WO2020151989A1 - Combustion engine cooling circuit equipped with a heat recovery circuit - Google Patents

Combustion engine cooling circuit equipped with a heat recovery circuit Download PDF

Info

Publication number
WO2020151989A1
WO2020151989A1 PCT/EP2020/050737 EP2020050737W WO2020151989A1 WO 2020151989 A1 WO2020151989 A1 WO 2020151989A1 EP 2020050737 W EP2020050737 W EP 2020050737W WO 2020151989 A1 WO2020151989 A1 WO 2020151989A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling circuit
engine
valve
bypass
circuit
Prior art date
Application number
PCT/EP2020/050737
Other languages
French (fr)
Inventor
Pierre Leduc
Alain Ranini
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Priority to JP2021542375A priority Critical patent/JP7466551B2/en
Priority to EP20700389.8A priority patent/EP3914817A1/en
Publication of WO2020151989A1 publication Critical patent/WO2020151989A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P9/00Cooling having pertinent characteristics not provided for in, or of interest apart from, groups F01P1/00 - F01P7/00
    • F01P9/02Cooling by evaporation, e.g. by spraying water on to cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the subject of the invention is a cooling circuit for a heat engine, to which is added a heat recovery circuit.
  • Such heat recovery circuits are connected with the engine cooling circuit, via a heat exchanger, generally an evaporator, and the heat they recover can be used to drive a turbine.
  • a heat exchanger generally an evaporator
  • Certain documents of the prior art illustrating such embodiments are EP1925806 A2, EP2320058 A1 and WO2016 / 069455 A1.
  • the aim of the present invention is to strengthen the efficiency of the recovery circuit, first by placing the evaporator, or more generally the heat exchanger with the cooling circuit, at a location in the circuit where the flow of heat transfer fluid is maximum, upstream of the branches distributing the coolant from the cooling circuit to various equipment.
  • the heat exchanger will therefore be placed at the outlet of the engine.
  • a drawback of this idea is that the thermal inertia of the cooling circuit is increased due to the presence of the evaporator at this location where it is made more efficient to take heat from the circuit, which will thwart the rise in temperature. of the engine during a cold start.
  • a general definition of the invention is thus a cooling circuit of a heat engine equipped with an evaporator in heat exchange with an assistant heat recovery circuit, the cooling circuit and the heat recovery circuit being traversed by separate streams of fluids, characterized in that the evaporator is placed on a bypass of the cooling circuit, which is connected in parallel with a segment of a main part of the cooling circuit adjacent to the engine and in which the fluid has a flow maximum upstream of the bypass, a valve for distributing the flow between the bypass and the segment being placed either on the segment, or on the bypass, or in conjunction with the segment and the bypass.
  • the bypass and therefore the heat exchanger are in particular placed upstream of a possible engine thermostat, regulating the distribution of the flow through a radiator of the cooling circuit. They can also be located between an engine cylinder head and a possible fluid distribution unit between the branches of the cooling circuit, called water unit.
  • the valve can be three-way, arranged at a point of intersection of said segment and the bypass. It can also be a two-way valve, then placed either on the segment or on the bypass.
  • the valve can be of any known type: it can be a thermostat with autonomous operation, or a passive valve, controlled by a separate device, according to a temperature of the cooling fluid or possibly other parameters.
  • Yet another aspect of the invention is a vehicle, otherwise ordinary and therefore not described in detail here, comprising an internal combustion engine, and a cooling circuit in accordance with the above.
  • FIG. 1 is a general view of a cooling circuit and the equipment through which they pass, according to a system which is not however in accordance with the invention
  • FIG. 2 illustrates a first embodiment of the invention
  • FIG. 3 illustrates a second embodiment of the invention
  • FIG. 4 illustrates a third embodiment of the invention
  • FIG. 5 illustrates a fourth embodiment of the invention.
  • a heat engine 1 is cooled by a cooling circuit 2 through which a heat transfer fluid delivered by a pump 3.
  • the fluid passes through the engine 1, then by a thermostat 4 which distributes the flow in two branches of the cooling circuit 2 according to its temperature, one of which passes through a radiator 5 before returning to the pump 3, and the other passes through a heat exchanger 6 which recovers part of the calories from a exhaust gas 7, by an evaporator 8 of a heat recovery circuit 9 with an organic Rankine cycle, the working fluid of which, delivered by a second pump 10, passes through the evaporator 8, then through a turbine 11 and a condenser 12.
  • the coolant from this branch then also returns to the pump 3, in front of which the two branches join.
  • the evaporator 8 placed between the heat exchanger 6 and the pump B is located on one of the branches of the cooling circuit 2, upstream of the point of contact with the branch originating from the radiator 5, and its efficiency is therefore reduced, since only a partial debit borrows it.
  • the evaporator 8 were located downstream of this point of contact, the fluid having passed through the radiator 5 and which would then be added to the flow passing through the evaporator 8 having been too cooled to contribute to strengthening a lot of heat exchange.
  • FIG. 2 A first embodiment of the invention will now be described by means of FIG. 2.
  • the heat engine bears the reference 13, and its cooling circuit the reference 14.
  • a pump 15 delivers the fluid thereof through the engine 13, before it leaves through an outlet duct 16 on which is placed a valve 17.
  • the cooling circuit is divided into a bypass 18 and a segment 28 of the outlet duct 16.
  • the bypass 18 joins the duct of output 16 downstream of valve 17, but upstream of an engine thermostat 19 (remember that a thermostat has one input and two outputs, and for which the input and outputs are connected according to the opening an internal valve, the opening of which depends on the temperature of the fluid passing through the thermostat) which distributes the heat transfer fluid between a branch 20 passing through a radiator 21 and a branch 22 which avoids it, the branches 20 and 22 then returning to pump 15.
  • An evaporator 23 a heat recovery circuit 24, otherwise similar to that described in FIG. 1, is arranged on the bypass 18, while the segment 28 remains unoccupied (that is to say without equipment) .
  • the heat recovery circuit 24 can be a closed circuit according to a Rankine cycle, in which circulates a heat transfer fluid (in particular an organic fluid).
  • the closed circuit comprises a pump, the evaporator, an expansion means and a condenser.
  • the cooling circuit 14 can pass through other equipment, not shown here, in particular heat exchangers with other sources. thermal or other equipment, and split into other branches downstream of the bypass.
  • the valve 17 is a three-way valve which governs the distribution of the heat transfer fluid to pass it through the evaporator 23 or on the contrary to avoid it through the segment 28 and directly reach the engine thermostat 19.
  • the predominant flow can pass. via the bypass 18 or remain in the outlet branch 16, in particular according to the temperatures of the heat transfer fluid, or even of the motor 13 or of the evaporator 23, according to the operating possibilities described below.
  • the valve 17 is controlled only in temperature, it could be a thermostat. It may also consist of a passive valve controlled by a separate device, not shown and sensitive to various sensors, in particular the temperature of the heat transfer fluid or the temperature of the engine 13.
  • the valve 17 can be in two states, or admit. intermediate states.
  • Figure 3 illustrates an alternative embodiment, which differs from the previous one in that the engine thermostat 19 at the separation between branch 20 and bypass 22 is omitted and replaced by an engine thermostat 25 located at the point where these branches 20 and 22 meet before returning to the pump 15.
  • the device is not otherwise modified.
  • valve 17 is replaced by a two-way valve 26 placed either on the bypass 18 or on the segment 28 of the outlet duct 16 between its junctions with its ends of the bypass 18.
  • the valve 26 can also be a thermostat or a passive valve with separate control device. It also makes it possible to distribute the heat transfer fluid between the bypass 18 and said segment 28, which is parallel to the latter.
  • the bypass 18 can be placed immediately downstream of the engine 13, or even adjacent to the latter, or be separated from it by heat exchangers, with the exhaust gas pipe for example, which allow the heat transfer fluid to be further heated; and if the cooling circuit 14 is divided at the location of the engine 13, for example into several parallel branches to cool the cylinder head of the engine 13 or an additional branch to cool the circuit lubrication, the bypass 18 is placed downstream of the points where these different branches meet at the outlet of the motor 13, in order to reform a single outlet pipe 16, in order to have all the flow of the cooling circuit 14 for the benefit of heat exchange with the recovery circuit 24.
  • FIG. 5 illustrates that this water outlet housing 27 is not attached directly to the motor 13, but via a spacer 29 which contains at least part of the bypass 18, and the valve 17 or 26.
  • the water outlet housing 27 distributes the heat transfer flow between the branches 20 and 22, the first of which serves the radiator 21 and the second avoids it.
  • the operation of the devices of the invention is now described.
  • the evaporator 23 is avoided so that the flow of heat transfer fluid does not circulate, or very little, through the bypass 18.
  • the flow passes entirely or mainly in the segment 28 of the output branch 16, without leaving the latter.
  • the rise in temperature of the motor 13 is therefore not delayed by the additional thermal inertia represented by the evaporator 23.
  • the valve 17 or 26 for controlling the flow rate to the evaporator 23 is activated, so as to send all or part of the fluid flow at the outlet of the motor 13 to the evaporator 23.
  • the heat recovery circuit 24 then begins to receive calories and can begin to operate. If the valve 17 or 26 for controlling the flow rate to the evaporator 23 is of the continuously controlled type, it is possible to control the heat flow sent to the evaporator 23 if it is desired to modulate the operating power of the recovery circuit.
  • the flow control valve 17 or 26 is set to an intermediate position between full opening and full closure.
  • the invention makes it possible to accelerate the rise in temperature of the engine 13: if the temperature in the evaporator 23 is higher than that of the coolant when restarting, the valve 17 or 26 can be adjusted so that the fluid leaving the motor 13 is directed to the evaporator 23, so as to use it to heat the fluid more quickly, so that the engine 13 returns to a warm operating state more quickly.
  • the advantages of the invention can be stated as follows.
  • the positioning of the evaporator 23 in the cooling circuit 14 at the outlet of the engine 13 and before the branches of the circuit 14 allows the evaporator 23 to be passed through by the entire flow of cooling fluid from the engine 13. This is generally the point of circuit 14 where the fluid flow rate is the highest.
  • the transfer of calories from the fluid to the working fluid of the recovery circuit 24 is thus optimized. For a quantity of heat to be transferred, this makes it possible to use an evaporator 23 that is more compact, and therefore also lighter and less expensive than if it were placed elsewhere in the cooling circuit 14 of the engine 13.
  • the evaporator 23 could not be avoided by the flow, its presence in the cooling circuit 14 would constitute an additional thermal inertia which would delay the rise in temperature of the coolant of the engine 13.
  • the delay in the rise in temperature of the engine 13 would be harmful to fuel consumption, due in particular to greater friction and increased thermal losses at the walls of the combustion chambers, with a cold engine.
  • Combustion is also less efficient as long as the walls of the combustion chambers are colder, and the pollution control means in the engine exhaust line also being less efficient when cold, the pollutants would also be greater.
  • the valve 17 or 26 for controlling the flow in the bypass 18 of the evaporator 23 also makes it possible, once the engine is warm, to manage, if necessary, the heat flow reaching the evaporator 23. It thus becomes possible to modulate, by controlling an intermediate position between the two extreme positions of the valve 17 or 26, the heat flow sent to the evaporator and captured by the recovery circuit. After stopping the engine 13 long enough for a drop in the cooling water temperature to be initiated, it is possible, conversely, to take advantage of the heat in the recuperator circuit to heat up the engine 13 more quickly, as well as it was mentioned.

Abstract

The evaporator (23) of a heat recovery circuit (24) associated with a cooling circuit (14) of a combustion engine (13) is arranged on a bypass (18) of an outlet pipe (16) outside the engine, and a valve (17) controls the distribution of the heat transfer streams between the bypass (18) and the portion parallel to the pipe (16). The flow passes fully or mainly via the bypass (18) when the motor is hot, but not when it is cold, so as to thus render the evaporator (23) inactive and so as not to prevent a normal rise in the temperature of the engine (13). By placing the evaporator (23) just at the outlet of the engine (13), a maximum flow of the heat transfer fluid passing through the cooling circuit (14) is obtained and therefore a more efficient heat recovery.

Description

CIRCUIT DE REFROIDISSEMENT D'UN MOTEUR THERMIQUE EQUIPE D'UN CIRCUIT RECUPERATEUR DE CHALEUR COOLING CIRCUIT OF A THERMAL ENGINE EQUIPPED WITH A HEAT RECOVERY CIRCUIT
Le sujet de l'invention est un circuit de refroidissement d'un moteur thermique, auquel est adjoint un circuit de récupération de chaleur. The subject of the invention is a cooling circuit for a heat engine, to which is added a heat recovery circuit.
Les circuits classiques de refroidissement de moteurs thermiques passent par des équipements tels que des radiateurs pour céder la chaleur acquise par le fluide caloporteur, généralement de l'eau, en traversant le moteur. La chaleur dissipée dans les radiateurs est toutefois perdue, et c'est pourquoi des dispositifs plus complets, comprenant encore un circuit récupérateur de chaleur adjoint au circuit de refroidissement, ont aussi été développés. La déposante s'est particulièrement intéressée aux circuits récupérateurs de chaleur à cycle organique de Rankine, ou ORC, sans que l'invention présente leur soit limitée. Conventional heat engine cooling circuits pass through equipment such as radiators to transfer the heat acquired by the heat transfer fluid, generally water, passing through the engine. The heat dissipated in the radiators is however wasted, and this is why more complete devices, also including a heat recovery circuit added to the cooling circuit, have also been developed. The applicant is particularly interested in heat recovery circuits with an organic Rankine cycle, or ORC, without the present invention being limited to them.
De tels circuits de récupération de chaleur sont en relation avec le circuit de refroidissement du moteur, par un échangeur de chaleur, généralement un évaporateur, et la chaleur qu'ils récupèrent peut être utilisée à entraîner une turbine. Certains documents de l'art antérieur illustrant de telles réalisations sont EP1925806 A2, EP2320058 Al et WO2016/069455 Al. Such heat recovery circuits are connected with the engine cooling circuit, via a heat exchanger, generally an evaporator, and the heat they recover can be used to drive a turbine. Certain documents of the prior art illustrating such embodiments are EP1925806 A2, EP2320058 A1 and WO2016 / 069455 A1.
Le but de la présente invention est de renforcer l'efficacité du circuit récupérateur, d'abord en plaçant l'évaporateur, ou plus généralement l'échangeur de chaleur avec le circuit de refroidissement, à un endroit du circuit où le débit de fluide caloporteur est maximal, en amont des embranchements distribuant le fluide caloporteur du circuit de refroidissement vers divers équipements. L'échangeur de chaleur sera donc placé à la sortie du moteur. Mais un inconvénient de cette idée est que l'inertie thermique du circuit de refroidissement est augmentée en raison de la présence de l'évaporateur à cet endroit où il est rendu plus efficace pour prélever la chaleur du circuit, ce qui contrariera la montée en température du moteur lors d'un démarrage à froid. The aim of the present invention is to strengthen the efficiency of the recovery circuit, first by placing the evaporator, or more generally the heat exchanger with the cooling circuit, at a location in the circuit where the flow of heat transfer fluid is maximum, upstream of the branches distributing the coolant from the cooling circuit to various equipment. The heat exchanger will therefore be placed at the outlet of the engine. But a drawback of this idea is that the thermal inertia of the cooling circuit is increased due to the presence of the evaporator at this location where it is made more efficient to take heat from the circuit, which will thwart the rise in temperature. of the engine during a cold start.
Ce problème est résolu, selon une deuxième caractéristique essentielle de l'invention, en construisant le circuit de refroidissement avec une dérivation sur laquelle est placé l'échangeur de chaleur, et avec une vanne de répartition du fluide caloporteur entre les deux branches : le flux sera dirigé plutôt vers la branche porteuse de l'échangeur pendant le fonctionnement stable, et plutôt vers l'autre branche dans d'autres circonstances, notamment quand le fluide caloporteur et le moteur sont froids. This problem is solved, according to a second essential characteristic of the invention, by constructing the cooling circuit with a bypass on which the heat exchanger is placed, and with a valve for distributing the fluid. coolant between the two branches: the flow will be directed more towards the supporting branch of the exchanger during stable operation, and rather towards the other branch in other circumstances, in particular when the coolant and the engine are cold.
Une définition générale de l'invention est ainsi un circuit de refroidissement d'un moteur thermique équipé d'un évaporateur en échange thermique avec un circuit adjoint de récupération de chaleur, le circuit de refroidissement et le circuit de récupération de chaleur étant parcourus par des flux séparés de fluides, caractérisé en ce que l'évaporateur est placé sur une dérivation du circuit de refroidissement, qui se branche en parallèle à un segment d'une partie principale du circuit de refroidissement adjacente au moteur et dans lequel le fluide a un débit maximal en amont de la dérivation, une vanne de répartition du flux entre la dérivation et le segment étant placée soit sur le segment, soit sur la dérivation, soit à un concours du segment et de la dérivation. A general definition of the invention is thus a cooling circuit of a heat engine equipped with an evaporator in heat exchange with an assistant heat recovery circuit, the cooling circuit and the heat recovery circuit being traversed by separate streams of fluids, characterized in that the evaporator is placed on a bypass of the cooling circuit, which is connected in parallel with a segment of a main part of the cooling circuit adjacent to the engine and in which the fluid has a flow maximum upstream of the bypass, a valve for distributing the flow between the bypass and the segment being placed either on the segment, or on the bypass, or in conjunction with the segment and the bypass.
La dérivation et donc l'échangeur de chaleur sont notamment placés en amont d'un éventuel thermostat du moteur, réglant la répartition du flux à travers un radiateur du circuit de refroidissement. Ils peuvent aussi être situés entre une culasse du moteur et un éventuel boîtier de répartition du fluide entre les branches du circuit de refroidissement, dit boîtier à eau. The bypass and therefore the heat exchanger are in particular placed upstream of a possible engine thermostat, regulating the distribution of the flow through a radiator of the cooling circuit. They can also be located between an engine cylinder head and a possible fluid distribution unit between the branches of the cooling circuit, called water unit.
La vanne peut être à trois voies, disposée à un point de concours dudit segment et de la dérivation. Elle peut aussi être une vanne à deux voies, placée alors soit sur le segment, soit sur la dérivation. The valve can be three-way, arranged at a point of intersection of said segment and the bypass. It can also be a two-way valve, then placed either on the segment or on the bypass.
La vanne peut être de tout genre connu : elle peut être un thermostat à fonctionnement autonome, ou une vanne passive, commandée par un dispositif séparé, d'après une température du fluide de refroidissement ou éventuellement d'autres paramètres. The valve can be of any known type: it can be a thermostat with autonomous operation, or a passive valve, controlled by a separate device, according to a temperature of the cooling fluid or possibly other parameters.
D'autres aspects de l'invention sont des procédés de commande d'un circuit de refroidissement selon ce qui précède. Dans l'un deux, on met en oeuvre les étapes suivantes : Other aspects of the invention are methods of controlling a cooling circuit according to the above. In one of them, the following steps are implemented:
a) lorsque la température dudit fluide de refroidissement à la sortie dudit moteur est inférieure à un seuil prédéterminé, ladite vanne B a) when the temperature of said coolant at the outlet of said engine is below a predetermined threshold, said valve B
empêche la circulation dudit fluide de refroidissement dans ledit évaporateur, et prevents the circulation of said cooling fluid in said evaporator, and
b) lorsque la température dudit fluide de refroidissement ladite sortie dudit moteur est supérieure à un seuil prédéterminé, ladite vanne autorise la circulation dudit fluide de refroidissement dans ledit évaporateur. b) when the temperature of said coolant, said outlet of said motor is greater than a predetermined threshold, said valve allows said coolant to circulate in said evaporator.
Un autre aspect encore de l'invention est un véhicule, par ailleurs ordinaire et donc non décrit en détail ici, comprenant un moteur à combustion interne, et un circuit de refroidissement conforme à ce qui précède. Yet another aspect of the invention is a vehicle, otherwise ordinary and therefore not described in detail here, comprising an internal combustion engine, and a cooling circuit in accordance with the above.
Les différents aspects, caractéristiques et avantages de l'invention seront maintenant décrits en liaison à la description détaillée des figures suivantes, qui représentent certains modes de réalisation purement illustratifs de l'invention : The various aspects, characteristics and advantages of the invention will now be described in conjunction with the detailed description of the following figures, which represent certain purely illustrative embodiments of the invention:
[Fig. 1] est une vue générale d'un circuit de refroidissement et des équipements par lesquels ils passent, d'après un système qui n'est toutefois pas conforme à l'invention ; [Fig. 1] is a general view of a cooling circuit and the equipment through which they pass, according to a system which is not however in accordance with the invention;
[Fig. 2] illustre un premier mode de réalisation de l'invention ; [Fig. 2] illustrates a first embodiment of the invention;
[Fig. 3] illustre un deuxième mode de réalisation de l'invention ; [Fig. 3] illustrates a second embodiment of the invention;
[Fig. 4] illustre un troisième mode de réalisation de l'invention ; [Fig. 4] illustrates a third embodiment of the invention;
[Fig. 5] illustre un quatrième mode de réalisation de l'invention. [Fig. 5] illustrates a fourth embodiment of the invention.
Le dispositif classique de la figure 1 est maintenant décrit en détail. Un moteur 1 thermique est refroidi par un circuit de refroidissement 2 parcouru par un fluide caloporteur refoulé par une pompe 3. A la sortie de celle-ci, le fluide passe par le moteur 1, puis par un thermostat 4 qui répartit l'écoulement en deux branches du circuit de refroidissement 2 selon sa température, dont l'une passe par un radiateur 5 avant de revenir à la pompe 3, et l'autre passe par un échangeur de chaleur 6 qui récupère une partie des calories d'une tubulure de gaz d'échappement 7, par un évaporateur 8 d'un circuit récupérateur de chaleur 9 à cycle organique de Rankine dont le fluide de travail, refoulé par une deuxième pompe 10, passe par l'évaporateur 8, puis par une turbine 11 et un condenseur 12. Le fluide caloporteur de cette branche revient ensuite aussi à la pompe 3, devant laquelle les deux branches se joignent. On ne s'étendra pas sur les détails du fonctionnement de ces circuits récupérateurs de chaleur connus, qui prennent des calories du fluide de refroidissement à l'évaporateur 8 pour les convertir en énergie mécanique à la turbine 11 connus. Dans cette réalisation antérieure, l'évaporateur 8, placé entre l'échangeur de chaleur 6 et la pompe B, est situé sur une des branches du circuit de refroidissement 2, en amont du point de concours avec la branche originaire du radiateur 5, et son efficacité est donc réduite, puisqu'un débit partiel seulement l'emprunte. Il en irait de même si l'évaporateur 8 était situé en aval de ce point de concours, le fluide ayant passé par le radiateur 5 et qui s'ajouterait alors au débit passant par l'évaporateur 8 ayant été trop refroidi pour contribuer à renforcer beaucoup l'échange de chaleur. The conventional device of Figure 1 is now described in detail. A heat engine 1 is cooled by a cooling circuit 2 through which a heat transfer fluid delivered by a pump 3. On leaving the latter, the fluid passes through the engine 1, then by a thermostat 4 which distributes the flow in two branches of the cooling circuit 2 according to its temperature, one of which passes through a radiator 5 before returning to the pump 3, and the other passes through a heat exchanger 6 which recovers part of the calories from a exhaust gas 7, by an evaporator 8 of a heat recovery circuit 9 with an organic Rankine cycle, the working fluid of which, delivered by a second pump 10, passes through the evaporator 8, then through a turbine 11 and a condenser 12. The coolant from this branch then also returns to the pump 3, in front of which the two branches join. We will not dwell on the details of the operation of these known heat recovery circuits, which take calories from the cooling fluid at the evaporator 8 to convert them into mechanical energy at the known turbine 11. In this prior embodiment, the evaporator 8, placed between the heat exchanger 6 and the pump B, is located on one of the branches of the cooling circuit 2, upstream of the point of contact with the branch originating from the radiator 5, and its efficiency is therefore reduced, since only a partial debit borrows it. The same would apply if the evaporator 8 were located downstream of this point of contact, the fluid having passed through the radiator 5 and which would then be added to the flow passing through the evaporator 8 having been too cooled to contribute to strengthening a lot of heat exchange.
Une première réalisation de l'invention sera maintenant décrite au moyen de la figure 2. Le moteur thermique porte la référence 13, et son circuit de refroidissement la référence 14. Une pompe 15 refoule le fluide de celui-ci à travers le moteur 13, avant qu'il ressorte par un conduit de sortie 16 sur lequel est placée une vanne 17. A cet endroit, le circuit de refroidissement se divise en une dérivation 18 et un segment 28 du conduit de sortie 16. La dérivation 18 rejoint le conduit de sortie 16 en aval de la vanne 17, mais en amont d'un thermostat de moteur 19 (on rappelle qu'un thermostat comporte une entrée et deux sorties, et pour lequel l'entrée et les sorties sont reliées en fonction de l'ouverture d'une vanne interne, dont l'ouverture dépend de la température du fluide traversant le thermostat) qui répartit le fluide caloporteur entre une branche 20 traversant un radiateur 21 et une branche 22 qui l'évite, les branches 20 et 22 revenant ensuite à la pompe 15. Un évaporateur 23 d'un circuit de récupération de chaleur 24, semblable par ailleurs à celui qu'on a décrit à la figure 1, est disposé sur la dérivation 18, alors que le segment 28 reste inoccupé (c'est-à-dire sans équipement). Par exemple, le circuit de récupération de chaleur 24 peut être un circuit fermé selon un cycle de Rankine, dans lequel circule un fluide caloporteur (notamment un fluide organique). Le circuit fermé comprend une pompe, l'évaporateur, un moyen de détente et un condenseur. Le circuit de refroidissement 14 peut passer par d'autres équipements, non représentés ici, en particulier des échangeurs de chaleur avec d'autres sources thermiques ou d'autres équipements, et se diviser en d'autres branches en aval de la dérivation. A first embodiment of the invention will now be described by means of FIG. 2. The heat engine bears the reference 13, and its cooling circuit the reference 14. A pump 15 delivers the fluid thereof through the engine 13, before it leaves through an outlet duct 16 on which is placed a valve 17. At this point, the cooling circuit is divided into a bypass 18 and a segment 28 of the outlet duct 16. The bypass 18 joins the duct of output 16 downstream of valve 17, but upstream of an engine thermostat 19 (remember that a thermostat has one input and two outputs, and for which the input and outputs are connected according to the opening an internal valve, the opening of which depends on the temperature of the fluid passing through the thermostat) which distributes the heat transfer fluid between a branch 20 passing through a radiator 21 and a branch 22 which avoids it, the branches 20 and 22 then returning to pump 15. An evaporator 23 a heat recovery circuit 24, otherwise similar to that described in FIG. 1, is arranged on the bypass 18, while the segment 28 remains unoccupied (that is to say without equipment) . For example, the heat recovery circuit 24 can be a closed circuit according to a Rankine cycle, in which circulates a heat transfer fluid (in particular an organic fluid). The closed circuit comprises a pump, the evaporator, an expansion means and a condenser. The cooling circuit 14 can pass through other equipment, not shown here, in particular heat exchangers with other sources. thermal or other equipment, and split into other branches downstream of the bypass.
La vanne 17 est une vanne à trois voies qui régit la répartition du fluide caloporteur pour le faire passer à travers l'évaporateur 23 ou au contraire l'éviter par le segment 28 et rejoindre directement le thermostat de moteur 19. Le flux prépondérant pourra passer par la dérivation 18 ou rester dans la branche de sortie 16, notamment d'après les températures du fluide caloporteur, voire du moteur 13 ou de l'évaporateur 23, selon des possibilités de fonctionnement décrites plus loin. Si le pilotage de la vanne 17 s'effectue seulement en température, elle pourra être un thermostat. Elle pourra aussi consister en une vanne passive commandée par un dispositif distinct, non représenté et sensible à divers capteurs, notamment de la température du fluide caloporteur ou de la température du moteur 13. Enfin, la vanne 17 peut être à deux états, ou admettre des états intermédiaires. The valve 17 is a three-way valve which governs the distribution of the heat transfer fluid to pass it through the evaporator 23 or on the contrary to avoid it through the segment 28 and directly reach the engine thermostat 19. The predominant flow can pass. via the bypass 18 or remain in the outlet branch 16, in particular according to the temperatures of the heat transfer fluid, or even of the motor 13 or of the evaporator 23, according to the operating possibilities described below. If the valve 17 is controlled only in temperature, it could be a thermostat. It may also consist of a passive valve controlled by a separate device, not shown and sensitive to various sensors, in particular the temperature of the heat transfer fluid or the temperature of the engine 13. Finally, the valve 17 can be in two states, or admit. intermediate states.
La figure 3 illustre une réalisation alternative, qui diffère de la précédente en ce que le thermostat de moteur 19 à la séparation entre la branche 20 et la dérivation 22 est omis et remplacé par un thermostat de moteur 25 situé au point où ces branches 20 et 22 se rejoignent avant de revenir à la pompe 15. Le dispositif n'est pas modifié par ailleurs. Figure 3 illustrates an alternative embodiment, which differs from the previous one in that the engine thermostat 19 at the separation between branch 20 and bypass 22 is omitted and replaced by an engine thermostat 25 located at the point where these branches 20 and 22 meet before returning to the pump 15. The device is not otherwise modified.
Le mode de réalisation illustré à la figure 4 diffère de celui de la figure 2 en ce que la vanne 17 est remplacée par une vanne 26 à deux voies placée soit sur la dérivation 18, soit sur le segment 28 du conduit de sortie 16 entre ses jonctions avec ses extrémités de la dérivation 18. La vanne 26 peut encore être un thermostat ou une vanne passive à dispositif de commande séparé. Elle permet encore de répartir le fluide caloporteur entre la dérivation 18 et ledit segment 28, qui est en parallèle à celle-ci. The embodiment illustrated in Figure 4 differs from that of Figure 2 in that the valve 17 is replaced by a two-way valve 26 placed either on the bypass 18 or on the segment 28 of the outlet duct 16 between its junctions with its ends of the bypass 18. The valve 26 can also be a thermostat or a passive valve with separate control device. It also makes it possible to distribute the heat transfer fluid between the bypass 18 and said segment 28, which is parallel to the latter.
Dans tous ces modes de réalisation, la dérivation 18 peut être placée immédiatement en aval du moteur 13, voire adjacente à celui-ci, ou être séparée de lui par des échangeurs de chaleur, avec la tubulure des gaz d'échappement par exemple, qui permettent de chauffer encore le fluide caloporteur ; et si le circuit de refroidissement 14 se divise à l'endroit du moteur 13, par exemple en plusieurs branches parallèles pour refroidir la culasse du moteur 13 ou une branche supplémentaire pour refroidir le circuit de lubrification, la dérivation 18 est placée en aval des points où ces différentes branches se rejoignent à la sortie du moteur 13, afin de reformer une conduite de sortie 16 unique, afin de disposer de tout le débit du circuit de refroidissement 14 au profit de l'échange de chaleur avec le circuit récupérateur 24. In all these embodiments, the bypass 18 can be placed immediately downstream of the engine 13, or even adjacent to the latter, or be separated from it by heat exchangers, with the exhaust gas pipe for example, which allow the heat transfer fluid to be further heated; and if the cooling circuit 14 is divided at the location of the engine 13, for example into several parallel branches to cool the cylinder head of the engine 13 or an additional branch to cool the circuit lubrication, the bypass 18 is placed downstream of the points where these different branches meet at the outlet of the motor 13, in order to reform a single outlet pipe 16, in order to have all the flow of the cooling circuit 14 for the benefit of heat exchange with the recovery circuit 24.
Dans le cas où le circuit de refroidissement 14 comprend ce qu'on appelle un boîtier de sortie d'eau 27 dont la fonction est de répartir les flux caloporteurs vers diverses branches du circuit de refroidissement 14 dès la sortie du moteur 13, la figure 5 illustre que ce boîtier de sortie d'eau 27 n'est pas fixé directement au moteur 13, mais par l'intermédiaire d'une entretoise 29 qui contient au moins une partie de la dérivation 18, et la vanne 17 ou 26. Dans l'exemple représenté, le boîtier de sortie d'eau 27 répartit le flux caloporteur entre les branches 20 et 22, dont la première dessert le radiateur 21 et la seconde l'évite. In the case where the cooling circuit 14 comprises what is called a water outlet box 27, the function of which is to distribute the heat transfer flows to various branches of the cooling circuit 14 from the outlet of the engine 13, FIG. 5 illustrates that this water outlet housing 27 is not attached directly to the motor 13, but via a spacer 29 which contains at least part of the bypass 18, and the valve 17 or 26. In the Example shown, the water outlet housing 27 distributes the heat transfer flow between the branches 20 and 22, the first of which serves the radiator 21 and the second avoids it.
Le fonctionnement des dispositifs de l'invention est maintenant décrit. Pendant la phase de montée en température du moteur 13, l'évaporateur 23 est évité de sorte que le flux de fluide caloporteur ne circule pas, ou très peu, à travers la dérivation 18. Le flux passe entièrement ou principalement dans le segment 28 de la branche de sortie 16, sans quitter celle-ci. La montée en température du moteur 13 n'est donc pas retardée par l'inertie thermique supplémentaire que représente l'évaporateur 23. Une fois que le moteur 13 est chaud, ce qui correspond par exemple à l'atteinte d'un seuil prédéfini de température en sortie du moteur 13, ou à l'instant où le thermostat du moteur 19 ou 25 commence à ouvrir la branche 20 du circuit de refroidissement 14 qui mène au radiateur 21, la vanne 17 ou 26 de commande du débit vers l'évaporateur 23 est activée, de sorte à envoyer tout ou partie du débit de fluide à la sortie du moteur 13 vers l'évaporateur 23. Le circuit récupérateur 24 de chaleur commence alors à recevoir des calories et peut se mettre à fonctionner. Si la vanne 17 ou 26 de commande de débit vers l'évaporateur 23 est de type à commande continue, il est possible de piloter le flux de chaleur envoyé à l'évaporateur 23 si on souhaite moduler la puissance de fonctionnement du circuit récupérateur. Pour cela, la vanne 17 ou 26 de commande de débit est réglée à une position intermédiaire entre la pleine ouverture et la pleine fermeture. Enfin, après un arrêt du moteur 13 ayant conduit à un début de descente en température du fluide de refroidissement, l'invention permet d'accélérer la remontée en température du moteur 13 : si la température dans l'évaporateur 23 est supérieure à celle du fluide de refroidissement au moment du redémarrage, la vanne 17 ou 26 peut être réglée de sorte que le fluide en sortie du moteur 13 soit dirigé vers l'évaporateur 23, de sorte à l'utiliser pour réchauffer plus rapidement le fluide, afin que le moteur 13 retrouve un état de fonctionnement chaud plus vite. The operation of the devices of the invention is now described. During the heat-up phase of the engine 13, the evaporator 23 is avoided so that the flow of heat transfer fluid does not circulate, or very little, through the bypass 18. The flow passes entirely or mainly in the segment 28 of the output branch 16, without leaving the latter. The rise in temperature of the motor 13 is therefore not delayed by the additional thermal inertia represented by the evaporator 23. Once the motor 13 is hot, which corresponds for example to reaching a predefined threshold of temperature at the outlet of the engine 13, or at the instant when the thermostat of the engine 19 or 25 begins to open the branch 20 of the cooling circuit 14 which leads to the radiator 21, the valve 17 or 26 for controlling the flow rate to the evaporator 23 is activated, so as to send all or part of the fluid flow at the outlet of the motor 13 to the evaporator 23. The heat recovery circuit 24 then begins to receive calories and can begin to operate. If the valve 17 or 26 for controlling the flow rate to the evaporator 23 is of the continuously controlled type, it is possible to control the heat flow sent to the evaporator 23 if it is desired to modulate the operating power of the recovery circuit. For this, the flow control valve 17 or 26 is set to an intermediate position between full opening and full closure. Finally, after stopping the engine 13 having led to the start of a drop in temperature of the cooling fluid, the invention makes it possible to accelerate the rise in temperature of the engine 13: if the temperature in the evaporator 23 is higher than that of the coolant when restarting, the valve 17 or 26 can be adjusted so that the fluid leaving the motor 13 is directed to the evaporator 23, so as to use it to heat the fluid more quickly, so that the engine 13 returns to a warm operating state more quickly.
Les avantages de l'invention peuvent être énoncés comme suit. Le positionnement de l'évaporateur 23 dans le circuit de refroidissement 14 à la sortie du moteur 13 et avant les embranchements du circuit 14 permet à l'évaporateur 23 d'être traversé par l'ensemble du débit de fluide de refroidissement du moteur 13. C'est généralement le point du circuit 14 où le débit de fluide est le plus élevé. Le transfert des calories du fluide vers le fluide de travail du circuit récupérateur 24 est ainsi optimisé. Pour une quantité de chaleur à transférer, cela permet d'avoir recours à un évaporateur 23 plus compact, donc également plus léger et moins cher que s'il était placé à un autre endroit du circuit de refroidissement 14 du moteur 13. The advantages of the invention can be stated as follows. The positioning of the evaporator 23 in the cooling circuit 14 at the outlet of the engine 13 and before the branches of the circuit 14 allows the evaporator 23 to be passed through by the entire flow of cooling fluid from the engine 13. This is generally the point of circuit 14 where the fluid flow rate is the highest. The transfer of calories from the fluid to the working fluid of the recovery circuit 24 is thus optimized. For a quantity of heat to be transferred, this makes it possible to use an evaporator 23 that is more compact, and therefore also lighter and less expensive than if it were placed elsewhere in the cooling circuit 14 of the engine 13.
Si l'évaporateur 23 ne pouvait être évité par le flux, sa présence dans le circuit de refroidissement 14 constituerait une inertie thermique supplémentaire qui retarderait la montée en température du fluide caloporteur du moteur 13. Le retard de la montée en température du moteur 13 serait nuisible à la consommation de carburant, du fait en particulier de frottements plus importants et de pertes thermiques accrues aux parois des chambres de combustion, à moteur froid. La combustion étant aussi moins efficace tant que les parois des chambres de combustion sont plus froides, et les moyens de dépollution dans la ligne d'échappement du moteur étant aussi moins efficaces à froid, les polluants seraient aussi plus importants. If the evaporator 23 could not be avoided by the flow, its presence in the cooling circuit 14 would constitute an additional thermal inertia which would delay the rise in temperature of the coolant of the engine 13. The delay in the rise in temperature of the engine 13 would be harmful to fuel consumption, due in particular to greater friction and increased thermal losses at the walls of the combustion chambers, with a cold engine. Combustion is also less efficient as long as the walls of the combustion chambers are colder, and the pollution control means in the engine exhaust line also being less efficient when cold, the pollutants would also be greater.
La vanne 17 ou 26 de commande du débit dans la dérivation 18 de l'évaporateur 23 permet également, une fois le moteur chaud, de gérer si besoin est le flux de chaleur parvenant à l'évaporateur 23. Il devient possible ainsi de moduler, grâce au pilotage d'une position intermédiaire entre les deux positions extrêmes de la vanne 17 ou 26, le flux de chaleur envoyé vers l'évaporateur et capté par le circuit récupérateur. Après un arrêt du moteur 13 suffisamment long pour qu'une baisse de température d'eau de refroidissement soit amorcée, on peut, à l'inverse, profiter de la chaleur dans le circuit récupérateur pour réchauffer plus vite le moteur 13, ainsi qu'on l'a mentionné. The valve 17 or 26 for controlling the flow in the bypass 18 of the evaporator 23 also makes it possible, once the engine is warm, to manage, if necessary, the heat flow reaching the evaporator 23. It thus becomes possible to modulate, by controlling an intermediate position between the two extreme positions of the valve 17 or 26, the heat flow sent to the evaporator and captured by the recovery circuit. After stopping the engine 13 long enough for a drop in the cooling water temperature to be initiated, it is possible, conversely, to take advantage of the heat in the recuperator circuit to heat up the engine 13 more quickly, as well as it was mentioned.

Claims

Revendications Claims
1. Circuit de refroidissement d'un moteur (13) thermique équipé d'un évaporateur (23) en échange thermique avec un circuit (24) adjoint de récupération de chaleur, le circuit de refroidissement et le circuit de récupération de chaleur étant parcourus par des flux séparés de fluides, caractérisé en ce que l'évaporateur (23) est placé sur une dérivation (18) du circuit de refroidissement (14), qui se branche en parallèle à un segment (28) d'une partie principale (16) du circuit de refroidissement adjacente au moteur et dans lequel le fluide a un débit maximal en amont de la dérivation, une vanne (17, 26) de répartition du flux entre la dérivation (18) et le segment étant placée soit sur le segment (28), soit sur la dérivation (18), soit à un concours du segment et de la dérivation. 1. Cooling circuit of a thermal engine (13) equipped with an evaporator (23) in thermal exchange with an assistant circuit (24) for heat recovery, the cooling circuit and the heat recovery circuit being traversed by separate flows of fluids, characterized in that the evaporator (23) is placed on a bypass (18) of the cooling circuit (14), which is connected in parallel to a segment (28) of a main part (16 ) of the cooling circuit adjacent to the engine and in which the fluid has a maximum flow upstream of the bypass, a valve (17, 26) for distributing the flow between the bypass (18) and the segment being placed either on the segment ( 28), either on the derivation (18), or in a competition of the segment and the derivation.
2. Circuit de refroidissement d'un moteur thermique selon la revendication 1, caractérisé en ce que le circuit de récupération de chaleur est un circuit à cycle organique de Rankine. 2. Cooling circuit of a heat engine according to claim 1, characterized in that the heat recovery circuit is an organic Rankine cycle circuit.
3. Circuit de refroidissement d'un moteur thermique selon la revendication 1 ou 2, caractérisé en ce que la dérivation (18) est en amont d'un thermostat de moteur (19, 25), réglant une répartition du flux à travers un radiateur (21). 3. Cooling circuit of a heat engine according to claim 1 or 2, characterized in that the bypass (18) is upstream of an engine thermostat (19, 25), regulating a distribution of the flow through a radiator. (21).
4. Circuit de refroidissement d'un moteur thermique selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la dérivation est située entre le moteur et un boîtier de sortie (27) du fluide, qui répartit le fluide entre des branches (20, 22) du circuit de refroidissement. 4. Cooling circuit of a heat engine according to any one of claims 1 to 3, characterized in that the bypass is located between the engine and an outlet housing (27) of the fluid, which distributes the fluid between branches. (20, 22) of the cooling circuit.
5. Circuit de refroidissement d'un moteur thermique selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la vanne est une vanne à trois voies disposée à un concours du segment (28) et de la dérivation (18). 5. Cooling circuit of a heat engine according to any one of claims 1 to 4, characterized in that the valve is a three-way valve arranged in conjunction with the segment (28) and the bypass (18).
6. Circuit de refroidissement d'un moteur thermique selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la vanne est une vanne à deux voies. 6. Cooling circuit of a heat engine according to any one of claims 1 to 4, characterized in that the valve is a two-way valve.
7. Circuit de refroidissement d'un moteur thermique selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la vanne est un thermostat. 7. Cooling circuit of a heat engine according to any one of claims 1 to 6, characterized in that the valve is a thermostat.
8. Circuit de refroidissement d'un moteur thermique selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la vanne est commandée d'après une température du fluide du circuit de refroidissement. 8. Cooling circuit of a heat engine according to any one of claims 1 to 6, characterized in that the valve is controlled according to a temperature of the fluid of the cooling circuit.
9. Procédé de commande d'un circuit de refroidissement selon l'une quelconque des revendications précédentes, dans lequel on met en oeuvre les étapes suivantes : 9. A method of controlling a cooling circuit according to any one of the preceding claims, in which the following steps are implemented:
a) lorsque la température dudit fluide de refroidissement à la sortie dudit moteur (13) est inférieure à un seuil prédéterminé, ladite vanne empêche la circulation dudit fluide de refroidissement dans ledit évaporateur (23), et a) when the temperature of said coolant at the outlet of said engine (13) is below a predetermined threshold, said valve prevents the circulation of said coolant in said evaporator (23), and
b) lorsque la température dudit fluide de refroidissement ladite sortie dudit moteur est supérieure à un seuil prédéterminé, ladite vanne autorise la circulation dudit fluide de refroidissement dans ledit évaporateur (23). b) when the temperature of said coolant, said outlet of said motor is greater than a predetermined threshold, said valve allows said coolant to circulate in said evaporator (23).
10. Véhicule comprenant un moteur à combustion interne et un circuit de refroidissement (14) selon l'une des revendications 1 à 8. 10. Vehicle comprising an internal combustion engine and a cooling circuit (14) according to one of claims 1 to 8.
PCT/EP2020/050737 2019-01-23 2020-01-14 Combustion engine cooling circuit equipped with a heat recovery circuit WO2020151989A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021542375A JP7466551B2 (en) 2019-01-23 2020-01-14 Combustion engine cooling circuit with heat recovery circuit
EP20700389.8A EP3914817A1 (en) 2019-01-23 2020-01-14 Combustion engine cooling circuit equipped with a heat recovery circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1900591A FR3091898B1 (en) 2019-01-23 2019-01-23 COOLING CIRCUIT OF A THERMAL ENGINE EQUIPPED WITH A HEAT RECOVERY CIRCUIT
FR1900591 2019-01-23

Publications (1)

Publication Number Publication Date
WO2020151989A1 true WO2020151989A1 (en) 2020-07-30

Family

ID=66676825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/050737 WO2020151989A1 (en) 2019-01-23 2020-01-14 Combustion engine cooling circuit equipped with a heat recovery circuit

Country Status (3)

Country Link
EP (1) EP3914817A1 (en)
FR (1) FR3091898B1 (en)
WO (1) WO2020151989A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1441121A2 (en) * 2003-01-27 2004-07-28 Denso Corporation Vapor-compression refrigerant cycle system with refrigeration cycle and rankine cycle
EP1925806A2 (en) 2006-11-24 2008-05-28 Behr GmbH & Co. KG System with an organic Rankine cycle for operating at least one expansion machine, heat exchanger for operating one expansion machine, method for operating at least one expansion machine
EP2320058A1 (en) 2008-08-26 2011-05-11 Sanden Corporation Waste heat utilization device for internal combustion engine
DE102011111125A1 (en) * 2011-08-20 2013-02-21 Volkswagen Aktiengesellschaft Drive device for motor vehicles, has internal combustion engine, steam power engine and cooling circuit for cooling internal combustion engine, where coolant is guided in cooling circuit over heat exchanger of steam power engine
DE102014212019A1 (en) * 2014-06-23 2015-12-24 Magna powertrain gmbh & co kg Cooling and energy recovery system
WO2016069455A1 (en) 2014-10-27 2016-05-06 Cummins, Inc. System and method of low grade heat utilization for a waste heat recovery system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1441121A2 (en) * 2003-01-27 2004-07-28 Denso Corporation Vapor-compression refrigerant cycle system with refrigeration cycle and rankine cycle
EP1925806A2 (en) 2006-11-24 2008-05-28 Behr GmbH & Co. KG System with an organic Rankine cycle for operating at least one expansion machine, heat exchanger for operating one expansion machine, method for operating at least one expansion machine
EP2320058A1 (en) 2008-08-26 2011-05-11 Sanden Corporation Waste heat utilization device for internal combustion engine
DE102011111125A1 (en) * 2011-08-20 2013-02-21 Volkswagen Aktiengesellschaft Drive device for motor vehicles, has internal combustion engine, steam power engine and cooling circuit for cooling internal combustion engine, where coolant is guided in cooling circuit over heat exchanger of steam power engine
DE102014212019A1 (en) * 2014-06-23 2015-12-24 Magna powertrain gmbh & co kg Cooling and energy recovery system
WO2016069455A1 (en) 2014-10-27 2016-05-06 Cummins, Inc. System and method of low grade heat utilization for a waste heat recovery system

Also Published As

Publication number Publication date
EP3914817A1 (en) 2021-12-01
FR3091898B1 (en) 2021-04-09
JP2022518502A (en) 2022-03-15
FR3091898A1 (en) 2020-07-24

Similar Documents

Publication Publication Date Title
EP2106999B2 (en) Ship equipped with thermal energy recovery means
FR3002285A1 (en) EXHAUST GAS HEAT RECOVERY SYSTEM IN AN INTERNAL COMBUSTION ENGINE, WITH TWO HEAT EXCHANGERS AT A GAS RECIRCULATION CIRCUIT
EP1615791B1 (en) Method and device for heating a motor vehicle cabin
EP2935853B1 (en) Engine intake air thermal management device and associated thermal management method
FR2885169A1 (en) Onboard heat energy managing system for vehicle, has Rankine cycle energy recovery circuit comprising bypass control valve in parallel with turbine which provides mechanical energy from fluid at vapor state
WO2016135244A1 (en) Device for the thermal management of engine intake air
EP2010769A1 (en) System and method for controlling the temperature of a supercharged engine comprising an exhaust gas recycling circuit
FR2915771A1 (en) Internal combustion engine i.e. spark ignition engine, cooling assembly for vehicle, has cooling circuit transporting heat transfer fluid between combustion gas exchanger and main and additional radiators
EP0886724B1 (en) Method and installation for recuperating heat in the surcharging air of an engine
FR2615457A1 (en) HEATING SYSTEM FOR A MOTOR VEHICLE COMPRISING A HEAT GENERATOR
EP2959121A1 (en) System for recuperating heat from the exhaust gases in an internal combustion engine
WO2020151989A1 (en) Combustion engine cooling circuit equipped with a heat recovery circuit
FR2953889A1 (en) Coolant calories exchanging circuit for heat engine of motor vehicle, has derivation branch arranged in parallel with heater, and selection units permitting orientation of coolant in selective manner in heater or derivation branch
FR2825750A1 (en) Equipment for thermal regulation of internal combustion engine and vehicle cabin, comprises circuit with regulating branch, two energy storage branches, a regenerating branch and branch switches
FR2908457A3 (en) Recycled exhaust gas cooling system for e.g. oil engine of motor vehicle, has main circuit, and secondary circuit with secondary valve for limiting or preventing circulation of liquid in secondary circuit when cooling is not required
FR2932845A1 (en) Heat engine cooling method for vehicle, involves delivering part of heat-transfer liquid to heat-transfer liquid inlet from cooling cavities of cylinder head with respect to temperature of heat-transfer liquid so as to exit pump
EP3250810B1 (en) Air intake system and intake-air thermal management method
JP7466551B2 (en) Combustion engine cooling circuit with heat recovery circuit
FR3066537B1 (en) METHOD FOR CONTROLLING A LUBRICATING OIL TEMPERATURE OF A THERMAL MOTOR AT TWO OUTPUT FLOWS
WO2024022845A1 (en) Kit for adapting a central heating system and method for controlling a system equipped with such a kit
FR2639009A1 (en) Heating device for a motor vehicle including a heat generator
FR2978206A1 (en) Temperature control device for car, has recycled gas radiator connected between port and connection point, and valve system for circulating fluids of principal and secondary circuits in recycled gas radiator
FR2880067A1 (en) Gas temperature controlling installation for motor vehicle`s e.g. diesel engine, has valve adjusting flow of hot and cold liquids from main and secondary loops to make pass into cooler`s inlet, based on liquid temperature in cooler`s outlet
FR2846715A1 (en) Device supplying heat to automobile engine cooling loop comprises circuit connecting fluid outlet from engine to principal valve allowing passage of fluid to second circuit comprising heat exchanger cooling fluid before return to engine
BE404904A (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20700389

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021542375

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020700389

Country of ref document: EP

Effective date: 20210823