JP3535111B2 - Piezo actuator - Google Patents

Piezo actuator

Info

Publication number
JP3535111B2
JP3535111B2 JP2001123861A JP2001123861A JP3535111B2 JP 3535111 B2 JP3535111 B2 JP 3535111B2 JP 2001123861 A JP2001123861 A JP 2001123861A JP 2001123861 A JP2001123861 A JP 2001123861A JP 3535111 B2 JP3535111 B2 JP 3535111B2
Authority
JP
Japan
Prior art keywords
piezoelectric
reinforcing plate
piezoelectric actuator
plate
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001123861A
Other languages
Japanese (ja)
Other versions
JP2002319717A (en
Inventor
勝之 石川
清 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2001123861A priority Critical patent/JP3535111B2/en
Publication of JP2002319717A publication Critical patent/JP2002319717A/en
Application granted granted Critical
Publication of JP3535111B2 publication Critical patent/JP3535111B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、精密位置
決め装置やスイッチング素子等に用いられる圧電アクチ
ュエータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric actuator used in, for example, a precision positioning device, a switching element or the like.

【0002】[0002]

【従来の技術】従来から、圧電アクチュエータの一形態
として、図6(a)に示すように、薄板状の圧電板91
の両主面に電極92a・92bが形成されて圧電板91
の厚み方向に分極処理が施された圧電素子93を、シム
材と呼ばれる所定の厚みを有する薄い金属板94の主面
の一方に貼り合わせてなるモノモルフ素子90が知られ
ている。モノモルフ素子90の長手方向の一端は、固定
手段96を用いて所定位置に固定される。
2. Description of the Related Art Conventionally, as a form of a piezoelectric actuator, as shown in FIG.
The electrodes 92a and 92b are formed on both main surfaces of the piezoelectric plate 91.
There is known a monomorph element 90 in which a piezoelectric element 93 that is polarized in the thickness direction is attached to one of the main surfaces of a thin metal plate 94 having a predetermined thickness called a shim material. One end of the monomorph element 90 in the longitudinal direction is fixed at a predetermined position by using fixing means 96.

【0003】モノモルフ素子90は、例えば、圧電板9
1の分極の向きと同じ向きに電界を加えると、厚み−縦
変位によって圧電板91の厚みが厚くなるように、か
つ、逆に厚み−横変位によって圧電板91の長手方向長
さが短くなるような変位を生ずる。このとき、圧電素子
93が金属板94に貼り合わされているために、圧電素
子93側の円弧の内側となるような屈曲変位が生ずる
(図6(b))。また、圧電板91の分極方向とは逆の
方向に電界を加えると、圧電板91の厚みが薄くなるよ
うに、かつ、圧電板91の長手方向長さが伸長するよう
な変位を生じ、この場合には、圧電素子93側が円弧の
外側となるような屈曲変位が生ずる(図6(c))。
The monomorph element 90 is, for example, a piezoelectric plate 9
When an electric field is applied in the same direction as the polarization direction of No. 1, the piezoelectric plate 91 becomes thick due to thickness-longitudinal displacement, and conversely, the longitudinal length of the piezoelectric plate 91 becomes short due to thickness-lateral displacement. Such displacement occurs. At this time, since the piezoelectric element 93 is attached to the metal plate 94, bending displacement occurs so as to be inside the arc on the piezoelectric element 93 side (FIG. 6B). Further, when an electric field is applied in a direction opposite to the polarization direction of the piezoelectric plate 91, displacement occurs such that the thickness of the piezoelectric plate 91 becomes thin and the longitudinal length of the piezoelectric plate 91 extends. In this case, bending displacement occurs such that the piezoelectric element 93 side is outside the arc (FIG. 6C).

【0004】モノモルフ素子90の先端部の変位量は圧
電素子93に印加する電圧によって制御することがで
き、こうして、モノモルフ素子90は、位置決め装置や
スイッチング素子に用いられる。なお、シム材の両主面
にそれぞれ圧電素子を貼り合わせた構造を有するいわゆ
るバイモルフ素子の場合には、一方の圧電素子の長手方
向長さが伸長するときには他方の圧電素子の長手方向長
さが短くなるように、圧電素子をシム材に貼り合わせる
ことで、より大きな変位を得ることができるようにな
る。
The amount of displacement of the tip of the monomorph element 90 can be controlled by the voltage applied to the piezoelectric element 93, and thus the monomorph element 90 is used as a positioning device or a switching element. In the case of a so-called bimorph element having a structure in which piezoelectric elements are attached to both main surfaces of a shim material, when the longitudinal length of one piezoelectric element is extended, the longitudinal length of the other piezoelectric element is By bonding the piezoelectric element to the shim material so that the length becomes shorter, it becomes possible to obtain a larger displacement.

【0005】[0005]

【発明が解決しようとする課題】従来のモノモルフ素子
等においては、シム材として金属板を用いることが、い
わば常識とされていた。しかしながら、単一素材の金属
板には、固有の共振振動が発生しやすく、制振性が悪い
という問題があった。モノモルフ素子等において制振性
が悪い場合には、応答速度が遅く、また、位置決め精度
が低下するという様々な問題を引き起こす。
In the conventional monomorph element and the like, it has been generally accepted that a metal plate is used as the shim material. However, the metal plate made of a single material has a problem in that it is likely to generate a resonance vibration peculiar to the metal plate and has a poor vibration damping property. If the vibration damping property of the monomorph element or the like is poor, it causes various problems that the response speed is slow and the positioning accuracy is lowered.

【0006】本発明は、このような従来技術が有する問
題点に鑑みてなされたものであり、制振性を向上させた
圧電アクチュエータを提供することを目的とする。
The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide a piezoelectric actuator having improved vibration damping property.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明によれ
ば、補強板に平板状の圧電素子を貼り合わせてなる圧電
アクチュエータであって、前記補強板は、弾性率の異な
る材料からなるシートまたは箔が厚み方向に積層された
構造を有することを特徴とする圧電アクチュエータ、が
提供される。
That is, according to the present invention, there is provided a piezoelectric actuator in which a flat plate-shaped piezoelectric element is bonded to a reinforcing plate, wherein the reinforcing plate is a sheet or a material made of materials having different elastic moduli. There is provided a piezoelectric actuator having a structure in which foils are laminated in a thickness direction.

【0008】このような圧電アクチュエータにおいて
は、補強板を構成する弾性率の異なる材料は金属と樹脂
であることが好ましい。また、補強板は、シート状の樹
脂の主面の少なくとも一方に導体、好ましくは金属箔等
の金属板が設けられたプリント配線基板を用いることが
好ましい。この樹脂としては液晶ポリマー樹脂が好適に
用いられる。このような弾性率の異なる材料からなる補
強板を用いることによって、固有の共振振動が発生し難
くなり、圧電アクチュエータの駆動時における制振性が
高められる。本発明の圧電アクチュエータは、このよう
な補強板の両主面に圧電素子を貼り合わせたバイモルフ
型構造として用いることが好ましい。
In such a piezoelectric actuator, the reinforcing plates are made of materials having different elastic moduli such as metal and resin.
It is preferable that. Further, as the reinforcing plate, it is preferable to use a printed wiring board in which a conductor, preferably a metal plate such as a metal foil is provided on at least one of the main surfaces of the sheet-shaped resin. A liquid crystal polymer resin is preferably used as this resin. By using the reinforcing plate made of such materials having different elastic moduli, it is difficult for the inherent resonance vibration to occur, and the vibration damping property at the time of driving the piezoelectric actuator is enhanced. The piezoelectric actuator of the present invention is preferably used as a bimorph structure in which piezoelectric elements are bonded to both main surfaces of such a reinforcing plate.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照しながら説明する。図1は本発明の圧電ア
クチュエータの一実施形態であるバイモルフ素子10の
構造を示す断面図であり、図2はバイモルフ素子10を
直流電圧により駆動した場合の変形態を示す説明図で
あり、図3はバイモルフ素子10を交流電圧により駆動
した場合の変形態を示す説明図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. Figure 1 is a sectional view showing the structure of a bimorph element 10 which is an embodiment of a piezoelectric actuator of the present invention, FIG. 2 is an explanatory view showing the displacement of the form when driving the bimorph element 10 by the DC voltage, Figure 3 is an explanatory view showing the displacement of the form in the case of driving by the AC voltage bimorph element 10.

【0010】バイモルフ素子10は、補強板11の両主
面にそれぞれ圧電素子12a・12bが貼り合わされて
構成され、補強板11は、樹脂シート13の両主面に金
属箔(金属板)14a・14bが貼り合わされた積層構
造を有している。また、圧電素子12aは、所定厚みを
有する平板状の圧電体15aの両主面に電極16a・1
6a´が形成された構造を有し、同様に、圧電素子12
bは所定厚みを有する平板状の圧電体15bの両主面に
電極16b・16b´が形成された構造を有している。
The bimorph element 10 is constructed by bonding piezoelectric elements 12a and 12b to both main surfaces of a reinforcing plate 11, and the reinforcing plate 11 has metal foils (metal plates) 14a to both main surfaces of a resin sheet 13. It has a laminated structure in which 14b is laminated. Further, the piezoelectric element 12a has electrodes 16a.1 on both main surfaces of a flat plate-shaped piezoelectric body 15a having a predetermined thickness.
6a ′ is formed, and similarly, the piezoelectric element 12
b has a structure in which electrodes 16b and 16b 'are formed on both main surfaces of a plate-shaped piezoelectric body 15b having a predetermined thickness.

【0011】樹脂シート13の材料としては液晶ポリマ
ー樹脂等を挙げることができる。液晶ポリマー樹脂を用
いた場合には、熱融着によって金属箔14a・14bを
貼り合わせることが可能であるために、接着剤を用いて
樹脂シート13に金属箔14a・14bを貼り合わせる
場合と比較すると、樹脂シート13と金属箔14a・1
4bとが剥離し難く、信頼性が高められる。
Examples of the material of the resin sheet 13 include a liquid crystal polymer resin. When the liquid crystal polymer resin is used, it is possible to bond the metal foils 14a and 14b by heat fusion. Then, the resin sheet 13 and the metal foil 14a-1
It is difficult to separate from 4b, and the reliability is improved.

【0012】金属箔14a・14bとしては銅箔が好適
に用いられるが、アルミニウム箔等であってもよい。液
晶ポリマー樹脂シートに銅箔を貼り合わせた積層体シー
トは、いわゆるプリント配線基板として入手も容易であ
ることから、このような積層体シートを用いることで生
産コストの低減や生産性の向上を図ることができる。
Copper foil is preferably used as the metal foils 14a and 14b, but aluminum foil or the like may be used. Since a laminate sheet obtained by laminating a copper foil on a liquid crystal polymer resin sheet is easily available as a so-called printed wiring board, it is possible to reduce production cost and improve productivity by using such a laminate sheet. be able to.

【0013】本発明においては、弾性率の異なる材料を
厚み方向に積層した構造を有する補強板11を用いるこ
とで、共振振動の発生が抑制されて制振性が高められ、
バイモルフ素子10を駆動させたときの応答性を向上さ
せることができる。
In the present invention, by using the reinforcing plate 11 having a structure in which materials having different elastic moduli are laminated in the thickness direction, generation of resonance vibration is suppressed and vibration damping property is enhanced.
It is possible to improve the responsiveness when the bimorph element 10 is driven.

【0014】補強板11の長手方向の一端には固定治具
19が取り付けられており、圧電素子12a・12bに
所定の電圧を印加してバイモルフ素子10を駆動させた
ときには、固定治具19が取り付けられていない他端が
変位するようになっている。
A fixing jig 19 is attached to one end of the reinforcing plate 11 in the longitudinal direction. When the bimorph element 10 is driven by applying a predetermined voltage to the piezoelectric elements 12a and 12b, the fixing jig 19 is attached. The other end that is not attached is displaced.

【0015】圧電体15a・15bとしては、高い圧電
特性を有するチタン酸ジルコン酸鉛系の圧電セラミック
スが好適に用いられる。電極16a・16a´・16b
・16b´は、板状の圧電セラミックスの両主面に銀ペ
ースト等の電極ペーストをスクリーン印刷法等を用いて
印刷し、焼成することで形成することができる。電極1
6a・16a´・16b・16b´の厚みは、スクリー
ン印刷法を用いる場合には、一般的に、2〜8μmとさ
れる。
As the piezoelectric bodies 15a and 15b, lead zirconate titanate-based piezoelectric ceramics having high piezoelectric characteristics are preferably used. Electrodes 16a, 16a ', 16b
16b ′ can be formed by printing an electrode paste such as a silver paste using a screen printing method or the like on both main surfaces of a plate-shaped piezoelectric ceramic, and then firing it. Electrode 1
When the screen printing method is used, the thickness of 6a, 16a ', 16b, and 16b' is generally 2 to 8 m.

【0016】通常、圧電素子12a・12bはほぼ同形
状とされ、圧電素子12a・12bと補強板11との間
の接着には、絶縁性接着剤または導電性接着剤のいずれ
かが用いられる。絶縁性接着剤を用いた場合には、圧電
素子12aの電極16a´と補強板11の金属箔14a
とが一部で接触するように、また、圧電素子12bの電
極16b´と補強板11の金属箔14bとが一部で接触
するように、接着層の厚みを薄くする。なお、図1から
図3においては、この接着層は図示していない。
Usually, the piezoelectric elements 12a and 12b have substantially the same shape, and either an insulating adhesive or a conductive adhesive is used to bond the piezoelectric elements 12a and 12b to the reinforcing plate 11. When an insulating adhesive is used, the electrode 16a 'of the piezoelectric element 12a and the metal foil 14a of the reinforcing plate 11 are used.
The thickness of the adhesive layer is thinned so that part of the adhesive layer contacts with the electrode 16b ′ of the piezoelectric element 12b and part of the metal foil 14b of the reinforcing plate 11. The adhesive layer is not shown in FIGS. 1 to 3.

【0017】金属箔14a・14bを短絡し、また、圧
電素子12aにおける電極16aと圧電素子12bにお
ける電極16bとを短絡して、これらの端子を電源に接
続することで、圧電素子12a・12bを同時に駆動す
ることができる。このとき、圧電体15a・15bには
補強板11を挟んで逆向きの電界が印加されるため、圧
電素子12a・12bは、圧電体15a・15bの分極
の向きがともに同じ向きとなるようにする。
By short-circuiting the metal foils 14a and 14b and the electrode 16a in the piezoelectric element 12a and the electrode 16b in the piezoelectric element 12b and connecting these terminals to a power source, the piezoelectric elements 12a and 12b are connected. It can be driven at the same time. At this time, electric fields in opposite directions are applied to the piezoelectric bodies 15a and 15b with the reinforcing plate 11 sandwiched therebetween, so that the piezoelectric elements 12a and 12b have the same polarization directions of the piezoelectric bodies 15a and 15b. To do.

【0018】こうして、例えば、図2に示すように、圧
電素子12a・12bに直流電圧を印加した場合には、
圧電素子12aにおいて圧電体15aにおける分極の向
きと電界の向きが一致することによって、圧電素子12
aが厚み−横効果によって長手方向に縮むならば、圧電
素子12bにおいては圧電体15bにおける分極の向き
と電界の向きが逆向きとなるために、圧電素子12bは
厚み−横効果によって長手方向に伸長し、この結果、補
強板11の先端が圧電素子12a側に移動するようにバ
イモルフ素子10全体が反るように変形する。
Thus, for example, as shown in FIG. 2, when a DC voltage is applied to the piezoelectric elements 12a and 12b,
In the piezoelectric element 12a, the direction of polarization in the piezoelectric body 15a and the direction of the electric field match each other.
If a contracts in the longitudinal direction due to the thickness-transverse effect, the piezoelectric element 12b has a polarization direction and an electric field direction opposite to each other in the piezoelectric element 12b. As a result, the bimorph element 10 is warped and deformed so that the tip of the reinforcing plate 11 moves toward the piezoelectric element 12a.

【0019】また、図3に示すように、圧電素子12a
・12bに交流電圧を印加した場合には、圧電素子12
a・12bの一方が長手方向に伸長するときには他方が
長手方向に縮むために、補強板11の先端が圧電素子1
2a側と圧電素子12b側に交互に移動するように、バ
イモルフ素子10全体が交流電圧の周波数に依存して屈
曲変位する。なお、圧電素子12a・12bの補強板1
1への接着は、圧電素子12a・12bにおける圧電体
15a・15bの分極が行われた後に、分極の向きを考
慮して行う。
Further, as shown in FIG. 3, the piezoelectric element 12a
When the AC voltage is applied to 12b, the piezoelectric element 12
When one of the a and 12b expands in the longitudinal direction, the other contracts in the longitudinal direction, so that the tip of the reinforcing plate 11 is located at the piezoelectric element 1.
The entire bimorph element 10 is bent and displaced depending on the frequency of the AC voltage so as to be alternately moved to the 2a side and the piezoelectric element 12b side. The reinforcing plate 1 for the piezoelectric elements 12a and 12b
Adhesion to No. 1 is performed in consideration of the polarization direction after polarization of the piezoelectric bodies 15a and 15b in the piezoelectric elements 12a and 12b.

【0020】次に、上述した本発明に係るバイモルフ素
子10と従来のバイモルフ素子との特性比較を図4に示
す。図4(a)は、上述した構造を有するバイモルフ素
子10の駆動特性を示した説明図であり、また、図4
(b)は、図5の断面図に示すように、圧電素子12a
と同様の構造を有する圧電素子82a・82bを金属板
81をシム材として用いた従来のバイモルフ素子80の
駆動特性を示した説明図であり、ともに、所定の直流電
圧を印加してバイモルフ素子10・80に屈曲変位を起
こさせた状態から、電圧印加を停止して静止するまでの
動作特性を示している。
Next, FIG. 4 shows a characteristic comparison between the above-described bimorph element 10 according to the present invention and a conventional bimorph element. FIG. 4A is an explanatory diagram showing the driving characteristics of the bimorph element 10 having the above-described structure, and FIG.
(B) shows the piezoelectric element 12a as shown in the cross-sectional view of FIG.
FIG. 11 is an explanatory diagram showing the driving characteristics of a conventional bimorph element 80 using the piezoelectric elements 82a and 82b having the same structure as the above, using a metal plate 81 as a shim material, both of which are applied with a predetermined DC voltage. -It shows the operating characteristics from the state where the bending displacement is caused to 80 to the time when the voltage application is stopped and the apparatus stands still.

【0021】ここで、バイモルフ素子10は、長さ50
mm、幅8mm、厚さ180μmの圧電素子12a・1
2bを、長さ55mm、幅8mm、厚み200μmの補
強板11に貼り合わせた構造を有し、補強板11は厚み
100μmの液晶ポリマー樹脂シートの両主面に厚さ5
0μmの銅箔を貼り合わせたプリント配線基板である。
一方、バイモルフ素子80は、長さ50mm、幅8m
m、厚さ180μmの圧電素子12a・12bを、長さ
55mm、幅8mm、厚み50μmの42アロイ板に貼
り合わせた構造を有している。
The bimorph element 10 has a length of 50.
mm, Width 8 mm, Thickness 180 μm Piezoelectric element 12a ・ 1
2b is bonded to a reinforcing plate 11 having a length of 55 mm, a width of 8 mm and a thickness of 200 μm. The reinforcing plate 11 has a thickness of 5 μm on both main surfaces of a liquid crystal polymer resin sheet having a thickness of 100 μm.
It is a printed wiring board in which copper foil of 0 μm is bonded.
On the other hand, the bimorph element 80 has a length of 50 mm and a width of 8 m.
The piezoelectric element 12a, 12b having a thickness of m and a thickness of 180 μm is bonded to a 42 alloy plate having a length of 55 mm, a width of 8 mm and a thickness of 50 μm.

【0022】図4(a)・(b)から、従来のバイモル
フ素子80では振動停止まで約60ミリ秒(ms)の時
間を要しているが、本発明に係るバイモルフ素子10で
は約16ミリ秒(ms)で振動が停止しており、優れた
制振性を有していることがわかる。本発明に係るバイモ
ルフ素子10は、このような制振性に起因して、所定の
直流電圧または交流電圧によってバイモルフ素子10を
駆動した場合にも、所定の変位量に落ち着くまでの時間
が短いという良好な応答性を示す。従って、例えば、バ
イモルフ素子10によって精密位置決めを行う場合に
は、位置決め精度が向上し、また、バイモルフ素子10
をスイッチング素子として用いた場合には、スイッチン
グのオン/オフの信頼性が高められる。
From FIGS. 4 (a) and 4 (b), it takes about 60 milliseconds (ms) to stop the vibration in the conventional bimorph element 80, but in the bimorph element 10 according to the present invention, it is about 16 mm. It can be seen that the vibration stops in seconds (ms) and that it has excellent vibration damping properties. Due to such vibration damping property, the bimorph element 10 according to the present invention is said to have a short time to settle to a predetermined displacement amount even when the bimorph element 10 is driven by a predetermined DC voltage or AC voltage. Shows good responsiveness. Therefore, for example, when precision positioning is performed by the bimorph element 10, the positioning accuracy is improved, and the bimorph element 10 is also improved.
When is used as a switching element, the reliability of switching on / off is enhanced.

【0023】以上、本発明の圧電アクチュエータの実施
の形態について、バイモルフ素子を例として説明した
が、本発明は上記実施の形態に限定されるものではな
く、当然に、図6に示したモノモルフ素子にも適用する
ことができる。また、金属箔14a・14bに代えて、
他の導体、例えば、カーボンシートや導電性樹脂シート
を液晶ポリマー樹脂等の樹脂シート13に貼り合わせた
補強板を用いることも可能であり、樹脂シート13を複
数の樹脂シートからなる積層構造とすることも可能であ
る。
Although the embodiment of the piezoelectric actuator of the present invention has been described above by taking the bimorph element as an example, the present invention is not limited to the above-mentioned embodiment, and it goes without saying that the monomorph element shown in FIG. 6 is used. Can also be applied to. Also, instead of the metal foils 14a and 14b,
It is also possible to use a reinforcing plate in which another conductor, for example, a carbon sheet or a conductive resin sheet is attached to a resin sheet 13 such as a liquid crystal polymer resin, and the resin sheet 13 has a laminated structure composed of a plurality of resin sheets. It is also possible.

【0024】さらにまた、圧電素子12a・12bを駆
動することが可能である限りにおいて、必ずしも補強板
11の表面に導体は必要とされない。つまり、金属箔や
金属板を樹脂シートで挟んだ積層構造を有する補強板を
用いてもよく、補強板11は必ず導体を含んでいなけれ
ばならないものではない。弾性率の異なる材料の積層体
である限りにおいて、各層を構成する材料は複数種の材
料を混合等して構成された複合材料であっても構わな
い。
Furthermore, as long as it is possible to drive the piezoelectric elements 12a and 12b, a conductor is not necessarily required on the surface of the reinforcing plate 11. That is, a reinforcing plate having a laminated structure in which a metal foil or a metal plate is sandwiched between resin sheets may be used, and the reinforcing plate 11 does not necessarily include a conductor. As long as it is a laminated body of materials having different elastic moduli, the material forming each layer may be a composite material formed by mixing a plurality of types of materials.

【0025】[0025]

【発明の効果】上述の通り、本発明の圧電アクチュエー
タによれば、異なる弾性率を有する材料を厚み方向に積
層した補強板を用いることで共振振動が起こり難くなる
ため、制振性が高められ、応答性が向上する。こうし
て、本発明の圧電アクチュエータを位置決め装置として
用いた場合には、短時間で高精度な位置決めを行うこと
が可能となり、また、スイッチング素子として用いた場
合には、オン/オフのスイッチング動作の信頼性が高め
られるという顕著な効果を奏する。
As described above, according to the piezoelectric actuator of the present invention, resonance vibration is less likely to occur by using a reinforcing plate in which materials having different elastic moduli are laminated in the thickness direction, so that the vibration damping property is improved. , Responsiveness is improved. Thus, when the piezoelectric actuator of the present invention is used as a positioning device, highly accurate positioning can be performed in a short time, and when it is used as a switching element, the reliability of on / off switching operation is improved. The remarkable effect that the property is enhanced is exhibited.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の圧電アクチュエータの一実施形態を示
す断面図。
FIG. 1 is a sectional view showing an embodiment of a piezoelectric actuator of the present invention.

【図2】図1記載の圧電アクチュエータの変位形態を示
す説明図。
FIG. 2 is an explanatory view showing a displacement form of the piezoelectric actuator shown in FIG.

【図3】図1記載の圧電アクチュエータの変位形態を示
す別の説明図。
FIG. 3 is another explanatory view showing a displacement form of the piezoelectric actuator shown in FIG.

【図4】本発明に係るバイモルフ素子と従来のバイモル
フ素子の制振性を比較した説明図。
FIG. 4 is an explanatory diagram comparing the damping characteristics of a bimorph element according to the present invention and a conventional bimorph element.

【図5】従来のバイモルフ素子の構造を示す断面図。FIG. 5 is a cross-sectional view showing the structure of a conventional bimorph element.

【図6】従来のモノモルフ素子の構造を示す断面図。FIG. 6 is a sectional view showing a structure of a conventional monomorph element.

【符号の説明】 10;バイモルフ素子 11;補強板 12a・12b;圧電素子 13;樹脂シート 14a・14b;金属箔 15a・15b;圧電体 16a・16a´・16b・16b´;電極 19;固定治具 80;バイモルフ素子 81;金属板 82a・82b;圧電素子 90;モノモルフ素子 91;圧電板 92a・92b;電極 93;圧電素子 94;金属板 96;固定手段[Explanation of symbols] 10; Bimorph element 11; Reinforcing plate 12a and 12b; piezoelectric element 13; Resin sheet 14a and 14b; metal foil 15a and 15b; piezoelectric body 16a, 16a ', 16b, 16b'; electrodes 19; Fixing jig 80; Bimorph element 81; Metal plate 82a / 82b; piezoelectric element 90; Monomorph element 91; Piezoelectric plate 92a / 92b; electrodes 93; Piezoelectric element 94; Metal plate 96; fixing means

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 補強板に平板状の圧電素子を貼り合わせ
てなる圧電アクチュエータであって、 前記補強板は、弾性率の異なる材料からなるシートまた
は箔が厚み方向に積層された構造を有することを特徴と
する圧電アクチュエータ。
1. A piezoelectric actuator in which a flat plate-shaped piezoelectric element is bonded to a reinforcing plate, wherein the reinforcing plate is a sheet or a sheet made of materials having different elastic moduli.
Is a piezoelectric actuator having a structure in which foils are laminated in the thickness direction.
【請求項2】 前記補強板を構成する弾性率の異なる材
料が、樹脂と金属であることを特徴とする請求項1に記
載の圧電アクチュエータ。
2. A material having a different elastic modulus that constitutes the reinforcing plate.
The piezoelectric actuator according to claim 1, wherein the material is a resin and a metal .
【請求項3】 前記補強板は、シート状の樹脂の主面の
少なくとも一方に導体が設けられたプリント配線基板で
あることを特徴とする請求項1または請求項2に記載の
圧電アクチュエータ。
3. The piezoelectric actuator according to claim 1, wherein the reinforcing plate is a printed wiring board in which a conductor is provided on at least one main surface of a sheet-shaped resin.
【請求項4】 前記樹脂が液晶ポリマー樹脂であること
を特徴とする請求項2または請求項3に記載の圧電アク
チュエータ。
4. A piezoelectric actuator according to claim 2 or claim 3 wherein the resin is characterized in that it is a liquid crystal polymer resin.
【請求項5】 前記補強板の両主面に前記圧電素子を貼
り合わせたバイモルフ型構造を有することを特徴とする
請求項1から請求項4のいずれか1項に記載の圧電アク
チュエータ。
5. The piezoelectric actuator according to any one of claims 1 to 4, characterized in that it comprises a bimorph structure in which the bonding the piezoelectric element on both main surfaces of the reinforcing plate.
JP2001123861A 2001-04-23 2001-04-23 Piezo actuator Expired - Fee Related JP3535111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001123861A JP3535111B2 (en) 2001-04-23 2001-04-23 Piezo actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001123861A JP3535111B2 (en) 2001-04-23 2001-04-23 Piezo actuator

Publications (2)

Publication Number Publication Date
JP2002319717A JP2002319717A (en) 2002-10-31
JP3535111B2 true JP3535111B2 (en) 2004-06-07

Family

ID=18973348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001123861A Expired - Fee Related JP3535111B2 (en) 2001-04-23 2001-04-23 Piezo actuator

Country Status (1)

Country Link
JP (1) JP3535111B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005122380A1 (en) * 2004-06-07 2005-12-22 Matsushita Electric Industrial Co., Ltd. Actuator and micromotion mechanism having such actuator and camera module having such micromotion mechanism
KR100610192B1 (en) 2004-10-27 2006-08-09 경북대학교 산학협력단 piezoelectric oscillator
JP5556968B2 (en) * 2011-09-06 2014-07-23 株式会社村田製作所 Piezoelectric actuator
JP5556967B2 (en) * 2011-09-06 2014-07-23 株式会社村田製作所 Piezoelectric actuator
WO2015113346A1 (en) * 2014-01-28 2015-08-06 浙江大学 Flexible intelligent driving structure
CN104538545B (en) * 2015-01-22 2017-02-22 北京大学 Ferroelastic domain switching based large actuating strain piezoelectric actuator

Also Published As

Publication number Publication date
JP2002319717A (en) 2002-10-31

Similar Documents

Publication Publication Date Title
JP5474261B1 (en) Piezoelectric actuator, piezoelectric vibration device, and portable terminal
JP2004297951A (en) Ultrasonic vibrator and ultrasonic motor
WO2012060235A1 (en) Piezoelectric vibration device
JP3311446B2 (en) Ultrasonic motor
US11393972B2 (en) Multi-layer piezoelectric ceramic component and piezoelectric device
JP2004104984A (en) Ultrasonic linear motor
JPH08242025A (en) Piezoelectric actuator
JP5298999B2 (en) Multilayer piezoelectric element
JP3535111B2 (en) Piezo actuator
JP4459317B2 (en) Ultrasonic motor and electronic equipment with ultrasonic motor
US11571712B2 (en) Vibration panel and electronic apparatus
JP4666578B2 (en) Ultrasonic vibration element and ultrasonic actuator using the same
KR20140099563A (en) Piezoelectric actuator, piezoelectric vibration apparatus and portable terminal
JP2001211668A (en) Fine positioning actuator, thin film magnetic head device positioning actuator and head suspension assembly having the same
JP3805644B2 (en) Piezoelectric actuator
US11362261B2 (en) Multi-layer piezoelectric ceramic component and piezoelectric device
KR20140087945A (en) Piezoelectric actuator, piezoelectric vibration apparatus and portable terminal
WO2019130773A1 (en) Vibration device
CN107809185B (en) piezoelectric driving device
JP4673418B2 (en) Vibrating transfer device
CN112445334B (en) Vibration panel and electronic device
JP4516365B2 (en) Ultrasonic motor
JP2006320119A (en) Ultrasonic motor
JP4350786B2 (en) Ultrasonic motor and electronic equipment with ultrasonic motor
JP2001185773A (en) Piezoelectric/electrostrictive device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040310

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees