WO2020152894A1 - Device for measuring degradation of rectifying element and method for measuring degradation of rectifying element - Google Patents

Device for measuring degradation of rectifying element and method for measuring degradation of rectifying element Download PDF

Info

Publication number
WO2020152894A1
WO2020152894A1 PCT/JP2019/031518 JP2019031518W WO2020152894A1 WO 2020152894 A1 WO2020152894 A1 WO 2020152894A1 JP 2019031518 W JP2019031518 W JP 2019031518W WO 2020152894 A1 WO2020152894 A1 WO 2020152894A1
Authority
WO
WIPO (PCT)
Prior art keywords
rectifying element
voltage
deterioration
diodes
current value
Prior art date
Application number
PCT/JP2019/031518
Other languages
French (fr)
Japanese (ja)
Inventor
吉彦 落合
進一 佐藤
本章 渕脇
Original Assignee
電元社トーア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電元社トーア株式会社 filed Critical 電元社トーア株式会社
Publication of WO2020152894A1 publication Critical patent/WO2020152894A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices

Definitions

  • the present invention relates to a rectifying element deterioration measuring device and a rectifying element deterioration measuring method capable of measuring deterioration of a rectifying element such as a diode.
  • an inverter-type resistance welding machine as disclosed in Patent Documents 1 to 3, which can set a wide range of welding conditions and can perform high-quality welding. It is being used.
  • the inverter type resistance welding machine has an inverter transformer that supplies a large welding current during spot welding, and a diode stack (a unit in which two or more diodes are combined) provided in this inverter transformer. The diode stack provided in the inverter transformer is easily deteriorated because a large welding current is applied during spot welding.
  • the progress of deterioration of the diode stack varies depending on individual performance, usage environment, usage frequency, welding conditions, etc.
  • a resistance welding machine arranged on a manufacturing line of a factory if the diode stack fails due to unexpected deterioration, it takes time to replace the diode stack, and the manufacturing line must be stopped. Therefore, it is important to know the degree of progress of deterioration of the diode stack before the production line is stopped in order to prevent the production line from stopping and to perform planned maintenance by preventive maintenance.
  • the present invention has been made to solve such a problem, and an object thereof is to provide a rectifying element deterioration measuring device and a rectifying element deterioration measuring method capable of measuring deterioration of a rectifying element such as a diode of a diode stack.
  • a rectifying element deterioration measuring apparatus for achieving the above object detects a power supply for applying a reverse voltage to a rectifying element and a current value of a current flowing through the rectifying element when the reverse voltage is applied. If the current detection unit and the detected current value are larger than the judgment current value for judging deterioration of the rectifying element, it is judged that the rectifying element is deteriorated, and if smaller, it is judged that the rectifying element is not deteriorated. And a judging section.
  • a step of applying a reverse voltage to the rectifying element, detecting the current value of the current flowing in the rectifying element, the detected current value is The step of determining that the rectifying element is deteriorated if the current value is larger than the determination current value for determining the deterioration of the rectifying element, and determining that the rectifying element is not deteriorated if it is smaller.
  • the deterioration of the rectifying element is judged based on the current value of the current flowing when the reverse voltage is applied to the rectifying element. It is easy to measure the degree. By making this measurement regularly, the degree of progress of deterioration of the rectifying element can be known, preventive maintenance of the rectifying element becomes possible, and planned maintenance becomes possible.
  • FIG. 4 is a diagram for explaining the operation flowchart of FIG. 3. It is a flow chart of a processing procedure of a rectifying element deterioration measuring method of this embodiment. It is explanatory drawing when the rectifying element deterioration measuring method of this embodiment is applied to a welding robot.
  • FIG. 1 is a schematic configuration diagram of the rectifying element deterioration measuring device of the present embodiment.
  • the rectifying element deterioration measuring device 100 measures the degree of progress of deterioration of the diodes 172 and 174 of the diode stack 170 provided in the inverter transformer 150.
  • the rectifier deterioration measuring device 100 has a programmable power supply 110, a resistor 115, an insulation amplifier 120, an oscilloscope 130, and a personal computer 140.
  • the inverter transformer 150 has a transformer 160 and a diode stack 170.
  • the diode stack 170 includes two diodes 172 and 174.
  • the inverter transformer 150 is provided in, for example, a resistance welding machine, and supplies a welding current for welding steel plates to each other between electrodes.
  • the transformer 160 generates an AC welding current, and the diodes 172 and 174 of the diode stack 170 convert the AC welding current into a DC welding current.
  • DC welding current is supplied between the electrodes of the resistance welding machine.
  • the programmable power supply 110 is a power supply that applies a reverse voltage Va to the diodes 172 and 174 that are rectifying elements.
  • the programmable power supply 110 applies a constant reverse voltage to the diodes 172 and 174, or increases the reverse voltage applied to the diodes 172 and 174 stepwise, and also increases the reverse voltage stepwise.
  • the ramp is programmed to ramp from the current stage voltage to the next stage voltage over a period of time when ramping to the next stage.
  • the maximum reverse voltage applied to the diodes 172, 174 by the programmable power supply 110 is such that the reverse breakdown voltage of the diodes 172, 174 does not damage the diodes 172, 174 even if applied to the deteriorated diodes 172, 174.
  • the voltage is 60% or less not including 0.
  • the programmable power supply 110 is programmed so that the reverse voltage of 360V or more is not applied to the diodes 172 and 174.
  • the reverse voltage applied to the diodes 172 and 174 is most preferably 60% or less of the reverse breakdown voltage of the diodes 172 and 174 that does not include 0, but may be 90% or less that does not include 0.
  • the resistor 115 converts a current (leakage current: also referred to as IRD) flowing in the diodes 172 and 174 into a voltage by a reverse voltage applied to the diodes 172 and 174 by the programmable power supply 110.
  • a current having a current value obtained by adding the current value of the current of the diode 172 and the current value of the current of the diode 174 flows through the resistor 115. Therefore, the inter-terminal voltage Vb of the resistor 115 is obtained by multiplying the resistance value (R) of the resistor 115 by the current value (i172) of the current of the diode 172 and the current value (i174) of the current of the diode 174. It becomes the combined voltage value (V). That is, the voltage between the terminals of the resistor 115 is represented by the equation Vb R ⁇ (i172+i174).
  • the isolation amplifier 120 is an amplifier that insulates the input side (diode side) from the output side (oscilloscope side), and the reverse voltage Va applied to the diodes 172 and 174 by the programmable power supply 110 and the resistance to the oscilloscope 130.
  • the voltage Vb between the terminals of the device 115 is output.
  • the oscilloscope 130 visualizes and displays a temporal change between the reverse voltage Va applied to the diodes 172 and 174 by the programmable power supply 110 and the terminal voltage Vb of the resistor 115.
  • the oscilloscope 130 is provided so that the measurer can see the degree of deterioration of the diodes 172 and 174 according to the waveform, but the oscilloscope 130 may be omitted. If omitted, the output side of the isolation amplifier 120 is directly connected to the personal computer 140.
  • the resistor 115, the isolation amplifier 120, and the oscilloscope 130 function as a current detection unit that detects the current value of the current flowing in the diodes 172 and 174 when the programmable power supply 110 applies a reverse voltage to the diodes 172 and 174.
  • the current detection unit includes a resistor 115 connected in series with the diodes 172 and 174, and using the terminal voltage Vb of the resistor 115 generated by the current flowing through the resistor 115, the current flowing through the diodes 172 and 174. The current value of is detected.
  • the resistor 115, the isolation amplifier 120, and the oscilloscope 130 form a current detection unit, but the configuration of the current detection unit is not limited to such a configuration.
  • a voltmeter that detects the voltage between the terminals of the resistor 115 and the resistor 115 may be used.
  • the resistor 115 may be omitted and the measurement may be performed directly by an ammeter.
  • a worker in the field may judge the degree of progress of deterioration of the diodes 172 and 174 based on the values of the voltmeter and the ammeter.
  • the personal computer 140 stores a judgment current value for judging deterioration of the diodes 172, 174.
  • the judgment current value is set according to the electrical characteristics of the diodes 172 and 174 immediately before the damage. For example, a large number of reverse-direction resistance values of the diodes 172 and 174 immediately before damage are measured, the resistance values are accumulated, a judgment current value is calculated with reference to the accumulated resistance value, and the calculated judgment current value is calculated.
  • a rectifying element such as the diodes 172 and 174 has a larger current when a reverse voltage is applied as the deterioration progresses.
  • the current value of 1 mA or less may exceed 100 mA due to deterioration of the diodes 172, 174.
  • the determination current value can be obtained by dividing the maximum reverse voltage applied by the programmable power supply 110 by the resistance value Rinv of the diode.
  • the determination current value is set to a value slightly smaller than the value thus obtained in order to increase the reliability of the determination of the degree of progress of deterioration of the diodes 172 and 174.
  • the personal computer 140 also includes a program for comparing the current value of the current flowing through the diodes 172 and 174 with the stored determination current value.
  • the personal computer 140 determines that the diodes 172 and 174 are deteriorated if the current value of the current flowing in the diodes 172 and 174 is larger than the determination current value. If the current value of the current flowing through the diodes 172 and 174 is smaller than the determination current value, it is determined that the diodes 172 and 174 have not deteriorated.
  • the personal computer 140 is illustrated as the determination unit, but the determination unit is not limited to this, and has a function of comparing the current value of the current flowing in the diodes 172 and 174 with the determination current value. Any semiconductor may be used as long as it is available, and it may be configured as one semiconductor chip.
  • the diode stack 170 is formed of a metal body having good conductivity and thermal conductivity, such as copper, and the diodes 172 and 174 are sandwiched by the metal body.
  • the diodes 172 and 174 are connected to the secondary winding 162 of the transformer 160 shown in FIG.
  • the diodes 172 and 174 supply welding current having a large current value to the electrodes of the resistance welding machine, and thus generate heat and become hot. Since the diodes 172, 174 are damaged when the temperature becomes high, a cooling water passage 176 for circulating cooling water is arranged in the diode stack 170 as shown in the drawing.
  • the temperature of the diode stack 170 and the diodes 172, 174 is adjusted to a temperature suitable for operation by circulating the cooling water through the cooling water passage 176 via the manifold 178.
  • FIG. 3 is an operation flowchart of the rectifying element deterioration measuring device of the present embodiment. Further, FIG. 4 is a diagram for explaining the operation flowchart of FIG. The process of this operation flowchart will be described with reference to FIG.
  • the programmable power supply 110 gradually increases the reverse DC voltage and applies it to the diodes 172 and 174 (S100). Note that a small constant voltage of about several V may be applied.
  • the programmable power supply 110 gradually increases the reverse voltage Va applied to the diodes 172 and 174, as shown by the solid line in FIG.
  • the programmable power supply 110 first applies V1 as a reverse voltage, then V2, and finally V3 to the diodes 172 and 174.
  • the voltage is increased by 50V in three steps, but the voltage may be increased by a constant voltage, two steps, or four or more steps.
  • the voltage from the current step to the voltage of the next step is increased over a certain period of time.
  • the programmable power supply 110 first applies V1 as a reverse voltage to the diodes 172 and 174, and then when V2 is applied, rather than suddenly increasing from V1 to V2, as shown in FIG. It has been increasing over time until T3.
  • the voltage is increased linearly from V1 to V2, but it may be curved instead of linear. The same applies to the voltage rise from 0 to V1 and V2 to V3.
  • the rate of increase of the voltage from V1 to V2 may not be the same as the rate of increase of the voltage from 0 to V1 or the rate of increase of the voltage from V2 to V3, for example.
  • the voltage of the present stage is increased to the voltage of the next stage over a certain period of time because the change in the current flowing through the secondary winding 162 of the transformer 160 causes a high voltage in the primary winding of the transformer 160. This is to prevent the occurrence.
  • the time for maintaining the voltage increased stepwise is the same in each step. For example, when the reverse voltage is increased to V1, the voltage is maintained for the time from T1 to T2, and when the reverse voltage is increased to V2, the voltage is maintained for the time from T3 to T4.
  • the voltage is maintained for the time from T4 to T6.
  • the time from T1 to T2, the time from T3 to T4, and the time from T4 to T6 are the same. These times for maintaining the voltage increased stepwise may be different times in each step. For example, as the voltage value of the reverse voltage increases, the maintenance time of the voltage may be shortened.
  • the maximum voltage of the reverse voltage does not include 0 of the reverse breakdown voltage of the diodes 172 and 174 so that the diodes 172 and 174 are not damaged even when applied to the deteriorated diodes 172 and 174.
  • the voltage is less than or equal to %.
  • the voltage lower than the reverse withstand voltage is applied in this way, even if the diodes 172 and 174 are significantly deteriorated, the progress of deterioration of the diodes 172 and 174 can be prevented without damaging the diodes 172 and 174. This is to enable measurement.
  • the maximum reverse voltage is 60% or less of the reverse breakdown voltage of the diodes 172 and 174, which does not include 0, but may be 90% or less that does not include 0.
  • the current detection unit formed by the resistor 115, the isolation amplifier 120, and the oscilloscope 130 detects the current flowing through the diodes 172 and 174 (S101).
  • the current flowing through the diodes 172 and 174 is detected as the terminal voltage Vb of the resistor 115.
  • the current is detected as indicated by I1 in the dotted line in the figure.
  • the personal computer 140 functioning as a determination unit determines whether the current is larger than the determination current value (S102). If the current flowing through the diodes 172 and 174 is larger than the determination current value (S102: YES), the personal computer 140 determines that the diodes 172 and 174 are deteriorated (S103). On the other hand, the personal computer 140 determines that the diodes 172 and 174 are not deteriorated if the current flowing through the diodes 172 and 174 is smaller than the determination current value, as indicated by I1 in the figure (S104: NO) (S104). ).
  • the deterioration of the diodes 172 and 174 is determined based on the current value of the current flowing when the reverse voltage is applied to the diodes 172 and 174. It is easy to measure the deterioration of 172 and 174. By making this measurement regularly, it is possible to know the progress of deterioration of the diodes 172, 174, preventive maintenance of the diodes 172, 174 becomes possible, and planned maintenance becomes possible.
  • the rectifying element deterioration measuring device 100 When the rectifying element deterioration measuring device 100 is used in the production line where the resistance welding machine is arranged, preventive maintenance of the diodes 172 and 174 can be performed, so that the production line can be prevented from being stopped and the production efficiency can be improved and the production cost can be reduced. realizable.
  • FIG. 5 is a flowchart of a processing procedure of the rectifying element deterioration measuring method of the present embodiment. Since the processing procedure of the rectifying element deterioration measuring method is the same as that of the operation flowchart of FIG. 4, it will be briefly described.
  • a reverse DC voltage is gradually increased and applied to the diodes 172 and 174, and the current value of the current flowing through the diodes 172 and 174 is detected. Note that a small constant voltage of about several V may be applied.
  • the detected current value is larger than the judgment current value for judging the deterioration of the diodes 172, 174, it is judged that the diodes 172, 174 are deteriorated, and if it is smaller, the diodes 172, 174 are judged. Is judged not to have deteriorated.
  • FIG. 6 is an explanatory diagram when the rectifying element deterioration measuring method of the present embodiment is applied to a welding robot.
  • the rectifying element deterioration measuring method is applied to the welding robot 200, that is, when the rectifying element deterioration measuring method of the present embodiment is applied to the welding robot 200 arranged in the field, as shown in FIG. Is connected to one electrode 210 and a multimeter 180 (so-called tester), and the multimeter 180 is connected to the other electrode 210.
  • the diodes 172 and 174 of the diode stack 170 are connected to the electrodes 210 at both ends.
  • the multimeter 180 displays the magnitude of the current flowing through the diodes 172 and 174. The operator can judge the degree of progress of deterioration of the diodes 172 and 174 from the magnitude of the current indicated by the multimeter 180.
  • the degree of progress of deterioration of the rectifying element such as a diode can be easily measured on site. Therefore, it is possible to prevent the production machine such as a resistance welding machine from being suddenly stopped due to the deterioration of the diode, and the diode stack is replaced with the transformer, so that the production line must be stopped for a long time. .. In addition, since preventive maintenance is possible, the diode stack can be replaced systematically.
  • Rectifier deterioration measuring device 110 programmable power supply, 115 resistor (current detector), 120 Insulation amplifier (current detector), 130 Oscilloscope (current detector), 140 personal computer (judgment unit), 150 inverter transformer, 160 transformers, 162 secondary winding, 170 diode stack, 172 and 174 diodes, 176 cooling channels, 178 manifold, 180 multimeter, 200 resistance welder, 210 electrodes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

[Problem] To enable degradation of a diode to be measured [Solution] The present invention includes: a programmable power supply 110 which applies a reverse voltage to didoes 172, 174; a resistor 115 which detects a current value of current flowing through the diodes 172, 174 when the reverse voltage is applied; a current detection unit configured from an insulating amplifier 120 and an oscilloscope 130; and a personal computer 140 which determines that the diodes 172, 174 are degraded when the detected current value is greater than a determination current value for determining the degradation of the diodes 172, 174, and which determines that the diodes 172, 174 are not degraded when the detected current value is smaller than the determination current value.

Description

整流素子劣化測定装置および整流素子劣化測定方法Rectifier deterioration measuring device and rectifier deterioration measuring method
 本発明は、ダイオードなどの整流素子の劣化を測定できる整流素子劣化測定装置および整流素子劣化測定方法に関する。 The present invention relates to a rectifying element deterioration measuring device and a rectifying element deterioration measuring method capable of measuring deterioration of a rectifying element such as a diode.
 近年、自動車のボディーには、強度の確保と軽量化の実現に向けて、従来の鋼板よりも引張強度を向上させた高張力鋼板が用いられている。高張力鋼板同士をスポット溶接する場合、従来の鋼板をスポット溶接するときよりも大きな溶接電流を長い時間通電させる必要がある。このため、高張力鋼板同士のスポット溶接には、広範囲な溶接条件が設定できて高品質の溶接をすることができる、特許文献1~3に開示されているようなインバータ式の抵抗溶接機が用いられつつある。インバータ方式の抵抗溶接機は、スポット溶接時に大きな溶接電流を供給するインバータトランスと、このインバータトランスに設けたダイオードスタック(2個以上のダイオードを組み合わせたユニット)とを有している。インバータトランスに設けたダイオードスタックはスポット溶接時に大きな溶接電流を通電させるので劣化しやすい。 In recent years, high-strength steel sheets with higher tensile strength than conventional steel sheets have been used in the body of automobiles to ensure strength and reduce weight. When high-strength steel sheets are spot-welded to each other, it is necessary to apply a larger welding current for a longer time than when spot welding conventional steel sheets. Therefore, in the spot welding of high-tensile steel plates, an inverter-type resistance welding machine as disclosed in Patent Documents 1 to 3, which can set a wide range of welding conditions and can perform high-quality welding. It is being used. The inverter type resistance welding machine has an inverter transformer that supplies a large welding current during spot welding, and a diode stack (a unit in which two or more diodes are combined) provided in this inverter transformer. The diode stack provided in the inverter transformer is easily deteriorated because a large welding current is applied during spot welding.
特開2017-087280号公報JP, 2017-087280, A 特開2000-42751号公報Japanese Patent Laid-Open No. 2000-42751 実用新案登録第3008433号明細書Utility model registration No. 3008433 specification
 しかし、ダイオードスタックの劣化の進行は、個別のパフォーマンス、使用環境、使用頻度、溶接条件などによって異なる。工場の製造ラインに配置されている抵抗溶接機において、そのダイオードスタックが予期せぬ劣化により故障を起こしてしまうと、その交換には時間がかかるため、製造ラインの停止が余儀なくされる。そのため、製造ラインの停止前にダイオードスタックの劣化の進行度合いを知ることは、製造ラインの停止を防止する上で、また、予防保全により計画的な保守をする上で、重要である。 However, the progress of deterioration of the diode stack varies depending on individual performance, usage environment, usage frequency, welding conditions, etc. In a resistance welding machine arranged on a manufacturing line of a factory, if the diode stack fails due to unexpected deterioration, it takes time to replace the diode stack, and the manufacturing line must be stopped. Therefore, it is important to know the degree of progress of deterioration of the diode stack before the production line is stopped in order to prevent the production line from stopping and to perform planned maintenance by preventive maintenance.
 本発明は、このような問題を解消するためになされたものであり、ダイオードスタックのダイオードなどの整流素子の劣化を測定できる整流素子劣化測定装置および整流素子劣化測定方法の提供を目的とする。 The present invention has been made to solve such a problem, and an object thereof is to provide a rectifying element deterioration measuring device and a rectifying element deterioration measuring method capable of measuring deterioration of a rectifying element such as a diode of a diode stack.
 上記目的を達成するための本発明に係る整流素子劣化測定装置は、逆電圧を整流素子に印加する電源と、逆電圧を印加しているときに整流素子に流れている電流の電流値を検出する電流検出部と、検出した電流値が整流素子の劣化を判定するための判定電流値よりも大きければ整流素子は劣化していると判断し、小さければ整流素子は劣化していないと判断する判断部と、を有する。 A rectifying element deterioration measuring apparatus according to the present invention for achieving the above object detects a power supply for applying a reverse voltage to a rectifying element and a current value of a current flowing through the rectifying element when the reverse voltage is applied. If the current detection unit and the detected current value are larger than the judgment current value for judging deterioration of the rectifying element, it is judged that the rectifying element is deteriorated, and if smaller, it is judged that the rectifying element is not deteriorated. And a judging section.
 また、上記目的を達成するための本発明に係る整流素子劣化測定方法は、逆電圧を整流素子に印加し、整流素子に流れている電流の電流値を検出する段階と、検出した電流値が整流素子の劣化を判定するための判定電流値よりも大きければ整流素子は劣化していると判断し、小さければ整流素子は劣化していないと判断する段階と、を含む。 Further, the rectifying element deterioration measuring method according to the present invention to achieve the above object, a step of applying a reverse voltage to the rectifying element, detecting the current value of the current flowing in the rectifying element, the detected current value is The step of determining that the rectifying element is deteriorated if the current value is larger than the determination current value for determining the deterioration of the rectifying element, and determining that the rectifying element is not deteriorated if it is smaller.
 本発明に係る整流素子劣化測定装置および整流素子劣化測定方法によれば、逆電圧を整流素子に印加したときに流れる電流の電流値により整流素子の劣化を判断するので、整流素子の劣化の進行度合いの測定が容易である。この測定を定期的にすることによって、整流素子の劣化の進行度合いを知ることができ、整流素子の予防保全が可能となり、計画的な保守が可能となる。 According to the rectifying element deterioration measuring device and the rectifying element deterioration measuring method of the present invention, the deterioration of the rectifying element is judged based on the current value of the current flowing when the reverse voltage is applied to the rectifying element. It is easy to measure the degree. By making this measurement regularly, the degree of progress of deterioration of the rectifying element can be known, preventive maintenance of the rectifying element becomes possible, and planned maintenance becomes possible.
本実施形態の整流素子劣化測定装置の概略構成図である。It is a schematic block diagram of the rectifying element deterioration measuring device of this embodiment. 図1に示したダイオードッスタックの構成図である。It is a block diagram of the diode stack shown in FIG. 本実施形態の整流素子劣化測定装置の動作フローチャートである。It is an operation|movement flowchart of the rectifier deterioration measuring device of this embodiment. 図3の動作フローチャートの説明に供する図である。FIG. 4 is a diagram for explaining the operation flowchart of FIG. 3. 本実施形態の整流素子劣化測定方法の処理手順のフローチャートである。It is a flow chart of a processing procedure of a rectifying element deterioration measuring method of this embodiment. 本実施形態の整流素子劣化測定方法を溶接ロボットに適用したときの説明図である。It is explanatory drawing when the rectifying element deterioration measuring method of this embodiment is applied to a welding robot.
 以下に、本発明に係る整流素子劣化測定装置および整流素子劣化測定方法の実施形態を、図面を参照しながら詳細に説明する。 Embodiments of a rectifying element deterioration measuring device and a rectifying element deterioration measuring method according to the present invention will be described below in detail with reference to the drawings.
 <整流素子劣化測定装置の構成>
 図1は、本実施形態の整流素子劣化測定装置の概略構成図である。整流素子劣化測定装置100は、インバータトランス150に設けたダイオードスタック170のダイオード172、174の劣化の進行度合いを測定する。
<Structure of rectifying element deterioration measuring device>
FIG. 1 is a schematic configuration diagram of the rectifying element deterioration measuring device of the present embodiment. The rectifying element deterioration measuring device 100 measures the degree of progress of deterioration of the diodes 172 and 174 of the diode stack 170 provided in the inverter transformer 150.
 整流素子劣化測定装置100は、プログラマブル電源110、抵抗器115、絶縁アンプ120、オシロスコープ130、パーソナルコンピュータ140を有する。一方、インバータトランス150は、トランス160とダイオードスタック170とを有する。ダイオードスタック170は、2つのダイオード172、174を備える。インバータトランス150は、たとえば、抵抗溶接機に備えられており、鋼板同士を溶接するための溶接電流を電極間に供給する。トランス160は交流の溶接電流を生成し、ダイオードスタック170のダイオード172、174によって、交流の溶接電流を直流の溶接電流に変換する。直流の溶接電流は抵抗溶接機の電極間に供給する。 The rectifier deterioration measuring device 100 has a programmable power supply 110, a resistor 115, an insulation amplifier 120, an oscilloscope 130, and a personal computer 140. On the other hand, the inverter transformer 150 has a transformer 160 and a diode stack 170. The diode stack 170 includes two diodes 172 and 174. The inverter transformer 150 is provided in, for example, a resistance welding machine, and supplies a welding current for welding steel plates to each other between electrodes. The transformer 160 generates an AC welding current, and the diodes 172 and 174 of the diode stack 170 convert the AC welding current into a DC welding current. DC welding current is supplied between the electrodes of the resistance welding machine.
 プログラマブル電源110は、逆電圧Vaを整流素子であるダイオード172、174に印加する電源である。プログラマブル電源110は、ダイオード172、174に一定の電圧の逆電圧を印加するように、またはダイオード172、174に印加する逆電圧を段階的に上昇させるように、また、その逆電圧の段階的な上昇は、次の段階に上昇させるときに、現段階の電圧から次の段階の電圧まで一定の時間をかけて上昇させるようにプログラムされている。 The programmable power supply 110 is a power supply that applies a reverse voltage Va to the diodes 172 and 174 that are rectifying elements. The programmable power supply 110 applies a constant reverse voltage to the diodes 172 and 174, or increases the reverse voltage applied to the diodes 172 and 174 stepwise, and also increases the reverse voltage stepwise. The ramp is programmed to ramp from the current stage voltage to the next stage voltage over a period of time when ramping to the next stage.
 プログラマブル電源110がダイオード172、174に印加する逆電圧の最大電圧は、劣化が進んでいるダイオード172、174に印加しても、ダイオード172、174が破損しないように、ダイオード172、174の逆耐圧の0を含まない60%以下の電圧としている。たとえば、ダイオード172、174の逆耐圧が600Vであるとすると、プログラマブル電源110はダイオード172、174に360V以上の逆電圧は印加しないようにプログラムしてある。なお、ダイオード172、174に印加する逆電圧は、ダイオード172、174の逆耐圧の0を含まない60%以下が最も好ましいが、0を含まない90%以下であっても良い。 The maximum reverse voltage applied to the diodes 172, 174 by the programmable power supply 110 is such that the reverse breakdown voltage of the diodes 172, 174 does not damage the diodes 172, 174 even if applied to the deteriorated diodes 172, 174. The voltage is 60% or less not including 0. For example, assuming that the reverse breakdown voltage of the diodes 172 and 174 is 600V, the programmable power supply 110 is programmed so that the reverse voltage of 360V or more is not applied to the diodes 172 and 174. The reverse voltage applied to the diodes 172 and 174 is most preferably 60% or less of the reverse breakdown voltage of the diodes 172 and 174 that does not include 0, but may be 90% or less that does not include 0.
 抵抗器115は、プログラマブル電源110がダイオード172、174に印加する逆電圧により、ダイオード172、174に流れる電流(漏れ電流:IRDとも言う)を電圧に変換する。抵抗器115には、ダイオード172の電流の電流値とダイオード174の電流の電流値を加算した電流値の電流が流れる。したがって、抵抗器115の端子間電圧Vbは、抵抗器115の抵抗値(R)にダイオード172の電流の電流値(i172)とダイオード174の電流の電流値(i174)を加算した電流値を掛けわせた電圧値(V)となる。すなわち、抵抗器115の端子間電圧は、Vb=R×(i172+i174)という式で表される。 The resistor 115 converts a current (leakage current: also referred to as IRD) flowing in the diodes 172 and 174 into a voltage by a reverse voltage applied to the diodes 172 and 174 by the programmable power supply 110. A current having a current value obtained by adding the current value of the current of the diode 172 and the current value of the current of the diode 174 flows through the resistor 115. Therefore, the inter-terminal voltage Vb of the resistor 115 is obtained by multiplying the resistance value (R) of the resistor 115 by the current value (i172) of the current of the diode 172 and the current value (i174) of the current of the diode 174. It becomes the combined voltage value (V). That is, the voltage between the terminals of the resistor 115 is represented by the equation Vb=R×(i172+i174).
 絶縁アンプ120は、入力側(ダイオード側)と出力側(オシロスコープ側)とを絶縁しているアンプであり、オシロスコープ130に、プログラマブル電源110がダイオード172、174に印加している逆電圧Vaと抵抗器115の端子間電圧Vbとを出力する。 The isolation amplifier 120 is an amplifier that insulates the input side (diode side) from the output side (oscilloscope side), and the reverse voltage Va applied to the diodes 172 and 174 by the programmable power supply 110 and the resistance to the oscilloscope 130. The voltage Vb between the terminals of the device 115 is output.
 オシロスコープ130は、プログラマブル電源110がダイオード172、174に印加している逆電圧Vaと抵抗器115の端子間電圧Vbとの時間的な変化を可視化して表示する。本実施形態では、測定者が、波形によってダイオード172、174の劣化の進行度合いを見られるようにするために、オシロスコープ130を設けているが、オシロスコープ130は省略しても良い。省略した場合、絶縁アンプ120の出力側はパーソナルコンピュータ140に直接接続される。 The oscilloscope 130 visualizes and displays a temporal change between the reverse voltage Va applied to the diodes 172 and 174 by the programmable power supply 110 and the terminal voltage Vb of the resistor 115. In this embodiment, the oscilloscope 130 is provided so that the measurer can see the degree of deterioration of the diodes 172 and 174 according to the waveform, but the oscilloscope 130 may be omitted. If omitted, the output side of the isolation amplifier 120 is directly connected to the personal computer 140.
 抵抗器115、絶縁アンプ120、オシロスコープ130は、プログラマブル電源110がダイオード172、174に逆電圧を印加しているときにダイオード172、174に流れている電流の電流値を検出する電流検出部として機能する。電流検出部は、ダイオード172、174に直列に接続した抵抗器115を含み、抵抗器115に流れる電流によって生じる、抵抗器115の端子間電圧Vbを用いて、ダイオード172、174に流れている電流の電流値を検出する。本実施形態では、抵抗器115、絶縁アンプ120、オシロスコープ130が電流検出部を構成しているが、電流検出部の構成はこのような構成に限られない。たとえば、抵抗器115と抵抗器115の端子間電圧を検出する電圧計であっても良い。また、抵抗器115を省略し、直接電流計によって測定するようにしても良い。このときには、電圧計や電流計の数値により、現場の作業者がダイオード172、174の劣化の進行度合いを判断するようにしても良い。 The resistor 115, the isolation amplifier 120, and the oscilloscope 130 function as a current detection unit that detects the current value of the current flowing in the diodes 172 and 174 when the programmable power supply 110 applies a reverse voltage to the diodes 172 and 174. To do. The current detection unit includes a resistor 115 connected in series with the diodes 172 and 174, and using the terminal voltage Vb of the resistor 115 generated by the current flowing through the resistor 115, the current flowing through the diodes 172 and 174. The current value of is detected. In the present embodiment, the resistor 115, the isolation amplifier 120, and the oscilloscope 130 form a current detection unit, but the configuration of the current detection unit is not limited to such a configuration. For example, a voltmeter that detects the voltage between the terminals of the resistor 115 and the resistor 115 may be used. Alternatively, the resistor 115 may be omitted and the measurement may be performed directly by an ammeter. At this time, a worker in the field may judge the degree of progress of deterioration of the diodes 172 and 174 based on the values of the voltmeter and the ammeter.
 パーソナルコンピュータ140は、ダイオード172、174の劣化を判定するための判定電流値を記憶している。判定電流値は、破損する直前のダイオード172、174の電気的特性により設定する。たとえば、破損する直前のダイオード172、174の逆方向の抵抗値を多数測定しその抵抗値を累積しておき、その累積した抵抗値を参考に判定電流値を算出し、その算出した判定電流値をパーソナルコンピュータ140に記憶させる。ダイオード172、174のような整流素子は、劣化が進むにつれて、逆電圧印加時の電流が大きくなることが知られている。たとえば、ダイオード172、174が劣化することにより、1mA以下の電流値が100mAを超える電流値になることもある。このように、100mAを超える電流値になったダイオード172、174は数日以内に破損してしまう。判定電流値の設定は、ダイオード172、174の劣化の進行度合いを判断する上で重要であることから、次のようにして求めている。破損する直前のダイオードに逆電圧VinvをかけたときにIinvの電流が流れたとすれば、破損する直前のダイオードの抵抗値Rinvは、Rinv=Vinv/Iinvとして求めることができる。判定電流値は、プログラマブル電源110が印加する逆電圧の最大電圧をダイオードの抵抗値Rinvで割ることによって求めることができる。判定電流値は、ダイオード172、174の劣化の進行度合いの判断の信頼性を高めるため、このようにして求めた値よりも若干小さな値に設定する。 The personal computer 140 stores a judgment current value for judging deterioration of the diodes 172, 174. The judgment current value is set according to the electrical characteristics of the diodes 172 and 174 immediately before the damage. For example, a large number of reverse-direction resistance values of the diodes 172 and 174 immediately before damage are measured, the resistance values are accumulated, a judgment current value is calculated with reference to the accumulated resistance value, and the calculated judgment current value is calculated. Are stored in the personal computer 140. It is known that a rectifying element such as the diodes 172 and 174 has a larger current when a reverse voltage is applied as the deterioration progresses. For example, the current value of 1 mA or less may exceed 100 mA due to deterioration of the diodes 172, 174. As described above, the diodes 172 and 174 having a current value exceeding 100 mA are damaged within a few days. Since the setting of the judgment current value is important for judging the degree of progress of deterioration of the diodes 172, 174, it is obtained as follows. If the current Iinv flows when the reverse voltage Vinv is applied to the diode just before the damage, the resistance value Rinv of the diode just before the damage can be obtained as Rinv=Vinv/Iinv. The determination current value can be obtained by dividing the maximum reverse voltage applied by the programmable power supply 110 by the resistance value Rinv of the diode. The determination current value is set to a value slightly smaller than the value thus obtained in order to increase the reliability of the determination of the degree of progress of deterioration of the diodes 172 and 174.
 また、パーソナルコンピュータ140は、ダイオード172、174に流れている電流の電流値と、記憶されている判定電流値とを比較するためのプログラムを備えている。パーソナルコンピュータ140は、ダイオード172、174に流れている電流の電流値が判定電流値よりも大きければ、ダイオード172、174は劣化していると判断する。また、ダイオード172、174に流れている電流の電流値が判定電流値よりも小さければ、ダイオード172、174は劣化していないと判断する。本実施形態では、判断部としてパーソナルコンピュータ140を例示しているがこれに限らず、ダイオード172、174に流れている電流の電流値と判定電流値とを比較できる機能を有しているものであればどのようなものでも良く、1つの半導体チップとして構成しても良い。 The personal computer 140 also includes a program for comparing the current value of the current flowing through the diodes 172 and 174 with the stored determination current value. The personal computer 140 determines that the diodes 172 and 174 are deteriorated if the current value of the current flowing in the diodes 172 and 174 is larger than the determination current value. If the current value of the current flowing through the diodes 172 and 174 is smaller than the determination current value, it is determined that the diodes 172 and 174 have not deteriorated. In the present embodiment, the personal computer 140 is illustrated as the determination unit, but the determination unit is not limited to this, and has a function of comparing the current value of the current flowing in the diodes 172 and 174 with the determination current value. Any semiconductor may be used as long as it is available, and it may be configured as one semiconductor chip.
 図2は、図1に示したダイオードッスタックの構成図である。ダイオードスタック170は導電性および熱伝導性の良好なたとえば銅などの金属体で形成され、その金属体によってダイオード172、174が挟まれている。ダイオード172、174は、図1に示したトランス160の二次巻線162に接続される。ダイオード172、174は、抵抗溶接機の電極に大きな電流値の溶接電流を供給するため、発熱して熱くなる。ダイオード172、174は、高温になると破損してしまうので、ダイオードスタック170には冷却水を流通させる冷却水路176が図示するように配置されている。マニホールド178を介し冷却水路176に冷却水を流通させることによって、ダイオードスタック170およびダイオード172、174の温度を動作に適した温度となるようにしている。 2 is a block diagram of the diode stack shown in FIG. The diode stack 170 is formed of a metal body having good conductivity and thermal conductivity, such as copper, and the diodes 172 and 174 are sandwiched by the metal body. The diodes 172 and 174 are connected to the secondary winding 162 of the transformer 160 shown in FIG. The diodes 172 and 174 supply welding current having a large current value to the electrodes of the resistance welding machine, and thus generate heat and become hot. Since the diodes 172, 174 are damaged when the temperature becomes high, a cooling water passage 176 for circulating cooling water is arranged in the diode stack 170 as shown in the drawing. The temperature of the diode stack 170 and the diodes 172, 174 is adjusted to a temperature suitable for operation by circulating the cooling water through the cooling water passage 176 via the manifold 178.
 <整流素子劣化測定装置の動作>
 図3は、本実施形態の整流素子劣化測定装置の動作フローチャートである。また、図4は、図3の動作フローチャートの説明に供する図である。この動作フローチャートの処理を、図4を参照しながら説明する。
<Operation of rectifier deterioration measuring device>
FIG. 3 is an operation flowchart of the rectifying element deterioration measuring device of the present embodiment. Further, FIG. 4 is a diagram for explaining the operation flowchart of FIG. The process of this operation flowchart will be described with reference to FIG.
 まず、本実施形態では、プログラマブル電源110は、ダイオード172、174に直流の逆電圧を段階的に上昇させて印加する(S100)。なお、数V程度の小さな一定電圧を印加しても良い。 First, in the present embodiment, the programmable power supply 110 gradually increases the reverse DC voltage and applies it to the diodes 172 and 174 (S100). Note that a small constant voltage of about several V may be applied.
 プログラマブル電源110は、本実施形態では、図4の実線で示したように、ダイオード172、174に印加する逆電圧Vaを段階的に上昇させる。たとえば、プログラマブル電源110は、ダイオード172、174に、まず逆電圧としてV1を印加し、次にV2を印加し、最後にV3を印加する。なお、本実施形態では、50Vずつ、3段階に電圧を上昇させているが、一定電圧、2段階、または4段階以上の段階を経て電圧を上昇させるようにしても良い。このように段階的に上昇させるのは、万が一、ダイオード172、174の劣化が著しいときでも、ダイオード172、174を破損させることなく、ダイオード172、174の劣化の進行度合いを測定できるようにするためである。 In the present embodiment, the programmable power supply 110 gradually increases the reverse voltage Va applied to the diodes 172 and 174, as shown by the solid line in FIG. For example, the programmable power supply 110 first applies V1 as a reverse voltage, then V2, and finally V3 to the diodes 172 and 174. In this embodiment, the voltage is increased by 50V in three steps, but the voltage may be increased by a constant voltage, two steps, or four or more steps. In this way, it is possible to measure the degree of progress of the deterioration of the diodes 172, 174 without damaging the diodes 172, 174 even if the deterioration of the diodes 172, 174 is significant, even if the deterioration of the diodes 172, 174 is significant. Is.
 また、その逆電圧の段階的な上昇は、次の段階に上昇させるときに、現段階の電圧から次の段階の電圧まで一定の時間をかけて上昇させる。たとえば、プログラマブル電源110は、ダイオード172、174に、まず逆電圧としてV1を印加し、次にV2を印加するときには、V1からV2に突然上昇させるのではなく、図4に示すように、T2からT3までの時間をかけて上昇させている。なお、本実施形態では、V1からV2のへの電圧の上昇を直線的に行っているが、直線的ではなく曲線的に行うようにしても良い。0からV1、V2からV3への電圧の上昇についても同様である。また、V1からV2への電圧の上昇速度は、たとえば、0からV1への電圧の上昇速度またはV2からV3への電圧の上昇速度と同一でなくとも良い。このように、現段階の電圧から次の段階の電圧まで一定の時間をかけて上昇させるのは、トランス160の二次巻線162に流れる電流の変化によってトランス160の一次巻線に高電圧が発生することを防止するためである。さらに、段階的に上昇させた電圧を維持する時間は、各段階において同一の時間である。たとえば、逆電圧をV1に上昇させたときには、T1からT2までの時間、その電圧を維持し、逆電圧をV2に上昇させたときには、T3からT4までの時間、その電圧を維持し、逆電圧をV3に上昇させたときには、T4からT6までの時間、その電圧を維持する。なお、T1からT2までの時間、T3からT4までの時間、T4からT6までの時間はそれぞれ同一の時間である。段階的に上昇させた電圧を維持するこれらの時間は、各段階において異なる時間としても良い。たとえば、逆電圧の電圧値が高くなるにしたがって、その電圧の維持時間を短くするようにしても良い。 ▽ In addition, when increasing the reverse voltage stepwise, when increasing to the next step, the voltage from the current step to the voltage of the next step is increased over a certain period of time. For example, the programmable power supply 110 first applies V1 as a reverse voltage to the diodes 172 and 174, and then when V2 is applied, rather than suddenly increasing from V1 to V2, as shown in FIG. It has been increasing over time until T3. In this embodiment, the voltage is increased linearly from V1 to V2, but it may be curved instead of linear. The same applies to the voltage rise from 0 to V1 and V2 to V3. Further, the rate of increase of the voltage from V1 to V2 may not be the same as the rate of increase of the voltage from 0 to V1 or the rate of increase of the voltage from V2 to V3, for example. In this way, the voltage of the present stage is increased to the voltage of the next stage over a certain period of time because the change in the current flowing through the secondary winding 162 of the transformer 160 causes a high voltage in the primary winding of the transformer 160. This is to prevent the occurrence. Further, the time for maintaining the voltage increased stepwise is the same in each step. For example, when the reverse voltage is increased to V1, the voltage is maintained for the time from T1 to T2, and when the reverse voltage is increased to V2, the voltage is maintained for the time from T3 to T4. Is raised to V3, the voltage is maintained for the time from T4 to T6. The time from T1 to T2, the time from T3 to T4, and the time from T4 to T6 are the same. These times for maintaining the voltage increased stepwise may be different times in each step. For example, as the voltage value of the reverse voltage increases, the maintenance time of the voltage may be shortened.
 さらに、逆電圧の最大電圧、すなわちV3は、劣化が進んでいるダイオード172、174に印加しても、ダイオード172、174が破損しないように、ダイオード172、174の逆耐圧の0を含まない60%以下の電圧としている。このように逆耐圧よりも低い電圧を印加しているのは、万が一、ダイオード172、174の劣化が著しいときでも、ダイオード172、174を破損させることなく、ダイオード172、174の劣化の進行度合いを測定できるようにするためである。なお、逆電圧の最大電圧はダイオード172、174の逆耐圧の0を含まない60%以下が最も好ましいが、0を含まない90%以下であっても良い。 Furthermore, the maximum voltage of the reverse voltage, that is, V3, does not include 0 of the reverse breakdown voltage of the diodes 172 and 174 so that the diodes 172 and 174 are not damaged even when applied to the deteriorated diodes 172 and 174. The voltage is less than or equal to %. The voltage lower than the reverse withstand voltage is applied in this way, even if the diodes 172 and 174 are significantly deteriorated, the progress of deterioration of the diodes 172 and 174 can be prevented without damaging the diodes 172 and 174. This is to enable measurement. It is most preferable that the maximum reverse voltage is 60% or less of the reverse breakdown voltage of the diodes 172 and 174, which does not include 0, but may be 90% or less that does not include 0.
 次に、抵抗器115、絶縁アンプ120、オシロスコープ130によって形成される電流検出部は、ダイオード172、174に流れる電流を検出する(S101)。上記のように、ダイオード172、174を流れる電流は、抵抗器115の端子間電圧Vbとして検出される。たとえば、ダイオード172、174の劣化が進んでいないとき(IRD=OK時)には、その電流は、図示点線のI1のように検出される。一方、ダイオード172、174の劣化が進んでいるとき(IRD=NG時)には、図示点線のI2のように検出される。 Next, the current detection unit formed by the resistor 115, the isolation amplifier 120, and the oscilloscope 130 detects the current flowing through the diodes 172 and 174 (S101). As described above, the current flowing through the diodes 172 and 174 is detected as the terminal voltage Vb of the resistor 115. For example, when the diodes 172 and 174 are not deteriorated (when IRD=OK), the current is detected as indicated by I1 in the dotted line in the figure. On the other hand, when the diodes 172 and 174 are deteriorating (when IRD=NG), they are detected as indicated by I2 in the figure.
 次に、判断部として機能するパーソナルコンピュータ140は、電流は判定電流値よりも大きいか否かを判断する(S102)。パーソナルコンピュータ140は、図示点線のI2のように、ダイオード172、174を流れる電流が判定電流値よりも大きければ(S102:YES)、ダイオード172、174は劣化していると判断する(S103)。一方、パーソナルコンピュータ140は、図示点線のI1のように、ダイオード172、174を流れる電流が判定電流値よりも小さければ(S102:NO)、ダイオード172、174は劣化していないと判断する(S104)。 Next, the personal computer 140 functioning as a determination unit determines whether the current is larger than the determination current value (S102). If the current flowing through the diodes 172 and 174 is larger than the determination current value (S102: YES), the personal computer 140 determines that the diodes 172 and 174 are deteriorated (S103). On the other hand, the personal computer 140 determines that the diodes 172 and 174 are not deteriorated if the current flowing through the diodes 172 and 174 is smaller than the determination current value, as indicated by I1 in the figure (S104: NO) (S104). ).
 このように、本実施形態の整流素子劣化測定装置100によれば、逆電圧をダイオード172、174に印加したときに流れる電流の電流値によりダイオード172、174の劣化を判断しているので、ダイオード172、174の劣化の測定が容易である。この測定を定期的にすることによって、ダイオード172、174の劣化の進行度合いを知ることができ、ダイオード172、174の予防保全が可能となり、計画的な保守が可能となる。抵抗溶接機が配置されている製造ラインで整流素子劣化測定装置100を用いると、ダイオード172、174の予防保全ができることから、製造ラインの停止を防止でき、製造効率の向上と製造コストを低下が実現できる。 As described above, according to the rectifying element deterioration measuring apparatus 100 of the present embodiment, the deterioration of the diodes 172 and 174 is determined based on the current value of the current flowing when the reverse voltage is applied to the diodes 172 and 174. It is easy to measure the deterioration of 172 and 174. By making this measurement regularly, it is possible to know the progress of deterioration of the diodes 172, 174, preventive maintenance of the diodes 172, 174 becomes possible, and planned maintenance becomes possible. When the rectifying element deterioration measuring device 100 is used in the production line where the resistance welding machine is arranged, preventive maintenance of the diodes 172 and 174 can be performed, so that the production line can be prevented from being stopped and the production efficiency can be improved and the production cost can be reduced. realizable.
 <整流素子劣化測定方法の手順>
 図5は、本実施形態の整流素子劣化測定方法の処理手順のフローチャートである。整流素子劣化測定方法の処理手順としては、図4の動作フローチャートと同一であるので、簡単に説明する。
<Procedure of rectifying element deterioration measuring method>
FIG. 5 is a flowchart of a processing procedure of the rectifying element deterioration measuring method of the present embodiment. Since the processing procedure of the rectifying element deterioration measuring method is the same as that of the operation flowchart of FIG. 4, it will be briefly described.
 まず、本実施形態では、第1段階では、ダイオード172、174に直流の逆電圧を段階的に上昇させて印加し、ダイオード172、174に流れる電流の電流値を検出する。なお、数V程度の小さな一定電圧を印加しても良い。次に、第2段階では、検出した電流値がダイオード172、174の劣化を判定するための判定電流値よりも大きければダイオード172、174は劣化していると判断し、小さければダイオード172、174は劣化していないと判断する。 First, in the present embodiment, in the first stage, a reverse DC voltage is gradually increased and applied to the diodes 172 and 174, and the current value of the current flowing through the diodes 172 and 174 is detected. Note that a small constant voltage of about several V may be applied. Next, in the second stage, if the detected current value is larger than the judgment current value for judging the deterioration of the diodes 172, 174, it is judged that the diodes 172, 174 are deteriorated, and if it is smaller, the diodes 172, 174 are judged. Is judged not to have deteriorated.
 このような手順でダイオード172、174の劣化の進行状態を判断すると、ダイオード172、174の劣化の測定が容易になる。この測定を定期的にすることによって、ダイオード172、174の劣化の進行度合いを知ることができ、ダイオード172、174の予防保全が可能となり、計画的な保守が可能となる。抵抗溶接機が配置されている製造ラインで整流素子劣化測定方法を適用すると、ダイオード172、174の予防保全ができることから、製造ラインの停止を防止でき、製造効率の向上と製造コストを低下が実現できる。 By determining the progress of deterioration of the diodes 172, 174 by such a procedure, it becomes easy to measure the deterioration of the diodes 172, 174. By making this measurement regularly, it is possible to know the progress of deterioration of the diodes 172, 174, preventive maintenance of the diodes 172, 174 becomes possible, and planned maintenance becomes possible. If the rectifying element deterioration measuring method is applied to the production line where the resistance welding machine is installed, preventive maintenance of the diodes 172 and 174 can be performed, so that the production line can be prevented from being stopped, the production efficiency can be improved and the production cost can be reduced. it can.
 図6は、本実施形態の整流素子劣化測定方法を溶接ロボットに適用したときの説明図である。 FIG. 6 is an explanatory diagram when the rectifying element deterioration measuring method of the present embodiment is applied to a welding robot.
 整流素子劣化測定方法を溶接ロボット200に適用するとき、すなわち現場に配置されている溶接ロボット200に、本実施形態の整流素子劣化測定方法を適用するときには、図6に示すように、プログラマブル電源110を一方の電極210とマルチメーター180(いわゆるテスター)に接続し、マルチメーター180を他方の電極210に接続する。両端の電極210にはダイオードスタック170のダイオード172、174が接続されている。 When the rectifying element deterioration measuring method is applied to the welding robot 200, that is, when the rectifying element deterioration measuring method of the present embodiment is applied to the welding robot 200 arranged in the field, as shown in FIG. Is connected to one electrode 210 and a multimeter 180 (so-called tester), and the multimeter 180 is connected to the other electrode 210. The diodes 172 and 174 of the diode stack 170 are connected to the electrodes 210 at both ends.
 マルチメーター180は、プログラマブル電源110から図4に示すような逆電圧が印加されると、マルチメーター180がダイオード172、174に流れる電流の大きさを表示する。作業者は、マルチメーター180が示す電流の大きさにより、ダイオード172、174の劣化の進行度合いを判断できる。 When the reverse voltage as shown in FIG. 4 is applied from the programmable power source 110, the multimeter 180 displays the magnitude of the current flowing through the diodes 172 and 174. The operator can judge the degree of progress of deterioration of the diodes 172 and 174 from the magnitude of the current indicated by the multimeter 180.
 以上のように、本実施形態の整流素子劣化測定装置および整流素子劣化測定方法によれば、ダイオードなどの整流素子の劣化の進行度合いを、現場で容易に測定できる。このため、ダイオードの劣化が原因で、たとえば抵抗溶接機のような生産機械が突然停止し、ダイオードスタックをトランスごと交換するため、製造ラインの長時間の停止を余儀なくされるようなことを防止できる。また、予防保全が可能となるため、ダイオードスタックの計画的な交換ができる。 As described above, according to the rectifying element deterioration measuring device and the rectifying element deterioration measuring method of the present embodiment, the degree of progress of deterioration of the rectifying element such as a diode can be easily measured on site. Therefore, it is possible to prevent the production machine such as a resistance welding machine from being suddenly stopped due to the deterioration of the diode, and the diode stack is replaced with the transformer, so that the production line must be stopped for a long time. .. In addition, since preventive maintenance is possible, the diode stack can be replaced systematically.
 以上、整流素子劣化測定装置および整流素子劣化測定方法の実施形態を述べたが、本発明の技術的範囲は、この実施形態の記載内容に限定されるものではない。したがって、本実施形態には明確に記載されていなくとも、特許請求の記載の範囲内において当業者によって改変されたものは本発明の技術的範囲に含まれる。 The embodiments of the rectifying element deterioration measuring device and the rectifying element deterioration measuring method have been described above, but the technical scope of the present invention is not limited to the description of this embodiment. Therefore, what is modified by a person skilled in the art within the scope of the claims is included in the technical scope of the present invention even if it is not explicitly described in the present embodiment.
100 整流素子劣化測定装置、
110 プログラマブル電源(電源)、
115 抵抗器(電流検出部)、
120 絶縁アンプ(電流検出部)、
130 オシロスコープ(電流検出部)、
140 パーソナルコンピュータ(判断部)、
150 インバータトランス、
160 トランス、
162 二次巻線、
170 ダイオードスタック、
172、174 ダイオード、
176 冷却水路、
178 マニホールド、
180 マルチメーター、
200 抵抗溶接機、
210 電極。
100 Rectifier deterioration measuring device,
110 programmable power supply,
115 resistor (current detector),
120 Insulation amplifier (current detector),
130 Oscilloscope (current detector),
140 personal computer (judgment unit),
150 inverter transformer,
160 transformers,
162 secondary winding,
170 diode stack,
172 and 174 diodes,
176 cooling channels,
178 manifold,
180 multimeter,
200 resistance welder,
210 electrodes.

Claims (11)

  1.  逆電圧を整流素子に印加する電源と、
     前記逆電圧を印加しているときに前記整流素子に流れている電流の電流値を検出する電流検出部と、
     検出した電流値が前記整流素子の劣化を判定するための判定電流値よりも大きければ前記整流素子は劣化していると判断し、小さければ前記整流素子は劣化していないと判断する判断部と、
     を有する、整流素子劣化測定装置。
    A power supply for applying a reverse voltage to the rectifying element,
    A current detector that detects the current value of the current flowing in the rectifying element when applying the reverse voltage,
    If the detected current value is larger than a judgment current value for judging deterioration of the rectifying element, it is judged that the rectifying element is deteriorated, and if it is smaller, a judging section that judges that the rectifying element is not deteriorated. ,
    A device for measuring deterioration of a rectifying element, comprising:
  2.  前記電源は、前記整流素子に印加する前記逆電圧を段階的に上昇させる、請求項1に記載の整流素子劣化測定装置。 The rectifying element deterioration measuring device according to claim 1, wherein the power source increases the reverse voltage applied to the rectifying element stepwise.
  3.  前記逆電圧の段階的な上昇は、次の段階に上昇させるときに、現段階の電圧から次の段階の電圧まで一定の時間をかけて上昇させる、請求項2に記載の整流素子劣化測定装置。 The rectifying element deterioration measuring device according to claim 2, wherein the stepwise increase of the reverse voltage increases the voltage of the present step from the voltage of the next step over a certain period of time when increasing to the next step. ..
  4.  前記整流素子に印加する前記逆電圧の最大電圧は、劣化が進んでいる前記整流素子に印加しても、前記整流素子が破損しないように、前記整流素子の逆耐圧の0を含まない60%以下の電圧とする、請求項1から3のいずれかに記載の整流素子劣化測定装置。 The maximum voltage of the reverse voltage applied to the rectifying element is 60% that does not include 0 of the reverse withstand voltage of the rectifying element so that the rectifying element is not damaged even when applied to the rectifying element that is deteriorated. The rectifying element deterioration measuring device according to any one of claims 1 to 3, which has the following voltage.
  5.  前記電流検出部は、前記整流素子に直列に接続した抵抗器を含み、前記抵抗器に流れる電流によって生じる前記抵抗器の端子間電圧を用いて、前記整流素子に流れている電流の電流値を検出する、請求項1から4のいずれかに記載の整流素子劣化測定装置。 The current detection unit includes a resistor connected in series to the rectifying element, and using a terminal voltage of the resistor generated by a current flowing in the resistor, a current value of the current flowing in the rectifying element is calculated. The rectifying element deterioration measuring device according to claim 1, which detects.
  6.  前記整流素子の劣化を判定するための判定電流値は、破損する前の前記整流素子の電気的特性から設定する、請求項1から5のいずれかに記載の整流素子劣化測定装置。 The rectifying element deterioration measuring device according to any one of claims 1 to 5, wherein a judgment current value for judging deterioration of the rectifying element is set based on electrical characteristics of the rectifying element before being damaged.
  7.  前記整流素子は、抵抗溶接機が備えるインバータトランスに設けたダイオードスタックのダイオードである、請求項1から6のいずれかに記載の整流素子劣化測定装置。 The rectifying element deterioration measuring device according to any one of claims 1 to 6, wherein the rectifying element is a diode of a diode stack provided in an inverter transformer included in a resistance welding machine.
  8.  逆電圧を整流素子に印加し、前記整流素子に流れている電流の電流値を検出する段階と、
     検出した電流値が前記整流素子の劣化を判定するための判定電流値よりも大きければ前記整流素子は劣化していると判断し、小さければ前記整流素子は劣化していないと判断する段階と、
     を含む、整流素子劣化測定方法。
    Applying a reverse voltage to the rectifying element and detecting the current value of the current flowing through the rectifying element;
    If the detected current value is larger than the judgment current value for judging deterioration of the rectifying element, it is judged that the rectifying element is deteriorated, and if it is smaller, it is judged that the rectifying element is not deteriorated.
    A method for measuring deterioration of a rectifying element, including:
  9.  前記整流素子に印加する前記逆電圧は、段階的に上昇させる、請求項8に記載の整流素子劣化測定方法。 The rectifying element deterioration measuring method according to claim 8, wherein the reverse voltage applied to the rectifying element is increased stepwise.
  10.  前記逆電圧の段階的な上昇は、次の段階に上昇させるときに、現段階の電圧から次の段階の電圧まで一定の時間をかけて上昇させる、請求項9に記載の整流素子劣化測定方法。 10. The rectifying element deterioration measuring method according to claim 9, wherein the stepwise increase of the reverse voltage is performed by increasing the voltage of the present step from the voltage of the next step over a certain period of time when increasing the voltage to the next step. ..
  11.  前記整流素子に印加する前記逆電圧の最大電圧は、劣化している前記整流素子に印加しても、前記整流素子が破損しないように、前記整流素子の逆耐圧の0を含まない60%以下の電圧とする、請求項8から10のいずれかに記載の整流素子劣化測定方法。 The maximum voltage of the reverse voltage applied to the rectifying element is 60% or less that does not include 0 of the reverse breakdown voltage of the rectifying element so that the rectifying element is not damaged even when applied to the deteriorated rectifying element. The rectifying element deterioration measuring method according to any one of claims 8 to 10, wherein the voltage is set to.
PCT/JP2019/031518 2018-10-31 2019-08-08 Device for measuring degradation of rectifying element and method for measuring degradation of rectifying element WO2020152894A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018205433 2018-10-31
JP2019-010598 2019-01-24
JP2019010598A JP2020071215A (en) 2018-10-31 2019-01-24 Rectifier degradation measuring device and method for measuring degradation of rectifier

Publications (1)

Publication Number Publication Date
WO2020152894A1 true WO2020152894A1 (en) 2020-07-30

Family

ID=70547636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031518 WO2020152894A1 (en) 2018-10-31 2019-08-08 Device for measuring degradation of rectifying element and method for measuring degradation of rectifying element

Country Status (2)

Country Link
JP (1) JP2020071215A (en)
WO (1) WO2020152894A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235361A (en) * 1991-01-10 1992-08-24 Nec Ic Microcomput Syst Ltd Testing method for semiconductor integrated circuit
JP2000042751A (en) * 1998-07-23 2000-02-15 Toshiba Corp Controller for resistance welding machine
JP2003294807A (en) * 2002-03-29 2003-10-15 Kansai Electric Power Co Inc:The Semiconductor device degradation diagnosing apparatus
JP2015155825A (en) * 2014-02-20 2015-08-27 新電元工業株式会社 Semiconductor testing device and semiconductor device
JP2016021652A (en) * 2014-07-14 2016-02-04 トヨタ自動車株式会社 Semiconductor device and power conversion device
JP2016208567A (en) * 2015-04-15 2016-12-08 中国電力株式会社 Photovoltaic power generation system
JP2017087280A (en) * 2015-11-16 2017-05-25 株式会社向洋技研 Inverter type resistance welding machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634067Y2 (en) * 1989-02-09 1994-09-07 本田技研工業株式会社 Resistance welding equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235361A (en) * 1991-01-10 1992-08-24 Nec Ic Microcomput Syst Ltd Testing method for semiconductor integrated circuit
JP2000042751A (en) * 1998-07-23 2000-02-15 Toshiba Corp Controller for resistance welding machine
JP2003294807A (en) * 2002-03-29 2003-10-15 Kansai Electric Power Co Inc:The Semiconductor device degradation diagnosing apparatus
JP2015155825A (en) * 2014-02-20 2015-08-27 新電元工業株式会社 Semiconductor testing device and semiconductor device
JP2016021652A (en) * 2014-07-14 2016-02-04 トヨタ自動車株式会社 Semiconductor device and power conversion device
JP2016208567A (en) * 2015-04-15 2016-12-08 中国電力株式会社 Photovoltaic power generation system
JP2017087280A (en) * 2015-11-16 2017-05-25 株式会社向洋技研 Inverter type resistance welding machine

Also Published As

Publication number Publication date
JP2020071215A (en) 2020-05-07

Similar Documents

Publication Publication Date Title
US11009539B2 (en) Device and method for insulation monitoring including identification of a faulty outer conductor in a three-phase ungrounded power supply system
JP5020273B2 (en) Vacuum circuit breaker Vacuum tester
Yang et al. A stator winding insulation condition monitoring technique for inverter-fed machines
CN103033695A (en) Detection method of transformer direct current bias magnetic tolerance ability
WO2020152894A1 (en) Device for measuring degradation of rectifying element and method for measuring degradation of rectifying element
KR100662803B1 (en) Apparatus for measuring capacitance of a thyristor and estimating method of forward and reverse breaking voltage(dielectric strength) of the thyristor using the apparatus
WO2020095501A1 (en) Inverter power source device
JP2003197556A (en) Optical heating apparatus
CN111630764A (en) Power supply device and welding power supply device
JP2008289338A (en) Device for judging exchange time of transformer
JP3813752B2 (en) Semiconductor device acceleration test method and apparatus
WO2020250445A1 (en) Power converter, service life diagnosis device for semiconductor chip, and method for diagnosing service life of semiconductor chip
JP2515438B2 (en) Deterioration diagnosis method for power conversion element
Fischer-Baeumer et al. Application of a HV bipolar square-wave voltage generator for qualification and assessment of energy equipment
JP4993601B2 (en) Transformer abnormality detection method and charger used therefor
JP5188536B2 (en) Power supply inspection device, power supply inspection method, power supply device
JPS6280567A (en) Deterioration diagnosing method for power converting element
JPH04283910A (en) Apparatus for inspection converter transformer
JP5147897B2 (en) Rectifier circuit inspection device, rectifier circuit inspection method
CN211528600U (en) Circuit for testing oscillation wave
JP2003066082A (en) Harmonic breakdown strength testing device
JPH01278227A (en) Anomaly diagnostic device for thyristor element
JP4786391B2 (en) Instantaneous voltage drop generation device and instantaneous voltage drop generation method
JP5337630B2 (en) Constant current output device and constant current output method
CN117607742A (en) Excitation system health state assessment method and system based on thyristor leakage current

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911317

Country of ref document: EP

Kind code of ref document: A1