WO2020152905A1 - Stacked piezoelectric element and piezoelectric actuator - Google Patents

Stacked piezoelectric element and piezoelectric actuator Download PDF

Info

Publication number
WO2020152905A1
WO2020152905A1 PCT/JP2019/036499 JP2019036499W WO2020152905A1 WO 2020152905 A1 WO2020152905 A1 WO 2020152905A1 JP 2019036499 W JP2019036499 W JP 2019036499W WO 2020152905 A1 WO2020152905 A1 WO 2020152905A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
bending
piezoelectric element
electrode
laminated
Prior art date
Application number
PCT/JP2019/036499
Other languages
French (fr)
Japanese (ja)
Inventor
哲哉 荒澤
孝一 新美
尚彦 内田
Original Assignee
株式会社フコク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フコク filed Critical 株式会社フコク
Publication of WO2020152905A1 publication Critical patent/WO2020152905A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/04Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals

Definitions

  • the present invention relates to a laminated piezoelectric element and a piezoelectric actuator.
  • a piezoelectric actuator is a device that converts electrical energy into mechanical energy. For example, it is possible to rotate the rotating body or move the moving body by electrically driving the piezoelectric actuator.
  • the piezoelectric actuator can be operated by applying an electric signal to a piezoelectric element included in the piezoelectric actuator to cause it to vibrate and transmitting the vibration to a rotating body or a moving body via an output member.
  • piezoelectric actuators are being considered, and they are characterized by low speed, high torque, and excellent quietness. For example, it is used as a drive source for a mechanism that requires precise positioning, such as a focus operation of a camera or a microscope.
  • the structure of the piezoelectric actuator is diverse, when a piezoelectric element is used as the electromechanical conversion element, a laminated piezoelectric element in which a plurality of relatively thin piezoelectric elements are laminated may be used.
  • a laminated piezoelectric element in which a plurality of relatively thin piezoelectric elements are laminated may be used.
  • an equivalent amount of displacement can be obtained at a lower voltage as compared with a piezoelectric element using a non-laminated piezoelectric body having the same thickness.
  • Patent Document 1 by laminating a plurality of layers of piezoelectric elements and operating these piezoelectric elements, the laminate is bent and expanded and contracted, and an elliptic motion is generated in a driver element for extracting an output.
  • Piezoelectric elements and ultrasonic actuators are disclosed.
  • the laminated piezoelectric element described in Patent Document 1 is provided with a common electrode for bending drive and extension/contraction drive to perform expansion/contraction and bending operations. Therefore, with the ultrasonic actuator described in Patent Document 1, it is difficult to change the trajectory of the driver element that makes an elliptic motion even if the input signal is adjusted. In other words, in the ultrasonic actuator described in Patent Document 1, even if the input signal is adjusted, the locus of the driver element that makes an elliptic motion is expanded or reduced while maintaining a similar shape.
  • a piezoelectric actuator is required to move a rotating body or a moving body to be operated at an arbitrary operation length, an arbitrary speed, and an arbitrary acceleration.
  • the output extraction member of the piezoelectric actuator needs a period of contact with the target and a period of separation thereof. Then, the target is operated by moving the target in the target direction during the contact period.
  • One of the problems relating to the present invention is to provide a laminated piezoelectric element and a piezoelectric actuator capable of operating a target accurately and efficiently.
  • a flat piezoelectric layer having a longitudinal direction and a lateral direction in a plan view includes a laminated structure in which a plurality of layers are laminated in the laminating direction,
  • the laminated structure is A first piezoelectric layer that is one of the plurality of piezoelectric layers; and a pair of expansion/contraction electrodes that sandwich the first piezoelectric layer, and the first piezoelectric body is formed by inputting a signal to the pair of expansion/contraction electrodes.
  • a piezoelectric element for expansion and contraction in the longitudinal direction of the layer A second piezoelectric body layer, which is one of the plurality of piezoelectric body layers, and a bending electrode pair that sandwiches the second piezoelectric body layer, and the second piezoelectric body is formed by inputting a signal to the bending electrode pair.
  • a bending piezoelectric element that bends in the lateral direction of the layer, Including The expansion/contraction piezoelectric element is arranged so as to include a central position of the laminated structure in the laminating direction.
  • the laminated structure is A wiring layer formed on two side surfaces parallel to the longitudinal direction, The wiring layer may be formed at a position corresponding to a node in flexural vibration when the laminated piezoelectric element operates.
  • the bending electrode pair On one surface of the second piezoelectric layer, four split electrodes arranged in each of four regions divided into two in the longitudinal direction and the lateral direction of the second piezoelectric layer, A first electrode for bending, which includes a connection wiring for connecting a pair of divided electrodes arranged diagonally among the four divided electrodes, A second bending electrode disposed on the other surface of the second piezoelectric layer and facing the first bending electrode with the second piezoelectric layer interposed therebetween;
  • the second bending electrode may include at least a non-overlapping region that does not overlap the connection wiring when the bending piezoelectric element is viewed in the stacking direction of the stacked structure.
  • the bending second electrode is located at a position corresponding to a space between the divided electrodes facing each other in the longitudinal direction or the lateral direction of the second piezoelectric layer among the plurality of divided electrodes forming the bending first electrode. It may have voids.
  • the elastic electrode pair Formed on the surface of the first piezoelectric layer so as to extend in the longitudinal direction of the first piezoelectric layer; A constricted portion having a small width of the electrode in the lateral direction may be provided between both ends and a central portion in the longitudinal direction of the first piezoelectric layer.
  • the laminated structure on the surface of one end side in the stacking direction, is provided with an expansion input terminal connected to the expansion electrode pair, and a bending input terminal connected to the bending electrode pair,
  • the expansion/contraction input terminal and the bending input terminal may be formed at positions corresponding to nodes in expansion/contraction vibration or bending vibration when the multilayer piezoelectric element operates.
  • One aspect of the piezoelectric actuator according to the present invention is A laminated piezoelectric element according to any one of claims 1 to 6, An output extraction member fixed to the laminated piezoelectric element, Equipped with.
  • the bending vibration and the stretching vibration can be individually set to realize the optimum elliptic motion, so that the operation target can be moved accurately and efficiently. ..
  • FIG. 1 is a perspective view schematically showing a laminated piezoelectric element according to an embodiment.
  • FIG. 2 is a schematic diagram of the laminated piezoelectric element according to the embodiment.
  • FIG. 3 is a schematic diagram showing an example of the electrode pattern of the expansion/contraction electrode according to the embodiment.
  • FIG. 4 is a schematic diagram showing an example of the electrode pattern of the expansion/contraction electrode according to the embodiment.
  • FIG. 5 is a schematic diagram which shows an example of the electrode pattern of the electrode for bending which concerns on embodiment.
  • FIG. 6 is a schematic diagram showing an example of the electrode pattern of the bending electrode according to the embodiment.
  • FIG. 7 is a schematic diagram showing an example of the electrode pattern of the bending electrode according to the embodiment.
  • FIG. 1 is a perspective view schematically showing a laminated piezoelectric element according to an embodiment.
  • FIG. 2 is a schematic diagram of the laminated piezoelectric element according to the embodiment.
  • FIG. 3 is a schematic diagram showing an example
  • FIG. 8 is a schematic view showing the shape of bending deformation of the laminated piezoelectric element.
  • FIG. 9 is a schematic diagram showing the shape of expansion and contraction of the laminated piezoelectric element.
  • FIG. 10 is a schematic view showing the piezoelectric actuator according to the embodiment.
  • FIG. 1 is a perspective view schematically showing a laminated piezoelectric element 100 according to the embodiment.
  • the scale and relative size of each member are not necessarily accurate for convenience of explanation.
  • the laminated piezoelectric element 100 of the present embodiment includes a laminated structure 50 in which a plurality of flat plate-shaped piezoelectric layers having a longitudinal direction and a lateral direction in a plan view are laminated in the laminating direction.
  • the laminated structure 50 includes the expansion/contraction piezoelectric element 10 and the bending piezoelectric element 20, and the expansion/contraction piezoelectric element 10 includes the center position in the stacking direction of the laminated structure 50. The center position will be described later with reference to FIG.
  • the direction in which the piezoelectric layers are stacked may be referred to as the “stacking direction” and is shown as the Z axis in each figure. Further, the plan view refers to an image projected by a virtual ray parallel to the stacking direction.
  • having a longitudinal direction means having a longitudinal direction.
  • the longitudinal direction means, for example, a direction along the long side in the case of a rectangle, and a direction along the major axis in the case of an ellipse.
  • the longitudinal direction is shown as the Y-axis in each figure.
  • the short-side direction refers to the direction along the short side in the case of a rectangle, and the direction along the short diameter in the case of an ellipse.
  • the lateral direction is shown as the X-axis in each figure.
  • the laminated piezoelectric element 100 includes a laminated structure 50 and one side of a surface 110 of the laminated structure 50 that is orthogonal to the laminating direction (that is, a surface on one end side of the laminated structure), an expansion input terminal 60, and a bending input terminal 60. And an input terminal 70. Further, the laminated piezoelectric element 100 includes the wiring layer 80 formed on the two side surfaces 112 and 113 parallel to the longitudinal direction of the laminated structure 50. The expansion input terminal 60 and the bending input terminal 70 are both electrically connected to the corresponding wiring layer 80.
  • the laminated structure 50 has a structure in which a plurality of piezoelectric layers are stacked in the stacking direction, fired, and sintered. Therefore, in some cases, the boundaries of layers do not appear clearly on the side surfaces 112 and 113 parallel to the stacking direction of the stacked structure 50. In this case, each piezoelectric layer can be confirmed by microscopic observation or cross-sectional observation. In addition, although each electrode does not appear on the side surfaces 112 and 113 of the laminated structure 50, in the range depicted in FIG. 1, each electrode has an end inside the side surfaces 112 and 113 of the laminated structure 50. Because it has.
  • FIG. 2 is a schematic diagram of the laminated piezoelectric element 100 according to the embodiment.
  • a vertical cross-section of the laminated structure of the laminated piezoelectric element 100 is schematically drawn, and on the right side of FIG. 2, each electrode pattern in plan view of the laminated piezoelectric element 100 is schematically drawn. There is.
  • the laminated piezoelectric element 100 has a plurality of, for example, 12 piezoelectric layers in the laminated structure 50.
  • the laminated structure 50 includes four first piezoelectric layers 11 and four second piezoelectric layers 21.
  • the first piezoelectric layer 11 is sandwiched by the expansion/contraction electrode pair 19 to form the expansion/contraction piezoelectric element 10, and expands/contracts in the longitudinal direction by inputting a signal to the expansion/contraction electrode pair.
  • the laminated structure 50 includes four layers of the piezoelectric element 10 for expansion and contraction.
  • the second piezoelectric layer 21 is sandwiched by the bending electrode pair 29 to form the bending piezoelectric element 20, and is bent in the lateral direction by inputting a signal to the bending electrode pair. Further, the laminated structure 50 includes four layers of the bending piezoelectric element 20.
  • One electrode of the expansion/contraction electrode pair 19 is common to the adjacent expansion/contraction piezoelectric elements 10, and one electrode of the bending electrode pair 29 is common to the adjacent bending piezoelectric element 20. Has become.
  • the piezoelectric layer sandwiched between one electrode of the expansion/contraction electrode pair 19 and one electrode of the bending electrode pair 29 functions as a non-polarization layer.
  • This is the non-polarizing piezoelectric layer 40.
  • the piezoelectric layers having the one electrode of the expansion/contraction electrode pair 19 or the one electrode of the bending electrode pair 29 on only one side are provided at both ends of the laminated structure 50 in the laminating direction.
  • the surface piezoelectric layer 30 is arranged.
  • the laminated structure 50 includes the two layers of the non-polarizing piezoelectric layer 40 and the two layers of the surface piezoelectric layer 30.
  • the non-polarizing piezoelectric layer 40 is arranged between the expansion piezoelectric element 10 and the bending piezoelectric element 20, and the surface piezoelectric layers 30 are provided at both ends of the laminated structure 50 in the laminating direction. It is arranged.
  • the non-polarizing piezoelectric layer 40 is grounded in the expansion/contraction electrode pair 19 and grounded in the bending electrode pair 29. It is preferably sandwiched between electrodes. This is because in the absence of the non-polarizing piezoelectric layer 40, there is a piezoelectric layer in which a sufficient polarization region cannot be obtained even if a voltage for polarizing the piezoelectric layer is applied, resulting in a large power consumption. This is because it will end up. To avoid this, the power consumption is suppressed by forming the non-polarizing piezoelectric layer 40.
  • the expansion/contraction electrode pair 19 is composed of an electrode pattern C and an electrode pattern D.
  • the bending electrode pair 29 includes an electrode pattern B and an electrode pattern E.
  • the electrode patterns D and E are preferably ground electrodes. Each electrode pattern will be described later.
  • the expansion piezoelectric element 10 and the bending piezoelectric element 20 have the same contour in plan view. Then, in the laminated structure 50, the contours of the piezoelectric element 10 for expansion and contraction and the contours of the piezoelectric element 20 for bending overlap in a plan view.
  • the four piezoelectric elements 10 for expansion and contraction are arranged on the side closer to the central position G in the laminating direction of the laminated structure 50, and the bending piezoelectric element 20 is arranged on the side farther from the central position G for the central position G.
  • Two pieces are arranged symmetrically with respect to.
  • the center position G of the laminated structure 50 in the laminating direction is included in the two elastic piezoelectric elements 10 inside the four elastic piezoelectric elements 10. More specifically, in the laminated piezoelectric element 100, the center position G of the laminated structure 50 in the laminating direction is an electrode common to the two elastic piezoelectric elements 10 inside the four elastic piezoelectric elements 10. Included in pattern D.
  • the laminated structure 50 is a continuous body made of sintered ceramics. Therefore, the expansion and contraction of the laminated structure 50 starts from the center position G of the laminated structure 50 and expands and contracts in the longitudinal direction of the laminated structure 50.
  • the expansion/contraction piezoelectric element 10 is arranged so as to include the central position G in the stacking direction of the laminated structure 50, so that when the laminated piezoelectric element 100 is driven, the origin of the expansion/contraction operation (stretching vibration) is the laminated structure. It can be brought close to the center position G of the body 50. As a result, since it is possible to expand and contract in the longitudinal direction of the laminated structure 50 with the vicinity of the central position G as the starting point, it is possible to improve the efficiency of stretching vibration.
  • the center position G of the laminated structure 50 is, for example, the center of gravity of the laminated structure 50.
  • FIG. 3 is a schematic diagram showing one electrode pattern D of the stretching electrode pair 19.
  • FIG. 4 is a schematic diagram showing the other electrode pattern C of the expansion/contraction electrode pair 19.
  • FIG. 5 is a schematic diagram showing one electrode pattern B of the bending electrode pair 29.
  • FIG. 6 is a schematic diagram showing the other electrode pattern E of the bending electrode pair 29.
  • FIG. 3 shows one electrode pattern D of the expansion/contraction electrode pair 19 formed on the first piezoelectric layer 11. Further, FIG. 4 shows one electrode pattern C of the expansion/contraction electrode pair 19 formed on the first piezoelectric layer 11.
  • the electrodes of the electrode pattern D shown in FIG. 3 and the electrodes of the electrode pattern C shown in FIG. 4 can form a stretchable electrode pair 19. That is, the expansion/contraction piezoelectric element 10 is formed by sandwiching the first piezoelectric layer 11 between the electrode of the electrode pattern D and the electrode of the electrode pattern C.
  • the electrode patterns D and C have the same shape in plan view except for the lead-out portion 15 when the first piezoelectric layer 11 is sandwiched between the electrode patterns D and C.
  • the lead-out portion 15 extends to the lateral ends (side surfaces 112 and 113) of the first piezoelectric layer 11 so as to be electrically connected to the wiring layer 80.
  • the electrode pattern D and the electrode pattern C have two lead portions 15 in total, and each of them can be electrically connected to the wiring layer 80 at different positions on the side surfaces 112 and 113 of the laminated structure 50. ing.
  • the electrode of the electrode pattern D and the electrode of the electrode pattern C have the same shape with the first piezoelectric layer 11 interposed therebetween except for the lead-out portion 15, they do not participate in the driving of the first piezoelectric layer 11. Since the polarization region can be reduced, it is possible to suppress waste of electric power and heat generation during driving. This is because when a region of the first piezoelectric layer 11 that is not involved in driving is polarized, a current is generated in that region during driving. Further, by making the electrode area to the minimum necessary, the factors that hinder vibration can be reduced.
  • the planar shapes of the electrode pattern D and the electrode pattern C are arbitrary, but in the illustrated example, the electrode pattern D and the electrode pattern C extend in the longitudinal direction on the surface of the first piezoelectric layer 11. ing. Further, in the illustrated example, the shapes of the electrode pattern D and the electrode pattern C have a constricted portion 18 having a small width in the lateral direction between the longitudinal end portions 16 and the central portion 17. ..
  • the area of the electrodes of the electrode pattern D and the electrode pattern C should be designed to be larger in the central portion 17 and smaller toward the both end portions 16 so that the expansion/contraction operation is sufficiently performed and the power consumption is reduced. It is preferable from the viewpoint.
  • a load for compressing the expansion/contraction piezoelectric element 10 in the longitudinal direction is applied, as in the case where the laminated piezoelectric element 100 is used as a piezoelectric actuator and abutted against and pressed against an object to be driven, the load is further increased.
  • the expansion/contraction operation can be made more efficient. From this point of view, as shown in the figure, it is more preferable to provide the electrode pattern D and the electrode pattern C with a constricted portion 18 having a small width in the lateral direction between the longitudinal end portions 16 and the central portion 17. preferable.
  • FIG. 5 shows one electrode pattern B of the bending electrode pair 29 formed on the second piezoelectric layer 21. Further, FIG. 6 shows one electrode pattern E of the bending electrode pair 29 formed on the second piezoelectric layer 21.
  • the electrodes of the electrode pattern B shown in FIG. 4 and the electrodes of the electrode pattern E shown in FIG. 5 can form a bending electrode pair 29. That is, the bending piezoelectric element 20 is formed by sandwiching the second piezoelectric layer 21 by the electrode of the electrode pattern B and the electrode of the electrode pattern E.
  • the electrode pattern B includes four divided electrodes 26a, 26b, 26c, 26d arranged in each of four regions formed by dividing the surface of the second piezoelectric layer 21 into two in the longitudinal direction and the lateral direction.
  • the electrode pattern B is the end of the second piezoelectric layer 21 in the lateral direction from each of the two divided electrodes 26b, 26c which are not connected by the connection wiring 27 among the four divided electrodes 26a, 26b, 26c, 26d.
  • the electrode pattern E has a shape that includes the four divided electrodes 26a, 26b, 26c, and 26d of the electrode pattern B when the electrode pattern B is stacked except the second piezoelectric layer 21. .. Therefore, polarized regions corresponding to the four divided electrodes 26a, 26b, 26c, 26d can be obtained.
  • the electrode pattern E is a lead-out that extends to the end in the lateral direction at a position different from the three lead-out portions 25 of the electrode pattern B when the electrode pattern B is stacked except for the second piezoelectric layer 21. It has a section 25.
  • the electrode pattern E has an opening 27a at a position corresponding to the connection wiring 27 of the electrode pattern B when the electrode pattern B is stacked except for the second piezoelectric layer 21. No electrode is present in the opening 27a. It can be said that the opening 27a is a non-overlapping region that does not overlap with the connection wiring 27.
  • the electrode of the electrode pattern E has the opening 27a and does not overlap with the connection wiring 27, the region of the second piezoelectric layer 21 that is not involved in driving is not polarized, and waste of power and heat generation during driving are suppressed. be able to.
  • the electrode pattern B and the electrode pattern E have a total of four lead portions 25, and each can be electrically connected to the wiring layer 80 at different positions on the side surfaces 112 and 113 of the laminated structure 50.
  • FIG. 7 is a schematic diagram showing an electrode pattern F which is a modified example of the electrode pattern E.
  • the electrodes when the electrode pattern B is overlapped except for the second piezoelectric layer 21, the electrodes also exist in the gaps between the divided electrodes 26a, 26b, 26c and 26d of the electrode pattern B. It was That is, the polarization region that is not involved in driving the second piezoelectric layer 21 is formed in the gap between the divided electrodes 26a, 26b, 26c, and 26d.
  • slit-shaped openings 27b are formed at positions corresponding to the gaps between the divided electrodes 26a, 26b, 26c, 26d. That is, the electrode pattern F has a void at a position corresponding to the void between the divided electrodes facing each other in the longitudinal direction or the lateral direction of the plurality of divided electrodes of the electrode pattern B.
  • the region of the second piezoelectric layer 21 that is not involved in driving is not polarized, so that it is possible to further suppress power waste and heat generation during driving.
  • the laminated piezoelectric element 100 of the present embodiment includes the bending piezoelectric element 20 having four layers, the effect of providing the openings 27a and 27b like the electrode patterns E and F is remarkable. appear. The effect becomes more remarkable as the number of the bending piezoelectric elements 20 increases.
  • FIG. 8 is a schematic diagram in which bending vibration of the multilayer piezoelectric element 100 is simulated and a deformation state is viewed in plan.
  • FIG. 9 is a schematic diagram in which the expansion and contraction vibration of the laminated piezoelectric element 100 is simulated and the deformation is viewed in plan.
  • the deformation amount is enlarged and shown in order to visualize the deformation. Further, illustration of each terminal is omitted in FIGS. 8 and 9.
  • nodes When the laminated piezoelectric element 100 flexurally vibrates at a frequency near the resonance frequency, three regions with less displacement occur. In addition, as shown in FIG. 9, when the laminated piezoelectric element 100 expands and contracts at a frequency near the resonance frequency, one region having a small displacement is generated. These areas with less displacement are called "nodes". In FIG. 8 and FIG. 9, the positions of the nodes are shown surrounded by a chain line.
  • the wiring layer 80 is electrically connected to the expansion electrode pair 19 and the bending electrode pair 29, respectively.
  • the wiring layer 80 connected to the expansion/contraction electrode pair 19 is electrically connected to the expansion/contraction input terminal 60.
  • the wiring layer 80 connected to the bending electrode pair 29 is electrically connected to the bending input terminal 70.
  • the wiring layer 80 is formed on the side surfaces 112 and 113 of the laminated structure 50 parallel to the longitudinal direction, and corresponds to any node in bending vibration when the laminated piezoelectric element 100 operates. It is preferably formed in position.
  • expansion/contraction input terminal 60 and the bending input terminal 70 are preferably arranged at positions corresponding to any nodes in the expansion/contraction vibration and the bending vibration when the laminated piezoelectric element 100 operates.
  • the expansion/contraction input terminal 60 is a node in expansion/contraction motion and bending vibration when the multilayer piezoelectric element 100 operates, and may be arranged at a position corresponding to a node generated in the central region in the longitudinal direction. More preferable.
  • the flexural displacement is small in the nodes in flexural vibration when the multilayer piezoelectric element 100 operates, but the flexural displacement is large in the regions other than the nodes. Since all of the wiring layer 80, the expansion/contraction input terminal 60, and the bending input terminal 70 adversely affect the stretching vibration and the bending vibration, the multilayer piezoelectric element 100 is consumed when it is provided in a region other than the node. Increased power.
  • each piezoelectric layer described above is appropriately set according to the specifications such as the size, material, and application of the laminated piezoelectric element, but 20 ⁇ m or more and 200 ⁇ m or less, preferably 30 ⁇ m It is 180 ⁇ m or less and more preferably 50 ⁇ m or more and 150 ⁇ m or less. If the thickness of the piezoelectric layer is less than 20 ⁇ m, the amount of deformation may be insufficient, and if it exceeds 200 ⁇ m, the driving voltage may increase and a booster circuit or the like may be required.
  • each of the above-mentioned piezoelectric layers is not limited as long as it exhibits piezoelectricity, but exhibits a perovskite type crystal structure such as lead zirconate titanate (PZT) and potassium sodium niobate (KNN). An oxide is mentioned. Further, other elements may be added to these compounds.
  • PZT lead zirconate titanate
  • KNN potassium sodium niobate
  • the above-mentioned various electrodes, wirings, terminals, etc. can be formed by, for example, screen printing on the piezoelectric layer before firing.
  • the thickness of various electrodes, wirings, terminals and the like is, for example, 20 nm or more and 20 ⁇ m or less, preferably 100 nm or more and 10 ⁇ m or less, and more preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the materials for the electrodes, wirings, terminals and the like are not particularly limited as long as they can be sintered together with the piezoelectric layer to maintain the shape and obtain conductivity.
  • Examples of materials for the electrodes, wirings, terminals and the like include metals and alloys such as silver, gold, platinum, palladium, copper and aluminum, and conductive oxides such as indium stannate (ITO), which may have a multilayer structure.
  • metals and alloys such as silver, gold, platinum, palladium, copper and aluminum
  • conductive oxides such as indium stannate (ITO), which may have a multilayer structure.
  • the signal applied to the expansion/contraction electrode pair 19 and the bending electrode pair 29 is preferably an AC signal having a frequency near the resonance frequency of the laminated piezoelectric element.
  • the voltage of the signal is, for example, 1 Vrms or more and 5 Vrms or less.
  • one of the two electrodes of the expansion/contraction electrode pair 19 may be set to the ground potential
  • one of the two electrodes of the bending electrode pair 29 may be set to the ground potential.
  • the electrode of the electrode pattern D and the electrode of the electrode pattern E are set to the ground potential.
  • the same electric potential is applied to the electrodes arranged with the non-polarizing piezoelectric layer 40 located at the boundary between the bending piezoelectric element 20 and the expansion piezoelectric element 10 interposed therebetween. More preferably, a ground potential is applied.
  • one of the predetermined electrode patterns B to E is formed on the surface of a plurality of piezoelectric layers, and a plurality of these are laminated and sintered to manufacture a laminated structure 50, and wiring It can be manufactured by providing the layer 80.
  • the electrode of the electrode pattern A is formed on one surface of the corresponding piezoelectric layer, and this is laminated and sintered. It can be formed.
  • the laminated piezoelectric element 100 including 12 piezoelectric layers has been described, but the number and arrangement of the piezoelectric layers and the piezoelectric elements included in the element are such that the piezoelectric element 10 for expansion and contraction is the laminated structure. It is not limited as long as it includes the center position G of 50 in the stacking direction. For example, a symmetrical number in the stacking direction may or may not be arranged with reference to the center position G of the stack structure 50 in the stacking direction. Further, the expansion/contraction piezoelectric element 10 may be arranged in addition to the end side in the stacking direction as long as it is arranged at a position including the central position G.
  • the laminated piezoelectric element 100 can drive the expansion/contraction piezoelectric element 10 that expands/contracts and vibrates and the bending piezoelectric element 20 that flexurally vibrates by different input signals.
  • the amplitude and frequency of stretching vibration and bending vibration can be controlled independently.
  • the amplitude of flexural vibration can be changed while maintaining the amplitude of stretching vibration.
  • the piezoelectric actuator 300 of the present embodiment includes the above-described laminated piezoelectric element 100 and the output extraction member 90 fixed to the laminated piezoelectric element 100.
  • FIG. 10 is a schematic diagram showing an example of a piezoelectric actuator 300 including the laminated piezoelectric element 100.
  • the piezoelectric actuator 300 of this embodiment includes the laminated piezoelectric element 100 and the output extraction member 90 fixed to one of the side surfaces of the laminated piezoelectric element 100 perpendicular to the longitudinal direction.
  • the output extracting member 90 is a member that is pressed against an object such as a rotating body or a moving body (not shown).
  • the output extraction member 90 can transmit the operation of the piezoelectric actuator 300 to an object.
  • the output extraction member 90 is fixed to the laminated piezoelectric element 100 using, for example, an adhesive.
  • the material of the output extraction member 90 is not particularly limited, but a material having high wear resistance is preferable.
  • the shape of the output extraction member 90 is also arbitrary, and is appropriately designed according to the vibration mode of the laminated piezoelectric element, the property of the operation target, and the like.
  • the piezoelectric actuator 300 of the present embodiment includes the above-described laminated piezoelectric element 100, it is possible to control the operation of the rotating body or the moving body, which is the target of the operation, with a high degree of freedom and reduce the efficiency of the operation with respect to the input. Can be operated accurately without
  • the present invention is not limited to the above-described embodiment, and various modifications can be made.
  • the invention includes configurations that are substantially the same as the configurations described in the embodiments (for example, configurations having the same function, method and result, or configurations having the same purpose and effect).
  • the invention includes configurations in which non-essential parts of the configurations described in the embodiments are replaced.
  • the invention includes a configuration that achieves the same effect as the configuration described in the embodiment or a configuration that can achieve the same object.
  • the invention includes configurations in which known techniques are added to the configurations described in the embodiments.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

Provided is a stacked piezoelectric element that is capable of accurately and efficiently operating a target. The stacked piezoelectric element 100 comprises a stacked structure 50 in which a plurality of piezoelectric body layers have been stacked in a stacking direction. An expansion-contraction piezoelectric element 10 comprises a first piezoelectric body layer 11 and an expansion-contraction electrode pair 19 sandwiching the first piezoelectric body layer 11, and expands and contracts in the lengthwise direction of the first piezoelectric body layer via signals input to the expansion-contraction electrode pair 19. A flexural piezoelectric element 20 comprises a second piezoelectric body layer 21 and a flexural electrode pair 29 sandwiching the second piezoelectric body layer 21, and flexes in the widthwise direction of the second piezoelectric body layer via signals input to the flexural electrode pair 29. The expansion-contraction piezoelectric element 10 is disposed so as to include a central position in the stacking direction of the stacked structure 50.

Description

積層型圧電素子及び圧電アクチュエーターMultilayer piezoelectric element and piezoelectric actuator
 本発明は、積層型圧電素子及び圧電アクチュエーターに関する。 The present invention relates to a laminated piezoelectric element and a piezoelectric actuator.
 圧電アクチュエーターは、電気的エネルギーを機械的エネルギーに変換する装置である。例えば、圧電アクチュエーターを電気的に駆動することにより回転体を回転させたり移動体を移動させたりすることができる。例えば、圧電アクチュエーターは、圧電アクチュエーターが備える圧電素子に電気信号を印加して振動させ、その振動を出力部材を介して回転体や移動体に伝えることにより動作させることができる。 A piezoelectric actuator is a device that converts electrical energy into mechanical energy. For example, it is possible to rotate the rotating body or move the moving body by electrically driving the piezoelectric actuator. For example, the piezoelectric actuator can be operated by applying an electric signal to a piezoelectric element included in the piezoelectric actuator to cause it to vibrate and transmitting the vibration to a rotating body or a moving body via an output member.
 圧電アクチュエーターを用いた、モーター等が検討されており、低速高トルクで、静粛性に優れるといった特徴がある。例えば、カメラや顕微鏡のフォーカス動作を始めとし、精密な位置決めが要求される機構の駆動源として採用されている。 Motors that use piezoelectric actuators are being considered, and they are characterized by low speed, high torque, and excellent quietness. For example, it is used as a drive source for a mechanism that requires precise positioning, such as a focus operation of a camera or a microscope.
 圧電アクチュエーターの構造は多様であるが、電気機械変換素子として圧電素子を用いる場合、比較的薄い圧電素子を複数積層した積層圧電素子を用いることがある。積層圧電素子を用いると、同じ厚さの積層していない圧電体を用いた圧電素子と比較して、より低い電圧で、同等の変位量を得ることができる。 Although the structure of the piezoelectric actuator is diverse, when a piezoelectric element is used as the electromechanical conversion element, a laminated piezoelectric element in which a plurality of relatively thin piezoelectric elements are laminated may be used. When the laminated piezoelectric element is used, an equivalent amount of displacement can be obtained at a lower voltage as compared with a piezoelectric element using a non-laminated piezoelectric body having the same thickness.
 例えば、特許文献1には、複数層の圧電素子を積層し、これらの圧電素子を動作させることによって、積層体に屈曲及び伸縮の動作をさせ、出力を取り出すための駆動子に楕円運動を生じさせる圧電素子及び超音波アクチュエータが開示されている。 For example, in Patent Document 1, by laminating a plurality of layers of piezoelectric elements and operating these piezoelectric elements, the laminate is bent and expanded and contracted, and an elliptic motion is generated in a driver element for extracting an output. Piezoelectric elements and ultrasonic actuators are disclosed.
国際公開第2007/091443号International Publication No. 2007/091443
 しかしながら、特許文献1に記載の積層型の圧電素子では、積層圧電素子に屈曲駆動用と伸縮駆動用の共用の電極を設け伸縮及び屈曲の動作を行う。そのため、特許文献1に記載の超音波アクチュエータでは、入力信号を調節しても、楕円運動する駆動子の軌跡を変更することが困難である。換言すると、特許文献1に記載の超音波アクチュエータでは、入力信号を調節しても、楕円運動する駆動子の軌跡は、相似形のままで拡大又は縮小させることとなる。 However, in the laminated piezoelectric element described in Patent Document 1, the laminated piezoelectric element is provided with a common electrode for bending drive and extension/contraction drive to perform expansion/contraction and bending operations. Therefore, with the ultrasonic actuator described in Patent Document 1, it is difficult to change the trajectory of the driver element that makes an elliptic motion even if the input signal is adjusted. In other words, in the ultrasonic actuator described in Patent Document 1, even if the input signal is adjusted, the locus of the driver element that makes an elliptic motion is expanded or reduced while maintaining a similar shape.
 もとより圧電アクチュエーターには、動作の対象となる回転体や移動体を、任意の動作長、任意の速度、任意の加速度で運動させることが求められる。圧電アクチュエーターにより対象を動作させる場合、圧電アクチュエーターの出力取り出し部材は、対象に対して接触する期間と、離間する期間とが必要である。そして接触する期間の間に対象を目的の方向に移動させることで対象を動作させる。 Originally, a piezoelectric actuator is required to move a rotating body or a moving body to be operated at an arbitrary operation length, an arbitrary speed, and an arbitrary acceleration. When the target is operated by the piezoelectric actuator, the output extraction member of the piezoelectric actuator needs a period of contact with the target and a period of separation thereof. Then, the target is operated by moving the target in the target direction during the contact period.
 ここで、動作の対象を小さい動作長や遅い速度で動作させたい場合、出力取り出し部材が対象に接触する期間の間に対象を目的の方向に移動させる量を小さくすればよい。しかしこの場合においても出力取り出し部材が対象に対して接触する期間、離間する期間、離間する距離は、それぞれ十分に確保される必要がある。 Here, if you want to operate the target of motion with a small motion length or slow speed, you can reduce the amount of moving the target in the target direction during the period in which the output extraction member contacts the target. However, even in this case, it is necessary to secure a sufficient period for the output take-out member to be in contact with the target, a period for separating the target, and a distance for separating the target.
 特許文献1に記載の超音波アクチュエータでは、動作の対象を小さい動作長、遅い速度で動作させたい場合、駆動子が対象に接触する期間の間に対象を目的の方向に移動させる量を小さくすると、楕円運動する駆動子の軌跡が相似形のままで縮小する。そのため、この場合、駆動子が対象から離間する期間及び離間する距離が少なくなることが懸念される。例えば、駆動子が対象から離間する期間が無くなると、駆動子が対象に接触する期間の間に対象を目的とは反対の方向に移動させてしまうことになり、入力に対する動作の効率が悪くなるばかりか、正確な動作を行うことが困難となる。 In the ultrasonic actuator described in Patent Document 1, when it is desired to operate an object to be operated with a small operation length and a slow speed, the amount of movement of the object in the target direction during the period in which the driver contacts the object is reduced. , The trajectory of the elliptical moving driver shrinks while maintaining a similar shape. Therefore, in this case, there is a concern that the period during which the driver element is separated from the target and the distance that the driver element is separated are reduced. For example, if there is no period in which the driver is separated from the target, the target will move in the direction opposite to the target during the period in which the driver contacts the target, and the efficiency of the operation for input will deteriorate. Not only that, it becomes difficult to carry out an accurate operation.
 本発明に係る課題の一つは、対象を正確かつ効率よく動作させることのできる積層型圧電素子及び圧電アクチュエーターを提供することにある。 One of the problems relating to the present invention is to provide a laminated piezoelectric element and a piezoelectric actuator capable of operating a target accurately and efficiently.
 本発明に係る積層型圧電素子の一態様は、
 平面視において長手方向及び短手方向を有する平板状の圧電体層が、積層方向に複数積層された積層構造体を含み、
 前記積層構造体は、
 複数の前記圧電体層の一である第1圧電体層と、前記第1圧電体層を挟む伸縮用電極対と、を含み、前記伸縮用電極対への信号の入力により前記第1圧電体層の長手方向に伸縮する伸縮用圧電素子と、
 複数の前記圧電体層の一である第2圧電体層と、前記第2圧電体層を挟む屈曲用電極対と、を含み、前記屈曲用電極対への信号の入力により前記第2圧電体層の短手方向に屈曲する屈曲用圧電素子と、
を含み、
 前記伸縮用圧電素子が、前記積層構造体の前記積層方向における中心位置を含むように配置される。
One aspect of the laminated piezoelectric element according to the present invention is
A flat piezoelectric layer having a longitudinal direction and a lateral direction in a plan view includes a laminated structure in which a plurality of layers are laminated in the laminating direction,
The laminated structure is
A first piezoelectric layer that is one of the plurality of piezoelectric layers; and a pair of expansion/contraction electrodes that sandwich the first piezoelectric layer, and the first piezoelectric body is formed by inputting a signal to the pair of expansion/contraction electrodes. A piezoelectric element for expansion and contraction in the longitudinal direction of the layer,
A second piezoelectric body layer, which is one of the plurality of piezoelectric body layers, and a bending electrode pair that sandwiches the second piezoelectric body layer, and the second piezoelectric body is formed by inputting a signal to the bending electrode pair. A bending piezoelectric element that bends in the lateral direction of the layer,
Including
The expansion/contraction piezoelectric element is arranged so as to include a central position of the laminated structure in the laminating direction.
 上記積層型圧電素子の態様において、
 前記積層構造体は、
 前記長手方向に平行な2つの側面に形成された配線層をさらに含み、
 前記配線層は、前記積層型圧電素子が動作した場合の屈曲振動における節に対応する位置に形成されてもよい。
In the aspect of the laminated piezoelectric element,
The laminated structure is
A wiring layer formed on two side surfaces parallel to the longitudinal direction,
The wiring layer may be formed at a position corresponding to a node in flexural vibration when the laminated piezoelectric element operates.
 上記積層型圧電素子のいずれかの態様において、
 前記屈曲用電極対は、
 前記第2圧電体層の一方の表面に、前記第2圧電体層の長手方向及び短手方向にそれぞれ2分割してなる4つの領域のそれぞれに配置された4つの分割電極と、
 前記4つの分割電極のうち対角位置に配置された1組の分割電極を接続する接続配線と、を含む、屈曲用第1電極と、
 前記第2圧電体層の他方の表面に配置され、前記第2圧電体層を挟んで前記屈曲用第1電極と対向する、屈曲用第2電極と、を含み、
 前記屈曲用第2電極は、前記屈曲用圧電素子を前記積層構造体の積層方向から見て、前記接続配線と重ならない非重複領域を少なくとも含んでもよい。
In any of the above-mentioned laminated piezoelectric elements,
The bending electrode pair,
On one surface of the second piezoelectric layer, four split electrodes arranged in each of four regions divided into two in the longitudinal direction and the lateral direction of the second piezoelectric layer,
A first electrode for bending, which includes a connection wiring for connecting a pair of divided electrodes arranged diagonally among the four divided electrodes,
A second bending electrode disposed on the other surface of the second piezoelectric layer and facing the first bending electrode with the second piezoelectric layer interposed therebetween;
The second bending electrode may include at least a non-overlapping region that does not overlap the connection wiring when the bending piezoelectric element is viewed in the stacking direction of the stacked structure.
 上記積層型圧電素子の態様において、
 前記屈曲用第2電極は、前記屈曲用第1電極を構成する複数の分割電極のうち、前記第2圧電体層の長手方向又は短手方向に対向する分割電極間の空隙に対応する位置に空隙を有してもよい。
In the aspect of the laminated piezoelectric element,
The bending second electrode is located at a position corresponding to a space between the divided electrodes facing each other in the longitudinal direction or the lateral direction of the second piezoelectric layer among the plurality of divided electrodes forming the bending first electrode. It may have voids.
 上記積層型圧電素子のいずれかの態様において、
 前記伸縮用電極対は、
 前記第1圧電体層の表面に前記第1圧電体層の長手方向に延在して形成され、
 前記第1圧電体層の長手方向における両端部と中央部との間に、前記短手方向における電極の幅が小さいくびれ部を有してもよい。
In any of the above-mentioned laminated piezoelectric elements,
The elastic electrode pair,
Formed on the surface of the first piezoelectric layer so as to extend in the longitudinal direction of the first piezoelectric layer;
A constricted portion having a small width of the electrode in the lateral direction may be provided between both ends and a central portion in the longitudinal direction of the first piezoelectric layer.
 上記積層型圧電素子のいずれかの態様において、
 前記積層構造体には、前記積層方向の一端側の表面に、前記伸縮用電極対に接続された伸縮用入力端子と、前記屈曲用電極対に接続された屈曲用入力端子とが設けられ、
 前記伸縮用入力端子及び屈曲用入力端子は、前記積層型圧電素子が動作した場合の伸縮振動あるいは屈曲振動における節に対応する位置に形成されてもよい。
In any of the above-mentioned laminated piezoelectric elements,
The laminated structure, on the surface of one end side in the stacking direction, is provided with an expansion input terminal connected to the expansion electrode pair, and a bending input terminal connected to the bending electrode pair,
The expansion/contraction input terminal and the bending input terminal may be formed at positions corresponding to nodes in expansion/contraction vibration or bending vibration when the multilayer piezoelectric element operates.
 本発明に係る圧電アクチュエーターの一態様は、
 請求項1ないし請求項6のいずれか一項に記載の積層型圧電素子と、
 前記積層型圧電素子に固定された出力取出部材と、
を備える。
One aspect of the piezoelectric actuator according to the present invention is
A laminated piezoelectric element according to any one of claims 1 to 6,
An output extraction member fixed to the laminated piezoelectric element,
Equipped with.
 本発明に係る積層型圧電素子及び圧電アクチュエーターは、屈曲振動と伸縮振動とを個別に設定することで、最適な楕円運動を実現できるので、動作対象物を正確にかつ効率よく移動させることができる。 In the laminated piezoelectric element and the piezoelectric actuator according to the present invention, the bending vibration and the stretching vibration can be individually set to realize the optimum elliptic motion, so that the operation target can be moved accurately and efficiently. ..
図1は、実施形態に係る積層型圧電素子を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing a laminated piezoelectric element according to an embodiment. 図2は、実施形態に係る積層型圧電素子の模式図である。FIG. 2 is a schematic diagram of the laminated piezoelectric element according to the embodiment. 図3は、実施形態に係る伸縮用電極の電極パターンの一例を示す模式図である。FIG. 3 is a schematic diagram showing an example of the electrode pattern of the expansion/contraction electrode according to the embodiment. 図4は、実施形態に係る伸縮用電極の電極パターンの一例を示す模式図である。FIG. 4 is a schematic diagram showing an example of the electrode pattern of the expansion/contraction electrode according to the embodiment. 図5は、実施形態に係る屈曲用電極の電極パターンの一例を示す模式図である。FIG. 5: is a schematic diagram which shows an example of the electrode pattern of the electrode for bending which concerns on embodiment. 図6は、実施形態に係る屈曲用電極の電極パターンの一例を示す模式図である。FIG. 6 is a schematic diagram showing an example of the electrode pattern of the bending electrode according to the embodiment. 図7は、実施形態に係る屈曲用電極の電極パターンの一例を示す模式図である。FIG. 7 is a schematic diagram showing an example of the electrode pattern of the bending electrode according to the embodiment. 図8は、積層型圧電素子の屈曲変形の形状を示す模式図である。FIG. 8 is a schematic view showing the shape of bending deformation of the laminated piezoelectric element. 図9は、積層型圧電素子の伸縮変形の形状を示す模式図である。FIG. 9 is a schematic diagram showing the shape of expansion and contraction of the laminated piezoelectric element. 図10は、実施形態に係る圧電アクチュエーターを示す模式図である。FIG. 10 is a schematic view showing the piezoelectric actuator according to the embodiment.
 以下に本発明のいくつかの実施形態について説明する。以下に説明する実施形態は、本発明の一例を説明するものである。本発明は以下の実施形態になんら限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形形態も含む。なお以下で説明される構成の全てが本発明の必須の構成であるとは限らない。 Some embodiments of the present invention will be described below. The embodiment described below describes an example of the present invention. The present invention is not limited to the following embodiments, and includes various modifications that are carried out without changing the gist of the present invention. Note that not all the configurations described below are essential configurations of the present invention.
 1.積層型圧電素子
 まず、図1を用いて本発明の一実施形態に係る積層型圧電素子100の概略を説明する。図1は、実施形態に係る積層型圧電素子100を模式的に示す斜視図である。図1では各部材の縮尺や相対的な寸法は、説明の便宜のために必ずしも正確ではない。
1. Multilayer Piezoelectric Element First, an outline of a multilayer piezoelectric element 100 according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a perspective view schematically showing a laminated piezoelectric element 100 according to the embodiment. In FIG. 1, the scale and relative size of each member are not necessarily accurate for convenience of explanation.
 本実施形態の積層型圧電素子100は、平面視において長手方向及び短手方向を有する平板状の圧電体層が、積層方向に複数積層された積層構造体50を含む。そして積層構造体50は、伸縮用圧電素子10と、屈曲用圧電素子20と、を含み、伸縮用圧電素子10が、積層構造体50の積層方向における中心位置を含む。なお中心位置については図2を用いて後述する。 The laminated piezoelectric element 100 of the present embodiment includes a laminated structure 50 in which a plurality of flat plate-shaped piezoelectric layers having a longitudinal direction and a lateral direction in a plan view are laminated in the laminating direction. The laminated structure 50 includes the expansion/contraction piezoelectric element 10 and the bending piezoelectric element 20, and the expansion/contraction piezoelectric element 10 includes the center position in the stacking direction of the laminated structure 50. The center position will be described later with reference to FIG.
 本明細書では、圧電体層が積層される方向を「積層方向」という場合があり、各図においてZ軸として示す。また平面視とは、積層方向に平行に仮想的な光線で投影した像のことをいう。 In this specification, the direction in which the piezoelectric layers are stacked may be referred to as the “stacking direction” and is shown as the Z axis in each figure. Further, the plan view refers to an image projected by a virtual ray parallel to the stacking direction.
 また、長手方向を有するとは、長手を有するという意味であり、長手方向とは、例えば長方形であれば長辺に沿う方向のことを指し、楕円であれば長径に沿う方向のことを指す。長手方向は、各図においてY軸として示す。一方、短手方向とは、例えば長方形であれば短辺に沿う方向のことを指し、楕円であれば短径に沿う方向のことを指す。短手方向は、各図においてX軸として示す。 Also, having a longitudinal direction means having a longitudinal direction. The longitudinal direction means, for example, a direction along the long side in the case of a rectangle, and a direction along the major axis in the case of an ellipse. The longitudinal direction is shown as the Y-axis in each figure. On the other hand, the short-side direction refers to the direction along the short side in the case of a rectangle, and the direction along the short diameter in the case of an ellipse. The lateral direction is shown as the X-axis in each figure.
 積層型圧電素子100は、積層構造体50と、積層構造体50の積層方向に直交する表面110の一方(すなわち、積層構造体の一端側の表面)に、伸縮用入力端子60と、屈曲用入力端子70と、を有する。また、積層型圧電素子100は、積層構造体50の長手方向に平行な2つの側面112,113に形成された配線層80を含む。伸縮用入力端子60及び屈曲用入力端子70は、いずれも対応する配線層80に電気的に接続されている。 The laminated piezoelectric element 100 includes a laminated structure 50 and one side of a surface 110 of the laminated structure 50 that is orthogonal to the laminating direction (that is, a surface on one end side of the laminated structure), an expansion input terminal 60, and a bending input terminal 60. And an input terminal 70. Further, the laminated piezoelectric element 100 includes the wiring layer 80 formed on the two side surfaces 112 and 113 parallel to the longitudinal direction of the laminated structure 50. The expansion input terminal 60 and the bending input terminal 70 are both electrically connected to the corresponding wiring layer 80.
 積層構造体50は、複数の圧電体層が積層方向に積層された状態で焼成され、焼結された構造を有する。そのため、積層構造体50の積層方向に平行な側面112,113には、層の境界が明確に現れない場合がある。この場合、顕微鏡観察や断面の観察により各圧電体層を確認することができる。また、積層構造体50の側面112,113には、各電極が現れていないが、図1に描かれた範囲では、各電極は、積層構造体50の側面112,113よりも内側に端を有するからである。 The laminated structure 50 has a structure in which a plurality of piezoelectric layers are stacked in the stacking direction, fired, and sintered. Therefore, in some cases, the boundaries of layers do not appear clearly on the side surfaces 112 and 113 parallel to the stacking direction of the stacked structure 50. In this case, each piezoelectric layer can be confirmed by microscopic observation or cross-sectional observation. In addition, although each electrode does not appear on the side surfaces 112 and 113 of the laminated structure 50, in the range depicted in FIG. 1, each electrode has an end inside the side surfaces 112 and 113 of the laminated structure 50. Because it has.
 1.1.積層型圧電素子の詳細
 次に、図2を用いて積層型圧電素子100の詳細を説明する。図2は、実施形態に係る積層型圧電素子100の模式図である。図2の左側には積層型圧電素子100の積層構成の縦断面が模式的に描かれ、図2の右側には、積層型圧電素子100の平面視における各電極パターンが模式的に描かれている。
1.1. Details of Multilayer Piezoelectric Element Next, details of the multilayer piezoelectric element 100 will be described with reference to FIG. FIG. 2 is a schematic diagram of the laminated piezoelectric element 100 according to the embodiment. On the left side of FIG. 2, a vertical cross-section of the laminated structure of the laminated piezoelectric element 100 is schematically drawn, and on the right side of FIG. 2, each electrode pattern in plan view of the laminated piezoelectric element 100 is schematically drawn. There is.
 積層型圧電素子100は、積層構造体50に複数、例えば12層の圧電体層を有する。積層構造体50は、4層の第1圧電体層11と、4層の第2圧電体層21とを備える。 The laminated piezoelectric element 100 has a plurality of, for example, 12 piezoelectric layers in the laminated structure 50. The laminated structure 50 includes four first piezoelectric layers 11 and four second piezoelectric layers 21.
 第1圧電体層11は、伸縮用電極対19によって挟まれて伸縮用圧電素子10を構成し、伸縮用電極対への信号の入力により長手方向に伸縮する。また、積層構造体50には伸縮用圧電素子10が4層含まれている。 The first piezoelectric layer 11 is sandwiched by the expansion/contraction electrode pair 19 to form the expansion/contraction piezoelectric element 10, and expands/contracts in the longitudinal direction by inputting a signal to the expansion/contraction electrode pair. Further, the laminated structure 50 includes four layers of the piezoelectric element 10 for expansion and contraction.
 第2圧電体層21は、屈曲用電極対29によって挟まれて屈曲用圧電素子20を構成し、屈曲用電極対への信号の入力により短手方向に屈曲する。また、積層構造体50には屈曲用圧電素子20が4層含まれている。 The second piezoelectric layer 21 is sandwiched by the bending electrode pair 29 to form the bending piezoelectric element 20, and is bent in the lateral direction by inputting a signal to the bending electrode pair. Further, the laminated structure 50 includes four layers of the bending piezoelectric element 20.
 なお伸縮用電極対19のうちの一方の電極は、隣り合う伸縮用圧電素子10と共通となっており、屈曲用電極対29のうちの一方の電極は、隣り合う屈曲用圧電素子20と共通となっている。 One electrode of the expansion/contraction electrode pair 19 is common to the adjacent expansion/contraction piezoelectric elements 10, and one electrode of the bending electrode pair 29 is common to the adjacent bending piezoelectric element 20. Has become.
 一方、積層構造体50の12層の圧電体層のうち、伸縮用電極対19の一方の電極と屈曲用電極対29の一方の電極とに挟まれた圧電体層は、非分極層として機能する非分極用圧電体層40である。また、12層の圧電体層のうち、片側のみに伸縮用電極対19の一方の電極又は屈曲用電極対29の一方の電極を有する圧電体層は、積層構造体50の積層方向の両端に配置される表面圧電体層30である。このように、積層構造体50は、2層の非分極用圧電体層40と、2層の表面圧電体層30が含まれる。また、積層構造体50において、非分極用圧電体層40は、伸縮用圧電素子10及び屈曲用圧電素子20の間に配置され、表面圧電体層30は積層構造体50の積層方向の両端に配置されている。 On the other hand, of the 12 piezoelectric layers of the laminated structure 50, the piezoelectric layer sandwiched between one electrode of the expansion/contraction electrode pair 19 and one electrode of the bending electrode pair 29 functions as a non-polarization layer. This is the non-polarizing piezoelectric layer 40. Further, among the 12 piezoelectric layers, the piezoelectric layers having the one electrode of the expansion/contraction electrode pair 19 or the one electrode of the bending electrode pair 29 on only one side are provided at both ends of the laminated structure 50 in the laminating direction. The surface piezoelectric layer 30 is arranged. As described above, the laminated structure 50 includes the two layers of the non-polarizing piezoelectric layer 40 and the two layers of the surface piezoelectric layer 30. In the laminated structure 50, the non-polarizing piezoelectric layer 40 is arranged between the expansion piezoelectric element 10 and the bending piezoelectric element 20, and the surface piezoelectric layers 30 are provided at both ends of the laminated structure 50 in the laminating direction. It is arranged.
 非分極用圧電体層40には、電圧が印加されないようにすることが好ましく、非分極用圧電体層40は、伸縮用電極対19のうちの接地電極及び屈曲用電極対29のうちの接地電極に挟まれることが好ましい。これは、非分極用圧電体層40がない場合には、圧電体層を分極するための電圧を印加しても十分な分極領域を得ることができない圧電体層が生じ、電力消費が大きくなってしまうためである。これを回避するために非分極用圧電体層40を形成することで、電力消費を抑制している。 It is preferable that no voltage be applied to the non-polarizing piezoelectric layer 40, and the non-polarizing piezoelectric layer 40 is grounded in the expansion/contraction electrode pair 19 and grounded in the bending electrode pair 29. It is preferably sandwiched between electrodes. This is because in the absence of the non-polarizing piezoelectric layer 40, there is a piezoelectric layer in which a sufficient polarization region cannot be obtained even if a voltage for polarizing the piezoelectric layer is applied, resulting in a large power consumption. This is because it will end up. To avoid this, the power consumption is suppressed by forming the non-polarizing piezoelectric layer 40.
 図示の例では、伸縮用電極対19は、電極パターンC及び電極パターンDによって構成されている。屈曲用電極対29は、電極パターンB及び電極パターンEによって構成されている。この場合には、電極パターンD及び電極パターンEを接地電極とすることが好ましい。各電極パターンについては後述する。 In the illustrated example, the expansion/contraction electrode pair 19 is composed of an electrode pattern C and an electrode pattern D. The bending electrode pair 29 includes an electrode pattern B and an electrode pattern E. In this case, the electrode patterns D and E are preferably ground electrodes. Each electrode pattern will be described later.
 また、積層型圧電素子100では、伸縮用圧電素子10及び屈曲用圧電素子20は、平面視における輪郭が同一形状である。そして積層構造体50は、伸縮用圧電素子10の輪郭及び屈曲用圧電素子20の輪郭が平面視において重なる。 Moreover, in the laminated piezoelectric element 100, the expansion piezoelectric element 10 and the bending piezoelectric element 20 have the same contour in plan view. Then, in the laminated structure 50, the contours of the piezoelectric element 10 for expansion and contraction and the contours of the piezoelectric element 20 for bending overlap in a plan view.
 積層型圧電素子100では、積層構造体50の積層方向の中心位置Gに近い側に4個の伸縮用圧電素子10が配置され、中心位置Gから遠い側に屈曲用圧電素子20が中心位置Gを基準に対称に2個ずつ配置されている。 In the laminated piezoelectric element 100, the four piezoelectric elements 10 for expansion and contraction are arranged on the side closer to the central position G in the laminating direction of the laminated structure 50, and the bending piezoelectric element 20 is arranged on the side farther from the central position G for the central position G. Two pieces are arranged symmetrically with respect to.
 積層型圧電素子100では、積層構造体50の積層方向の中心位置Gは、4個の伸縮用圧電素子10のうちの内側にある2個の伸縮用圧電素子10に含まれる。より詳しくは、積層型圧電素子100では、積層構造体50の積層方向の中心位置Gは、4個の伸縮用圧電素子10のうちの内側にある2個の伸縮用圧電素子10に共通する電極パターンDに含まれる。 In the laminated piezoelectric element 100, the center position G of the laminated structure 50 in the laminating direction is included in the two elastic piezoelectric elements 10 inside the four elastic piezoelectric elements 10. More specifically, in the laminated piezoelectric element 100, the center position G of the laminated structure 50 in the laminating direction is an electrode common to the two elastic piezoelectric elements 10 inside the four elastic piezoelectric elements 10. Included in pattern D.
 積層構造体50は、焼結されたセラミックからなる連続した物体である。そのため、積層構造体50の伸縮は、積層構造体50の中心位置Gを起点として、積層構造体50の長手方向に伸縮する。 The laminated structure 50 is a continuous body made of sintered ceramics. Therefore, the expansion and contraction of the laminated structure 50 starts from the center position G of the laminated structure 50 and expands and contracts in the longitudinal direction of the laminated structure 50.
 伸縮用圧電素子10が、積層構造体50の積層方向における中心位置Gを含むように配置されることにより、積層型圧電素子100が駆動する際に、伸縮動作(伸縮振動)の起点を積層構造体50の中心位置Gに近接させることができる。これにより中心位置G付近を起点として積層構造体50の長手方向に伸縮することができるため、伸縮振動の効率を高めることができる。なお、積層構造体50の中心位置Gは、例えば、積層構造体50の重心である。 The expansion/contraction piezoelectric element 10 is arranged so as to include the central position G in the stacking direction of the laminated structure 50, so that when the laminated piezoelectric element 100 is driven, the origin of the expansion/contraction operation (stretching vibration) is the laminated structure. It can be brought close to the center position G of the body 50. As a result, since it is possible to expand and contract in the longitudinal direction of the laminated structure 50 with the vicinity of the central position G as the starting point, it is possible to improve the efficiency of stretching vibration. The center position G of the laminated structure 50 is, for example, the center of gravity of the laminated structure 50.
 1.2.伸縮用圧電素子及び屈曲用圧電素子の電極パターン
 図3は、伸縮用電極対19の一方の電極パターンDを示す模式図である。図4は、伸縮用電極対19の他方の電極パターンCを示す模式図である。図5は、屈曲用電極対29の一方の電極パターンBを示す模式図である。図6は、屈曲用電極対29の他方の電極パターンEを示す模式図である。
1.2. Electrode Patterns of Stretching Piezoelectric Element and Bending Piezoelectric Element FIG. 3 is a schematic diagram showing one electrode pattern D of the stretching electrode pair 19. FIG. 4 is a schematic diagram showing the other electrode pattern C of the expansion/contraction electrode pair 19. FIG. 5 is a schematic diagram showing one electrode pattern B of the bending electrode pair 29. FIG. 6 is a schematic diagram showing the other electrode pattern E of the bending electrode pair 29.
 図3は、第1圧電体層11の上に形成された伸縮用電極対19の一方の電極パターンDを示している。また、図4は、第1圧電体層11の上に形成された伸縮用電極対19の一方の電極パターンCを示している。 FIG. 3 shows one electrode pattern D of the expansion/contraction electrode pair 19 formed on the first piezoelectric layer 11. Further, FIG. 4 shows one electrode pattern C of the expansion/contraction electrode pair 19 formed on the first piezoelectric layer 11.
 図3に示す電極パターンDの電極及び図4に示す電極パターンCの電極は、伸縮用電極対19を構成することができる。すなわち電極パターンDの電極と電極パターンCの電極とによって第1圧電体層11が挟まれることにより、伸縮用圧電素子10が形成される。 The electrodes of the electrode pattern D shown in FIG. 3 and the electrodes of the electrode pattern C shown in FIG. 4 can form a stretchable electrode pair 19. That is, the expansion/contraction piezoelectric element 10 is formed by sandwiching the first piezoelectric layer 11 between the electrode of the electrode pattern D and the electrode of the electrode pattern C.
 電極パターンD及び電極パターンCの形状は、平面視において第1圧電体層11を挟んで重ねた場合に、引出部15を除き、同一の形状となっている。引出部15は、配線層80と電気的に接続できるように第1圧電体層11の短手方向の端(側面112,113)まで延在している。 The electrode patterns D and C have the same shape in plan view except for the lead-out portion 15 when the first piezoelectric layer 11 is sandwiched between the electrode patterns D and C. The lead-out portion 15 extends to the lateral ends (side surfaces 112 and 113) of the first piezoelectric layer 11 so as to be electrically connected to the wiring layer 80.
 このように電極パターンD及び電極パターンCは、合計で2つの引出部15を有し、それぞれが積層構造体50の側面112,113の異なる位置で配線層80と電気的に接続できるようになっている。 Thus, the electrode pattern D and the electrode pattern C have two lead portions 15 in total, and each of them can be electrically connected to the wiring layer 80 at different positions on the side surfaces 112 and 113 of the laminated structure 50. ing.
 電極パターンDの電極及び電極パターンCの電極が、第1圧電体層11を挟んで、引出部15を除き、同一の形状となっていることにより、第1圧電体層11の駆動に関与しない分極領域を小さくすることができるので、駆動時の電力の無駄や発熱を抑制することができる。このことは第1圧電体層11の駆動に関与しない領域が分極されると、駆動時にその領域に電流が生じることに起因している。さらに、必要最小限の電極面積とすることで、振動を阻害する要因を低減することができる。 Since the electrode of the electrode pattern D and the electrode of the electrode pattern C have the same shape with the first piezoelectric layer 11 interposed therebetween except for the lead-out portion 15, they do not participate in the driving of the first piezoelectric layer 11. Since the polarization region can be reduced, it is possible to suppress waste of electric power and heat generation during driving. This is because when a region of the first piezoelectric layer 11 that is not involved in driving is polarized, a current is generated in that region during driving. Further, by making the electrode area to the minimum necessary, the factors that hinder vibration can be reduced.
 電極パターンD及び電極パターンCの平面的な形状は、任意であるが、図示の例では、電極パターンD及び電極パターンCの形状は、第1圧電体層11の表面において長手方向に延在している。また、図示の例では、電極パターンD及び電極パターンCの形状が、長手方向の両端部16と中央部17との間に、短手方向における電極の幅が小さいくびれ部18を有している。 The planar shapes of the electrode pattern D and the electrode pattern C are arbitrary, but in the illustrated example, the electrode pattern D and the electrode pattern C extend in the longitudinal direction on the surface of the first piezoelectric layer 11. ing. Further, in the illustrated example, the shapes of the electrode pattern D and the electrode pattern C have a constricted portion 18 having a small width in the lateral direction between the longitudinal end portions 16 and the central portion 17. ..
 ところで、伸縮用圧電素子10の伸縮には、第1圧電体層11の中央付近の伸縮の寄与が大きいことが分かっている。そのため、電極パターンD及び電極パターンCの電極の面積は、中央部17において大きくなるようにし、両端部16に向かって小さくなるように設計することが伸縮動作を十分に行い、消費電力を小さくするという観点から好ましい。しかし、積層型圧電素子100を圧電アクチュエーターとして、これを駆動対象に当接して押しつける場合のように、伸縮用圧電素子10を長手方向に圧縮するような負荷が加えられる場合には、より負荷が加えられる位置に近い位置で伸縮動作をさせることにより、伸縮動作をより効率化できる。このような観点から、図示のように、電極パターンD及び電極パターンCに、長手方向の両端部16と中央部17との間に、短手方向の幅が小さいくびれ部18を設けることがより好ましい。 By the way, it has been known that the expansion and contraction of the piezoelectric element 10 for expansion and contraction is largely contributed by the expansion and contraction near the center of the first piezoelectric layer 11. Therefore, the area of the electrodes of the electrode pattern D and the electrode pattern C should be designed to be larger in the central portion 17 and smaller toward the both end portions 16 so that the expansion/contraction operation is sufficiently performed and the power consumption is reduced. It is preferable from the viewpoint. However, when a load for compressing the expansion/contraction piezoelectric element 10 in the longitudinal direction is applied, as in the case where the laminated piezoelectric element 100 is used as a piezoelectric actuator and abutted against and pressed against an object to be driven, the load is further increased. By performing the expansion/contraction operation at a position close to the applied position, the expansion/contraction operation can be made more efficient. From this point of view, as shown in the figure, it is more preferable to provide the electrode pattern D and the electrode pattern C with a constricted portion 18 having a small width in the lateral direction between the longitudinal end portions 16 and the central portion 17. preferable.
 図5は、第2圧電体層21の上に形成された屈曲用電極対29の一方の電極パターンBを示している。また、図6は、第2圧電体層21の上に形成された屈曲用電極対29の一方の電極パターンEを示している。 FIG. 5 shows one electrode pattern B of the bending electrode pair 29 formed on the second piezoelectric layer 21. Further, FIG. 6 shows one electrode pattern E of the bending electrode pair 29 formed on the second piezoelectric layer 21.
 図4に示す電極パターンBの電極及び図5に示す電極パターンEの電極は、屈曲用電極対29を構成することができる。すなわち電極パターンBの電極と電極パターンEの電極とによって第2圧電体層21が挟まれることにより、屈曲用圧電素子20が形成される。 The electrodes of the electrode pattern B shown in FIG. 4 and the electrodes of the electrode pattern E shown in FIG. 5 can form a bending electrode pair 29. That is, the bending piezoelectric element 20 is formed by sandwiching the second piezoelectric layer 21 by the electrode of the electrode pattern B and the electrode of the electrode pattern E.
 電極パターンBは、第2圧電体層21の表面を長手方向及び短手方向にそれぞれ2分割してなる4つの領域のそれぞれに配置された4つの分割電極26a,26b,26c,26dと、4つの分割電極26a,26b,26c,26dのうち対角位置に配置された1組の分割電極26a,26dを接続する接続配線27と、を含む。 The electrode pattern B includes four divided electrodes 26a, 26b, 26c, 26d arranged in each of four regions formed by dividing the surface of the second piezoelectric layer 21 into two in the longitudinal direction and the lateral direction. A pair of divided electrodes 26a, 26c, 26d, which are diagonally arranged, and a connection wiring 27 for connecting a pair of divided electrodes 26a, 26d.
 また、電極パターンBは、4つの分割電極26a,26b,26c,26dのうち接続配線27で接続されていない2つの分割電極26b,26cのそれぞれから第2圧電体層21の短手方向の端まで延在する2つの引出部25と、接続配線27で接続された一方の分割電極26aから第2圧電体層21の短手方向の端まで延在する1つの引出部25と、の合計3つの引出部25を有している。 In addition, the electrode pattern B is the end of the second piezoelectric layer 21 in the lateral direction from each of the two divided electrodes 26b, 26c which are not connected by the connection wiring 27 among the four divided electrodes 26a, 26b, 26c, 26d. A total of three lead portions 25 extending up to and one lead portion 25 extending from one divided electrode 26a connected by the connection wiring 27 to the short-side end of the second piezoelectric layer 21. It has two drawers 25.
 一方、電極パターンEは、電極パターンBを第2圧電体層21を除いて重ねた場合に、電極パターンBの4つの分割電極26a,26b,26c,26dを包含するような形状となっている。そのため、4つの分割電極26a,26b,26c,26dに対応した分極領域が得られる。 On the other hand, the electrode pattern E has a shape that includes the four divided electrodes 26a, 26b, 26c, and 26d of the electrode pattern B when the electrode pattern B is stacked except the second piezoelectric layer 21. .. Therefore, polarized regions corresponding to the four divided electrodes 26a, 26b, 26c, 26d can be obtained.
 また、電極パターンEは、電極パターンBを第2圧電体層21を除いて重ねた場合に、電極パターンBの3つの引出部25とは異なる位置に、短手方向の端まで延在する引出部25を有している。 In addition, the electrode pattern E is a lead-out that extends to the end in the lateral direction at a position different from the three lead-out portions 25 of the electrode pattern B when the electrode pattern B is stacked except for the second piezoelectric layer 21. It has a section 25.
 さらに、電極パターンEは、電極パターンBを第2圧電体層21を除いて重ねた場合に電極パターンBの接続配線27に対応する位置に、開口部27aを有している。開口部27aには、電極は存在しない。開口部27aは、接続配線27と重ならない非重複領域ということができる。 Further, the electrode pattern E has an opening 27a at a position corresponding to the connection wiring 27 of the electrode pattern B when the electrode pattern B is stacked except for the second piezoelectric layer 21. No electrode is present in the opening 27a. It can be said that the opening 27a is a non-overlapping region that does not overlap with the connection wiring 27.
 電極パターンEの電極が開口部27aを有することにより、接続配線27と重複しないので、第2圧電体層21の駆動に関与しない領域が分極せず、駆動時の電力の無駄や発熱を抑制することができる。 Since the electrode of the electrode pattern E has the opening 27a and does not overlap with the connection wiring 27, the region of the second piezoelectric layer 21 that is not involved in driving is not polarized, and waste of power and heat generation during driving are suppressed. be able to.
 このように電極パターンB及び電極パターンEは、合計で4つの引出部25を有し、それぞれが積層構造体50の側面112,113の異なる位置で配線層80と電気的に接続できる。 In this way, the electrode pattern B and the electrode pattern E have a total of four lead portions 25, and each can be electrically connected to the wiring layer 80 at different positions on the side surfaces 112 and 113 of the laminated structure 50.
 図7は、電極パターンEの変形例である電極パターンFを示す模式図である。上述の電極パターンEは、電極パターンBを第2圧電体層21を除いて重ねた場合に、電極パターンBの分割電極26a,26b,26c,26dの間の間隙にも、電極が存在していた。すなわち、第2圧電体層21の駆動に関与しない分極領域が分割電極26a,26b,26c,26dの間隙部分に形成される形状となっていた。 FIG. 7 is a schematic diagram showing an electrode pattern F which is a modified example of the electrode pattern E. In the above-mentioned electrode pattern E, when the electrode pattern B is overlapped except for the second piezoelectric layer 21, the electrodes also exist in the gaps between the divided electrodes 26a, 26b, 26c and 26d of the electrode pattern B. It was That is, the polarization region that is not involved in driving the second piezoelectric layer 21 is formed in the gap between the divided electrodes 26a, 26b, 26c, and 26d.
 図7に示す電極パターンFでは、分割電極26a,26b,26c,26dの間隙部分に対応する位置に、スリット状の開口部27bが形成されている。すなわち、電極パターンFは、電極パターンBの複数の分割電極のうち長手方向又は短手方向に対向する分割電極間の空隙に対応する位置に空隙を有する。 In the electrode pattern F shown in FIG. 7, slit-shaped openings 27b are formed at positions corresponding to the gaps between the divided electrodes 26a, 26b, 26c, 26d. That is, the electrode pattern F has a void at a position corresponding to the void between the divided electrodes facing each other in the longitudinal direction or the lateral direction of the plurality of divided electrodes of the electrode pattern B.
 図7に示す電極パターンFの形状を用いれば、第2圧電体層21の駆動に関与しない領域を分極しないため、駆動時の電力の無駄や発熱をさらに抑制することができる。また、本実施形態の積層型圧電素子100は、4層の屈曲用圧電素子20を含むので、電極パターンE及び電極パターンFのように開口部27aや開口部27bを設けることによる効果は顕著に現れる。屈曲用圧電素子20の数が増せばかかる効果はより顕著になる。 By using the shape of the electrode pattern F shown in FIG. 7, the region of the second piezoelectric layer 21 that is not involved in driving is not polarized, so that it is possible to further suppress power waste and heat generation during driving. Further, since the laminated piezoelectric element 100 of the present embodiment includes the bending piezoelectric element 20 having four layers, the effect of providing the openings 27a and 27b like the electrode patterns E and F is remarkable. appear. The effect becomes more remarkable as the number of the bending piezoelectric elements 20 increases.
 1.3.積層型圧電素子の動作
 図8は、積層型圧電素子100の屈曲振動をシミュレーションして変形の様子を平面視した模式図である。図9は、積層型圧電素子100の伸縮振動をシミュレーションして変形の様子を平面視した模式図である。図8、図9では変形を可視化するために変形量を拡大して図示している。また、図8、図9では各端子の図示を省略している。
1.3. Operation of Multilayer Piezoelectric Element FIG. 8 is a schematic diagram in which bending vibration of the multilayer piezoelectric element 100 is simulated and a deformation state is viewed in plan. FIG. 9 is a schematic diagram in which the expansion and contraction vibration of the laminated piezoelectric element 100 is simulated and the deformation is viewed in plan. In FIGS. 8 and 9, the deformation amount is enlarged and shown in order to visualize the deformation. Further, illustration of each terminal is omitted in FIGS. 8 and 9.
 図8に示すように、積層型圧電素子100が共振周波数付近の周波数で屈曲振動する際には、変位の少ない領域が3箇所生じる。また、図9に示すように、積層型圧電素子100が共振周波数付近の周波数で伸縮振動する際には、変位の少ない領域が1箇所生じる。これらの変位の少ない領域のことを「節」(node)という。図8及び図9では節の位置を鎖線で囲って示した。 As shown in FIG. 8, when the laminated piezoelectric element 100 flexurally vibrates at a frequency near the resonance frequency, three regions with less displacement occur. In addition, as shown in FIG. 9, when the laminated piezoelectric element 100 expands and contracts at a frequency near the resonance frequency, one region having a small displacement is generated. These areas with less displacement are called "nodes". In FIG. 8 and FIG. 9, the positions of the nodes are shown surrounded by a chain line.
 1.4.配線層、端子及びその配置
 図2に示すように、配線層80は、伸縮用電極対19及び屈曲用電極対29にそれぞれ電気的に接続される。伸縮用電極対19に接続された配線層80は、伸縮用入力端子60と電気的に接続される。屈曲用電極対29に接続された配線層80は、屈曲用入力端子70と電気的に接続される。
1.4. Wiring Layer, Terminal, and Arrangement thereof As shown in FIG. 2, the wiring layer 80 is electrically connected to the expansion electrode pair 19 and the bending electrode pair 29, respectively. The wiring layer 80 connected to the expansion/contraction electrode pair 19 is electrically connected to the expansion/contraction input terminal 60. The wiring layer 80 connected to the bending electrode pair 29 is electrically connected to the bending input terminal 70.
 図8に示すように、配線層80は、長手方向に平行な積層構造体50の側面112,113に形成され、積層型圧電素子100が動作した場合の屈曲振動におけるいずれかの節に対応する位置に形成されることが好ましい。 As shown in FIG. 8, the wiring layer 80 is formed on the side surfaces 112 and 113 of the laminated structure 50 parallel to the longitudinal direction, and corresponds to any node in bending vibration when the laminated piezoelectric element 100 operates. It is preferably formed in position.
 また、伸縮用入力端子60及び屈曲用入力端子70は、積層型圧電素子100が動作した場合の伸縮振動及び屈曲振動におけるいずれかの節に対応する位置に配置されることが好ましい。 Further, the expansion/contraction input terminal 60 and the bending input terminal 70 are preferably arranged at positions corresponding to any nodes in the expansion/contraction vibration and the bending vibration when the laminated piezoelectric element 100 operates.
 この場合において、伸縮用入力端子60は、積層型圧電素子100が動作した場合の伸縮運動及び屈曲振動における節であって、長手方向の中央領域に生じる節に対応する位置に配置されることがより好ましい。 In this case, the expansion/contraction input terminal 60 is a node in expansion/contraction motion and bending vibration when the multilayer piezoelectric element 100 operates, and may be arranged at a position corresponding to a node generated in the central region in the longitudinal direction. More preferable.
 積層型圧電素子100が動作した場合の屈曲振動における節では屈曲の変位が小さくなるが、節以外の領域では、屈曲の変位が大きい。配線層80、伸縮用入力端子60及び屈曲用入力端子70のいずれもが伸縮振動及び屈曲振動に対し悪影響を及ぼすため、節以外の領域に設けられた場合には、積層型圧電素子100の消費電力が大きくなる。 The flexural displacement is small in the nodes in flexural vibration when the multilayer piezoelectric element 100 operates, but the flexural displacement is large in the regions other than the nodes. Since all of the wiring layer 80, the expansion/contraction input terminal 60, and the bending input terminal 70 adversely affect the stretching vibration and the bending vibration, the multilayer piezoelectric element 100 is consumed when it is provided in a region other than the node. Increased power.
 1.5.各部材の寸法、材質、入力信号等
 上述の各圧電体層の厚さは、積層型圧電素子の寸法、材質、用途等の仕様により適宜に設定されるが、20μm以上200μm以下、好ましくは30μm以上180μm以下、より好ましくは50μm以上150μm以下である。圧電体層の厚さが20μm未満であると、変形量が不十分となる場合があり、200μmを超えると、駆動電圧が大きくなり例えば昇圧回路等が必要となる場合がある。
1.5. The size, material, input signal, etc. of each member The thickness of each piezoelectric layer described above is appropriately set according to the specifications such as the size, material, and application of the laminated piezoelectric element, but 20 μm or more and 200 μm or less, preferably 30 μm It is 180 μm or less and more preferably 50 μm or more and 150 μm or less. If the thickness of the piezoelectric layer is less than 20 μm, the amount of deformation may be insufficient, and if it exceeds 200 μm, the driving voltage may increase and a booster circuit or the like may be required.
 上述の各圧電体層の材質は、圧電性を示す材質であれば限定されないが、例えば、チタン酸ジルコン酸鉛(PZT)及びニオブ酸カリウムナトリウム(KNN)のようなペロブスカイト型の結晶構造を呈する酸化物が挙げられる。またこれらの化合物に他の元素がさらに添加されていてもよい。 The material of each of the above-mentioned piezoelectric layers is not limited as long as it exhibits piezoelectricity, but exhibits a perovskite type crystal structure such as lead zirconate titanate (PZT) and potassium sodium niobate (KNN). An oxide is mentioned. Further, other elements may be added to these compounds.
 上述の各種電極、配線、端子等は、例えば、焼成前の圧電体層にスクリーン印刷することにより形成することができる。各種電極、配線、端子等の厚さは、例えば、20nm以上20μm以下、好ましくは100nm以上10μm以下、より好ましくは1μm以上5μm以下である。電極、配線、端子等の材質は、圧電体層と共に焼結されて形状が維持できかつ導電性が得られれば特に限定されない。電極、配線、端子等の材質としては、銀、金、白金、パラジウム、銅、アルミニウム等の金属及び合金、錫酸インジウム(ITO)等の導電性酸化物が挙げられ、多層構造としてもよい。 The above-mentioned various electrodes, wirings, terminals, etc. can be formed by, for example, screen printing on the piezoelectric layer before firing. The thickness of various electrodes, wirings, terminals and the like is, for example, 20 nm or more and 20 μm or less, preferably 100 nm or more and 10 μm or less, and more preferably 1 μm or more and 5 μm or less. The materials for the electrodes, wirings, terminals and the like are not particularly limited as long as they can be sintered together with the piezoelectric layer to maintain the shape and obtain conductivity. Examples of materials for the electrodes, wirings, terminals and the like include metals and alloys such as silver, gold, platinum, palladium, copper and aluminum, and conductive oxides such as indium stannate (ITO), which may have a multilayer structure.
 積層型圧電素子を動作させる際に、伸縮用電極対19及び屈曲用電極対29に対して印加する信号としては、積層型圧電素子の共振周波数近傍の周波数の交流信号が好ましい。信号の電圧としては、例えば、1Vrms以上5Vrms以下である。また、伸縮用電極対19の2つの電極のうちの一方を接地電位とし、屈曲用電極対29の2つの電極のうちの一方を接地電位としてもよい。例えば、上記実施形態の積層型圧電素子100では、電極パターンDの電極及び電極パターンEの電極を接地電位とすることが好ましい。 When operating the laminated piezoelectric element, the signal applied to the expansion/contraction electrode pair 19 and the bending electrode pair 29 is preferably an AC signal having a frequency near the resonance frequency of the laminated piezoelectric element. The voltage of the signal is, for example, 1 Vrms or more and 5 Vrms or less. Further, one of the two electrodes of the expansion/contraction electrode pair 19 may be set to the ground potential, and one of the two electrodes of the bending electrode pair 29 may be set to the ground potential. For example, in the laminated piezoelectric element 100 of the above embodiment, it is preferable that the electrode of the electrode pattern D and the electrode of the electrode pattern E are set to the ground potential.
 また、屈曲用圧電素子20と伸縮用圧電素子10の境界に位置する非分極用圧電体層40を挟んで配置される電極には、同電位が印加されるようにすることが好ましく、両者に接地電位が印加されることがさらに好ましい。 In addition, it is preferable that the same electric potential is applied to the electrodes arranged with the non-polarizing piezoelectric layer 40 located at the boundary between the bending piezoelectric element 20 and the expansion piezoelectric element 10 interposed therebetween. More preferably, a ground potential is applied.
 1.6.その他
 積層型圧電素子100は、複数の圧電体層の表面に所定の電極パターンB~Eのいずれかを形成し、これを複数積層して焼結することで積層構造体50を製造し、配線層80を設けることにより製造することができる。なお、図2に示すように、伸縮用入力端子60、屈曲用入力端子70についても、該当する圧電体層の一方の表面に電極パターンAの電極を形成し、これを積層して焼結することで形成できる。
1.6. Others In the laminated piezoelectric element 100, one of the predetermined electrode patterns B to E is formed on the surface of a plurality of piezoelectric layers, and a plurality of these are laminated and sintered to manufacture a laminated structure 50, and wiring It can be manufactured by providing the layer 80. As shown in FIG. 2, also with respect to the expansion/contraction input terminal 60 and the bending input terminal 70, the electrode of the electrode pattern A is formed on one surface of the corresponding piezoelectric layer, and this is laminated and sintered. It can be formed.
 実施形態では、12層の圧電体層を含む積層型圧電素子100を用いて説明したが、素子に含まれる圧電体層や圧電素子の数及び配置は、伸縮用圧電素子10が、積層構造体50の積層方向における中心位置Gを含むようになっている限り限定されない。例えば、積層構造体50の積層方向における中心位置Gを基準として積層方向で対称な数が配置されてもされなくてもよい。また、伸縮用圧電素子10は、中心位置Gを含むような位置に配置されていれば、さらに積層方向の端部側に加えて配置されてもよい。 In the embodiment, the laminated piezoelectric element 100 including 12 piezoelectric layers has been described, but the number and arrangement of the piezoelectric layers and the piezoelectric elements included in the element are such that the piezoelectric element 10 for expansion and contraction is the laminated structure. It is not limited as long as it includes the center position G of 50 in the stacking direction. For example, a symmetrical number in the stacking direction may or may not be arranged with reference to the center position G of the stack structure 50 in the stacking direction. Further, the expansion/contraction piezoelectric element 10 may be arranged in addition to the end side in the stacking direction as long as it is arranged at a position including the central position G.
 1.7.作用効果等
 積層型圧電素子100は、伸縮振動する伸縮用圧電素子10と、屈曲振動する屈曲用圧電素子20とを、それぞれ異なる入力信号により駆動することができる。その結果、伸縮振動及び屈曲振動の振幅や周波数を独立に制御することができる。例えば、伸縮振動の振幅を維持したまま、屈曲振動の振幅を変更することができる。これにより、積層型圧電素子100を圧電アクチュエーターに適用した場合に、動作の対象となる回転体や移動体の動作を自由度高く制御することができ、入力に対する動作の効率を低下させることなく、正確な動作を行うことができる。
1.7. Function and Effect etc. The laminated piezoelectric element 100 can drive the expansion/contraction piezoelectric element 10 that expands/contracts and vibrates and the bending piezoelectric element 20 that flexurally vibrates by different input signals. As a result, the amplitude and frequency of stretching vibration and bending vibration can be controlled independently. For example, the amplitude of flexural vibration can be changed while maintaining the amplitude of stretching vibration. With this, when the laminated piezoelectric element 100 is applied to a piezoelectric actuator, it is possible to control the operation of a rotating body or a moving body that is an operation target with a high degree of freedom, and without lowering the efficiency of the operation for input, It is possible to carry out an accurate operation.
 2.圧電アクチュエーター
 本実施形態の圧電アクチュエーター300は、上述の積層型圧電素子100と、積層型圧電素子100に固定された出力取出部材90と、を備える。図10は、積層型圧電素子100を含む圧電アクチュエーター300の一例を示す模式図である。
2. Piezoelectric Actuator The piezoelectric actuator 300 of the present embodiment includes the above-described laminated piezoelectric element 100 and the output extraction member 90 fixed to the laminated piezoelectric element 100. FIG. 10 is a schematic diagram showing an example of a piezoelectric actuator 300 including the laminated piezoelectric element 100.
 本実施形態の圧電アクチュエーター300は、積層型圧電素子100と、積層型圧電素子100の長手方向に垂直な側面の一方に固定された出力取出部材90とを含む。出力取出部材90は、図示せぬ回転体や移動体などの対象物に対して押しつけられる部材である。出力取出部材90は、圧電アクチュエーター300の動作を対象物に伝達することができる。出力取出部材90は、例えば接着剤を用いて積層型圧電素子100に固定される。出力取出部材90の材質は、特に限定されないが、耐摩耗性の高い材質であることが好ましい。出力取出部材90の形状も任意であり、積層型圧電素子の振動の態様、動作対象物の性状等に応じて適宜に設計される。 The piezoelectric actuator 300 of this embodiment includes the laminated piezoelectric element 100 and the output extraction member 90 fixed to one of the side surfaces of the laminated piezoelectric element 100 perpendicular to the longitudinal direction. The output extracting member 90 is a member that is pressed against an object such as a rotating body or a moving body (not shown). The output extraction member 90 can transmit the operation of the piezoelectric actuator 300 to an object. The output extraction member 90 is fixed to the laminated piezoelectric element 100 using, for example, an adhesive. The material of the output extraction member 90 is not particularly limited, but a material having high wear resistance is preferable. The shape of the output extraction member 90 is also arbitrary, and is appropriately designed according to the vibration mode of the laminated piezoelectric element, the property of the operation target, and the like.
 本実施形態の圧電アクチュエーター300は、上述の積層型圧電素子100を含むので、動作の対象となる回転体や移動体の動作を自由度高く制御することができ、入力に対する動作の効率を低下させることなく、正確な動作を行うことができる。 Since the piezoelectric actuator 300 of the present embodiment includes the above-described laminated piezoelectric element 100, it is possible to control the operation of the rotating body or the moving body, which is the target of the operation, with a high degree of freedom and reduce the efficiency of the operation with respect to the input. Can be operated accurately without
 本発明は、上述した実施形態に限定されるものではなく、種々の変形が可能である。例えば、本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法及び結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。 The present invention is not limited to the above-described embodiment, and various modifications can be made. For example, the invention includes configurations that are substantially the same as the configurations described in the embodiments (for example, configurations having the same function, method and result, or configurations having the same purpose and effect). Further, the invention includes configurations in which non-essential parts of the configurations described in the embodiments are replaced. Further, the invention includes a configuration that achieves the same effect as the configuration described in the embodiment or a configuration that can achieve the same object. Further, the invention includes configurations in which known techniques are added to the configurations described in the embodiments.
10…伸縮用圧電素子、11…第1圧電体層、15…引出部、16…両端部、17…中央部、18…くびれ部、19…伸縮用電極対、20…屈曲用圧電素子、21…第2圧電体層、25…引出部、26a,26b,26c,26d…分割電極、27…接続配線、27a,27b…開口部、29…屈曲用電極対、30…表面圧電体層、40…非分極用圧電体層、50…積層構造体、60…伸縮用入力端子、70…屈曲用入力端子、80…配線層、90…出力取出部材、100…積層型圧電素子、110…表面、112,113…側面、300…圧電アクチュエーター 10... Expansion/contraction piezoelectric element, 11... First piezoelectric layer, 15... Lead-out part, 16... Both ends, 17... Central part, 18... Constricted part, 19... Expansion/contraction electrode pair, 20... Bending piezoelectric element, 21 ... second piezoelectric layer 25, lead-out portion, 26a, 26b, 26c, 26d... split electrode, 27... connection wiring, 27a, 27b... opening, 29... bending electrode pair, 30... surface piezoelectric layer, 40 ... non-polarizing piezoelectric layer, 50... laminated structure, 60... expansion/contraction input terminal, 70... bending input terminal, 80... wiring layer, 90... output extraction member, 100... laminated piezoelectric element, 110... surface, 112, 113... Side surface, 300... Piezoelectric actuator

Claims (7)

  1.  平面視において長手方向及び短手方向を有する平板状の圧電体層が、積層方向に複数積層された積層構造体を含み、
     前記積層構造体は、
     複数の前記圧電体層の一である第1圧電体層と、前記第1圧電体層を挟む伸縮用電極対と、を含み、前記伸縮用電極対への信号の入力により前記第1圧電体層の長手方向に伸縮する伸縮用圧電素子と、
     複数の前記圧電体層の一である第2圧電体層と、前記第2圧電体層を挟む屈曲用電極対と、を含み、前記屈曲用電極対への信号の入力により前記第2圧電体層の短手方向に屈曲する屈曲用圧電素子と、
    を含み、
     前記伸縮用圧電素子が、前記積層構造体の前記積層方向における中心位置を含むように配置された積層型圧電素子。
    A flat piezoelectric layer having a longitudinal direction and a lateral direction in a plan view includes a laminated structure in which a plurality of layers are laminated in the laminating direction,
    The laminated structure is
    A first piezoelectric layer that is one of the plurality of piezoelectric layers; and a pair of expansion/contraction electrodes that sandwich the first piezoelectric layer, and the first piezoelectric body is formed by inputting a signal to the pair of expansion/contraction electrodes. A piezoelectric element for expansion and contraction in the longitudinal direction of the layer,
    A second piezoelectric body layer, which is one of the plurality of piezoelectric body layers, and a bending electrode pair that sandwiches the second piezoelectric body layer, and the second piezoelectric body is formed by inputting a signal to the bending electrode pair. A bending piezoelectric element that bends in the lateral direction of the layer,
    Including
    A laminated piezoelectric element in which the elastic piezoelectric element is arranged so as to include a central position of the laminated structure in the laminating direction.
  2.  請求項1において、
     前記積層構造体は、
     前記長手方向に平行な2つの側面に形成された配線層をさらに含み、
     前記配線層は、前記積層型圧電素子が動作した場合の屈曲振動における節に対応する位置に形成される、積層型圧電素子。
    In claim 1,
    The laminated structure is
    A wiring layer formed on two side surfaces parallel to the longitudinal direction,
    The multilayer piezoelectric element, wherein the wiring layer is formed at a position corresponding to a node in bending vibration when the multilayer piezoelectric element operates.
  3.  請求項1又は請求項2において、
     前記屈曲用電極対は、
     前記第2圧電体層の一方の表面に、前記第2圧電体層の長手方向及び短手方向にそれぞれ2分割してなる4つの領域のそれぞれに配置された4つの分割電極と、
     前記4つの分割電極のうち対角位置に配置された1組の分割電極を接続する接続配線と、を含む、屈曲用第1電極と、
     前記第2圧電体層の他方の表面に配置され、前記第2圧電体層を挟んで前記屈曲用第1電極と対向する、屈曲用第2電極と、を含み、
     前記屈曲用第2電極は、前記屈曲用圧電素子を前記積層構造体の積層方向から見て、前記接続配線と重ならない非重複領域を少なくとも含む、積層型圧電素子。
    In claim 1 or claim 2,
    The bending electrode pair,
    On one surface of the second piezoelectric layer, four split electrodes arranged in each of four regions divided into two in the longitudinal direction and the lateral direction of the second piezoelectric layer,
    A first electrode for bending, which includes a connection wiring for connecting a pair of divided electrodes arranged diagonally among the four divided electrodes,
    A second bending electrode disposed on the other surface of the second piezoelectric layer and facing the first bending electrode with the second piezoelectric layer interposed therebetween;
    The second bending electrode includes at least a non-overlapping region that does not overlap with the connection wiring when the bending piezoelectric element is viewed from the stacking direction of the stacked structure.
  4.  請求項3において、
     前記屈曲用第2電極は、前記屈曲用第1電極を構成する複数の分割電極のうち、前記第2圧電体層の長手方向又は短手方向に対向する分割電極間の空隙に対応する位置に空隙を有する、積層型圧電素子。
    In claim 3,
    The bending second electrode is located at a position corresponding to a space between the divided electrodes facing each other in the longitudinal direction or the lateral direction of the second piezoelectric layer among the plurality of divided electrodes forming the bending first electrode. A laminated piezoelectric element having voids.
  5.  請求項1ないし請求項4のいずれか一項において、
     前記伸縮用電極対は、
     前記第1圧電体層の表面に前記第1圧電体層の長手方向に延在して形成され、
     前記第1圧電体層の長手方向における両端部と中央部との間に、前記短手方向における電極の幅が小さいくびれ部を有する、積層型圧電素子。
    In any one of Claim 1 thru|or Claim 4,
    The elastic electrode pair,
    Formed on the surface of the first piezoelectric layer so as to extend in the longitudinal direction of the first piezoelectric layer;
    A laminated piezoelectric element having a constricted portion having a small width of an electrode in the lateral direction between both ends and a central portion in the longitudinal direction of the first piezoelectric layer.
  6.  請求項1ないし請求項5のいずれか一項において、
     前記積層構造体には、前記積層方向の一端側の表面に、前記伸縮用電極対に接続された伸縮用入力端子と、前記屈曲用電極対に接続された屈曲用入力端子とが設けられ、
     前記伸縮用入力端子及び屈曲用入力端子は、前記積層型圧電素子が動作した場合の伸縮振動あるいは屈曲振動における節に対応する位置に形成された、積層型圧電素子。
    In any one of Claim 1 thru|or 5,
    The laminated structure, on the surface of one end side in the stacking direction, is provided with an expansion input terminal connected to the expansion electrode pair, and a bending input terminal connected to the bending electrode pair,
    The expansion/contraction input terminal and the bending input terminal are laminated piezoelectric elements formed at positions corresponding to nodes in expansion/contraction vibration or bending vibration when the laminated piezoelectric element operates.
  7.  請求項1ないし請求項6のいずれか一項に記載の積層型圧電素子と、
     前記積層型圧電素子に固定された出力取出部材と、
    を備えた、圧電アクチュエーター。
    A laminated piezoelectric element according to any one of claims 1 to 6,
    An output extraction member fixed to the laminated piezoelectric element,
    , A piezoelectric actuator.
PCT/JP2019/036499 2019-01-21 2019-09-18 Stacked piezoelectric element and piezoelectric actuator WO2020152905A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-007692 2019-01-21
JP2019007692A JP2020119933A (en) 2019-01-21 2019-01-21 Stacked piezoelectric element and piezoelectric actuator

Publications (1)

Publication Number Publication Date
WO2020152905A1 true WO2020152905A1 (en) 2020-07-30

Family

ID=71736296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036499 WO2020152905A1 (en) 2019-01-21 2019-09-18 Stacked piezoelectric element and piezoelectric actuator

Country Status (2)

Country Link
JP (1) JP2020119933A (en)
WO (1) WO2020152905A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021240878A1 (en) * 2020-05-28 2021-12-02 昭和電工株式会社 Thermosetting resin composition
JP2022101998A (en) * 2020-12-25 2022-07-07 Tdk株式会社 Piezoelectric element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091443A1 (en) * 2006-02-07 2007-08-16 Matsushita Electric Industrial Co., Ltd. Piezoelectric element and ultrasonic actuator
JP2011072129A (en) * 2009-09-25 2011-04-07 Taiheiyo Cement Corp Ultrasonic motor
JP2011171754A (en) * 2011-04-08 2011-09-01 Seiko Instruments Inc Piezoelectric device and electronic equipment using the same
JP2013182904A (en) * 2012-02-29 2013-09-12 Tamron Co Ltd Lamination type piezoelectric actuator
WO2016158743A1 (en) * 2015-03-30 2016-10-06 株式会社村田製作所 Mother piezoelectric element, laminated piezoelectric element, and manufacturing method for laminated piezoelectric element
JP2018182194A (en) * 2017-04-19 2018-11-15 Tdk株式会社 Piezoelectric actuator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091443A1 (en) * 2006-02-07 2007-08-16 Matsushita Electric Industrial Co., Ltd. Piezoelectric element and ultrasonic actuator
JP2011072129A (en) * 2009-09-25 2011-04-07 Taiheiyo Cement Corp Ultrasonic motor
JP2011171754A (en) * 2011-04-08 2011-09-01 Seiko Instruments Inc Piezoelectric device and electronic equipment using the same
JP2013182904A (en) * 2012-02-29 2013-09-12 Tamron Co Ltd Lamination type piezoelectric actuator
WO2016158743A1 (en) * 2015-03-30 2016-10-06 株式会社村田製作所 Mother piezoelectric element, laminated piezoelectric element, and manufacturing method for laminated piezoelectric element
JP2018182194A (en) * 2017-04-19 2018-11-15 Tdk株式会社 Piezoelectric actuator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021240878A1 (en) * 2020-05-28 2021-12-02 昭和電工株式会社 Thermosetting resin composition
JP2022101998A (en) * 2020-12-25 2022-07-07 Tdk株式会社 Piezoelectric element
JP7327377B2 (en) 2020-12-25 2023-08-16 Tdk株式会社 Piezoelectric element

Also Published As

Publication number Publication date
JP2020119933A (en) 2020-08-06

Similar Documents

Publication Publication Date Title
JP4289511B2 (en) Piezoelectric actuator
JP4813708B2 (en) Multilayer piezoelectric motor
JP4069160B2 (en) Ultrasonic actuator
JP5116250B2 (en) Multilayer piezoelectric element, method for manufacturing the same, and vibration wave driving device
JP4069161B2 (en) Piezoelectric element and ultrasonic actuator
JP4456615B2 (en) Piezoelectric vibrator
TW201813273A (en) Tactile feedback generating device
JP5235856B2 (en) Vibration type actuator
WO2020152905A1 (en) Stacked piezoelectric element and piezoelectric actuator
EP3134925B1 (en) Piezoelektric actuator
WO2009131000A1 (en) Stacked piezoelectric element and ultrasonic motor
WO2013031715A1 (en) Layered piezoelectric element
JP2019009414A (en) Multilayer piezoelectric element, piezoelectric vibration apparatus, and electronic device
CN111262471B (en) Annular piezoelectric driver and piezoelectric motor
KR102469287B1 (en) Electromechanical actuator, excitation method of electromechanical actuator and ultrasonic motor
US11309481B2 (en) Multi-layer piezoelectric ceramic component-mounted piezoelectric device
JP4918122B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JP4954783B2 (en) Piezoelectric element and vibration type actuator
JP6323863B2 (en) Piezoelectric element, piezoelectric actuator, and method of manufacturing piezoelectric element
JP4611450B2 (en) Ultrasonic motor and electronic equipment with ultrasonic motor
JP3535111B2 (en) Piezo actuator
US11569430B2 (en) Method for operating an ultrasonic motor
JP2007312600A (en) Piezoelectric element and ultrasonic actuator
CN109478856B (en) Actuator
JP4818853B2 (en) Ultrasonic motor element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911073

Country of ref document: EP

Kind code of ref document: A1