WO2020152733A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2020152733A1
WO2020152733A1 PCT/JP2019/001605 JP2019001605W WO2020152733A1 WO 2020152733 A1 WO2020152733 A1 WO 2020152733A1 JP 2019001605 W JP2019001605 W JP 2019001605W WO 2020152733 A1 WO2020152733 A1 WO 2020152733A1
Authority
WO
WIPO (PCT)
Prior art keywords
power conversion
power
contactor
conversion unit
unit
Prior art date
Application number
PCT/JP2019/001605
Other languages
French (fr)
Japanese (ja)
Inventor
真一郎 林
健朗 山本
松本 真一
俊明 竹岡
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/001605 priority Critical patent/WO2020152733A1/en
Priority to JP2020567669A priority patent/JP6952915B2/en
Publication of WO2020152733A1 publication Critical patent/WO2020152733A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power conversion device.
  • Patent Document 1 discloses an example of this type of power conversion device.
  • This power conversion device includes two power conversion units that convert DC power supplied from a power source through a primary terminal into AC power and supply the AC power to a load connected to a secondary terminal, and powers corresponding to the power conversion units.
  • Two filter capacitors connected to the primary terminal of the conversion unit and charged with electric power supplied from a power supply.
  • This power converter further includes a circuit breaker having a function of electrically connecting the two power converters to or from the power source, and extinguishing an arc generated when the power converter is electrically disconnected from the power source. And a switch that electrically connects the two power conversion units to or disconnects the two power conversion units from the power supply in a state where the circuit breaker is connected in series.
  • the power conversion unit of the power conversion device disclosed in Patent Document 1 is duplicated.
  • One of the power converters is set to the active system, and the other power converter is set to the standby system.
  • this power conversion device controls the switching element of the power conversion unit set in the active system to operate the power conversion unit set in the active system to convert power from DC power to AC power. Do the conversion.
  • This power converter includes a circuit breaker to limit the current flowing through the power converter.
  • the power conversion device includes a switch for connecting either the power conversion unit set to the active system or the power conversion unit set to the standby system to the power supply.
  • the power conversion device having the above configuration is an input circuit, that is, a circuit from the circuit breaker to the power conversion unit, or in the power conversion unit, the circuit breaker is opened when a ground fault, a short circuit, or the like occurs, and the power conversion is performed. Stop the department. After that, this power conversion device switches the switching device from the operating system to the standby system, turns on the circuit breaker, controls the switching element of the power conversion unit set to the standby system, and sets the standby system. The power conversion unit is operating. Since the circuit breaker included in the power conversion device mounted on the electric railway vehicle is generally composed of a large-sized high-voltage circuit breaker, it is difficult to downsize the power conversion device including the circuit breaker. Further, the power conversion device disclosed in Patent Document 1 includes a contactor connected to the primary terminal of the power conversion unit and a contactor connected to the secondary terminal of the power conversion unit, and thus is difficult to miniaturize.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to reduce the size of a power conversion device having a dual power conversion unit while ensuring the function of limiting the current.
  • the power converter of the present invention includes a plurality of power converter units commonly connected to a power source, and a contactor controller.
  • Each of the plurality of power conversion units has a fuse, a power conversion unit, and a first contactor.
  • the fuse cuts off the electric path when the direct current supplied from the power source exceeds a threshold value.
  • the power conversion unit converts the DC power supplied from the power supply via the primary terminal into power for supplying to the load connected to the secondary terminal, and supplies the converted power to the load from the secondary terminal.
  • the first contactor electrically connects the power conversion unit to or from the power source.
  • the fuse When the direct current becomes equal to or higher than the threshold value, the fuse is blown to cut off the electric path, thereby electrically disconnecting the power conversion unit forming the power conversion unit having the fuse from the power supply.
  • the contactor control unit turns on or opens the first contactor of each of the plurality of power conversion units.
  • the power conversion device has a plurality of power conversion units, each having a power conversion unit, so that the power conversion unit is duplicated. Further, since each of the plurality of power conversion units has a fuse, it is possible to reduce the size of the power conversion device while ensuring the function of limiting the current.
  • Block diagram of a power conversion device according to Embodiment 1 of the present invention
  • FIG. 1 A power conversion device mounted on a DC feeding type electric railway vehicle will be described in the first embodiment.
  • a current collector 4 mounted on an electric railway vehicle obtains DC power from a substation, which is a DC power source, via an overhead wire 3, and the power converter 1 according to the first embodiment has the same structure. Supply.
  • the power conversion device 1 converts the supplied DC power into three-phase AC power. Then, the power conversion device 1 supplies the three-phase AC power to the load 7 via the transformer 5 and the AC filter capacitor 6.
  • Each primary terminal of the transformer 5 is connected to the output terminal of the power conversion device 1, specifically, each secondary terminal of the switching device 12 described later. Each secondary terminal of the transformer 5 is connected to the load 7.
  • the transformer 5 converts the three-phase AC power input via the primary terminal into desired AC power and supplies the desired AC power to the load 7 from the secondary terminal.
  • the AC filter capacitor 6 is connected to each secondary terminal of the transformer 5 and reduces harmonic components included in the output of the power conversion device 1.
  • the power conversion device 1 converts the DC power supplied from the current collector 4 into three-phase AC power and supplies the three-phase AC power to the load 7, and the power conversion units 10, 20. And a switch 12 for electrically connecting any one of them to the load 7.
  • the power conversion units 10 and 20 are commonly connected to the current collector 4 and also commonly connected to the switching device 12, and are duplicated. It should be noted that one of the power conversion units 10 and 20 is set as an active system and the other is set as a standby system.
  • While the power conversion unit 10 set to the operating system converts the DC power supplied from the current collector 4 into three-phase AC power and supplies the three-phase AC power to the load 7, it is set to the standby system.
  • the converted power conversion unit 20 is stopped.
  • the power conversion unit 20 set to the standby system converts the DC power supplied from the current collector 4 into three-phase AC power and outputs the three-phase AC power.
  • the phase alternating current power is supplied to the load 7.
  • Each primary terminal of the switching device 12 is connected to the corresponding output end of each power conversion unit 10, 20, specifically, the secondary terminal of the power conversion units 11, 21 described later. Further, each secondary terminal of the switch 12 is connected to the transformer 5.
  • the switch 12 is controlled by a contactor control unit 31 described later, and electrically connects each primary terminal connected to the power conversion unit 11 and each corresponding secondary terminal, or the power conversion unit 21. Each of the primary terminals connected to and the corresponding secondary terminals are electrically connected.
  • the power conversion unit 10 includes a fuse F1 having one end connected to the current collector 4, a first contactor MC11 having one end connected to the other end of the fuse F1 and one end connected to the other end of the first contactor MC11. And a filter capacitor FC1 having one end connected to the other end of the filter reactor FL1 and the other end grounded.
  • the power conversion unit 10 further includes a power conversion unit 11 having a filter capacitor FC1 connected between the primary terminals. The secondary terminal of the power converter 11 is connected to the switch 12.
  • the configuration of the power conversion unit 20 is similar to that of the power conversion unit 10.
  • the power conversion unit 20 includes a fuse F2 having one end connected to the current collector 4, a first contactor MC21 having one end connected to the other end of the fuse F2, and one end having the first contactor MC21.
  • a filter reactor FL2 connected to the other end, and a filter capacitor FC2 having one end connected to the other end of the filter reactor FL2 and the other end grounded.
  • the power conversion unit 20 further includes a power conversion unit 21 having a filter capacitor FC2 connected between the primary terminals. The secondary terminal of the power converter 21 is connected to the switch 12.
  • the power conversion device 1 further switches on or off the first contactor MC11 included in the power conversion unit 10 and the first contactor MC21 included in the power conversion unit 20 to switch the switch 12 to the active system or the standby system.
  • the power conversion unit 10 When the DC current supplied from the current collector 4 becomes equal to or higher than a threshold value, that is, when an overcurrent occurs, the fuse F1 blows to cut off the electric path. As a result, the power converter 11 is electrically disconnected from the current collector 4.
  • This threshold value is set so as to prevent an overcurrent from occurring in the overhead wire 3 and to trip a circuit breaker in a substation (not shown).
  • the length of the conductor forming the fuse F1, the thickness of the conductor, the member forming the conductor, and the like are determined according to this threshold value.
  • the first contactor MC11 is a DC electromagnetic contactor.
  • the first contactor MC11 is controlled by the contactor controller 31.
  • One end of the first contactor MC11 is connected to the other end of the fuse F1 and the other end is connected to one end of the filter reactor FL1.
  • the contactor control unit 31 turns on the first contactor MC11, one end and the other end of the first contactor MC11 are connected to each other, so that the fuse F1 and the filter reactor FL1 are electrically connected to each other.
  • the power converter 11 is electrically connected to the current collector 4.
  • the contactor control unit 31 opens the first contactor MC11, one end and the other end of the first contactor MC11 are insulated, so that the filter reactor FL1 is electrically disconnected from the fuse F1. As a result, the power converter 11 is electrically disconnected from the current collector 4.
  • Filter reactor FL1 reduces harmonic components included in the input current.
  • One end of the filter capacitor FC1 is connected to the other end of the filter reactor FL1 and the other end is grounded.
  • the filter capacitor FC1 is connected between the primary terminals of the power conversion unit 11 and is charged with the DC power supplied from the current collector 4.
  • the filter capacitor FC1 smoothes the voltage. Further, since the filter reactor FL1 and the filter capacitor FC1 form an LC filter, noise generated when the power conversion unit 11 operates as described later is reduced, and noise included in the input current from the overhead wire 3 is reduced. The ingredients are reduced.
  • the power conversion unit 11 converts the DC power supplied from the current collector 4 through the primary terminals into three-phase AC power, and transforms the three-phase AC power into a switching device 12 connected to each secondary terminal and a transformer. It is supplied to the load 7 through the container 5 and the AC filter capacitor 6. Specifically, the switching element included in the power conversion unit 11 is controlled by the switching control unit 32, so that the power conversion unit 11 converts the DC power into the three-phase AC power and supplies the three-phase AC power to the load 7. To do.
  • the power conversion unit 11 is configured by a CVCF (Constant Voltage Constant Frequency) inverter, for example.
  • the configuration of the power conversion unit 20 is similar to that of the power conversion unit 10.
  • the fuse F2 is blown to cut off the electric path.
  • the power converter 21 is electrically disconnected from the current collector 4.
  • This threshold value is set similarly to the case of the fuse F1.
  • the length of the conductor forming the fuse F2, the thickness of the conductor, the member forming the conductor, and the like are determined according to this threshold value.
  • the first contactor MC21 is a DC electromagnetic contactor.
  • the first contactor MC21 is controlled by the contactor controller 31.
  • One end of the first contactor MC21 is connected to the other end of the fuse F2, and the other end is connected to one end of the filter reactor FL2.
  • the contactor control unit 31 turns on the first contactor MC21, one end and the other end of the first contactor MC21 are connected to each other, so that the fuse F2 and the filter reactor FL2 are electrically connected to each other.
  • the power converter 21 is electrically connected to the current collector 4.
  • the contactor control unit 31 opens the first contactor MC21, one end and the other end of the first contactor MC21 are insulated, so that the filter reactor FL2 is electrically disconnected from the fuse F2. As a result, the power converter 21 is electrically disconnected from the current collector 4.
  • One end of the filter reactor FL2 is connected to the other end of the first contactor MC21, and the other end is connected to one end of the filter capacitor FC2 and the primary terminal of the power conversion unit 21.
  • Filter reactor FL2 reduces harmonic components included in the input current.
  • One end of the filter capacitor FC2 is connected to the other end of the filter reactor FL2, and the other end is grounded.
  • the filter capacitor FC2 is connected between the primary terminals of the power conversion unit 21 and is charged with the DC power supplied from the current collector 4.
  • the filter capacitor FC2 smoothes the voltage. Further, since the filter reactor FL2 and the filter capacitor FC2 form an LC filter, noise generated when the power conversion unit 21 operates as described later is reduced, and noise included in the input current from the overhead wire 3 is reduced. The ingredients are reduced.
  • the power conversion unit 21 converts the DC power supplied from the current collector 4 via the primary terminals into three-phase AC power, and transforms the three-phase AC power into the switching device 12 connected to each secondary terminal and the transformer. It is supplied to the load 7 through the container 5 and the AC filter capacitor 6. Specifically, the switching element included in the power conversion unit 21 is controlled by the switching control unit 32, so that the power conversion unit 21 converts the DC power into the three-phase AC power and supplies the three-phase AC power to the load 7. To do.
  • the power converter 21 is composed of, for example, a CVCF inverter.
  • the contactor control unit 31, the switching control unit 32, and the failure determination unit 33 which control the power conversion units 10 and 20 having the above configuration and enable switching between the active system and the standby system, will be described.
  • the contactor control unit 31 closes or opens the first contactors MC11 and MC21, and switches the switch 12 to the drive system or the standby system.
  • An operation instruction signal for instructing the start or stop of the power conversion device 1 is supplied to the contactor control unit 31 from a driver's cab (not shown).
  • the contactor control unit 31 holds in advance information about which of the power conversion units 10 and 20 is to be the operating system.
  • the contactor control unit 31 is supplied from the failure determination unit 33 with a failure determination signal S2 indicating whether or not there is a failure in the power conversion units 10 and 20.
  • the contactor control unit 31 turns on the first contactor MC11 when the operation instruction signal for instructing the start of the power conversion device 1 is supplied in the state where the first contactor MC11 is opened. Further, the switch 12 is switched to the active system. The contactor controller 31 keeps the first contactor MC21 open. Then, the contactor control unit 31 supplies the contactor state signal S1 indicating that the first contactor MC11 is turned on to the switching control unit 32 and the failure determination unit 33. Moreover, the contactor control part 31 will open the 1st contactor MC11 currently supplied, if the operation instruction
  • the contactor control unit 31 turns on the first contactor MC21. Then, the contactor control unit 31 supplies a contactor state signal S1 indicating that the first contactor MC21 is turned on to the switching control unit 32 and the failure determination unit 33.
  • the switching control unit 32 controls the switching elements included in the power conversion units 11 and 21 according to the contactor state signal S1. Specifically, when the contactor state signal S1 indicates that the first contactor MC11 is turned on, the switching control unit 32, as will be described later, the power having the turned-on first contactor MC11. A switching control signal is sent to the switching element included in the power converter 11 that constitutes the conversion unit 10 to control the switching element. In this case, the switching control unit 32 sends to the power conversion unit 21 a switching control signal that turns off the switching element included in the power conversion unit 21. When the contactor state signal S1 indicates that the first contactor MC21 is turned on, the switching control unit 32 sends the switching control signal to the switching element included in the power conversion unit 21 as described later. Send and control switching elements. In this case, the switching control unit 32 sends to the power conversion unit 11 a switching control signal that turns off the switching element included in the power conversion unit 11.
  • the switching control unit 32 is supplied with a failure determination signal S2 indicating the presence/absence of a failure of the power conversion units 10 and 20 from a failure determination unit 33 described later.
  • the switching control unit 32 is supplied with a failure determination signal S2 indicating that a failure has occurred while the contactor status signal S1 indicating that the first contactor MC11 is in the supplied state is supplied. Then, a switching control signal for turning off the switching element included in the power conversion unit 11 is sent to the power conversion unit 11.
  • the switching control unit 32 is supplied with the failure determination signal S2 indicating that a failure has occurred when the contactor status signal S1 indicating that the first contactor MC21 is in the supplied state is supplied. Then, the switching control signal for turning off the switching element included in the power conversion unit 21 is sent to the power conversion unit 21.
  • the contactor status signal S1 is supplied from the contactor control unit 31 to the failure determination unit 33.
  • the failure determination unit 33 acquires the contactor status signal S1 indicating that the first contactor MC11 or the first contactor MC21 is turned on
  • the failure determination unit 33 determines whether there is a failure in the power conversion units 10 and 20. To start.
  • the failure determination unit 33 when the first contactor MC11 is turned on, a switching control signal to the power conversion unit 11, a feedback signal indicating the state of a switching element included in the power conversion unit 11, and an output voltage of the power conversion unit 11.
  • the presence/absence of a failure in the power conversion unit 10 is determined based on the output current, the presence/absence of blown fuse F1, the input voltage/current of the power converter 11, the output voltage/current of the load 7, and the like.
  • the failure determination unit 33 when the first contactor MC21 is turned on, the switching control signal to the power conversion unit 21, the feedback signal indicating the state of the switching element included in the power conversion unit 21, and the power conversion unit 21.
  • the power conversion unit 20 based on the output voltage or output current of the fuse F2, whether the fuse F2 is blown, the input voltage or current of the power converter 21, the output voltage or current of the load 7, and the like. ..
  • the process of determining the presence/absence of a failure in the power conversion units 10 and 20 performed by the failure determination unit 33 will be described by taking the process of determining the presence/absence of a failure using a switching control signal and a feedback signal as an example.
  • the failure determination unit 33 acquires the switching control signal to the power conversion units 11 and 21 from the switching control unit 32. Further, the failure determination unit 33 acquires a feedback signal indicating the on/off state of the switching element from the power conversion units 11 and 21. Then, the failure determination unit 33 determines whether or not the on/off state of the switching element indicated by the switching control signal and the on/off state of the switching element indicated by the feedback signal match.
  • the failure determination unit 33 determines that the ON/OFF state of the switching element indicated by the switching control signal does not match the ON/OFF state of the switching element indicated by the feedback signal, the failure determination signal S2 of High level is output to the contactor control unit 31. Supply to.
  • the operation of the power conversion device 1 having the above configuration will be described as an example.
  • the operation of the raising switch for raising the pantograph which is an example of the current collector 4
  • the current collector 4 comes into contact with the overhead line 3
  • the current collector 4 receives power from the substation.
  • an operation instruction signal for instructing the start of the power conversion device 1 is supplied to the contactor control unit 31 from the driver's cab.
  • the contactor control unit 31 switches the switcher 12 to the operating system and then turns on the first contactor MC11.
  • the electric power obtained by the current collector 4 from the substation via the overhead wire 3 passes through the fuse F1, the first contactor MC11, and the filter reactor FL1.
  • the filter capacitor FC1 is supplied, and charging of the filter capacitor FC1 is started.
  • switching the switch 12 to the active system includes maintaining the state where the switch 12 is switched to the active system.
  • the switching control unit 32 causes the power conversion unit 11 to supply the DC power supplied via the primary terminal to the load 7
  • the switching element of the power conversion unit 11 is controlled so as to convert into three-phase AC power to be supplied to.
  • the switching element is controlled so that the three-phase AC power is maintained at a constant voltage and a constant frequency.
  • the switching control unit 32 acquires the current value of each phase from the current measuring unit connected to the secondary terminal of the power conversion unit 11. Further, the switching control unit 32 acquires the output voltage of the power conversion unit 11 from a voltage measurement unit (not shown) connected to the secondary terminal of the power conversion unit 11. Then, the switching control unit 32 sends a switching control signal to the switching element of the power conversion unit 11 to control the switching element so that the output voltage is maintained at a constant voltage and a constant frequency.
  • the failure determination unit 33 acquires the contactor status signal S1 indicating that the first contactor MC11 is turned on, the failure determination unit 33 starts the process of determining whether or not there is a failure in the power conversion unit 10. Specifically, the failure determination unit 33 determines whether or not the on/off state of the switching element indicated by the switching control signal and the on/off state of the switching element indicated by the feedback signal match.
  • the power conversion unit 10 has a failure.
  • the failure determination unit 33 determines that the ON/OFF state of the switching element indicated by the switching control signal does not match the ON/OFF state of the switching element indicated by the feedback signal, the failure determination signal S2 of High level is output to the contactor control unit 31. And the switching controller 32.
  • the switching controller 32 When the switching controller 32 is supplied with the contactor state signal S1 indicating that the first contactor MC11 is turned on and the high-level failure determination signal S2 is supplied, the power converter A switching control signal for turning off the switching element included in 11 is sent to the power conversion unit 11. As a result, the switching element included in the power conversion unit 11 is turned off, and the power conversion unit 11 stops.
  • the contactor control unit 31 opens the first contactor MC11 when the High-level failure determination signal S2 is supplied while the first contactor MC11 is turned on. After that, the contactor control unit 31 switches the switching device 12 to the standby system and then turns on the first contactor MC21. Then, the contactor control unit 31 supplies a contactor state signal S1 indicating that the first contactor MC21 is turned on to the switching control unit 32 and the failure determination unit 33.
  • each primary terminal of the switching device 12 and each secondary terminal of the power conversion unit 21 corresponding to each other are connected to each other, and the power conversion unit 21 and the load are connected. 7 are electrically connected to each other.
  • switching the switch 12 to the standby system includes maintaining the state where the switch 12 is switched to the standby system.
  • the switching control unit 32 causes the power conversion unit 21 to apply the DC power supplied via the primary terminal to the load.
  • the switching element of the power conversion unit 21 is controlled so as to convert the three-phase AC power to be supplied to the power converter 7. As a result, even if a failure occurs in the power conversion unit 10, by operating the power conversion unit 20, power is continuously supplied to the load 7.
  • the power conversion device 1 includes the power conversion units 10 and 20 that convert the supplied DC power into AC power and supply the load 7 with AC power. ..
  • each of the power conversion units 10 and 20 includes fuses F1 and F2 in order to cut off the electric path when an overcurrent occurs. Since the fuses F1 and F2 are smaller in size than the circuit breaker, the power converter 1 can be made smaller than the conventional power converter having the circuit breaker. Further, since the breaker is large in size, it is difficult to house it in the same housing as the other constituent elements of the power converter, but the fuses F1 and F2 are the same housing as the other constituent elements of the power converter 1. It is possible to accommodate
  • the power conversion units 10 and 20 are commonly connected to the current collector 4 and are commonly connected to the load 7.
  • the filter reactor since the FL1 and the FL2 share the iron core, the power conversion device 1 can be further downsized.
  • a configuration in which filter reactors FL1 and FL2 share an iron core will be described as a second embodiment.
  • the filter reactors FL1 and FL2 share the iron core 40.
  • the filter reactor FL1 includes a coil 41 wound around an iron core 40. One end 41a of the coil 41 is connected to the other end of the first contactor MC11. The other end 41b of the coil 41 is connected to one end of the filter capacitor FC1 and the primary terminal of the power conversion unit 11.
  • the filter reactor FL2 includes a coil 42 wound around an iron core 40. One end 42a of the coil 42 is connected to the other end of the first contactor MC21. The other end 42b of the coil 42 is connected to one end of the filter capacitor FC2 and the primary terminal of the power conversion unit 21.
  • filter reactors FL1, FL2 share iron core 40.
  • the filter reactors FL1 and FL2 having the iron core 40 can be downsized as compared with the filter reactor having no iron core.
  • the power conversion device 1 according to the second embodiment has a smaller size than the power conversion device including a plurality of filter reactors each having an individual iron core. Is possible.
  • the iron core 40 may be designed in consideration of the magnetic circuit configured by one of the coils 41, 42.
  • an iron core having the same size as the iron core in the case where each of the coils 41 and 42 has an individual iron core can be adopted as the shared iron core 40.
  • the embodiment of the present invention is not limited to the above example.
  • the circuit configuration described above is an example, and a modified example of the power conversion device is shown in FIG.
  • the power converter 2 shown in FIG. 3 further includes a series circuit of a second contactor MC12 and a resistor R1 connected in parallel to the first contactor MC11. Further, the power conversion device 2 further includes a series circuit of the second contactor MC22 and the resistor R2 connected in parallel to the first contactor MC21.
  • the contactor control unit 31 included in the power conversion device 2 turns on the second contactor MC12 before turning on the first contactor MC11, and turns on the first contactor MC11 after the filter capacitor FC1 is charged. .. Since the resistor R1 is connected in series with the second contactor MC12, an inrush current is prevented from flowing to the filter capacitor FC1 when the second contactor MC12 is turned on. Similarly, the contactor control unit 31 turns on the second contactor MC22 before turning on the first contactor MC21, and turns on the first contactor MC21 after the filter capacitor FC2 is charged. Since the resistor R2 is connected in series to the second contactor MC22, an inrush current is prevented from flowing to the filter capacitor FC2 when the second contactor MC22 is turned on.
  • the anode is connected to the other end of the filter reactor FL1
  • the cathode is connected to one end of the filter capacitor FC1
  • the backflow prevention diode is connected to the other end of the filter reactor FL2.
  • a backflow prevention diode whose cathode is connected to one end of the filter capacitor FC2 may be further provided.
  • the anode is connected to the other end of the filter reactor FL1
  • the cathode is connected to one end of the filter capacitor FC1
  • the anode is connected to the other end of the filter reactor FL2
  • the cathode is the filter. It may further include a thyristor connected to one end of the capacitor FC2, and a plurality of resistors connected in parallel to the corresponding thyristors.
  • the number of power conversion units is not limited to two, but any number greater than or equal to two.
  • the power conversion device 1 includes three power conversion units and a switching device in which each primary terminal is connected to three power conversion units and each secondary terminal is connected to the transformer 5, contactor control
  • the unit 31 turns on the first contactor included in the power conversion unit set to the operating system, and the other two set to the standby system.
  • the first contactor of each power conversion unit is opened. Further, the contactor control unit 31 switches the switching device to the operating system.
  • switching between the power conversion units 10 and 20 is not limited to a failure.
  • the power conversion units 10 and 20 which operate may be switched at a predetermined cycle.
  • the contactor control unit 31 may repeatedly switch to the drive system or the standby system at a predetermined cycle. Thereby, the usage time of the power conversion units 10 and 20 is maintained at the same level, and deterioration of one of the power conversion units 10 and 20 is suppressed. In this case, the power converters 1 and 2 do not have to include the failure determination unit 33.
  • the power conversion units 10 and 20 may each be connected to an independent load 7.
  • the power conversion device 1 does not include the switch 12, and the respective secondary terminals of the power conversion units 11 and 21 are connected to the independent load 7 via the independent transformer 5 and the AC filter capacitor 6. Just connect.
  • the power converters 1 and 2 may be mounted on an electric railway vehicle in which the current collector 4 that is a current collecting shoe acquires power from the third rail. Further, the power conversion devices 1 and 2 may include a contactor instead of the switching device 12.
  • the power conversion unit 20 may be an active system and the power conversion unit 10 may be a standby system.
  • the contactor control unit 31 may turn on the first contactor MC21 when the operation instruction signal for instructing the start of the power conversion device 1 is supplied. Then, the contactor control unit 31 may switch the switch 12 to the operating system. The contactor control unit 31 may leave the first contactor MC11 open.
  • the trigger for starting the power conversion device 1 is not limited to the operation instruction signal.
  • the contactor control unit 31 may turn on the first contactor MC11 when the current collector 4 contacts the overhead wire 3. Specifically, the contactor control unit 31 outputs the measured voltage value from the voltage measurement unit that measures the voltage between one end of the first contactor MC11 and the other end of the filter capacitor FC1 corresponding to the voltage of the overhead wire 3. If it is acquired and the voltage value becomes equal to or higher than the threshold voltage, the first contactor MC11 and the switching device 12 may be turned on. This threshold voltage is individually set in consideration of the minimum value of the voltage of the overhead wire 3.
  • Each of the power conversion units 11 and 21 has a switching element, and has any configuration as long as it is a configuration that converts the supplied DC power into power for supplying to the load 7 by the ON/OFF operation of the switching element. ..
  • the power converters 11 and 21 may be VVVF (Variable Voltage Variable Frequency) inverters that supply power to the electric motor, or DC (Direct Current)-DC converters.
  • VVVF Very Voltage Variable Frequency
  • DC Direct Current
  • the secondary terminal of the DC-DC converter may be connected to the load 7, and a filter capacitor may be provided between the secondary terminals.
  • the method of determining the failure of the failure determination unit 33 is not limited to the above example, and any method can be used as long as it can determine whether or not there is a failure of the power conversion units 10 and 20.
  • the failure determination unit 33 may determine the presence/absence of a failure in the power conversion units 10, 20 based on the presence/absence of blown fuses F1, F2. Specifically, the failure determination unit 33 acquires a signal indicating whether or not the fuses are blown from the blowout detection switches mounted on the fuses F1 and F2, and determines whether or not the fuses F1 and F2 are blown based on this signal. May be.
  • the failure determination unit 33 may supply the High level failure determination signal S2 to the contactor control unit 31 and the switching control unit 32. Since the subsequent processing is the same as that of the above-described embodiment, when the overcurrent occurs and the fuse F1 is blown, the power conversion unit 10 of the active system is stopped and the power conversion unit 20 of the standby system operates. .. When the blown fuse F1 is replaced, the power conversion process by the power conversion unit 10 becomes possible again. As another example, the failure determination unit 33 monitors the cooler temperature of the semiconductors forming the power conversion units 11 and 21, and when the temperature is equal to or higher than a specified value, it is determined that the power conversion units 11 and 21 have failed. You may decide.
  • the failure determination unit 33 may determine whether the amplitude of each phase current is equal to or smaller than the first amplitude or equal to or larger than the second amplitude larger than the first amplitude.
  • the first amplitude is, for example, 1 ⁇ 2 of the amplitude of each phase current when there is no failure in the power conversion units 10 and 20.
  • the second amplitude is, for example, 1.5 times the amplitude of each phase current when no failure occurs in the power conversion units 10 and 20.
  • the failure determination unit 33 may determine whether the value of the terminal voltage of the filter capacitors FC1 and FC2 is equal to or lower than the first voltage or equal to or higher than the second voltage higher than the first voltage. ..
  • the first voltage is, for example, half the value of the voltage between the terminals of the filter capacitors FC1 and FC2 when the power conversion units 10 and 20 have not failed.
  • the second amplitude is, for example, 1.5 times the value of the voltage between the terminals of the filter capacitors FC1 and FC2 when the power conversion units 10 and 20 have not failed.
  • the contactor control unit 31, the switching control unit 32, and the failure determination unit 33 are provided independently of the power conversion units 10 and 20, but the power conversion units 10 and 20 are respectively provided.
  • the contactor control unit 31, the switching control unit 32, and the failure determination unit 33 may be provided.
  • the contactor control unit 31 included in the power conversion unit 10 controls the first contactor MC11.
  • the switching control unit 32 included in the power conversion unit 10 controls the switching element included in the power conversion unit 11.
  • the failure determination unit 33 included in the power conversion unit 10 determines whether or not there is a failure in the power conversion unit 10.
  • the contactor controller 31 included in the power conversion unit 20 controls the first contactor MC21.
  • the switching control unit 32 included in the power conversion unit 20 controls the switching element included in the power conversion unit 21.
  • the failure determination unit 33 included in the power conversion unit 20 determines whether or not there is a failure in the power conversion unit 20.
  • the load 7 is an arbitrary electric device or electronic device mounted on a rail car.
  • the load 7 is a lighting device, an air conditioner, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)

Abstract

A power conversion device (1) is provided with power conversion units (10, 20) connected in common to a current collector (4). Each of the power conversion units (10, 20) is provided with a fuse (F1, F2), a power conversion part (11, 21), and a first contactor (MC11, MC21). A contactor control part (31) turns on or off the first contactor (MC11, MC21). When a direct current supplied from a power supply is greater than or equal to a threshold value, the fuse (F1, F2) blows to cut off an electric circuit, thereby electrically separating, from the power supply, the power conversion part (11, 21) which constitutes the power conversion unit (10, 20) including the fuse (F1, F2).

Description

電力変換装置Power converter
 本発明は、電力変換装置に関する。 The present invention relates to a power conversion device.
 電気鉄道車両には、架線を通して変電所から供給された電力を所望の交流電力に変換し、変換した電力を車両内の負荷に供給する電力変換装置が搭載されるものがある。この種の電力変換装置の一例が特許文献1に開示されている。この電力変換装置は、それぞれが電源から一次端子を介して供給された直流電力を交流電力に変換して二次端子に接続された負荷に供給する2つの電力変換部と、それぞれが対応する電力変換部の一次端子に接続され、電源から供給される電力で充電される2つのフィルタコンデンサと、を備える。この電力変換装置はさらに、2つの電力変換部を、電源に電気的に接続し、または電源から電気的に切り離し、電源から電気的に切り離す際に生じるアークを消す機能を有する遮断器と、遮断器に直列に接続されて、遮断器が投入されている状態で、2つの電力変換部を、電源に電気的に接続し、または電源から電気的に切り離す切替器と、を備える。 Some electric railway vehicles are equipped with a power converter that converts the electric power supplied from the substation through overhead lines into the desired AC power and supplies the converted electric power to the load inside the vehicle. Patent Document 1 discloses an example of this type of power conversion device. This power conversion device includes two power conversion units that convert DC power supplied from a power source through a primary terminal into AC power and supply the AC power to a load connected to a secondary terminal, and powers corresponding to the power conversion units. Two filter capacitors connected to the primary terminal of the conversion unit and charged with electric power supplied from a power supply. This power converter further includes a circuit breaker having a function of electrically connecting the two power converters to or from the power source, and extinguishing an arc generated when the power converter is electrically disconnected from the power source. And a switch that electrically connects the two power conversion units to or disconnects the two power conversion units from the power supply in a state where the circuit breaker is connected in series.
特開2005-287129号公報JP 2005-287129 A
 特許文献1に開示される電力変換装置の電力変換部は二重化されている。一方の電力変換部は稼動系に設定され、他方の電力変換部は待機系に設定される。具体的には、この電力変換装置は、稼動系に設定された電力変換部のスイッチング素子を制御して、稼動系に設定された電力変換部を動作させて、直流電力から交流電力への電力変換を行う。この電力変換装置は、電力変換部に流れる電流を制限するために遮断器を備える。また、この電力変換装置は、稼動系に設定されている電力変換部と待機系に設定される電力変換部のいずれかを電源に接続するために切替器を備える。
 上記構成を有する電力変換装置は、入力回路、すなわち、遮断器から電力変換部までの回路で、または、電力変換部で、地絡、短絡等が発生した際に遮断器を開放し、電力変換部を停止させる。その後、この電力変換装置は、切替器を稼動系から待機系に切り替えて、遮断器を投入し、待機系に設定されていた電力変換部のスイッチング素子を制御して、待機系に設定されている電力変換部を動作させる。電気鉄道車両に搭載される電力変換装置が備える遮断器は、一般的にサイズが大きい高圧遮断器で構成されるため、遮断器を備える電力変換装置の小型化は難しい。
 さらに特許文献1に開示される電力変換装置は、電力変換部の一次端子に接続された接触器と、電力変換部の二次端子に接続された接触器とを備えるため、小型化が難しい。
The power conversion unit of the power conversion device disclosed in Patent Document 1 is duplicated. One of the power converters is set to the active system, and the other power converter is set to the standby system. Specifically, this power conversion device controls the switching element of the power conversion unit set in the active system to operate the power conversion unit set in the active system to convert power from DC power to AC power. Do the conversion. This power converter includes a circuit breaker to limit the current flowing through the power converter. Further, the power conversion device includes a switch for connecting either the power conversion unit set to the active system or the power conversion unit set to the standby system to the power supply.
The power conversion device having the above configuration is an input circuit, that is, a circuit from the circuit breaker to the power conversion unit, or in the power conversion unit, the circuit breaker is opened when a ground fault, a short circuit, or the like occurs, and the power conversion is performed. Stop the department. After that, this power conversion device switches the switching device from the operating system to the standby system, turns on the circuit breaker, controls the switching element of the power conversion unit set to the standby system, and sets the standby system. The power conversion unit is operating. Since the circuit breaker included in the power conversion device mounted on the electric railway vehicle is generally composed of a large-sized high-voltage circuit breaker, it is difficult to downsize the power conversion device including the circuit breaker.
Further, the power conversion device disclosed in Patent Document 1 includes a contactor connected to the primary terminal of the power conversion unit and a contactor connected to the secondary terminal of the power conversion unit, and thus is difficult to miniaturize.
 本発明は上述の事情に鑑みてなされたものであり、電流を制限する機能を確保しながら、電力変換部が二重化された電力変換装置を小型化することを目的とする。 The present invention has been made in view of the above circumstances, and it is an object of the present invention to reduce the size of a power conversion device having a dual power conversion unit while ensuring the function of limiting the current.
 上記目的を達成するために、本発明の電力変換装置は、電源に共通に接続される複数の電力変換ユニットと、接触器制御部と、を備える。
 複数の電力変換ユニットはそれぞれ、ヒューズと、電力変換部と、第1接触器と、を有する。ヒューズは、電源から供給された直流電流が閾値以上になると電路を遮断する。電力変換部は、電源から一次端子を介して供給された直流電力を二次端子に接続された負荷に供給するための電力に変換し、変換した電力を二次端子から負荷に供給する。第1接触器は、電力変換部を、電源に電気的に接続し、または電源から電気的に切り離す。ヒューズは、直流電流が閾値以上になると、溶断して電路を遮断することで、ヒューズを有する電力変換ユニットを構成する電力変換部を電源から電気的に切り離す。接触器制御部は、複数の電力変換ユニットのそれぞれが有する第1接触器を投入し、または開放する。
In order to achieve the above object, the power converter of the present invention includes a plurality of power converter units commonly connected to a power source, and a contactor controller.
Each of the plurality of power conversion units has a fuse, a power conversion unit, and a first contactor. The fuse cuts off the electric path when the direct current supplied from the power source exceeds a threshold value. The power conversion unit converts the DC power supplied from the power supply via the primary terminal into power for supplying to the load connected to the secondary terminal, and supplies the converted power to the load from the secondary terminal. The first contactor electrically connects the power conversion unit to or from the power source. When the direct current becomes equal to or higher than the threshold value, the fuse is blown to cut off the electric path, thereby electrically disconnecting the power conversion unit forming the power conversion unit having the fuse from the power supply. The contactor control unit turns on or opens the first contactor of each of the plurality of power conversion units.
 本発明に係る電力変換装置は、それぞれが電力変換部を有する複数の電力変換ユニットを備えることで、電力変換部が二重化されている。また複数の電力変換ユニットはそれぞれ、ヒューズを備えるため、電流を制限する機能を確保しながら、電力変換装置の小型化が可能である。 The power conversion device according to the present invention has a plurality of power conversion units, each having a power conversion unit, so that the power conversion unit is duplicated. Further, since each of the plurality of power conversion units has a fuse, it is possible to reduce the size of the power conversion device while ensuring the function of limiting the current.
本発明の実施の形態1に係る電力変換装置のブロック図Block diagram of a power conversion device according to Embodiment 1 of the present invention 本発明の実施の形態2に係るフィルタリアクトルを示す図The figure which shows the filter reactor which concerns on Embodiment 2 of this invention. 本発明の実施の形態に係る電力変換装置のブロック図Block diagram of a power converter according to an embodiment of the present invention
 以下、本発明の実施の形態に係る電力変換装置について図面を参照して詳細に説明する。なお図中、同一または同等の部分には同一の符号を付す。 Hereinafter, a power conversion device according to an embodiment of the present invention will be described in detail with reference to the drawings. In the drawings, the same or equivalent parts are designated by the same reference numerals.
 (実施の形態1)
 直流き電方式の電気鉄道車両に搭載された電力変換装置について、実施の形態1で説明する。図1に示すように、電気鉄道車両に搭載された集電装置4は、架線3を介して、直流電源である変電所から直流電力を取得し、実施の形態1に係る電力変換装置1に供給する。電気鉄道車両に搭載された負荷7に電力を供給するために、電力変換装置1は、供給された直流電力を三相交流電力に変換する。そして、電力変換装置1は、三相交流電力を変圧器5と交流フィルタコンデンサ6を介して負荷7に供給する。
(Embodiment 1)
A power conversion device mounted on a DC feeding type electric railway vehicle will be described in the first embodiment. As shown in FIG. 1, a current collector 4 mounted on an electric railway vehicle obtains DC power from a substation, which is a DC power source, via an overhead wire 3, and the power converter 1 according to the first embodiment has the same structure. Supply. In order to supply electric power to the load 7 mounted on the electric railway vehicle, the power conversion device 1 converts the supplied DC power into three-phase AC power. Then, the power conversion device 1 supplies the three-phase AC power to the load 7 via the transformer 5 and the AC filter capacitor 6.
 変圧器5の各一次端子は、電力変換装置1の出力端、詳細には後述の切替器12の各二次端子に接続される。また変圧器5の各二次端子は、負荷7に接続される。変圧器5は、一次端子を介して入力された三相交流電力を、所望の交流電力に変換して、二次端子から負荷7に供給する。
 交流フィルタコンデンサ6は、変圧器5の各二次端子に接続され、電力変換装置1の出力に含まれる高調波成分を低減する。
Each primary terminal of the transformer 5 is connected to the output terminal of the power conversion device 1, specifically, each secondary terminal of the switching device 12 described later. Each secondary terminal of the transformer 5 is connected to the load 7. The transformer 5 converts the three-phase AC power input via the primary terminal into desired AC power and supplies the desired AC power to the load 7 from the secondary terminal.
The AC filter capacitor 6 is connected to each secondary terminal of the transformer 5 and reduces harmonic components included in the output of the power conversion device 1.
 電力変換装置1は、集電装置4から供給される直流電力を三相交流電力に変換して、三相交流電力を負荷7に供給する電力変換ユニット10,20と、電力変換ユニット10,20のいずれかを負荷7に電気的に接続する切替器12と、を備える。電力変換ユニット10,20は、集電装置4に共通に接続され、かつ、切替器12に共通に接続され、二重化されている。なお電力変換ユニット10,20の一方は稼動系に設定され、他方は待機系に設定される。 The power conversion device 1 converts the DC power supplied from the current collector 4 into three-phase AC power and supplies the three-phase AC power to the load 7, and the power conversion units 10, 20. And a switch 12 for electrically connecting any one of them to the load 7. The power conversion units 10 and 20 are commonly connected to the current collector 4 and also commonly connected to the switching device 12, and are duplicated. It should be noted that one of the power conversion units 10 and 20 is set as an active system and the other is set as a standby system.
 稼動系に設定された電力変換ユニット10が、集電装置4から供給される直流電力を三相交流電力に変換して、三相交流電力を負荷7に供給している間、待機系に設定された電力変換ユニット20は停止している。また稼動系に設定された電力変換ユニット10が停止した場合は、待機系に設定された電力変換ユニット20が、集電装置4から供給される直流電力を三相交流電力に変換して、三相交流電力を負荷7に供給する。 While the power conversion unit 10 set to the operating system converts the DC power supplied from the current collector 4 into three-phase AC power and supplies the three-phase AC power to the load 7, it is set to the standby system. The converted power conversion unit 20 is stopped. In addition, when the power conversion unit 10 set to the operating system is stopped, the power conversion unit 20 set to the standby system converts the DC power supplied from the current collector 4 into three-phase AC power and outputs the three-phase AC power. The phase alternating current power is supplied to the load 7.
 切替器12の各一次端子は、電力変換ユニット10,20のそれぞれの対応する出力端、詳細には、後述する電力変換部11,21の二次端子に接続されている。また切替器12の各二次端子は、変圧器5に接続されている。なお切替器12は、後述の接触器制御部31によって制御され、電力変換部11に接続された各一次端子と、対応する各二次端子とを電気的に接続し、または、電力変換部21に接続された各一次端子と、対応する各二次端子とを電気的に接続する。 Each primary terminal of the switching device 12 is connected to the corresponding output end of each power conversion unit 10, 20, specifically, the secondary terminal of the power conversion units 11, 21 described later. Further, each secondary terminal of the switch 12 is connected to the transformer 5. The switch 12 is controlled by a contactor control unit 31 described later, and electrically connects each primary terminal connected to the power conversion unit 11 and each corresponding secondary terminal, or the power conversion unit 21. Each of the primary terminals connected to and the corresponding secondary terminals are electrically connected.
 電力変換ユニット10は、一端が集電装置4に接続されたヒューズF1と、一端がヒューズF1の他端に接続された第1接触器MC11と、一端が第1接触器MC11の他端に接続されたフィルタリアクトルFL1と、一端がフィルタリアクトルFL1の他端に接続され、他端が接地されているフィルタコンデンサFC1と、を備える。
 電力変換ユニット10はさらに、一次端子間にフィルタコンデンサFC1が接続された電力変換部11を備える。電力変換部11の二次端子は、切替器12に接続される。
The power conversion unit 10 includes a fuse F1 having one end connected to the current collector 4, a first contactor MC11 having one end connected to the other end of the fuse F1 and one end connected to the other end of the first contactor MC11. And a filter capacitor FC1 having one end connected to the other end of the filter reactor FL1 and the other end grounded.
The power conversion unit 10 further includes a power conversion unit 11 having a filter capacitor FC1 connected between the primary terminals. The secondary terminal of the power converter 11 is connected to the switch 12.
 電力変換ユニット20の構成は、電力変換ユニット10の構成と同様である。詳細には、電力変換ユニット20は、一端が集電装置4に接続されたヒューズF2と、一端がヒューズF2の他端に接続された第1接触器MC21と、一端が第1接触器MC21の他端に接続されたフィルタリアクトルFL2と、一端がフィルタリアクトルFL2の他端に接続され、他端が接地されているフィルタコンデンサFC2と、を備える。
 電力変換ユニット20はさらに、一次端子間にフィルタコンデンサFC2が接続された電力変換部21を備える。電力変換部21の二次端子は、切替器12に接続される。
The configuration of the power conversion unit 20 is similar to that of the power conversion unit 10. Specifically, the power conversion unit 20 includes a fuse F2 having one end connected to the current collector 4, a first contactor MC21 having one end connected to the other end of the fuse F2, and one end having the first contactor MC21. A filter reactor FL2 connected to the other end, and a filter capacitor FC2 having one end connected to the other end of the filter reactor FL2 and the other end grounded.
The power conversion unit 20 further includes a power conversion unit 21 having a filter capacitor FC2 connected between the primary terminals. The secondary terminal of the power converter 21 is connected to the switch 12.
 電力変換装置1はさらに、電力変換ユニット10が有する第1接触器MC11と電力変換ユニット20が有する第1接触器MC21とを投入し、または開放し、切替器12を稼動系または待機系に切り替える接触器制御部31と、電力変換部11,21のそれぞれが有するスイッチング素子を制御するスイッチング制御部32と、電力変換ユニット10,20のそれぞれの故障の有無を判別する故障判別部33と、を備える。 The power conversion device 1 further switches on or off the first contactor MC11 included in the power conversion unit 10 and the first contactor MC21 included in the power conversion unit 20 to switch the switch 12 to the active system or the standby system. A contactor control unit 31, a switching control unit 32 that controls the switching elements of the power conversion units 11 and 21, and a failure determination unit 33 that determines whether or not there is a failure in each of the power conversion units 10 and 20. Prepare
 電力変換ユニット10の各部について説明する。
 ヒューズF1は、集電装置4から供給される直流電流が閾値以上となる、すなわち、過電流が生じると、溶断することで、電路を遮断する。この結果、電力変換部11は、集電装置4から電気的に切り離される。この閾値は、架線3に過電流が生じること、および、図示しない変電所の遮断器をトリップさせることを防ぐように設定される。ヒューズF1を構成する導体の長さ、導体の太さ、導体を形成する部材等は、この閾値に応じて定まる。
Each part of the power conversion unit 10 will be described.
When the DC current supplied from the current collector 4 becomes equal to or higher than a threshold value, that is, when an overcurrent occurs, the fuse F1 blows to cut off the electric path. As a result, the power converter 11 is electrically disconnected from the current collector 4. This threshold value is set so as to prevent an overcurrent from occurring in the overhead wire 3 and to trip a circuit breaker in a substation (not shown). The length of the conductor forming the fuse F1, the thickness of the conductor, the member forming the conductor, and the like are determined according to this threshold value.
 第1接触器MC11は、直流電磁接触器で構成される。また第1接触器MC11は、接触器制御部31によって制御される。第1接触器MC11の一端は、ヒューズF1の他端に接続され、他端はフィルタリアクトルFL1の一端に接続される。
 接触器制御部31が第1接触器MC11を投入すると、第1接触器MC11の一端と他端は互いに接続されるため、ヒューズF1とフィルタリアクトルFL1は互いに電気的に接続される。この結果、電力変換部11は、集電装置4に電気的に接続される。
 また接触器制御部31が第1接触器MC11を開放すると、第1接触器MC11の一端と他端は絶縁されるため、フィルタリアクトルFL1は、ヒューズF1から電気的に切り離される。この結果、電力変換部11は、集電装置4から電気的に切り離される。
The first contactor MC11 is a DC electromagnetic contactor. The first contactor MC11 is controlled by the contactor controller 31. One end of the first contactor MC11 is connected to the other end of the fuse F1 and the other end is connected to one end of the filter reactor FL1.
When the contactor control unit 31 turns on the first contactor MC11, one end and the other end of the first contactor MC11 are connected to each other, so that the fuse F1 and the filter reactor FL1 are electrically connected to each other. As a result, the power converter 11 is electrically connected to the current collector 4.
Further, when the contactor control unit 31 opens the first contactor MC11, one end and the other end of the first contactor MC11 are insulated, so that the filter reactor FL1 is electrically disconnected from the fuse F1. As a result, the power converter 11 is electrically disconnected from the current collector 4.
 フィルタリアクトルFL1の一端は、第1接触器MC11の他端に接続され、他端はフィルタコンデンサFC1の一端と電力変換部11の一次端子に接続される。フィルタリアクトルFL1は、入力電流に含まれる高調波成分を低減する。
 フィルタコンデンサFC1の一端は、フィルタリアクトルFL1の他端に接続され、他端は接地される。またフィルタコンデンサFC1は、電力変換部11の一次端子の間に接続され、集電装置4から供給される直流電力で充電される。フィルタコンデンサFC1は、電圧を平滑化する。またフィルタリアクトルFL1とフィルタコンデンサFC1とがLC形フィルタを構成することで、後述するように電力変換部11が動作する際に発生させるノイズが低減され、また架線3からの入力電流に含まれるノイズ成分が低減される。
One end of the filter reactor FL1 is connected to the other end of the first contactor MC11, and the other end is connected to one end of the filter capacitor FC1 and the primary terminal of the power conversion unit 11. Filter reactor FL1 reduces harmonic components included in the input current.
One end of the filter capacitor FC1 is connected to the other end of the filter reactor FL1 and the other end is grounded. The filter capacitor FC1 is connected between the primary terminals of the power conversion unit 11 and is charged with the DC power supplied from the current collector 4. The filter capacitor FC1 smoothes the voltage. Further, since the filter reactor FL1 and the filter capacitor FC1 form an LC filter, noise generated when the power conversion unit 11 operates as described later is reduced, and noise included in the input current from the overhead wire 3 is reduced. The ingredients are reduced.
 電力変換部11は、集電装置4から一次端子を介して供給された直流電力を三相交流電力に変換し、三相交流電力を、各二次端子に接続された切替器12と、変圧器5と、交流フィルタコンデンサ6とを介して負荷7に供給する。詳細には、電力変換部11が有するスイッチング素子が、スイッチング制御部32によって制御されることで、電力変換部11は直流電力を三相交流電力に変換し、三相交流電力を負荷7に供給する。
 なお電力変換部11は、例えば、CVCF(Constant Voltage Constant Frequency)インバータで構成される。
The power conversion unit 11 converts the DC power supplied from the current collector 4 through the primary terminals into three-phase AC power, and transforms the three-phase AC power into a switching device 12 connected to each secondary terminal and a transformer. It is supplied to the load 7 through the container 5 and the AC filter capacitor 6. Specifically, the switching element included in the power conversion unit 11 is controlled by the switching control unit 32, so that the power conversion unit 11 converts the DC power into the three-phase AC power and supplies the three-phase AC power to the load 7. To do.
The power conversion unit 11 is configured by a CVCF (Constant Voltage Constant Frequency) inverter, for example.
 電力変換ユニット20の各部について説明する。なお電力変換ユニット20の構成は、電力変換ユニット10の構成と同様である。
 ヒューズF2は、集電装置4から供給される直流電流が閾値以上となると、溶断して、電路を遮断する。この結果、電力変換部21は、集電装置4から電気的に切り離される。この閾値は、ヒューズF1の場合と同様に設定される。ヒューズF2を構成する導体の長さ、導体の太さ、導体を形成する部材等は、この閾値に応じて定まる。
Each part of the power conversion unit 20 will be described. The configuration of the power conversion unit 20 is similar to that of the power conversion unit 10.
When the direct current supplied from the current collector 4 becomes equal to or higher than the threshold value, the fuse F2 is blown to cut off the electric path. As a result, the power converter 21 is electrically disconnected from the current collector 4. This threshold value is set similarly to the case of the fuse F1. The length of the conductor forming the fuse F2, the thickness of the conductor, the member forming the conductor, and the like are determined according to this threshold value.
 第1接触器MC21は、直流電磁接触器で構成される。また第1接触器MC21は、接触器制御部31によって制御される。第1接触器MC21の一端は、ヒューズF2の他端に接続され、他端はフィルタリアクトルFL2の一端に接続される。
 接触器制御部31が第1接触器MC21を投入すると、第1接触器MC21の一端と他端は互いに接続されるため、ヒューズF2とフィルタリアクトルFL2は互いに電気的に接続される。この結果、電力変換部21は、集電装置4に電気的に接続される。
 また接触器制御部31が第1接触器MC21を開放すると、第1接触器MC21の一端と他端は絶縁されるため、フィルタリアクトルFL2は、ヒューズF2から電気的に切り離される。この結果、電力変換部21は、集電装置4から電気的に切り離される。
The first contactor MC21 is a DC electromagnetic contactor. The first contactor MC21 is controlled by the contactor controller 31. One end of the first contactor MC21 is connected to the other end of the fuse F2, and the other end is connected to one end of the filter reactor FL2.
When the contactor control unit 31 turns on the first contactor MC21, one end and the other end of the first contactor MC21 are connected to each other, so that the fuse F2 and the filter reactor FL2 are electrically connected to each other. As a result, the power converter 21 is electrically connected to the current collector 4.
Further, when the contactor control unit 31 opens the first contactor MC21, one end and the other end of the first contactor MC21 are insulated, so that the filter reactor FL2 is electrically disconnected from the fuse F2. As a result, the power converter 21 is electrically disconnected from the current collector 4.
 フィルタリアクトルFL2の一端は、第1接触器MC21の他端に接続され、他端はフィルタコンデンサFC2の一端と電力変換部21の一次端子に接続される。フィルタリアクトルFL2は、入力電流に含まれる高調波成分を低減する。
 フィルタコンデンサFC2の一端は、フィルタリアクトルFL2の他端に接続され、他端は接地される。またフィルタコンデンサFC2は、電力変換部21の一次端子の間に接続され、集電装置4から供給される直流電力で充電される。フィルタコンデンサFC2は、電圧を平滑化する。またフィルタリアクトルFL2とフィルタコンデンサFC2とがLC形フィルタを構成することで、後述するように電力変換部21が動作する際に発生させるノイズが低減され、また架線3からの入力電流に含まれるノイズ成分が低減される。
One end of the filter reactor FL2 is connected to the other end of the first contactor MC21, and the other end is connected to one end of the filter capacitor FC2 and the primary terminal of the power conversion unit 21. Filter reactor FL2 reduces harmonic components included in the input current.
One end of the filter capacitor FC2 is connected to the other end of the filter reactor FL2, and the other end is grounded. The filter capacitor FC2 is connected between the primary terminals of the power conversion unit 21 and is charged with the DC power supplied from the current collector 4. The filter capacitor FC2 smoothes the voltage. Further, since the filter reactor FL2 and the filter capacitor FC2 form an LC filter, noise generated when the power conversion unit 21 operates as described later is reduced, and noise included in the input current from the overhead wire 3 is reduced. The ingredients are reduced.
 電力変換部21は、集電装置4から一次端子を介して供給された直流電力を三相交流電力に変換し、三相交流電力を、各二次端子に接続された切替器12と、変圧器5と、交流フィルタコンデンサ6とを介して負荷7に供給する。詳細には、電力変換部21が有するスイッチング素子が、スイッチング制御部32によって制御されることで、電力変換部21は直流電力を三相交流電力に変換し、三相交流電力を負荷7に供給する。
 なお電力変換部21は、例えば、CVCFインバータで構成される。
The power conversion unit 21 converts the DC power supplied from the current collector 4 via the primary terminals into three-phase AC power, and transforms the three-phase AC power into the switching device 12 connected to each secondary terminal and the transformer. It is supplied to the load 7 through the container 5 and the AC filter capacitor 6. Specifically, the switching element included in the power conversion unit 21 is controlled by the switching control unit 32, so that the power conversion unit 21 converts the DC power into the three-phase AC power and supplies the three-phase AC power to the load 7. To do.
The power converter 21 is composed of, for example, a CVCF inverter.
 上記構成を有する電力変換ユニット10,20を制御し、稼動系と待機系との切り替えを可能とする接触器制御部31、スイッチング制御部32、および故障判別部33について説明する。
 接触器制御部31は、第1接触器MC11,MC21を投入または開放し、切替器12を駆動系または待機系に切り替える。なお接触器制御部31に、図示しない運転台から、電力変換装置1の始動または停止を指示する動作指示信号が供給される。また接触器制御部31は、電力変換ユニット10,20のいずれを稼動系とするかについての情報を予め保持している。さらに接触器制御部31には、故障判別部33から、電力変換ユニット10,20の故障の有無を示す故障判別信号S2が供給される。
The contactor control unit 31, the switching control unit 32, and the failure determination unit 33, which control the power conversion units 10 and 20 having the above configuration and enable switching between the active system and the standby system, will be described.
The contactor control unit 31 closes or opens the first contactors MC11 and MC21, and switches the switch 12 to the drive system or the standby system. An operation instruction signal for instructing the start or stop of the power conversion device 1 is supplied to the contactor control unit 31 from a driver's cab (not shown). Moreover, the contactor control unit 31 holds in advance information about which of the power conversion units 10 and 20 is to be the operating system. Further, the contactor control unit 31 is supplied from the failure determination unit 33 with a failure determination signal S2 indicating whether or not there is a failure in the power conversion units 10 and 20.
 詳細には、接触器制御部31は、第1接触器MC11が開放された状態で、電力変換装置1の始動を指示する動作指示信号が供給されると、第1接触器MC11を投入し、さらに切替器12を稼動系に切り替える。なお接触器制御部31は、第1接触器MC21を開放したままにする。そして、接触器制御部31は、第1接触器MC11が投入された状態であることを示す接触器状態信号S1をスイッチング制御部32と故障判別部33に供給する。
 また接触器制御部31は、電力変換装置1の停止を指示する動作指示信号が供給されると、投入されている第1接触器MC11を開放する。
Specifically, the contactor control unit 31 turns on the first contactor MC11 when the operation instruction signal for instructing the start of the power conversion device 1 is supplied in the state where the first contactor MC11 is opened. Further, the switch 12 is switched to the active system. The contactor controller 31 keeps the first contactor MC21 open. Then, the contactor control unit 31 supplies the contactor state signal S1 indicating that the first contactor MC11 is turned on to the switching control unit 32 and the failure determination unit 33.
Moreover, the contactor control part 31 will open the 1st contactor MC11 currently supplied, if the operation instruction|indication signal which instruct|indicates the stop of the power converter device 1 is supplied.
 さらに接触器制御部31は、第1接触器MC11が投入され、切替器12が稼動系に切り替えられている状態で、故障が生じていることを示す故障判別信号S2が供給された場合、第1接触器MC11を開放し、切替器12を待機系に切り替える。次に、接触器制御部31は、第1接触器MC21を投入する。そして、接触器制御部31は、第1接触器MC21が投入された状態であることを示す接触器状態信号S1をスイッチング制御部32と故障判別部33に供給する。 Further, when the first contactor MC11 is turned on and the failure determination signal S2 indicating that a failure has occurred is supplied in the state where the first contactor MC11 is turned on and the switch 12 is switched to the operating system, The 1-contactor MC11 is opened, and the switch 12 is switched to the standby system. Next, the contactor control unit 31 turns on the first contactor MC21. Then, the contactor control unit 31 supplies a contactor state signal S1 indicating that the first contactor MC21 is turned on to the switching control unit 32 and the failure determination unit 33.
 スイッチング制御部32は、接触器状態信号S1に応じて、電力変換部11,21が有するスイッチング素子を制御する。
 詳細には、スイッチング制御部32は、接触器状態信号S1が、第1接触器MC11が投入された状態であることを示す場合、後述するように、投入された第1接触器MC11を有する電力変換ユニット10を構成する電力変換部11が有するスイッチング素子に、スイッチング制御信号を送り、スイッチング素子を制御する。なお、この場合、スイッチング制御部32は、電力変換部21が有するスイッチング素子をオフにするスイッチング制御信号を電力変換部21に送る。
 またスイッチング制御部32は、接触器状態信号S1が、第1接触器MC21が投入された状態であることを示す場合、後述するように、電力変換部21が有するスイッチング素子に、スイッチング制御信号を送り、スイッチング素子を制御する。なお、この場合、スイッチング制御部32は、電力変換部11が有するスイッチング素子をオフにするスイッチング制御信号を電力変換部11に送る。
The switching control unit 32 controls the switching elements included in the power conversion units 11 and 21 according to the contactor state signal S1.
Specifically, when the contactor state signal S1 indicates that the first contactor MC11 is turned on, the switching control unit 32, as will be described later, the power having the turned-on first contactor MC11. A switching control signal is sent to the switching element included in the power converter 11 that constitutes the conversion unit 10 to control the switching element. In this case, the switching control unit 32 sends to the power conversion unit 21 a switching control signal that turns off the switching element included in the power conversion unit 21.
When the contactor state signal S1 indicates that the first contactor MC21 is turned on, the switching control unit 32 sends the switching control signal to the switching element included in the power conversion unit 21 as described later. Send and control switching elements. In this case, the switching control unit 32 sends to the power conversion unit 11 a switching control signal that turns off the switching element included in the power conversion unit 11.
 またスイッチング制御部32には、後述する故障判別部33から、電力変換ユニット10,20の故障の有無を示す故障判別信号S2が供給される。
 スイッチング制御部32は、第1接触器MC11が投入された状態であることを示す接触器状態信号S1が供給されているときに、故障が生じていることを示す故障判別信号S2が供給されると、電力変換部11が有するスイッチング素子をオフにするスイッチング制御信号を電力変換部11に送る。
 またスイッチング制御部32は、第1接触器MC21が投入された状態であることを示す接触器状態信号S1が供給されているときに、故障が生じていることを示す故障判別信号S2が供給されると、電力変換部21が有するスイッチング素子をオフにするスイッチング制御信号を電力変換部21に送る。
Further, the switching control unit 32 is supplied with a failure determination signal S2 indicating the presence/absence of a failure of the power conversion units 10 and 20 from a failure determination unit 33 described later.
The switching control unit 32 is supplied with a failure determination signal S2 indicating that a failure has occurred while the contactor status signal S1 indicating that the first contactor MC11 is in the supplied state is supplied. Then, a switching control signal for turning off the switching element included in the power conversion unit 11 is sent to the power conversion unit 11.
Further, the switching control unit 32 is supplied with the failure determination signal S2 indicating that a failure has occurred when the contactor status signal S1 indicating that the first contactor MC21 is in the supplied state is supplied. Then, the switching control signal for turning off the switching element included in the power conversion unit 21 is sent to the power conversion unit 21.
 故障判別部33には、接触器制御部31から接触器状態信号S1が供給される。故障判別部33は、第1接触器MC11または第1接触器MC21が投入された状態であることを示す接触器状態信号S1を取得すると、電力変換ユニット10,20の故障の有無を判別する処理を開始する。故障判別部33は、第1接触器MC11が投入されている場合、電力変換部11へのスイッチング制御信号、電力変換部11が有するスイッチング素子の状態を示すフィードバック信号、電力変換部11の出力電圧または出力電流、ヒューズF1の溶断の有無、電力変換部11の入力電圧または入力電流、負荷7への出力電圧または出力電流等に基づいて、電力変換ユニット10の故障の有無を判別する。同様に、故障判別部33は、第1接触器MC21が投入されている場合、電力変換部21へのスイッチング制御信号、電力変換部21が有するスイッチング素子の状態を示すフィードバック信号、電力変換部21の出力電圧または出力電流、ヒューズF2の溶断の有無、電力変換部21の入力電圧または入力電流、負荷7への出力電圧または出力電流等に基づいて、電力変換ユニット20の故障の有無を判別する。 The contactor status signal S1 is supplied from the contactor control unit 31 to the failure determination unit 33. When the failure determination unit 33 acquires the contactor status signal S1 indicating that the first contactor MC11 or the first contactor MC21 is turned on, the failure determination unit 33 determines whether there is a failure in the power conversion units 10 and 20. To start. The failure determination unit 33, when the first contactor MC11 is turned on, a switching control signal to the power conversion unit 11, a feedback signal indicating the state of a switching element included in the power conversion unit 11, and an output voltage of the power conversion unit 11. Alternatively, the presence/absence of a failure in the power conversion unit 10 is determined based on the output current, the presence/absence of blown fuse F1, the input voltage/current of the power converter 11, the output voltage/current of the load 7, and the like. Similarly, the failure determination unit 33, when the first contactor MC21 is turned on, the switching control signal to the power conversion unit 21, the feedback signal indicating the state of the switching element included in the power conversion unit 21, and the power conversion unit 21. Of the power conversion unit 20 based on the output voltage or output current of the fuse F2, whether the fuse F2 is blown, the input voltage or current of the power converter 21, the output voltage or current of the load 7, and the like. ..
 故障判別部33が行う電力変換ユニット10,20の故障の有無を判別する処理について、スイッチング制御信号とフィードバック信号を用いて故障の有無を判別する処理を一例として説明する。
 故障判別部33は、スイッチング制御部32から、電力変換部11,21へのスイッチング制御信号を取得する。また故障判別部33は、電力変換部11,21からスイッチング素子のオンオフの状態を示すフィードバック信号を取得する。そして、故障判別部33は、スイッチング制御信号が示すスイッチング素子のオンオフの状態と、フィードバック信号が示すスイッチング素子のオンオフの状態が一致するか否かを判別する。スイッチング制御信号が示すスイッチング素子のオンオフの状態と、フィードバック信号が示すスイッチング素子のオンオフの状態が一致しない場合、電力変換ユニット10,20の故障が生じているとみなすことができる。故障判別部33は、スイッチング制御信号が示すスイッチング素子のオンオフの状態と、フィードバック信号が示すスイッチング素子のオンオフの状態が一致しないと判別した場合、Highレベルの故障判別信号S2を接触器制御部31に供給する。
The process of determining the presence/absence of a failure in the power conversion units 10 and 20 performed by the failure determination unit 33 will be described by taking the process of determining the presence/absence of a failure using a switching control signal and a feedback signal as an example.
The failure determination unit 33 acquires the switching control signal to the power conversion units 11 and 21 from the switching control unit 32. Further, the failure determination unit 33 acquires a feedback signal indicating the on/off state of the switching element from the power conversion units 11 and 21. Then, the failure determination unit 33 determines whether or not the on/off state of the switching element indicated by the switching control signal and the on/off state of the switching element indicated by the feedback signal match. When the on/off state of the switching element indicated by the switching control signal and the on/off state of the switching element indicated by the feedback signal do not match, it can be considered that the power conversion units 10 and 20 have failed. When the failure determination unit 33 determines that the ON/OFF state of the switching element indicated by the switching control signal does not match the ON/OFF state of the switching element indicated by the feedback signal, the failure determination signal S2 of High level is output to the contactor control unit 31. Supply to.
 次に、上記構成を有する電力変換装置1の動作について説明する。まず電力変換ユニット10,20の故障が生じていない場合を例にして説明する。
 電気鉄道車両の運転開始時に、集電装置4の一例であるパンタグラフを上昇させる上昇スイッチの操作が行われて、集電装置4が架線3に接触すると、集電装置4は、変電所から電力の供給を受ける。またパンタグラフ上昇スイッチの操作に連動して、運転台から、電力変換装置1の始動を指示する動作指示信号が接触器制御部31に供給される。接触器制御部31は、電力変換装置1の始動を指示する動作指示信号が供給されると、切替器12を稼動系に切り替えてから、第1接触器MC11を投入する。
Next, the operation of the power conversion device 1 having the above configuration will be described. First, a case where no failure occurs in the power conversion units 10 and 20 will be described as an example.
When the operation of the raising switch for raising the pantograph, which is an example of the current collector 4, is performed at the start of operation of the electric railway vehicle, and the current collector 4 comes into contact with the overhead line 3, the current collector 4 receives power from the substation. To be supplied. Further, in conjunction with the operation of the pantograph raising switch, an operation instruction signal for instructing the start of the power conversion device 1 is supplied to the contactor control unit 31 from the driver's cab. When the operation instruction signal for instructing the start of the power conversion device 1 is supplied, the contactor control unit 31 switches the switcher 12 to the operating system and then turns on the first contactor MC11.
 上述のように第1接触器MC11が投入されると、集電装置4が架線3を介して変電所から取得した電力が、ヒューズF1、第1接触器MC11、およびフィルタリアクトルFL1を介して、フィルタコンデンサFC1に供給され、フィルタコンデンサFC1の充電が開始される。 When the first contactor MC11 is turned on as described above, the electric power obtained by the current collector 4 from the substation via the overhead wire 3 passes through the fuse F1, the first contactor MC11, and the filter reactor FL1. The filter capacitor FC1 is supplied, and charging of the filter capacitor FC1 is started.
 また上述のように接触器制御部31が切替器12を稼動系に切り替えると、電力変換部11に接続された切替器12の各一次端子と対応する各二次端子は互いに接続されて、電力変換部11と負荷7は、互いに電気的に接続される。なお切替器12を稼動系に切り替えるということは、切替器12が稼動系に切り替えられた状態を維持することを含むものとする。 When the contactor control unit 31 switches the switching unit 12 to the operating system as described above, the primary terminals of the switching unit 12 connected to the power conversion unit 11 and the corresponding secondary terminals of the switching unit 12 are connected to each other, and the power is reduced. The converter 11 and the load 7 are electrically connected to each other. Note that switching the switch 12 to the active system includes maintaining the state where the switch 12 is switched to the active system.
 その後、フィルタコンデンサFC1の充電が完了し、フィルタコンデンサFC1の端子間電圧が閾値電圧以上となると、スイッチング制御部32は、電力変換部11が一次端子を介して供給された直流電力を、負荷7に供給するための三相交流電力に変換するように、電力変換部11のスイッチング素子を制御する。なお三相交流電力が、一定電圧、かつ、一定周波数に保たれるように、スイッチング素子が制御される。 After that, when the charging of the filter capacitor FC1 is completed and the terminal voltage of the filter capacitor FC1 becomes equal to or higher than the threshold voltage, the switching control unit 32 causes the power conversion unit 11 to supply the DC power supplied via the primary terminal to the load 7 The switching element of the power conversion unit 11 is controlled so as to convert into three-phase AC power to be supplied to. The switching element is controlled so that the three-phase AC power is maintained at a constant voltage and a constant frequency.
 詳細には、スイッチング制御部32は、電力変換部11の二次端子に接続された電流測定部から、各相の電流値を取得する。またスイッチング制御部32は、電力変換部11の二次端子に接続された図示しない電圧測定部から、電力変換部11の出力電圧を取得する。そして、スイッチング制御部32は、出力電圧が一定電圧、かつ、一定周波数に維持されるように、電力変換部11のスイッチング素子にスイッチング制御信号を送って、スイッチング素子を制御する。 Specifically, the switching control unit 32 acquires the current value of each phase from the current measuring unit connected to the secondary terminal of the power conversion unit 11. Further, the switching control unit 32 acquires the output voltage of the power conversion unit 11 from a voltage measurement unit (not shown) connected to the secondary terminal of the power conversion unit 11. Then, the switching control unit 32 sends a switching control signal to the switching element of the power conversion unit 11 to control the switching element so that the output voltage is maintained at a constant voltage and a constant frequency.
 次に、負荷7に電力を供給するため、上述のようにスイッチング制御部32が電力変換部11を制御している間に、電力変換ユニット10の故障が生じた場合を例にして、稼動系から待機系に切り替える電力変換装置1の動作について説明する。
 故障判別部33は、第1接触器MC11が投入された状態であることを示す接触器状態信号S1を取得すると、電力変換ユニット10の故障の有無を判別する処理を開始する。詳細には、故障判別部33は、スイッチング制御信号が示すスイッチング素子のオンオフの状態と、フィードバック信号が示すスイッチング素子のオンオフの状態が一致するか否かを判別する。スイッチング制御信号が示すスイッチング素子のオンオフの状態とフィードバック信号が示すスイッチング素子のオンオフの状態が一致しない場合、電力変換ユニット10の故障が生じているとみなすことができる。故障判別部33は、スイッチング制御信号が示すスイッチング素子のオンオフの状態と、フィードバック信号が示すスイッチング素子のオンオフの状態が一致しないと判別した場合、Highレベルの故障判別信号S2を接触器制御部31とスイッチング制御部32に供給する。
Next, in order to supply electric power to the load 7, while the switching control unit 32 controls the power conversion unit 11 as described above, a case where a failure occurs in the power conversion unit 10 is taken as an example and the operating system The operation of the power conversion device 1 that switches from the standby system to the standby system will be described.
When the failure determination unit 33 acquires the contactor status signal S1 indicating that the first contactor MC11 is turned on, the failure determination unit 33 starts the process of determining whether or not there is a failure in the power conversion unit 10. Specifically, the failure determination unit 33 determines whether or not the on/off state of the switching element indicated by the switching control signal and the on/off state of the switching element indicated by the feedback signal match. When the ON/OFF state of the switching element indicated by the switching control signal does not match the ON/OFF state of the switching element indicated by the feedback signal, it can be considered that the power conversion unit 10 has a failure. When the failure determination unit 33 determines that the ON/OFF state of the switching element indicated by the switching control signal does not match the ON/OFF state of the switching element indicated by the feedback signal, the failure determination signal S2 of High level is output to the contactor control unit 31. And the switching controller 32.
 スイッチング制御部32は、第1接触器MC11が投入された状態であることを示す接触器状態信号S1が供給されている場合に、Highレベルの故障判別信号S2が供給されると、電力変換部11が有するスイッチング素子をオフにするスイッチング制御信号を電力変換部11に送る。この結果、電力変換部11が有するスイッチング素子はオフになり、電力変換部11は停止する。 When the switching controller 32 is supplied with the contactor state signal S1 indicating that the first contactor MC11 is turned on and the high-level failure determination signal S2 is supplied, the power converter A switching control signal for turning off the switching element included in 11 is sent to the power conversion unit 11. As a result, the switching element included in the power conversion unit 11 is turned off, and the power conversion unit 11 stops.
 接触器制御部31は、第1接触器MC11が投入されている場合に、Highレベルの故障判別信号S2が供給されると、第1接触器MC11を開放する。その後、接触器制御部31は、切替器12を待機系に切り替えてから、第1接触器MC21を投入する。そして、接触器制御部31は、第1接触器MC21が投入された状態であることを示す接触器状態信号S1をスイッチング制御部32と故障判別部33に供給する。 The contactor control unit 31 opens the first contactor MC11 when the High-level failure determination signal S2 is supplied while the first contactor MC11 is turned on. After that, the contactor control unit 31 switches the switching device 12 to the standby system and then turns on the first contactor MC21. Then, the contactor control unit 31 supplies a contactor state signal S1 indicating that the first contactor MC21 is turned on to the switching control unit 32 and the failure determination unit 33.
 上述のように接触器制御部31が切替器12を待機系に切り替えると、切替器12の各一次端子と対応する電力変換部21の各二次端子は互いに接続され、電力変換部21と負荷7は互いに電気的に接続される。なお切替器12を待機系に切り替えるということは、切替器12が待機系に切り替えられた状態を維持することを含むものとする。 When the contactor control unit 31 switches the switching device 12 to the standby system as described above, each primary terminal of the switching device 12 and each secondary terminal of the power conversion unit 21 corresponding to each other are connected to each other, and the power conversion unit 21 and the load are connected. 7 are electrically connected to each other. In addition, switching the switch 12 to the standby system includes maintaining the state where the switch 12 is switched to the standby system.
 スイッチング制御部32は、第1接触器MC21が投入された状態であることを示す接触器状態信号S1が供給されると、電力変換部21が一次端子を介して供給された直流電力を、負荷7に供給するための三相交流電力に変換するように、電力変換部21のスイッチング素子を制御する。この結果、電力変換ユニット10の故障が生じても、電力変換ユニット20を動作させることで、負荷7に電力が供給され続ける。 When the contactor state signal S1 indicating that the first contactor MC21 is turned on is supplied, the switching control unit 32 causes the power conversion unit 21 to apply the DC power supplied via the primary terminal to the load. The switching element of the power conversion unit 21 is controlled so as to convert the three-phase AC power to be supplied to the power converter 7. As a result, even if a failure occurs in the power conversion unit 10, by operating the power conversion unit 20, power is continuously supplied to the load 7.
 なお上述のように電力変換ユニット10の故障が生じて、集電装置4から供給される直流電流が閾値以上となると、ヒューズF1は溶断することで、電路を遮断する。この結果、電力変換部11は集電装置4から電気的に切り離される。 When the power conversion unit 10 fails as described above and the DC current supplied from the current collector 4 becomes equal to or higher than the threshold value, the fuse F1 is blown to cut off the electric path. As a result, the power converter 11 is electrically disconnected from the current collector 4.
 以上説明したとおり、本発明の実施の形態に係る電力変換装置1は、それぞれが供給された直流電力を交流電力に変換して、負荷7に交流電力を供給する電力変換ユニット10,20を備える。電力変換ユニット10,20を備えることで、電力変換ユニット10,20の一方の故障が生じても、他方を動作させることで、負荷7への電力の供給を継続することができる。
 また電力変換ユニット10,20のそれぞれは、過電流が生じた場合に電路を遮断するために、ヒューズF1,F2を備える。ヒューズF1,F2は、遮断器と比べてサイズが小さいため、遮断器を備える従来の電力変換装置よりも、電力変換装置1は小型化が可能である。また遮断器はサイズが大きいため、電力変換装置の他の構成要素と同一の筐体に収容することが難しいが、ヒューズF1,F2は、電力変換装置1の他の構成要素と同一の筐体に収容することが可能である。
As described above, the power conversion device 1 according to the embodiment of the present invention includes the power conversion units 10 and 20 that convert the supplied DC power into AC power and supply the load 7 with AC power. .. By including the power conversion units 10 and 20, even if one of the power conversion units 10 and 20 fails, by operating the other, the power supply to the load 7 can be continued.
In addition, each of the power conversion units 10 and 20 includes fuses F1 and F2 in order to cut off the electric path when an overcurrent occurs. Since the fuses F1 and F2 are smaller in size than the circuit breaker, the power converter 1 can be made smaller than the conventional power converter having the circuit breaker. Further, since the breaker is large in size, it is difficult to house it in the same housing as the other constituent elements of the power converter, but the fuses F1 and F2 are the same housing as the other constituent elements of the power converter 1. It is possible to accommodate
 (実施の形態2)
 電力変換ユニット10,20が集電装置4に共通に接続され、負荷7に共通に接続されている、換言すれば、電力変換装置1が待機二重系の電力変換装置である場合、フィルタリアクトルFL1,FL2が鉄心を共有することで、電力変換装置1をさらに小型化することが可能である。フィルタリアクトルFL1,FL2が鉄心を共有する構成について実施の形態2として説明する。
(Embodiment 2)
The power conversion units 10 and 20 are commonly connected to the current collector 4 and are commonly connected to the load 7. In other words, when the power converter 1 is a standby dual power converter, the filter reactor. Since the FL1 and the FL2 share the iron core, the power conversion device 1 can be further downsized. A configuration in which filter reactors FL1 and FL2 share an iron core will be described as a second embodiment.
 実施の形態2に係る電力変換装置1の基本構成と動作は、実施の形態1と同様である。実施の形態1と異なるフィルタリアクトルFL1,FL2の構造について図2を用いて説明する。
 フィルタリアクトルFL1,FL2は、鉄心40を共有している。
 フィルタリアクトルFL1は、鉄心40に巻かれたコイル41を備える。コイル41の一端41aは、第1接触器MC11の他端に接続される。コイル41の他端41bは、フィルタコンデンサFC1の一端と、電力変換部11の一次端子に接続される。
 フィルタリアクトルFL2は、鉄心40に巻かれたコイル42を備える。コイル42の一端42aは、第1接触器MC21の他端に接続される。コイル42の他端42bは、フィルタコンデンサFC2の一端と、電力変換部21の一次端子に接続される。
The basic configuration and operation of the power conversion device 1 according to the second embodiment are similar to those of the first embodiment. Structures of filter reactors FL1 and FL2 different from those of the first embodiment will be described with reference to FIG.
The filter reactors FL1 and FL2 share the iron core 40.
The filter reactor FL1 includes a coil 41 wound around an iron core 40. One end 41a of the coil 41 is connected to the other end of the first contactor MC11. The other end 41b of the coil 41 is connected to one end of the filter capacitor FC1 and the primary terminal of the power conversion unit 11.
The filter reactor FL2 includes a coil 42 wound around an iron core 40. One end 42a of the coil 42 is connected to the other end of the first contactor MC21. The other end 42b of the coil 42 is connected to one end of the filter capacitor FC2 and the primary terminal of the power conversion unit 21.
 以上説明したとおり、本発明の実施の形態2に係る電力変換装置によれば、フィルタリアクトルFL1,FL2は、鉄心40を共有している。鉄心を有さないフィルタリアクトルと比べて、鉄心40を有するフィルタリアクトルFL1,FL2は小型化が可能である。またフィルタリアクトルFL1,FL2が鉄心40を共有しているため、それぞれが個別の鉄心を有する複数のフィルタリアクトルを備える電力変換装置と比べて、実施の形態2に係る電力変換装置1は、小型化が可能である。
 待機二重系の電力変換装置1では、コイル41,42のいずれかにのみ電流が流れるため、鉄心40を、コイル41,42の一方で構成される磁気回路を考慮して設計すればよい。その結果、コイル41,42のそれぞれが個別の鉄心を有する場合の鉄心と同じ寸法の鉄心を、共有される鉄心40として採用することができる。
As described above, according to the power conversion device according to the second embodiment of the present invention, filter reactors FL1, FL2 share iron core 40. The filter reactors FL1 and FL2 having the iron core 40 can be downsized as compared with the filter reactor having no iron core. Further, since the filter reactors FL1 and FL2 share the iron core 40, the power conversion device 1 according to the second embodiment has a smaller size than the power conversion device including a plurality of filter reactors each having an individual iron core. Is possible.
In the standby dual system power conversion device 1, current flows only through either of the coils 41, 42, so the iron core 40 may be designed in consideration of the magnetic circuit configured by one of the coils 41, 42. As a result, an iron core having the same size as the iron core in the case where each of the coils 41 and 42 has an individual iron core can be adopted as the shared iron core 40.
 本発明の実施の形態は、上述の例に限られない。
 上述の回路構成は一例であり、電力変換装置の変形例を図3に示す。図3に示す電力変換装置2は、第1接触器MC11に並列に接続された、第2接触器MC12と抵抗R1の直列回路をさらに備える。また電力変換装置2は、第1接触器MC21に並列に接続された、第2接触器MC22と抵抗R2の直列回路をさらに備える。
The embodiment of the present invention is not limited to the above example.
The circuit configuration described above is an example, and a modified example of the power conversion device is shown in FIG. The power converter 2 shown in FIG. 3 further includes a series circuit of a second contactor MC12 and a resistor R1 connected in parallel to the first contactor MC11. Further, the power conversion device 2 further includes a series circuit of the second contactor MC22 and the resistor R2 connected in parallel to the first contactor MC21.
 電力変換装置2が有する接触器制御部31は、第1接触器MC11を投入する前に、第2接触器MC12を投入し、フィルタコンデンサFC1が充電されてから、第1接触器MC11を投入する。第2接触器MC12に直列に抵抗R1が直列に接続されているため、第2接触器MC12を投入する際に突入電流がフィルタコンデンサFC1に流れることが防止される。
 同様に、接触器制御部31は、第1接触器MC21を投入する前に、第2接触器MC22を投入し、フィルタコンデンサFC2が充電されてから、第1接触器MC21を投入する。第2接触器MC22に直列に抵抗R2が直列に接続されているため、第2接触器MC22を投入する際に突入電流がフィルタコンデンサFC2に流れることが防止される。
The contactor control unit 31 included in the power conversion device 2 turns on the second contactor MC12 before turning on the first contactor MC11, and turns on the first contactor MC11 after the filter capacitor FC1 is charged. .. Since the resistor R1 is connected in series with the second contactor MC12, an inrush current is prevented from flowing to the filter capacitor FC1 when the second contactor MC12 is turned on.
Similarly, the contactor control unit 31 turns on the second contactor MC22 before turning on the first contactor MC21, and turns on the first contactor MC21 after the filter capacitor FC2 is charged. Since the resistor R2 is connected in series to the second contactor MC22, an inrush current is prevented from flowing to the filter capacitor FC2 when the second contactor MC22 is turned on.
 電力変換装置1,2は、アノードがフィルタリアクトルFL1の他端に接続され、カソードがフィルタコンデンサFC1の一端に接続される逆流防止用のダイオードと、アノードがフィルタリアクトルFL2の他端に接続され、カソードがフィルタコンデンサFC2の一端に接続される逆流防止用のダイオードとをさらに備えてもよい。 In the power converters 1 and 2, the anode is connected to the other end of the filter reactor FL1, the cathode is connected to one end of the filter capacitor FC1, and the backflow prevention diode is connected to the other end of the filter reactor FL2. A backflow prevention diode whose cathode is connected to one end of the filter capacitor FC2 may be further provided.
 また電力変換装置1,2は、アノードがフィルタリアクトルFL1の他端に接続され、カソードがフィルタコンデンサFC1の一端に接続されるサイリスタと、アノードがフィルタリアクトルFL2の他端に接続され、カソードがフィルタコンデンサFC2の一端に接続されるサイリスタと、それぞれが対応するサイリスタに並列に接続される複数の抵抗と、をさらに備えてもよい。 In the power converters 1 and 2, the anode is connected to the other end of the filter reactor FL1, the cathode is connected to one end of the filter capacitor FC1, the anode is connected to the other end of the filter reactor FL2, and the cathode is the filter. It may further include a thyristor connected to one end of the capacitor FC2, and a plurality of resistors connected in parallel to the corresponding thyristors.
 電力変換ユニットの数は、2つに限られず、2以上の任意の数である。例えば、電力変換装置1が3つの電力変換ユニットと、各一次端子が3つの電力変換ユニットに接続され、各二次端子が変圧器5に接続された切替器と、を備える場合、接触器制御部31は、電力変換装置1の始動を指示する動作指示信号が供給されると、稼動系に設定された電力変換ユニットが有する第1接触器を投入し、待機系に設定された他の2つの電力変換ユニットが有する第1接触器を開放する。また接触器制御部31は、切替器を稼動系に切り替える。 -The number of power conversion units is not limited to two, but any number greater than or equal to two. For example, when the power conversion device 1 includes three power conversion units and a switching device in which each primary terminal is connected to three power conversion units and each secondary terminal is connected to the transformer 5, contactor control When the operation instruction signal for instructing the start-up of the power conversion device 1 is supplied, the unit 31 turns on the first contactor included in the power conversion unit set to the operating system, and the other two set to the standby system. The first contactor of each power conversion unit is opened. Further, the contactor control unit 31 switches the switching device to the operating system.
 また電力変換ユニット10,20の切り替えは、故障時に限られない。一例として、定められた周期で、動作する電力変換ユニット10,20を切り替えてもよい。具体的には、接触器制御部31は、定められた周期で、駆動系または待機系への切り替えを繰り返し行ってもよい。これにより、電力変換ユニット10,20の使用時間が同程度に維持され、電力変換ユニット10,20の一方が劣化することが抑制される。なお、この場合、電力変換装置1,2は、故障判別部33を備えなくてもよい。 Also, switching between the power conversion units 10 and 20 is not limited to a failure. As an example, the power conversion units 10 and 20 which operate may be switched at a predetermined cycle. Specifically, the contactor control unit 31 may repeatedly switch to the drive system or the standby system at a predetermined cycle. Thereby, the usage time of the power conversion units 10 and 20 is maintained at the same level, and deterioration of one of the power conversion units 10 and 20 is suppressed. In this case, the power converters 1 and 2 do not have to include the failure determination unit 33.
 電力変換ユニット10,20はそれぞれ、独立した負荷7に接続されてもよい。この場合、電力変換装置1は切替器12を備えずに、電力変換部11,21のそれぞれの二次端子は、独立した変圧器5と交流フィルタコンデンサ6とを介して、独立した負荷7に接続されればよい。 The power conversion units 10 and 20 may each be connected to an independent load 7. In this case, the power conversion device 1 does not include the switch 12, and the respective secondary terminals of the power conversion units 11 and 21 are connected to the independent load 7 via the independent transformer 5 and the AC filter capacitor 6. Just connect.
 電力変換装置1,2は、集電靴である集電装置4が第三軌条から電力を取得する電気鉄道車両に搭載されてもよい。
 また電力変換装置1,2は、切替器12の代わりに接触器を備えてもよい。
The power converters 1 and 2 may be mounted on an electric railway vehicle in which the current collector 4 that is a current collecting shoe acquires power from the third rail.
Further, the power conversion devices 1 and 2 may include a contactor instead of the switching device 12.
 電力変換ユニット10,20のいずれを稼動系とするかは任意である。例えば、電力変換ユニット20を稼動系とし、電力変換ユニット10を待機系としてもよい。この場合、接触器制御部31は、電力変換装置1の始動を指示する動作指示信号が供給されると、第1接触器MC21を投入すればよい。そして、接触器制御部31は、切替器12を稼動系に切り替えればよい。なお接触器制御部31は、第1接触器MC11を開放したままにすればよい。 It is arbitrary which of the power conversion units 10 and 20 is used as an active system. For example, the power conversion unit 20 may be an active system and the power conversion unit 10 may be a standby system. In this case, the contactor control unit 31 may turn on the first contactor MC21 when the operation instruction signal for instructing the start of the power conversion device 1 is supplied. Then, the contactor control unit 31 may switch the switch 12 to the operating system. The contactor control unit 31 may leave the first contactor MC11 open.
 電力変換装置1の起動のトリガは動作指示信号に限られない。一例として、接触器制御部31は、集電装置4が架線3に接触した時に、第1接触器MC11を投入してもよい。具体的には、接触器制御部31は、架線3の電圧に相当する第1接触器MC11の一端とフィルタコンデンサFC1の他端の間の電圧を測定する電圧測定部から、測定した電圧値を取得し、電圧値が閾値電圧以上となれば、第1接触器MC11と切替器12を投入してもよい。この閾値電圧は、架線3の電圧が取り得る値の最小値を考慮して個別に設定される。 The trigger for starting the power conversion device 1 is not limited to the operation instruction signal. As an example, the contactor control unit 31 may turn on the first contactor MC11 when the current collector 4 contacts the overhead wire 3. Specifically, the contactor control unit 31 outputs the measured voltage value from the voltage measurement unit that measures the voltage between one end of the first contactor MC11 and the other end of the filter capacitor FC1 corresponding to the voltage of the overhead wire 3. If it is acquired and the voltage value becomes equal to or higher than the threshold voltage, the first contactor MC11 and the switching device 12 may be turned on. This threshold voltage is individually set in consideration of the minimum value of the voltage of the overhead wire 3.
 電力変換部11,21は、スイッチング素子を有し、スイッチング素子のオンオフの動作によって、供給された直流電力を、負荷7に供給するための電力に変換する構成であれば、任意の構成を有する。電力変換部11,21は、電動機に電力を供給するVVVF(Variable Voltage Variable Frequency:可変電圧可変周波数)インバータでもよいし、DC(Direct Current)-DCコンバータでもよい。電力変換部11,21がDC-DCコンバータである場合、DC-DCコンバータの二次端子が負荷7に接続され、二次端子の間にフィルタコンデンサが設けられればよい。 Each of the power conversion units 11 and 21 has a switching element, and has any configuration as long as it is a configuration that converts the supplied DC power into power for supplying to the load 7 by the ON/OFF operation of the switching element. .. The power converters 11 and 21 may be VVVF (Variable Voltage Variable Frequency) inverters that supply power to the electric motor, or DC (Direct Current)-DC converters. When the power converters 11 and 21 are DC-DC converters, the secondary terminal of the DC-DC converter may be connected to the load 7, and a filter capacitor may be provided between the secondary terminals.
 故障判別部33の故障の判別方法は、上述の例に限られず、電力変換ユニット10,20の故障の有無を判別することができる方法であれば、任意である。
 一例として、故障判別部33は、ヒューズF1,F2の溶断の有無に基づいて、電力変換ユニット10,20の故障の有無を判別してもよい。詳細には、故障判別部33は、ヒューズF1,F2に搭載されている溶断検知スイッチから、溶断の有無を示す信号を取得し、この信号に基づいてヒューズF1,F2の溶断の有無を判別してもよい。そして、故障判別部33は、ヒューズF1,F2の溶断が生じたと判別した場合に、Highレベルの故障判別信号S2を接触器制御部31とスイッチング制御部32に供給すればよい。後続の処理は、上述の実施の形態と同様であるので、過電流が生じてヒューズF1が溶断した場合は、稼動系の電力変換ユニット10が停止され、待機系の電力変換ユニット20が動作する。なお溶断したヒューズF1を交換すると、電力変換ユニット10による電力変換処理が再び可能となる。
 他の一例として、故障判別部33は、電力変換部11,21を構成する半導体の冷却器温度を監視し、温度が規定値以上である場合に、電力変換部11,21の故障が生じたと判別してもよい。
The method of determining the failure of the failure determination unit 33 is not limited to the above example, and any method can be used as long as it can determine whether or not there is a failure of the power conversion units 10 and 20.
As an example, the failure determination unit 33 may determine the presence/absence of a failure in the power conversion units 10, 20 based on the presence/absence of blown fuses F1, F2. Specifically, the failure determination unit 33 acquires a signal indicating whether or not the fuses are blown from the blowout detection switches mounted on the fuses F1 and F2, and determines whether or not the fuses F1 and F2 are blown based on this signal. May be. Then, when it is determined that the fuses F1 and F2 are blown, the failure determination unit 33 may supply the High level failure determination signal S2 to the contactor control unit 31 and the switching control unit 32. Since the subsequent processing is the same as that of the above-described embodiment, when the overcurrent occurs and the fuse F1 is blown, the power conversion unit 10 of the active system is stopped and the power conversion unit 20 of the standby system operates. .. When the blown fuse F1 is replaced, the power conversion process by the power conversion unit 10 becomes possible again.
As another example, the failure determination unit 33 monitors the cooler temperature of the semiconductors forming the power conversion units 11 and 21, and when the temperature is equal to or higher than a specified value, it is determined that the power conversion units 11 and 21 have failed. You may decide.
 また他の一例として、故障判別部33は、各相電流の振幅が第1振幅以下であるか、または、第1振幅より大きい第2振幅以上であるか否かを判別してもよい。第1振幅は、例えば、電力変換ユニット10,20の故障が生じていない場合の、各相電流の振幅の1/2である。また第2振幅は、例えば、電力変換ユニット10,20の故障が生じていない場合の、各相電流の振幅の1.5倍である。
 また故障判別部33は、フィルタコンデンサFC1,FC2の端子間電圧の値が、第1電圧以下であるか、または、第1電圧より大きい第2電圧以上であるか否かを判別してもよい。第1電圧は、例えば、電力変換ユニット10,20の故障が生じていない場合の、フィルタコンデンサFC1,FC2の端子間電圧の値の1/2である。また第2振幅は、例えば、電力変換ユニット10,20の故障が生じていない場合の、フィルタコンデンサFC1,FC2の端子間電圧の値の1.5倍である。
Further, as another example, the failure determination unit 33 may determine whether the amplitude of each phase current is equal to or smaller than the first amplitude or equal to or larger than the second amplitude larger than the first amplitude. The first amplitude is, for example, ½ of the amplitude of each phase current when there is no failure in the power conversion units 10 and 20. Further, the second amplitude is, for example, 1.5 times the amplitude of each phase current when no failure occurs in the power conversion units 10 and 20.
Further, the failure determination unit 33 may determine whether the value of the terminal voltage of the filter capacitors FC1 and FC2 is equal to or lower than the first voltage or equal to or higher than the second voltage higher than the first voltage. .. The first voltage is, for example, half the value of the voltage between the terminals of the filter capacitors FC1 and FC2 when the power conversion units 10 and 20 have not failed. The second amplitude is, for example, 1.5 times the value of the voltage between the terminals of the filter capacitors FC1 and FC2 when the power conversion units 10 and 20 have not failed.
 上述の実施の形態では、接触器制御部31、スイッチング制御部32、および故障判別部33はそれぞれ、電力変換ユニット10,20から独立して設けられているが、電力変換ユニット10,20がそれぞれ、接触器制御部31、スイッチング制御部32、および故障判別部33を備えてもよい。この場合、電力変換ユニット10が備える接触器制御部31は、第1接触器MC11を制御する。また電力変換ユニット10が備えるスイッチング制御部32は、電力変換部11が有するスイッチング素子を制御する。また電力変換ユニット10が備える故障判別部33は、電力変換ユニット10の故障の有無を判別する。同様に、電力変換ユニット20が備える接触器制御部31は第1接触器MC21を制御する。また電力変換ユニット20が備えるスイッチング制御部32は、電力変換部21が有するスイッチング素子を制御する。また電力変換ユニット20が備える故障判別部33は、電力変換ユニット20の故障の有無を判別する。 In the above-described embodiment, the contactor control unit 31, the switching control unit 32, and the failure determination unit 33 are provided independently of the power conversion units 10 and 20, but the power conversion units 10 and 20 are respectively provided. The contactor control unit 31, the switching control unit 32, and the failure determination unit 33 may be provided. In this case, the contactor control unit 31 included in the power conversion unit 10 controls the first contactor MC11. Further, the switching control unit 32 included in the power conversion unit 10 controls the switching element included in the power conversion unit 11. Further, the failure determination unit 33 included in the power conversion unit 10 determines whether or not there is a failure in the power conversion unit 10. Similarly, the contactor controller 31 included in the power conversion unit 20 controls the first contactor MC21. Further, the switching control unit 32 included in the power conversion unit 20 controls the switching element included in the power conversion unit 21. Further, the failure determination unit 33 included in the power conversion unit 20 determines whether or not there is a failure in the power conversion unit 20.
 負荷7は、鉄道車両に搭載される任意の電気機器および電子機器である。一例として、負荷7は、照明機器、空調機器等である。 The load 7 is an arbitrary electric device or electronic device mounted on a rail car. As an example, the load 7 is a lighting device, an air conditioner, or the like.
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。 The present invention allows various embodiments and modifications without departing from the broad spirit and scope of the present invention. Further, the above-described embodiments are for explaining the present invention and do not limit the scope of the present invention. That is, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications made within the scope of the claims and the scope of the invention equivalent thereto are considered to be within the scope of the present invention.
 1,2 電力変換装置、3 架線、4 集電装置、5 変圧器、6 交流フィルタコンデンサ、7 負荷、10,20 電力変換ユニット、11,21 電力変換部、12 切替器、31 接触器制御部、32 スイッチング制御部、33 故障判別部、40 鉄心、41,42 コイル、41a,42a 一端、41b,42b 他端、F1,F2 ヒューズ、FC1,FC2 フィルタコンデンサ、FL1,FL2 フィルタリアクトル、MC11,MC21 第1接触器、MC12,MC22 第2接触器、R1,R2 抵抗、S1 接触器状態信号、S2 故障判別信号。 1, 2 power converters, 3 overhead lines, 4 current collectors, 5 transformers, 6 AC filter capacitors, 7 loads, 10 and 20 power conversion units, 11 and 21 power conversion units, 12 switching units, 31 contactor control units , 32 switching control unit, 33 failure determination unit, 40 iron core, 41, 42 coil, 41a, 42a one end, 41b, 42b other end, F1, F2 fuse, FC1, FC2 filter capacitor, FL1, FL2 filter reactor, MC11, MC21 First contactor, MC12, MC22 second contactor, R1, R2 resistance, S1 contactor status signal, S2 failure determination signal.

Claims (3)

  1.  電源から供給された直流電流が閾値以上になると電路を遮断するヒューズと、前記電源から一次端子を介して供給された直流電力を二次端子に接続された負荷に供給するための電力に変換し、変換した電力を前記二次端子から前記負荷に供給する電力変換部と、前記電力変換部を、前記電源に電気的に接続し、または前記電源から電気的に切り離す第1接触器と、を有し、前記電源に共通に接続される複数の電力変換ユニットと、
     前記複数の電力変換ユニットのそれぞれが有する前記第1接触器を投入し、または開放する接触器制御部と、
     を備え、
     前記ヒューズは、前記直流電流が前記閾値以上になると、溶断して前記電路を遮断することで、前記ヒューズを有する前記電力変換ユニットを構成する前記電力変換部を前記電源から電気的に切り離す、
     電力変換装置。
    When the DC current supplied from the power supply exceeds the threshold value, the fuse that cuts off the electric path and the DC power supplied from the power supply through the primary terminal are converted into power for supplying to the load connected to the secondary terminal. A power converter for supplying the converted power from the secondary terminal to the load, and a first contactor for electrically connecting the power converter to the power source or electrically disconnecting it from the power source. A plurality of power conversion units having a common connection to the power source;
    A contactor controller that turns on or off the first contactor of each of the plurality of power conversion units;
    Equipped with
    When the direct current becomes equal to or higher than the threshold value, the fuse blows off to cut off the electric path, thereby electrically disconnecting the power conversion unit forming the power conversion unit having the fuse from the power source,
    Power converter.
  2.  投入された前記第1接触器を有する前記電力変換ユニットの故障の有無を判別する故障判別部をさらに備え、
     前記接触器制御部は、前記故障判別部で故障していると判別された前記電力変換ユニットが有する前記第1接触器を開放し、他の前記電力変換ユニットが有する投入されていない前記第1接触器を投入する、
     請求項1に記載の電力変換装置。
    Further comprising a failure determination unit that determines whether or not there is a failure in the power conversion unit having the first contactor that has been turned on,
    The contactor control unit opens the first contactor included in the power conversion unit that is determined to have a failure by the failure determination unit, and the first contactor included in another power conversion unit that is not turned on. Throw in the contactor,
    The power conversion device according to claim 1.
  3.  前記複数の電力変換ユニットはそれぞれ、鉄心と前記鉄心に巻かれたコイルとを有し、高調波成分を低減するフィルタリアクトルをさらに備え、
     前記複数の電力変換ユニットは、前記負荷に共通に接続され、
     前記複数の電力変換ユニットのそれぞれが有する前記フィルタリアクトルを構成する前記コイルは、互いに共通の前記鉄心に巻かれる、
     請求項1または2に記載の電力変換装置。
    Each of the plurality of power conversion units has an iron core and a coil wound around the iron core, and further includes a filter reactor for reducing harmonic components,
    The plurality of power conversion units are commonly connected to the load,
    The coils forming the filter reactor included in each of the plurality of power conversion units are wound around the common iron core,
    The power conversion device according to claim 1 or 2.
PCT/JP2019/001605 2019-01-21 2019-01-21 Power conversion device WO2020152733A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/001605 WO2020152733A1 (en) 2019-01-21 2019-01-21 Power conversion device
JP2020567669A JP6952915B2 (en) 2019-01-21 2019-01-21 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/001605 WO2020152733A1 (en) 2019-01-21 2019-01-21 Power conversion device

Publications (1)

Publication Number Publication Date
WO2020152733A1 true WO2020152733A1 (en) 2020-07-30

Family

ID=71736598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001605 WO2020152733A1 (en) 2019-01-21 2019-01-21 Power conversion device

Country Status (2)

Country Link
JP (1) JP6952915B2 (en)
WO (1) WO2020152733A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248321A1 (en) * 2022-06-21 2023-12-28 三菱電機株式会社 Electric vehicle control device and electric vehicle control system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066529A (en) * 2006-09-07 2008-03-21 Fuji Electric Systems Co Ltd Iron core coil structure of ac reactor having a plurality of stages, and auxiliary power source having the iron core coil structure
WO2015001621A1 (en) * 2013-07-02 2015-01-08 三菱電機株式会社 Hybrid drive system
JP2015220890A (en) * 2014-05-19 2015-12-07 株式会社東芝 Power supply device for electric vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066529A (en) * 2006-09-07 2008-03-21 Fuji Electric Systems Co Ltd Iron core coil structure of ac reactor having a plurality of stages, and auxiliary power source having the iron core coil structure
WO2015001621A1 (en) * 2013-07-02 2015-01-08 三菱電機株式会社 Hybrid drive system
JP2015220890A (en) * 2014-05-19 2015-12-07 株式会社東芝 Power supply device for electric vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248321A1 (en) * 2022-06-21 2023-12-28 三菱電機株式会社 Electric vehicle control device and electric vehicle control system

Also Published As

Publication number Publication date
JPWO2020152733A1 (en) 2021-11-11
JP6952915B2 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
US8008923B2 (en) Method for bypassing a power cell of a power supply
US7800254B2 (en) System for bypassing a power cell of a power supply
JP6736370B2 (en) Power conversion system
US11967859B2 (en) Power factor correction circuit, power factor correction assembly and on-line uninterruptible power supply comprising same
JP4476980B2 (en) Non-instantaneous switching device
JPWO2005073014A1 (en) Auxiliary power supply for vehicle
EP2142459B1 (en) Power supply appliance of a transport system
JP7132720B2 (en) cubicle
JP6952915B2 (en) Power converter
JP2020036502A (en) Power conversion device and power conversion method
EP2343620B1 (en) Alternating voltage stabiliser with protection elements (embodiments)
US20230382249A1 (en) Charging circuit having a direct-current terminal and an alternating-current terminal, and vehicle electrical system having a charging circuit
JP2001145208A (en) Electric vehicle controller
JPS63305725A (en) Uninterruptive power supply
JP4751306B2 (en) Electric vehicle power supply
JPH11252701A (en) Contact loss compensating device for vehicle power source
EP1520746B1 (en) Propulsion system for a multiple-voltage locomotive
CN112953255B (en) Traction converter
RU2755800C1 (en) System for uninterrupted power supply of electric locomotive
CN110661331A (en) AC-DC converter
JPH11289670A (en) Two-pole dc power transmission system
JP2680385B2 (en) Auxiliary power supply for electric vehicles
KR102589807B1 (en) Transformer with Auxiliary Winding
SU1723627A1 (en) Device for balancing of incomplete phase conditions
JPH10174450A (en) Power conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911126

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020567669

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911126

Country of ref document: EP

Kind code of ref document: A1