JPS63305725A - Uninterruptive power supply - Google Patents

Uninterruptive power supply

Info

Publication number
JPS63305725A
JPS63305725A JP62139259A JP13925987A JPS63305725A JP S63305725 A JPS63305725 A JP S63305725A JP 62139259 A JP62139259 A JP 62139259A JP 13925987 A JP13925987 A JP 13925987A JP S63305725 A JPS63305725 A JP S63305725A
Authority
JP
Japan
Prior art keywords
power
transformer
power supply
winding
alternating current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62139259A
Other languages
Japanese (ja)
Inventor
Hiroo Tomita
冨田 博夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62139259A priority Critical patent/JPS63305725A/en
Priority to DE19883813868 priority patent/DE3813868A1/en
Publication of JPS63305725A publication Critical patent/JPS63305725A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads

Abstract

PURPOSE:To improve efficiency, and to miniaturize and lighten a device by using a converter mounted on the input side as a diode rectifier while operating a transformer for insulation at high frequency. CONSTITUTION:When power is fed normally from a commercial power supply 2, a first inverter device 20 applies AC power at high frequency to a second inverter device 40 through a three-winding transformer 30, thus operating a load 60 by AC power output from the second inverter device 40. A battery 10 can be charged by AC power from the commercial power supply 2 by forward-conversion operating a forward and reverse converter 50 at that time. When the commercial power supply 2 gives out, the forward and reverse converter 50 instantaneously starts reverse-conversion operation, and power is fed from the battery 10, thus preventing the service interruption of the load 60.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、交流電源からの交流を所望の電圧と周波数
の交流に変換して負荷に給電するとともに、この交流電
源が停電すれば、バックアップ用バッテリーにより負荷
へ連続して給電できる無停電電源装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention converts alternating current from an alternating current power source into alternating current of a desired voltage and frequency to supply power to a load, and also provides backup power in the event of a power outage to this alternating current power source. The present invention relates to an uninterruptible power supply device that can continuously supply power to a load using a battery.

〔従来の技術〕[Conventional technology]

コンピュータやオフィス・オートメ−957機器などの
電子装置は、一般に商用電源から電力の供給を受けて作
動するのであるが、これらの電子装置は入力電源の電圧
変動や周波数変動を好まないが、特に停電(または大き
な電圧低下)はごく短時間の停電であっても、その装置
の機能が阻害される。そこでこのような電子装置は、無
停電電源装置から交流電力の供給を受けるようにして、
停電に伴う損害の発生を予防するようにしている。
Electronic devices such as computers and office automation equipment generally operate by receiving power from a commercial power source, but these electronic devices do not like voltage or frequency fluctuations in the input power source, but they are particularly susceptible to power outages. Even a very short power outage (or a large voltage drop) will disrupt the functionality of the device. Therefore, such electronic devices receive AC power from an uninterruptible power supply.
We are trying to prevent damage caused by power outages.

第2図は浮動充電方式といわれている無停電電源装置の
従来例を示した主回路接続図である。この第2図におい
て、商用型a2からの交流電力は、主回路の絶縁を兼ね
ている変圧器3を介してサイリスタ整流器4へ入力され
、このサイリスク整流器4から出力される直流を、平滑
リアクトル6を介してトランジスタインバータ8へ与え
るとともに・バックアップ用のバッテリー10へ与えて
これを充電するいわゆる浮動充電方式となっている。
FIG. 2 is a main circuit connection diagram showing a conventional example of an uninterruptible power supply system that is called a floating charging system. In FIG. 2, AC power from a commercial type a2 is input to a thyristor rectifier 4 via a transformer 3 which also serves as insulation for the main circuit, and the DC output from the thyristor rectifier 4 is transferred to a smoothing reactor 6. This is a so-called floating charging method in which the power is supplied to the transistor inverter 8 through the transistor inverter 8 and also supplied to the backup battery 10 to charge it.

トランジスタインバータ8は、入力直流を所望の電圧と
周波数の交流に変換して、この交流電力を負荷60へ供
給するのであるが、商用電源2が停電して電力の供給が
中断されると、サイリスタ整流器4の直流側と、トラン
ジスタインバータ8の直流側とを結合している、いわゆ
る直流中間回路に接続されているバッテリーlOからト
ランジスタインバータ8へ直流電力が供給されるので、
負荷60への交流電力が中断するのを防止できる。
The transistor inverter 8 converts input DC into AC with a desired voltage and frequency and supplies this AC power to the load 60. However, when the commercial power supply 2 is interrupted due to a power outage, the thyristor DC power is supplied to the transistor inverter 8 from the battery IO, which is connected to a so-called DC intermediate circuit that connects the DC side of the rectifier 4 and the DC side of the transistor inverter 8.
Interruption of AC power to the load 60 can be prevented.

第2図に示す浮動充電方式の従来例では、直流中間回路
を経てトランジスタインバータ8に直流電力を供給する
とともに、バッテリー10を浮動充電するために、入力
側には電圧制御機能と電流制御機能を有するもの、たと
えばサイリスタ整流器4を使用してこの直流中間回路へ
直流電力を供給するようにしている。なお、この直流中
間回路電圧は、商用電源2の電圧変動に対しても適切な
値を維持できる必要があるので、当該サイリスク整流器
4に入力する交流電圧を全波整流して得られる直流電圧
よりも低い値を選定することになる。
In the conventional example of the floating charging method shown in FIG. 2, in order to supply DC power to the transistor inverter 8 via a DC intermediate circuit and to floatingly charge the battery 10, the input side has a voltage control function and a current control function. For example, a thyristor rectifier 4 is used to supply DC power to this DC intermediate circuit. Note that this DC intermediate circuit voltage needs to be able to maintain an appropriate value even with voltage fluctuations in the commercial power supply 2, so it is better than the DC voltage obtained by full-wave rectification of the AC voltage input to the SIRISK rectifier 4. A low value will also be selected.

それ故トランジスタインバータ8も低電圧・大電流形の
ものとならざるを得ない。
Therefore, the transistor inverter 8 must also be of a low voltage, large current type.

第3図はバッテリー充電装置を備えた無停電電源装置の
従来例を示した主回路接続図である。この第3図におい
て、商用電源2からの交流電力は、主回路の絶縁も兼ね
ている変圧器3を介してダイオード整流器5へ入力され
、このダイオード整流器5から出力される直流のリップ
ル分を平滑コンデンサ7で吸収除去したのち、トランジ
スタインバータ8へ入力させ、このトランジスタインバ
ータ8から変換して出力される所望の電圧と周波数の交
流電力を負荷60へ給電している。
FIG. 3 is a main circuit connection diagram showing a conventional example of an uninterruptible power supply equipped with a battery charging device. In Fig. 3, AC power from a commercial power source 2 is input to a diode rectifier 5 via a transformer 3 which also serves as insulation for the main circuit, and the ripple component of the DC output from the diode rectifier 5 is smoothed. After being absorbed and removed by a capacitor 7, the AC power is inputted to a transistor inverter 8, and the alternating current power having a desired voltage and frequency is converted and output from the transistor inverter 8, and is supplied to a load 60.

直流中間回路には、バッテリー10とサイリスクスイッ
チ15との直列回路が接続されていて、商用電源2が停
電したことを検出すると、図示していない制御回路の動
作により、このサイリスタスイッチ15が直ちに導通し
、バッテリー10からの直流電力をトランジスタインバ
ータ8へ供給するので、負荷60は商用電源2の停電に
も拘らず、その運転を中断することな(継続できる。
A series circuit of a battery 10 and a thyristor switch 15 is connected to the DC intermediate circuit, and when a power outage of the commercial power supply 2 is detected, the thyristor switch 15 is immediately activated by the operation of a control circuit (not shown). Since the load 60 is electrically conductive and supplies direct current power from the battery 10 to the transistor inverter 8, the operation of the load 60 can be continued without interruption (despite a power outage of the commercial power supply 2).

変圧器3の2次側には、充電用変圧器11 と充電用整
流器12 とが設けられており、この充電用整流器12
が出力する直流のリップル分を平滑コンデンサ13によ
り吸収除去したのち、チツツパ14によりバッテリー1
0の充電に適した電圧の直流を得るようにしている。こ
のチツツパ14により、バッテリー10は常に充電完了
状態にあって、商用型[2の不時の停電に備えるように
なっている。
A charging transformer 11 and a charging rectifier 12 are provided on the secondary side of the transformer 3.
After absorbing and removing the ripple of the DC output by the smoothing capacitor 13, the chipper 14 connects the battery 1.
It is designed to obtain a DC voltage suitable for charging 0. Due to this chipper 14, the battery 10 is always in a fully charged state and is prepared for an unexpected power outage in the commercial type [2].

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、第2図に示す浮動充電方式の従来例では
、主回路の構成は簡単であるが、トランジスタインバー
タ8が低電圧・大電流形であるために、通常運転状態(
すなわち商用電源2から交流電力の供給を受けている状
態)では、当該トランジスタインバータ8のインバータ
効率が低下する。またサイリスタ整流器4を構成してい
る各サイリスクを位相制御することで、商用電源2の電
圧変動に対処していることから、入力交流の基本波力率
が低下する。さらに商用’IIH2とバッテリー10と
を電気的に絶縁するのが通常であることから、商用電源
2に絶縁用の変圧器3を設けるが、この変圧器3は商用
周波数で運転することから、無停電電源装置の小形・軽
量化を阻害する要因になっているなど、各種の欠点を有
している。
However, in the conventional example of the floating charging method shown in FIG. 2, although the main circuit configuration is simple, since the transistor inverter 8 is of a low voltage/high current type, the normal operating state (
In other words, in a state where AC power is being supplied from the commercial power source 2), the inverter efficiency of the transistor inverter 8 decreases. In addition, by controlling the phase of each thyristor that constitutes the thyristor rectifier 4, voltage fluctuations in the commercial power supply 2 are dealt with, so that the fundamental wave power factor of the input AC is reduced. Furthermore, since it is normal to electrically insulate the commercial 'IIH 2 and the battery 10, an isolation transformer 3 is provided in the commercial power supply 2, but since this transformer 3 operates at a commercial frequency, it is unnecessary. It has various drawbacks, such as being a factor that hinders the reduction in size and weight of power outage power supplies.

また第3図に示す充電装置を備えた従来例の場合には、
商用電源2が停電してバッテリー10へ電源を切換える
さいのサイリスクスイッチ15の動作遅れや、切換え時
に生じる突入電流、またこの突入電流に起因する直流電
圧の急激な変動など、過渡特性の良くない無停電電源装
置となる欠点を有する。さらに第2図の従来例の場合と
同様に、絶縁に使用する変圧器3を商用周波数で運転さ
せることから、当該無停電電源装置の小形・軽量化を阻
害する要因となる欠点も合わせて有する。
In addition, in the case of the conventional example equipped with the charging device shown in Fig. 3,
Poor transient characteristics, such as a delay in the operation of the SI risk switch 15 when the commercial power supply 2 is out of power and the power is switched to the battery 10, an inrush current that occurs at the time of switching, and rapid fluctuations in the DC voltage caused by this inrush current. It has the disadvantage of being an uninterruptible power supply. Furthermore, as in the case of the conventional example shown in Fig. 2, since the transformer 3 used for insulation is operated at the commercial frequency, it also has drawbacks that hinder the miniaturization and weight reduction of the uninterruptible power supply. .

そこでこの発明の目的は、商用電源からの交流電力によ
り通常の運転をしているときの無停電電源装置の効率な
らびに入力力率を向上させるとともに、商用電源とバッ
テリーならびに出力交流相互間の電気的絶縁手段を小形
化することで、当該無停電電源装置を小形・軽量化する
ことにある。
Therefore, the purpose of this invention is to improve the efficiency and input power factor of an uninterruptible power supply during normal operation using AC power from a commercial power source, and to improve the electrical power between the commercial power source, battery, and output AC. The aim is to make the uninterruptible power supply smaller and lighter by making the insulating means smaller.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために、この発明の無停電電源装
置は、交流電源に接続されて所定の電圧と周波数の交流
を出力する第1の電力交換手段と、交流を入力して任意
の電圧と周波数の交流を出力する第2の電力変換手段と
、交流を直流に変換し、あるいは直流を交流に変換でき
る順逆変換手段と、人力巻線と出力巻線およびこれら入
力巻線ならびに出力巻線とは絶縁されている第3の巻線
とを備えた変圧器と、前記第1電力変換手段の交流出力
側に前記変圧器の入力巻線を接続し、前記第2電力変換
手段の交流入力側に前記変圧器の出力S線を接続し、前
記順逆変換手段の交流側に前記変圧器の第3巻線を接続
するとともに、当該順逆変換手段の直流側にバッテリー
を接続するものとする。
In order to achieve the above object, the uninterruptible power supply device of the present invention includes a first power exchange means that is connected to an AC power source and outputs an AC of a predetermined voltage and frequency, and a first power exchange means that is connected to an AC power source and outputs an AC of a predetermined voltage and frequency, and a a second power conversion means that outputs an alternating current with a frequency of , a forward/reverse converter capable of converting alternating current to direct current or converting direct current to alternating current, a human power winding, an output winding, and these input windings and output windings. and a third winding insulated from the transformer, and an input winding of the transformer is connected to the AC output side of the first power conversion means, and the input winding of the transformer is connected to the AC input of the second power conversion means. The output S line of the transformer is connected to the AC side of the forward/reverse converter, the third winding of the transformer is connected to the AC side of the forward/reverse converter, and a battery is connected to the DC side of the forward/reverse converter.

〔作用〕[Effect]

この発明は、無停電電源装置の入力側に設けられる変換
装置をダイオード整流器にするとともに、絶縁用の変圧
器を高い周波数で運転させれば、入力力率と効率の向上
ならびに装置を小形・軽量化ができることに着目したも
のであって、そのために、ダイオード整流器を入力側に
備えて所望の電圧と周波数の交流を出力する電力変換手
段の211と、順逆変換手段とを3巻線変圧器のそれぞ
れの巻線に接続するとともに、順逆変換手段の直流側に
はバンクアップ用のバッテリーを接続する。この状態で
前記の変圧器を可能なかぎり高い周波数で運転すること
により、回路の絶縁と小形軽量化、ならびに効率と入力
力率の向上を図るものである。
This invention improves the input power factor and efficiency by using a diode rectifier as the converter installed on the input side of the uninterruptible power supply, and by operating the isolation transformer at a high frequency. For this purpose, the power conversion means 211, which is equipped with a diode rectifier on the input side and outputs alternating current of the desired voltage and frequency, and the forward/reverse conversion means are combined into a three-winding transformer. In addition to connecting to each winding, a bank-up battery is connected to the DC side of the forward/reverse conversion means. By operating the transformer at the highest possible frequency in this state, the circuit is insulated, made smaller and lighter, and improved in efficiency and input power factor.

〔実施例〕〔Example〕

第1図は本発明の実施例を示す主回路接続図である。 FIG. 1 is a main circuit connection diagram showing an embodiment of the present invention.

この第1図において、商用電源2には第1電力変換手段
としての第1インバータ装置20が接続されるのである
が、この第1インバータ装置20は、商用電源2からの
商用周波数の交流電力を直流に整流するダイオード整流
器21 と、このダイオード整流器21から出力される
直流のリップル分を吸収除去する平滑コンデンサ22と
、この平滑された直流を任意の電圧と周波数の交流に変
換するトランジスタインバータ23とで構成されている
が、このトランジスタインバータ23が出力する交流の
周波数は、可能なかぎり高い値となるようにしている。
In FIG. 1, a first inverter device 20 as a first power conversion means is connected to a commercial power source 2, and this first inverter device 20 receives AC power at a commercial frequency from the commercial power source 2. A diode rectifier 21 that rectifies direct current, a smoothing capacitor 22 that absorbs and removes ripples in the direct current output from the diode rectifier 21, and a transistor inverter 23 that converts this smoothed direct current into alternating current of arbitrary voltage and frequency. However, the frequency of the AC output from this transistor inverter 23 is set to be as high as possible.

第1インバータ装W20から出力される高周波数の交流
電力は、3巻線変圧器30の入力巻線に与えられ、当該
変圧器30の出力巻線からは商用電1IA2とは絶縁さ
れ、かつ所望の電圧に変圧された高周波数の交流電力が
出力される。そこでダイオード整流器41 と平滑コン
デンサ42ならびにトランジスタインバータ43とで構
成されている第2電力変喚手段としての第2インバータ
装置40を3巻線変圧器30の出力巻線に接続し、トラ
ンジスタインバータ43を適切に制御することにより、
負荷60には所望の電圧と周波数の交流電力を供給する
ことができる。
The high-frequency AC power output from the first inverter W20 is applied to the input winding of the three-winding transformer 30, and is insulated from the output winding of the transformer 30 from the commercial power line 1IA2. High-frequency AC power transformed to a voltage of Therefore, a second inverter device 40 as a second power conversion means composed of a diode rectifier 41, a smoothing capacitor 42, and a transistor inverter 43 is connected to the output winding of the three-winding transformer 30, and the transistor inverter 43 is connected to the output winding of the three-winding transformer 30. With proper control,
AC power of a desired voltage and frequency can be supplied to the load 60.

さらに、3巻線変圧器30の第3巻線には順逆変換装置
50の交流側を接続し、この順逆変換装置50の直流側
には、電源停電時にバックアップ用として使用されるバ
ッテリーlOを埠続する。
Further, the AC side of a forward/reverse converter 50 is connected to the third winding of the three-winding transformer 30, and a battery lO is connected to the DC side of the forward/reverse converter 50 to be used as a backup during a power outage. Continue.

商用電源2から正常に電力が供給されているとき、第1
インバータ装置20は高周波数の交流電力を3巻線変圧
器30を介して第2インバータ装置ll 40へ与える
ので、この第2インバータ装置40が出力する交流電力
により負荷60は運転中であるが、このとき順逆変換装
置50を順変換動作させることにより、商用電源2→第
1インバ一タ装置20→3巻線変圧器30→順逆変換装
W 50→バッテリーlOの経路により、商用電源2か
らの交流電力でバッテリー10を充電することができる
When power is normally supplied from commercial power supply 2,
Since the inverter device 20 supplies high-frequency AC power to the second inverter device 1140 via the three-winding transformer 30, the load 60 is in operation with the AC power output from the second inverter device 40. At this time, by operating the forward/inverter converter 50 for forward conversion, the power is transferred from the commercial power source 2 through the path of commercial power supply 2 -> first inverter device 20 -> 3-winding transformer 30 -> forward/inverter converter W 50 -> battery IO. The battery 10 can be charged with AC power.

第1図に示す実施例回路には、商用電源2の停電を検出
する回路(図示せず)と、順逆変換装置50を順変換動
作あるいは逆変換動作をさせる回路(いずれも図示せず
)が備えられているので、上述のように負荷60が商用
電源2からの電力で運転中に、この商用型a2が停電し
たことを検出すれば、直ちに順逆変換装置50が逆変換
動作を開始し、バッテリーlO→順逆変換装置50→3
巻線変圧器30→第2インバータ装置40→負荷60の
経路で電力が供給されることになり、負荷60が停電す
るおそれはない。
The embodiment circuit shown in FIG. 1 includes a circuit (not shown) for detecting a power outage of the commercial power supply 2 and a circuit (both not shown) for causing the forward/inverter 50 to perform a forward conversion operation or an inverse conversion operation. As described above, when the commercial type a2 detects a power outage while the load 60 is operating with electric power from the commercial power source 2, the forward/inverse converter 50 immediately starts the inverse conversion operation. Battery lO → forward/reverse converter 50 → 3
Electric power is supplied through the path of the wire-wound transformer 30 → second inverter device 40 → load 60, and there is no fear that the load 60 will experience a power outage.

順逆変換装置50から3巻線変圧器30への交流の周波
数は、第1インバータ装置20が出力する交流の周波数
と同様の高い値であって、たとえば数kHzから数10
に&が使用されるので、従来の商用周波数(50七〜6
0Hz)にくらべてはるかに高周波数であり、3巻線変
圧器30の寸法・重量は当然率となり、その価格も低下
できるのは勿論で、ある。
The frequency of the alternating current from the forward/inverter converter 50 to the three-winding transformer 30 is a high value similar to the frequency of the alternating current output from the first inverter device 20, for example, from several kHz to several tens of kHz.
& is used for conventional commercial frequencies (507~6
0 Hz), the size and weight of the three-winding transformer 30 will naturally be reduced, and the price can of course be reduced.

なお、第1図に示す実施例回路では、商用電源2と負荷
60およびバッテリー10の3者を相互に絶縁する場合
を示しているために、独立した3個の巻線すなわち入力
巻線・出力巻線および第3巻線を備えた3巻線変圧器3
0を使用しているが、たとえば商用電源2と負荷60と
を絶縁する必要がなく、バッテリーlOのみをこれらか
ら絶縁したい場合には、入力と出力とは単巻変圧器で構
成し、これとは独立した巻線を順逆変換装置50へ接続
する構成の変圧器を用意し、この変圧器を高周波数で運
転すればよいことになる。
In the example circuit shown in FIG. 1, since the commercial power supply 2, the load 60, and the battery 10 are insulated from each other, three independent windings, that is, the input winding and the output winding. Three-winding transformer 3 with a winding and a third winding
However, if, for example, there is no need to insulate the commercial power supply 2 and the load 60 and you want to insulate only the battery IO from them, the input and output should be configured with autotransformers and In this case, it is sufficient to prepare a transformer having a configuration in which independent windings are connected to the forward/reverse converter 50, and to operate this transformer at a high frequency.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、入力部にダイオード整流手段を備え
て入力交換を任意の電圧と周波数の交流に変換する電力
変換手段を2組と、直流を交流に、あるいは交流を直流
に変換できる順逆変換手段とを絶縁用の変圧器を介して
相互に接続し、入力側に商用電源を、出力側には負荷を
、また順逆変換手段の直流側にはバッテリーをそれぞれ
接続することで無停電電源装置を構成し、絶縁を兼ねて
いる前記変圧器に印加される交流の周波数が可能なかぎ
り高くなるようにそれぞれの変換手段を運転することに
より、商用電源と負荷ならびにバッテリーの3者を相互
に絶縁するとともに、当該絶縁用変圧器の体格を大幅に
縮小できて、装置の小形・軽量化とコストの低減に寄与
できる効果を発揮する。さらに電力変換手段の入力部に
ダイオード整流手段を用いることで、サイリスタ整流手
段にくらべて直流出力電圧が高くなり、かつ位相制御動
作もないことから、交流入力の力率が良好となり、かつ
当該電力変換手段の効率が向上するとともに、制御回路
が簡略になってコストが低下するなど、各種の利点を有
する。
According to this invention, there are two sets of power conversion means that are equipped with diode rectification means in the input section and convert input exchange into alternating current of arbitrary voltage and frequency, and a forward/reverse converter that can convert direct current to alternating current or alternating current to direct current. An uninterruptible power supply can be created by connecting the means and means through an insulating transformer, connecting a commercial power supply to the input side, a load to the output side, and a battery to the DC side of the forward/reverse conversion means. By operating each conversion means so that the frequency of the alternating current applied to the transformer, which also serves as insulation, is as high as possible, the commercial power source, the load, and the battery are mutually isolated. At the same time, the size of the insulating transformer can be significantly reduced, contributing to the miniaturization, weight reduction, and cost reduction of the device. Furthermore, by using diode rectification means at the input section of the power conversion means, the DC output voltage is higher than that of thyristor rectification means, and since there is no phase control operation, the power factor of AC input is good, and the power It has various advantages, such as improved efficiency of the conversion means, simplified control circuit, and reduced cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す主回路接続図である。第
2図は浮動充電方式といわれている無停電電源装置の従
来例を示した主回路接続図であり、第3図はバッテリー
充電装置を備えた無停電電源装置の従来例を示した主回
路接続図である。 2・・・商用電源、3・・・変圧器、4・・・サイリス
タ整流器、5.21.41・・・ダイオード整流器、6
・・・平滑リアクトル、? 、13.22.42・・・
平滑コンデンサ、8゜23.43・・・トランジスタイ
ンバータ、10・・・バッテリー、11・・・充電用変
圧器、12・・・充電用整流器、14・・・チッノパ、
15・・・サイリスクスイッチ、20・・・第・1電力
変換手段としての第1インバータ装置、30・・・3巻
線変圧器、40・・・第2電力変換手段としての第2イ
ンバータ装置、50・・・順逆変換装置、60・・・負
荷。
FIG. 1 is a main circuit connection diagram showing an embodiment of the present invention. Figure 2 is a main circuit connection diagram showing a conventional example of an uninterruptible power supply system that is said to be a floating charging system, and Figure 3 is a main circuit diagram showing a conventional example of an uninterruptible power supply system equipped with a battery charging device. It is a connection diagram. 2... Commercial power supply, 3... Transformer, 4... Thyristor rectifier, 5.21.41... Diode rectifier, 6
...Smooth reactor? , 13.22.42...
Smoothing capacitor, 8゜23.43...Transistor inverter, 10...Battery, 11...Charging transformer, 12...Charging rectifier, 14...Chinnopa,
15... Cyrisk switch, 20... First inverter device as first power conversion means, 30... Three winding transformer, 40... Second inverter device as second power conversion means , 50... Forward/inverse converter, 60... Load.

Claims (1)

【特許請求の範囲】 1)交流電源に接続されて所定の電圧と周波数の交流を
出力する第1の電力交換手段と、交流を入力して任意の
電圧と周波数の交流を出力する第2の電力変換手段と、
交流を直流に変換し、あるいは直流を交流に変換できる
順逆交換手段と、入力巻線と出力巻線およびこれら入力
巻線ならびに出力巻線とは絶縁されている第3の巻線と
を備えた変圧器と、前記第1電力変換手段の交流出力側
に前記変圧器の入力巻線を接続し、前記第2電力変換手
段の交流入力側に前記変圧器の出力巻線を接続し、前記
順逆変換手段の交流側に前記変圧器の第3巻線を接続す
るとともに、当該順逆変換手段の直流側にバッテリーを
接続していることを特徴とする無停電電源装置。 2)特許請求の範囲第1項記載の無停電電源装置におい
て、前記第1または第2電力変換手段は、その入力部に
ダイオードによる整流手段を備えていることを特徴とす
る無停電電源装置。 3)特許請求の範囲第1項または第2項記載の無停電電
源装置において、前記変圧器はできるかぎり高い周波数
で運転することを特徴とする無停電電源装置。
[Claims] 1) A first power exchange means that is connected to an AC power source and outputs an alternating current of a predetermined voltage and frequency, and a second power exchange means that inputs the alternating current and outputs an alternating current of a desired voltage and frequency. a power conversion means;
It is equipped with a forward/reverse exchange means capable of converting alternating current to direct current or converting direct current to alternating current, an input winding, an output winding, and a third winding insulated from these input windings and output windings. a transformer; an input winding of the transformer is connected to the AC output side of the first power conversion means; an output winding of the transformer is connected to the AC input side of the second power conversion means; An uninterruptible power supply device characterized in that the third winding of the transformer is connected to the alternating current side of the converting means, and a battery is connected to the direct current side of the forward/reverse converting means. 2) The uninterruptible power supply according to claim 1, wherein the first or second power conversion means includes a rectification means using a diode at its input section. 3) An uninterruptible power supply according to claim 1 or 2, wherein the transformer is operated at a frequency as high as possible.
JP62139259A 1987-06-03 1987-06-03 Uninterruptive power supply Pending JPS63305725A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62139259A JPS63305725A (en) 1987-06-03 1987-06-03 Uninterruptive power supply
DE19883813868 DE3813868A1 (en) 1987-06-03 1988-04-24 No-break current supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62139259A JPS63305725A (en) 1987-06-03 1987-06-03 Uninterruptive power supply

Publications (1)

Publication Number Publication Date
JPS63305725A true JPS63305725A (en) 1988-12-13

Family

ID=15241125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62139259A Pending JPS63305725A (en) 1987-06-03 1987-06-03 Uninterruptive power supply

Country Status (2)

Country Link
JP (1) JPS63305725A (en)
DE (1) DE3813868A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151688A (en) * 2003-11-14 2005-06-09 Fuji Electric Systems Co Ltd Uninterruptible power supply device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4012307C2 (en) * 1990-04-17 1997-01-16 Siemens Ag Device for the direct voltage supply of several electrical consumers
US5309073A (en) * 1991-10-21 1994-05-03 Hitachi, Ltd. Electric vehicle control device
FR2841059B1 (en) * 2002-06-12 2004-12-10 Mge Ups Systems Sa ELECTRICAL NETWORK CONDITIONER
FR2841062B1 (en) * 2002-06-12 2004-09-24 Mge Ups Systems Sa UNINTERRUPTED ELECTRICAL SUPPLY
DE102007011004A1 (en) * 2007-03-05 2008-09-11 Bernhardt Brehm Method for continuous and stable power supply of consumer with inductive or pulse-shaped power consumption, involves determining type and capacity of each user-defined power source
DE102007022286B4 (en) 2007-05-12 2009-01-15 Dräger Medical AG & Co. KG Medical system with galvanic isolation
FR3101822B1 (en) * 2019-10-11 2021-10-22 Nw Joules AUTOMOTIVE VEHICLE QUICK CHARGE DEVICE

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3836815A (en) * 1972-05-24 1974-09-17 Gen Electric Emergency instant-start lighting system for arc discharge devices
US4038559A (en) * 1976-01-23 1977-07-26 Bell Telephone Laboratories, Incorporated Regulated uninterruptible power supply

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151688A (en) * 2003-11-14 2005-06-09 Fuji Electric Systems Co Ltd Uninterruptible power supply device

Also Published As

Publication number Publication date
DE3813868C2 (en) 1990-02-08
DE3813868A1 (en) 1988-12-22

Similar Documents

Publication Publication Date Title
US10044220B2 (en) Uninterruptible power-supply system
EP2846436B1 (en) Uninterruptible power supply circuit
EP2636122B1 (en) System and method for bidirectional dc-ac power conversion
US7092262B2 (en) System and method for pre-charging the DC bus of a utility connected power converter
JPH11514836A (en) AC-DC power supply
US4948209A (en) VSCF starter/generator systems
TW201530978A (en) Power system and method for providing power
Huang et al. 500kVA hybrid solid state transformer (HSST): architecture, functionality and control
JP3724238B2 (en) Power converter
US20170012465A1 (en) Ups circuit
EP2975753A1 (en) A three-level converter
JPS63305725A (en) Uninterruptive power supply
WO2010126220A2 (en) Direct current uninterruptible power supply device having serial compensation rectifier
JP3520961B2 (en) Inverter device
RU2540966C1 (en) Static converter
JPH0564376A (en) Parallel operation of chargers
JP3115143B2 (en) Uninterruptible power system
JPH08154349A (en) Uninterruptible ac power supply apparatus
JP2020127350A (en) Uninterruptible power supply with dc output
JPH04304160A (en) Dc power supply with battery backup function
KR101343953B1 (en) Double conversion uninterruptible power supply of eliminated battery discharger
CN111987919A (en) Power converter
JP2680385B2 (en) Auxiliary power supply for electric vehicles
JP7366076B2 (en) Three-phase inverter and uninterruptible power supply system
GB2241394A (en) Uninterruptible power supply system