出力部7670は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図15の例では、出力装置として、オーディオスピーカ7710、表示部7720及びインストルメントパネル7730が例示されている。表示部7720は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。表示部7720は、AR(Augmented Reality)表示機能を有していてもよい。出力装置は、これらの装置以外の、ヘッドホン、搭乗者が装着する眼鏡型ディスプレイ等のウェアラブルデバイス、プロジェクタ又はランプ等の他の装置であってもよい。出力装置が表示装置の場合、表示装置は、マイクロコンピュータ7610が行った各種処理により得られた結果又は他の制御ユニットから受信された情報を、テキスト、イメージ、表、グラフ等、様々な形式で視覚的に表示する。また、出力装置が音声出力装置の場合、音声出力装置は、再生された音声データ又は音響データ等からなるオーディオ信号をアナログ信号に変換して聴覚的に出力する。 The voice image output unit 7670 transmits an output signal of at least one of a voice and an image to an output device capable of visually or audibly notifying information to a passenger of the vehicle or the outside of the vehicle. In the example of FIG. 15, an audio speaker 7710, a display unit 7720, and an instrument panel 7730 are illustrated as output devices. The display unit 7720 may include at least one of an onboard display and a head-up display, for example. The display unit 7720 may have an AR (Augmented Reality) display function. The output device may be a device other than these devices, such as headphones, a wearable device such as a glasses-type display worn by a passenger, a projector, or a lamp. When the output device is a display device, the display device displays results obtained by various processes performed by the microcomputer 7610 or information received from another control unit in various formats such as text, images, tables, and graphs. Display it visually. When the output device is an audio output device, the audio output device converts an audio signal composed of reproduced audio data, acoustic data, or the like into an analog signal and outputs it audibly.
 尚、図15に示した例において、通信ネットワーク7010を介して接続された少なくとも二つの制御ユニットが一つの制御ユニットとして一体化されてもよい。あるいは、個々の制御ユニットが、複数の制御ユニットにより構成されてもよい。さらに、車両制御システム7000が、図示されていない別の制御ユニットを備えてもよい。また、上記の説明において、いずれかの制御ユニットが担う機能の一部又は全部を、他の制御ユニットに持たせてもよい。つまり、通信ネットワーク7010を介して情報の送受信がされるようになっていれば、所定の演算処理が、いずれかの制御ユニットで行われるようになってもよい。同様に、いずれかの制御ユニットに接続されているセンサ又は装置が、他の制御ユニットに接続されるとともに、複数の制御ユニットが、通信ネットワーク7010を介して相互に検出情報を送受信してもよい。 Note that in the example shown in FIG. 15, at least two control units connected via the communication network 7010 may be integrated as one control unit. Alternatively, each control unit may be composed of a plurality of control units. Further, the vehicle control system 7000 may include another control unit not shown. Further, in the above description, some or all of the functions of one of the control units may be given to another control unit. That is, if the information is transmitted and received via the communication network 7010, the predetermined arithmetic processing may be performed by any of the control units. Similarly, a sensor or device connected to one of the control units may be connected to another control unit, and a plurality of control units may send and receive detection information to and from each other via the communication network 7010. ..
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、撮像部7910,7912,7914,7916,7918や車外情報検出部7920,7922,7924,7926,7928,7930に適用され得る。そして、本開示に係る技術が適用されるデジタル-アナログ変換装置を搭載した撮像装置を、撮像部や車外情報検出部として用いることで、例えば、撮像対象の情報として、高品位の撮像画像を取得可能な車両制御システムを構築できる。 Above, an example of the vehicle control system to which the technology according to the present disclosure can be applied has been described. The technology according to the present disclosure can be applied to, for example, the imaging units 7910, 7912, 7914, 7916, 7918 and the vehicle exterior information detection units 7920, 7922, 7924, 7926, 7928, 7930 among the configurations described above. Then, by using the image pickup device equipped with the digital-analog converter to which the technology according to the present disclosure is applied as the image pickup unit or the vehicle exterior information detection unit, for example, a high-quality picked-up image is acquired as the information of the image pickup target. A possible vehicle control system can be constructed.
<本開示がとることができる構成>
 尚、本開示は、以下のような構成をとることもできる。
<Structure that the present disclosure can take>
Note that the present disclosure may also have the following configurations.
≪A.デジタル-アナログ変換装置≫
[A-1]デジタル入力信号の値に応じたアナログ信号を出力するアナログ信号出力部、
 アナログ信号のゲインを調整するアナログゲイン調整部、及び、
 アナログ信号出力部の出力ノードに接続され、アナログ信号の初期電位を制御する初期電位制御部を備え、
 初期電位制御部は、アナログゲイン調整部によって調整されるゲインによらず、アナログ信号の初期電位を一定電位に制御する、
 デジタル-アナログ変換装置。
[A-2]アナログ信号出力部は、アナログゲインを調整するためのゲイン制御信号を受けて、デジタル入力信号の値に応じた出力電流を生成し、この生成した出力電流を電流-電圧変換した電圧信号をアナログ信号として出力する、
 上記[A-1]に記載のデジタル-アナログ変換装置。
[A-3]アナログゲイン調整部は、デジタルゲイン制御信号の値に応じたゲイン電流及び非選択側電流を生成し、ゲイン電流を電流-電圧変換した電圧信号をアナログ信号出力部にゲイン制御信号として供給する、
 上記[A-2]に記載のデジタル-アナログ変換装置。
[A-4]初期電位制御部は、複数の電流源を有し、アナログゲインの設定に基づくオフセット設定値に対応した電流源から、アナログ信号出力部の出力ノードに電流を供給することで、アナログ信号の初期電位を一定電位に制御する、
 上記[A-3]に記載のデジタル-アナログ変換装置。
[A-5]初期電位制御部は、非選択側電流に基づく補正電流を、アナログ信号出力部の出力ノードに電流を供給することで、アナログ信号の初期電位を一定電位に制御する、
 上記[A-3]に記載のデジタル-アナログ変換装置。
<<A. Digital-analog converter>>
[A-1] An analog signal output section that outputs an analog signal according to the value of the digital input signal,
An analog gain adjusting section for adjusting the gain of the analog signal, and
An initial potential control unit that is connected to the output node of the analog signal output unit and controls the initial potential of the analog signal is provided.
The initial potential control unit controls the initial potential of the analog signal to a constant potential regardless of the gain adjusted by the analog gain adjustment unit,
Digital-analog converter.
[A-2] The analog signal output section receives the gain control signal for adjusting the analog gain, generates an output current according to the value of the digital input signal, and performs current-voltage conversion on the generated output current. Output voltage signal as analog signal,
The digital-analog converter according to the above [A-1].
[A-3] The analog gain adjusting section generates a gain current and a non-selection side current according to the value of the digital gain control signal, and outputs a voltage signal obtained by current-voltage converting the gain current to the analog signal output section. Supply as,
The digital-analog converter according to the above [A-2].
[A-4] The initial potential control unit has a plurality of current sources, and supplies a current from the current source corresponding to the offset setting value based on the setting of the analog gain to the output node of the analog signal output unit, Control the initial potential of the analog signal to a constant potential,
The digital-analog converter according to the above [A-3].
[A-5] The initial potential control unit controls the initial potential of the analog signal to a constant potential by supplying a correction current based on the non-selected side current to the output node of the analog signal output unit.
The digital-analog converter according to the above [A-3].
≪B.撮像装置≫
[B-1]光電変換素子を含む画素回路を有する画素アレイ部、
 画素アレイ部の各画素回路から出力されるアナログ画素信号をデジタル信号に変換する複数のアナログ-デジタル変換器を有するアナログ-デジタル変換部、及び、
 ランプ波の参照信号を生成し、アナログ-デジタル変換部に供給する参照信号生成部を有し、
 参照信号生成部は、デジタル-アナログ変換装置から成り、
 デジタル-アナログ変換装置は、
 デジタル入力信号の値に応じたアナログ信号を出力するアナログ信号出力部、
 アナログ信号のゲインを調整するアナログゲイン調整部、及び、
 アナログ信号出力部の出力ノードに接続され、アナログ信号の初期電位を制御する初期電位制御部を備え、
 初期電位制御部は、アナログゲイン調整部によって調整されるゲインによらず、アナログ信号の初期電位を一定電位に制御する、
 撮像装置。
[B-2]アナログ信号出力部は、アナログゲインを調整するためのゲイン制御信号を受けて、デジタル入力信号の値に応じた出力電流を生成し、この生成した出力電流を電流-電圧変換した電圧信号をアナログ信号として出力する、
 上記[B-1]に記載の撮像装置。
[B-3]アナログゲイン調整部は、デジタルゲイン制御信号の値に応じたゲイン電流及び非選択側電流を生成し、ゲイン電流を電流-電圧変換した電圧信号をアナログ信号出力部にゲイン制御信号として供給する、
 上記[B-2]に記載の撮像装置。
[B-4]初期電位制御部は、複数の電流源を有し、アナログゲインの設定に基づくオフセット設定値に対応した電流源から、アナログ信号出力部の出力ノードに電流を供給することで、アナログ信号の初期電位を一定電位に制御する、
 上記[B-3]に記載の撮像装置。
[B-5]初期電位制御部は、非選択側電流に基づく補正電流を、アナログ信号出力部の出力ノードに電流を供給することで、アナログ信号の初期電位を一定電位に制御する、
 上記[B-3]に記載の撮像装置。
[B-6]アナログ-デジタル変換器は、画素回路から出力されるアナログ画素信号、及び、参照信号生成部から供給されるランプ波の参照信号を2入力とするコンパレータを有し、
 コンパレータは、アナログ画素信号の入力側のみで初期化動作が行われる、
 上記[B-1]乃至上記[B-5]のいずれかに記載の撮像装置。
[B-7]アナログ-デジタル変換器は、画素アレイ部の各画素回路のそれぞれに対応して設けられている、
 上記[B-6]に記載の撮像装置。
[B-8]画素アレイ部の各画素回路が形成された第1半導体チップ、及び、画素アレイ部の各画素回路のそれぞれに対応してアナログ-デジタル変換器が形成された第2半導体チップの少なくとも2つの半導体チップが積層された積層型の半導体チップ構造を有する、
 上記[B-7]に記載の撮像装置。
<<B. Imaging device ≫
[B-1] A pixel array section having a pixel circuit including a photoelectric conversion element,
An analog-to-digital converter having a plurality of analog-to-digital converters for converting an analog pixel signal output from each pixel circuit of the pixel array section into a digital signal, and
A reference signal generation unit that generates a ramp wave reference signal and supplies the reference signal to the analog-digital conversion unit;
The reference signal generation unit includes a digital-analog conversion device,
The digital-analog converter is
An analog signal output section that outputs an analog signal according to the value of the digital input signal,
An analog gain adjusting section for adjusting the gain of the analog signal, and
An initial potential control unit that is connected to the output node of the analog signal output unit and controls the initial potential of the analog signal is provided.
The initial potential control unit controls the initial potential of the analog signal to a constant potential regardless of the gain adjusted by the analog gain adjustment unit,
Imaging device.
[B-2] The analog signal output unit receives the gain control signal for adjusting the analog gain, generates an output current according to the value of the digital input signal, and performs current-voltage conversion on the generated output current. Output voltage signal as analog signal,
The imaging device according to the above [B-1].
[B-3] The analog gain adjusting section generates a gain current and a non-selection side current according to the value of the digital gain control signal, and a voltage signal obtained by current-voltage converting the gain current is sent to the analog signal output section. Supply as,
The imaging device according to the above [B-2].
[B-4] The initial potential control unit has a plurality of current sources and supplies a current to the output node of the analog signal output unit from the current source corresponding to the offset setting value based on the setting of the analog gain, Control the initial potential of the analog signal to a constant potential,
The imaging device according to the above [B-3].
[B-5] The initial potential control unit controls the initial potential of the analog signal to a constant potential by supplying a correction current based on the non-selected side current to the output node of the analog signal output unit.
The imaging device according to the above [B-3].
[B-6] The analog-digital converter has a comparator that has two inputs, the analog pixel signal output from the pixel circuit and the reference signal of the ramp wave supplied from the reference signal generation unit,
The comparator is initialized only on the input side of the analog pixel signal,
The imaging device according to any one of [B-1] to [B-5].
[B-7] An analog-digital converter is provided corresponding to each pixel circuit of the pixel array section,
The imaging device according to the above [B-6].
[B-8] A first semiconductor chip in which each pixel circuit of the pixel array section is formed, and a second semiconductor chip in which an analog-digital converter is formed corresponding to each pixel circuit of the pixel array section A stacked semiconductor chip structure in which at least two semiconductor chips are stacked,
The imaging device according to the above [B-7].
≪C.電子機器≫
[C-1]光電変換素子を含む画素回路を有する画素アレイ部、
 画素アレイ部の各画素回路から出力されるアナログ画素信号をデジタル信号に変換する複数のアナログ-デジタル変換器を有するアナログ-デジタル変換部、及び、
 ランプ波の参照信号を生成し、アナログ-デジタル変換部に供給する参照信号生成部を有し、
 参照信号生成部は、デジタル-アナログ変換装置から成り、
 デジタル-アナログ変換装置は、
 デジタル入力信号の値に応じたアナログ信号を出力するアナログ信号出力部、
 アナログ信号のゲインを調整するアナログゲイン調整部、及び、
 アナログ信号出力部の出力ノードに接続され、アナログ信号の初期電位を制御する初期電位制御部を備え、
 初期電位制御部は、アナログゲイン調整部によって調整されるゲインによらず、アナログ信号の初期電位を一定電位に制御する、
 撮像装置を有する電子機器。
[C-2]アナログ信号出力部は、アナログゲインを調整するためのゲイン制御信号を受けて、デジタル入力信号の値に応じた出力電流を生成し、この生成した出力電流を電流-電圧変換した電圧信号をアナログ信号として出力する、
 上記[C-1]に記載の電子機器。
[C-3]アナログゲイン調整部は、デジタルゲイン制御信号の値に応じたゲイン電流及び非選択側電流を生成し、ゲイン電流を電流-電圧変換した電圧信号をアナログ信号出力部にゲイン制御信号として供給する、
 上記[C-2]に記載の電子機器。
[C-4]初期電位制御部は、複数の電流源を有し、アナログゲインの設定に基づくオフセット設定値に対応した電流源から、アナログ信号出力部の出力ノードに電流を供給することで、アナログ信号の初期電位を一定電位に制御する、
 上記[C-3]に記載の電子機器。
[C-5]初期電位制御部は、非選択側電流に基づく補正電流を、アナログ信号出力部の出力ノードに電流を供給することで、アナログ信号の初期電位を一定電位に制御する、
 上記[C-3]に記載の電子機器。
[C-6]アナログ-デジタル変換器は、画素回路から出力されるアナログ画素信号、及び、参照信号生成部から供給されるランプ波の参照信号を2入力とするコンパレータを有し、
 コンパレータは、アナログ画素信号の入力側のみで初期化動作が行われる、
 上記[C-1]乃至上記[C-5]のいずれかに記載の電子機器。
[C-7]アナログ-デジタル変換器は、画素アレイ部の各画素回路のそれぞれに対応して設けられている、
 上記[C-6]に記載の電子機器。
[C-8]画素アレイ部の各画素回路が形成された第1半導体チップ、及び、画素アレイ部の各画素回路のそれぞれに対応してアナログ-デジタル変換器が形成された第2半導体チップの少なくとも2つの半導体チップが積層された積層型の半導体チップ構造を有する、
 上記[C-7]に記載の電子機器。
<<C. Electronic equipment ≫
[C-1] A pixel array section having a pixel circuit including a photoelectric conversion element,
An analog-to-digital converter having a plurality of analog-to-digital converters for converting an analog pixel signal output from each pixel circuit of the pixel array section into a digital signal, and
A reference signal generation unit that generates a ramp wave reference signal and supplies the reference signal to the analog-digital conversion unit;
The reference signal generation unit includes a digital-analog conversion device,
The digital-analog converter is
An analog signal output section that outputs an analog signal according to the value of the digital input signal,
An analog gain adjusting section for adjusting the gain of the analog signal, and
An initial potential control unit that is connected to the output node of the analog signal output unit and controls the initial potential of the analog signal is provided.
The initial potential control unit controls the initial potential of the analog signal to a constant potential regardless of the gain adjusted by the analog gain adjustment unit,
An electronic device having an imaging device.
[C-2] The analog signal output unit receives the gain control signal for adjusting the analog gain, generates an output current according to the value of the digital input signal, and performs current-voltage conversion on the generated output current. Output voltage signal as analog signal,
The electronic device according to the above [C-1].
[C-3] The analog gain adjustment unit generates a gain current and a non-selected side current according to the value of the digital gain control signal, and a voltage signal obtained by current-voltage converting the gain current is sent to the analog signal output unit. Supply as,
The electronic device according to the above [C-2].
[C-4] The initial potential control unit has a plurality of current sources, and supplies a current from the current source corresponding to the offset setting value based on the setting of the analog gain to the output node of the analog signal output unit, Control the initial potential of the analog signal to a constant potential,
The electronic device according to the above [C-3].
[C-5] The initial potential control unit controls the initial potential of the analog signal to a constant potential by supplying a correction current based on the non-selected side current to the output node of the analog signal output unit.
The electronic device according to the above [C-3].
[C-6] The analog-digital converter has a comparator that has two inputs, the analog pixel signal output from the pixel circuit and the ramp wave reference signal supplied from the reference signal generation unit,
The comparator is initialized only on the input side of the analog pixel signal,
The electronic device according to any one of [C-1] to [C-5].
[C-7] An analog-digital converter is provided corresponding to each pixel circuit of the pixel array section,
The electronic device according to [C-6].
[C-8] A first semiconductor chip in which each pixel circuit of the pixel array section is formed, and a second semiconductor chip in which an analog-digital converter is formed corresponding to each pixel circuit of the pixel array section A stacked semiconductor chip structure in which at least two semiconductor chips are stacked,
The electronic device according to [C-7].
 1・・・CMOSイメージセンサ、2・・・画素、11・・・画素アレイ部、12・・・行選択部、13・・・定電流源部、14・・・アナログ-デジタル変換部、15・・・参照信号生成部、16・・・水平転送走査部、17・・・信号処理部、18・・・タイミング制御部、19・・・水平転送線、21・・・フォトダイオード(受光部)、22・・・転送トランジスタ、23・・・リセットトランジスタ、24・・・増幅トランジスタ、25・・・選択トランジスタ、31(311~31m)・・・画素制御線、32(321~32n)・・・垂直信号線、41・・・半導体チップ、42・・・第1半導体チップ、43・・・第2半導体チップ、50A・・・従来例に係るデジタル-アナログ変換装置、50B・・・実施例1に係るデジタル-アナログ変換装置、50C・・・実施例2に係るデジタル-アナログ変換装置、51・・・アナログ信号出力部、52・・・アナログゲイン調整部、53・・・カウンタデコーダ、54・・・ゲインデコーダ、55・・・オフセット電流源回路、56・・・マニュアルオフセットデコーダ、57・・・補正用電流増幅回路、140・・・シングルスロープ型アナログ-デジタル変換器、141・・・コンパレータ、142・・・カウンタ回路、143・・・ラッチ回路 DESCRIPTION OF SYMBOLS 1... CMOS image sensor, 2... Pixel, 11... Pixel array part, 12... Row selection part, 13... Constant current source part, 14... Analog-digital conversion part, 15 Reference signal generation unit, 16 Horizontal transfer scanning unit, 17 Signal processing unit, 18 Timing controller, 19 Horizontal transfer line, 21 Photo diode (light receiving unit) ), 22... Transfer transistor, 23... Reset transistor, 24... Amplification transistor, 25... Selection transistor, 31 (31 1 to 31 m )... Pixel control line, 32 (32 1 to 32 n )... Vertical signal line, 41... Semiconductor chip, 42... First semiconductor chip, 43... Second semiconductor chip, 50A... Digital-analog converter according to conventional example, 50B ... Digital-analog converter according to the first embodiment, 50C ... Digital-analog converter according to the second embodiment, 51... Analog signal output section, 52... Analog gain adjusting section, 53... -Counter decoder, 54... Gain decoder, 55... Offset current source circuit, 56... Manual offset decoder, 57... Correction current amplification circuit, 140... Single slope type analog-digital converter , 141... Comparator, 142... Counter circuit, 143... Latch circuit

Claims (14)

  1.  デジタル入力信号の値に応じたアナログ信号を出力するアナログ信号出力部、
     アナログ信号のゲインを調整するアナログゲイン調整部、及び、
     アナログ信号出力部の出力ノードに接続され、アナログ信号の初期電位を制御する初期電位制御部を備え、
     初期電位制御部は、アナログゲイン調整部によって調整されるゲインによらず、アナログ信号の初期電位を一定電位に制御する、
     デジタル-アナログ変換装置。
    An analog signal output section that outputs an analog signal according to the value of the digital input signal,
    An analog gain adjusting section for adjusting the gain of the analog signal, and
    An initial potential control unit that is connected to the output node of the analog signal output unit and controls the initial potential of the analog signal is provided.
    The initial potential control unit controls the initial potential of the analog signal to a constant potential regardless of the gain adjusted by the analog gain adjustment unit,
    Digital-analog converter.
  2.  アナログ信号出力部は、アナログゲインを調整するためのゲイン制御信号を受けて、デジタル入力信号の値に応じた出力電流を生成し、この生成した出力電流を電流-電圧変換した電圧信号をアナログ信号として出力する、
     請求項1に記載のデジタル-アナログ変換装置。
    The analog signal output section receives the gain control signal for adjusting the analog gain, generates an output current according to the value of the digital input signal, and converts the generated output current into a voltage signal which is an analog signal. Output as
    The digital-analog conversion device according to claim 1.
  3.  アナログゲイン調整部は、デジタルゲイン制御信号の値に応じたゲイン電流及び非選択側電流を生成し、ゲイン電流を電流-電圧変換した電圧信号をアナログ信号出力部にゲイン制御信号として供給する、
     請求項2に記載のデジタル-アナログ変換装置。
    The analog gain adjustment unit generates a gain current and a non-selected side current according to the value of the digital gain control signal, and supplies a voltage signal obtained by current-voltage converting the gain current to the analog signal output unit as a gain control signal.
    The digital-analog conversion device according to claim 2.
  4.  初期電位制御部は、複数の電流源を有し、アナログゲインの設定に基づくオフセット設定値に対応した電流源から、アナログ信号出力部の出力ノードに電流を供給することで、アナログ信号の初期電位を一定電位に制御する、
     請求項3に記載のデジタル-アナログ変換装置。
    The initial potential control unit has a plurality of current sources, and supplies a current to the output node of the analog signal output unit from the current source corresponding to the offset setting value based on the setting of the analog gain, so that the initial potential of the analog signal is To a constant potential,
    The digital-analog conversion device according to claim 3.
  5.  初期電位制御部は、非選択側電流に基づく補正電流を、アナログ信号出力部の出力ノードに電流を供給することで、アナログ信号の初期電位を一定電位に制御する、
     請求項3に記載のデジタル-アナログ変換装置。
    The initial potential control unit controls the initial potential of the analog signal to a constant potential by supplying a correction current based on the non-selected side current to the output node of the analog signal output unit.
    The digital-analog conversion device according to claim 3.
  6.  光電変換素子を含む画素回路を有する画素アレイ部、
     画素アレイ部の各画素回路から出力されるアナログ画素信号をデジタル信号に変換する複数のアナログ-デジタル変換器を有するアナログ-デジタル変換部、及び、
     ランプ波の参照信号を生成し、アナログ-デジタル変換部に供給する参照信号生成部を有し、
     参照信号生成部は、デジタル-アナログ変換装置から成り、
     デジタル-アナログ変換装置は、
     デジタル入力信号の値に応じたアナログ信号を出力するアナログ信号出力部、
     アナログ信号のゲインを調整するアナログゲイン調整部、及び、
     アナログ信号出力部の出力ノードに接続され、アナログ信号の初期電位を制御する初期電位制御部を備え、
     初期電位制御部は、アナログゲイン調整部によって調整されるゲインによらず、アナログ信号の初期電位を一定電位に制御する、
     撮像装置。
    A pixel array section having a pixel circuit including a photoelectric conversion element,
    An analog-to-digital converter having a plurality of analog-to-digital converters for converting an analog pixel signal output from each pixel circuit of the pixel array section into a digital signal, and
    A reference signal generation unit that generates a ramp wave reference signal and supplies the reference signal to the analog-digital conversion unit;
    The reference signal generation unit includes a digital-analog conversion device,
    The digital-analog converter is
    An analog signal output section that outputs an analog signal according to the value of the digital input signal,
    An analog gain adjusting section for adjusting the gain of the analog signal, and
    An initial potential control unit that is connected to the output node of the analog signal output unit and controls the initial potential of the analog signal is provided.
    The initial potential control unit controls the initial potential of the analog signal to a constant potential regardless of the gain adjusted by the analog gain adjustment unit,
    Imaging device.
  7.  アナログ信号出力部は、アナログゲインを調整するためのゲイン制御信号を受けて、デジタル入力信号の値に応じた出力電流を生成し、この生成した出力電流を電流-電圧変換した電圧信号をアナログ信号として出力する、
     請求項6に記載の撮像装置。
    The analog signal output section receives the gain control signal for adjusting the analog gain, generates an output current according to the value of the digital input signal, and converts the generated output current into a voltage signal which is an analog signal. Output as
    The imaging device according to claim 6.
  8.  アナログゲイン調整部は、デジタルゲイン制御信号の値に応じたゲイン電流及び非選択側電流を生成し、ゲイン電流を電流-電圧変換した電圧信号をアナログ信号出力部にゲイン制御信号として供給する、
     請求項7に記載の撮像装置。
    The analog gain adjustment unit generates a gain current and a non-selected side current according to the value of the digital gain control signal, and supplies a voltage signal obtained by current-voltage converting the gain current to the analog signal output unit as a gain control signal.
    The image pickup apparatus according to claim 7.
  9.  初期電位制御部は、複数の電流源を有し、アナログゲインの設定に基づくオフセット設定値に対応した電流源から、アナログ信号出力部の出力ノードに電流を供給することで、アナログ信号の初期電位を一定電位に制御する、
     請求項8に記載の撮像装置。
    The initial potential control unit has a plurality of current sources, and supplies a current to the output node of the analog signal output unit from the current source corresponding to the offset setting value based on the setting of the analog gain, so that the initial potential of the analog signal is To a constant potential,
    The image pickup apparatus according to claim 8.
  10.  初期電位制御部は、非選択側電流に基づく補正電流を、アナログ信号出力部の出力ノードに電流を供給することで、アナログ信号の初期電位を一定電位に制御する、
     請求項8に記載の撮像装置。
    The initial potential control unit controls the initial potential of the analog signal to a constant potential by supplying a correction current based on the non-selected side current to the output node of the analog signal output unit.
    The image pickup apparatus according to claim 8.
  11.  アナログ-デジタル変換器は、画素回路から出力されるアナログ画素信号、及び、参照信号生成部から供給されるランプ波の参照信号を2入力とするコンパレータを有し、
     コンパレータは、アナログ画素信号の入力側のみで初期化動作が行われる、
     請求項6に記載の撮像装置。
    The analog-digital converter has a comparator that has two inputs, the analog pixel signal output from the pixel circuit and the reference signal of the ramp wave supplied from the reference signal generation unit,
    The comparator is initialized only on the input side of the analog pixel signal,
    The imaging device according to claim 6.
  12.  アナログ-デジタル変換器は、画素アレイ部の各画素回路のそれぞれに対応して設けられている、
     請求項11に記載の撮像装置。
    The analog-digital converter is provided corresponding to each pixel circuit of the pixel array section,
    The imaging device according to claim 11.
  13.  画素アレイ部の各画素回路が形成された第1半導体チップ、及び、画素アレイ部の各画素回路のそれぞれに対応してアナログ-デジタル変換器が形成された第2半導体チップの少なくとも2つの半導体チップが積層された積層型の半導体チップ構造を有する、
     請求項12に記載の撮像装置。
    At least two semiconductor chips, a first semiconductor chip in which each pixel circuit of the pixel array section is formed and a second semiconductor chip in which an analog-digital converter is formed corresponding to each pixel circuit of the pixel array section Has a stacked semiconductor chip structure in which
    The image pickup apparatus according to claim 12.
  14.  光電変換素子を含む画素回路を有する画素アレイ部、
     画素アレイ部の各画素回路から出力されるアナログ画素信号をデジタル信号に変換する複数のアナログ-デジタル変換器を有するアナログ-デジタル変換部、及び、
     ランプ波の参照信号を生成し、アナログ-デジタル変換部に供給する参照信号生成部を有し、
     参照信号生成部は、デジタル-アナログ変換装置から成り、
     デジタル-アナログ変換装置は、
     デジタル入力信号の値に応じたアナログ信号を出力するアナログ信号出力部、
     アナログ信号のゲインを調整するアナログゲイン調整部、及び、
     アナログ信号出力部の出力ノードに接続され、アナログ信号の初期電位を制御する初期電位制御部を備え、
     初期電位制御部は、アナログゲイン調整部によって調整されるゲインによらず、アナログ信号の初期電位を一定電位に制御する、
     撮像装置を有する電子機器。
    A pixel array section having a pixel circuit including a photoelectric conversion element,
    An analog-to-digital converter having a plurality of analog-to-digital converters for converting an analog pixel signal output from each pixel circuit of the pixel array section into a digital signal, and
    A reference signal generation unit that generates a ramp wave reference signal and supplies the reference signal to the analog-digital conversion unit;
    The reference signal generation unit includes a digital-analog conversion device,
    The digital-analog converter is
    An analog signal output section that outputs an analog signal according to the value of the digital input signal,
    An analog gain adjusting section for adjusting the gain of the analog signal, and
    An initial potential control unit that is connected to the output node of the analog signal output unit and controls the initial potential of the analog signal is provided.
    The initial potential control unit controls the initial potential of the analog signal to a constant potential regardless of the gain adjusted by the analog gain adjustment unit,
    An electronic device having an imaging device.
PCT/JP2019/049579 2019-01-25 2019-12-18 Digital-analog conversion device, imaging device, and electronic equipment WO2020153055A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-010918 2019-01-25
JP2019010918A JP2020120307A (en) 2019-01-25 2019-01-25 Digital-analog conversion device, imaging device, and electronic equipment

Publications (1)

Publication Number Publication Date
WO2020153055A1 true WO2020153055A1 (en) 2020-07-30

Family

ID=71736793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049579 WO2020153055A1 (en) 2019-01-25 2019-12-18 Digital-analog conversion device, imaging device, and electronic equipment

Country Status (2)

Country Link
JP (1) JP2020120307A (en)
WO (1) WO2020153055A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022096480A (en) * 2020-12-17 2022-06-29 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element
JP2023039319A (en) * 2021-09-08 2023-03-20 株式会社テックイデア Image sensor and image-sensing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006148964A (en) * 2006-01-11 2006-06-08 Renesas Technology Corp D/a converter
JP2009303042A (en) * 2008-06-16 2009-12-24 Sony Corp Digital/analog conversion circuit, solid-state imaging apparatus, camera system and method for analog conversion of digital code
JP2010154562A (en) * 2010-03-23 2010-07-08 Sony Corp Ad converter, solid state imaging device, and semiconductor device
JP2011035627A (en) * 2009-07-31 2011-02-17 Toshiba Corp Ramp wave generation circuit
JP2011259407A (en) * 2010-05-13 2011-12-22 Sony Corp Signal processing circuit, solid state image sensor, and camera system
JP2015089083A (en) * 2013-11-01 2015-05-07 日本電波工業株式会社 Variable-voltage output circuit and variable-voltage output device
JP2018019269A (en) * 2016-07-28 2018-02-01 ソニーセミコンダクタソリューションズ株式会社 Sensor, driving method, and electronic apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006148964A (en) * 2006-01-11 2006-06-08 Renesas Technology Corp D/a converter
JP2009303042A (en) * 2008-06-16 2009-12-24 Sony Corp Digital/analog conversion circuit, solid-state imaging apparatus, camera system and method for analog conversion of digital code
JP2011035627A (en) * 2009-07-31 2011-02-17 Toshiba Corp Ramp wave generation circuit
JP2010154562A (en) * 2010-03-23 2010-07-08 Sony Corp Ad converter, solid state imaging device, and semiconductor device
JP2011259407A (en) * 2010-05-13 2011-12-22 Sony Corp Signal processing circuit, solid state image sensor, and camera system
JP2015089083A (en) * 2013-11-01 2015-05-07 日本電波工業株式会社 Variable-voltage output circuit and variable-voltage output device
JP2018019269A (en) * 2016-07-28 2018-02-01 ソニーセミコンダクタソリューションズ株式会社 Sensor, driving method, and electronic apparatus

Also Published As

Publication number Publication date
JP2020120307A (en) 2020-08-06

Similar Documents

Publication Publication Date Title
US11323648B2 (en) Solid-state image sensor and electronic apparatus
CN111615824B (en) Imaging device and electronic apparatus
US11659300B2 (en) Solid-state image sensor, method of driving solid-state image sensor, and electronic apparatus
US11146753B2 (en) Imaging apparatus, signal processing method for imaging apparatus, and electronic equipment
CN109981837B (en) Solid-state imaging element, comparator, and electronic apparatus
WO2020080383A1 (en) Imaging device and electronic equipment
US20230047180A1 (en) Imaging device and imaging method
US11418750B2 (en) Imaging element and electronic device
WO2020153055A1 (en) Digital-analog conversion device, imaging device, and electronic equipment
CN113647089A (en) Imaging system
US11336855B2 (en) Analog-digital converter, analog-digital conversion method, and imaging device
US20230217127A1 (en) Imaging device and imaging method
WO2021153428A1 (en) Imaging device, electronic apparatus, and imaging method
WO2022186040A1 (en) Image capturing device, method for driving same, and electronic appliance
TW202341722A (en) Comparator, amplifier, and solid-state imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912040

Country of ref document: EP

Kind code of ref document: A1