WO2020151506A1 - 一种信号发送、接收方法及设备 - Google Patents

一种信号发送、接收方法及设备 Download PDF

Info

Publication number
WO2020151506A1
WO2020151506A1 PCT/CN2020/071542 CN2020071542W WO2020151506A1 WO 2020151506 A1 WO2020151506 A1 WO 2020151506A1 CN 2020071542 W CN2020071542 W CN 2020071542W WO 2020151506 A1 WO2020151506 A1 WO 2020151506A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
sequence
subcarrier
group
subcarrier groups
Prior art date
Application number
PCT/CN2020/071542
Other languages
English (en)
French (fr)
Inventor
龚名新
曲秉玉
周永行
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20744444.9A priority Critical patent/EP3907954B1/en
Publication of WO2020151506A1 publication Critical patent/WO2020151506A1/zh
Priority to US17/380,097 priority patent/US11956178B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0022PN, e.g. Kronecker
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • H04J13/0062Zadoff-Chu
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26035Maintenance of orthogonality, e.g. for signals exchanged between cells or users, or by using covering codes or sequences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26134Pilot insertion in the transmitter chain, e.g. pilot overlapping with data, insertion in time or frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/362Modulation using more than one carrier, e.g. with quadrature carriers, separately amplitude modulated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J2011/0003Combination with other multiplexing techniques
    • H04J2011/0009Combination with other multiplexing techniques with FDM/FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J2013/0037Multilevel codes

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for signal sending and receiving.
  • the downlink demodulation reference signal uses a sequence obtained based on the Gold sequence, which undergoes quadrature phase shift keying (quadrature phase shift keyin, QPSK). ) After modulation, it is mapped to frequency domain subcarriers.
  • the sequence ⁇ c(n) ⁇ used by DMRS is intercepted from the Gold sequence of length (2 31 -1), and the initial value of the Gold sequence is Determined by factors such as the identifier (ID) of the DMRS scrambling code (or cell ID) of the terminal equipment, the subframe number of the subframe where the DMRS is located, and the position of the OFDM symbol.
  • the sequence ⁇ c(n) ⁇ Modulation is ⁇ s(n) ⁇ , Then the sequence ⁇ s(n) ⁇ is carried on the subcarriers of the DMRS.
  • the downlink DMRS in the NR system uses only the fragments of the Gold sequence, and the cross-correlation between the fragments of the Gold sequence is poor, which will cause more interference between signals. Large, affect the channel estimation performance.
  • the embodiments of the present application provide a signal sending and receiving method and device for reducing interference between signals.
  • a first signal sending method includes:
  • the time-frequency resource includes N subcarrier groups, and the i-th subcarrier group in the N subcarrier groups includes K i subcarriers, where N is a positive integer greater than or equal to 1, and K i is An integer greater than 1;
  • sequence Is determined from the first sequence group the sequence Is determined according to the identity of the first signal or the identity of the cell, or the sequence Is determined from the second sequence group, the sequence It is determined according to the identity of the first signal or the identity of the cell.
  • the method may be executed by a first communication device.
  • the first communication device may be the first device or a communication device capable of supporting the functions required by the first device to implement the method, and of course, it may also be other communication devices, such as a chip system.
  • the first communication device is the first device.
  • the first device can be a terminal device or a network device.
  • the network device is an access network device, such as a base station.
  • the portion of the first signal carried on the kth subcarrier in the ith subcarrier group in the N subcarrier groups is And with Related sequence Is one of the listed sequences.
  • the listed sequences are all sequences with good cross-correlation. Therefore, when terminal devices in different cells in the system use the above rules to transmit signals on the same time-frequency resource, the For the same time domain resource and the same subcarrier group, as long as the different terminal equipment selects If the sequences are different in the listed sequence, then it can be ensured that when the terminal equipment of these different cells sends signals in the same subcarrier group, the cross-correlation between the signals carried by the subcarrier group is better, which can reduce the inter-cell interference.
  • the first signal in the embodiment of the present application may also be a downlink signal.
  • the access network devices of different cells in the system use the above rules to send signals on the same time-frequency resources, as long as the access network devices of different cells select If it is a different sequence in the listed sequence, then it can be ensured that when signals are sent in the same sub-carrier group, the cross-correlation between the signals carried by the sub-carrier group is better, which can reduce signal interference between cells and improve different cells.
  • the method further includes: sending first signaling, where the first signaling is used to indicate the identity of the first signal.
  • the first device can send the identity of the first signal, and the second device can obtain the identity of the first signal after receiving the first signaling, so that the sequence can be determined according to the identity of the first signal Wait.
  • a first signal receiving method includes:
  • the K i elements in the N subcarrier groups process the signal carried by the i-th subcarrier group in the N subcarrier groups, where the sequence Is one of the following sequences:
  • sequence Is determined from the first sequence group the sequence Is determined according to the identity of the first signal or the identity of the cell, or the sequence Is determined from the second sequence group, the sequence It is determined according to the identity of the first signal or the identity of the cell.
  • the method can be executed by a second communication device.
  • the second communication device can be a second device or a communication device capable of supporting the second device to implement the functions required by the method, and of course it can also be another communication device, such as a chip system.
  • the second communication device is the second device.
  • the first device is a terminal device and the second device is a network device, or the first device is a network device and the second device is a terminal device.
  • the network device is an access network device, such as a base station.
  • the method further includes: receiving first signaling, where the first signaling is used to indicate the identity of the first signal.
  • k it has nothing to do with k, that is, it does not depend on the change of k. For example, when k is different, Can take the same value.
  • Optional It can be related to the identity of the first signal or the identity of the cell, for example, the identity of the first signal is not at the same time Can be different, or when the cell identity is different Can be different.
  • Binding a first aspect, a first aspect of a possible embodiment, or in conjunction with a second aspect, a second aspect of a possible embodiment, d i (k) of the first signal The identity or the identity of the cell is irrelevant.
  • the sequence ⁇ d i (k) ⁇ has nothing to do with the identity of the first signal.
  • the sequence ⁇ d i (k) ⁇ can be the same, or understood as a sequence ⁇ d i (k) ⁇ It can correspond to at least two identifications of the first signal.
  • the sequence ⁇ d i (k) ⁇ has nothing to do with the identity of the cell.
  • the sequence ⁇ d i (k) ⁇ can be the same, or it can be understood that a sequence ⁇ d i (k) ⁇ can Correspond to the identities of at least two cells.
  • each of the N subcarrier groups Both carry partial signals of the first signal, and at least two of the N subcarrier groups carry different partial signals of the first signal.
  • the first device transmits the first signal through N subcarrier groups, and the N subcarrier groups respectively carry different parts of the first signal, so that the complete first signal can be transmitted through the N subcarrier groups, and the second terminal device also avoids duplication Receive the same part of the first signal.
  • the N subcarrier groups are two-by-two frequency division orthogonal , And the N subcarrier groups occupy the same time domain resources.
  • the N subcarrier groups may be frequency division orthogonal, and the N subcarrier groups may occupy the same time domain resources, so that each part of the first signal can be transmitted at the same time through the N subcarriers, which improves The transmission efficiency of the first signal.
  • Time indicates that the sequence does not need to be cyclically shifted in the time domain.
  • the K i subcarriers are distributed at equal intervals.
  • the K i subcarriers are continuous subcarriers.
  • Increasing the equally spaced subcarriers to send the first signal can facilitate the second device to detect the first signal.
  • the first signal is a DMRS or SRS or control information .
  • a second signal sending method includes:
  • the time-frequency resource includes N subcarrier groups
  • the i-th subcarrier group in the N subcarrier groups includes K i subcarriers
  • the K i subcarriers are equally spaced
  • N is A positive integer greater than or equal to 1
  • K i is an integer greater than 1;
  • a first signal is sent on the N subcarrier groups, wherein the portion of the first signal carried by the i-th subcarrier group in the N subcarrier groups is the first segment of the sequence ⁇ z q (m) ⁇ ,
  • the method may be executed by a third communication device, which may be the first device or a communication device capable of supporting the functions required by the first device to implement the method, and of course it may also be other communication devices, such as a chip system.
  • the first communication device is the first device.
  • the first device can be a terminal device or a network device.
  • the network device is an access network device, such as a base station.
  • the part of the first signal carried on the kth subcarrier in the i-th subcarrier group of the N subcarrier groups is a segment of ⁇ z q (m) ⁇ , when q satisfies the
  • the first signal in the embodiment of the present application may also be a downlink signal.
  • the downlink signal sent using the method of the above embodiment can also make the cross-correlation between signals carried by the same subcarrier group better, thereby reducing signal interference between cells and improving the channel estimation performance of terminal equipment in different cells .
  • the method further includes: determining the first segment in the sequence according to the frequency domain position of the i-th subcarrier group.
  • which segment of the sequence is carried by each subcarrier group in the N subcarrier groups may be related to the frequency domain position of each subcarrier group, so that it can be ensured that the N subcarrier groups can carry a relatively complete sequence.
  • the method may be executed by a fourth communication device.
  • the fourth communication device may be a second device or a communication device capable of supporting the functions required by the second device to implement the method, and of course, it may also be another communication device, such as a chip system.
  • the fourth communication device is the second device.
  • the first device is a terminal device and the second device is a network device, or the first device is a network device and the second device is a terminal device.
  • the network device is an access network device, such as a base station.
  • the first signal is in the N subcarrier groups
  • the value of M is based on the maximum system bandwidth or bandwidth part determined, the value D i is determined in the system bandwidth or the bandwidth part in accordance with the position of the i-th subcarrier of the subcarrier groups is located in the first signal.
  • the value D i may be determined in BWP locations in the system bandwidth or the i-th subcarrier according to the subcarrier groups is located in the first signal.
  • M and / or the values d i may be obtained according to the method provided in the above embodiment of the present application, or may also be obtained in other ways, not limited in particular.
  • the N subcarrier groups belong to a subcarrier group set
  • the set of subcarrier groups also includes F subcarrier groups, the frequency domain positions of the F subcarrier groups are different from the frequency domain positions of the N subcarrier groups, and the n id corresponding to the F subcarrier groups is the same as the The n id corresponding to the N subcarrier groups is the same, and F is a positive integer.
  • n id may be independent of the frequency domain position occupied by the N subcarriers.
  • N subcarrier groups can belong to a subcarrier group set, which also includes F subcarrier groups.
  • the frequency domain positions of the F subcarrier groups are different from the frequency domain positions of the N subcarrier groups.
  • the F subcarrier groups will correspond to F n id by subcarrier groups
  • the subcarrier groups corresponding to F n id with a corresponding set of N subcarriers may be the same n id It can also be different, and the specifics are the same or different, and have nothing to do with the frequency domain position of the subcarrier group, which makes the solution of the embodiment of the present application more flexible.
  • n i is the number of the smallest sub-carrier in the i-th sub-carrier group
  • n dist is the interval between sub-carriers in the sub-carrier group, which is a positive integer
  • n offset is an integer
  • d i is determined not limited thereto.
  • each of the N subcarrier groups All carry partial signals of the first signal, and the partial signals carried by each subcarrier group are segments of the sequence, and at least two subcarrier groups of the N subcarrier groups carry different segments.
  • At least two subcarrier groups are N subcarrier groups, that is, the signals carried by the N subcarrier groups are all different.
  • the first device transmits the first signal through the N subcarrier groups, and the N subcarrier groups respectively carry the first signal. Different parts of a signal, so that a complete first signal can be transmitted through N subcarrier groups.
  • At least two subcarrier groups are only true subsets of N subcarrier groups, then in addition to at least two subcarrier groups in N subcarrier groups, other subcarrier groups may be included, and the signals carried by other subcarrier groups may be the same
  • the first device sends the first signal through N subcarrier groups, and the first signal has the same part, then at least two subcarrier groups can carry different parts of the first signal, except for at least The other subcarrier groups other than the two subcarrier groups can carry the same part of the first signal, so that a complete first signal can be sent through N subcarrier groups, or the first device can send the first signal through N subcarrier groups , Then the first signal can be carried by at least two subcarrier groups, and the error-prone or important part of the first signal can be carried by other subcarrier groups in the N subcarrier groups except for the at least two subcarrier groups, Therefore, the error-prone part or the more important part of the first signal can be transmitted multiple times to improve the transmission reliability.
  • K i is where the N subcarrier groups are located BWP decided.
  • the embodiment of the present application does not limit the manner of determining K i .
  • the values of p corresponding to different subcarrier groups in the N subcarrier groups may be the same.
  • p may be equal to 31.
  • the number of available sequences is 30, which can meet the requirements of cell planning.
  • the embodiment of the application is not limited to this.
  • the value of q is determined according to the cell identity or sequence group identity of.
  • the value of q can be determined according to the cell identity or sequence group identity, or q can also be obtained in other ways, which is not specifically limited.
  • the first signal is DMRS or SRS or control information .
  • a first communication device may be a first device or a chip in the first device.
  • the communication device may include a processing module and a transceiver module.
  • the processing module may be a processor
  • the transceiver module may be a transceiver.
  • the communication device may further include a storage module, and the storage module may be a memory.
  • the storage module is used to store instructions, and the processing module executes the instructions stored in the storage module, so that the communication device executes the corresponding function in the first aspect.
  • the processing module may be a processor, the transceiver module may be an input/output interface, a pin or a circuit, etc.; the processing module executes the instructions stored in the storage module to make The first device performs the corresponding functions in the first aspect, and the storage module may be a storage unit (for example, a register, cache, etc.) in the chip, or a storage unit located outside the chip in the first device (For example, read only memory, random access memory, etc.).
  • a second communication device may be a second device or a chip in the second device.
  • the communication device may include a processing module and a transceiver module.
  • the processing module may be a processor
  • the transceiver module may be a transceiver.
  • the communication device may further include a storage module, and the storage module may be a memory.
  • the storage module is used to store instructions, and the processing module executes the instructions stored in the storage module, so that the communication device executes the corresponding function in the second aspect.
  • the processing module may be a processor, and the transceiver module may be an input/output interface, a pin or a circuit, etc.; the processing module executes the instructions stored in the storage module to make The second device performs the corresponding function in the second aspect.
  • the storage module may be a storage unit (for example, a register, cache, etc.) in the chip, or a storage unit located outside the chip in the second device (For example, read only memory, random access memory, etc.).
  • a third communication device may be a first device or a chip in the first device.
  • the communication device may include a processing module and a transceiver module.
  • the processing module may be a processor
  • the transceiver module may be a transceiver.
  • the communication device may further include a storage module, and the storage module may be a memory.
  • the storage module is used to store instructions, and the processing module executes the instructions stored in the storage module, so that the communication device executes the corresponding function in the third aspect.
  • the processing module may be a processor, the transceiver module may be an input/output interface, a pin or a circuit, etc.; the processing module executes the instructions stored in the storage module to make The first device performs the corresponding function in the third aspect, and the storage module can be a storage unit (for example, a register, cache, etc.) in the chip, or a storage unit located outside the chip in the first device (For example, read only memory, random access memory, etc.).
  • a fourth communication device may be a second device or a chip in the second device.
  • the communication device may include a processing module and a transceiver module.
  • the processing module may be a processor
  • the transceiver module may be a transceiver.
  • the communication device may further include a storage module, and the storage module may be a memory.
  • the storage module is used to store instructions, and the processing module executes the instructions stored in the storage module, so that the communication device executes the corresponding function in the fourth aspect.
  • the processing module may be a processor, and the transceiver module may be an input/output interface, a pin or a circuit, etc.; the processing module executes the instructions stored in the storage module to make The second device performs the corresponding function in the fourth aspect.
  • the storage module may be a storage unit (for example, a register, cache, etc.) in the chip, or a storage unit located outside the chip in the second device (For example, read only memory, random access memory, etc.).
  • a first communication system may include the first communication device described in the fifth aspect and the third communication device described in the sixth aspect.
  • a second communication system may include the third communication device described in the seventh aspect and the fourth communication device described in the eighth aspect.
  • the first communication system and the second communication system may be the same communication system, or they may be different communication systems.
  • a computer storage medium stores instructions, which when run on a computer, cause the computer to execute the first aspect or any one of the possible designs of the first aspect. The method described in.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to execute the second aspect or any one of the possible designs of the second aspect. The method described in.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to execute the third aspect or any one of the possible designs of the third aspect. The method described in.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to execute the fourth aspect or any one of the possible designs of the fourth aspect. The method described in.
  • a computer program product containing instructions.
  • the computer program product stores instructions that, when run on a computer, cause the computer to execute the first aspect or any one of the first aspects described above. The method described in the design.
  • a computer program product containing instructions.
  • the computer program product stores instructions that, when run on a computer, cause the computer to execute the second aspect or any one of the possibilities of the second aspect. The method described in the design.
  • a computer program product containing instructions.
  • the computer program product stores instructions that, when run on a computer, cause the computer to execute the third aspect or any one of the possibilities of the third aspect. The method described in the design.
  • a computer program product containing instructions.
  • the computer program product stores instructions that, when run on a computer, cause the computer to execute any one of the foregoing fourth aspect or the fourth aspect. The method described in the design.
  • the first signal in the embodiment of the present application may also be a downlink signal.
  • the access network equipment of different cells in the system uses the above rules to send signals on the same time-frequency resources, it can also ensure that when signals are sent in the same subcarrier group, the cross-correlation between the signals carried by the subcarrier group is relatively high. Good, which can reduce signal interference between cells and improve the channel estimation performance of terminal devices in different cells.
  • FIG. 1A is a schematic diagram of an application scenario of an embodiment of this application.
  • FIG. 1B is a schematic structural diagram of an access network device provided by an embodiment of this application.
  • FIG. 1C is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 3 is a schematic flowchart of a partial signal of a first signal generated by a first device according to an embodiment of the application
  • 4A and 4B are a sequence of K i elements provided by an embodiment of the application A schematic diagram of mapping onto K i subcarriers;
  • 5A is a schematic diagram of processing a first signal by a second device according to an embodiment of the application.
  • 5B is a schematic diagram of processing a first signal by a second device according to an embodiment of the application.
  • FIG. 6 is a flowchart of a second signal sending and receiving method provided by an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of a communication device that can realize the function of the first device according to an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a communication device that can realize the function of a second device according to an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a communication device that can realize the function of the first device according to an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a communication device that can realize the function of a second device according to an embodiment of the application;
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • a means a single individual, and does not mean that it can only be an individual, and cannot be applied to other individuals.
  • a terminal device in the embodiment of the present application refers to a certain terminal device, and does not mean that it can only be applied to a specific terminal device.
  • system can be used interchangeably with "network”.
  • “Multiple” refers to two or more. In view of this, “multiple” can also be understood as “at least two” in the embodiments of the present application. "At least one” can be understood as one or more, for example, one, two or more. For example, including at least one means including one, two or more, and does not limit which ones are included. For example, including at least one of A, B and C, then the included can be A, B, C, A and B, A and C, B and C, or A and B and C. “At least two” can be understood as two, three or more. In the same way, the understanding of "at least one" and other descriptions is similar.
  • FIG. 1A shows a schematic diagram of communication between a wireless device and a wireless communication system.
  • the wireless communication system may be a system using various radio access technologies (RAT), such as orthogonal frequency-division multiple access (OFDMA) or single-carrier frequency-division multiple access (OFDMA). single carrier FDMA, SC-FDMA) and other systems.
  • RAT radio access technologies
  • OFDMA orthogonal frequency-division multiple access
  • OFDMA single-carrier frequency-division multiple access
  • SC-FDMA single carrier FDMA
  • LTE long-term evolution
  • NR new radio
  • NR new radio
  • FIG. 1A shows communication between a network device 102 (for example, an access network device) and a wireless device 104 (for example, a terminal device).
  • a wireless communication system may include any number of network devices and terminal devices.
  • the wireless communication system may also include one or more core network devices or devices for carrying virtualized network functions.
  • the access network device 102 may provide services for wireless devices through one or more carriers.
  • the access network equipment and terminal equipment may be collectively referred to as communication devices.
  • the access network device 102 is a device deployed in a wireless access network to provide wireless communication functions for terminal devices.
  • the access network equipment may include various forms of macro base stations (base stations, BS), micro base stations (also referred to as small stations), relay stations, or access points.
  • base stations base stations
  • micro base stations also referred to as small stations
  • relay stations or access points.
  • the names of devices with wireless access functions may be different.
  • eNB evolved NodeB
  • Node B Node B
  • 3G third generation
  • it Node B
  • it is referred to as an access network device for short, sometimes also referred to as a base station.
  • the wireless devices involved in the embodiments of the present application may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to a wireless modem.
  • the wireless device may be called a terminal device, or may be called a mobile station (mobile station, MS for short), terminal (terminal), user equipment (UE), etc.
  • the wireless device may include a subscriber unit (subscriber unit), cellular phone (cellular phone), smart phone (smart phone), wireless data card, personal digital assistant (PDA) computer, tablet computer, modem ( modem) or modem processor, handheld, laptop computer, netbook, cordless phone or wireless local loop (wireless local loop, WLL), Bluetooth device , Machine type communication (MTC) terminal, etc.
  • PDA personal digital assistant
  • modem modem
  • WLL Wireless local loop
  • Bluetooth device Machine type communication
  • the wireless device can support one or more wireless technologies for wireless communication, such as 5G, LTE, WCDMA, CDMA, 1X, time division-synchronous code division multiple access (TS-SCDMA), GSM, 802.11 and so on.
  • Wireless devices can also support carrier aggregation technology.
  • Multiple wireless devices can perform the same or different services. For example, mobile broadband services, enhanced mobile broadband (eMBB) services, ultra-reliable and low-latency communication (URLLC) services and so on.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable and low-latency communication
  • the access network device 102 can execute the method provided in the embodiment of the present application.
  • the access network device 102 may include: a controller or a processor 201 (the processor 201 is taken as an example for description below) and a transceiver 202.
  • the controller/processor 201 is sometimes referred to as a modem processor (modem processor).
  • the modem processor 201 may include a baseband processor (BBP) (not shown), which processes the digitized received signal to extract the information or data bits conveyed in the signal.
  • BBP baseband processor
  • DSP digital signal processors
  • IC separate integrated circuit
  • the transceiver 202 may be used to support the sending and receiving of information between the access network device 102 and the terminal device, and to support radio communication between the terminal devices.
  • the processor 201 may also be used to perform functions of various terminal devices communicating with other network devices.
  • the uplink signal from the terminal device is received via an antenna, mediated by the transceiver 202, and further processed by the processor 201 to restore the service data and/or signaling information sent by the terminal device.
  • service data and/or signaling messages are processed by the terminal device, and modulated by the transceiver 202 to generate a downlink signal, and transmitted to the terminal device via an antenna.
  • the access network device 102 may also include a memory 203, which may be used to store the program code and/or data of the access network device 102.
  • the transceiver 202 may include independent receiver and transmitter circuits, or the same circuit may implement the transceiver function.
  • the access network device 102 may further include a communication unit 204, configured to support the access network device 102 to communicate with other network entities. For example, it is used to support communication between the access network device 102 and the network device of the core network.
  • the access network device may also include a bus.
  • the transceiver 202, the memory 203, and the communication unit 204 may be connected to the processor 201 through a bus.
  • the bus may be a peripheral component interconnect standard (PCI) bus or an extended industry standard architecture (EISA) bus.
  • the bus may include an address bus, a data bus, and a control bus.
  • Fig. 1C is a schematic diagram of a possible structure of a terminal device in the above-mentioned wireless communication system.
  • the terminal device can execute the method provided in the embodiment of the present application.
  • the terminal device includes a transceiver 301, an application processor (application processor) 302, a memory 303, and a modem processor (modem processor) 304.
  • application processor application processor
  • modem processor modem processor
  • the transceiver 301 can adjust (for example, analog conversion, filtering, amplifying, up-conversion, etc.) the output samples and generate an uplink signal, which is transmitted to the base station described in the above-mentioned embodiment via an antenna.
  • the antenna receives the downlink signal transmitted by the access network device.
  • the transceiver 301 can condition (eg, filter, amplify, down-convert, digitize, etc.) the signal received from the antenna and provide input samples.
  • the modem processor 304 is sometimes called a controller or a processor, and may include a baseband processor (BBP) (not shown), which processes the digitized received signal to extract the information conveyed in the signal Or data bits.
  • BBP baseband processor
  • the BBP is typically implemented in one or more numbers within the modem processor 304 or as a separate integrated circuit (IC) as needed or desired.
  • the modem processor (modem processor) 304 may include an encoder 3041, a modulator 3042, a decoder 3043, and a demodulator 3044.
  • the encoder 3041 is used to encode the signal to be transmitted.
  • the encoder 3041 may be used to receive service data and/or signaling messages to be sent on the uplink, and process the service data and signaling messages (for example, formatting, encoding, or interleaving, etc.).
  • the modulator 3042 is used to modulate the output signal of the encoder 3041.
  • the modulator can perform symbol mapping and/or modulation on the output signal (data and/or signaling) of the encoder, and provide output samples.
  • the demodulator 3044 is used to demodulate the input signal.
  • the demodulator 3044 processes the input samples and provides symbol estimates.
  • the decoder 3043 is used to decode the demodulated input signal.
  • the decoder 3043 deinterleaves and/or decodes the demodulated input signal, and outputs the decoded signal (data and/or signaling).
  • the encoder 3041, the modulator 3042, the demodulator 3044, and the decoder 3043 can be implemented by a synthesized modem processor 304. These units are processed according to the wireless access technology adopted by the wireless access network.
  • the modem processor 304 receives digitized data that can represent voice, data, or control information from the application processor 302, and processes the digitized data for transmission.
  • the modem processor can support one or more of multiple wireless communication protocols of multiple communication systems, such as LTE, new air interface, universal mobile telecommunications system (UMTS), high-speed packet access (high speed) packet access, HSPA) and so on.
  • the modem processor 304 may also include one or more memories.
  • the modem processor 304 and the application processor 302 may be integrated in a processor chip.
  • the memory 303 is used to store program codes (sometimes also called programs, instructions, software, etc.) and/or data used to support the communication of the terminal device.
  • program codes sometimes also called programs, instructions, software, etc.
  • the memory 203 or the memory 303 may include one or more storage units, for example, it may be a storage unit inside the processor 201 or the modem processor 304 or the application processor 302 for storing program codes, or may It is an external storage unit independent of the processor 201 or the modem processor 304 or the application processor 302, or may also be an internal storage unit that includes the processor 201 or the modem processor 304 or the application processor 302 and is connected to the processor 201 or the modem
  • the processor 304 or the application processor 302 is a component of an independent external storage unit.
  • the processor 201 and the modem processor 304 may be the same type of processors, or may be different types of processors. For example, it can be implemented in central processing unit (CPU), general-purpose processor, digital signal processor (digital signal processor, DSP), application-specific integrated circuit (ASIC), field programmable gate array ( field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components, other integrated circuits, or any combination thereof.
  • the processor 201 and the modem processor 304 can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of the embodiments of the present application.
  • the processor may also be a combination of devices that implement computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, or a system-on-a-chip (SOC) or the like.
  • reference signals are usually used to obtain a channel estimation matrix to demodulate data information.
  • the demodulation of the physical downlink shared channel (PDSCH) and PDCCH uses downlink DMRS for channel estimation.
  • PDSCH physical downlink shared channel
  • PDCCH uses downlink DMRS for channel estimation.
  • Gold sequence is a kind of pseudo-random sequence with good correlation characteristics, and the generation method is simple and the number is large.
  • the Gold sequence can be obtained by modulo two of the preferred two m-sequences. When the phase of one m-sequence is fixed and the phase of the other m-sequence is changed, a different Gold sequence can be obtained. For example, there are 2 n +1 Gold sequences with a length of 2 n -1.
  • the downlink DMRS uses a sequence obtained based on the Gold sequence, which is modulated by QPSK and mapped onto frequency domain subcarriers.
  • the sequence ⁇ c(n) ⁇ used by DMRS is a sequence obtained by intercepting a Gold sequence with a length of (2 31 -1).
  • the initial value of the Gold sequence is the identification of the DMRS scrambling code of the terminal device ( identifier,ID) (or cell ID), the subframe number of the subframe where the DMRS is located, and the position of the OFDM symbol, etc., after QPSK modulates the sequence ⁇ c(n) ⁇ into ⁇ s(n) ⁇ , Then the sequence ⁇ s(n) ⁇ is carried on the subcarriers of the DMRS.
  • the complete Gold sequence has good cross-correlation characteristics, in the downlink DMRS in the NR system, only the segments of the Gold sequence are used. As the length of the segments of the Gold sequence becomes shorter, the cross-correlation between the segments of the Gold sequence is relatively high. Poor. Especially after considering multipath, the channel can be approximately considered to be flat, for example, the channels of 6 adjacent resource blocks (RB) can be considered as flat channels, and joint channel estimation can be performed. If the existing sequence based on the Gold sequence is used, the sequence based on the Gold sequence carried on the 6 RBs will be shorter, resulting in worse cross-correlation of the DMRS on the 6 RBs. Therefore, when the cross-correlation of DMRS deteriorates, channel estimation results using DMRS will make the channel estimation result inaccurate, resulting in greater interference between signals and affecting channel estimation performance.
  • RB resource blocks
  • the portion of the first signal carried on the k-th sub-carrier in the i-th sub-carrier group in the N sub-carrier groups is And with Related sequence Is one of the listed sequences.
  • the sequences listed in the embodiments of this application are all sequences with good cross-correlation. Therefore, for two subcarrier groups, only the selected Is two of the listed sequences, then it can be ensured that the cross-correlation between the signals carried by the two subcarrier groups is better than that of the prior art, thereby reducing the interference between signals and improving the channel Estimate performance.
  • the technical solutions provided by the embodiments of this application can be applied to LTE systems, fourth-generation mobile communication technology (the 4 th generation, 4G) systems, 4.5G systems, fifth-generation mobile communication technology (the 5 th generation, 4G) systems,
  • the NR system or NR-like system can also be applied to future communication systems, or can also be applied to other similar communication systems.
  • i can also take 1 to N, which is only used to identify the i-th K-length sequence.
  • the N K i- long sequences may be the same or different, or at least two of the N K i- long sequences may be the same.
  • the lengths of N K i- long sequences can also be the same, or at least two sequences have different lengths.
  • K i represents the i-th K-length sequence.
  • the value of K is related or uncorrelated with the value of i, or it can be The lengths of the N K-length sequences are all the same.
  • the sequence of K i length in this embodiment is obtained based on one or more of the following sequences:
  • the K i- long sequence may be obtained by performing phase rotation on one of the above-listed sequences, or by operations such as time-domain cyclic shift.
  • the long sequence can be obtained by splicing N sequences.
  • the N sequences may all be obtained based on one or more of the above-exemplified sequences, and the above-exemplified sequences corresponding to the N sequences may be the same, or may be different, or may be partly the same and partly different.
  • at least one of the N sequences needs to be obtained based on the sequences listed above, and the remaining sequences can be obtained based on other sequences.
  • Using the above sequence to generate, for example, a DMRS, or SRS, or a signal for sending control information, can ensure low cross-correlation between signals between different cells, and can reduce inter-cell interference.
  • the embodiment of the present application also involves the concept of resource block (RB).
  • RB resource block
  • 12 consecutive subcarriers in the frequency domain and 1 slot (slot) in the time domain constitute one RB.
  • the embodiment of the present application also provides a signal sending and receiving method using the above sequence. Please refer to FIG. 2 for a flowchart of the method.
  • This method can be applied to the scenario shown in FIG. 1A.
  • the method provided in the embodiment of the present application is applied to the application scenario shown in FIG. 1A as an example.
  • the method can be executed by two communication devices, such as a first communication device and a second communication device, where the first communication device can be a network device or can support the network device to implement the functions required by the method.
  • the communication device for example, a chip system
  • the first communication device may be a terminal device or a communication device (for example, a chip system) capable of supporting the terminal device to implement the functions required by the method.
  • the second communication device may be a network device or a communication device (such as a chip system) capable of supporting the functions required by the network device to implement the method, or the second communication device may be a terminal device or capable of supporting a terminal A communication device (such as a chip system) that implements the functions required by the method.
  • the first communication device may be a terminal device
  • the second communication device is a network device
  • both the first communication device and the second communication device are network devices.
  • the device, or the first communication device and the second communication device are both terminal devices, or the first communication device is a terminal device, and the second communication device is a communication device that can support the network device to implement the functions required by the method, and so on.
  • the network device is, for example, a base station.
  • the method is executed by the first device and the second device as an example.
  • the first communication device is the first device and the second communication device is the second device as an example.
  • the first device is, for example, a network device, and the second device is a terminal device.
  • the first signal described in this article may be a downlink signal, or the first device is a terminal device, for example, and the second device is a network device, then in this article
  • the first signal may be an uplink signal.
  • the first device determines frequency resources, wherein the frequency resources of the group comprising N sub-carriers, the N sub-carrier group of the i-th subcarrier group includes subcarriers K i, N is greater than or equal to n-1 Integer, K i is an integer greater than 1.
  • the first device When the first device needs to send a signal, it can determine the time-frequency resource. For example, the first device may determine to send the first device according to system configuration information, such as radio resource control (RRC) information or media access control control element (MAC CE) information, etc.
  • RRC radio resource control
  • MAC CE media access control control element
  • the time-frequency resource comprises N sub-carrier groups, where the i-th subcarrier group includes subcarriers K i, i takes an integer from 1 to N. Wherein, the number of subcarriers included in different subcarrier groups in the N subcarrier groups may be the same or different.
  • the number of subcarriers included in the N subcarrier groups are all the same, or the number of subcarriers included in the N subcarrier groups are all different, or, among the N subcarrier groups, some of the subcarriers included in the subcarrier group The numbers are different, and the number of subcarriers included in the remaining subcarrier groups is the same, and so on.
  • the N subcarrier groups may be frequency division orthogonal, and the N subcarrier groups may occupy the same time domain resources, so that each part of the first signal can be transmitted at the same time through the N subcarriers.
  • K i subcarriers may be distributed at equal intervals, or K i subcarriers may also be distributed at unequal intervals, or some of the K i subcarriers may be distributed at equal intervals, while others The sub-carriers are distributed at unequal intervals, and so on, there is no restriction on the specifics.
  • the first device sends the first signal on the N subcarrier groups, and the second device receives the first signal carried on the N subcarriers.
  • ⁇ d i (k) ⁇ may be independent of the identity of the first signal or the identity of the cell.
  • k it has nothing to do with k, that is, it does not depend on the change of k. For example, when k is different, Can take the same value.
  • It can be related to the identity of the first signal or the identity of the cell, for example, the identity of the first signal is not at the same time Can be different, or when the cell identity is different Can be different.
  • It can be related to the sub-carrier group, for example, different sub-carrier groups can use the same You can also use different Optional, Can be determined by i and n id . Of course, there may be no which is Can be 1, in this case, the expression can be simplified to
  • Time indicates that the sequence does not need to be cyclically shifted in the time domain. At this time, the sequence can be simplified to
  • sequence ⁇ d i (k) ⁇ can be any sequence.
  • the sequence ⁇ d i (k) ⁇ can also be equal to the sequence of all 1s.
  • the expression can be simplified to The sequence ⁇ d i (k) ⁇ has nothing to do with the identity of the first signal.
  • the sequence ⁇ d i (k) ⁇ can be the same, or understood as a sequence ⁇ d i (k) ⁇ It can correspond to at least two identifications of the first signal.
  • the sequence ⁇ d i (k) ⁇ has nothing to do with the identity of the cell.
  • the sequence ⁇ d i (k) ⁇ can be the same, or it can be understood that a sequence ⁇ d i (k) ⁇ can Correspond to the identities of at least two cells.
  • each subcarrier group in the N subcarrier groups carries a part of the first signal, that is, the first device sends a part of the first signal on each subcarrier group in the N subcarrier groups. signal.
  • the signals carried by at least two subcarrier groups in the N subcarrier groups are different, for example, at least two subcarrier groups respectively carry different parts of the first signal.
  • at least two subcarrier groups are N subcarrier groups, that is, the signals carried by the N subcarrier groups are all different.
  • the first device transmits the first signal through the N subcarrier groups, and the N subcarrier groups respectively carry the first signal.
  • the first device sends the first signal through N subcarrier groups, and the first signal has the same part, then at least two subcarrier groups can carry different parts of the first signal, except for at least The other subcarrier groups other than the two subcarrier groups can carry the same part of the first signal, so that a complete first signal can be sent through N subcarrier groups, or the first device can send the first signal through N subcarrier groups , Then the first signal can be carried by at least two subcarrier groups, and the error-prone or important part of the first signal can be carried by other subcarrier groups in the N subcarrier groups except for the at least two subcarrier groups, Therefore, the error-prone
  • the first device may first determine the sequence ⁇ x(n) ⁇ , and the sequence ⁇ x(n) ⁇ may be the part of the first signal in the N subcarrier groups, and then respectively intercept part of the sequence ⁇ x(n) ⁇ , As the part of the first signal in each sub-carrier group of the N sub-carrier groups, in this case, the second device first determines the long sequence, and then intercepts the long sequence, respectively as the N sub-carrier groups The sequence carried on each subcarrier group.
  • the first device may directly determine the sequence according to each subcarrier group in the N subcarrier groups, that is, directly determine the sequence carried by each subcarrier group in the N subcarrier groups, for example, the first device directly determines the sequence In this case, the first device does not need to determine the long sequence, but directly determines the sequence carried by each subcarrier group.
  • the embodiment of the present application does not limit the specific determination method of the first device.
  • the terminal device may determine the sequence by itself after entering the network, or it may also be that the network device configures the corresponding sequence for the terminal device when the terminal device accesses the network. Determine the sequence directly with the terminal device Take for example.
  • the terminal device determines a sequence from the first sequence group, and the sequence is regarded as the sequence
  • the terminal device determines a sequence from the second sequence group, which is regarded as the sequence According to the sequence You can get the sequence
  • the network device determines the sequence And configure to the terminal device, or when the terminal device accesses the network, the network device determines the sequence And configure to the terminal device, the terminal device then according to the sequence You can get the sequence
  • sequence can be one of the following sequences:
  • the channel can be approximately regarded as block-flattened.
  • the channels of adjacent 6 RBs can be regarded as flat channels and can be combined. Channel estimation.
  • the 18-length sequence can be placed in exactly 6 RBs, and the maximum value of the cross-correlation value between the 30 sequences listed above is 0.48977, and the average value is 0.4185.
  • the sequence used is a fragment of the Gold sequence, the maximum value of the cross-correlation value is greater than 0.9, and the average value is 0.48829.
  • K i in the embodiment of the present application is not limited to be equal to 18, and other values can also be used.
  • the 30 sequences listed above may belong to the second sequence group.
  • the second sequence group may also include other sequences.
  • the first device can determine the sequence For example sequence It may be determined according to the identity of the first signal or the identity of the cell. For example, the first device may determine the sequence from the first sequence group according to the identity of the first signal or the identity of the cell. Or, the terminal device can also determine the sequence For example sequence It may be determined according to the identity of the first signal or the identity of the cell. For example, the terminal device may determine the sequence from the second sequence group according to the identity of the first signal or the identity of the cell. Or determine the sequence from the 30 sequences listed above included in the second sequence group according to the identity of the first signal or the identity of the cell
  • the identifier of a first signal may correspond to a terminal device, or the identifier of a first signal may correspond to a group of terminal devices, that is, all terminal devices in the same terminal device group apply the same first signal
  • the identification of the first signal, or the identification of a first signal may correspond to a cell, that is, all terminal devices in the same cell apply the same identification of the first signal.
  • first signal identifier corresponds to one terminal device
  • different terminal devices can correspond to different first signal identifiers; or, if one first signal identifier corresponds to a group of terminal devices, then different terminal device groups It may correspond to different identifiers of the first signal; or, if one identifier of the first signal corresponds to one cell, then different cells may correspond to different identifiers of the first signal.
  • the first device is a network device
  • the first device determines the identity of the first signal corresponding to the second device, and determines the sequence according to the identity of the first signal Or sequence
  • the first device wants to send the first signal on the N subcarrier groups, and first involves generating the first signal.
  • the process of generating the first signal in specific implementation is: the first device maps the sequence ⁇ x(n) ⁇ to N subcarrier groups, generates the first signal and sends it To network equipment.
  • the first device will include a sequence of K i elements
  • the specific process of mapping to K i subcarriers to obtain partial signals of the first signal, as shown in Fig. 3, includes:
  • the first device will sequence They are respectively mapped to K i sub-carriers to obtain the frequency domain signal of the K i point.
  • the frequency domain signal at the K i point is a frequency domain signal containing K i elements.
  • s represents sequence The index of the first subcarrier among the mapped N subcarriers in the subcarrier in the communication system.
  • the first device will sequence The K i elements in are respectively mapped to consecutive K i subcarriers.
  • the sequence Elements in To They are mapped to K i consecutive sub-carriers, and the sub-carrier numbers are s+0, s+1,..., s+K i -1.
  • the first device will sequence
  • the K i elements in are respectively mapped to consecutive K i subcarriers
  • the first device sets the sequence
  • the K i elements in the sub-carriers are sequentially mapped to consecutive K i sub-carriers in the order of sub-carriers from high to low.
  • a sequence The middle element is mapped to a frequency domain subcarrier.
  • the frequency domain subcarrier is the smallest unit of frequency domain resources.
  • the first device will sequence
  • the first device sets the sequence
  • the K i elements in the sub-carriers are sequentially mapped to the K i sub-carriers in the order of sub-carriers from low to high.
  • the sequence The mapping of an element in a subcarrier to a subcarrier is to carry this element on this subcarrier.
  • the first device sends data via radio frequency, it is equivalent to sending this element on this subcarrier.
  • the positions of the K i subcarriers in the multiple subcarriers existing in the communication system may be predefined or configured by the network equipment through signaling.
  • the first device can also transfer the sequence
  • the K i elements in are respectively mapped to the K i subcarriers at equal intervals.
  • the K i sub-carriers are equally spaced in the frequency domain.
  • sequence Elements in To The interval of the mapped subcarriers is 1 subcarrier. Specifically, it is mapped to K i equally spaced subcarriers, and the subcarrier numbers are s+0, s+2,...,s+2 (K i -1).
  • the first device performs inverse fast Fourier transformation (IFFT) on the frequency domain signal containing N elements to obtain a corresponding time domain signal, and adds a cyclic prefix to the time domain signal to generate a first signal.
  • IFFT inverse fast Fourier transformation
  • the manner of generating the first signal is not limited to the implementation manner provided by the embodiment shown in FIG. 3.
  • the first device can also Use the shaping filter to obtain the sequence ⁇ y(k) ⁇ , and then modulate the sequence ⁇ y(k) ⁇ onto the carrier to obtain a partial signal of the first signal, and so on.
  • the time-domain signal obtained by the first device after passing the generated N-point frequency-domain signal through IFFT is an orthogonal frequency division multiplexing (OFDM) symbol.
  • OFDM orthogonal frequency division multiplexing
  • the first device may send the first signal carrying the sequence ⁇ x(n) ⁇ on one OFDM symbol.
  • the first signal carrying the sequence ⁇ x(n) ⁇ can also be sent on multiple OFDM symbols.
  • the first signal may be a DMRS, a sounding reference signal (sounding reference signal, SRS), control information, or the like.
  • the first signal in the embodiment of the present application is not limited to including the above information.
  • the first signal is a signal used to carry communication information.
  • the communication information may be carried in a sequence selection manner, or may be carried in a sequence modulation manner, but is not limited to this.
  • the communication information includes data and/or control information, for example.
  • the first device is a terminal device
  • the method of sequence selection is: assigning 2 n orthogonal sequences to one terminal device.
  • These 2 n orthogonal sequences are, for example, 2 n cyclic shifts of a root sequence, and these 2 n orthogonal sequences can carry n bits of information.
  • the method of sequence modulation is: assigning one sequence to a terminal device, and generating modulation symbols for the information that the terminal device needs to transmit.
  • the modulation symbols include, but are not limited to, binary phase shift keying (BPSK) symbols, QPSK symbols, 8th-order quadrature amplitude modulation (QAM) symbols, 16QAM symbols, and the like.
  • BPSK binary phase shift keying
  • QAM quadrature amplitude modulation
  • 16QAM symbols 16QAM symbols, and the like.
  • This modulation symbol is multiplied by the sequence to generate the actual transmission sequence.
  • a BPSK match may be 1 or -1, for a sequence
  • the transmitted sequence can be or
  • the first device may determine the sequence ⁇ x(n) ⁇ by A, the sequence ⁇ c i (n mod K i ) ⁇ , and the sequence ⁇ b(n) ⁇ . It should be noted that for the sequence modulation mode, different values of A in the sequence ⁇ x(n) ⁇ can be used to carry different information.
  • A can be a modulation symbol. At this time, one data information bit or control information bit is modulated to obtain A. A is carried on the N elements contained in the sequence ⁇ x(n) ⁇ , and A does not change with the change of n.
  • A may be a symbol known to both the first device and the second device.
  • A can also represent amplitude.
  • A is a constant in a time unit, which does not mean that A is fixed.
  • A can change.
  • all N elements included in the sequence ⁇ x(n) ⁇ are reference signals, and A is the amplitude of the reference signal.
  • the second device may receive the signals on the N subcarriers according to the positions of the predefined or preconfigured N subcarriers in the subcarriers of the communication system.
  • the second device may obtain the first signal on N subcarriers on consecutive N subcarriers, or obtain the first signal on N subcarriers on N subcarriers at equal intervals.
  • the second device acquires the sequence carried by the first signal K i elements in.
  • the second device may be acquired on a continuous sub-carrier signal K i K i sub-carrier, or acquiring the signals on the sub-carrier K i K i equally spaced subcarriers, cyclic prefix is removed to obtain the signal to obtain a time domain signal to obtain a frequency domain signal comprising K i elements, and then, based on the frequency domain signal comprising K i elements, defined sequence K i elements in.
  • the terminal device can obtain the K i elements in the sequence carried by the corresponding sub-carrier group in this way.
  • the second device according to the sequence The K i elements in, process the part of the first signal carried on the i-th subcarrier group in the N subcarrier groups.
  • the processing procedure of the second device on the part of the first signal carried on the i-th subcarrier group in the N subcarrier groups may be as shown in FIG. 5A.
  • the second device respectively correlates the acquired sequence ⁇ y(k) ⁇ with all possible sequences ⁇ x'(k) ⁇ and performs a maximum likelihood comparison to obtain the data transmitted by the first device.
  • the sequence ⁇ y(k) ⁇ is obtained by the second device according to the received signal carried by the i-th subcarrier group.
  • the second device removes the cyclic prefix from the received signal carried by the i-th subcarrier group. Then perform fast Fourier transformation (FFT) and de-mapping to obtain the sequence ⁇ y(k) ⁇ .
  • FFT fast Fourier transformation
  • ⁇ x'(k) ⁇ is a local sequence generated by ⁇ x(k) ⁇ .
  • the value combination is ⁇ (0,0),(0,1),(1,0),(1,1) ⁇ .
  • the obtained sequence x′(k) is the sequence x′ 1 (k)
  • the obtained sequence x′(k ) Is the sequence x′ 2 (k)
  • the obtained sequence x′(k) is the sequence x′ 3 (k)
  • the two-bit information is (1,1)
  • the sequence x′(k) obtained is the sequence x′ 4 (k).
  • the four sequences x′ 1 (k), x′ 2 (k), x′ 3 (k), x′ 4 (k) can be cyclic shift sequences of the same sequence, and the sequence ⁇ y( k) ⁇ are respectively correlated with x ′1 (k), x′ 2 (k), x′ 3 (k), x′ 4 (k), and 4 correlation values are obtained.
  • the value of the two-bit information corresponding to the maximum correlation value is the data obtained by the second device. For example, if the maximum correlation value is obtained by correlating the sequence ⁇ y(k) ⁇ with x ′ 1 (k), the second device determines that the two-bit information transmitted by the first device is (0,0).
  • the second device may perform similar processing to obtain the first signal.
  • the second device needs to process the portion of the first signal carried on the i-th subcarrier group of the N subcarrier groups, and also needs to know the identity of the first signal or the identity of the cell.
  • the first device may send the first signaling, and the first signaling is used to indicate the identity of the first signal. Then, after the second device receives the first signaling from the first device, it may determine the first signaling according to the first signaling.
  • the identification of a signal may correspond to a terminal device, or an identifier of a first signal may correspond to a group of terminal devices, or an identifier of a first signal may correspond to a cell.
  • the first device is a network device and the second device is a terminal device.
  • the network device can be used exclusively by the user equipment
  • the (UE specific) signaling sends the identification of the first signal to the terminal device, that is, the first signaling may be user equipment dedicated signaling, or if the identification of the first signal sent to the terminal device is the terminal.
  • the identification of the first signal corresponding to the terminal device group where the device is located the network device can send the identification of the first signal to the terminal device through user equipment group dedicated signaling, or the network device may use user equipment group dedicated signaling Multicast (or broadcast) the identity of the first signal to each terminal device in the terminal device group, that is, the first signaling may be dedicated signaling for the user equipment group, or if the first signal is sent to the terminal device
  • the identity of a signal is the identity of the first signal corresponding to the cell in which the terminal device is located, and the network device can broadcast the identity of
  • the second device processes the first signal. It can process each sub-carrier group separately, or process the first signal as a whole. In the previous introduction, it is mainly to separately process each sub-carrier group. Take processing as an example.
  • the processing of the first signal by the second device may be related to the local sequence, or may be channel estimation based on the received signal and the local sequence, which is not specifically limited.
  • the portion of the first signal carried on the kth subcarrier in the ith subcarrier group in the N subcarrier groups is And with Related sequence Is one of the listed sequences.
  • the listed sequences are all sequences with good cross-correlation. Therefore, when terminal devices in different cells in the system use the above rules to transmit signals on the same time-frequency resource, the For the same time domain resource and the same subcarrier group, as long as the different terminal equipment selects Are different sequences in the listed sequences, then it can be ensured that when the terminal equipment of these different cells transmits signals in the same subcarrier group, the cross-correlation between the signals carried by the subcarrier group is better, which can reduce the inter-cell interference.
  • the first signal in the embodiment of the present application may also be a downlink signal.
  • the access network devices of different cells in the system use the above rules to send signals on the same time-frequency resources, as long as the access network devices of different cells select If it is a different sequence in the listed sequence, then it can be ensured that when signals are sent in the same sub-carrier group, the cross-correlation between the signals carried by the sub-carrier group is better, which can reduce signal interference between cells and improve different cells.
  • this application also provides a sequence.
  • the first signal sent on one or more subcarrier groups is generated based on the intercepted sequence in the long sequence.
  • the long sequence is obtained based on a Zadoff-Chu (ZC) sequence with a length of M zc .
  • the length of the long sequence is M and a value related to the system bandwidth.
  • M zc is related to M.
  • q corresponding to the ZC sequence or the long sequence satisfies among them n id ⁇ 0,1,2,...,p-2 ⁇
  • p is a prime number greater than 2.
  • the intercepted sequence may be determined based on the frequency domain position of the one or more subcarrier groups.
  • the following provides a signal sending and receiving method based on the use of the above sequence.
  • a flowchart of the method please refer to FIG. 6.
  • This method can be applied to the scenario shown in FIG. 1A.
  • the method provided in the embodiment of the present application is applied to the application scenario shown in FIG. 1A as an example.
  • the method can be executed by two communication devices, such as a third communication device and a fourth communication device, where the third communication device can be a network device or can support the network device to implement the functions required by the method.
  • the communication device (such as a chip system) or the third communication device may be a terminal device or a communication device (such as a chip system) capable of supporting the terminal device to implement the functions required by the method.
  • the fourth communication device may be a network device or a communication device (such as a chip system) capable of supporting the functions required by the network device to implement the method, or the fourth communication device may be a terminal device or capable of supporting a terminal A communication device (such as a chip system) that implements the functions required by the method. And there are no restrictions on the implementation of the third communication device and the fourth communication device.
  • the third communication device may be a terminal device, the fourth communication device is a network device, or the third communication device and the fourth communication device are both networks.
  • the device, or the third communication device and the fourth communication device are both terminal devices, or the third communication device is a terminal device, and the fourth communication device is a communication device that can support the network device to implement the functions required by the method, and so on.
  • the network device is, for example, a base station.
  • the method is executed by the first device and the second device as an example.
  • the third communication device is the first device and the fourth communication device is the second device as an example.
  • the first device is, for example, a network device, and the second device is a terminal device.
  • the first signal described in this article may be a downlink signal, or the first device is a terminal device, for example, and the second device is a network device, then in this article
  • the first signal may be an uplink signal.
  • the N sub-carrier group of the i-th subcarrier group includes subcarriers K i, N is greater than or equal to n-1 Integer, K i is an integer greater than 1.
  • K i is, for example, determined according to the bandwidth part (BWP) where the N subcarrier groups are located.
  • BWP bandwidth part
  • K i can be different.
  • the first device When the first device needs to send a signal, it can determine the time-frequency resource.
  • the determined time-frequency resource includes N sub-carrier groups, where the meaning of the N sub-carrier groups can be referred to the foregoing embodiment, which will not be repeated here.
  • the first device sends the first signal on the N subcarrier groups, and the second device receives the first signal carried on the N subcarrier groups.
  • the N subcarrier group i th sub-carrier group portion carrying the first signal is a sequence ⁇ z q (m) ⁇ of the first segment, the length of the sequence ⁇ z q (m) ⁇ of M ,
  • A is a non-zero complex constant
  • t 0,1,2,...,M zc -1
  • j is the unit of imaginary number
  • is a real number
  • q is determined by the first signal identification or cell identification, among them n id ⁇ 0,1,2,...,p-2 ⁇
  • p is a prime number greater than 2
  • n id is determined by the first signal identifier or the cell identifier.
  • the value of M is determined according to the maximum system bandwidth or the bandwidth part.
  • the maximum system bandwidth is G RBs
  • the number of subcarriers available for transmitting the first signal in each RB is H
  • the value of M can be G* H.
  • D i is the value determined in the system bandwidth or the bandwidth part in accordance with the position of the i-th subcarrier of the subcarrier groups is located in the first signal.
  • the value of q may be obtained according to the method provided above, or q may also be obtained in other ways, and the specific value is not limited.
  • the values of p corresponding to different sub-carrier groups may be the same. For example, for N sub-carrier groups, there may be at least two sub-carrier groups that have the same value of p. As an example, p may be equal to 31. At this time, the number of available sequences is 30, which can meet the requirements of cell planning. Of course, the embodiment of the application is not limited to this.
  • n id may be independent of the frequency domain position occupied by the N subcarriers.
  • N subcarrier groups can belong to a subcarrier group set, which also includes F subcarrier groups.
  • the frequency domain positions of the F subcarrier groups are different from the frequency domain positions of the N subcarrier groups. If the first transmitting device also uses the same manner as the signal S62 via the F subcarrier groups, the subcarrier groups will correspond to F n id, then the F subcarrier groups corresponding to N subcarriers n id and n id corresponding to the group may be the same or different , Whether it is the same or different is not related to the frequency domain position of the subcarrier group.
  • F is a positive integer.
  • the value of q may be determined according to the first signal identifier or the cell identifier, for example This makes the cross-correlation between the sequences obtained by intercepting the sequence ⁇ z q (m) ⁇ better, so for a subcarrier group, as long as the sequence ⁇ z q (m) ⁇ is intercepted, then it can It is ensured that the cross-correlation between the signals transmitted by different cells in the subcarrier group is better, so that the signal interference between the cells can be reduced and the channel estimation performance can be improved.
  • the maximum value of the cross-correlation value of the sequence carried by every two subcarrier groups is 0.48212, and the average value is 0.40056.
  • the sequence used is a fragment of the Gold sequence, and the maximum value of the cross-correlation value is greater than 0.9, and the average value is 0.48829. Therefore, using this scheme, the cross-correlation value can be smaller, thereby further reducing the interference between signals.
  • d i is a non-negative integer.
  • the first device may first determine the sequence ⁇ z q (m) ⁇ , and then respectively intercept a part of the sequence ⁇ z q (m) ⁇ as the part of the first signal in each of the N subcarrier groups
  • the second device first determines the long sequence, and then intercepts the long sequence as the sequence carried on each of the N subcarrier groups.
  • the first device may directly determine the sequence according to each subcarrier group in the N subcarrier groups, that is, directly determine the sequence carried by each subcarrier group in the N subcarrier groups, for example, the first device directly determines the sequence
  • the first device does not need to determine the long sequence, but directly determines the sequence carried by each subcarrier group.
  • the embodiment of the present application does not limit the specific determination method of the first device.
  • D i may be determined by the frequency domain position of the i th sub-carrier groups, for example, the value D i may be determined according to the position or BWP subcarriers in the i th sub-carrier signals of the first group is located in the system bandwidth.
  • n i is the number of the smallest subcarrier in the i-th subcarrier group
  • n i is the absolute number of the smallest subcarrier in the i-th subcarrier group in the system bandwidth or in the BWP, not in The i-th subcarrier group or the relative number in the N subcarrier groups
  • n dist is the interval between subcarriers in the subcarrier group
  • n dist is a positive integer
  • n offset is an integer.
  • the portion of the first signal carried by the i-th subcarrier group in the N subcarrier groups is the first segment of the sequence.
  • the first segment in the sequence can be determined according to the frequency domain position of the i-th subcarrier group, that is, N
  • which segment of the sequence is carried by each subcarrier group in each subcarrier group may be related to the frequency domain position of each subcarrier group, so that it can be ensured that N subcarrier groups can carry a relatively complete sequence.
  • each subcarrier group in the N subcarrier groups can carry partial signals of the first signal, and the partial signals carried by each subcarrier group are sequence fragments, and in the N subcarrier groups
  • the segments carried by at least two subcarrier groups are different.
  • At least two subcarrier groups respectively carry different parts of the first signal.
  • at least two subcarrier groups are N subcarrier groups, that is, the signals carried by the N subcarrier groups are all different.
  • the first device transmits the first signal through the N subcarrier groups, and the N subcarrier groups respectively carry the first signal. Different parts of a signal, so that a complete first signal can be transmitted through N subcarrier groups.
  • At least two subcarrier groups are only true subsets of N subcarrier groups, then in addition to at least two subcarrier groups in N subcarrier groups, other subcarrier groups may be included, and the signals carried by other subcarrier groups may be the same
  • the first device sends the first signal through N subcarrier groups, and the first signal has the same part, then at least two subcarrier groups can carry different parts of the first signal, except for at least The other subcarrier groups other than the two subcarrier groups can carry the same part of the first signal, so that a complete first signal can be sent through N subcarrier groups, or the first device can send the first signal through N subcarrier groups , Then the first signal can be carried by at least two subcarrier groups, and the error-prone or important part of the first signal can be carried by other subcarrier groups in the N subcarrier groups except for the at least two subcarrier groups, Therefore, the error-prone part or the more important part of the first signal can be transmitted multiple times to improve the transmission reliability.
  • the first device wants to send the first signal on the N subcarrier groups, and first involves generating the first signal.
  • the process of generating the first signal is in specific implementation: the first device maps the segments of the sequence ⁇ z q (m) ⁇ to N subcarrier groups to generate the first signal Signal and send to the network device.
  • the specific generation method can be referred to the description in the foregoing embodiment, and the generation method is the same, and the difference lies in the signal used, which is not repeated here.
  • the first device will include a sequence of K i elements
  • the first device will include a sequence of K i elements
  • the first device may transmit the first signal carrying the sequence ⁇ x(n) ⁇ on one OFDM symbol. It is also possible to transmit the first signal carrying the sequence ⁇ z q (m) ⁇ on multiple OFDM symbols.
  • the first signal may be DMRS, SRS or control information.
  • the first signal in the embodiment of the present application is not limited to including the above information.
  • the first signal is a signal used to carry communication information.
  • the communication information may be carried in a sequence selection manner, or may be carried in a sequence modulation manner, but is not limited to this.
  • the communication information includes data and/or control information, for example.
  • the first device is a terminal device
  • the method of sequence selection is: assigning 2 n orthogonal sequences to one terminal device. These 2 n orthogonal sequences can also refer to the above description.
  • the method of sequence modulation can also refer to the above description.
  • the first device can pass A, Determine the sequence ⁇ z q (m) ⁇ . It should be noted that for the sequence modulation mode, different values of A in the sequence ⁇ z q (m) ⁇ can be used to carry different information.
  • the second device may receive the signals on the N subcarriers according to the positions of the predefined or preconfigured N subcarriers in the subcarriers of the communication system.
  • the second device may obtain the first signal on N subcarriers on consecutive N subcarriers, or obtain the first signal on N subcarriers on N subcarriers at equal intervals.
  • the second device acquires the sequence carried by the first signal.
  • the sequence carried by the first signal is, for example, the sequence ⁇ z q (m) ⁇ , or may be a part of the sequence ⁇ z q (m) ⁇ .
  • the portion of the first signal carried by the i-th subcarrier group in the Nth subcarrier group is the first segment of the sequence.
  • the second device can obtain the sequence carried by the first signal K i elements in.
  • the second device may be acquired on a continuous sub-carrier signal K i K i sub-carrier, or acquiring the signals on the sub-carrier K i K i equally spaced subcarriers, cyclic prefix is removed to obtain the signal to obtain a time domain signal to obtain a frequency domain signal comprising K i elements, and then, based on the frequency domain signal comprising K i elements, defined sequence K i elements in.
  • the terminal device can obtain the K i elements in the sequence carried by the corresponding sub-carrier group in this way.
  • the second device according to the sequence The K i elements in, process the part of the first signal carried on the i-th subcarrier group in the N subcarrier groups.
  • the second device respectively correlates the acquired sequence ⁇ y(k) ⁇ with all possible sequences ⁇ x'(k) ⁇ and performs a maximum likelihood comparison to obtain the data transmitted by the first device.
  • the sequence ⁇ y(k) ⁇ is obtained by the second device according to the received signal carried by the i-th subcarrier group.
  • FIG. 5B provided by the embodiment shown in FIG. 2, and the second device will receive the i-th subcarrier group.
  • the cyclic prefix is removed from the signals carried by the sub-carrier groups, and then fast Fourier transformation (FFT) and demapping are performed to obtain the sequence ⁇ y(k) ⁇ .
  • FFT fast Fourier transformation
  • ⁇ x'(k) ⁇ is a local sequence generated by ⁇ x(k) ⁇ .
  • the obtained sequence x′(k) is the sequence x ′ 1 (k)
  • the obtained sequence x′(k ) Is the sequence x′ 2 (k)
  • the obtained sequence x′(k) is the sequence x′ 3 (k)
  • the two-bit information is (1,1)
  • the sequence x′(k) obtained is the sequence x′ 4 (k).
  • the four sequences x ′ 1 (k), x′ 2 (k), x′ 3 (k), x′ 4 (k) can be cyclic shift sequences of the same sequence, and the sequence ⁇ y( k) ⁇ is correlated with x ′ 1 (k), x′ 2 (k), x′ 3 (k), x′ 4 (k), respectively, and 4 correlation values are obtained.
  • the value of the two-bit information corresponding to the maximum correlation value is the data obtained by the second device. For example, if the maximum correlation value is obtained by correlating the sequence ⁇ y(k) ⁇ with x′ 1 (k), the second device determines that the two-bit information transmitted by the first device is (0,0).
  • the second device can perform similar processing to obtain the first signal.
  • the second device processes the first signal. It can process each sub-carrier group separately, or process the first signal as a whole. In the previous introduction, it is mainly to separately process each sub-carrier group. Take processing as an example.
  • the processing of the first signal by the second device may be related to the local sequence, or may be channel estimation based on the received signal and the local sequence, which is not specifically limited.
  • the portion of the first signal carried in the i-th subcarrier group in the N subcarrier groups Is a segment of the sequence ⁇ z q (m) ⁇ , q satisfies the above-mentioned conditions, and when the sequence ⁇ z q (m) ⁇ satisfies different values of q, the cross-correlation between the sequence segments is better, so for two subcarrier groups In other words, as long as the selected q satisfies the conditions, it can ensure that the cross-correlation between the signals carried by the two subcarrier groups is good, thereby reducing interference between signals and improving channel estimation performance.
  • the part of the first signal carried on the kth subcarrier in the i-th subcarrier group of the N subcarrier groups is a segment of ⁇ z q (m) ⁇ , when q satisfies the
  • the first signal in the embodiment of the present application may also be a downlink signal.
  • the downlink signal sent using the method of the above embodiment can also make the cross-correlation between signals carried by the same subcarrier group better, thereby reducing signal interference between cells and improving the channel estimation performance of terminal equipment in different cells .
  • FIG. 7 shows a schematic structural diagram of a communication device 700.
  • the communication apparatus 700 can implement the functions of the first device mentioned above.
  • the communication device 700 may be the first device described above.
  • the communication device 1100 is the network device 102 shown in FIG. 1A, or the access network device 102 shown in FIG. 1B, or the communication device 1100 may It is the terminal device shown in FIG. 1A or FIG. 1C, or may be a chip set in the first device described above.
  • the communication device 700 may include a processor 701 and a transceiver 702. If the first device shown in FIG. 8 is the access network device 102 shown in FIG.
  • the processor 701 and the controller/processor 201 may be the same component, and the transceiver 702 and the transceiver 202 may be the same component; or If the first device shown in FIG. 8 is the terminal device shown in FIG. 1A or FIG. 1C, the processor 801 and the application processor 302 may be the same component, and the transceiver 1102 and the transceiver 301 may be the same component.
  • the processor 701 may be used to execute S21 in the embodiment shown in FIG. 2 and/or used to support other processes of the technology described herein.
  • the transceiver 702 may be used to perform S22 in the embodiment shown in FIG. 2 and/or to support other processes of the technology described herein.
  • the processor 701 for determining the time-frequency resources, wherein the frequency resources of the group comprising N sub-carriers, the N sub-carrier group of the i-th subcarrier group includes subcarriers K i, is greater than or equal to N A positive integer of 1, K i is an integer greater than 1;
  • FIG. 8 shows a schematic structural diagram of a communication device 800.
  • the communication device 800 can implement the functions of the second device mentioned above.
  • the communication device 800 may be the second device described above.
  • the communication device 800 is the network device 102 shown in FIG. 1A, or the access network device 102 shown in FIG. 1B, or the communication device 800 may It is the terminal device shown in FIG. 1A or FIG. 1C, or may be a chip provided in the second device described above.
  • the communication device 800 may include a processor 801 and a transceiver 802. If the first device shown in FIG. 7 is the terminal device shown in FIG. 1A or FIG. 1C, the second device shown in FIG. 8 may be the access network device 102, the processor 801, and the controller shown in FIG. 1B.
  • the processor 201 may be the same component, and the transceiver 802 and the transceiver 202 may be the same component; or, if the first device shown in FIG. 7 is the access network device 102 shown in FIG. 1B, the second device shown in FIG.
  • the second device may be the terminal device shown in FIG. 1A or FIG. 1C
  • the processor 801 and the application processor 302 may be the same component
  • the transceiver 802 and the transceiver 301 may be the same component.
  • the processor 801 may be used to execute S23 and S24 in the embodiment shown in FIG. 2 and/or other processes used to support the technology described herein.
  • the transceiver 1002 may be used to perform S22 in the embodiment shown in FIG. 2 and/or used to support other processes of the technology described herein.
  • the processor 801 is configured to, according to the sequence
  • the K i elements in the N subcarrier groups process the signal carried by the i-th subcarrier group in the N subcarrier groups; where the sequence You can refer to the above.
  • FIG. 9 shows a schematic structural diagram of a communication device 900.
  • the communication device 900 can implement the functions of the first device mentioned above.
  • the communication device 900 may be the first device described above, for example, the communication device 900 is the network device 102 shown in FIG. 1A, or the access network device 102 shown in FIG. 1B, or the communication device 900 may It is the terminal device shown in FIG. 1A or FIG. 1C, or may be a chip set in the first device described above.
  • the communication device 900 may include a processor 901 and a transceiver 902. If the first device shown in FIG. 9 is the access network device 102 shown in FIG.
  • the processor 901 and the controller/processor 201 may be the same component, and the transceiver 902 and the transceiver 202 may be the same component; or If the first device shown in FIG. 9 is the terminal device shown in FIG. 1A or FIG. 1C, the processor 901 and the application processor 302 may be the same component, and the transceiver 902 and the transceiver 301 may be the same component.
  • the processor 901 may be used to execute S61 in the embodiment shown in FIG. 6 and/or used to support other processes of the technology described herein.
  • the transceiver 902 may be used to perform S62 in the embodiment shown in FIG. 6 and/or to support other processes of the technology described herein.
  • the processor 901 is configured to determine a time-frequency resource, where the time-frequency resource includes N subcarrier groups, the i-th subcarrier group in the N subcarrier groups includes K i subcarriers, and the K i subcarriers
  • the carriers are equally spaced, N is a positive integer greater than or equal to 1, and K i is an integer greater than 1;
  • FIG. 10 shows a schematic structural diagram of a communication device 1000.
  • the communication apparatus 1000 can realize the function of the second device mentioned above.
  • the communication device 1000 may be the second device described above.
  • the communication device 1100 is the network device 102 shown in FIG. 1A, or the access network device 102 shown in FIG. 1B, or the communication device 1100 may It is the terminal device shown in FIG. 1A or FIG. 1C, or may be a chip provided in the second device described above.
  • the communication device 1000 may include a processor 1001 and a transceiver 1002. If the first device shown in FIG. 9 is the terminal device shown in FIG. 1A or FIG. 1C, the second device shown in FIG. 10 may be the access network device 102, the processor 1001, and the controller shown in FIG. 1B.
  • the processor 201 may be the same component, and the transceiver 1002 and the transceiver 202 may be the same component; or, if the first device shown in FIG. 9 is the access network device 102 shown in FIG. 1B, the first device shown in FIG.
  • the second device may be the terminal device shown in FIG. 1A or FIG. 1C, the processor 1001 and the application processor 302 may be the same component, and the transceiver 1002 and the transceiver 301 may be the same component.
  • the processor 1001 may be used to execute S63 and S64 in the embodiment shown in FIG. 6 and/or to support other processes of the technology described herein.
  • the transceiver 1002 may be used to perform S62 in the embodiment shown in FIG. 6, and/or used to support other processes of the technology described herein.
  • the processor 1001 is configured to process the first signal.
  • the communication device 700, the communication device 800, the communication device 900, or the communication device 1000 can also be implemented through the structure of the communication device 1100 as shown in FIG. 11.
  • the communication apparatus 1100 can implement the functions of the first device or the second device mentioned above.
  • the communication device 1100 may include a processor 1101.
  • the communication device 1100 may further include a memory 1102, which may be used to store instructions required by the processor 1101 to perform tasks.
  • the processor 1101 may be used to execute S21 in the embodiment shown in FIG. 2 and/or used to support the technology described herein
  • the processor 1101 may be used to execute S23 and S24 in the embodiment shown in FIG. 2, and/or used to Other processes that support the technology described in this article.
  • the processor 1101 may be used to execute S61 in the embodiment shown in FIG.
  • the processor 1101 may be used to execute S63 and S64 in the embodiment shown in FIG. 6, and/or used to Other processes that support the technology described in this article.
  • the communication device 1100 can use field-programmable gate array (FPGA), application specific integrated circuit (ASIC), system on chip (SoC), and central processor (central processor). unit, CPU), network processor (network processor, NP), digital signal processing circuit (digital signal processor, DSP), microcontroller (microcontroller unit, MCU), or programmable controller (programmable logic device, PLD) or other integrated chips, the communication device 1100 can be set in the first device or the second device in the embodiment of the present application, so that the first device or the second device implements the method provided in the embodiment of the present application.
  • FPGA field-programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • central processor central processor
  • unit CPU
  • network processor network processor
  • NP digital signal processing circuit
  • DSP digital signal processor
  • microcontroller unit microcontroller unit, MCU
  • PLD programmable controller
  • the communication device 1100 may include a transceiving component for communicating with other devices.
  • the transceiver component can be used to perform S22 in the embodiment shown in FIG. 2 and/or to support the functions described herein. Other processes of the described technology.
  • the transceiver component may be used to perform S62 in the embodiment shown in FIG. 6 and/or to support the functions described herein. Other processes of the described technology.
  • the communication device 700 provided by the embodiment shown in FIG. 7 may also be implemented in other forms.
  • the communication device includes a processing module and a transceiver module.
  • the processing module may be implemented by the processor 701, and the transceiver module may be implemented by the transceiver 702.
  • the processing module may be used to execute S21 in the embodiment shown in FIG. 2 and/or used to support other processes of the technology described herein.
  • the transceiver module may be used to perform S22 in the embodiment shown in FIG. 2 and/or to support other processes of the technology described herein.
  • the communication device 800 provided by the embodiment shown in FIG. 8 may also be implemented in other forms.
  • the communication device includes a processing module and a transceiver module.
  • the processing module may be implemented by the processor 801, and the transceiver module may be implemented by the transceiver 802. Among them, the processing module may be used to execute S23 and S24 in the embodiment shown in FIG. 2 and/or other processes used to support the technology described herein.
  • the transceiver module may be used to perform S22 in the embodiment shown in FIG. 2 and/or to support other processes of the technology described herein.
  • the communication device 900 provided by the embodiment shown in FIG. 9 may also be implemented in other forms.
  • the communication device includes a processing module and a transceiver module.
  • the processing module may be implemented by the processor 901, and the transceiver module may be implemented by the transceiver 902.
  • the processing module may be used to execute S61 in the embodiment shown in FIG. 6 and/or used to support other processes of the technology described herein.
  • the transceiver module may be used to perform S62 in the embodiment shown in FIG. 6 and/or to support other processes of the technology described herein.
  • the communication device 1000 provided by the embodiment shown in FIG. 10 may also be implemented in other forms.
  • the communication device includes a processing module and a transceiver module.
  • the processing module may be implemented by the processor 1001, and the transceiver module may be implemented by the transceiver 1002.
  • the processing module may be used to execute S63 and S64 in the embodiment shown in FIG. 6 and/or to support other processes of the technology described herein.
  • the transceiver module may be used to perform S62 in the embodiment shown in FIG. 6 and/or to support other processes of the technology described herein.
  • the embodiments of the present application also provide a device (for example, an integrated circuit, a wireless device, a circuit module, etc.) for implementing the above method.
  • a device for example, an integrated circuit, a wireless device, a circuit module, etc.
  • the device implementing the power tracker and/or power supply generator described herein may be a self-supporting device or may be part of a larger device.
  • the device can be (i) a self-supporting IC; (ii) a collection with one or more ICs, which can include a memory IC for storing data and/or instructions; (iii) an RFIC, such as an RF receiver or RF transmitter /Receiver; (iv) ASIC, such as mobile station modem; (v) modules that can be embedded in other devices; (vi) receivers, cellular phones, wireless devices, handhelds, or mobile units; (vii) others, etc. Wait.
  • a self-supporting IC can include a memory IC for storing data and/or instructions; (iii) an RFIC, such as an RF receiver or RF transmitter /Receiver; (iv) ASIC, such as mobile station modem; (v) modules that can be embedded in other devices; (vi) receivers, cellular phones, wireless devices, handhelds, or mobile units; (vii) others, etc. Wait.
  • the method and device provided in the embodiments of the present application may be applied to terminal equipment or access network equipment (which may be collectively referred to as wireless equipment).
  • the terminal device or access network device or wireless device may include a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system can be any one or more computer operating systems that implement business processing through processes, such as Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems, or windows operating systems.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not limit the specific structure of the execution body of the method, as long as the program that records the code of the method of the embodiment of the present application can be executed to transmit the signal according to the embodiment of the present application.
  • the execution subject of the wireless communication method in this embodiment of the present application may be a terminal device or an access network device, or a terminal device or an access network device that can call and execute a program. Module.
  • various aspects or features of the embodiments of the present application may be implemented as methods, devices, or products using standard programming and/or engineering techniques.
  • article of manufacture used in this application encompasses a computer program that can be accessed from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic.
  • the implementation process of the embodiment constitutes any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solutions of the embodiments of the present application can be embodied in the form of software products in essence or parts that contribute to the prior art or parts of the technical solutions, and the computer software products are stored in a storage medium , Including several instructions to enable a computer device (which may be a personal computer, a server, or an access network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供一种信号发送、接收方法及设备。其中,第一信号在N个子载波组中的第i个子载波组中的第k个子载波上承载的部分是Xi,nid(k), 而与Xi,nid(k)有关的序列{Si,nid(k)}是列举的序列之一,列举的序列都是互相关性较好的序列,因此对于两个子载波组来说,只要选择的{Si,nid(k)}是列举的序列中的两个,那么就可以保证这两个子载波组承载的信号之间的互相关性较好,从而可以减小信号间的干扰,提高信道估计性能。

Description

一种信号发送、接收方法及设备
本申请要求在2019年01月21日提交国家知识产权局、申请号为201910054913.4、申请名称为“一种信号发送、接收方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种信号发送、接收方法及设备。
背景技术
在新空口(new radio,NR)系统中,下行解调参考信号(demodulation reference signal,DMRS)使用的是基于Gold序列获得的序列,该序列经过正交相移键控(quadrature phase shift keyin,QPSK)调制后映射到频域子载波上。以物理下行控制信道(physical downlink control channel,PDCCH)为例,DMRS使用的序列{c(n)}是由长为(2 31-1)的Gold序列截取得到的,其中Gold序列的初始化值是由终端设备的DMRS扰码的标识(identifier,ID)(或小区的ID)、DMRS所在的子帧的子帧号和OFDM符号的位置等因素决定的,经过QPSK将序列{c(n)}调制为{s(n)},
Figure PCTCN2020071542-appb-000001
然后将序列{s(n)}承载在DMRS的子载波上。
虽然完整的Gold序列具有良好的互相关特性,但是在NR系统中下行DMRS使用的只是Gold序列的片段,Gold序列的片段之间的互相关性是较差的,这会导致信号间的干扰较大,影响信道估计性能。
发明内容
本申请实施例提供一种信号发送、接收方法及设备,用于降低信号间的干扰。
第一方面,提供第一种信号发送方法,该方法包括:
确定时频资源,其中,所述时频资源包括N个子载波组,所述N个子载波组中的第i个子载波组包括K i个子载波,N为大于或等于1的正整数,K i为大于1的整数;
在所述N个子载波组上发送第一信号,其中,所述第一信号在所述N个子载波组中的第i个子载波组中的第k个子载波上承载的部分是
Figure PCTCN2020071542-appb-000002
k=0,1,2,…,K i-1,
Figure PCTCN2020071542-appb-000003
Figure PCTCN2020071542-appb-000004
A和μ均是非零复常数,
Figure PCTCN2020071542-appb-000005
是非零复常数,
Figure PCTCN2020071542-appb-000006
n id为所述第一信号的标识或小区的标识,
Figure PCTCN2020071542-appb-000007
是实数,其中,序列
Figure PCTCN2020071542-appb-000008
是下述序列之一:
{1,-3,-1,3,-1,3,-3,-3,-3,3,-3,-3,-1,3,1,-1,1,-3},
{1,1,-1,-1,3,-1,1,-3,1,-1,-3,1,3,-1,1,-1,1,1},
{1,-3,3,3,3,-1,1,-3,1,3,1,1,-1,3,1,3,1,-3},
{1,1,3,-1,-1,3,-3,-3,-3,-1,1,-3,3,-1,1,3,1,1},
{1,-3,3,-1,-1,-1,-3,1,1,-1,1,-3,-1,3,-3,-1,1,-3},
{1,1,3,3,3,3,1,1,-3,3,1,1,3,-1,-3,-1,1,1},
{1,-3,-1,-1,3,3,1,1,-3,-1,-3,1,-1,3,-3,3,1,-3},
{1,1,-1,3,-1,-1,-3,1,1,3,-3,-3,3,-1,-3,3,1,1},
{1,1,1,-3,-1,-3,1,-1,3,-3,-1,-3,3,-1,-1,-1,1,1},
{1,-3,1,1,3,1,-3,-1,-1,1,-1,1,-1,3,-1,-1,1,-3},
{1,-3,-3,1,-1,-3,1,-1,3,1,3,-3,-1,3,-1,3,1,-3},
{1,1,-3,-3,3,1,-3,-1,-1,-3,3,1,3,-1,-1,3,1,1},
{1,1,-3,1,-1,1,1,3,-1,1,3,-3,3,-1,3,-1,1,1},
{1,-3,-3,-3,3,-3,-3,3,3,-3,3,1,-1,3,3,-1,1,-3},
{1,-3,1,-3,-1,1,1,3,-1,-3,-1,-3,-1,3,3,3,1,-3},
{1,1,1,1,3,-3,-3,3,3,1,-1,1,3,-1,3,3,1,1},
{1,1,-1,3,3,3,-3,-3,1,-1,-3,-3,3,3,1,3,1,1},
{1,-3,-1,-1,-1,-1,1,-3,-3,3,-3,1,-1,-1,1,3,1,-3},
{1,-3,3,-1,3,3,-3,-3,1,3,1,-3,-1,-1,1,-1,1,-3},
{1,1,3,3,-1,-1,1,-3,-3,-1,1,1,3,3,1,-1,1,1},
{1,1,3,-1,3,-1,-3,1,-3,3,1,-3,3,3,-3,3,1,1},
{1,-3,3,3,-1,3,1,1,1,-1,1,1,-1,-1,-3,3,1,-3},
{1,1,-1,-1,-1,3,1,1,1,3,-3,1,3,3,-3,-1,1,1},
{1,-3,-1,3,3,-1,-3,1,-3,-1,-3,-3,-1,-1,-3,-1,1,-3},
{1,1,1,1,-1,1,-3,-1,3,-3,-1,1,3,3,-1,3,1,1},
{1,-3,1,-3,3,-3,1,-1,-1,1,-1,-3,-1,-1,-1,3,1,-3},
{1,1,-3,1,3,-3,1,-1,-1,-3,3,-3,3,3,-1,-1,1,1},
{1,-3,-3,-3,-1,1,-3,-1,3,1,3,1,-1,-1,-1,-1,1,-3},
{1,1,-3,-3,-1,-3,-3,3,-1,1,3,1,3,3,3,3,1,1},或,
{1,-3,-3,1,3,1,1,3,3,-3,3,-3,-1,-1,3,3,1,-3};
其中,序列
Figure PCTCN2020071542-appb-000009
是从第一序列组中确定的,所述序列
Figure PCTCN2020071542-appb-000010
是根据所述第一信号的标识或小区的标识确定的,或所述序列
Figure PCTCN2020071542-appb-000011
是从第二序列组中确定的,所述序列
Figure PCTCN2020071542-appb-000012
是根据所述第一信号的标识或者小区的标识确定。
该方法可由第一通信装置执行,第一通信装置可以是第一设备或能够支持第一设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。这里以第一通信装置是第一设备为例。第一设备可以是终端设备,也可以是网络设备。示例性的,网络设备为接入网设备,例如基站。
本申请实施例中,第一信号在N个子载波组中的第i个子载波组中的第k个子载波上承载的部分是
Figure PCTCN2020071542-appb-000013
而与
Figure PCTCN2020071542-appb-000014
有关的序列
Figure PCTCN2020071542-appb-000015
是列举的序列之一,列举的序列都是互相关性较好的序列,因此,当系统中不同小区的终端设备使用上述规则在相同的时频资源上发送信号时,对于不同终端设备使用的相同的时域资源以及相同的子载波组来说,只要该不同的终端设备选择的
Figure PCTCN2020071542-appb-000016
是列举的序列中不同序列,那么就可以保证这不同小区的终端设备在相同子载波组发送信号时,该子载波组承载的信号之间的互相关性较好, 从而可以减小小区间的信号干扰,提高不同小区的接入网设备的信道估计性能。当然,本申请实施例中的第一信号也可以是下行信号。当系统中不同小区的接入网设备使用上述规则在相同的时频资源上发送信号时,只要不同小区的接入网设备选择的
Figure PCTCN2020071542-appb-000017
是列举的序列中不同序列,那么就可以保证在相同子载波组发送信号时,该子载波组承载的信号之间的互相关性较好,从而可以减小小区间的信号干扰,提高不同小区内的终端设备的信道估计性能。
结合第一方面,在第一方面的一种可能的实施方式中,所述方法还包括:发送第一信令,所述第一信令用于指示所述第一信号的标识。
第一设备可以发送第一信号的标识,则第二设备接收第一信令后就可以获得第一信号的标识,从而可以根据第一信号的标识确定序列
Figure PCTCN2020071542-appb-000018
等。
第二方面,提供第一种信号接收方法,该方法包括:
接收承载在N个子载波上的第一信号,获取所述N个子载波组中的第i个子载波组承载的序列
Figure PCTCN2020071542-appb-000019
中的K i个元素,k=0,1,2,…,K i-1,
Figure PCTCN2020071542-appb-000020
Figure PCTCN2020071542-appb-000021
A和μ均是非零复常数,
Figure PCTCN2020071542-appb-000022
是k的非零复常数,
Figure PCTCN2020071542-appb-000023
n id为所述第一信号的标识或小区的标识,
Figure PCTCN2020071542-appb-000024
是实数;
根据所述序列
Figure PCTCN2020071542-appb-000025
中的K i个元素对所述N个子载波组中的第i个子载波组承载的信号进行处理,其中,序列
Figure PCTCN2020071542-appb-000026
是下述序列之一:
{1,-3,-1,3,-1,3,-3,-3,-3,3,-3,-3,-1,3,1,-1,1,-3},
{1,1,-1,-1,3,-1,1,-3,1,-1,-3,1,3,-1,1,-1,1,1},
{1,-3,3,3,3,-1,1,-3,1,3,1,1,-1,3,1,3,1,-3},
{1,1,3,-1,-1,3,-3,-3,-3,-1,1,-3,3,-1,1,3,1,1},
{1,-3,3,-1,-1,-1,-3,1,1,-1,1,-3,-1,3,-3,-1,1,-3},
{1,1,3,3,3,3,1,1,-3,3,1,1,3,-1,-3,-1,1,1},
{1,-3,-1,-1,3,3,1,1,-3,-1,-3,1,-1,3,-3,3,1,-3},
{1,1,-1,3,-1,-1,-3,1,1,3,-3,-3,3,-1,-3,3,1,1},
{1,1,1,-3,-1,-3,1,-1,3,-3,-1,-3,3,-1,-1,-1,1,1},
{1,-3,1,1,3,1,-3,-1,-1,1,-1,1,-1,3,-1,-1,1,-3},
{1,-3,-3,1,-1,-3,1,-1,3,1,3,-3,-1,3,-1,3,1,-3},
{1,1,-3,-3,3,1,-3,-1,-1,-3,3,1,3,-1,-1,3,1,1},
{1,1,-3,1,-1,1,1,3,-1,1,3,-3,3,-1,3,-1,1,1},
{1,-3,-3,-3,3,-3,-3,3,3,-3,3,1,-1,3,3,-1,1,-3},
{1,-3,1,-3,-1,1,1,3,-1,-3,-1,-3,-1,3,3,3,1,-3},
{1,1,1,1,3,-3,-3,3,3,1,-1,1,3,-1,3,3,1,1},
{1,1,-1,3,3,3,-3,-3,1,-1,-3,-3,3,3,1,3,1,1},
{1,-3,-1,-1,-1,-1,1,-3,-3,3,-3,1,-1,-1,1,3,1,-3},
{1,-3,3,-1,3,3,-3,-3,1,3,1,-3,-1,-1,1,-1,1,-3},
{1,1,3,3,-1,-1,1,-3,-3,-1,1,1,3,3,1,-1,1,1},
{1,1,3,-1,3,-1,-3,1,-3,3,1,-3,3,3,-3,3,1,1},
{1,-3,3,3,-1,3,1,1,1,-1,1,1,-1,-1,-3,3,1,-3},
{1,1,-1,-1,-1,3,1,1,1,3,-3,1,3,3,-3,-1,1,1},
{1,-3,-1,3,3,-1,-3,1,-3,-1,-3,-3,-1,-1,-3,-1,1,-3},
{1,1,1,1,-1,1,-3,-1,3,-3,-1,1,3,3,-1,3,1,1},
{1,-3,1,-3,3,-3,1,-1,-1,1,-1,-3,-1,-1,-1,3,1,-3},
{1,1,-3,1,3,-3,1,-1,-1,-3,3,-3,3,3,-1,-1,1,1},
{1,-3,-3,-3,-1,1,-3,-1,3,1,3,1,-1,-1,-1,-1,1,-3},
{1,1,-3,-3,-1,-3,-3,3,-1,1,3,1,3,3,3,3,1,1},或,
{1,-3,-3,1,3,1,1,3,3,-3,3,-3,-1,-1,3,3,1,-3};
其中,序列
Figure PCTCN2020071542-appb-000027
是从第一序列组中确定的,所述序列
Figure PCTCN2020071542-appb-000028
是根据所述第一信号的标识或小区的标识确定的,或所述序列
Figure PCTCN2020071542-appb-000029
是从第二序列组中确定的,所述序列
Figure PCTCN2020071542-appb-000030
是根据所述第一信号的标识或者小区的标识确定。
该方法可由第二通信装置执行,第二通信装置可以是第二设备或能够支持第二设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。这里以第二通信装置是第二设备为例。其中,第一设备是终端设备,第二设备是网络设备,或者,第一设备是网络设备,第二设备是终端设备。示例性的,网络设备为接入网设备,例如基站。
结合第二方面,在第二方面的一种可能的实施方式中,所述方法还包括:接收第一信令,所述第一信令用于指示所述第一信号的标识。
关于第二方面或第二方面的一种可能的实施方式的技术效果,可参考对于第一方面或第一方面的一种可能的实施方式的技术效果的介绍,不多赘述。
结合第一方面,在第一方面的一种可能的实施方式中,或,结合第二方面,在第二方面的一种可能的实施方式中,
Figure PCTCN2020071542-appb-000031
是不依赖于k的非零复常数。
Figure PCTCN2020071542-appb-000032
与k无关,也就是不依赖于k的变化而变化,例如在k不同时,
Figure PCTCN2020071542-appb-000033
可以取相同的值。可选的,
Figure PCTCN2020071542-appb-000034
可以跟第一信号的标识或小区的标识有关,例如第一信号的标识不同时
Figure PCTCN2020071542-appb-000035
可以不同,或者小区的标识不同时
Figure PCTCN2020071542-appb-000036
可以不同。
Figure PCTCN2020071542-appb-000037
可以跟子载波组相关,例如,不同的子载波组可以用相同的
Figure PCTCN2020071542-appb-000038
也可以用不同的
Figure PCTCN2020071542-appb-000039
可选的,
Figure PCTCN2020071542-appb-000040
可以由i和n id决定。
结合第一方面,在第一方面的一种可能的实施方式中,或,结合第二方面,在第二方面的一种可能的实施方式中,d i(k)与所述第一信号的标识或小区的标识无关。
序列{d i(k)}与第一信号的标识无关,例如在第一信号的标识不同时,序列{d i(k)}可以相同,或者理解为,一个序列{d i(k)}可以对应至少两个第一信号的标识。或者,序列{d i(k)}也与小区的标识无关,例如在小区的标识不同时,序列{d i(k)}可以相同,或者理解为,一个序列{d i(k)}可以对应至少两个小区的标识。
结合第一方面,在第一方面的一种可能的实施方式中,或,结合第二方面,在第二方面的一种可能的实施方式中,所述N个子载波组中的每个子载波组均承载所述第一信号的部分信号,且所述N个子载波组中的至少两个子载波组承载的所述第一信号的部分信号不 同。
例如第一设备通过N个子载波组发送第一信号,令N个子载波组分别承载第一信号的不同部分,从而通过N个子载波组可以发送完整的第一信号,且也避免第二终端设备重复接收第一信号的相同的部分。
结合第一方面,在第一方面的一种可能的实施方式中,或,结合第二方面,在第二方面的一种可能的实施方式中,所述N个子载波组两两频分正交,且所述N个子载波组占用相同的时域资源。
在本申请实施例中,N个子载波组可以是频分正交的,且N个子载波组可以占用相同的时域资源,从而第一信号的各个部分可以通过N个子载波在同一时刻发送,提高第一信号的发送效率。
结合第一方面,在第一方面的一种可能的实施方式中,或,结合第二方面,在第二方面的一种可能的实施方式中,
Figure PCTCN2020071542-appb-000041
Figure PCTCN2020071542-appb-000042
可以表示时域的循环移位,作为一种示例,
Figure PCTCN2020071542-appb-000043
另外需要说明的是,
Figure PCTCN2020071542-appb-000044
时表示该序列不需要进行时域的循环移位。
结合第一方面,在第一方面的一种可能的实施方式中,或,结合第二方面,在第二方面的一种可能的实施方式中,所述K i个子载波等间隔分布。
例如,如果K i个子载波中的每两个相邻的子载波之间的间隔为0,则表明K i个子载波是连续的子载波。提高等间隔的子载波发送第一信号,能够方便第二设备检测第一信号。当然这只是一种示例,或者K i个子载波也可以不是等间隔分布的,具体的不做限制。
结合第一方面,在第一方面的一种可能的实施方式中,或,结合第二方面,在第二方面的一种可能的实施方式中,所述第一信号为DMRS或SRS或控制信息。
这里只是举例,对于第一信号究竟是何种信号,本申请实施例不做限制。
第三方面,提供第二种信号发送方法,该方法包括:
确定时频资源,其中,所述时频资源包括N个子载波组,所述N个子载波组中的第i个子载波组包括K i个子载波,所述K i个子载波为等间隔分布,N为大于或等于1的正整数,K i为大于1的整数;
在所述N个子载波组上发送第一信号,其中,所述第一信号在所述N个子载波组中的第i个子载波组承载的部分是序列{z q(m)}的第一片段,所述序列{z q(m)}的长度为M,所述序列满足z q(m)=y q(m mod M zc),其中m=0,1,2,…,M-1,M为大于1的整数,M zc是满足M zc<M的最大质数,或者M zc是满足M zc>M的最小质数,
Figure PCTCN2020071542-appb-000045
Figure PCTCN2020071542-appb-000046
其中A是非零复常数,t=0,1,2,…,M zc-1,
Figure PCTCN2020071542-appb-000047
α是实数,其中,q由第一信号标识或者小区标识确定,
Figure PCTCN2020071542-appb-000048
其中
Figure PCTCN2020071542-appb-000049
n id∈{0,1,2,…,p-2},p为大于2的质数,n id由第一信号标识或者小区标识确定。
该方法可由第三通信装置执行,第三通信装置可以是第一设备或能够支持第一设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。这里以第一通信装置是第一设备为例。第一设备可以是终端设备,也可以是网络设备。示例性的,网络设备为接入网设备,例如基站。
本申请实施例中,第一信号在N个子载波组中的第i个子载波组中的第k个子载波上 承载的部分是{z q(m)}的片段,当q满足本申请实施例中的条件时,当系统中不同小区的终端设备使用上述规则在相同的时频资源上发送信号时,对于不同终端设备使用的相同的时域资源以及相同的子载波组来说,只要该不同的终端设备序列是基于不同q值的ZC序列得到,那么就可以保证这不同小区的终端设备在相同子载波组发送信号时,该子载波组承载的信号之间的互相关性较好,从而可以减小小区间的信号干扰,提高不同小区的接入网设备的信道估计性能。当然,本申请实施例中的第一信号也可以是下行信号。使用上述实施例的方法发送的下行信号也能够使得相同子载波组承载的信号之间的互相关性较好,从而可以减小小区间的信号干扰,提高不同小区内的终端设备的信道估计性能。
结合第三方面,在第三方面的一种可能的实施方式中,所述方法还包括:根据所述第i个子载波组的频域位置确定所述序列中的所述第一片段。
也就是说,N个子载波组中的每个子载波组究竟承载序列的哪个片段,可以跟每个子载波组的频域位置有关,从而可以保证N个子载波组能够承载较为完整的序列。
第四方面,提供第二种信号接收方法,该方法包括:接收承载在N个子载波上的第一信号,获取所述第一信号在所述N个子载波组中的第i个子载波组承载的序列,所述序列为序列{z q(m)}的第一片段,所述序列{z q(m)}的长度为M,满足z q(m)=y q(m mod M zc),其中m=0,1,2,…,M-1,M为大于1的整数,M zc是满足M zc<M的最大质数,或者M zc是满足M zc>M的最小质数,
Figure PCTCN2020071542-appb-000050
其中A是非零复常数,t=0,1,2,…,M zc-1,
Figure PCTCN2020071542-appb-000051
α是一个实数,其中,q由第一信号标识或者小区标识确定,
Figure PCTCN2020071542-appb-000052
其中
Figure PCTCN2020071542-appb-000053
n id∈{0,1,2,…,p-2},p为大于2的质数,n id由第一信号标识或者小区标识确定;对所述第一信号进行处理。
该方法可由第四通信装置执行,第四通信装置可以是第二设备或能够支持第二设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。这里以第四通信装置是第二设备为例。其中,第一设备是终端设备,第二设备是网络设备,或者,第一设备是网络设备,第二设备是终端设备。示例性的,网络设备为接入网设备,例如基站。
关于第四方面的技术效果,可参考对于第三方面的技术效果的介绍,不多赘述。
结合第三方面,在第三方面的一种可能的实施方式中,或,结合第四方面,在第四方面的一种可能的实施方式中,所述第一信号在所述N个子载波组中的第i个子载波组中的第k个子载波上承载的部分是
Figure PCTCN2020071542-appb-000054
其中k=0,1,2,…,K i-1,
Figure PCTCN2020071542-appb-000055
且d i是非负整数。
这里给出了一种确定所述第一信号在所述N个子载波组中的第i个子载波组中的第k个子载波上承载的部分的方法。
结合第三方面,在第三方面的一种可能的实施方式中,或,结合第四方面,在第四方面的一种可能的实施方式中,M的取值是根据最大系统带宽或者带宽部分确定的,d i的取值是根据所述第一信号所在的第i个子载波组中的子载波在系统带宽中或者带宽部分中的位置确定的。
例如d i的取值可以根据第一信号所在的第i个子载波组中的子载波在系统带宽中或者BWP中的位置确定。当然在本申请实施例中,M和/或d i的取值可以按照上文提供的方法 获取,或者也还可以按照其他方式获取,具体的不做限制。
结合第三方面,在第三方面的一种可能的实施方式中,或,结合第四方面,在第四方面的一种可能的实施方式中,所述N个子载波组属于子载波组集合,所述子载波组集合中还包括F个子载波组,所述F个子载波组的频域位置与所述N个子载波组的频域位置不同,所述F个子载波组对应的n id与所述N个子载波组对应的n id相同,F为正整数。
例如,n id跟N个子载波占用的频域位置可以无关。举例来讲,N个子载波组可以属于子载波组集合,该子载波组集合中还包括F个子载波组,F个子载波组的频域位置与N个子载波组的频域位置不同,如果第一设备也通过F个子载波组采用与本申请实施例相同的方式发送信号,则F个子载波组也会对应n id,那么F个子载波组对应的n id与N个子载波组对应的n id可以相同也可以不同,具体究竟是相同或不同,与子载波组的频域位置是无关的,这使得本申请实施例的方案更为灵活。
结合第三方面,在第三方面的一种可能的实施方式中,或,结合第四方面,在第四方面的一种可能的实施方式中,
Figure PCTCN2020071542-appb-000056
n i是第i个子载波组中的最小的子载波的编号,n dist是子载波组中的子载波之间的间隔,为正整数,n offset是一个整数。
这是确定d i的一种方式,在本申请实施例中,确定d i的方式不限于此。
结合第三方面,在第三方面的一种可能的实施方式中,或,结合第四方面,在第四方面的一种可能的实施方式中,所述N个子载波组中的每个子载波组均承载所述第一信号的部分信号,且所述每个子载波组承载的部分信号为所述序列的片段,所述N个子载波组中的至少两个子载波组承载的片段不同。
例如,至少两个子载波组就是N个子载波组,也就是说,N个子载波组承载的信号都是不同的,例如第一设备通过N个子载波组发送第一信号,N个子载波组分别承载第一信号的不同部分,从而通过N个子载波组可以发送完整的第一信号。或者,至少两个子载波组只是N个子载波组的真子集,那么N个子载波组中除了至少两个子载波组之外,还包括其他的子载波组,其他的子载波组承载的信号可以是相同的,例如第一设备通过N个子载波组发送第一信号,而第一信号中有相同的部分,则至少两个子载波组可以承载第一信号的彼此不同的部分,N个子载波组中除了至少两个子载波组之外的其他的子载波组可以承载第一信号的相同的部分,从而通过N个子载波组可以发送完整的第一信号,或者,第一设备通过N个子载波组发送第一信号,那么可以通过至少两个子载波组承载第一信号,以及通过N个子载波组中除了至少两个子载波组之外的其他的子载波组承载第一信号中容易出错的部分或较为重要的部分,从而第一信号中容易出错的部分或较为重要的部分可以得到多次传输,以提高传输可靠性。
结合第三方面,在第三方面的一种可能的实施方式中,或,结合第四方面,在第四方面的一种可能的实施方式中,K i是由所述N个子载波组所在的BWP决定的。
本申请实施例对于确定K i的方式不做限制。
结合第三方面,在第三方面的一种可能的实施方式中,或,结合第四方面,在第四方面的一种可能的实施方式中,p=31。
例如,N个子载波组中不同子载波组对应的p的取值可以相同,例如对于N个子载波组,可以有至少两个子载波组对应的p的取值是相同的。作为一种示例,p可以等于31,此时可用的序列个数为30个,可以满足小区规划的要求,当然本申请实施例不限于此。
结合第三方面,在第三方面的一种可能的实施方式中,或,结合第四方面,在第四方面的一种可能的实施方式中,q的值是根据小区标识或者序列组标识确定的。
在本申请实施例中,q的取值可以根据小区标识或者序列组标识确定,或者,q也还可以按照其他方式获取,具体的不做限制。
结合第三方面,在第三方面的一种可能的实施方式中,或,结合第四方面,在第四方面的一种可能的实施方式中,所述第一信号为DMRS或SRS或控制信息。
这里只是举例,本申请实施例不限制第一信号究竟是何种信号。
第五方面,提供第一种通信装置,该通信装置可以是第一设备,也可以是第一设备内的芯片。该通信装置可以包括处理模块和收发模块。例如,该处理模块可以是处理器,该收发模块可以是收发器。可选的,该通信装置还可以包括存储模块,该存储模块可以是存储器。该存储模块用于存储指令,该处理模块执行该存储模块所存储的指令,以使该通信装置执行上述第一方面中相应的功能。当该通信装置是第一设备内的芯片时,该处理模块可以是处理器,该收发模块可以是输入/输出接口、管脚或电路等;该处理模块执行存储模块所存储的指令,以使该第一设备执行上述第一方面中相应的功能,该存储模块可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该第一设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第六方面,提供第二种通信装置,该通信装置可以是第二设备,也可以是第二设备内的芯片。该通信装置可以包括处理模块和收发模块。例如,该处理模块可以是处理器,该收发模块可以是收发器。可选的,该通信装置还可以包括存储模块,该存储模块可以是存储器。该存储模块用于存储指令,该处理模块执行该存储模块所存储的指令,以使该通信装置执行上述第二方面中相应的功能。当该通信装置是第二设备内的芯片时,该处理模块可以是处理器,该收发模块可以是输入/输出接口、管脚或电路等;该处理模块执行存储模块所存储的指令,以使该第二设备执行上述第二方面中相应的功能,该存储模块可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该第二设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第七方面,提供第三种通信装置,该通信装置可以是第一设备,也可以是第一设备内的芯片。该通信装置可以包括处理模块和收发模块。例如,该处理模块可以是处理器,该收发模块可以是收发器。可选的,该通信装置还可以包括存储模块,该存储模块可以是存储器。该存储模块用于存储指令,该处理模块执行该存储模块所存储的指令,以使该通信装置执行上述第三方面中相应的功能。当该通信装置是第一设备内的芯片时,该处理模块可以是处理器,该收发模块可以是输入/输出接口、管脚或电路等;该处理模块执行存储模块所存储的指令,以使该第一设备执行上述第三方面中相应的功能,该存储模块可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该第一设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第八方面,提供第四种通信装置,该通信装置可以是第二设备,也可以是第二设备内的芯片。该通信装置可以包括处理模块和收发模块。例如,该处理模块可以是处理器,该收发模块可以是收发器。可选的,该通信装置还可以包括存储模块,该存储模块可以是存储器。该存储模块用于存储指令,该处理模块执行该存储模块所存储的指令,以使该通信装置执行上述第四方面中相应的功能。当该通信装置是第二设备内的芯片时,该处理模块可以是处理器,该收发模块可以是输入/输出接口、管脚或电路等;该处理模块执行存储模 块所存储的指令,以使该第二设备执行上述第四方面中相应的功能,该存储模块可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该第二设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第九方面,提供第一种通信系统,该通信系统可以包括第五方面所述的第一种通信装置和第六方面所述的第三种通信装置。
第十方面,提供第二种通信系统,该通信系统可以包括第七方面所述的第三种通信装置和第八方面所述的第四种通信装置。
第一种通信系统和第二种通信系统可以是同一个通信系统,或者也可以是不同的通信系统。
第十一方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第十二方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
第十三方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第三方面或第三方面的任意一种可能的设计中所述的方法。
第十四方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第四方面或第四方面的任意一种可能的设计中所述的方法。
第十五方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第十六方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
第十七方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第三方面或第三方面的任意一种可能的设计中所述的方法。
第十八方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第四方面或第四方面的任意一种可能的设计中所述的方法。
本申请实施例中,当系统中不同小区的终端设备使用本申请实施例提供的规则在相同的时频资源上发送信号时,对于不同终端设备使用的相同的时域资源以及相同的子载波组来说,可以保证这不同小区的终端设备在相同子载波组发送信号时,该子载波组承载的信号之间的互相关性较好,从而可以减小小区间的信号干扰,提高不同小区的接入网设备的信道估计性能。当然,本申请实施例中的第一信号也可以是下行信号。当系统中不同小区的接入网设备使用上述规则在相同的时频资源上发送信号时,也可以保证在相同子载波组发送信号时,该子载波组承载的信号之间的互相关性较好,从而可以减小小区间的信号干 扰,提高不同小区内的终端设备的信道估计性能。
附图说明
图1A为本申请实施例的一种应用场景示意图;
图1B为本申请实施例提供的一种接入网设备的结构示意图;
图1C为本申请实施例提供的一种终端设备的结构示意图;
图2为本申请实施例提供的第一种信号发送、接收方法的流程图;
图3为本申请实施例提供的第一设备生成第一信号的部分信号的流程示意图;
图4A和图4B为本申请实施例提供的包含K i个元素的序列
Figure PCTCN2020071542-appb-000057
映射到K i个子载波上的示意图;
图5A为本申请实施例提供的第二设备处理第一信号的示意图;
图5B为本申请实施例提供的第二设备处理第一信号的示意图;
图6为本申请实施例提供的第二种信号发送、接收方法的流程图;
图7为本申请实施例提供的可实现第一设备的功能的一种通信装置的结构示意图;
图8为本申请实施例提供的可实现第二设备的功能的一种通信装置的结构示意图;
图9为本申请实施例提供的可实现第一设备的功能的一种通信装置的结构示意图;
图10为本申请实施例提供的可实现第二设备的功能的一种通信装置的结构示意图;
图11为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例中的“一个”意味着单个个体,并不代表只能是一个个体,不能应用于其他个体中。例如,本申请实施例中的“一个终端设备”指的是针对某一个终端设备,并不意味着只能应用于一个特定的终端设备。本申请中,术语“系统”可以和“网络”相互替换使用。
本申请中的“一个实施例”(或“一个实现”)或“实施例”(或“实现”)的引用意味着连同实施例描述的特定特征、结构、特点等包括在至少一个实施例中。
本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个,例如,包括A、B和C中的至少一个,那么包括的可以是A,B,C,A和B,A和C,B和C,或A和B和C。“至少两个”,可理解为两个、三个或更多个。同理,对于“至少一种”等描述的理解,也是类似的。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,或单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
图1A示出了无线设备与无线通信系统的通信示意图。所述无线通信系统可以是应用各种无线接入技术(radio access technology,RAT)的系统,例如正交频分多址(orthogonal frequency-division multiple access,OFDMA)、或单载波频分多址(single carrier FDMA, SC-FDMA)和其它系统等。例如无线通信系统可以是长期演进(long term evolution,LTE)系统,新空口(new radio,NR)系统,各种演进或者融合的系统,以及面向未来的通信技术的系统。本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为简明起见,图1A中示出了一个网络设备102(例如接入网设备),以及一个无线设备104(例如终端设备)的通信。一般而言,无线通信系统可以包括任意数目的网络设备以及终端设备。无线通信系统还可以包括一个或多个核心网设备或用于承载虚拟化网络功能的设备等。所述接入网设备102可以通过一个或者多个载波为无线设备提供服务。本申请中又可以将接入网设备和终端设备统称为通信装置。
本申请中,所述接入网设备102是一种部署在无线接入网中用以为终端设备提供无线通信功能的装置。所述接入网设备可以包括各种形式的宏基站(base station,BS),微基站(也称为小站),中继站,或接入点等。在采用不同的无线接入技术的系统中,具备无线接入功能的设备的名称可能会有所不同,例如,在LTE系统中,称为演进的节点B(evolved NodeB,eNB或者eNodeB),在第三代(3rd generation,3G)系统中,称为节点B(Node B)等。为方便描述,为方便描述,本申请中,简称为接入网设备,有时也称为基站。
本申请实施例中所涉及到的无线设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。所述无线设备可以称为终端设备,也可以称为移动台(mobile station,简称MS),终端(terminal),用户设备(user equipment,UE)等。所述无线设备可以是包括用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、调制解调器(modem)或调制解调器处理器(modem processor)、手持设备(handheld)、膝上型电脑(laptop computer)、上网本、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、蓝牙设备、机器类型通信(machine type communication,MTC)终端等。为方便描述,本申请中,简称为终端设备或UE。
无线设备可以支持用于无线通信的一种或多种无线技术,例如5G,LTE,WCDMA,CDMA,1X,时分-同步码分多址(time division-synchronous code division multiple access,TS-SCDMA),GSM,802.11等等。无线设备也可以支持载波聚合技术。
多个无线设备可以执行相同或者不同的业务。例如,移动宽带业务,增强移动宽带(enhanced mobile broadband,eMBB)业务,终端设极高可靠极低时延通信(ultra-reliable and low-latency communication,URLLC)业务等等。
进一步地,上述接入网设备102的一种可能的结构示意图可以如图1B所示。该接入网设备102能够执行本申请实施例提供的方法。其中,该接入网设备102可以包括:控制器或处理器201(下文以处理器201为例进行说明)以及收发器202。控制器/处理器201有时也称为调制解调器处理器(modem processor)。调制解调器处理器201可包括基带处理器(baseband processor,BBP)(未示出),该基带处理器处理经数字化的收到信号以提取该信号中传达的信息或数据比特。如此,BBP通常按需或按期望实现在调制解调器处理器201内的一个或多个数字信号处理器(digital signal processor,DSP)中或实现为分开的集成电路(integrated circuit,IC)。
收发器202可以用于支持接入网设备102与终端设备之间收发信息,以及支持终端设备之间进行无线电通信。所述处理器201还可以用于执行各种终端设备与其他网络设备通信的功能。在上行链路,来自终端设备的上行链路信号经由天线接收,由收发器202进行调解,并进一步处理器201进行处理来恢复终端设备所发送的业务数据和/或信令信息。在下行链路上,业务数据和/或信令消息由终端设备进行处理,并由收发器202进行调制来产生下行链路信号,并经由天线发射给终端设备。所述接入网设备102还可以包括存储器203,可以用于存储该接入网设备102的程序代码和/或数据。收发器202可以包括独立的接收器和发送器电路,也可以是同一个电路实现收发功能。所述接入网设备102还可以包括通信单元204,用于支持所述接入网设备102与其他网络实体进行通信。例如,用于支持所述接入网设备102与核心网的网络设备等进行通信。
可选的,接入网设备还可以包括总线。其中,收发器202、存储器203以及通信单元204可以通过总线与处理器201连接。例如,总线可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线可以包括地址总线、数据总线、以及控制总线等。
图1C为上述无线通信系统中,终端设备的一种可能的结构示意图。该终端设备能够执行本申请实施例提供的方法。所述终端设备包括收发器301,应用处理器(application processor)302,存储器303和调制解调器处理器(modem processor)304。
收发器301可以调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的基站。在下行链路上,天线接收接入网设备发射的下行链路信号。收发器301可以调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。
调制解调器处理器304有时也称为控制器或处理器,可包括基带处理器(baseband processor,BBP)(未示出),该基带处理器处理经数字化的收到信号以提取该信号中传达的信息或数据比特。BBP通常按需或按期望实现在调制解调器处理器304内的一个或多个数字中或实现为分开的集成电路(IC)。
在一个设计中,调制解调器处理器(modem processor)304可包括编码器3041,调制器3042,解码器3043,解调器3044。编码器3041用于对待发送信号进行编码。例如,编码器3041可用于接收要在上行链路上发送的业务数据和/或信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码、或交织等)。调制器3042用于对编码器3041的输出信号进行调制。例如,调制器可对编码器的输出信号(数据和/或信令)进行符号映射和/或调制等处理,并提供输出采样。解调器3044用于对输入信号进行解调处理。例如,解调器3044处理输入采样并提供符号估计。解码器3043用于对解调后的输入信号进行解码。例如,解码器3043对解调后的输入信号解交织、和/或解码等处理,并输出解码后的信号(数据和/或信令)。编码器3041、调制器3042、解调器3044和解码器3043可以由合成的调制解调处理器304来实现。这些单元根据无线接入网采用的无线接入技术来进行处理。
调制解调器处理器304从应用处理器302接收可表示语音、数据或控制信息的数字化数据,并对这些数字化数据处理后以供传输。所属调制解调器处理器可以支持多种通信系统的多种无线通信协议中的一种或多种,例如LTE,新空口,通用移动通信系统(universal mobile telecommunications system,UMTS),高速分组接入(high speed packet access,HSPA) 等等。可选的,调制解调器处理器304中也可以包括一个或多个存储器。
可选的,该调制解调器处理器304和应用处理器302可以是集成在一个处理器芯片中。
存储器303用于存储用于支持所述终端设备通信的程序代码(有时也称为程序,指令,软件等)和/或数据。
需要说明的是,该存储器203或存储器303可以包括一个或多个存储单元,例如,可以是用于存储程序代码的处理器201或调制解调器处理器304或应用处理器302内部的存储单元,或者可以是与处理器201或调制解调器处理器304或应用处理器302独立的外部存储单元,或者还可以是包括处理器201或调制解调器处理器304或应用处理器302内部的存储单元以及与处理器201或调制解调器处理器304或应用处理器302独立的外部存储单元的部件。
处理器201和调制解调器处理器304可以是相同类型的处理器,也可以是不同类型的处理器。例如可以实现在中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件、其他集成电路、或者其任意组合。处理器201和调制解调器处理器304可以实现或执行结合本申请实施例公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能器件的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合或者片上系统(system-on-a-chip,SOC)等等。
本领域技术人员能够理解,结合本申请所公开的诸方面描述的各种解说性逻辑块、模块、电路和算法可被实现为电子硬件、存储在存储器中或另一计算机可读介质中并由处理器或其它处理设备执行的指令、或这两者的组合。作为示例,本文中描述的设备可用在任何电路、硬件组件、IC、或IC芯片中。本申请所公开的存储器可以是任何类型和大小的存储器,且可被配置成存储所需的任何类型的信息。为清楚地解说这种可互换性,以上已经以其功能性的形式一般地描述了各种解说性组件、框、模块、电路和步骤。此类功能性如何被实现取决于具体应用、设计选择和/或加诸于整体系统上的设计约束。本领域技术人员可针对每种特定应用以不同方式来实现所描述的功能性,但此类实现决策不应被解读为致使脱离本申请的范围。
另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。此外,本申请实施例和权利要求书及附图中的术语“包括”和“具有”不是排他的。例如,包括了一系列步骤或模块的过程、方法、系统、产品或设备没有限定于已列出的步骤或模块,还可以包括没有列出的步骤或模块。
如上介绍了本申请实施例涉及的一些概念,下面介绍本申请实施例中涉及的技术特征。
通信系统中通常使用参考信号求取信道估计矩阵,从而解调数据信息。在LTE系统和NR系统中,物理下行共享信道(physical downlink shared channel,PDSCH)和PDCCH的解调使用下行DMRS进行信道估计。
Gold序列是一种具有良好相关特性的伪随机序列,而且生成方式简单,数量较多。Gold序列可以由优选的两个m序列模二加得到,当固定其中一个m序列的相位,改变另一个m 序列的相位时,就可以得到一个的不同的Gold序列。例如,长度为2 n-1的Gold序列,一共有2 n+1个。
在NR系统中,下行DMRS使用的是基于Gold序列获得的序列,该序列经过QPSK调制后映射到频域子载波上。以PDCCH为例,DMRS使用的序列{c(n)}是由长为(2 31-1)的Gold序列截取得到的序列,其中Gold序列的初始化值是由终端设备的DMRS扰码的标识(identifier,ID)(或小区的ID)、DMRS所在的子帧的子帧号和OFDM符号的位置等因素决定的,经过QPSK将序列{c(n)}调制为{s(n)},
Figure PCTCN2020071542-appb-000058
然后将序列{s(n)}承载在DMRS的子载波上。
虽然完整的Gold序列具有良好的互相关特性,但是在NR系统中下行DMRS使用的只是Gold序列的片段,由于Gold序列的片段长度变短,因此,Gold序列的片段之间的互相关性是较差的。特别是在考虑多径后,信道可以近似认为是分块平坦的,例如相邻的6个资源块(resource block,RB)的信道可以认为是平坦信道,可以进行联合信道估计。如果使用现有的基于Gold序列的序列,6个RB上承载的基于Gold序列的序列会更短,也就导致6个RB上的DMRS的互相关性会更差。因此,当DMRS的互相关性变差之后,利用DMRS进行信道估计时会使得信道估计结果不够准确,从而导致信号间的干扰较大,影响信道估计性能。
鉴于此,本申请实施例中,第一信号在N个子载波组中的第i个子载波组中的第k个子载波上承载的部分是
Figure PCTCN2020071542-appb-000059
而与
Figure PCTCN2020071542-appb-000060
有关的序列
Figure PCTCN2020071542-appb-000061
是列举的序列之一,本申请实施例中列举的序列都是互相关性较好的序列,因此对于两个子载波组来说,只要选择的
Figure PCTCN2020071542-appb-000062
是列举的序列中的两个,那么就可以保证这两个子载波组承载的信号之间的互相关性相较于现有技术来说会较好,从而可以减小信号间的干扰,提高信道估计性能。
本申请实施例提供的技术方案可应用于LTE系统、第四代移动通信技术(the 4 th generation,4G)系统、4.5G系统、第五代移动通信技术(the 5 th generation,4G)系统、NR系统或NR类似的系统,还可以应用于未来的通信系统,或者还可以应用于其他类似的通信系统。
下面结合附图介绍本申请实施例提供的技术方案。
本申请一个实施例中,
Figure PCTCN2020071542-appb-000063
长的序列由N个序列得到的,N个序列中的每个序列的长度表示为K i,i=0,1,…N-1。当然,i也可以取1至N,仅仅是用于标识第i个K长序列。该N个K i长的序列可以是相同的,也可以是不相同的,或者可以是N个K i长的序列中至少两个序列相同。此外,N个K i长的序列的长度也可以相同,或至少两个序列的长度不同,K i表示第i个K长的序列,K的值与i的值相关或不相关,也可以是N个K长的序列的长度均相同。其中,本实施例中K i长的序列基于下述序列中的一个或多个得到:
{1,-3,-1,3,-1,3,-3,-3,-3,3,-3,-3,-1,3,1,-1,1,-3},
{1,1,-1,-1,3,-1,1,-3,1,-1,-3,1,3,-1,1,-1,1,1},
{1,-3,3,3,3,-1,1,-3,1,3,1,1,-1,3,1,3,1,-3},
{1,1,3,-1,-1,3,-3,-3,-3,-1,1,-3,3,-1,1,3,1,1},
{1,-3,3,-1,-1,-1,-3,1,1,-1,1,-3,-1,3,-3,-1,1,-3},
{1,1,3,3,3,3,1,1,-3,3,1,1,3,-1,-3,-1,1,1},
{1,-3,-1,-1,3,3,1,1,-3,-1,-3,1,-1,3,-3,3,1,-3},
{1,1,-1,3,-1,-1,-3,1,1,3,-3,-3,3,-1,-3,3,1,1},
{1,1,1,-3,-1,-3,1,-1,3,-3,-1,-3,3,-1,-1,-1,1,1},
{1,-3,1,1,3,1,-3,-1,-1,1,-1,1,-1,3,-1,-1,1,-3},
{1,-3,-3,1,-1,-3,1,-1,3,1,3,-3,-1,3,-1,3,1,-3},
{1,1,-3,-3,3,1,-3,-1,-1,-3,3,1,3,-1,-1,3,1,1},
{1,1,-3,1,-1,1,1,3,-1,1,3,-3,3,-1,3,-1,1,1},
{1,-3,-3,-3,3,-3,-3,3,3,-3,3,1,-1,3,3,-1,1,-3},
{1,-3,1,-3,-1,1,1,3,-1,-3,-1,-3,-1,3,3,3,1,-3},
{1,1,1,1,3,-3,-3,3,3,1,-1,1,3,-1,3,3,1,1},
{1,1,-1,3,3,3,-3,-3,1,-1,-3,-3,3,3,1,3,1,1},
{1,-3,-1,-1,-1,-1,1,-3,-3,3,-3,1,-1,-1,1,3,1,-3},
{1,-3,3,-1,3,3,-3,-3,1,3,1,-3,-1,-1,1,-1,1,-3},
{1,1,3,3,-1,-1,1,-3,-3,-1,1,1,3,3,1,-1,1,1},
{1,1,3,-1,3,-1,-3,1,-3,3,1,-3,3,3,-3,3,1,1},
{1,-3,3,3,-1,3,1,1,1,-1,1,1,-1,-1,-3,3,1,-3},
{1,1,-1,-1,-1,3,1,1,1,3,-3,1,3,3,-3,-1,1,1},
{1,-3,-1,3,3,-1,-3,1,-3,-1,-3,-3,-1,-1,-3,-1,1,-3},
{1,1,1,1,-1,1,-3,-1,3,-3,-1,1,3,3,-1,3,1,1},
{1,-3,1,-3,3,-3,1,-1,-1,1,-1,-3,-1,-1,-1,3,1,-3},
{1,1,-3,1,3,-3,1,-1,-1,-3,3,-3,3,3,-1,-1,1,1},
{1,-3,-3,-3,-1,1,-3,-1,3,1,3,1,-1,-1,-1,-1,1,-3},
{1,1,-3,-3,-1,-3,-3,3,-1,1,3,1,3,3,3,3,1,1},或,
{1,-3,-3,1,3,1,1,3,3,-3,3,-3,-1,-1,3,3,1,-3}。
进一步的,K i长的序列可以是对上述列举的序列中的一个进行相位旋转,或时域循环移位等操作得到。
Figure PCTCN2020071542-appb-000064
长的序列可以是对N个序列拼接得到。本实施例中,N个序列可以均基于上述例举的序列中的一个或多个得到,N个序列对应的上述例举的序列可以相同,或者可以不同,或者可以部分相同部分不同。本实施例中,N个序列中至少一个序列需要基于上述列举的序列得到,其余序列可以基于其他序列得到。
采用上述序列生成例如DMRS,或SRS,或发送控制信息的信号,可以保证不同小区间的信号之间互相关性较低,可以降低小区间的干扰。
另外,本申请实施例还会涉及到资源块(resource block,RB)的概念。其中,频域上连续的12个子载波,时域上1个时隙(slot),就构成一个RB。
本申请实施例还提供了一种应用上述序列的信号发送和接收方法,该方法的流程图请参见图2。该方法可应用于图1A所示的场景,在下文的介绍过程中,就以本申请实施例提供的方法应用于图1A所示的应用场景为例。另外,该方法可由两个通信装置执行,这两 个通信装置例如为第一通信装置和第二通信装置,其中,第一通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置(例如芯片系统),或者第一通信装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置(例如芯片系统)。对于第二通信装置也是同样,第二通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置(例如芯片系统),或者第二通信装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置(例如芯片系统)。且对于第一通信装置和第二通信装置的实现方式均不做限制,例如第一通信装置可以是终端设备,第二通信装置是网络设备,或者第一通信装置和第二通信装置都是网络设备,或者第一通信装置和第二通信装置都是终端设备,或者第一通信装置是终端设备,第二通信装置是能够支持网络设备实现该方法所需的功能的通信装置,等等。其中,网络设备例如为基站。
为了便于介绍,在下文中,以该方法由第一设备和第二设备执行为例,具体的,以第一通信装置是第一设备、第二通信装置是第二设备为例。第一设备例如为网络设备,第二设备为终端设备,那么本文中所述的第一信号可以是下行信号,或者,第一设备例如为终端设备,第二设备例如为网络设备,那么本文中所述的第一信号可以是上行信号。
S21、第一设备确定时频资源,其中,所述时频资源包括N个子载波组,所述N个子载波组中的第i个子载波组包括K i个子载波,N为大于或等于1的正整数,K i为大于1的整数。
第一设备需要发送信号时,可以确定时频资源。例如第一设备可以根据系统的配置信息,例如无线资源控制(radio resource control,RRC)信息或者媒体接入控制层控制单元(media access control control element,MAC CE)信息等,确定用于发送第一信号的时频资源。该时频资源包括N个子载波组,其中的第i个子载波组包括K i个子载波,i取从1至N的整数。其中,N个子载波组中不同的子载波组包括的子载波的个数可以相同,或者也可以不同。例如,N个子载波组包括的子载波的个数均相同,或者,N个子载波组包括的子载波的个数均不相同,或者,N个子载波组中有部分子载波组包括的子载波的个数均不相同,还有剩余的子载波组包括的子载波的个数相同,等等。
另外在本申请实施例中,N个子载波组可以是频分正交的,且N个子载波组可以占用相同的时域资源,从而第一信号的各个部分可以通过N个子载波在同一时刻发送。另外,在第i个子载波组中,K i个子载波可以是等间隔分布的,或者K i个子载波也可以不等间隔分布,或者K i个子载波中可以有部分子载波等间隔分布,而其他的子载波不等间隔分布,等等,具体的不做限制。
S22、第一设备在所述N个子载波组上发送第一信号,第二设备接收承载在所述N个子载波上的第一信号。
本实施例中,第一信号在所述N个子载波组中的第i个子载波组中的第k个子载波上承载的部分是
Figure PCTCN2020071542-appb-000065
k=0,1,2,…,K i-1,
Figure PCTCN2020071542-appb-000066
Figure PCTCN2020071542-appb-000067
A和μ均是非零复常数,
Figure PCTCN2020071542-appb-000068
可以是不依赖于k的非零复常数,j是虚数的单位,
Figure PCTCN2020071542-appb-000069
n id为第一信号的标识或小区的标识,
Figure PCTCN2020071542-appb-000070
是实数。可选的,{d i(k)}可以与第一信号的标识或小区的标识无关。
其中,
Figure PCTCN2020071542-appb-000071
与k无关,也就是不依赖于k的变化而变化,例如在k不同时,
Figure PCTCN2020071542-appb-000072
可以 取相同的值。可选的,
Figure PCTCN2020071542-appb-000073
可以跟第一信号的标识或小区的标识有关,例如第一信号的标识不同时
Figure PCTCN2020071542-appb-000074
可以不同,或者小区的标识不同时
Figure PCTCN2020071542-appb-000075
可以不同。
Figure PCTCN2020071542-appb-000076
可以跟子载波组相关,例如,不同的子载波组可以用相同的
Figure PCTCN2020071542-appb-000077
也可以用不同的
Figure PCTCN2020071542-appb-000078
可选的,
Figure PCTCN2020071542-appb-000079
可以由i和n id决定。当然,上述表达式中,也可以没有
Figure PCTCN2020071542-appb-000080
Figure PCTCN2020071542-appb-000081
可以为1,此时,该表达式可以简化为
Figure PCTCN2020071542-appb-000082
不同的子载波组可以使用相同的
Figure PCTCN2020071542-appb-000083
或者也可以使用不同的
Figure PCTCN2020071542-appb-000084
Figure PCTCN2020071542-appb-000085
可以表示时域的循环移位,作为一种示例,
Figure PCTCN2020071542-appb-000086
需要说明的是,
Figure PCTCN2020071542-appb-000087
时表示该序列不需要进行时域的循环移位,此时,该序列可以简化为
Figure PCTCN2020071542-appb-000088
另外,序列{d i(k)}可以是任意的序列,例如序列{d i(k)}还可以等于全1序列,此时该表达式可以简化为
Figure PCTCN2020071542-appb-000089
序列{d i(k)}与第一信号的标识无关,例如在第一信号的标识不同时,序列{d i(k)}可以相同,或者理解为,一个序列{d i(k)}可以对应至少两个第一信号的标识。或者,序列{d i(k)}也与小区的标识无关,例如在小区的标识不同时,序列{d i(k)}可以相同,或者理解为,一个序列{d i(k)}可以对应至少两个小区的标识。
在本申请实施例中,N个子载波组中的每个子载波组均承载第一信号的部分信号,也就是第一设备是在N个子载波组中的每个子载波组上都发送一部分的第一信号。而且,N个子载波组中的至少两个子载波组承载的信号是不同的,例如至少两个子载波组分别承载第一信号的不同的部分。例如,至少两个子载波组就是N个子载波组,也就是说,N个子载波组承载的信号都是不同的,例如第一设备通过N个子载波组发送第一信号,N个子载波组分别承载第一信号的不同部分,从而通过N个子载波组可以发送完整的第一信号。或者,至少两个子载波组只是N个子载波组的真子集,那么N个子载波组中除了至少两个子载波组之外,还包括其他的子载波组,其他的子载波组承载的信号可以是相同的,例如第一设备通过N个子载波组发送第一信号,而第一信号中有相同的部分,则至少两个子载波组可以承载第一信号的彼此不同的部分,N个子载波组中除了至少两个子载波组之外的其他的子载波组可以承载第一信号的相同的部分,从而通过N个子载波组可以发送完整的第一信号,或者,第一设备通过N个子载波组发送第一信号,那么可以通过至少两个子载波组承载第一信号,以及通过N个子载波组中除了至少两个子载波组之外的其他的子载波组承载第一信号中容易出错的部分或较为重要的部分,从而第一信号中容易出错的部分或较为重要的部分可以得到多次传输,以提高传输可靠性。
例如,第一设备可以先确定序列{x(n)},序列{x(n)}可以是第一信号在N个子载波组中的部分,然后再分别截取序列{x(n)}的一部分,作为第一信号在N个子载波组中的每个子载波组中的部分,在这种情况下,第二设备是先确定了长序列,再将长序列进行截取,分别作为N个子载波组中的每个子载波组上承载的序列。或者,第一设备也可以直接根据N个子载波组中的每个子载波组来确定序列,也就是直接确定N个子载波组中的每个子载 波组承载的序列,例如第一设备直接确定序列
Figure PCTCN2020071542-appb-000090
在这种情况下,第一设备无需确定长序列,而是直接确定每个子载波组所承载的序列。本申请实施例对于第一设备具体的确定方式不做限制。
如果第一设备是终端设备,那么例如,可以是终端设备在入网后自行确定序列,或者也可以是在终端设备接入网络时,由网络设备为终端设备配置相应的序列。以终端设备直接确定序列
Figure PCTCN2020071542-appb-000091
为例。例如,终端设备在入网后,从第一序列组中确定一个序列,该序列就作为序列
Figure PCTCN2020071542-appb-000092
或者,终端设备在入网后,从第二序列组中确定一个序列,该序列作为序列
Figure PCTCN2020071542-appb-000093
根据序列
Figure PCTCN2020071542-appb-000094
就可以得到序列
Figure PCTCN2020071542-appb-000095
或者,在终端设备接入网络时,由网络设备确定序列
Figure PCTCN2020071542-appb-000096
并配置给终端设备,或者在终端设备接入网络时,由网络设备确定序列
Figure PCTCN2020071542-appb-000097
并配置给终端设备,终端设备再根据序列
Figure PCTCN2020071542-appb-000098
就可以得到序列
Figure PCTCN2020071542-appb-000099
其中,序列
Figure PCTCN2020071542-appb-000100
可以是下述序列之一:
{1,-3,-1,3,-1,3,-3,-3,-3,3,-3,-3,-1,3,1,-1,1,-3},
{1,1,-1,-1,3,-1,1,-3,1,-1,-3,1,3,-1,1,-1,1,1},
{1,-3,3,3,3,-1,1,-3,1,3,1,1,-1,3,1,3,1,-3},
{1,1,3,-1,-1,3,-3,-3,-3,-1,1,-3,3,-1,1,3,1,1},
{1,-3,3,-1,-1,-1,-3,1,1,-1,1,-3,-1,3,-3,-1,1,-3},
{1,1,3,3,3,3,1,1,-3,3,1,1,3,-1,-3,-1,1,1},
{1,-3,-1,-1,3,3,1,1,-3,-1,-3,1,-1,3,-3,3,1,-3},
{1,1,-1,3,-1,-1,-3,1,1,3,-3,-3,3,-1,-3,3,1,1},
{1,1,1,-3,-1,-3,1,-1,3,-3,-1,-3,3,-1,-1,-1,1,1},
{1,-3,1,1,3,1,-3,-1,-1,1,-1,1,-1,3,-1,-1,1,-3},
{1,-3,-3,1,-1,-3,1,-1,3,1,3,-3,-1,3,-1,3,1,-3},
{1,1,-3,-3,3,1,-3,-1,-1,-3,3,1,3,-1,-1,3,1,1},
{1,1,-3,1,-1,1,1,3,-1,1,3,-3,3,-1,3,-1,1,1},
{1,-3,-3,-3,3,-3,-3,3,3,-3,3,1,-1,3,3,-1,1,-3},
{1,-3,1,-3,-1,1,1,3,-1,-3,-1,-3,-1,3,3,3,1,-3},
{1,1,1,1,3,-3,-3,3,3,1,-1,1,3,-1,3,3,1,1},
{1,1,-1,3,3,3,-3,-3,1,-1,-3,-3,3,3,1,3,1,1},
{1,-3,-1,-1,-1,-1,1,-3,-3,3,-3,1,-1,-1,1,3,1,-3},
{1,-3,3,-1,3,3,-3,-3,1,3,1,-3,-1,-1,1,-1,1,-3},
{1,1,3,3,-1,-1,1,-3,-3,-1,1,1,3,3,1,-1,1,1},
{1,1,3,-1,3,-1,-3,1,-3,3,1,-3,3,3,-3,3,1,1},
{1,-3,3,3,-1,3,1,1,1,-1,1,1,-1,-1,-3,3,1,-3},
{1,1,-1,-1,-1,3,1,1,1,3,-3,1,3,3,-3,-1,1,1},
{1,-3,-1,3,3,-1,-3,1,-3,-1,-3,-3,-1,-1,-3,-1,1,-3},
{1,1,1,1,-1,1,-3,-1,3,-3,-1,1,3,3,-1,3,1,1},
{1,-3,1,-3,3,-3,1,-1,-1,1,-1,-3,-1,-1,-1,3,1,-3},
{1,1,-3,1,3,-3,1,-1,-1,-3,3,-3,3,3,-1,-1,1,1},
{1,-3,-3,-3,-1,1,-3,-1,3,1,3,1,-1,-1,-1,-1,1,-3},
{1,1,-3,-3,-1,-3,-3,3,-1,1,3,1,3,3,3,3,1,1},或,
{1,-3,-3,1,3,1,1,3,3,-3,3,-3,-1,-1,3,3,1,-3}。
如上列举的序列,是以K i=18为例的,例如在考虑多径后,信道可以近似认为是分块平坦的,例如相邻的6个RB的信道可以认为是平坦信道,可以进行联合信道估计。那么基于本申请实施例,18长的序列正好可以放在6个RB中,而如上列举的30个序列之间的互相关值的最大值为0.48977,平均值为0.4185,与之相对应的,在NR系统中,使用的序列为Gold序列的片段,其互相关值的最大值大于0.9,平均值为0.48829,因此使用上述的30个序列可以保证6个RB上的DMRS的互相关性较好,信号间的干扰较小,提高了信道估计性能。当然本申请实施例的K i不限制于等于18,还可以取其他数值。如上列举的30个序列可以属于第二序列组,第二序列组中除了包括如上的30个序列之外,还可以包括其他序列,例如还可以包括K i=18的其他序列,也还可以包括k取其他数值的序列,这些序列也可以适用于本申请实施例,具体的不做限制。
在前文中提到了,第一设备可以确定序列
Figure PCTCN2020071542-appb-000101
例如序列
Figure PCTCN2020071542-appb-000102
可以是根据第一信号的标识或小区的标识确定的,例如第一设备可以根据第一信号的标识或小区的标识从第一序列组中确定序列
Figure PCTCN2020071542-appb-000103
或者,终端设备也可以确定序列
Figure PCTCN2020071542-appb-000104
例如序列
Figure PCTCN2020071542-appb-000105
可以是根据第一信号的标识或者小区的标识确定的,例如终端设备可以根据第一信号的标识或者小区的标识从第二序列组中确定序列
Figure PCTCN2020071542-appb-000106
或者根据第一信号的标识或者小区的标识从第二序列组中包括的如上列举的30个序列中确定序列
Figure PCTCN2020071542-appb-000107
另外,一个第一信号的标识可以对应于一个终端设备,或者一个第一信号的标识可以对应于一组终端设备,也就是同一个终端设备组中的所有的终端设备都适用同一个第一信号的标识,或者一个第一信号的标识可以对应于一个小区,也就是同一个小区内的所有的终端设备都适用同一个第一信号的标识。例如,一个第一信号的标识对应于一个终端设备,则不同的终端设备可以对应不同的第一信号的标识;或者,一个第一信号的标识对应于一组终端设备,则不同的终端设备组可以对应不同的第一信号的标识;或者,一个第一信号的标识对应于一个小区,则不同的小区可以对应不同的第一信号的标识。例如第一设备为网络设备,则第一设备确定与第二设备对应的第一信号的标识,并根据该第一信号的标识确定序列
Figure PCTCN2020071542-appb-000108
或序列
Figure PCTCN2020071542-appb-000109
第一设备要在N个子载波组上发送第一信号,首先涉及到要生成第一信号。作为生成第一信号的一种可选的方式,生成第一信号的过程在具体实现中为:第一设备将序列{x(n)}映射到N个子载波组上,生成第一信号并发送给网络设备。
可选的,以第i个子载波组为例,第一设备将包含K i个元素的序列
Figure PCTCN2020071542-appb-000110
分别映射到K i个子载波上得到第一信号的部分信号的具体过程,如图3所示,包括:
S31、第一设备将序列
Figure PCTCN2020071542-appb-000111
分别映射至K i个子载波上,得到K i点的频域信号。
在具体实现中,K i点的频域信号即包含K i个元素的频域信号。
在本申请实施例公开的图4A和图4B中,s表示序列
Figure PCTCN2020071542-appb-000112
映射的N个子载波中的第一个子载波在通信系统中的子载波中的索引。
可选的,第一设备将序列
Figure PCTCN2020071542-appb-000113
中的K i个元素分别映射至连续的K i个子载波上。如图4A所示,可选的,序列
Figure PCTCN2020071542-appb-000114
中的元素
Figure PCTCN2020071542-appb-000115
Figure PCTCN2020071542-appb-000116
分别映射到K i个连续的子载波,子载波编号为s+0,s+1,…,s+K i-1。
在第一设备将序列
Figure PCTCN2020071542-appb-000117
中的K i个元素分别映射至连续的K i个子载波上的一种可 能的示例中,第一设备将序列
Figure PCTCN2020071542-appb-000118
中的K i个元素按照子载波从高到低的顺序,依次映射到连续的K i个子载波上。其中,一个序列
Figure PCTCN2020071542-appb-000119
中元素映射到一个频域子载波。频域子载波是频域资源的最小单元。
在第一设备将序列
Figure PCTCN2020071542-appb-000120
中的K i个元素分别映射至连续的K i个子载波上的另一种可能的示例中,第一设备将序列
Figure PCTCN2020071542-appb-000121
中的K i个元素按照子载波从低到高的顺序,依次映射到K i个子载波上。其中,将序列
Figure PCTCN2020071542-appb-000122
中一个元素映射到一个子载波就是在这个子载波上承载这个元素。映射之后,在第一设备将数据通过射频发送时,相当于在这个子载波上发送这个元素。K i个子载波在通信系统中所存在的多个子载波中的位置可以是预定义或者网络设备通过信令配置的。
或者,第一设备也可以将序列
Figure PCTCN2020071542-appb-000123
中的K i个元素分别映射至等间隔的K i个子载波上。如图4B所示,以K i个子载波之间的间隔子载波个数是1为例,K i个子载波在频域上是等间隔分布的。序列
Figure PCTCN2020071542-appb-000124
中的元素
Figure PCTCN2020071542-appb-000125
Figure PCTCN2020071542-appb-000126
映射的子载波的间隔为1个子载波。具体为:分别映射到K i个等间隔的子载波,子载波编号为s+0,s+2,…,s+2(K i-1)。
S32、第一设备对包含N个元素的频域信号进行快速傅立叶逆变换(inverse fast Fourier transformation,IFFT),得到对应的时域信号,并为该时域信号添加循环前缀,生成第一信号。
需要说明的是,在本申请实施例中,生成第一信号的方式并不仅限于图3所示实施例提供的实现方式。例如,第一设备还可以对序列
Figure PCTCN2020071542-appb-000127
使用成型滤波器得到序列{y(k)},然后将序列{y(k)}调制到载波上,得到第一信号的部分信号,等等。
可选的,在执行S32时,第一设备将生成的N点的频域信号通过IFFT后得到的时域信号是一个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。在执行S22时,第一设备将第一信号通过射频发出去。也就是说,该第一设备在该N个子载波上发送承载序列{x(n)}的第一信号。
第一设备可以在一个OFDM符号上发送承载序列{x(n)}的第一信号。也可以在多个OFDM符号上发送承载序列{x(n)}的第一信号。
作为一种可选的方式,该第一信号可以为DMRS、探测参考信号(sounding reference signal,SRS)或控制信息等。本申请实施例的第一信号并不仅限于包括上述信息。
作为另一种可选的方式,第一信号为用于承载通信信息的信号。在具体实现中,该通信信息的承载方式可以是通过序列选择的方式承载,也可以是通过序列调制的方式承载,但不限于此。通信信息例如包括数据和/或控制信息。
其中,例如第一设备为终端设备,例如序列选择的方式为:为一个终端设备分配2 n个正交的序列。这2 n个正交的序列,例如是1个根序列的2 n个循环移位,这2 n个正交的序列能够承载n比特信息。例如,标号为0、1、2和3的4个序列。其中,00对应序列0,01对应序列1,10对应序列{2},11对应序列3,这样4个序列能够承载2比特信息。
例如序列调制的方式为:为一个终端设备分配1个序列,并且将该终端设备所需传输的信息生成调制符号。该调制符号包括但不限于二进制相移键控(binary phase shift keying,BPSK)符号,QPSK符号,8阶正交振幅调制(quadrature amplitude modulation,QAM)符号,16QAM符号等。将该调制符号与该序列相乘,生成实际的发送序列。例如,一个BPSK符合可能为1或者-1,对于一个序列
Figure PCTCN2020071542-appb-000128
而言,基于BPSK符号进行调制后,发送的序列就可以为
Figure PCTCN2020071542-appb-000129
Figure PCTCN2020071542-appb-000130
在一种可能的示例中,如前文的记载,第一设备可以通过A、序列{c i(n mod K i)}和序列{b(n)}确定序列{x(n)}。需要说明的是,对于序列调制的方式,可以通过序列{x(n)}中不同的A的取值,承载不同信息的。
例如,A可以为调制符号。此时,一路数据信息比特或者控制信息比特经过调制后,得到A。A承载在序列{x(n)}所包含的N个元素上,A不随着n的变化而改变。
或者,A为常数。例如A=1。例如,A可以是第一设备和第二设备都已知的符号。A也可以表示幅度。
需要说明的是,A是在一个时间单元上是常数,不代表A是固定不变的,在不同的时刻发送第一信号时,A可以是变的。例如,序列{x(n)}中包含的全部N个元素是参考信号,A是参考信号的幅度,第一设备在第一次发送第一信号时,可以按A=1发送。第一设备在第二次发送第一信号时,可以按A=2发送。
第二设备可以按照预定义或者预先配置的N个子载波在通信系统的子载波中的位置接收N个子载波上的信号。
例如,第二设备可以在连续的N个子载波上获取N个子载波上的第一信号,或者,在等间隔的N个子载波上获取N个子载波上的第一信号。
S23、第二设备获取第一信号承载的序列
Figure PCTCN2020071542-appb-000131
中的K i个元素。
关于序列
Figure PCTCN2020071542-appb-000132
及相关元素等的介绍,在S22中已有较为详细的介绍,不多赘述。
例如,第二设备可以在连续的K i个子载波上获取K i个子载波上的信号,或者,在等间隔的K i个子载波上获取K i个子载波上的信号,去除获取的信号的循环前缀,得到时域信号,从而得到包含K i个元素的频域信号,然后,基于包含K i个元素的频域信号,确定序列
Figure PCTCN2020071542-appb-000133
中的K i个元素。对于N个子载波组中的每个子载波组,终端设备都可以通过这种方式来获取相应的子载波组承载的序列中的K i个元素。
S24、第二设备根据所述序列
Figure PCTCN2020071542-appb-000134
中的K i个元素对所述第一信号在所述N个子载波组中的第i个子载波组上承载的部分进行处理。
可选的,第二设备对第一信号在所述N个子载波组中的第i个子载波组上承载的部分的处理过程,可以如图5A所示。第二设备将获取的序列{y(k)}与所有可能的序列{x′(k)}分别相关处理并进行最大似然比较,获取第一设备传输的数据。其中,序列{y(k)}是第二设备根据接收的第i个子载波组承载的信号得到的,可参考图5B,第二设备将接收的第i个子载波组承载的信号去掉循环前缀,再进行快速傅立叶变换(fast Fourier transformation,FFT),和解映射等处理,得到序列{y(k)}。{x′(k)}是由{x(k)}生成的本地序列。结合前文的介绍,例如对于两比特信息,取值组合为{(0,0),(0,1),(1,0),(1,1)}。例如,当两比特信息为(0,0)时,得到的序列x′(k)是序列x′ 1(k),当两比特信息为(0,1)时,得到的序列x′(k)是序列x′ 2(k),当两比特信息为(1,0)时,得到的序列x′(k)是序列x′ 3(k),当两比特信息为(1,1)时,得到的序列x′(k)是序列x′ 4(k)。所述的4个序列x′ 1(k),x′ 2(k),x′ 3(k),x′ 4(k),可以是同一个序列的循环移位序列,将序列{y(k)}与x ′1(k),x′ 2(k),x′ 3(k),x′ 4(k)分别相关,得到4个相关值。最大相关值对应的两比特信息的取值即为第二设备获取的数据。例如,最大相关值是序列{y(k)}与x 1(k)相关得到的,则第二设备确定第一设备传输的两比特信息是(0,0)。
对于N个子载波组中的每个子载波组上承载的信号,第二设备都可以进行类似的处理,从而获得第一信号。
当然,第二设备要对第一信号在N个子载波组中的第i个子载波组上承载的部分进行 处理,也需要获知第一信号的标识或小区的标识。例如,第一设备可以发送第一信令,第一信令用于指示第一信号的标识,那么第二设备接收来自第一设备的第一信令后,就可以根据第一信令确定第一信号的标识。在前文中介绍了,一个第一信号的标识可以对应于一个终端设备,或者一个第一信号的标识可以对应于一组终端设备,或者一个第一信号的标识可以对应于一个小区。例如第一设备是网络设备,第二设备是终端设备,那么,如果发送给该终端设备的第一信号的标识是该终端设备对应的第一信号的标识,则该网络设备可以通过用户设备专用(UE specific)信令向该终端设备发送第一信号的标识,也就是说,第一信令可以是用户设备专用信令,或者,如果发送给该终端设备的第一信号的标识是该终端设备所在的终端设备组对应的第一信号的标识,则该网络设备可以通过用户设备组专用信令向该终端设备发送第一信号的标识,或者说该网络设备可以通过用户设备组专用信令向该终端设备组中的每个终端设备组播(或广播)第一信号的标识,也就是说,第一信令可以是用户设备组专用信令,或者,如果发送给该终端设备的第一信号的标识是该终端设备所在的小区对应的第一信号的标识,则该网络设备可以通过小区专用信令向该终端设备所在的小区广播第一信号的标识,也就是说,第一信令可以是小区专用信令。
其中,第二设备对第一信号进行处理,可以是分别对每个子载波组进行处理,也可以是对第一信号整体进行处理,在前文的介绍过程中,主要是以分别对每个子载波组进行处理为例。另外,第二设备对第一信号的处理,可以是与本地序列相关,也可以是根据接收信号和本地序列进行信道估计,具体的不做限制。
本申请实施例中,第一信号在N个子载波组中的第i个子载波组中的第k个子载波上承载的部分是
Figure PCTCN2020071542-appb-000135
而与
Figure PCTCN2020071542-appb-000136
有关的序列
Figure PCTCN2020071542-appb-000137
是列举的序列之一,列举的序列都是互相关性较好的序列,因此,当系统中不同小区的终端设备使用上述规则在相同的时频资源上发送信号时,对于不同终端设备使用的相同的时域资源以及相同的子载波组来说,只要该不同的终端设备选择的
Figure PCTCN2020071542-appb-000138
是列举的序列中不同序列,那么就可以保证这不同小区的终端设备在相同子载波组发送信号时,该子载波组承载的信号之间的互相关性较好,从而可以减小小区间的信号干扰,提高不同小区的接入网设备的信道估计性能。当然,本申请实施例中的第一信号也可以是下行信号。当系统中不同小区的接入网设备使用上述规则在相同的时频资源上发送信号时,只要不同小区的接入网设备选择的
Figure PCTCN2020071542-appb-000139
是列举的序列中不同序列,那么就可以保证在相同子载波组发送信号时,该子载波组承载的信号之间的互相关性较好,从而可以减小小区间的信号干扰,提高不同小区内的终端设备的信道估计性能。
为了解决同样的技术问题,本申请还提供了一种序列。在该实施例中,一个或多个子载波组上发送的第一信号是基于长序列中截取的序列生成。该长序列是基于长度为M zc的扎道夫初(Zadoff–Chu,ZC)序列得到的,长序列的长度为M且与系统带宽相关的值,M zc和M相关。其中,该ZC序列或该长序列对应的q满足
Figure PCTCN2020071542-appb-000140
其中
Figure PCTCN2020071542-appb-000141
Figure PCTCN2020071542-appb-000142
n id∈{0,1,2,…,p-2},p为大于2的质数。进一步的,截取的序列可以是基于该一个或多个子载波组的频域位置确定。
下面再提供一种基于利用上述序列的信号发送、接收方法,该方法的流程图请参见图6。本实施例中相同的内容可以参照上文的描述,本实施例不再赘述。该方法可应用于图1A所示的场景,在下文的介绍过程中,继续以本申请实施例提供的方法应用于图1A所示的应用场景为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第三通信装置和第四通信装置,其中,第三通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置(例如芯片系统),或者第三通信装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置(例如芯片系统)。对于第四通信装置也是同样,第四通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置(例如芯片系统),或者第四通信装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置(例如芯片系统)。且对于第三通信装置和第四通信装置的实现方式均不做限制,例如第三通信装置可以是终端设备,第四通信装置是网络设备,或者第三通信装置和第四通信装置都是网络设备,或者第三通信装置和第四通信装置都是终端设备,或者第三通信装置是终端设备,第四通信装置是能够支持网络设备实现该方法所需的功能的通信装置,等等。其中,网络设备例如为基站。
为了便于介绍,在下文中,以该方法由第一设备和第二设备执行为例,具体的,以第三通信装置是第一设备、第四通信装置是第二设备为例。第一设备例如为网络设备,第二设备为终端设备,那么本文中所述的第一信号可以是下行信号,或者,第一设备例如为终端设备,第二设备例如为网络设备,那么本文中所述的第一信号可以是上行信号。
S61、第一设备确定时频资源,其中,所述时频资源包括N个子载波组,所述N个子载波组中的第i个子载波组包括K i个子载波,N为大于或等于1的正整数,K i为大于1的整数。
其中,K i例如是根据N个子载波组所在的带宽部分(bandwidth part,BWP)决定的,当BWP不同时,K i可以不同。
第一设备需要发送信号时,可以确定时频资源。例如确定的时频资源包括N个子载波组,其中,N个子载波组的含义可以参考上述实施例,此处不再赘述。
S62、第一设备在所述N个子载波组上发送第一信号,第二设备接收承载在所述N个子载波组上的所述第一信号。
所述第一信号在所述N个子载波组中的第i个子载波组承载的部分是序列{z q(m)}的第一片段,所述序列{z q(m)}的长度为M,所述序列{z q(m)}满足z q(m)=y q(m mod M zc),其中m=0,1,2,…,M-1,M为大于1的整数,可以理解为,所述序列{z q(m)}是对ZC序列进行截取或循环扩充得到的。M zc是满足M zc<M的最大质数,或者M zc是满足M zc>M的最小质数,或者M zc=M,
Figure PCTCN2020071542-appb-000143
其中A是非零复常数,t=0,1,2,…,M zc-1,j是虚数的单位,
Figure PCTCN2020071542-appb-000144
α是一个实数,其中,q由第一信号标识或者小区标识确定,
Figure PCTCN2020071542-appb-000145
其中
Figure PCTCN2020071542-appb-000146
n id∈{0,1,2,…,p-2},p为大于2的质数,n id由第一信号标识或者小区标识确定。
需要说明的是,M zc是根据M确定的。如果M zc是满足M zc>M的最小质数,等价地,上述表达式可以表示为z q(m)=y q(m)。因此,容易理解的,z q(m)=y q(m)可以为z q(m)=y q(m mod M zc)一种特例。
M的取值是根据最大系统带宽或者带宽部分确定的,例如系统最大带宽为G个RB,每个RB内可用于发送第一信号的子载波数为H,则M的取值可以为G*H。d i的取值是根 据所述第一信号所在的第i个子载波组中的子载波在系统带宽中或者带宽部分中的位置确定的。
在本申请实施例中,q的取值可以按照上文提供的方法获取,或者,q也还可以按照其他方式获取,具体的不做限制。另外,不同子载波组对应的p的取值可以相同,例如对于N个子载波组,可以有至少两个子载波组对应的p的取值是相同的。作为一种示例,p可以等于31,此时可用的序列个数为30个,可以满足小区规划的要求,当然本申请实施例不限于此。
例如,n id跟N个子载波占用的频域位置可以无关。举例来讲,N个子载波组可以属于子载波组集合,该子载波组集合中还包括F个子载波组,F个子载波组的频域位置与N个子载波组的频域位置不同,如果第一设备也通过F个子载波组采用与S62相同的方式发送信号,则F个子载波组也会对应n id,那么F个子载波组对应的n id与N个子载波组对应的n id可以相同也可以不同,具体究竟是相同或不同,与子载波组的频域位置是无关的。F为正整数。
本申请实施例中,q的取值可以根据第一信号标识或者小区标识确定,例如
Figure PCTCN2020071542-appb-000147
使得对序列{z q(m)}进行截取得到的序列之间的互相关性较好,因此对于一个子载波组来说,只要都对序列{z q(m)}进行截取,那么就可以保证不同小区在该子载波组承载发送的信号之间的互相关性较好,从而可以减小小区间的信号干扰,提高信道估计性能。例如当p等于31,K i等于18,M zc为1193时,每两个子载波组承载的序列的互相关值的最大值为0.48212,平均值为0.40056,与之相对应的,在NR系统中,使用的序列为Gold序列的片段,其互相关值的最大值大于0.9,平均值为0.48829,因此使用该方案,互相关值可以更小,从而进一步减小信号间的干扰。
其中,第一信号在N个子载波组中的第i个子载波组中的第k个子载波上承载的部分是
Figure PCTCN2020071542-appb-000148
其中k=0,1,2,…,K i-1,
Figure PCTCN2020071542-appb-000149
且d i是非负整数。在每个子载波组的载波个数均为K的情况下,对于d i是非负整数,也可以理解为,d i是∈{K,2K,3K,4K,5K,……,LK},L是非负整数。
例如,第一设备可以先确定序列{z q(m)},然后再分别截取序列{z q(m)}的一部分,作为第一信号在N个子载波组中的每个子载波组中的部分,在这种情况下,第二设备是先确定了长序列,再将长序列进行截取,分别作为N个子载波组中的每个子载波组上承载的序列。或者,第一设备也可以直接根据N个子载波组中的每个子载波组来确定序列,也就是直接确定N个子载波组中的每个子载波组承载的序列,例如第一设备直接确定序列
Figure PCTCN2020071542-appb-000150
在这种情况下,第一设备无需确定长序列,而是直接确定每个子载波组所承载的序列。本申请实施例对于第一设备具体的确定方式不做限制。
例如,d i可以由第i个子载波组的频域位置决定,例如d i的取值可以根据第一信号所在的第i个子载波组中的子载波在系统带宽中或者BWP中的位置确定。作为一种示例,
Figure PCTCN2020071542-appb-000151
其中n i是第i个子载波组中的最小的子载波的编号,这里的n i,是第i个子载波组中的最小的子载波在系统带宽中或者在BWP中的绝对编号,而不是在第i个子载波组或者在N个子载波组中的相对编号,n dist是子载波组中的子载波之间的间隔,n dist 为正整数,n offset是一个整数。
第一信号在N个子载波组中的第i个子载波组承载的部分是序列的第一片段,例如,可以根据第i个子载波组的频域位置确定序列中的第一片段,也就是,N个子载波组中的每个子载波组究竟承载序列的哪个片段,可以跟每个子载波组的频域位置有关,从而可以保证N个子载波组能够承载较为完整的序列。那么在本申请实施例中,N个子载波组中的每个子载波组均可以承载第一信号的部分信号,而且每个子载波组承载的部分信号都是序列的片段,而且,N个子载波组中的至少两个子载波组承载的片段是不同的。例如至少两个子载波组分别承载第一信号的不同的部分。例如,至少两个子载波组就是N个子载波组,也就是说,N个子载波组承载的信号都是不同的,例如第一设备通过N个子载波组发送第一信号,N个子载波组分别承载第一信号的不同部分,从而通过N个子载波组可以发送完整的第一信号。或者,至少两个子载波组只是N个子载波组的真子集,那么N个子载波组中除了至少两个子载波组之外,还包括其他的子载波组,其他的子载波组承载的信号可以是相同的,例如第一设备通过N个子载波组发送第一信号,而第一信号中有相同的部分,则至少两个子载波组可以承载第一信号的彼此不同的部分,N个子载波组中除了至少两个子载波组之外的其他的子载波组可以承载第一信号的相同的部分,从而通过N个子载波组可以发送完整的第一信号,或者,第一设备通过N个子载波组发送第一信号,那么可以通过至少两个子载波组承载第一信号,以及通过N个子载波组中除了至少两个子载波组之外的其他的子载波组承载第一信号中容易出错的部分或较为重要的部分,从而第一信号中容易出错的部分或较为重要的部分可以得到多次传输,以提高传输可靠性。
第一设备要在N个子载波组上发送第一信号,首先涉及到要生成第一信号。作为生成第一信号的一种可选的方式,生成第一信号的过程在具体实现中为:第一设备将序列{z q(m)}的片段映射到N个子载波组上,生成第一信号并发送给网络设备。具体生成方式可以参照上述实施例中的描述,其生成方法相同,不同在于所使用的信号,此处不再赘述。
可选的,以第i个子载波组为例,第一设备将包含K i个元素的序列
Figure PCTCN2020071542-appb-000152
分别映射到K i个子载波上得到第一信号的部分信号具体过程,可以参考图3所示的实施例的描述,不多赘述。
例如,第一设备可以在一个OFDM符号上发送承载序列{x(n)}的第一信号。也可以在多个OFDM符号上发送承载序列{z q(m)}的第一信号。
作为一种可选的方式,该第一信号可以为DMRS、SRS或控制信息等。本申请实施例的第一信号并不仅限于包括上述信息。
作为另一种可选的方式,第一信号为用于承载通信信息的信号。在具体实现中,该通信信息的承载方式可以是通过序列选择的方式承载,也可以是通过序列调制的方式承载,但不限于此。通信信息例如包括数据和/或控制信息。
其中,例如第一设备为终端设备,例如序列选择的方式为:为一个终端设备分配2 n个正交的序列。这2 n个正交的序列同样可以参照上文的描述。
例如序列调制的方式也可以参照上文的描述。
在一种可能的示例中,如前文的记载,第一设备可以通过A、
Figure PCTCN2020071542-appb-000153
确定序列{z q(m)}。需要说明的是,对于序列调制的方式,可以通过序列{z q(m)}中不同的A的取值,承载不同信息的。
本实施例中相同的参数均可以参照上文的描述,此处不再赘述。
第二设备可以按照预定义或者预先配置的N个子载波在通信系统的子载波中的位置接收N个子载波上的信号。
例如,第二设备可以在连续的N个子载波上获取N个子载波上的第一信号,或者,在等间隔的N个子载波上获取N个子载波上的第一信号。
S63、第二设备获取所述第一信号承载的序列。
其中,第一信号承载的序列例如为序列{z q(m)},或者可以是序列{z q(m)}的一部分。第一信号在第N个子载波组中的第i个子载波组承载的部分是序列的第一片段,以第i个子载波组为例,第二设备可以获取第一信号承载的序列
Figure PCTCN2020071542-appb-000154
中的K i个元素。
关于{z q(m)}、序列
Figure PCTCN2020071542-appb-000155
及相关元素等的介绍,在S62中已有较为详细的介绍,不多赘述。
例如,第二设备可以在连续的K i个子载波上获取K i个子载波上的信号,或者,在等间隔的K i个子载波上获取K i个子载波上的信号,去除获取的信号的循环前缀,得到时域信号,从而得到包含K i个元素的频域信号,然后,基于包含K i个元素的频域信号,确定序列
Figure PCTCN2020071542-appb-000156
中的K i个元素。对于N个子载波组中的每个子载波组,终端设备都可以通过这种方式来获取相应的子载波组承载的序列中的K i个元素。
S64、第二设备根据所述序列
Figure PCTCN2020071542-appb-000157
中的K i个元素对所述第一信号在所述N个子载波组中的第i个子载波组上承载的部分进行处理。
可选的,第二设备对第一信号在所述N个子载波组中的第i个子载波组上承载的部分的处理过程,可以继续参考图2所示的实施例中提供的图5A。第二设备将获取的序列{y(k)}与所有可能的序列{x′(k)}分别相关处理并进行最大似然比较,获取第一设备传输的数据。其中,序列{y(k)}是第二设备根据接收的第i个子载波组承载的信号得到的,可继续参考图2所示的实施例提供的图5B,第二设备将接收的第i个子载波组承载的信号去掉循环前缀,再进行快速傅立叶变换(fast Fourier transformation,FFT),和解映射等处理,得到序列{y(k)}。{x′(k)}是由{x(k)}生成的本地序列。结合前文的介绍,例如对于两比特信息,取值组合为{(0,0),(0,1),(1,0),(1,1)}。例如,当两比特信息为(0,0)时,得到的序列x′(k)是序列x 1(k),当两比特信息为(0,1)时,得到的序列x′(k)是序列x′ 2(k),当两比特信息为(1,0)时,得到的序列x′(k)是序列x′ 3(k),当两比特信息为(1,1)时,得到的序列x′(k)是序列x′ 4(k)。所述的4个序列x 1(k),x′ 2(k),x′ 3(k),x′ 4(k),可以是同一个序列的循环移位序列,将序列{y(k)}与x 1(k),x′ 2(k),x′ 3(k),x′ 4(k)分别相关,得到4个相关值。最大相关值对应的两比特信息的取值即为第二设备获取的数据。例如,最大相关值是序列{y(k)}与x′ 1(k)相关得到的,则第二设备确定第一设备传输的两比特信息是(0,0)。
对于N个子载波组中的每个子载波组上承载的信号,第二设备都可以进行类似的处理,从而获得第一信号。
其中,第二设备对第一信号进行处理,可以是分别对每个子载波组进行处理,也可以是对第一信号整体进行处理,在前文的介绍过程中,主要是以分别对每个子载波组进行处理为例。另外,第二设备对第一信号的处理,可以是与本地序列相关,也可以是根据接收信号和本地序列进行信道估计,具体的不做限制。
本申请实施例中,第一信号在N个子载波组中的第i个子载波组中承载的部分
Figure PCTCN2020071542-appb-000158
是序列{z q(m)}的片段,q满足所述条件,序列{z q(m)}满足q取不同值时,序列片 段之间的互相关性比较好,因此对于两个子载波组来说,只要选择的q满足所述条件,那么就可以保证这两个子载波组承载的信号之间的互相关性较好,从而可以减小信号间的干扰,提高信道估计性能。
本申请实施例中,第一信号在N个子载波组中的第i个子载波组中的第k个子载波上承载的部分是{z q(m)}的片段,当q满足本申请实施例中的条件时,当系统中不同小区的终端设备使用上述规则在相同的时频资源上发送信号时,对于不同终端设备使用的相同的时域资源以及相同的子载波组来说,只要该不同的终端设备序列是基于不同q值的ZC序列得到,那么就可以保证这不同小区的终端设备在相同子载波组发送信号时,该子载波组承载的信号之间的互相关性较好,从而可以减小小区间的信号干扰,提高不同小区的接入网设备的信道估计性能。当然,本申请实施例中的第一信号也可以是下行信号。使用上述实施例的方法发送的下行信号也能够使得相同子载波组承载的信号之间的互相关性较好,从而可以减小小区间的信号干扰,提高不同小区内的终端设备的信道估计性能。
下面结合附图介绍本申请实施例中用来实现上述方法的装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图7示出了一种通信装置700的结构示意图。该通信装置700可以实现上文中涉及的第一设备的功能。该通信装置700可以是上文中所述的第一设备,例如该通信装置1100是图1A所示的网络设备102,或者说是图1B所示的接入网设备102,或者该通信装置1100可以是图1A或图1C所示的终端设备,或者可以是设置在上文中所述的第一设备中的芯片。该通信装置700可以包括处理器701和收发器702。如果图8所示的第一设备是图1B所示的接入网设备102,则处理器701和控制器/处理器201可以是同一部件,收发器702和收发器202可以是同一部件;或者,如果图8所示的第一设备是图1A或图1C所示的终端设备,则处理器801和应用处理器302可以是同一部件,收发器1102和收发器301可以是同一部件。其中,处理器701可以用于执行图2所示的实施例中的S21,和/或用于支持本文所描述的技术的其它过程。收发器702可以用于执行图2所示的实施例中的S22,和/或用于支持本文所描述的技术的其它过程。
例如,处理器701,用于确定时频资源,其中,所述时频资源包括N个子载波组,所述N个子载波组中的第i个子载波组包括K i个子载波,N为大于或等于1的正整数,K i为大于1的整数;
收发器702,用于在所述N个子载波组上发送第一信号,其中,所述第一信号在所述N个子载波组中的第i个子载波组中的第k个子载波上承载的部分是
Figure PCTCN2020071542-appb-000159
k=0,1,2,…,K i-1,
Figure PCTCN2020071542-appb-000160
Figure PCTCN2020071542-appb-000161
A和μ均是非零复常数,
Figure PCTCN2020071542-appb-000162
Figure PCTCN2020071542-appb-000163
n id为所述第一信号的标识或小区的标识,
Figure PCTCN2020071542-appb-000164
是实数,其中,序列
Figure PCTCN2020071542-appb-000165
可以参照上文。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图8示出了一种通信装置800的结构示意图。该通信装置800可以实现上文中涉及的第二设备的功能。该通信装置800可以是上文中所述的第二设备,例如该通信装置800是图1A所示的网络设备102,或者说是图1B所示的接入网设备102,或者该通信装置800 可以是图1A或图1C所示的终端设备,或者可以是设置在上文中所述的第二设备中的芯片。该通信装置800可以包括处理器801和收发器802。如果图7所示的第一设备是图1A或图1C所示的终端设备,则图8所示的第二设备可以是图1B所示的接入网设备102,处理器801和控制器/处理器201可以是同一部件,收发器802和收发器202可以是同一部件;或者,如果图7所示的第一设备是图1B所示的接入网设备102,则图8所示的第二设备可以是图1A或图1C所示的终端设备,则处理器801和应用处理器302可以是同一部件,收发器802和收发器301可以是同一部件。其中,处理器801可以用于执行图2所示的实施例中的S23和S24,和/或用于支持本文所描述的技术的其它过程。收发器1002可以用于执行图2所示的实施例中的S22,和/或用于支持本文所描述的技术的其它过程。
例如,收发器802,用于接收承载在N个子载波上的第一信号,获取所述N个子载波组中的第i个子载波组承载的序列
Figure PCTCN2020071542-appb-000166
中的K i个元素,k=0,1,2,…,K i-1,
Figure PCTCN2020071542-appb-000167
Figure PCTCN2020071542-appb-000168
A和μ均是非零复常数,
Figure PCTCN2020071542-appb-000169
n id为所述第一信号的标识或小区的标识,
Figure PCTCN2020071542-appb-000170
是实数;
处理器801,用于根据所述序列
Figure PCTCN2020071542-appb-000171
中的K i个元素对所述N个子载波组中的第i个子载波组承载的信号进行处理;其中,序列
Figure PCTCN2020071542-appb-000172
可以参照上文。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图9示出了一种通信装置900的结构示意图。该通信装置900可以实现上文中涉及的第一设备的功能。该通信装置900可以是上文中所述的第一设备,例如该通信装置900是图1A所示的网络设备102,或者说是图1B所示的接入网设备102,或者该通信装置900可以是图1A或图1C所示的终端设备,或者可以是设置在上文中所述的第一设备中的芯片。该通信装置900可以包括处理器901和收发器902。如果图9所示的第一设备是图1B所示的接入网设备102,则处理器901和控制器/处理器201可以是同一部件,收发器902和收发器202可以是同一部件;或者,如果图9所示的第一设备是图1A或图1C所示的终端设备,则处理器901和应用处理器302可以是同一部件,收发器902和收发器301可以是同一部件。其中,处理器901可以用于执行图6所示的实施例中的S61,和/或用于支持本文所描述的技术的其它过程。收发器902可以用于执行图6所示的实施例中的S62,和/或用于支持本文所描述的技术的其它过程。
例如,处理器901,用于确定时频资源,其中,所述时频资源包括N个子载波组,所述N个子载波组中的第i个子载波组包括K i个子载波,所述K i个子载波为等间隔分布,N为大于或等于1的正整数,K i为大于1的整数;
收发器902,用于在所述N个子载波组上发送第一信号,其中,所述第一信号在所述N个子载波组中的第i个子载波组承载的部分是序列{z q(m)}的第一片段,所述序列{z q(m)}的长度为M,所述序列满足z q(m)=y q(m mod M zc),其中m=0,1,2,…,M-1,M为大于1的整数,M zc是满足M zc<M的最大质数,或者M zc是满足M zc>M的最小质数,
Figure PCTCN2020071542-appb-000173
其中A是非零复常数,t=0,1,2,…,M zc-1,
Figure PCTCN2020071542-appb-000174
α是一个实数,其中,q由第一信号标识或者小区标识确定,
Figure PCTCN2020071542-appb-000175
其中
Figure PCTCN2020071542-appb-000176
n id∈{0,1,2,…,p-2},p为大于2的质数,n id由第一信号标识或者小区标识确定。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功 能描述,在此不再赘述。
图10示出了一种通信装置1000的结构示意图。该通信装置1000可以实现上文中涉及的第二设备的功能。该通信装置1000可以是上文中所述的第二设备,例如该通信装置1100是图1A所示的网络设备102,或者说是图1B所示的接入网设备102,或者该通信装置1100可以是图1A或图1C所示的终端设备,或者可以是设置在上文中所述的第二设备中的芯片。该通信装置1000可以包括处理器1001和收发器1002。如果图9所示的第一设备是图1A或图1C所示的终端设备,则图10所示的第二设备可以是图1B所示的接入网设备102,处理器1001和控制器/处理器201可以是同一部件,收发器1002和收发器202可以是同一部件;或者,如果图9所示的第一设备是图1B所示的接入网设备102,则图10所示的第二设备可以是图1A或图1C所示的终端设备,则处理器1001和应用处理器302可以是同一部件,收发器1002和收发器301可以是同一部件。其中,处理器1001可以用于执行图6所示的实施例中的S63和S64,和/或用于支持本文所描述的技术的其它过程。收发器1002可以用于执行图6所示的实施例中的S62,和/或用于支持本文所描述的技术的其它过程。
例如,收发器1002,用于接收承载在N个子载波上的第一信号,获取所述第一信号在所述N个子载波组中的第i个子载波组承载的序列,所述序列为序列{z q(m)}的第一片段,所述序列{z q(m)}的长度为M,满足z q(m)=y q(m mod M zc),其中m=0,1,2,…,M-1,M为大于1的整数,M zc是满足M zc<M的最大质数,或者M zc是满足M zc>M的最小质数,
Figure PCTCN2020071542-appb-000177
其中A是非零复常数,t=0,1,2,…,M zc-1,j是虚数的单位,
Figure PCTCN2020071542-appb-000178
α是一个实数,其中,q由第一信号标识或者小区标识确定,
Figure PCTCN2020071542-appb-000179
其中
Figure PCTCN2020071542-appb-000180
n id∈{0,1,2,…,p-2},p为大于2的质数,n id由第一信号标识或者小区标识确定;
处理器1001,用于对所述第一信号进行处理。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在一个简单的实施例中,本领域的技术人员可以想到,还可以将通信装置700、通信装置800、通信装置900或通信装置1000通过如图11所示的通信装置1100的结构实现。该通信装置1100可以实现上文中涉及的第一设备或第二设备的功能。该通信装置1100可以包括处理器1101。可选的,该通信装置1100还可以包括存储器1102,可用于存储处理器1101执行任务所需的指令。
其中,在该通信装置1100用于实现上文中涉及的第一设备的功能时,处理器1101可以用于执行图2所示的实施例中的S21,和/或用于支持本文所描述的技术的其它过程;或者,在该通信装置1100用于实现上文中涉及的第二设备的功能时,处理器1101可以用于执行图2所示的实施例中的S23和S24,和/或用于支持本文所描述的技术的其它过程。或者,在该通信装置1100用于实现上文中涉及的第一设备的功能时,处理器1101可以用于执行图6所示的实施例中的S61,和/或用于支持本文所描述的技术的其它过程;或者,在该通信装置1100用于实现上文中涉及的第二设备的功能时,处理器1101可以用于执行图6所示的实施例中的S63和S64,和/或用于支持本文所描述的技术的其它过程。
其中,通信装置1100可以通过现场可编程门阵列(field-programmable gate array,FPGA),专用集成芯片(application specific integrated circuit,ASIC),系统芯片(system on  chip,SoC),中央处理器(central processor unit,CPU),网络处理器(network processor,NP),数字信号处理电路(digital signal processor,DSP),微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片实现,则通信装置1100可被设置于本申请实施例的第一设备或第二设备中,以使得第一设备或第二设备实现本申请实施例提供的方法。
在一种可选实现方式中,该通信装置1100可以包括收发组件,用于与其他设备进行通信。其中,在该通信装置1100用于实现上文中涉及的第一设备或第二设备的功能时,收发组件可以用于执行图2所示的实施例中的S22,和/或用于支持本文所描述的技术的其它过程。或者,在该通信装置1100用于实现上文中涉及的第一设备或第二设备的功能时,收发组件可以用于执行图6所示的实施例中的S62,和/或用于支持本文所描述的技术的其它过程。
另外,图7所示的实施例提供的通信装置700还可以通过其他形式实现。例如该通信装置包括处理模块和收发模块。例如处理模块可通过处理器701实现,收发模块可通过收发器702实现。其中,处理模块可以用于执行图2所示的实施例中的S21,和/或用于支持本文所描述的技术的其它过程。收发模块可以用于执行图2所示的实施例中的S22,和/或用于支持本文所描述的技术的其它过程。图8所示的实施例提供的通信装置800还可以通过其他形式实现。例如该通信装置包括处理模块和收发模块。例如处理模块可通过处理器801实现,收发模块可通过收发器802实现。其中,处理模块可以用于执行图2所示的实施例中的S23和S24,和/或用于支持本文所描述的技术的其它过程。收发模块可以用于执行图2所示的实施例中的S22,和/或用于支持本文所描述的技术的其它过程。图9所示的实施例提供的通信装置900还可以通过其他形式实现。例如该通信装置包括处理模块和收发模块。例如处理模块可通过处理器901实现,收发模块可通过收发器902实现。其中,处理模块可以用于执行图6所示的实施例中的S61,和/或用于支持本文所描述的技术的其它过程。收发模块可以用于执行图6所示的实施例中的S62,和/或用于支持本文所描述的技术的其它过程。图10所示的实施例提供的通信装置1000还可以通过其他形式实现。例如该通信装置包括处理模块和收发模块。例如处理模块可通过处理器1001实现,收发模块可通过收发器1002实现。其中,处理模块可以用于执行图6所示的实施例中的S63和S64,和/或用于支持本文所描述的技术的其它过程。收发模块可以用于执行图6所示的实施例中的S62,和/或用于支持本文所描述的技术的其它过程。
本申请实施例还提供一种装置(例如,集成电路、无线设备、电路模块等)用于实现上述方法。实现本文描述的功率跟踪器和/或供电发生器的装置可以是自立设备或者可以是较大设备的一部分。设备可以是(i)自立的IC;(ii)具有一个或多个1C的集合,其可包括用于存储数据和/或指令的存储器IC;(iii)RFIC,诸如RF接收机或RF发射机/接收机;(iv)ASIC,诸如移动站调制解调器;(v)可嵌入在其他设备内的模块;(vi)接收机、蜂窝电话、无线设备、手持机、或者移动单元;(vii)其他等等。
本申请实施例提供的方法和装置,可以应用于终端设备或接入网设备(可以统称为无线设备)。该终端设备或接入网设备或无线设备可以包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作 系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、以及即时通信软件等应用。并且,在本申请实施例中,本申请实施例并不限定方法的执行主体的具体结构,只要能够通过运行记录有本申请实施例的方法的代码的程序,以根据本申请实施例的传输信号的方法进行通信即可,例如,本申请实施例的无线通信的方法的执行主体可以是终端设备或接入网设备,或者,是终端设备或接入网设备中能够调用程序并执行程序的功能模块。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
此外,本申请实施例的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。
应理解,在本申请实施例的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显 示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者接入网设备等)执行本申请实施例各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。

Claims (27)

  1. 一种信号发送方法,其特征在于,包括:
    确定时频资源,其中,所述时频资源包括N个子载波组,所述N个子载波组中的第i个子载波组包括K i个子载波,N为大于或等于1的正整数,K i为大于1的整数;
    在所述N个子载波组上发送第一信号,其中,所述第一信号在所述N个子载波组中的第i个子载波组中的第k个子载波上承载的部分是
    Figure PCTCN2020071542-appb-100001
    k=0,1,2,...,K i-1,
    Figure PCTCN2020071542-appb-100002
    Figure PCTCN2020071542-appb-100003
    A和μ均是非零复常数,
    Figure PCTCN2020071542-appb-100004
    是非零复常数,
    Figure PCTCN2020071542-appb-100005
    n id为所述第一信号的标识或小区的标识,
    Figure PCTCN2020071542-appb-100006
    是实数,其中,序列
    Figure PCTCN2020071542-appb-100007
    是下述序列之一:
    {1,-3,-1,3,-1,3,-3,-3,-3,3,-3,-3,-1,3,1,-1,1,-3},
    {1,1,-1,-1,3,-1,1,-3,1,-1,-3,1,3,-1,1,-1,1,1},
    {1,-3,3,3,3,-1,1,-3,1,3,1,1,-1,3,1,3,1,-3},
    {1,1,3,-1,-1,3,-3,-3,-3,-1,1,-3,3,-1,1,3,1,1},
    {1,-3,3,-1,-1,-1,-3,1,1,-1,1,-3,-1,3,-3,-1,1,-3},
    {1,1,3,3,3,3,1,1,-3,3,1,1,3,-1,-3,-1,1,1},
    {1,-3,-1,-1,3,3,1,1,-3,-1,-3,1,-1,3,-3,3,1,-3},
    {1,1,-1,3,-1,-1,-3,1,1,3,-3,-3,3,-1,-3,3,1,1},
    {1,1,1,-3,-1,-3,1,-1,3,-3,-1,-3,3,-1,-1,-1,1,1},
    {1,-3,1,1,3,1,-3,-1,-1,1,-1,1,-1,3,-1,-1,1,-3},
    {1,-3,-3,1,-1,-3,1,-1,3,1,3,-3,-1,3,-1,3,1,-3},
    {1,1,-3,-3,3,1,-3,-1,-1,-3,3,1,3,-1,-1,3,1,1},
    {1,1,-3,1,-1,1,1,3,-1,1,3,-3,3,-1,3,-1,1,1},
    {1,-3,-3,-3,3,-3,-3,3,3,-3,3,1,-1,3,3,-1,1,-3},
    {1,-3,1,-3,-1,1,1,3,-1,-3,-1,-3,-1,3,3,3,1,-3},
    {1,1,1,1,3,-3,-3,3,3,1,-1,1,3,-1,3,3,1,1},
    {1,1,-1,3,3,3,-3,-3,1,-1,-3,-3,3,3,1,3,1,1},
    {1,-3,-1,-1,-1,-1,1,-3,-3,3,-3,1,-1,-1,1,3,1,-3},
    {1,-3,3,-1,3,3,-3,-3,1,3,1,-3,-1,-1,1,-1,1,-3},
    {1,1,3,3,-1,-1,1,-3,-3,-1,1,1,3,3,1,-1,1,1},
    {1,1,3,-1,3,-1,-3,1,-3,3,1,-3,3,3,-3,3,1,1},
    {1,-3,3,3,-1,3,1,1,1,-1,1,1,-1,-1,-3,3,1,-3},
    {1,1,-1,-1,-1,3,1,1,1,3,-3,1,3,3,-3,-1,1,1},
    {1,-3,-1,3,3,-1,-3,1,-3,-1,-3,-3,-1,-1,-3,-1,1,-3},
    {1,1,1,1,-1,1,-3,-1,3,-3,-1,1,3,3,-1,3,1,1},
    {1,-3,1,-3,3,-3,1,-1,-1,1,-1,-3,-1,-1,-1,3,1,-3},
    {1,1,-3,1,3,-3,1,-1,-1,-3,3,-3,3,3,-1,-1,1,1},
    {1,-3,-3,-3,-1,1,-3,-1,3,1,3,1,-1,-1,-1,-1,1,-3},
    {1,1,-3,-3,-1,-3,-3,3,-1,1,3,1,3,3,3,3,1,1},或,
    {1,-3,-3,1,3,1,1,3,3,-3,3,-3,-1,-1,3,3,1,-3};
    其中,序列
    Figure PCTCN2020071542-appb-100008
    是从第一序列组中确定的,所述序列
    Figure PCTCN2020071542-appb-100009
    是根据所述第一信号的标识或小区的标识确定的,或所述序列
    Figure PCTCN2020071542-appb-100010
    是从第二序列组中确定的,所述序列
    Figure PCTCN2020071542-appb-100011
    是根据所述第一信号的标识或者小区的标识确定。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    发送第一信令,所述第一信令用于指示所述第一信号的标识。
  3. 一种信号接收方法,其特征在于,包括:
    接收承载在N个子载波上的第一信号,获取所述N个子载波组中的第i个子载波组承载的序列
    Figure PCTCN2020071542-appb-100012
    中的K i个元素,k=0,1,2,…,K i-1,
    Figure PCTCN2020071542-appb-100013
    Figure PCTCN2020071542-appb-100014
    A和μ均是非零复常数,
    Figure PCTCN2020071542-appb-100015
    是非零复常数,
    Figure PCTCN2020071542-appb-100016
    n id为所述第一信号的标识或小区的标识,
    Figure PCTCN2020071542-appb-100017
    是实数;
    根据所述序列
    Figure PCTCN2020071542-appb-100018
    中的K i个元素对所述N个子载波组中的第i个子载波组承载的信号进行处理,其中,序列
    Figure PCTCN2020071542-appb-100019
    是下述序列之一:
    {1,-3,-1,3,-1,3,-3,-3,-3,3,-3,-3,-1,3,1,-1,1,-3},
    {1,1,-1,-1,3,-1,1,-3,1,-1,-3,1,3,-1,1,-1,1,1},
    {1,-3,3,3,3,-1,1,-3,1,3,1,1,-1,3,1,3,1,-3},
    {1,1,3,-1,-1,3,-3,-3,-3,-1,1,-3,3,-1,1,3,1,1},
    {1,-3,3,-1,-1,-1,-3,1,1,-1,1,-3,-1,3,-3,-1,1,-3},
    {1,1,3,3,3,3,1,1,-3,3,1,1,3,-1,-3,-1,1,1},
    {1,-3,-1,-1,3,3,1,1,-3,-1,-3,1,-1,3,-3,3,1,-3},
    {1,1,-1,3,-1,-1,-3,1,1,3,-3,-3,3,-1,-3,3,1,1},
    {1,1,1,-3,-1,-3,1,-1,3,-3,-1,-3,3,-1,-1,-1,1,1},
    {1,-3,1,1,3,1,-3,-1,-1,1,-1,1,-1,3,-1,-1,1,-3},
    {1,-3,-3,1,-1,-3,1,-1,3,1,3,-3,-1,3,-1,3,1,-3},
    {1,1,-3,-3,3,1,-3,-1,-1,-3,3,1,3,-1,-1,3,1,1},
    {1,1,-3,1,-1,1,1,3,-1,1,3,-3,3,-1,3,-1,1,1},
    {1,-3,-3,-3,3,-3,-3,3,3,-3,3,1,-1,3,3,-1,1,-3},
    {1,-3,1,-3,-1,1,1,3,-1,-3,-1,-3,-1,3,3,3,1,-3},
    {1,1,1,1,3,-3,-3,3,3,1,-1,1,3,-1,3,3,1,1},
    {1,1,-1,3,3,3,-3,-3,1,-1,-3,-3,3,3,1,3,1,1},
    {1,-3,-1,-1,-1,-1,1,-3,-3,3,-3,1,-1,-1,1,3,1,-3},
    {1,-3,3,-1,3,3,-3,-3,1,3,1,-3,-1,-1,1,-1,1,-3},
    {1,1,3,3,-1,-1,1,-3,-3,-1,1,1,3,3,1,-1,1,1},
    {1,1,3,-1,3,-1,-3,1,-3,3,1,-3,3,3,-3,3,1,1},
    {1,-3,3,3,-1,3,1,1,1,-1,1,1,-1,-1,-3,3,1,-3},
    {1,1,-1,-1,-1,3,1,1,1,3,-3,1,3,3,-3,-1,1,1},
    {1,-3,-1,3,3,-1,-3,1,-3,-1,-3,-3,-1,-1,-3,-1,1,-3},
    {1,1,1,1,-1,1,-3,-1,3,-3,-1,1,3,3,-1,3,1,1},
    {1,-3,1,-3,3,-3,1,-1,-1,1,-1,-3,-1,-1,-1,3,1,-3},
    {1,1,-3,1,3,-3,1,-1,-1,-3,3,-3,3,3,-1,-1,1,1},
    {1,-3,-3,-3,-1,1,-3,-1,3,1,3,1,-1,-1,-1,-1,1,-3},
    {1,1,-3,-3,-1,-3,-3,3,-1,1,3,1,3,3,3,3,1,1},或,
    {1,-3,-3,1,3,1,1,3,3,-3,3,-3,-1,-1,3,3,1,-3};
    其中,序列
    Figure PCTCN2020071542-appb-100020
    是从第一序列组中确定的,所述序列
    Figure PCTCN2020071542-appb-100021
    是根据所述第一信号的标识或小区的标识确定的,或所述序列
    Figure PCTCN2020071542-appb-100022
    是从第二序列组中确定的,所述序列
    Figure PCTCN2020071542-appb-100023
    是根据所述第一信号的标识或者小区的标识确定。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    接收第一信令,所述第一信令用于指示所述第一信号的标识。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,
    Figure PCTCN2020071542-appb-100024
    是不依赖于k的非零复常数。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,d i(k)与所述第一信号的标识或小区的标识无关。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述N个子载波组中的每个子载波组均承载所述第一信号的部分信号,且所述N个子载波组中的至少两个子载波组承载的所述第一信号的部分信号不同。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述N个子载波组两两频分正交,且所述N个子载波组占用相同的时域资源。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,
    Figure PCTCN2020071542-appb-100025
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述K i个子载波等间隔分布。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述第一信号为解调参考信号DMRS或探测参考信号SRS或控制信息。
  12. 一种信号发送方法,其特征在于,包括:
    确定时频资源,其中,所述时频资源包括N个子载波组,所述N个子载波组中的第i个子载波组包括K i个子载波,所述K i个子载波为等间隔分布,N为大于或等于1的正整数,K i为大于1的整数;
    在所述N个子载波组上发送第一信号,其中,所述第一信号在所述N个子载波组中的第i个子载波组承载的部分是序列{z q(m)}的第一片段,所述序列{z q(m)}的长度为M,所述序列满足z q(m)=y q(m mod M zc),其中m=0,1,2,…,M-1,M为大于1的整数,M zc是满足M zc<M的最大质数,或者M zc是满足M zc>M的最小质数,
    Figure PCTCN2020071542-appb-100026
    Figure PCTCN2020071542-appb-100027
    其中A是非零复常数,t=0,1,2,…,M zc-1,
    Figure PCTCN2020071542-appb-100028
    α是实数,其中,q由第一信号标识或者小区标识确定,
    Figure PCTCN2020071542-appb-100029
    其中
    Figure PCTCN2020071542-appb-100030
    n id∈{0,1,2,…,p-2},p为大于2的质数,n id由第一信号标识或者小区标识确定。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    根据所述第i个子载波组的频域位置确定所述序列中的所述第一片段。
  14. 一种信号接收方法,其特征在于,包括:
    接收承载在N个子载波上的第一信号,获取所述第一信号在所述N个子载波组中的第 i个子载波组承载的序列,所述序列为序列{z q(m)}的第一片段,所述序列{z q(m)}的长度为M,满足z q(m)=y q(m mod M zc),其中m=0,1,2,…,M-1,M为大于1的整数,M zc是满足M zc<M的最大质数,或者M zc是满足M zc>M的最小质数,
    Figure PCTCN2020071542-appb-100031
    Figure PCTCN2020071542-appb-100032
    其中A是非零复常数,t=0,1,2,…,M zc-1,
    Figure PCTCN2020071542-appb-100033
    α是一个实数,其中,q由第一信号标识或者小区标识确定,
    Figure PCTCN2020071542-appb-100034
    其中
    Figure PCTCN2020071542-appb-100035
    n id∈{0,1,2,…,p-2},p为大于2的质数,n id由第一信号标识或者小区标识确定;
    对所述第一信号进行处理。
  15. 根据权利要求12~14任一项所述的方法,其特征在于,所述第一信号在所述N个子载波组中的第i个子载波组中的第k个子载波上承载的部分是
    Figure PCTCN2020071542-appb-100036
    其中k=0,1,2,…,K i-1,
    Figure PCTCN2020071542-appb-100037
    且d i是非负整数。
  16. 根据权利要求15所述的方法,其特征在于,M的取值是根据最大系统带宽或者带宽部分确定的,d i的取值是根据所述第一信号所在的第i个子载波组中的子载波在系统带宽中或者带宽部分中的位置确定的。
  17. 根据权利要求15或16所述的方法,其特征在于,所述N个子载波组属于子载波组集合,所述子载波组集合中还包括F个子载波组,所述F个子载波组的频域位置与所述N个子载波组的频域位置不同,所述F个子载波组对应的n id与所述N个子载波组对应的n id相同,F为正整数。
  18. 根据权利要求15至17任一项所述的方法,其特征在于,
    Figure PCTCN2020071542-appb-100038
    n i是第i个子载波组中的最小的子载波的编号,n dist是子载波组中的子载波之间的间隔,为正整数,n offset是一个整数。
  19. 根据权利要求12至18任一项所述的方法,其特征在于,所述N个子载波组中的每个子载波组均承载所述第一信号的部分信号,且所述每个子载波组承载的部分信号为所述序列的片段,所述N个子载波组中的至少两个子载波组承载的片段不同。
  20. 根据权利要求12至19任一项所述的方法,其特征在于,K i是由所述N个子载波组所在的带宽部分BWP决定的。
  21. 根据权利要求12至20任一项所述的方法,其特征在于,p=31。
  22. 根据权利要求12至21任一项所述的方法,其特征在于,q的值是根据小区标识或者序列组标识确定的。
  23. 根据权利要求12至22任一项所述的方法,其特征在于,所述第一信号为DMRS或SRS或控制信息。
  24. 一种信号发送设备,其特征在于,包括处理器和收发器,所述处理器和所述收发器相耦合,用于执行权利要求1至2、5至11中任一项所述的方法,或用于执行权利要求12至13、15至23中任一项所述的方法。
  25. 一种信号接收设备,其特征在于,包括处理器和收发器,所述处理器和所述收发器相耦合,用于执行权利要求3至11中任一项所述的方法,或用于执行权利要求14至23中任一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令在被计算机执行时,使所述计算机执行如权利要求1至2、5至11中任一项所述的方法,或执行如权利要求12至13、15至23 中任一项所述的方法。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令在被计算机执行时,使所述计算机执行如权利要求3至11中任一项所述的方法,或执行如权利要求14至23中任一项所述的方法。
PCT/CN2020/071542 2019-01-21 2020-01-10 一种信号发送、接收方法及设备 WO2020151506A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20744444.9A EP3907954B1 (en) 2019-01-21 2020-01-10 Signal transmission and reception method and device
US17/380,097 US11956178B2 (en) 2019-01-21 2021-07-20 Signal sending method, signal receiving method, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910054913.4 2019-01-21
CN201910054913.4A CN111464478B (zh) 2019-01-21 2019-01-21 一种信号发送、接收方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/380,097 Continuation US11956178B2 (en) 2019-01-21 2021-07-20 Signal sending method, signal receiving method, and device

Publications (1)

Publication Number Publication Date
WO2020151506A1 true WO2020151506A1 (zh) 2020-07-30

Family

ID=71684924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071542 WO2020151506A1 (zh) 2019-01-21 2020-01-10 一种信号发送、接收方法及设备

Country Status (4)

Country Link
US (1) US11956178B2 (zh)
EP (1) EP3907954B1 (zh)
CN (1) CN111464478B (zh)
WO (1) WO2020151506A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4099654A4 (en) * 2020-02-25 2023-01-11 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND APPARATUS

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017171314A1 (ko) * 2016-03-27 2017-10-05 엘지전자 주식회사 무선 통신 시스템에서 상향링크 복조 참조 신호 송수신 방법 및 이를 위한 장치
CN108111270A (zh) * 2017-06-16 2018-06-01 中兴通讯股份有限公司 导频信号发送、接收方法及装置
CN108809562A (zh) * 2017-05-02 2018-11-13 电信科学技术研究院 一种dmrs序列确定方法、终端和网络侧设备

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001358692A (ja) * 2000-06-14 2001-12-26 Nec Corp 直交周波数分割多重変復調回路
CN101076182A (zh) * 2006-05-19 2007-11-21 华为技术有限公司 信道估计方法和系统
CN101447970B (zh) * 2008-11-14 2011-06-29 中国人民解放军理工大学 利用训练序列进行lofdm系统定时和载波同步的方法
KR101814394B1 (ko) * 2010-01-17 2018-01-03 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
KR101285398B1 (ko) * 2010-09-08 2013-07-10 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
US9191256B2 (en) * 2012-12-03 2015-11-17 Digital PowerRadio, LLC Systems and methods for advanced iterative decoding and channel estimation of concatenated coding systems
WO2015086044A1 (en) * 2013-12-10 2015-06-18 Telefonaktiebolaget L M Ericsson (Publ) Group-based resource element mapping for radio transmission of data
CN107615847B (zh) * 2015-06-04 2020-03-10 华为技术有限公司 一种传输信息的方法、装置和系统
CN107949991B (zh) * 2015-09-02 2020-10-27 华为技术有限公司 一种信号发送或接收方法和设备
US10547427B2 (en) * 2015-12-24 2020-01-28 Lg Electronics Inc. Method for transmitting demodulation reference signal in wireless communication system that supports narrow band IoT and apparatus for supporting the same
CN109076048B (zh) * 2016-05-11 2020-05-08 华为技术有限公司 传输信号的方法、发送端和接收端
WO2018024127A1 (zh) * 2016-07-30 2018-02-08 华为技术有限公司 一种传输信号的方法及网络设备
CN111542119B (zh) * 2016-08-12 2023-05-12 华为技术有限公司 一种信号发送方法、网络设备和终端设备
CN107733561B (zh) * 2016-08-12 2019-12-13 华为技术有限公司 信号发送装置、信号检测装置及方法
US11258644B2 (en) * 2016-09-28 2022-02-22 Panasonic Intellectual Property Corporation Of America Wireless transmission device, wireless reception device, transmission method, and reception method
CN108282439B (zh) * 2017-01-06 2020-08-14 华为技术有限公司 一种信号发送、接收方法及装置
CN108632002B (zh) * 2017-03-24 2021-06-01 华为技术有限公司 一种无线通信中的信号发送方法、接收方法、装置和系统
EP3618481B1 (en) * 2017-06-16 2022-05-18 Huawei Technologies Co., Ltd. Scheduling request transmitting method
CN109274473B (zh) * 2017-09-08 2019-10-22 华为技术有限公司 基于序列的信号处理方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017171314A1 (ko) * 2016-03-27 2017-10-05 엘지전자 주식회사 무선 통신 시스템에서 상향링크 복조 참조 신호 송수신 방법 및 이를 위한 장치
CN108809562A (zh) * 2017-05-02 2018-11-13 电信科学技术研究院 一种dmrs序列确定方法、终端和网络侧设备
CN108111270A (zh) * 2017-06-16 2018-06-01 中兴通讯股份有限公司 导频信号发送、接收方法及装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "R1-166141, Uplink DMRS Enhancement to Support More Orthogonal Partial Overlapped Ports", 3GPP TSG RAN WG1 MEETING #86, 26 August 2016 (2016-08-26), XP051125236, DOI: 20200323151904A *
HUAWEI ET AL.: "R1-1814086, Sequence Design for Pi/2-BPSK DFT-S-OFDM", 3GPP TSG RAN WG1 MEETING #95, 16 November 2018 (2018-11-16), XP051494534, DOI: 20200323152235A *
QUALCOMM: "R1-1721686, Final Issues for Rel-15 PDSCH/PUSCH’s DM-RS", 3GPP TSG RAN WG1 MEETING 91, 1 December 2017 (2017-12-01), XP051370766, DOI: 20200323152050A *
See also references of EP3907954A4

Also Published As

Publication number Publication date
EP3907954B1 (en) 2023-05-31
US20220182209A9 (en) 2022-06-09
CN111464478B (zh) 2023-04-07
EP3907954A4 (en) 2022-03-02
CN111464478A (zh) 2020-07-28
US20210351897A1 (en) 2021-11-11
US11956178B2 (en) 2024-04-09
EP3907954A1 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
WO2018127202A1 (zh) 一种传输参考信号的方法以及设备
WO2017035808A1 (zh) 一种信号发送或接收方法和设备
CN116846505B (zh) 一种序列确定方法和装置
US11632207B2 (en) Method and apparatus for transmitting uplink signal
WO2022033555A1 (zh) 信号传输方法和装置
US10979188B2 (en) Sequence determining method and apparatus
WO2018171752A1 (zh) 一种资源指示方法及网络设备、终端设备
WO2017092697A1 (zh) 通信系统中处理通信信号的方法和装置
WO2018137460A1 (zh) 一种参考信号配置方法、基站和终端
WO2019047944A1 (zh) 搜索空间确定方法和装置
US10999108B2 (en) Wireless communication method, apparatus, and system
WO2018024127A1 (zh) 一种传输信号的方法及网络设备
WO2020151506A1 (zh) 一种信号发送、接收方法及设备
WO2018126968A1 (zh) 一种信号发送、接收方法及装置
WO2020043103A1 (zh) 一种信号发送、接收方法及装置
WO2020199989A1 (zh) 一种序列确定方法及装置
WO2019100739A1 (zh) 一种序列确定方法和装置
WO2022151500A1 (zh) 一种通信方法及装置
WO2022042618A1 (zh) 传输信号的方法和通信装置
RU2772299C2 (ru) Способ и устройство для получения опорного сигнала и считываемый компьютером носитель
WO2018027812A1 (zh) 一种数据处理方法及装置
BR112020010387B1 (pt) Método de determinação de sequência e aparelho

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20744444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020744444

Country of ref document: EP

Effective date: 20210802