WO2020151493A1 - 一种光投射系统 - Google Patents

一种光投射系统 Download PDF

Info

Publication number
WO2020151493A1
WO2020151493A1 PCT/CN2020/070824 CN2020070824W WO2020151493A1 WO 2020151493 A1 WO2020151493 A1 WO 2020151493A1 CN 2020070824 W CN2020070824 W CN 2020070824W WO 2020151493 A1 WO2020151493 A1 WO 2020151493A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
switchable diffuser
projection
condition
predetermined
Prior art date
Application number
PCT/CN2020/070824
Other languages
English (en)
French (fr)
Inventor
朱力
吕方璐
汪博
Original Assignee
深圳市光鉴科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光鉴科技有限公司 filed Critical 深圳市光鉴科技有限公司
Priority to EP20744642.8A priority Critical patent/EP3916480B1/en
Publication of WO2020151493A1 publication Critical patent/WO2020151493A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1086Beam splitting or combining systems operating by diffraction only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography

Definitions

  • the present invention relates to a system and method that uses a switchable diffuser assembly to project light, and optionally controls the light projection.
  • Light projection technology is essential to enable the functions of multiple important devices.
  • structured light projection technology is applied to a 3D camera module of a mobile phone to identify facial features.
  • the projected light reflected by facial features can be collected by the detector and analyzed by algorithms to "perceive" the topological structure of the face.
  • the design of identity verification, emoji generation, image capture orientation, and other various functions can be designed according to the input of facial feature recognition.
  • the disadvantages of light projection technology are high cost, large device size, and low integration.
  • the conventional light projection technology cannot fully utilize the existing light source to achieve the various functions sought, but achieves its purpose through multiple projection devices.
  • These shortcomings become the bottleneck for further improvement of the structure and function of the device built on or around the light projection technology. Therefore, the consumer market and related industries hope to improve the existing light projection technology.
  • Light projection is a key step to realize various applications, such as 3D feature detection and 3D drawing.
  • multiple light sources and light projection subsystems are used in combination to provide 3D feature detection and 3D drawing technology.
  • many conventional systems are equipped with different floodlight components and different point projector components to achieve the required reading.
  • the light generated by the floodlight assembly is a wide beam, which basically diffuses when it propagates.
  • Floodlight is used to illuminate the surface of the target for image capture.
  • the light generated by the point projector is a narrow beam, which uses substantially parallel light, which will not diverge or spread as easily as floodlight.
  • the use of two different light sources to achieve flood lighting and point projection is less efficient, and also causes the module size to be too large to match the smaller application environment.
  • Embodiments of the present invention include light projection systems and structures, switchable diffusers, and other devices.
  • a system includes: a light projection system configured to project a plurality of collimated beams; a switchable diffuser having a first surface and a second surface, the switchable diffuser
  • the transmitter is coupled with the control source and is configured to respond to the control source transitioning from the first condition to the second condition to transition from the first state to the second state; wherein in the first state, the switchable The diffuser is configured to: receive at least a part of a plurality of collimated beams on the first surface and project flood light from the second surface; wherein in the second state, the switchable diffuser is configured to: allow At least a part of the plurality of collimated beams propagates from the second surface as an array; and a processing engine, which is electrically connected to a non-transitory computer-readable medium having a machine stored thereon
  • the readable instruction when the processing engine executes the machine readable instruction, causes the system to oscillate the control source between the first condition and the second condition according to the first predetermined pattern.
  • the term "computer-readable medium” covers any medium configured to store machine-readable instructions to be executed by a processing engine.
  • a medium can exist in a microcontroller unit as a system on a chip, or in any combination of the foregoing.
  • the light projection system includes a vertical cavity surface emitting laser (VCSEL) element, a diffractive optical element, and/or a waveguide device.
  • VCSEL vertical cavity surface emitting laser
  • the light projection system includes a waveguide device, the waveguide device includes a surface A and a surface B; the surface A includes a number of grating structures; the waveguide device is configured to guide the coupled light beam on the surface A And surface B is subject to total internal reflection; and the grating structure is configured to interfere with total internal reflection so that at least a part of the light beam coupled in is coupled out of the waveguide device from surface A, and the part coupled out of the waveguide device is coupled into The light beam forms a coupled light beam, which includes several collimated light beams.
  • the surface A is in the xy plane, and the xy plane includes the x direction and the y direction perpendicular to each other; the coupled light beam propagates in the x direction of the xy plane in the waveguide device; the coupled light beam basically follows the normal z of the xy plane Directional propagation; each grating structure is associated with grating depth, duty cycle, period, and orientation in the xy plane relative to the z direction; grating structures at different positions in the x direction have different grating depths and different grating occupations At least one of the space ratio; grating structures at different positions in the x direction have different periods; and grating structures at different positions in the y direction have different orientations.
  • the light projection system includes several diodes.
  • the system further includes: a detector configured to collect light information based on one or more flood reflections of the target object and the array reflection of the target object; wherein when the processing engine executes the machine-readable instructions , Which makes the system demultiplex the optical information received by the detector.
  • the switchable diffuser includes a polymer liquid crystal mixture having molecular orientations in response to an applied voltage.
  • the switchable diffuser includes a polymer dispersed liquid crystal.
  • the switchable diffuser includes a polymer network liquid crystal.
  • the first predetermined pattern causes the light projected from the second surface of the switchable diffuser to include alternating bursts of flood light and collimated beams to achieve time division multiplexing emission.
  • the first voltage condition is an applied voltage of 0V
  • the second voltage condition is an applied voltage between 1V and 50V or greater.
  • the first predetermined mode includes: switching the system between the first voltage condition and the second voltage condition two or more times during the image acquisition period to achieve flood projection and collimated light projection The predetermined ratio.
  • the predetermined oscillation mode is configured to achieve a predetermined projection ratio of floodlight to collimated light.
  • the predetermined oscillation mode is configured to achieve a predetermined projection ratio of floodlight to collimated light, and the projection ratio is 1:1.
  • the predetermined oscillation mode is configured to achieve a predetermined projection ratio of floodlight to collimated light, and the projection ratio is 10:1.
  • the predetermined oscillation mode is configured to achieve a predetermined projection ratio of floodlight and collimated light, and the projection ratio is about 1:1 to 10:1.
  • the non-transitory computer-readable medium is further configured to have machine-readable instructions stored thereon, and when the processing engine executes the machine-readable instructions, the system: The control source is oscillated between the first condition and the second condition; and the second predetermined mode includes: switching between the first voltage condition and the second voltage condition two or more times in the first image acquisition period to achieve A second predetermined ratio of floodlight projection and collimated light projection, and wherein the second predetermined ratio is different from the first predetermined ratio.
  • the non-transitory computer-readable medium is also configured to have machine-readable instructions stored thereon.
  • the processing engine executes the machine-readable instructions
  • the system causes the system to: according to the detected ambient light conditions And one or more of the transaction security conditions, adjusting the time period of one or more of the first image acquisition period and the second image acquisition period.
  • a light projection method includes: projecting a plurality of collimated light beams; providing a switchable diffuser having a first surface and a second surface, the switchable diffuser being coupled with a control source and configured to: In response to the control source transitioning from the first condition to the second condition, to transition from the first state to the second state; wherein in the first state, the switchable diffuser is configured to: on the first surface Receiving at least a part of a plurality of collimated beams, and projecting flood light from the second surface; wherein in the second state, the switchable diffuser is configured to allow at least part of the collimated beams to be used as an array from the first The two surfaces propagate out; the control source oscillates between the first condition and the second condition according to a first predetermined pattern.
  • projecting a plurality of collimated beams includes: projecting a plurality of collimated beams from a waveguide device, the waveguide device includes a surface A and a surface B; the surface A includes a plurality of grating structures; the waveguide device is configured In order to guide the coupled light beam to undergo total internal reflection between surface A and surface B; the grating structure is configured to interfere with total internal reflection so that at least a part of the coupled light beam is coupled out of the waveguide device from surface A and from the waveguide The part of the coupled-in light beam coupled out of the device forms a coupled-out light beam, and the coupled-out light beam includes several collimated beams.
  • the system according to the present invention includes: a light source configured to generate light (for example, infrared light); and a projection structure configured to receive the generated light, and correspondingly project a number of collimated beams (here Collectively referred to as light projection structure); and a switchable diffuser having a first surface and a second surface.
  • the switchable diffuser is coupled with a control source such as a voltage source.
  • a control source such as a voltage source.
  • the switchable diffuser is configured to respond to a voltage source switching from a first voltage condition (for example, 0V) to a second voltage condition (for example, 1-50V) to switch from the first state to the second state.
  • a first voltage condition for example, 0V
  • a second voltage condition for example, 1-50V
  • the switchable diffuser is configured to receive several collimated beams on the first surface, diffuse the several collimated beams, and project the floodlight out The second surface.
  • the switchable diffuser is configured to be substantially transparent to several collimated beams incident on it, and allows several collimated beams to be used as an array (such as a dot array) ) Spread out from the second surface.
  • the exemplary system may also include a detector configured to collect light information based on one or more flood reflections of the target and the point array reflections of the target. In some embodiments, the system is configured to demultiplex the light information received by the detector.
  • the exemplary system of the present invention is provided with a controller to manipulate and regulate the operation of system components.
  • the controller may include a processing engine electrically connected to a non-transitory computer-readable medium.
  • the non-transitory computer-readable medium has machine-readable instructions stored thereon.
  • the processing engine executes the machine-readable instructions, the system performs various operations. kind of operation. For example, in some cases, when the instruction is executed, it will cause the system to oscillate the voltage source between the first voltage condition and the second voltage condition according to a predetermined oscillation pattern.
  • the predetermined oscillation mode is such that the light projected from the second surface of the switchable diffuser includes alternating flood pulses and collimated beams to achieve time-division multiplexed emission.
  • the predetermined oscillation mode includes switching the system between the first voltage condition and the second voltage condition two or more times during the image acquisition period to achieve a predetermined ratio of floodlight projection to collimated light projection (eg 1:1-10:1, 1:1-100:1, 1:10-1:1, or 1:100-1:1, etc.).
  • the system of the present invention may include a module equipped with both a structured light detector (ie, a non-ToF detector, such as an IR dot array detector) and a time-of-flight (“ToF”) detector.
  • a structured light detector ie, a non-ToF detector, such as an IR dot array detector
  • ToF time-of-flight
  • Both structured light detectors and ToF detectors can be configured to receive light reflections of light pulses projected from the light projection system, but each can capture, convert, filter, and/or evaluate the light differently (or the generation may be different Ground filtered and/or evaluated signals) to obtain feature, structure and/or depth information about the object on which the light projected from the light projection system is incident.
  • the light projection subsystem of a system that includes both a structured light detector and a ToF detector may include a single light source and a single switchable diffuser.
  • Such light sources and switchable diffusers can operate according to one or more of the features of these elements discussed herein.
  • the system of the present invention may include a controller connected to the structured light detector and the ToF detector, and the controller is configured to operate only the structured light detector and the ToF detector in a given image acquisition period
  • the controller may be configured to operate the structured light detector and the ToF detector together in a given image acquisition period.
  • hybrid mode refers to the operation of the structured light detector and the ToF detector by the controller (along with the operation of other elements of the system 500, for example, the switchable diffuser state changes time The emission time of the light source in the light projection subsystem of the system, etc.) are synchronized so that the two detectors can coherently operate in a given image acquisition period).
  • the controller may switch between modes based on input from the user (eg, user selection) or based on one or more detected conditions (eg, lighting conditions, component status detection, etc.) . For example, switching between system operations in ToF mode, non-ToF mode, or hybrid mode.
  • the technical solution of the present invention includes a system including: an infrared detector configured to collect based on one or more flood light reflections of the target object and the structured light array reflection of the target object Optical information; a time of flight (ToF) detector, which is configured to: detect the time difference between the return light reflected on the surface of the target (or reflected on multiple surfaces of different targets); and is configured to: return based on The time difference between the different parts of the light reflection to determine one or more depth measurements associated with different parts of the surface; and a switchable diffuser having a first surface and a second surface, the switchable The diffuser is coupled with the control source and is configured to respond to the control source transitioning from the first condition to the second condition to transition from the first state to the second state.
  • ToF time of flight
  • the switchable diffuser in the first state, may be configured to receive at least a portion of the plurality of collimated beams on the first surface and project floodlight from the second surface. In the second state, the switchable diffuser may be configured to allow at least a part of the plurality of collimated beams to propagate from the second surface as an array.
  • the light projection system includes a processing engine electrically connected to a non-transitory computer-readable medium having machine-readable instructions stored thereon. When the processing engine executes the machine-readable When the instruction is readable, the system is caused to oscillate the control source between the first condition and the second condition according to the first predetermined pattern.
  • the control source is oscillated between the first condition and the second condition according to the first predetermined pattern, so that several collimated light pulses are projected from the switchable diffuser in a single image acquisition period.
  • the ToF sensor and the structured light sensor are configured to receive reflections of collimated light from one or more of the same pulses of collimated light in a single image acquisition period.
  • the switchable diffuser can be controlled to emit pulses of the collimated beam, which pulses achieve the modulation of the collimated beam resolved by the ToF detector.
  • This modulation can be one or more of pulse amplitude modulation, pulse frequency modulation, continuous wave amplitude modulation, and continuous wave frequency modulation.
  • the technology provided herein also relates to methods for performing functions related to the exemplary systems herein.
  • Figure 1 is a schematic diagram of an exemplary system according to various embodiments of the present invention.
  • Fig. 2 is a side view of an exemplary system.
  • the system uses a single light source and a switchable diffuser to project floodlight and light spots in a time division multiplexing manner.
  • Figure 3A shows an exemplary switchable diffuser based on the change in the applied electric field on the switchable diffuser caused by switching from the first voltage condition to the second voltage condition according to one or more embodiments of the present invention.
  • the operation of the controller in the first position in the exemplary system layout changes.
  • FIG. 3B shows an exemplary switchable diffuser based on the change in the applied electric field on the switchable diffuser caused by switching from the first voltage condition to the second voltage condition according to one or more embodiments of the present invention.
  • the operation of the controller in the second position in the exemplary system layout changes.
  • Fig. 3C shows an exemplary switchable diffuser based on the change in the applied electric field on the switchable diffuser caused by switching from the first voltage condition to the second voltage condition according to one or more embodiments of the present invention.
  • the operation of the controller in the third position in the exemplary system layout changes.
  • Fig. 4 shows an exemplary architecture, which describes the various sub-components of the controller applied according to one or more embodiments of the present invention.
  • FIG. 5 is a schematic diagram of another exemplary system according to various embodiments of the present invention, which includes a module combining a time of flight (ToF) detector with an infrared detector and a switchable diffuser.
  • ToF time of flight
  • Fig. 6 shows a flowchart of an exemplary method applied according to one or more embodiments of the present invention.
  • Fig. 1 shows an exemplary system according to one or more embodiments of the present invention, which is used to realize 3D feature detection.
  • the system 100 for realizing 3D feature detection may include a light projection subsystem 130 and a detector 120 installed to a module 110 (this module has structural, optical and/or electrical support), and a module 110 (Or one or more elements of the module 110) an operatively connected controller 140.
  • the light projection subsystem 130 can be configured to selectively generate both floodlight and lattice light projection during the image acquisition process, without the need to install and use multiple different lights in a given module.
  • the system 100 can be applied to multiple systems or devices, such as mobile phones, computers, tablets, wearable devices, vehicles, and so on.
  • the light projection subsystem 130 may contain various elements, including one or more light sources (such as components of the light projection system 130). For more details, refer to FIGS. 2-5.
  • the light source of the light projection subsystem 130 can project a predetermined or random pattern of structured or cylindrical light beams onto the surface.
  • the structured or cylindrical light may be coupled into and through one or more other optical and optoelectronic elements of the light projection subsystem 130, such as lenses and/or switchable diffuser elements.
  • the light emitted from the switchable diffuser element can be directed to the surface (for example, face) of the target object.
  • the reflected light from the surface of the object can be collected by one or more detectors 120 (for example, camera sensors).
  • the light information collected by the detector 120 can be used to determine depth information (in the case of cylindrical light reflection, based on displacement and deformation relative to a reference object) and object feature information (in the case of flood reflection, based on wavelength/frequency).
  • Various other optically derived parameters can be determined based on the reflected light collected by the detector 120.
  • the detector is configured to: or a designated element of the system, or to receive out-coupled beam reflections from multiple positions of the remote object relative to a designated reference point of the system to determine multiple positions The distance from the system or the specified component of the system, or the distance from the specified reference point to the system.
  • the light projection subsystem 130 and the detector 120 may be installed or coupled to the same module structure (for example, the module 110).
  • the light projection subsystem 130 and the detector 120 are mounted or coupled to different modules. But in each case, the detector can be set to: set the orientation relative to the light projection subsystem 120, so that the light sensor of the detector element can receive the light from the projection subsystem. Reflections in two locations. The received reflections can be used to determine the distances of multiple positions relative to a predetermined reference point (for example, the position of the light projection subsystem 130).
  • a virtual reflection plane at a single position on the surface of the object can be used as a reference object, and the reflection of the projected light on the reference object can be predetermined as a reference reflected beam.
  • the surface topology (for example, facial features in the case of a face surface) can be determined based on the difference between the detected reflected beam and the reference reflected beam, which is manifested as the displacement or deformation of the reference reflected beam. This determination method is known as the triangulation method.
  • an exemplary light projection subsystem 130 includes a light source 132, a light projection structure 134 and a switchable diffuser 136.
  • the exemplary light projection structure 134 may be a beam array projection structure such that the projected beam array forms an array (for example, a dot array) on a surface (for example, a 2D surface, a 3D surface, etc.).
  • the detector 120 may include a light sensor 122 configured to receive and process light reflected from the imaging target.
  • the detector 120 may include one or more other optical or photoelectric elements to filter, communicate, or direct the desired reflected light to the light sensor 122.
  • the optical filter 124 shown in FIG. 2 is an exemplary optical element, which can be used in combination with the light sensor 122.
  • the light source 132 may include any form of light source.
  • the light source 132 may emit infrared (IR) light, or any other visible or invisible light in the electromagnetic spectrum range.
  • the light source 132 may include a single laser (for example, an edge emitting laser, a vertical cavity surface emitting laser (VCSEL)), a light emitting diode (LED) with light collimation, or the like.
  • the light source 132 may include multiple lasers or diodes (for example, an edge emitting laser array, a VCSEL array, an LED array).
  • the light source 132 may include one or more light sources disclosed in U.S. Patent Applications 16/036,776, 16/036,801 and 16/036,814, the entire contents of which are incorporated herein by reference.
  • the light projection structure 134 may include a waveguide device configured to receive the light emitted by the light source 132 and project a plurality of spot beams.
  • the light emitted from the light source 132 can be coupled into the light projection structure 134 from any surface or surface portion, and/or can be coupled out of the light projection structure 134 from any surface or surface portion.
  • the light projection system 130 may include one or more light projection devices and light projection structures disclosed in U.S. Patent Applications 16/036,776, 16/036,801, and 16/036,814. The entire contents of these U.S. patent applications are hereby incorporated by reference. invention.
  • the light projection system 130 of some embodiments may include a projection mirror structure, such as the projection mirror structure 231 in US Patent Application 16/036,801, which may be configured to: collimate the light emitted by the light source , And/or project arbitrary or structured dot arrays.
  • the laser beam waist of the projection beam array collimated by the projection mirror structure 231 varies from 10 mm to 1 meter.
  • the projection mirror structure 231 can collimate the output light to form a clear image (for example, a dot array) at a required distance (for example, within a range of 10 cm to 10 meters according to the application).
  • a required distance for example, within a range of 10 cm to 10 meters according to the application.
  • any grating structure disclosed in U.S. Patent Application 16/036,801 can be used as, using one or more of the light source 132, projection mirror, and/or waveguide device 134 described in the present invention, or Use with it or in combination.
  • the light projection subsystem 130 may include the system 102 in US Patent Application 16/036,801.
  • the light projection subsystem 130 may include multiple diodes (for example, lasers such as edge-emitting laser arrays or VCSEL arrays, diodes such as LED arrays), or any other structure that generates an array of light beams.
  • the array is arranged to impact on at least a portion of the switchable diffuser material.
  • the light projection system 130 may include one or more of the structures or systems disclosed in U.S. Patent Applications 16/036,776, 16/036,801, and 16/036,814, the entire contents of which are incorporated herein by reference.
  • the light projection subsystem 130 may include a diffractive optical element ("DOE") to be combined with a VCSEL array to generate multiple points.
  • DOE diffractive optical element
  • the DOE used in combination with it can effectively provide a 10X multiplier to generate 1500 points on the output plane.
  • the VCSEL array includes 300 points (such as a beam of collimated light)
  • the DOE used in combination with it can effectively provide a 100X multiplier to generate 30,000 points on the output plane.
  • Any type of DOE can be used, including a DOE that can generate arbitrarily multiplied points with the base VCSEL array (for example, 10X-100X, or larger, or smaller).
  • the light beam emitted by the light projection structure 134 may be coupled out from the surface of the light projection structure 134. Then optionally, the light beam may pass through the switchable diffuser 136 to be projected into the space.
  • the switchable diffuser 136 may be configured to receive the light beam from the light source 132 and project the light beam (in the same or modified form) into an environment with a remote object to be imaged. As an alternative, the light beam can also be projected directly from the light source 132 into the switchable diffuser 136 and into the space.
  • the light projection structure 134 may include various lenses or lens combinations (for example, 1 to 6 individual lenses) for controlling the direction of the projected light beam.
  • the switchable diffuser 136 may include any liquid crystal or polymer based on a mixture that has an adjustable molecular orientation in response to an applied voltage, including, for example, any prior art mixture.
  • the switchable diffuser 136 may include any polymer liquid crystal mixture, or any other liquid crystal mixture.
  • the switchable diffuser 136 may include an immiscible mixture of liquid crystal and polymer, such as polymer dispersed liquid crystal (PDLC) or polymer network liquid crystal (PNLC) or digital light processing (DLP) material.
  • PDLC polymer dispersed liquid crystal
  • PNLC polymer network liquid crystal
  • DLP digital light processing
  • the switchable diffuser 136 can exhibit light scattering properties without being affected by a substantial electric field.
  • a switchable diffuser 136 of the PDLC type can provide such light scattering properties.
  • the concentration of the polymer inside the liquid crystal may be between 20% and 60% to achieve scattering.
  • the concentration of the polymer inside the liquid crystal may be between 60% and 80%.
  • the polymer solidifies in the liquid/polymer emulsion to separate the liquid crystal droplets in the polymer structure.
  • the liquid crystal molecules in each droplet are locally ordered, but each droplet can be randomly arranged relative to other droplets in the mixture.
  • the combination of the small droplet size and the isotropic orientation of the droplets in the PDLC mixture will result in a high light scattering structure without a substantial electric field.
  • the switchable diffuser 136 of the PDLC type When a substantial electric field is applied to the switchable diffuser 136 of the PDLC type, the orientation of the liquid crystal droplets in the mixture will change. When light is coupled into the structure and exits from the other side, the degree of light scattering is reduced. According to one or more embodiments of the present invention, if a sufficiently large electric field is applied to the switchable diffuser 136 of the PDLC type, the structure of the switchable diffuser 136 will reach a substantially transparent state, so that the coupling into When the light passes through, there is little or no scattering.
  • a switchable diffuser 136 of the PNLC type can also provide such light scattering/diffusion properties.
  • the switchable diffuser 136 of the PNLC type includes a polymer chain network throughout the entire structure, and the concentration of the polymer inside the liquid crystal may be about 1% to 15%. Similar to PDLC, PNLC can be switched between a substantially scattering state and a substantially transparent state when a suitable electric field is applied.
  • the switchable diffuser 136 may further include an additional layer combined with the scattering element.
  • additional layers can be combined with PDLC or PNLC materials to provide polarization stability, structural support, and conductivity.
  • the switchable diffuser 136 can be controlled to set one of at least two different states (ie, the diffusion/scattering state and the transparent state) according to the applied electric field.
  • the diffusion/scattering state may also be referred to herein as a "first state” or an “off state”
  • the transparent state may also be referred to herein as a "second state” or an "on state”.
  • the system 100 may include a controller 140 that is operatively connected to one or more of the light sensor 122, the light source 132 and the switchable diffuser 136.
  • the controller 140 may be configured to activate the light source 132 so that the light source 132 performs light projection.
  • the controller 140 may be further configured to process the image information received by the light sensor 122 after the controller 140 activates the light source 132.
  • the controller 140 may be further configured to selectively apply an electric field (e.g., voltage) to the switchable diffuser 136 to switch between the off state (diffusion/scattering state) and the on state (transparent state).
  • the controller 140 may be configured to realize the synchronous operation of the light sensor 122, the light source 132 and the switchable diffuser 136, so as to realize the time-division multiplexing propagation of flooding and spot projection.
  • the controller 140 may be configured to: when the light emitted by the light source 132 (optionally through the light projection structure 134) is coupled into the first surface of the switchable diffuser 136, and when the switchable diffuser 136 When the second surface of the diffuser 136 is coupled out, it selectively oscillates corresponding to the electric field used in the switchable diffuser 136. This optional oscillation causes the switchable diffuser 136 to switch between closed and open states, so that in the first period of time, the light emitted from the second surface of the switchable diffuser 136 contains flooding. Light projection, and in the second or subsequent time period, the light emitted from the second surface of the switchable diffuser 136 includes point projection.
  • the switchable diffuser 136 can be activated in any manner and by any combination of elements configured to control the application of an appropriate electric field.
  • the controller 140 may be connected to a circuit including a voltage source that can apply a voltage to the switchable diffuser 136.
  • the conductive elements 142 and/or 144 may be integrated into or connected to the switchable diffuser 136 so as to apply an electric field on the switchable diffuser 136.
  • the controller 140 can selectively adjust the voltage from the voltage source applied to the switchable diffuser 136 through the circuit connected thereto.
  • the controller 140 may activate a switch that connects and/or disconnects the voltage source with one or more conductive elements 142 and/or 144.
  • FIG. 3A shows the change in the electric field applied to the switchable diffuser 136 caused by switching from the first voltage condition to the second voltage condition, thereby changing the operation of an exemplary switchable diffuser 136, wherein
  • the change between the first voltage condition and the second voltage condition (and correspondingly the "off” state and the “on” state of the switchable diffuser 136) is controlled by the controller 140 (not shown in the figure).
  • the switchable diffuser The emitter can remain in its natural state and act as a diffuser/diffuser for incident light. This can be referred to as the "off" state.
  • the first voltage V1 may be 0V, where the "off" state actually corresponds to the voltage "off” from the perspective of the switchable diffuser 136.
  • the "off" state does not necessarily have to correspond to the voltage of the closed voltage source.
  • the "off" state of the switchable diffuser 136 can be achieved. In other embodiments, when the first voltage is any allowing or enabling the liquid crystal in the polymer structure of the switchable diffuser to maintain or realize the molecular arrangement or orientation (the molecular arrangement or orientation makes the coupled light pass through The switchable diffuser 136 may achieve an "off" state when the voltage becomes substantially dispersed and thus provides flood projection).
  • the light source 132 can provide light coupled into the light projection structure 134.
  • the light projected from the projection structure 134 may include several point projections to form a point array (ie, multiple narrow beams projected in a structured or random pattern).
  • Point projection is generally indicated by reference numeral 135 in FIG. 3A.
  • the point projection 135 may be incident on the first surface of the switchable diffuser 136 or be coupled into the switchable diffuser 136.
  • the point projection 135 coupled to the switchable diffuser 136 is scattered by the molecular structure of the switchable diffuser 136.
  • the switchable diffuser 136 converts the incident structured light 135 received by its first surface into flood light projected from the second surface.
  • the floodlight projected from the second surface of the switchable diffuser 136a is generally indicated by the reference numeral 137 in FIG. 3A.
  • the switchable diffuser 136 is represented by the reference numeral 136a in the upper drawing to indicate the "off" state (or called the diffuser/scattering
  • the reference numeral 136b is used to indicate the "open" state (or referred to as the transparent or substantially transparent state). That is, the switchable diffusers 136a (shaded part) and 136b (non-shaded part) in FIG. 3A are the same switchable diffusers, but based on the application (or not applying) different electric fields or voltages ( Between the first voltage condition and the second voltage condition) and have different operating states.
  • the switchable diffuser 136 (indicated by reference numeral 136b in the lower drawing) (attached in the lower part of FIG. 3A)
  • V2 the molecular orientation of the switchable diffuser may be changed, so that the switchable diffuser is transparent or substantially transparent to incident light. This state is called the "on” state.
  • the second voltage V2 may be in the range of 1V to 50V, where the "on" state actually corresponds to the voltage "on” from the perspective of the switchable diffuser 136.
  • the "on” state does not necessarily have to correspond to the voltage of the switched-on voltage source.
  • the "off” state mentioned above does not necessarily correspond to the voltage of the off voltage source, and the "on” state does not necessarily correspond to the voltage of the on voltage source.
  • the "on” state and the “off” state may be set to states opposite to those discussed above.
  • the first voltage condition can achieve the “on” state, so that the point coupled with the switchable diffuser projects through the molecular structure of the switchable diffuser substantially unscattered
  • the second voltage The condition can realize the "off” state, so that the point coupled with the switchable diffuser is projected through the molecular structure of the switchable diffuser for scattering/diffusion, and as a floodlight from the switchable diffuser Coupled out. Therefore, the switchable diffuser under the first voltage condition (realizing the "on” state) may result in dot array projection, and the switchable diffuser under the second voltage condition (realizing the "off” state) may be This will produce floodlight projection.
  • the switchable diffuser is substantially transparent to the coupled point projection in its natural state or under the first voltage condition (for example, when the applied voltage is about 0V to 1V), and the In the unnatural state or under the second voltage condition, the projection of the coupled points is in a scattering/diffusion state (for example, when the applied voltage is about 1V to 50V). According to the required usage habits, any of the above situations can be called the "on" state or the "off” state.
  • the "on" state of the switchable diffuser 136 can be achieved when the second voltage is 0V.
  • the first voltage is anything that allows or enables the liquid crystal inside the polymer structure of the switchable diffuser 136 to maintain or realize the switchable diffuser is transparent or substantially transparent to incident light Molecular layout or orientation, so that the coupled light from the light projection structure 134 and/or the light source 132 does not substantially diffuse, diffuse or otherwise substantially interfere with the divergence of the narrow beam spot projection characteristics of the light when passing through Therefore, when the voltage of the structured or random pattern of spot beams that will be projected onto the target surface and reflected back to the detector 120 (as shown in Figure 1-2) is provided, the switchable diffuser 136 can be turned on "status.
  • the light source 132 can continue to provide light coupled into the light projection structure 134.
  • the light projected from the light projection structure 134 still includes multiple point projections (ie multiple narrow beams projected in a structured or random pattern).
  • the point projection 135 may be incident on the first surface of the switchable diffuser 136 or be coupled into the switchable diffuser 136.
  • the point projection 135 coupled with the switchable diffuser 136 is not substantially scattered by the molecular structure of the switchable diffuser 136. Therefore, the switchable diffuser 136 can allow the spot beam 135 received on the first surface to pass through and leave the second surface, and project as a narrow beam spot to continue forward.
  • the point projection from the second surface of the switchable diffuser 136b is generally indicated by the reference numeral 138 in FIG. 3A.
  • FIG. 3A shows (only exemplary) that the switchable diffuser 136 is located on the rear side of the light projection structure 134 (projection lens), the switchable diffuser 136 may also be arranged in conjunction with the light projection subsystem 130. Other locations related to the components.
  • a switchable diffuser may be provided between the light source 132 and the projection lens 134, as shown in FIG. 3B (a common reference numeral is used to denote the same as the above-mentioned FIG. 3A Components).
  • the light projection structure 134 and/or the light source 132 are composed of several elements, and the switchable diffuser may be disposed before, between, or after any of these elements.
  • the switchable diffuser may be arranged before, between, or after any of these elements.
  • the light projection subsystem 130 may include a diffractive optical element ("DOE") 139 to be combined with the VCSEL array 133 to generate multiple points, and a switchable diffuser 136 may be located between them.
  • DOE diffractive optical element
  • the light source 132 in FIG. 3A or FIG. 3B may include the VCSEL array 133a and DOE 133b in FIG. 3C, and the switchable diffuser may be provided before, between, or after any such elements.
  • the configuration shown is only an example for describing this specification, and other arrangements and changes may also be implemented within the scope of the present invention.
  • the controller 140 can operate the aforementioned elements to synchronize them according to one or more device operating capabilities or requirements, environmental conditions, default or user-defined settings, or any other input. For example, if the light sensor 122 is controlled to collect image information in a given frame within 1/60 second, the controller 140 causes the switchable diffuser 136 to be within this time period (in which time the image information is The given frame is captured), switch between the "off" state and the "on” state. That is to say, for the acquisition of a given frame, the controller 140 will perform the switching operation of the switchable diffuser 136, so that both the point projection reflection and the flood projection reflection can be performed during the time period when the frame is used for light capture.
  • the controller 140 may be configured to oscillate the electric field applied to the switchable diffuser at a rate that is 2-100 times faster than the frame rate of image capture. In some embodiments, the controller 140 may be configured to oscillate the electric field applied to the switchable diffuser at a rate that is 100 times faster than the frame rate of image capture.
  • FIG. 4 shows an exemplary architecture that includes various sub-components of the controller 140, executed by the controller 140, and combined with one or more other elements of the system 100 (including any of the light projection subsystem 130 and the detector 120).
  • the controller 140 can be configured (or operatively coupled) to have one or more processing engines 150 and one or more machine-readable instructions 160. When one or more processing engines 150 execute the machine When the instruction 160 is read, one or more features of the present invention will be enabled.
  • the machine-readable instructions 160 may be stored on a machine-readable medium.
  • the machine-readable instruction 160 may have a machine-readable code, and the machine-readable code includes an activation component 161, a field management component 162, a synchronization component 163, a dynamic adjustment component 164, and/or one or more other components 165.
  • the activation component 161 may be configured to detect when the imaging system 100 needs to be used, and to activate the light projection subsystem 130 and/or one or more elements of the detector 120 accordingly. For example, if the user’s mobile phone is equipped with the system 100 and the user’s input indicates a 3D facial recognition request (or other 3D topology projection), the activation component 161 can recognize the instructions provided by the user and cause the system 100 to activate the light projection subsystem 130 The light source 132 and/or the detector subsystem 120. The activation component 161 may also be configured to determine the operating state of the light projection subsystem 130 and/or the detector subsystem 120. If the operating state of the light projection subsystem 130 and/or the detector subsystem 120 is satisfactory, the activation component 161 activates the field operation component 162.
  • the field operation component 162 can be configured to: cause the system 100 to apply an electric field to the switchable diffuser 136 element of the light projection subsystem 130 and adjust the electric field applied to the switchable diffuser 136 element of the light projection subsystem 130, Or remove the electric field from the switchable diffuser 136 element of the light projection subsystem 130.
  • the field operation component 162 may cause the controller 140 to apply a voltage from a voltage source to the switchable diffuser 136, adjust the voltage, or remove the voltage.
  • the field operation component 162 can switch the switchable diffuser 136 back and forth between the "off" state (diffusion/scattering state) and the "on" state (transparent state).
  • the field operation component 162 may be configured to time its operations according to the operations of other components of the system 100 (for example, the detector 120 and other components of the controller 140). When performing the above operations, the field operation component 162 can call the information determined, saved or provided by the synchronization component 163.
  • the synchronization component 163 may be configured to determine the operating speed or rate of image acquisition performed or capable of being performed or capable of being performed through the combination of the detector subsystem 120 and/or the controller 140 and the detector subsystem 120, and is being implemented or has Implementation of the capability of image acquisition speed. In addition, the synchronization component 163 can determine or control the operation timing of these elements and notify the field operation component 162.
  • the synchronization component 163 This operation capability can be recognized (based on detection or based on preset/saved information), and at least one of the activation component 161 and the field operation component 162 can be further provided with a start and/or stop time.
  • the synchronization component 163 can be configured to have a clock, which can be used in conjunction with the operation of the activation component 161 and the field operation component 162 (or any other component of the system 100) to synchronize functions, thereby realizing all Need performance.
  • the required performance in a given situation can be predetermined, or it can be dynamically adjusted given one or more other detectable conditions.
  • the dynamic adjustment feature in the currently disclosed technology can be enabled by all or part of the dynamic adjustment component 164.
  • the dynamic adjustment component 164 may be configured to detect one or more internal or external conditions or requests, which need to be adjusted to any default or predetermined operating settings of the system 100.
  • the dynamic adjustment component 164 may be notified by one or more sensors or detection engines operating in conjunction with one or more other components 165.
  • the default settings of the system 100 can operate the field operation component 162 to switch the switchable diffuser 136 between the "on" and "off” states, so that when an image is captured in a single frame, the floodlight 137
  • the ratio of the projection time to the point 138 projection time is 1:3.
  • the dynamic adjustment component 164 can determine to adjust the ratio of the floodlight 137 projection time to the point 138 projection time from 1:3 to 1. :1 in order to provide additional floodlight 137 illumination to the target in the environment (for example, the user's face).
  • operating the dynamic adjustment component 164 can cause the field operation component 162 to apply the voltage oscillation mode to the switchable diffuser 136, so that the switchable diffuser 136 can operate at about 1/2 of the single frame image acquisition time.
  • the time is set to "on” state, and it is set to "off” state within the other 1/2 time of the single frame image acquisition time. Therefore, within 1/2 image acquisition time of a given frame, the floodlight 137 will be projected from the second surface of the switchable diffuser 136, and within the other 1/2 image acquisition time of the given frame, The projection 138 will be projected from the second surface of the switchable diffuser 136.
  • the field operation component 162 can operate in response to one or more of the dynamic adjustment component 164 and/or the synchronization component 163, and/or the activation component 161, and/or any other components 165 of the system 100.
  • the dynamic adjustment component 164 may also be configured to detect when a given situation requires higher requirements than the default resolution and/or time of facial recognition. For example, if a mobile phone user equipped with the system 100 simply tries to use facial recognition to unlock their device, the default resolution can simply correspond to a 1:3 ratio of the floodlight 137 projection time and the point projection 138 time (for each frame ), and required to collect image information at a rate of 60 frames per second for 0.5 seconds.
  • dynamically adjust the component 164 can determine that a higher resolution facial recognition is required under this condition to obtain appropriate matching conditions (for example, using a saved user facial topology template) to authorize login or authorization.
  • the dynamic adjustment component 164 can be configured to make the field operation component 162 and/or the synchronization component 163 make necessary adjustments so that the system 100 can generate or obtain higher resolution 3D information that meets higher security requirements, This higher security requirement is related to the detected login request or purchase request.
  • the dynamic adjustment component 164 may require the field operation component 162 to provide more or less floodlight during the first time period of image acquisition compared to point projection, and then perform floodlighting during the second image acquisition time period. Adjust the ratio of point projection.
  • the dynamic adjustment component 164 may require the operation time of the field operation component to be longer than the default setting.
  • the dynamic adjustment component 164 can make the operating time of the activation component 161 and the synchronization component 163 longer than the default setting time of the environment with higher security requirements and higher resolution image information requirements. Any and all such settings and dynamic adjustments can be preset or predefined by the user, or can be learned over a period of time by repeatedly using and training the system 100 in various situations.
  • the controller 140 may control the switchable diffuser 136 to switch between the "off” state and the "on” state during the time period during which image information is collected in a given frame. It should also be pointed out that the controller 140 (for example, through the field operation component 162) can enable the switchable diffuser 136 to switch between the closed state and the open state multiple times during image capture in a given frame. That is to say, for a given frame acquisition, the controller 140 can switch the switchable diffuser 136 so that the point projection reflection and the flood projection reflection are both captured by the detector 122 during the period of light capturing in the frame. Received (using the time division multiplexing method as described above).
  • the controller 140 may be configured to oscillate the electric field applied to the switchable diffuser at a rate that is 2-100 times faster than the frame rate used for image acquisition. In some embodiments, the controller 140 may be configured to oscillate the electric field applied to the switchable diffuser at a rate that is more than 100 times faster than the frame rate used for image acquisition.
  • the synchronization component 163 can notify other elements of the system 100 of the light projection time, thereby notifying the processing status of the light information received by the light sensor 122 of the detector subsystem 120, so that the system 100 can analyze the light information related to the reflected floodlight. Distinguish or distinguish the light information related to the reflected point projection, and adjust other operations accordingly.
  • the synchronization component 163 can provide a multiplexing function related to the received image information. Therefore, for example, the synchronization component 163 may enable the detector 120 to collect infrared image photos (for example, thermal signature photos) during the flood projection period, and to collect infrared dot array photos during the infrared point projection.
  • FIG. 4 adopts machine-readable instructions 160 for implementation, one or more activation components 161, field operation components 162, synchronization components 163, dynamic adjustment components 164, and/or other One or more of the components 165 may be implemented using hardware and/or software.
  • FIG. 5 shows a system 500 that may be implemented in accordance with one or more embodiments of the invention.
  • the system 500 is depicted as a variation of the system 100, where the module 110 is equipped with both a non-ToF light detector (eg, the detector 120 discussed above) and a time-of-flight detector (ToF detector 170).
  • the detector 120 can collect/convert/filter the reflection of light (structured light and/or flood light) on the surface of the target (for example, face) onto which the light is projected.
  • the optical information collected by the detector 120 can be used to determine depth information (in the case of reflected cylindrical light, based on offset and distortion from the reference object) and target feature information (in the case of reflected floodlight, based on wavelength /frequency).
  • the ToF detector 170 operates based on the pulse time-of-flight principle (rather than mainly based on offset, distortion, frequency, or wavelength).
  • the pulse time-of-flight principle recognizes that the time required for light to travel from the light source to the target and return to the detector varies based on how far the target is from the light source and/or the ToF detector, that is, the longer the distance the light travels through the space. Farther, the longer it takes for the light to reach the ToF detector.
  • the light source and the ToF detector must be synchronized so that the distance can be extracted and calculated from the detected time difference.
  • the timing details of the light pulses generated by the light source and the timing details of the return light received at the ToF detector should be strictly controlled and/or monitored.
  • the resolution of ToF-based images is enhanced by enhanced monitoring and/or timing control.
  • the module 110 is provided with a non-ToF detector 120 and a ToF detector 170. Both are configured to receive the light reflection from the light projected by the light projection system 130, but each evaluates the light differently (or generates a signal that can be evaluated differently) to obtain depth information and/or other structural features of the target , Based on the light projected from the light projection system 130 incident on the target.
  • the light projection subsystem 130 of the system 500 may include a single light source and a switchable diffuser 136. Such a light source and switchable diffuser 136 can operate according to one or more of the features of these elements discussed herein with reference to FIGS. 1 to 4.
  • the controller 140 may be configured to operate only one of the detector 120 and the ToF detector 170 in a given image acquisition period. For example, in “ToF mode” or “non-ToF mode” (ToF mode refers to the case where only the ToF detector 170 is operated in a given image acquisition period, while “non-ToF mode” refers to the The case where only the detector 120 is operated during the period) (for example, according to FIGS. 1 to 4).
  • the controller 140 may be configured to operate both the detector 120 and the ToF detector 170 in a given image acquisition period.
  • hybrid mode refers to: the controller 140 synchronizes the operation of the detector 120 and the ToF detector 170 (along with other elements of the system 500, such as the light projection subsystem 130), so that the two detections The device operates in a given image acquisition cycle).
  • the controller 140 may implement the operation of the system 500 in the ToF mode, the non-ToF mode, or the hybrid mode based on input from the user (for example, user selection). In some embodiments, the controller 140 may be configured to switch between modes according to one or more detected conditions, for example, lighting conditions, component state detection, etc.
  • the dynamic adjustment component 164 of the controller 140 may determine the ToF imaging An image with a higher resolution than the image generated via the detector 120 will be generated. In response to this determination, the controller 140 may perform system operations to cause the module 110 to operate in the ToF mode.
  • a predetermined threshold such as a brightness threshold
  • an element of the system 500 detects that the imaged target is within a predetermined distance from the detector (for example, the target is within a predetermined distance (such as within 1 meter)) Within this distance, structured light detection via the detector 120 will generate an image with a higher resolution than the image provided by the ToF detection, and the dynamic adjustment component 164 can determine that the detector 120 will generate a higher resolution than that generated by the ToF detector 170. The image has a higher resolution image.
  • the controller 140 may perform system operations to cause the module 110 to operate in a non-ToF mode.
  • the dynamic adjustment component 164 can determine: pass together within a given image acquisition period
  • the detector 120 and the ToF detector 170 are operated (for example, simultaneously or in a time division multiplexed manner) to obtain the best image information.
  • the controller 140 may perform system operations to cause the module 110 to operate in a hybrid mode. As can be set for a given application, this determination can be made based on predetermined rules/criteria regarding these detected conditions.
  • the controller 140 can adjust and/or monitor the time when the switchable diffuser is switched between states (thereby monitoring the switch between floodlight projection and structured array light projection), and set one or the other It is regarded as a "pulse" for tracking based on the purpose of calculating the flight time difference, which is related to the light received by the ToF detector 170. That is to say, the controller 140, through the synchronization component 163 or another component, can make the operation of the detector 120 and the ToF detector 170 and different light projections propagated from the light projection subsystem 130 (for example, structured point array projection, pan Light projection, etc.) time synchronization.
  • the controller 140 through the synchronization component 163 or another component, can make the operation of the detector 120 and the ToF detector 170 and different light projections propagated from the light projection subsystem 130 (for example, structured point array projection, pan Light projection, etc.) time synchronization.
  • the time-division multiplexed optical information obtained by the detector 120 and the ToF detector 170 can be coherently demultiplexed and/or parsed by the system 500 in other ways.
  • the imaging information obtained by the detector 120 and the ToF detector 170 during hybrid mode operation may be combined to generate a composite image.
  • the mixed mode operation can be adjusted according to the detected one or more conditions to optimize the resolution (or increase the resolution). For example, if the dynamic adjustment component 164 of the controller 140 detects the lighting quality provided by the ambient light conditions in the external environment of the system 500 so that the mixed mode is expected, the ratio of the floodlight should be greater than 1:1 (the floodlight projection and The ratio of structured array projection) to enhance the lighting, the dynamic adjustment component 164 can not only determine that the blending mode should be activated/selected, but also determine that the ratio of floodlight projection time to structure point projection time should be modified from 1:1 to 2:1. To provide additional floodlighting to targets in the environment (for example, the user's face).
  • the synchronization component 163 may be configured to perform corresponding adjustments to help the controller 140 parse the optical information converted by the detector 120 and the ToF detector 170 during the hybrid mode.
  • the synchronization component 163 can determine the speed or rate of the image capture operation performed by the detector subsystem 120, the ToF detector 170, and/or the controller 140, and can facilitate the control of the operation or initialization time of these elements.
  • the synchronization component 163 and/or the dynamic adjustment component 164 may notify the field operation component 162 of this.
  • the synchronization component 163 can (based on detection or based on The predetermined/stored information) identifies the operating capability, and can also provide start and/or stop time to either or both of the activation component 161 and the field operation component 162.
  • the synchronization component 163 can be configured with a clock that can be used in conjunction with the operation of the activation component 161, the field operation component 162, and the dynamic adjustment component 163 (or any other component of the system 500) to make The functions are synchronized, so that the desired performance can be achieved in a specific scenario.
  • the desired performance in a given situation may be predetermined, or may be dynamically adjusted in whole or in part by the dynamic adjustment component 164 based on one or more detectable conditions.
  • the synchronization component 163 can operate in a hybrid mode to notify other elements of the system 500 of the time of light projection, thereby notifying the processing of the optical information received by the detector subsystem 120 and the ToF detector 170, so that the system 500 can not only Distinguish or distinguish between the light information associated with the reflected floodlight and the light information associated with the reflected point projection, and can also distinguish the light information associated with the ToF derivative from the light information associated with the non-ToF derivative Open, and adjust other operations accordingly.
  • the synchronization component 163 can provide a multiplexing function related to the received image information.
  • the synchronization component 163 can enable the detector 120 to capture IR image photos (eg, thermal signature photos) during the flood projection period, and can capture IR dot matrix photos during IR point projection, and in the same During the image acquisition period, the ToF detector 170 is made to collect temporarily resolved image photos during the IR point projection (for example, or other structured array projection), using structured light emission as a "pulse" of light based on the principle of pulse time of flight.
  • IR image photos eg, thermal signature photos
  • the ToF detector 170 is made to collect temporarily resolved image photos during the IR point projection (for example, or other structured array projection), using structured light emission as a "pulse" of light based on the principle of pulse time of flight.
  • the synchronization component 163 may be configured to synchronize or coordinate the image acquisition of the ToF detector 170 with the image acquisition of the detector 120 (for example, an IR detector), and further make the two and the switchable diffuser 136 The switching between the "closed" state and the "open” state is synchronized.
  • the switchable diffuser 136 may be controlled to output short pulse flood light (for example, 1-100 ns) or long pulse spot light (for example, 100 ⁇ s-30 ms) according to the switching of the applied voltage.
  • the ToF detector 170 can be controlled by the controller 140 to be pulse-driven to provide pulse amplitude modulation, pulse frequency modulation, and/or continuous wave amplitude/frequency modulation.
  • the ToF detector 170 and the structured light detector 120 are synchronized by the control of the controller 140 to match or to match with the time division multiplexed light generated by the switchable diffuser ( Time division multiplexed flood light and structured light) signal alignment operation.
  • the switchable diffuser Time division multiplexed flood light and structured light
  • controller 140 can be extended to an embodiment employing the ToF detector 170, including the synchronization component 163 and dynamic adjustment discussed above.
  • Component 164 Therefore, according to the system embodiment of the system 500 or its variants, it can synchronize the collection of 3D ToF photo/image information with the 2D IR point photo/image information.
  • the system of the present invention can provide enhanced security features to ensure that, for example, the imaged object is a true 3D object, rather than using It is a 2D display method for deceiving system objects.
  • the ToF detector can be controlled by the controller 140 to perform calibration continuously or in stages.
  • Fig. 6 is a process flow diagram showing a method that can be applied according to one or more embodiments of the present invention.
  • operation 202 of method 200 includes receiving light generated by a light source and projecting a number of collimated beams accordingly.
  • Operation 204 of method 200 includes providing a switchable diffuser having a first surface and a second surface, the switchable diffuser being coupled to a voltage source and configured to switch from a first voltage condition to a second voltage The conditional voltage source responds to change from the first state to the second state.
  • Operation 206 of method 200 includes oscillating a voltage source between a first voltage condition and a second voltage condition according to a predetermined oscillation pattern, the voltage oscillation causing flooding and lattice projection to alternately shift from the switchable diffuser in a time-division multiplexed manner.
  • the second surface of the ejector shoots out.
  • Operation 208 of the method 200 includes using a light sensor to detect light information generated by the reflection of alternating flood and lattice light on the object; wherein the light sensor is synchronized with voltage oscillation and/or alternating flood and lattice light projection.
  • Operation 210 of the method 200 includes demultiplexing the light information detected by the light sensor.
  • Operation 212 of method 200 includes generating a 3D image of the object based on the demultiplexed light information.
  • the word "or" can be interpreted in an inclusive or exclusive meaning.
  • multiple examples can also be used as a single example for the resources, operations, or structures described therein.
  • the boundaries between different resources, operations, engines, and data storage are arbitrary, and specific operations are described in the context of a specific descriptive configuration.
  • Other configurations of functions are also contemplated and fall within the scope of the various embodiments of the present invention.
  • the structures and functions presented as independent resources in the exemplary configuration can be used as combined structures or resources to implement applications.
  • the structure and function presented as a single resource can be used as a separate resource to implement applications.
  • conditional terms such as especially “may”, “may”, “may” or “may” or other words used herein for this understanding are generally intended to express that certain embodiments include certain Some features, elements and/or steps are not included in other embodiments. Therefore, such conditional terms generally do not mean that the features, elements, and/or steps must be used in one or more embodiments in any way, or that one or more embodiments must include determining these features, elements, and/or Whether the steps are to be incorporated or implemented in any particular embodiment of logic, with or without user input or prompts.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Remote Sensing (AREA)
  • Nonlinear Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Measurement Of Optical Distance (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

一种系统包括:光源、可切换式漫射器、结构光检测器和ToF检测器。控制光源和可切换式漫射器一致地(一起和/或与系统的其他光学和电子元件一起)操作,以在单个图像采集周期内投射准直光束的脉冲(在泛光脉冲之间交错),在相同的图像采集周期内,准直光束的脉冲被结构光检测器和ToF检测器解析。

Description

一种光投射系统 技术领域
本发明涉及采用可切换式漫射器组件来投射光,以及可选地控制该光投射的系统和方法。
背景技术
光投射技术对于启用多个重要设备的功能至关重要。例如,结构光投射技术应用于手机的3D相机模块,以用于识别面部特征。面部特征反射的投射光可以被检测器采集,并通过算法进行分析,以“察觉”出面部的拓扑结构。相应地,可根据面部特征识别的输入进行身份验证、生成表情符号、图像采集定向(image capture orientation)以及其他各类功能的设计。
目前,光投射技术的缺点在于成本高、设备尺寸大以及集成度低。尤其是,常规光投射技术无法完全利用已有光源实现所寻求的多种功能,而是通过多个投射装置来实现其目的。这些缺点成为进一步对建立于或围绕着光投射技术的装置结构和功能进行改进的瓶颈。因此,消费者市场和相关行业都希望能改进现有光投射技术。
光投射是实现各类应用的关键步骤,例如3D特征检测和3D绘图。在常规系统中,多个光源和光投射子系统相互结合使用,以提供3D特征检测功能和3D绘图技术。例如,很多常规系统安装有不同的泛光照明组件和不同的点投射器组件,以实现所需的读取。通常,泛光组件生成的光线为宽光束,其在传播时基本会发生扩散。泛光用于照亮目标物的表面以进行图像采集。另一方面,点投射器生成的光线为窄光束,其采用基本平行的光线,这些光线在传播时不会像泛光那么容易发散或扩散。采用两种不同的光源实现泛光照明和点投射的效率较低,还会造成模块尺寸过大而无法匹配较小的应用环境。
发明内容
本发明的各实施例包括光投射系统和结构、可切换式漫射器和其他设备。
根据本发明的一个方面,一种系统包括:光投射系统,其被配置为投射若干路准直光束;可切换式漫射器,其具有第一表面和第二表面,所述可切换式漫射器与控制源耦合并被配置为:对从第一条件转变到第二条件的控制源做出响应,以从第一状态转变到第二状态;其中在所述第一状态,可切换式漫射器被配置为:在第一表面接收若干路准直光束的至少一部分,并从第二表面投射出泛光;其中在所述第二状态,可切换式漫射器被配置为:允许若干路准直光束的至少一部分作为阵列而从第二表面传播出;以及处理引擎,其与非暂时性计算机可读介质电连接,所述非暂时性计算机可读介质具有存储于其上的机器可读指令,当处理引擎执行所述机器可读指令时,使得系统:根据第一预定模式在第一条件和第二条件之间对控制源进行振荡。可以理解的是,基于本发明的目的,术语“计算机可读介质”涵盖任何被配置为存储有被处理引擎执行的机器可读指令的任何介质。例如,此类介质可以作为芯片上的系统,或以前述的任意组合,而存在于微控制器单元中。
在一些实施例中,光投射系统包括垂直腔面发射激光器(VCSEL)元件、衍射光学元件,和/或波导器件。
在一些实施例中,光投射系统包括波导器件(waveguide),所述波导器件包括表面A和表面B;表面A包括若干光栅结构;所述波导器件被配置为:引导耦合进的光束在表面A和表面B之间受到全内反射;并且所述光栅结构被配置为:干扰全内反射以使至少一部分耦合进的光束从表面A耦合出波导器件,从波导器件耦合出的这部分耦合进的光束形成了耦合出的光束,该耦合出的光束包括若干路准直光束。表面A在x-y平面内,所述x-y平面包括相互垂直的x方向和y方向;耦合进的光束在波导器件内基本沿x-y平面的x方向传播;耦合出的光束基本沿x-y平面的法 线z方向传播;各光栅结构与光栅深度、占空比、周期、以及相对于z方向在x-y平面内的取向相关联;在x方向上的不同位置的光栅结构具有不同的光栅深度和不同的光栅占空比的至少其中之一;在x方向上的不同位置的光栅结构具有不同的周期;并且在y方向上的不同位置的光栅结构具有不同的取向(orientations)。
在一些实施例中,光投射系统包括若干个二极管。
在一些实施例中,系统还包括:检测器,其被配置为:基于目标物的一个或多个泛光反射以及目标物的阵列反射来采集光信息;其中当处理引擎执行机器可读指令时,使得系统对检测器接收的光信息进行多路解编。
在一些实施例中,可切换式漫射器包括聚合物液晶混合物,所述聚合物液晶混合物具有响应于施加电压的分子取向(orientations)。
在一些实施例中,可切换式漫射器包括聚合物分散型液晶。
在一些实施例中,可切换式漫射器包括聚合物网络液晶。
在一些实施例中,所述第一预定模式使得从可切换式漫射器的第二表面投射出的光包括交替的泛光脉冲(bursts of flood light)和准直光束,以实现时分复用发射。
在一些实施例中,第一电压条件为0V的施加电压,并且第二电压条件为1V到50V之间或者更大的施加电压。
在一些实施例中,所述第一预定模式包括:在图像采集周期,在第一电压条件和第二电压条件之间切换系统两次或更多次,以实现泛光投射与准直光投射的预定比率。
在一些实施例中,预定振荡模式被配置为:实现泛光与准直光的预定投射比率。
在一些实施例中,所述预定振荡模式被配置为:实现泛光与准直光的预定投射比率,且该投射比率为1:1。
在一些实施例中,所述预定振荡模式被配置为:实现泛光与准直光的预定投射比率,且该投射比率为10:1。
在一些实施例中,所述预定振荡模式被配置为:实现泛光和准直光的预定投射比率,且该投射比率约为1:1至10:1。
在一些实施例中,非暂时性计算机可读介质还被配置为具有保存在其上的机器可读指令,当处理引擎执行所述机器可读指令时,使得系统:根据第二预定模式在第一条件和第二条件之间对控制源进行振荡;并且第二预定模式包括:在第一图像采集周期,在第一电压条件和第二电压条件之间切换两次或更多次,以实现泛光投射与准直光投射的第二预定比率,并且其中第二预定比率区别于第一预定比率。
在一些实施例中,非暂时性计算机可读介质还被配置为具有保存在其上的机器可读指令,当处理引擎执行所述机器可读指令时,使得系统:根据检测到的环境光条件和交易安全条件中的一个或多个,调整第一图像采集周期和第二图像采集周期中的一个或多个的时间周期。
根据另一个方面,光投射方法包括:投射若干路准直光束;提供具有第一表面和第二表面的可切换式漫射器,该可切换式漫射器与控制源耦合并被配置为:对从第一条件转变到第二条件的控制源做出响应,以从第一状态转变到第二状态;其中在所述第一状态,可切换式漫射器被配置为:在第一表面接收若干路准直光束的至少一部分,并从第二表面投射出泛光;其中在所述第二状态,可切换式漫射器被配置为:允许准直光束的至少一部分作为阵列而从第二表面传播出;根据第一预定模式在第一条件和第二条件之间对控制源进行振荡。
在一些实施例中,投射若干路准直光束包括:投射来自于波导器件的若干路准直光束,所述波导器件包括表面A和表面B;表面A包括若干光栅结构;所述波导器件被配置为:引导耦合进的光束在表面A和表面B之间受到全内反射;所述光栅结构被配置为:干扰全内反射以使至少一部分耦合进的光束从表面A耦合出波导器件,从波导器件耦合出的这部分耦合进的光束形成了耦合出的光束,该耦合出的光束包括若干路准直光束。
根据另一个方面,根据本发明的系统包括:被配置为生成光(例如红外线光)的光源;投射结构,其被配置为:接收生成的光线,并且相应地 投射若干路准直光束(在此统称为光投射结构);以及具有第一表面和第二表面的可切换式漫射器。在一些实施例中,可切换式漫射器与诸如电压源的控制源耦合。虽然其他控制源可以采用现有技术(例如电流源等)实现,但本公开文本通常示例性的采用电压源,且并不旨在进行限制。可切换式漫射器被配置为:对从第一电压条件(例如0V)切换到第二电压条件(例如1-50V)的电压源做出响应,以从第一状态切换到第二状态。当可切换式漫射器处于第一状态时,可切换式漫射器被配置为:在第一表面接收若干路准直光束,对若干路准直光束进行漫射,并将泛光投射出第二表面。当可切换式漫射器处于第二状态时,可切换式漫射器被配置为:对入射到其上的若干路准直光束基本透明,并允许若干路准直光束作为阵列(例如点阵列)从第二表面传播出。示例性的系统还可以包括检测器,其被配置为:基于目标物的一个或多个泛光反射以及目标物的点阵列反射,来采集光信息。在一些实施例中,系统被配置为:对检测器接收的光线信息进行多路解编。
在一些实施例中,本发明的示例性系统设有控制器,以操控和调节系统元件的运行。控制器可以包括与非暂时性计算机可读介质电连接的处理引擎,非暂时性计算机可读介质具有存储于其上的机器可读指令,当处理引擎执行机器可读指令时,使得系统进行各种操作。例如,在某些情况下,当执行指令时,将使得系统根据预定振荡模式,在第一电压条件和第二电压条件之间振荡电压源。在一些实施例中,预定振荡模式使得从可切换式漫射器第二表面投射出的光包括交替的泛光脉冲和准直光束,以实现时分复用发射。在一些实施例中,预定振荡模式包括在图像采集周期在第一电压条件和第二电压条件之间转换系统两次或更多次,以实现泛光投射与准直光投射的预定比率(例如1:1-10:1,1:1-100:1,1:10-1:1,或1:100-1:1等范围内的任何一个)。
在一些实施例中,本发明的系统可包括既配备有结构光检测器(即非ToF检测器,例如IR点阵列检测器)又配备有飞行时间(“ToF”)检测器的模块。结构光检测器和ToF检测器都可以被配置为接收从光投射系统 投射的光脉冲的光反射,但是每者可以不同地捕获、转换、过滤和/或评估所述光(或者产生可能被不同地过滤和/或评估的信号)以获得关于从光投射系统投射的光所入射到的物体的特征、结构和/或深度信息。
然而,在一些实施例中,包括结构光检测器和ToF检测器二者的系统的光投射子系统可以包括单个光源和单个可切换漫射器。这种光源和可切换漫射器可以根据此处讨论的这些元件的一个或多个特征进行操作。在一些实施例中,本发明的系统可以包括与结构光检测器和ToF检测器连接的控制器,并且控制器被配置为:在给定图像采集周期内仅操作结构光检测器和ToF检测器中的一个,例如,在“ToF模式”或“非ToF模式”中(ToF模式是指在给定图像采集周期内仅操作ToF检测器的情况,而“非ToF模式”是指在给定图像采集周期内仅操作结构光检测器的情况)。在其他实施例中,该控制器可以被配置为:在给定图像采集周期内一起操作结构光检测器和ToF检测器。例如,在“混合模式”中(混合模式是指:控制器使结构光检测器和ToF检测器的操作(连同系统500的其他元件的操作,例如,可切换漫射器状态变化的时间,在系统的光投射子系统内的光源发射的时间等)同步,以使两种检测器可以在给定图像采集周期内相干地(coherently)操作)。
在采用ToF检测器的一些实施例中,控制器可以基于来自用户的输入(例如,用户选择)或者基于一个或多个检测的条件(例如,照明条件、组件状态检测等)在模式之间切换。例如,在ToF模式、非ToF模式或混合模式下的系统操作之间切换。
在一些实施例中,本发明的技术方案包括系统,其包括:红外线检测器,该红外线检测器被配置为:基于目标物的一个或多个泛光反射以及目标物的结构光阵列反射来采集光信息;飞行时间(ToF)检测器,其被配置为:对目标物表面反射的(或不同目标物的多个表面反射的)返回光之间的时间差进行检测;并且被配置为:基于返回光反射的不同部分之间的时间差,来确定与该表面的不同部分相关联的一个或多个深度测量;以及具有第一表面和第二表面的可切换式漫射器,所述可切换式漫射器与控 制源耦合并被配置为:对从第一条件转变到第二条件的控制源做出响应,以从第一状态转变到第二状态。在一些此类实施例中,在第一状态,可切换式漫射器可以被配置为:在第一表面接收若干路准直光束的至少一部分,并从第二表面投射出泛光。在第二状态,可切换式漫射器可以被配置为:允许若干路准直光束的至少一部分作为阵列而从第二表面传播出。在某些实施例中,光投射系统包括与非暂时性计算机可读介质电连接的处理引擎,所述非暂时性计算机可读介质具有存储于其上的机器可读指令,当处理引擎执行机器可读指令时,使得系统:根据第一预定模式在第一条件和第二条件之间对控制源进行振荡。根据第一预定模式在第一条件和第二条件之间对控制源进行振荡,以使若干个准直光脉冲在单个图像采集周期内从所述可切换漫射器投射出来。在一些实施例中,ToF传感器和结构光传感器被配置为:在单个图像采集周期内接收来自于准直光的相同脉冲中的一个或多个的准直光的反射。
在一些实施例中,可以控制可切换漫射器来发射准直光束的脉冲,该准直光束的脉冲实现了ToF检测器所解析的准直光束的调制。这种调制可以是脉幅调制、脉频调制、连续波幅度调制以及连续波频率调制中的一个或多个。
在一些实施例中,本文提供的技术还涉及方法,该方法用于执行与本文的示例性系统相关的功能。
本文在此所公开的系统、方法和非暂时性计算机可读介质的这些和其他特征,以及操作方法、结构相关元件的功能、部件的组合和产品的经济性,将通过下文的描述以及参考附图的从属权利要求变得更加清楚,所有这些形成了本说明书的一部分,其中附图标记标明了各附图中的相应部分。然而需要明确理解的是,附图仅用于说明和描述,而不作为对本发明的限制。
附图说明
本发明的各种实施例的特征在所附的权利要求中进行了阐述。所述详细描述阐述了利用本发明的原理的说明性实施例,以及其附图。为了更好地理解本发明的特征和有益效果,可参考详细描述了利用本发明的原理的阐述性实施例的具体说明,该说明所附的附图包括:
图1为根据本发明各实施例的示例性系统的示意图。
图2为示例性系统的侧面视图,根据本发明的各实施例,该系统采用单一光源和可切换式漫射器以时分复用的方式投射泛光和光点。
图3A显示了根据本发明的一个或多个实施例,基于从第一电压条件切换到第二电压条件所引起的可切换式漫射器上的施加电场的变化,示例性可切换式漫射器在示例性系统布局中的第一位置上的操作变化。
图3B显示了根据本发明的一个或多个实施例,基于从第一电压条件切换到第二电压条件所引起的可切换式漫射器上的施加电场的变化,示例性可切换式漫射器在示例性系统布局中第二位置上的操作变化。
图3C显示了根据本发明的一个或多个实施例,基于从第一电压条件切换到第二电压条件所引起的可切换式漫射器上的施加电场的变化,示例性可切换式漫射器在示例性系统布局中第三位置上的操作变化。
图4显示了一示例性架构,其描述了根据本发明的一个或多个实施例所应用的控制器的各个子组件。
图5为根据本发明的各实施例的另一个示例性系统的示意图,其包括将飞行时间(ToF)检测器和红外检测器和可切换式漫射器结合的模块。
图6显示了根据本发明的一个或多个实施例所应用的示例性方法的流程图。
附图并非旨在穷举或将本发明仅限制在所公开的内容。应当理解的是,可以对本发明进行修改和变化,并且所公开的内容仅受权利要求及其等效内容的限制。
具体实施方式
专利申请号为16/036,776、16/036,801和16/036,814的美国专利申请的公开内容和附图在此通过全部整体引用而被并入本申请。对于本领域普通技术人员来说显而易见的是,各说明书中的相似特征和元件可以替换或重新应用于下文所述的一个或多个元件。
图1显示了根据本发明的一个或多个实施例的示例性系统,其用于实现3D特征检测。参考图1,用于实现3D特征检测的系统100可以包括安装到模块110(此模块具有结构的、光学的和/或电气的支撑)的光投射子系统130和检测器120,以及和模块110(或模块110的一个或多个元件)可操作连接的控制器140。如本文所详细描述的,光投射子系统130可配置为在图像采集过程中选择性地既生成泛光又生成点阵光投射,而无需在给定的模块内安装和使用多个不同的光投射系统。系统100可应用于多个系统或设备,例如手机、计算机、平板电脑、可穿戴设备、车辆等。
光投射子系统130可以含有各种元件,包括一个或多个光源(例如光投射系统130的组件),更多细节参见图2-5。该光投射子系统130的光源可以将预定的或随机图案的结构化或柱状光束投射到表面上。该结构化或柱状光可以被耦合入和穿过光投射子系统130的一个或更多个其他光学和光电元件,例如镜头和/或可切换式漫射器元件。在操作过程中,从该可切换式漫射器元件发射出的光可被导向至目标对象的表面(例如面部)。对象表面的反射光可通过一个或多个检测器120(例如相机传感器)进行采集。检测器120采集的光线信息可用于确定深度信息(在柱状光反射的情况下,基于相对于参照物的位移和变形)以及对象特征信息(在泛光反射的情况下,基于波长/频率)。可基于检测器120采集的反射光确定各类其他光学衍生参数。在一些实施例中,检测器被配置为:或系统的指定元件,或相对于系统的指定参考点接收远端对象多个位置的外耦合光束(out-coupled beams)反射,以确定多个位置相对于系统或系统指定元件的距离,或指定参照点相对于系统的距离。
如图所示,光投射子系统130和检测器120可安装到或耦合到相同的模块结构(例如模块110)。在一些实施例中,光投射子系统130和检测器120被安装到或耦合到不同的模块。但在每种情况下,检测器可以被设置为:设定相对于光投射子系统120的取向(orientation),以使检测器元件的光传感器可接收到投射子系统的光在远端对象多个位置上的反射。接收到的反射可用于确定多个位置相对于预定参照点(例如光投射子系统130的位置)的距离。在一些实施例中,对象表面单个位置的虚拟反射平面可用作参照物,投射光在参照物上的反射可被预定为参考反射光束。表面拓扑结构(例如在面部表面情况下的面部特征)可根据检测到的反射光束和参考反射光束之间的差异进行确定,其表现为参考反射光束的位移或变形。这种确定方法作为三角测量法是已知的。
图2为根据本发明的一个或多个实施例的示例性系统100的组装图示的侧面视图,示例性系统100用于投射来自于光投射子系统的泛光和光点,以实现3D特征检测。参考图2,示例性的光投射子系统130(参见图1)包括光源132、光投射结构134以及可切换式漫射器136。示例性的光投射结构134可以是光束阵列投射结构,使得投射的光束阵列在表面上(例如2D表面、3D表面等)形成阵列(例如点阵列)。在操作过程中,光源发出的光穿过光投射结构134和可切换式漫射器136,并到达对象目标(图中未显示)以用于成像。检测器120(参见图1)可包括光传感器122,其被配置为接收和处理从成像目标所反射的光。在一些例子中,检测器120可包括一个或多个其他光学或光电元件,以过滤、连通或将所需反射光导向至光传感器122。图2中显示的滤光器124为示例性的光学元件,其可与光传感器122结合使用。
光源132可以包含任何形式的光源。例如,光源132可发射红外(IR)光,或在电磁光谱范围内的任何其他可见光或不可见光。例如,光源132可以包括单个激光器(例如边发射激光器,垂直腔面发射激光器(VCSEL)),具有光准直的发光二极管(LED)或类似装置。可选地,光源132可以包括多个激光器或二极管(例如边发射激光器阵列,VCSEL阵列, LED阵列)。光源132可包括美国专利申请16/036,776、16/036,801和16/036,814所公开的一个或多个光源,其全部内容通过引用的方式在此并入本发明。
光投射结构134可以包括波导器件,波导器件被配置为:接收光源132发出的光,以及投射多个点光束。在此类实施例中,从光源132发出的光可从任何表面或表面部分耦合进光投射结构134,和/或从任何表面或表面部分耦合出光投射结构134。
光投射系统130可包括美国专利申请16/036,776、16/036,801和16/036,814所公开的一个或多个光投射装置和光投射结构,这些美国专利申请的全部内容通过引用的方式在此并入本发明。在一个非限制性示例中,一些实施例的光投射系统130可以包括投射镜结构,例如美国专利申请16/036,801中的投射镜结构231,其可被配置为:对光源发出的光线进行准直,和/或投射任意的或结构化的点阵列。例如,根据不同应用的工作距离要求,通过投射镜结构231进行准直的投射光束阵列的激光束腰在10毫米到1米范围内变化。因此,投射镜结构231可对输出光进行准直,以在所需距离(例如根据应用情况在10厘米至10米范围内)形成清晰的图像(例如点阵列)。在另一个非限制性示例中,美国专利申请16/036,801公开的任何光栅结构可用作、采用本发明中所描述的光源132、投射镜和/或波导器件134中的一个或多个,或和其一起或结合使用。在另一个非限制性示例中,光投射子系统130可以包括美国专利申请16/036,801中的系统102。
在一些可替代的实施例中,光投射子系统130可以包括多个二极管(例如诸如边发射激光器阵列或VCSEL阵列的激光器,诸如LED阵列的二极管),或生成光束阵列的任何其他结构,该光束阵列被设置为撞击作用于可切换式漫射器材料的至少一部分上。光投射系统130可包括美国专利申请16/036,776、16/036,801和16/036,814公开的结构或系统中的一个或多个,其全部内容通过引用的方式在此并入本发明。
在一些可替代的实施例中,光投射子系统130可以包括衍射光学元件(“DOE”)以与VCSEL阵列结合而生成多个点。例如,如果VCSEL阵列包括150个点(例如准直光的光束),与其结合使用的DOE可有效提供10X的倍增器以在输出平面上生成1500个点。在另一个示例中,如果VCSEL阵列包括300个点(例如准直光的光束),与其结合使用的DOE可有效提供100X的倍增器以在输出平面上生成30000个点。可采用任何类型的DOE,包括可生成随着基础VCSEL阵列而生成任意倍增的点的DOE(例如10X-100X,或更大,或更小)。
在一些实施例中,光投射结构134发出的光束可从光投射结构134的表面耦合出。然后可选地,光束可穿过可切换式漫射器136,以被投射至空间内。可切换式漫射器136可被配置为:接收来自光源132的光束,并将光束(采用相同或修改的形式)投射到具有需成像的远端对象的环境中。作为替代方式,光束也可直接从光源132投射到可切换式漫射器136内和空间内。在一些采用了光投射结构134的实施例中(如图所示),光投射结构134可以包括用于控制投射光束的方向的各种镜头或镜头组合(例如1片至6片单独镜头)。
可切换式漫射器136可以包括基于混合物的任何液晶或聚合物,该混合物具有响应于所施加电压的可调分子取向,其包括例如任何现有技术中的混合物。例如,可切换式漫射器136可包括任何聚合物液晶混合物,或任何其他液晶混合物。在一些实施例中,可切换式漫射器136可以包括液晶和聚合物的互不相溶的混合物,例如聚合物分散液晶(PDLC)或聚合物网络液晶(PNLC)或数字光处理(DLP)材料。此类混合物结合了液晶的光电属性和聚合物的结构属性。
在一些实施例中,可切换式漫射器136在未受到实质性电场影响的情况下,可表现出光散射属性。例如,PDLC类型的可切换式漫射器136可以提供这种光散射属性。在采用PDLC类型的可切换式漫射器136的一些实施例中,液晶内部聚合物的浓度可以在20%-60%之间,以实现散射。在采用PDLC类型的可切换式漫射器136的一些实施例中,液晶内部聚合 物的浓度可以在60%-80%之间。聚合物在液体/聚合物乳液中发生固化,以使液晶液滴在聚合物结构中分离出来。每个液滴内的液晶分子局部有序(localized order),但每个液滴可相对于混合物中的其他液滴随机排列。在采用可切换式漫射器136的一些实施例中,小液滴尺寸和PDLC混合物中液滴的各向同性取向的结合,将在无实质性电场的情况下导致高光散射结构。
当向PDLC类型的可切换式漫射器136施加实质性电场时,混合物中的液晶液滴取向将改变,当光线耦合进结构并从另一侧穿出时,光散射的程度降低。根据本发明的一个或多个实施例,如果向PDLC类型的可切换式漫射器136施加足够大的电场,可切换式漫射器136的结构将达到得基本透明的状态,以使耦合进的光线穿过时发生极少散射或无散射。
类似地,例如PNLC类型的可切换式漫射器136也可以提供这种光散射/扩散属性。PNLC类型的可切换式漫射器136包括遍及整个结构的聚合物链网络,液晶内部的聚合物的浓度可以约为1%至15%之间。和PDLC类似的,在施加合适电场的情况下,PNLC可以在实质散射状态和实质透明状态之间进行切换。
可切换式漫射器136还可以进一步包括与散射元件结合的附加层。此类附加层可与PDLC或PNLC材料结合以提供偏振稳定性、结构支撑和导电性。
相应地,可对可切换式漫射器136进行控制,以根据施加的电场,设定至少两种不同状态(即扩散/散射状态和透明状态)中的一个。基于本发明的目的,扩散/散射状态在此还可以被称为“第一状态”或“关闭状态”,透明状态在此还可以被称为“第二状态”或“开启状态”。
如图2所示,系统100可包括控制器140,其可操作地与光传感器122、光源132和可切换式漫射器136中的一个或多个连接。控制器140可配置为:启动光源132,使光源132进行光投射。控制器140还可以进一步被配置为:在控制器140启动了光源132后,对光传感器122接收的图像信息进行处理。控制器140还可以进一步被配置为:选择性地向可切 换式漫射器136施加电场(例如电压),以实现关闭状态(扩散/散射状态)和开启状态(透明状态)之间的切换。控制器140可以被配置为:实现光传感器122、光源132和可切换式漫射器136的同步运行,以实现泛光和点投射的时分复用传播。
特别地,控制器140可以被配置为:当光源132发出的光(其可选地通过光投射结构134)在可切换式漫射器136的第一表面耦合进去,以及在可切换式漫射器136的第二表面耦合出来时,选择性地对应用于可切换式漫射器136的电场进行振荡。这种可选的振荡会使得可切换式漫射器136在关闭和开启状态之间切换,从而使得在第一时间段内,从可切换式漫射器136的第二表面射出的光包含泛光投射,以及在第二或后续的时间段内,从可切换式漫射器136的第二表面射出的光包含点投射。
可切换式漫射器136可采用任何方式,以及通过被配置为控制适当电场施加的任何元件的组合而启动。例如,参照图2,控制器140可与电路连接,该电路包括可将电压施加至可切换式漫射器136的电压源。导电元件142和/或144可集成到或连接到可切换式漫射器136,从而在可切换式漫射器136上施加电场。控制器140可通过与其连接的电路,选择性地对施加于可切换式漫射器136的来自于电压源的电压进行调节。在一些实施例中,控制器140可启动将电压源与一个或多个导电元件142和/或144连接和/或断开的开关。
图3A显示了从第一电压条件切换到第二电压条件引起的可切换式漫射器136上施加的电场发生变化,从而使一个示例性的可切换式漫射器136的操作发生变化,其中第一电压条件和第二电压条件(以及相应地可切换式漫射器136的“关闭”状态和“开启”状态)之间的变化受控制器140(图中未显示)的控制。
如图所示,当电压源被控制为向可切换式漫射器136(上部附图表示为136a)输送第一电压(图3A中的上部附图采用变量V1表示)时,可切换式漫射器可保持在其自然状态,并作为入射光的漫射器/散光器。这可以被称为“关闭”状态。在一些实施例中,第一电压V1可以为0V,其中“关 闭”状态实际对应于从可切换式漫射器136的视角“关闭”的电压。然而,应当理解的是,“关闭”状态不一定必须要与关闭的电压源的电压相对应。
在一些实施例中,当第一电压约为0V和1V之间时,可切换式漫射器136的“关闭”状态可实现。在其他实施例中,当第一电压为任何允许或使得可切换式漫射器的聚合物结构内的液晶保持或实现分子排布或取向(该分子排布或取向使耦合进的光在穿过时变得实质性分散且由此提供泛光投射)的电压时,可切换式漫射器136可实现“关闭”状态。
如图所示,在第一电压条件下,光源132可提供耦合进光投射结构134的光。从投射结构134投射的光可包括若干个点投射,以形成点阵列(即,以结构化或随机模式投射的多个窄光束)。点投射在图3A中一般采用附图标记135来表示。点投射135可入射到可切换式漫射器136的第一表面,或耦合进可切换式漫射器136。在第一电压条件下,耦合到可切换式漫射器136的点投射135通过可切换式漫射器136的分子结构发生散射。由此,可切换式漫射器136将其第一表面接收的入射的结构光135转换为从第二表面投射出的泛光。从可切换式漫射器136a第二表面投射出的泛光在图3A中一般采用附图标记137来表示。
在对图3A中的下部附图进行讨论前,应注意可切换式漫射器136在上部附图中采用附图标记136a来表示,以表示“关闭”状态(或称为漫射器/散射器状态),并在下部附图中采用附图标记136b来表示,以表示“开启”状态(或称为透明或实质透明状态)。即图3A中的可切换式漫射器136a(阴影部分)和136b(无阴影部分)为相同的可切换式漫射器,只是基于施加(或视情况而未施加)不同的电场或电压(在第一电压条件和第二电压条件之间)而具有不同的操作状态。
如图3A中的下部附图所示的,当电压源被控制为向可切换式漫射器136(在下部附图中采用附图标记136b表示)输出第二电压(在图3A的下部附图中采用变量V2表示)时,可切换式漫射器的分子取向可能会发生变化,以使可切换式漫射器对入射光透明或实质性透明。该状态称为“开启”状态。在一些实施例中,第二电压V2可以在1V至50V的范围内,其 中“开启”状态实际上对应于从可切换式漫射器136的视角“开启”的电压。然而,应当理解的是,“开启”状态不一定必须对应于开启的电压源的电压。
如上所述,应当理解的是,上文中提到的“关闭”状态不一定必须对应于关闭的电压源的电压,并且“开启”状态不一定必须对应于开启的电压源的电压。在一些实施例中,“开启”状态和“关闭”状态可被设定为与上文所讨论的状态相反的状态。也就是说,第一电压条件可实现“开启”状态,以使与可切换式漫射器耦合的点投射通过可切换式漫射器的分子结构实质上未散射地穿过,并且第二电压条件可实现“关闭”状态,以使与可切换式漫射器耦合的点投射通过可切换式漫射器的分子结构而发生散射/漫射,并且作为泛光而从可切换式漫射器耦合出。因此,第一电压条件下的可切换式漫射器(实现“开启”状态)可能会由此产生点阵列投射,第二电压条件下的可切换式漫射器(实现“关闭”状态)可能会由此产生泛光投射。
在一些实施例中,可切换式漫射器在其自然状态下或第一电压条件下对耦合的点投射呈实质性透明状态(例如当施加的电压约为0V至1V时),并且在其非自然状态下或第二电压条件下对耦合的点投射呈散射/漫射状态(例如当施加的电压约为1V至50V时)。根据所需使用习惯,上述任何一种情形均可称为“开启”状态或“关闭”状态。
在一些实施例中,可切换式漫射器136的“开启”状态可在第二电压为0V时实现。在其他实施例中,当第一电压为任何允许或使得可切换式漫射器136的聚合物结构内部的液晶保持或实现使可切换式漫射器对入射光呈透明或实质性透明状态的分子布局或取向,并由此使来自光投射结构134和/或光源132的耦合进的光在穿过时不发生实质性扩散、漫射或其他实质性干扰光的窄光束点投射特性的发散现象,由此提供将要投射到目标物表面的且反射回检测器120(如图1-2所示)的结构化或随机模式的点光束的电压时,可切换式漫射器136可以实现“开启”状态。
如图3A中的下部附图所示的,在第二电压条件下,光源132可继续提供耦合进光投射结构134的光。如上文所述的,从光投射结构134投射的光还是包括多个点投射(即采用结构化或随机模式投射的多个窄光束)。 点投射135可入射到可切换式漫射器136的第一表面,或耦合进可切换式漫射器136。在第二电压条件下,与可切换式漫射器136耦合的点投射135并未通过可切换式漫射器136的分子结构发生实质性散射。因此,可切换式漫射器136可使在第一表面接收的点光束135穿过并离开第二表面,并作为窄光束点投射继续向前。从可切换式漫射器136b的第二表面射出的点投射在图3A中一般采用附图标记138表示。
虽然图3A显示(仅是示例性的)了可切换式漫射器136位于光投射结构134(投射镜头)的后侧,但是可切换式漫射器136也可布置在与光投射子系统130的元件相关的其他位置。例如,在一些实施例中,可切换式漫射器可设置在光源132和投射镜头134之间,如图3B所示(采用共同的附图标记来表示与上文所述的图3A都具有的元件)。在另一个示例中,光投射结构134和/或光源132由若干个元件组成,可切换式漫射器可设置在这些元件中的任何元件之前、之间或之后。例如,当光投射子系统130包括光引擎(例如VSCEL)和波导器件或衍射元件(例如DOE)时,可切换式漫射器可设置在任何这些元件之前、之间或之后。
例如,如图3C所示,光投射子系统130可包括衍射光学元件(“DOE”)139,以与VCSEL阵列133结合而生成多个点,可切换式漫射器136可位于它们之间。其他例子也是可行的,本领域内技术人员基于本发明可以想到,任何包含可切换式漫射器的有序布置方式均可用于本发明所述系统的实施。在其他示例中,例如,图3A或图3B中的光源132可以包括图3C中的VCSEL阵列133a和DOE133b,并且可切换式漫射器可设于任何此类元件之前、之间或之后。应当理解的是,所示配置仅作为描述本说明书的示例,其他布置和变化也可以在不超出本发明的范围内被实施。
再次参考图1-2,控制器140可根据一个或多个设备运行能力或要求、环境条件、默认的或用户定义的设置或任何其他输入,对上述元件进行操作以使其同步。例如,如果光传感器122被控制为在1/60秒内以给定的帧采集图像信息,控制器140会使可切换式漫射器136在该时间段内(在该时间段内图像信息以给定的帧被采集),在“关闭”状态和“开启”状态之间 进行切换。也就是说,对于给定帧的采集,控制器140会进行可切换式漫射器136的切换操作,以使点投射反射和泛光投射反射在以该帧进行光捕捉的时间段内均可以被检测器122接收到(采用如上文所述的时分复用的方式)。在一些实施例中,控制器140可被配置为:以比图像采集的帧速率快2-100倍的速率,对施加于可切换式漫射器的电场进行振荡。在一些实施例中,控制器140可被配置为:以比图像采集的帧速率快100倍的速率还快的速率,对施加于可切换式漫射器的电场进行振荡。
图4显示了包含控制器140的各种子组件的示例性架构,通过控制器140的执行操作,并结合系统100的一个或多个其他元件(包括光投射子系统130和检测器120的任何一个或多个元件),可以启用本发明的一个或多个特征。如图所示,控制器140可以被配置(或可操作地耦合)为:具有一个或多个处理引擎150和一个或多个机器可读指令160,当一个或多个处理引擎150执行机器可读指令160时,将启用本发明的一个或多个特征。机器可读指令160可保存在机器可读介质上。机器可读指令160可具有机器可读代码,机器可读代码包括激活组件161、场操作组件(field manipulation component)162、同步组件163、动态调整组件164和/或一个或多个其他组件165。
激活组件161可以被配置为:检测何时需要使用成像系统100,以及相应地使系统100激活光投射子系统130和/或检测器120的一个或多个元件。例如,如果用户的手机安装有系统100,用户的输入指示了3D面部识别请求(或其他3D拓扑投影),激活组件161可识别出用户提供的指示,并使系统100激活光投射子系统130的光源132和/或检测器子系统120。激活组件161还可被配置为:确定光投射子系统130和/或检测器子系统120的运行状态。如果光投射子系统130和/或检测器子系统120的运行状态令人满意,则激活组件161激活场操作组件162。
场操作组件162可以被配置为:使系统100向光投射子系统130的可切换式漫射器136元件施加电场、调整向光投射子系统130的可切换式漫射器136元件施加的电场,或从光投射子系统130的可切换式漫射器136 元件移除电场。例如,场操作组件162可以使控制器140将来自电压源的电压施加到可切换式漫射器136、调整该电压或移除该电压。通过施加、调整或移除该电场,场操作组件162可使可切换式漫射器136在“关闭”状态(漫射/散射状态)和“开启”状态(透明状态)之间来回切换。场操作组件162可被配置为:根据系统100的其他元件(例如检测器120和控制器140的其他组件)的操作,来对其操作进行计时。在实施上述操作时,场操作组件162可调用同步组件163确定、保存或提供的信息。
同步组件163可以被配置为:通过检测器子系统120和/或控制器140与检测器子系统120的结合,来确定所进行的或能够进行的图像采集的运行速度或速率,实施中或具有实施能力的图像采集速度。此外,同步组件163可确定或控制这些元件的操作时序,并通知场操作组件162。例如,如上所述的,如果光传感器122被控制为以每秒60帧(这意味着对于给定帧,图像采集在1/60秒或更短的时间内进行)采集图像信息,同步组件163可以识别此运行能力(基于检测或基于预设定/保存的信息),并可以进一步向激活组件161和场操作组件162的至少其中之一提供开始和/或停止时间。换言之,在一些实施例中,同步组件163可以被配置为具有时钟,其可与激活组件161和场操作组件162(或系统100的任何其他组件)的操作结合使用,以同步功能,从而实现所需性能。指定情形下的所需性能可进行预定,或者其可在给定一个或多个其他可检测条件下进行动态调节。可通过动态调整组件164的全部或部分来启用当前公开的技术中的动态调节特征。
动态调整组件164可以被配置为:检测一个或多个内部或外部的条件或请求,其需要调整到系统100的任何默认或预定的操作设置。动态调整组件164可以被与一个或多个其他组件165结合操作的一个或多个传感器或检测引擎通知。例如,系统100的默认设置可以使场操作组件162操作以使可切换式漫射器136在“开启”和“关闭”状态之间进行切换,从而使得在以单帧采集图像时,泛光137投射的时间和点138投射的时间的比率为1:3。也就是说,在给定帧的1/4图像采集时间内,泛光137从可切换式漫 射器136的第二表面投射出,在给定帧的3/4图像采集时间内,点投射138从可切换式漫射器136的第二表面投射出。但是,如果动态调整组件164检测到系统100的外部环境中的环境光提供的照明较差,动态调整组件164可以确定将泛光137投射时间和点138投射时间的比率从1:3调整为1:1,以便向该环境中的目标物(例如,使用者的面部)提供额外的泛光137照明。
在上述示例中,操作动态调整组件164可以使场操作组件162将电压振荡模式施加到可切换式漫射器136,以使可切换式漫射器136在单帧图像采集时间的约1/2时间内设定为“开启”状态,在单帧图像采集时间的另外1/2时间内设定为“关闭”状态。因此,在给定帧的1/2图像采集时间内,泛光137将从可切换式漫射器136的第二表面投射出,并且在给定帧的另外1/2图像采集时间内,点投射138将从可切换式漫射器136的第二表面投射出。由此,场操作组件162可以响应系统100的动态调整组件164和/或同步组件163,和/或激活组件161,和/或任何其他组件165中的一个或多个而进行操作。
除了诸如环境光条件的外部条件,动态调整组件164还可以被配置为:检测给定情形何时需要比面部识别的默认分辨率和/或时间更高的需求。例如,如果配备有系统100的手机用户简单地尝试使用面部识别来解锁其设备,默认分辨率可简单地对应于泛光137投射时间和点投射138时间的1:3的比率(对于每一帧),并要求以每秒60帧的速度收集图像信息0.5秒。但是,如果用户试图使用系统102的面部识别功能登入高安全级别或限制程度高的数据库,或者可选地,如果用户试图使用面部识别来对购买金额超过1000美元的物品进行授权,那么动态调整组件164可以确定在此条件下需要采用更高分辨率的面部识别,以获得恰当的匹配条件(例如使用保存的用户面部拓扑结构模板),来授权登录或授权。在此条件下,动态调整组件164可以被配置为:使场操作组件162和/或同步组件163进行必要调整,以使系统100生成或获得满足更高安全要求的更高分辨率的3D信息,该更高的安全要求与检测到的登录请求或购买请求是相关的。 例如,动态调整组件164可能会要求场操作组件162在图像采集的第一时间段内相较于点投射提供更多或更少的泛光,并随后对第二图像采集时间段内的泛光和点投射的比例进行调整。作为附加或替代的方式,动态调整组件164可以要求场操作组件的操作时间比默认设置的时间更长。类似地,动态调整组件164可以使激活组件161和同步组件163的操作时间比更高安全需求以及更高分辨率图像信息需求的环境的默认设定的时间更长。任何以及所有此类设定和动态调整可由用户进行预设或预定义,或者可以在各种情况下通过重复使用和训练系统100来在一段时间内学习。
如上文所述的,控制器140可以控制可切换式漫射器136在以给定帧进行图像信息采集的时间段内,在“关闭”状态和“开启”状态之间进行切换。还需指出的是,控制器140(例如通过场操作组件162)可使可切换式漫射器136在以给定帧进行图像采集时在关闭状态和开启状态之间进行多次切换。也就是说,对于给定帧采集,控制器140可以实现可切换式漫射器136的切换,以使点投射反射和泛光投射反射在以该帧进行光捕捉的期间内均被检测器122接收到(采用如上文所述的时分复用的方式)。在一些实施例中,控制器140可以被配置为:以比用于图像采集的帧速率快2-100倍的速率,对施加到可切换式漫射器的电场进行振荡。在一些实施例中,控制器140可以被配置为:以比用于图像采集的帧速率快100倍还多的速率,对施加到可切换式漫射器的电场进行振荡。
同步组件163可以通知系统100的其他元件光投射时间,由此通知被检测器子系统120的光传感器122接收的光信息的处理情况,以使系统100可对与反射的泛光相关的光信息和反射的点投射相关的光信息进行区分或辨别,并相应地调整其他操作。换言之,同步组件163可提供与所接收的图像信息有关的多路复用功能。因此,例如同步组件163可以使检测器120在泛光投射时间段内采集红外线图像照片(例如热签名照片),并且在红外线点投射期间采集红外线点阵列照片。
本领域内技术人员可以想到的是,尽管图4采用了机器可读指令160进行实施,但是一个或多个激活组件161、场操作组件162、同步组件 163、动态调整组件164,和/或其他组件165中的一个或多个可以采用硬件和/或软件实施。
图5示出了可根据本发明的一个或多个实施例实施的系统500。系统500被描绘为系统100的变型,其中模块110配备有非ToF光检测器(例如,上文讨论的检测器120)以及飞行时间检测器(ToF检测器170)二者。检测器120可以对光所投射到的目标物(例如,面部)的表面的光(结构光和/或泛光)的反射进行采集/转换/过滤。检测器120采集的光信息可用于确定深度信息(在反射的柱状光的情况下,基于相对于参照物的偏移和失真)和目标物特征信息(在反射的泛光的情况下,基于波长/频率)。另一方面,ToF检测器170基于脉冲飞行时间原理(而非主要基于偏移、失真、频率或波长)进行操作。
脉冲飞行时间原理认识到,光从光源传播到目标物并返回到检测器所需要的时间基于目标物离光源和/或ToF检测器有多远而变化,即光传播所穿过空间的距离越远,光到达ToF检测器所需的时间就越长。为了使ToF检测正确地操作,光源和ToF检测器必须被同步,以便可以从检测到的时间差中提取和计算出距离。特别地,应该严格控制和/或监测由光源产生的光脉冲的时序细节(timing details)和在ToF检测器处接收的返回光的时序细节。基于ToF的图像的分辨率通过增强的监测和/或时序控制而增强。
在图5所示的实施例中,模块110设置有非ToF检测器120以及ToF检测器170。二者都被配置为接收来自光投射系统130投射的光的光反射,但是每者均区别地评估光(或产生可被区别评估的信号)以得到目标物的深度信息和/或其他结构特征,基于入射到目标物上的从光投射系统130投射的光。
在一些实施例中,系统500的光投射子系统130可包括单个光源和可切换漫射器136。这种光源和可切换漫射器136可根据本文参照图1至图4所讨论的这些元件的一个或多个特征进行操作。此外,参照图5,在一些实施例中,控制器140可以被配置为:在给定图像采集周期内仅操作检 测器120和ToF检测器170中的一个。例如,在“ToF模式”或“非ToF模式”中(ToF模式指的是在给定图像采集周期内仅操作ToF检测器170的情况,而“非ToF模式”指的是在给定图像采集周期内仅操作检测器120的情况)(例如,根据图1至图4)。
在其他实施例中,控制器140可以被配置为:在给定图像采集周期内既操作检测器120也操作ToF检测器170。例如,在“混合模式”中(混合模式指的是:控制器140使检测器120、ToF检测器170(连同系统500的其他元件,例如光投射子系统130)的操作同步,使得两种检测器在给定图像采集周期内都进行操作)。
在一些实施例中,控制器140可以基于来自用户的输入(例如,用户选择)来实现系统500在ToF模式、非ToF模式或混合模式下的操作。在一些实施例中,控制器140可以被配置为:根据一个或多个检测到的条件,例如,照明条件、组件状态检测等,来实现模式之间的切换。例如,如果控制器140的动态调整组件164检测到系统100的外部环境中的环境光条件提供了差的照明(例如,低于预定阈值(如亮度阈值)的照明),或系统500的另一元件(包括系统100的任何元件)检测到被成像的目标物距离太远以使结构光检测无效(例如,目标物体超出预定距离(如超过2米)),则动态调整组件164可确定ToF成像将生成比经由检测器120生成的图像更高分辨率的图像。作为对这种确定的响应,控制器140可以进行系统操作,以使模块110以ToF模式操作。
在另一示例中,如果系统500的元件(包括系统100的任何元件)检测到被成像的目标物距检测器在预定的距离内(例如,目标物在预定距离内(如在1米内)),在该距离内,经由检测器120的结构光检测将生成比由ToF检测提供的图像分辨率更高的图像,则动态调整组件164可确定检测器120将生成比由ToF检测器170生成的图像具有更高分辨率的图像。作为对这种确定的响应,控制器140可以进行系统操作,以使模块110以非ToF模式操作。
在又一示例中,如果系统500的元件(包括系统100的任意元件)检测到:使得由检测器170进行的ToF检测成为被期望的(或者根据具体情况可能是不期望的)某些条件;和/或使得由检测器120进行的结构光检测成为被期望的(或者根据具体情况可能是不期望的)的某些条件,则动态调整组件164可以确定:在给定图像采集周期内通过一起(例如,同时或以时分复用的方式)操作检测器120和ToF检测器170来获得最佳图像信息。作为对这种确定的响应,控制器140可以进行系统操作,以使模块110以混合模式操作。如针对给定应用可以设置的,该确定可以基于关于这些检测到的条件的预定规则/标准来做出。
在混合模式操作中,控制器140可以调节和/或监测可切换漫射器在状态之间切换的时间(从而监测泛光投射和结构阵列光投射之间的切换),并将一个或另一个视为“脉冲”而基于计算飞行时间差的目的以进行跟踪,飞行时间差与ToF检测器170接收的光有关。也就是说,控制器140,通过同步组件163或另一组件,可以使检测器120和ToF检测器170的操作与从光投射子系统130传播的不同光投射(例如,结构点阵列投射、泛光投射等)的时间同步。以这种方式,由检测器120和ToF检测器170获得的时分复用的光信息可以被系统500相干地多路解编和/或以其他方式解析。在一些实施例中,在混合模式操作期间由检测器120和ToF检测器170获得的成像信息可以被组合以生成合成图像。
在更进一步的实施例中,可以根据检测到的一个或多个条件来调节混合模式操作,以优化分辨率(或提高分辨率)。例如,如果控制器140的动态调整组件164检测到系统500的外部环境中的环境光条件提供的照明质量使得混合模式被期望,但是应该通过使泛光的比例大于1:1(泛光投射与结构阵列投射的比率)来增强照明,则动态调整组件164不仅可以确定应该激活/选择混合模式,而且还确定泛光投射时间与结构点投射时间的比率应该从1:1修改为2:1,以对该环境内的目标物(例如,用户的面部)提供额外的泛光照明。
单独地或与动态调整组件164结合地,同步组件163可以被配置为:进行相应的调节以在混合模式期间帮助控制器140解析由检测器120和ToF检测器170转换的光信息。例如,同步组件163可以确定由检测器子系统120、ToF检测器170和/或控制器140执行的图像采集的操作速度或速率,并且可以使这些元件的操作或初始化的时间的控制更便利。同步组件163和/或动态调整组件164可以将其通知给场操作组件162。例如,如上所述,如果控制光传感器122以每秒60帧(意味着对于给定帧图像采集发生在1/60秒或更短的时间)采集图像信息,同步组件163可以(基于检测或基于预定/存储的信息)识别该操作能力,并且还可以向激活组件161和场操作组件162中的任一者或两者提供开始和/或停止时间。换句话说,在一些实施例中,同步组件163可以配置有时钟,该时钟可以与激活组件161、场操作组件162、动态调整组件163(或系统500的任何其他组件)的操作结合使用以使功能同步,从而可以在特定场景下实现期望的性能。给定情况下的期望性能可以是预先确定的,或者可以基于一个或多个可检测的条件由动态调整组件164全部或部分地动态调整。
同步组件163可以在混合模式下操作以将光投射的时间通知给系统500的其他元件,从而通知对由检测器子系统120和ToF检测器170接收的光信息的处理,以使系统500不仅可以将与反射的泛光相关联的光信息和与反射的点投射相关联的光信息区分开或区别开,还可以将与ToF衍生相关联的光信息和与非ToF衍生相关联的光信息区分开,并因此调整其他操作。换句话说,同步组件163可以提供与接收的图像信息有关的多路复用功能。因此,例如,同步组件163可使得检测器120能够在泛光投射的时间段内捕获IR图像照片(例如,热签名照片),并且能够在IR点投射期间捕获IR点阵照片,并且在相同的图像采集周期中使得ToF检测器170在IR点投射(例如,或其他结构阵列投射)的时间段内采集临时解析的图像照片,利用结构光发射作为根据脉冲飞行时间原理的光的“脉冲”。
换句话说,同步组件163可以被配置为:使ToF检测器170的图像采集与检测器120(例如,IR检测器)的图像采集同步或协调,并且进一步 使二者与可切换漫射器136在“关闭”状态和“打开”状态之间的切换同步。在一些此类实施例中,可切换式漫射器136可以被控制为:根据所施加电压的切换,输出短脉冲泛光(例如1-100ns)或长脉冲点光(例如100μs-30ms)。ToF检测器170可被控制器140控制以被进行脉冲驱动,从而提供脉幅调制、脉频调制和/或连续波调幅/调频。在一些实施例中,ToF检测器170和结构光检测器120(例如红外线检测器)通过控制器140的控制而被同步,以匹配或以与可切换式漫射器产生的时分复用光(时分复用在一起的泛光和结构光)信号对准的方式操作。
本领域普通技术人员将理解的是,参照图1至图4所讨论的控制器140的所有元件可以扩展到采用ToF检测器170的实施例,包括如上文所讨论的关于同步组件163和动态调整组件164。因此,根据系统500或其变型的系统实施例,其可以使3D ToF照片/图像信息的采集与2D IR点照片/图像信息同步。
在将ToF检测器与可切换式漫射器和其他光检测器结合使用的实施例中,本发明的系统可提供增强的安全特征,以确保例如成像的对象为真正的3D对象,而不是用于欺骗系统的对象的2D显示方式。在一些实施例中,ToF检测器可由控制器140控制,以连续地或阶段性地进行校准。
图6为过程流程图,其显示了可以根据本发明的一个或多个实施例应用的方法。如图所示,方法200的操作202包括接收光源生成的光,以及相应地投射若干个准直光束。方法200的操作204包括提供具有第一表面和第二表面的可切换式漫射器,该可切换式漫射器与电压源耦合并被配置为:对从第一电压条件切换至第二电压条件的电压源做出响应以从第一状态变化到第二状态。方法200的操作206包括根据预定的振荡模式在第一电压条件和第二电压条件之间振荡电压源,该电压振荡使泛光和点阵投射以时分复用的方式交替地从可切换式漫射器的第二表面射出。方法200的操作208包括使用光传感器检测交替的泛光和点阵光在对象上反射产生的光信息;其中光传感器与电压振荡和/或泛光和点阵光投射的交替同步。方法200的操作210包括对光传感器检测到的光信息进行多路解编( demultiplexing)。方法200的操作212包括根据多路解编的光信息生成对象的3D映像。
上文所述的各种特征和过程可相互独立地使用,或以各种方式组合。所有可能的组合和子组合均在本发明的范围内。此外,在一些实施应用中可省略某些方法或过程块。此处描述的方法和过程不限于任何特定顺序,与之相关的块或状态可采用其他合适的顺序进行实施。例如,所述块或状态可采用不同于特定公开的顺序进行实施,或多个块或状态可组合到单个块或状态内。示例块或状态可采用串行、并行或其他一些方式进行实施。块或状态可添加至公开的示例性实施例,或从其中移除。在此描述的示例性系统和组件可采用不同于所描述的方式进行配置。例如,元件可添加至公开的示例性实施例,从其中移除,或相较于公开的示例性实施例进行重新布局。
在本说明书的通篇中,多个例子可作为单个例子进行所描述的组件、操作或结构的实施应用。虽然一个或多个方法的单个操作是作为独立的操作进行阐述和描述的,但是一个或多个单个操作可同时实施,且不是必须采用显示的顺序进行操作。在示例性配置中显示为独立组件的结构和功能可以作为组合结构或组件来实施应用。类似地,显示为单个组件的结构和功能可以作为单独组件来实施应用。这些和其他变型、修改、增加和改善均落入到本技术方案的范围内。
虽然本技术方案已经参照具体实施例进行了综述,但可以在不偏离本技术方案实施例广义范围的情况下,对这些实施例进行各种修改和变更。本技术方案的这些实施例可以单独地或共同地通过术语“发明”来表示,这仅仅是为了方便。而并不是意味着,在实际公开了多个方案的情况下,将本申请的范围主动地限制于任何单个公开方案或概念。
本文对实施例进行了足够详细的描述说明,以使本领域内技术人员可以实施这些公开的方案。可以使用其他实施例并从中导出其他实施例,使得可以在不脱离本发明范围的情况下进行结构的和逻辑的替换和更改。因 此,详细的描述并不应被视为具有限制意义,且各实施例的范围仅通过附属权利要求以及这些权利要求所赋予的等同概念的全部范围来进行限定。
如本文所采用的,词语“或”可以以包含性或排他性的含义来解释。此外,多个例子还可作为单个例子用于其中描述的资源、操作或结构。此外,不同资源、操作、引擎和数据保存之间的边界是任意的,且特定操作在特定说明性配置的环境下被阐述。功能的其他配置也是可以预期的,并且其落入本发明的各个实施例的范围内。通常,在示例性配置中作为独立资源呈现的结构和功能可作为组合的结构或资源以实施应用。类似地,作为单个资源呈现的结构和功能可作为单独资源以实施应用。如附属权利要求所述的这些及其他变型、修改、添加和改善均属于本发明实施例的范围内。相应地,说明书和附图均是用于解释说明,而不具有限制意义。
除非另有说明,条件性语词,例如尤其是“可以”、“可能”、“可能会”或“可”或本文中采用的其他作此理解的词语,通常旨在表达某些实施例包括某些特征、元件和/或步骤,而其他实施例不包括。因此,此类条件性语词通常并不表示特征、元件和/或步骤必须要以任何方式用于一个或多个实施例,或一个或多个实施例必须要包括决定这些特征、元件和/或步骤是否要被纳入或者是否在任何特定的实施例中实施的逻辑,而不论具有或不具有用户输入或提示。

Claims (19)

  1. 一种系统,其包括:
    光投射系统,其被配置为投射若干路准直光束;
    结构光传感器;
    ToF传感器;
    可切换式漫射器,其具有第一表面和第二表面,所述可切换式漫射器与控制源耦合并被配置为:对从第一条件转变到第二条件的控制源做出响应,以从第一状态转变到第二状态;
    其中在所述第一状态,可切换式漫射器被配置为:在第一表面接收若干路准直光束的至少一部分,并从第二表面投射出泛光;
    其中在所述第二状态,可切换式漫射器被配置为:在第一表面接收准直光束,并将准直光束从第二表面投射出;
    处理引擎,其与非暂时性计算机可读介质电连接,所述非暂时性计算机可读介质具有存储于其上的机器可读指令,当处理引擎执行所述机器可读指令时,使得系统:根据第一预定模式在第一条件和第二条件之间对控制源进行振荡,使得若干个准直光脉冲在单个图像采集周期内从所述可切换漫射器投射出来;
    其中,所述ToF传感器和所述结构光传感器被配置为:在单个图像采集周期内接收来自于准直光的相同脉冲中的一个或多个的准直光的反射。
  2. 根据权利要求1所述的系统,其中:
    光投射系统包括波导器件,所述波导器件包括表面A和表面B;
    表面A包括若干光栅结构;
    所述波导器件被配置为:引导耦合进的光束在表面A和表面B之间受到全内反射;
    所述光栅结构被配置为:干扰全内反射以使至少一部分耦合进的光束从表面A耦合出波导器件,从波导器件耦合出的这部分耦合进的光束形成了耦合出的光束,该耦合出的光束包括所述若干路准直光束。
  3. 根据权利要求2所述的系统,其中:
    表面A在x-y平面内,所述x-y平面包括相互垂直的x方向和y方向;
    耦合进的光束在波导器件内基本沿x-y平面的x方向传播;
    耦合出的光束基本沿x-y平面的法线z方向传播;
    各光栅结构与光栅深度、占空比、周期、以及相对于z方向在x-y平面内的取向相关联;
    在x方向上的不同位置的光栅结构具有不同的光栅深度或不同的光栅占空比的至少其中之一;
    在x方向上的不同位置的光栅结构具有不同的周期;以及
    在y方向上的不同位置的光栅结构具有不同的取向。
  4. 根据权利要求1所述的系统,其中光投射系统包括若干个二极管。
  5. 根据权利要求1所述的系统,其中可切换式漫射器包括聚合物液晶混合物,所述聚合物液晶混合物具有响应于施加电压的分子取向。
  6. 根据权利要求1所述的系统,其中可切换式漫射器包括聚合物分散型液晶。
  7. 根据权利要求1所述的系统,其中可切换式漫射器包括聚合物网络液晶。
  8. 根据权利要求1所述的系统,其中所述第一预定模式使得从可切换式漫射器的第二表面投射出的光包括交替的泛光脉冲和准直光束脉冲,以实现时分复用发射。
  9. 根据权利要求1所述的系统,其中第一电压条件为0V的施加电压,并且第二电压条件为1V到50V之间的施加电压。
  10. 根据权利要求1所述的系统,其中第一预定模式包括:在第一图像采集周期,在第一电压条件和第二电压条件之间切换系统两次或更多次,以实现泛光投射与准直光投射的第一预定比率。
  11. 根据权利要求10所述的系统,其中非暂时性计算机可读介质还被配置为具有保存在其上的机器可读指令,当处理引擎执行所述机器可读指令时,使得系统:根据第二预定模式在第一条件和第二条件之间对控制源进行振荡;并且
    其中第二预定模式包括:在第一图像采集周期,在第一电压条件和第二电压条件之间切换两次或更多次,以实现泛光投射与准直光投射的第二预定比率,并且其中第二预定比率不同于第一预定比率。
  12. 根据权利要求11所述的系统,非暂时性计算机可读介质还被配置为具有保存在其上的机器可读指令,当处理引擎执行所述机器可读指令时,使得系统:根据检测到的环境光条件和交易安全条件中的一个或多个,调整第一图像采集周期和第二图像采集周期中的一个或多个时间周期。
  13. 根据权利要求1所述的系统,其中预定振荡模式被配置为实现泛光和准直光的预定投射比率。
  14. 根据权利要求1所述的系统,其中预定振荡模式被配置为实现泛光和准直光的预定投射比率,且该投射比率为1:1。
  15. 根据权利要求1所述的系统,其中预定振荡模式被配置为实现泛光和准直光的预定投射比率,且该投射比率为10:1。
  16. 根据权利要求1所述的系统,其中预定振荡模式被配置为实现泛光和准直光的预定投射比率,且该投射比率在1:1至10:1之间。
  17. 根据权利要求1所述的系统,其中准直光束包括红外线频率光。
  18. 一种光投射系统,其包括:
    红外线检测器,其被配置为:基于目标物的一个或多个泛光反射以及目标物的阵列反射,采集光信息;
    飞行时间(ToF)检测器,其被配置为:基于测试目标的飞行时间检测它们之间的差异;
    可切换式漫射器,其具有第一表面和第二表面,所述可切换式漫射器与控制源耦合并被配置为:对从第一条件转变到第二条件的控制源做出响应,以从第一状态转变到第二状态;
    其中在所述第一状态,可切换式漫射器被配置为:在第一表面接收若干路准直光束的至少一部分,并从第二表面投射出泛光;
    其中在所述第二状态,可切换式漫射器被配置为:允许若干路准直光束的至少一部分作为阵列而从第二表面传播出;
    处理引擎,其与非暂时性计算机可读介质电连接,所述非暂时性计算机可读介质具有存储于其上的机器可读指令,当处理引擎执行所述机器可读指令时,使得系统:根据第一预定模式在第一条件和第二条件之间对控制源进行振荡,使得可切换漫射器发射准直光束的脉冲,以实现ToF检测器所解析的准直光束的调制。
  19. 根据权利要求18所述的系统,其中:调制为脉幅调制、脉频调制、连续波幅度调制以及连续波频率调制中的一个或多个。
PCT/CN2020/070824 2019-01-25 2020-01-08 一种光投射系统 WO2020151493A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20744642.8A EP3916480B1 (en) 2019-01-25 2020-01-08 Light projection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910073808.5 2019-01-25
CN201910073808.5A CN109901353B (zh) 2019-01-25 2019-01-25 一种光投射系统

Publications (1)

Publication Number Publication Date
WO2020151493A1 true WO2020151493A1 (zh) 2020-07-30

Family

ID=66944200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070824 WO2020151493A1 (zh) 2019-01-25 2020-01-08 一种光投射系统

Country Status (3)

Country Link
EP (1) EP3916480B1 (zh)
CN (4) CN109901353B (zh)
WO (1) WO2020151493A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115184956A (zh) * 2022-09-09 2022-10-14 荣耀终端有限公司 Tof传感器系统和电子设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111323991A (zh) * 2019-03-21 2020-06-23 深圳市光鉴科技有限公司 一种光投射系统及光投射方法
CN111323931B (zh) * 2019-01-15 2023-04-14 深圳市光鉴科技有限公司 光投射系统和方法
CN109901353B (zh) * 2019-01-25 2021-05-07 深圳市光鉴科技有限公司 一种光投射系统
US10585194B1 (en) 2019-01-15 2020-03-10 Shenzhen Guangjian Technology Co., Ltd. Switchable diffuser projection systems and methods
CN113050112A (zh) * 2019-03-21 2021-06-29 深圳市光鉴科技有限公司 用于增强飞行时间分辨率的系统和方法
JPWO2021075340A1 (zh) * 2019-10-15 2021-04-22
CN110888141A (zh) * 2019-10-28 2020-03-17 深圳奥比中光科技有限公司 深度测量装置及方法
CN111142088B (zh) * 2019-12-26 2022-09-13 奥比中光科技集团股份有限公司 一种光发射单元、深度测量装置和方法
CN114598786B (zh) * 2022-01-04 2024-01-09 北京石头创新科技有限公司 多摄像头的帧同步控制方法及自行走设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150138325A1 (en) * 2013-11-18 2015-05-21 Samsung Electronics Co., Ltd. Camera integrated with light source
CN106200249A (zh) * 2016-08-30 2016-12-07 辽宁中蓝电子科技有限公司 结构光和rgb传感器模组整体式集成系统3d相机
CN107167996A (zh) * 2017-06-05 2017-09-15 深圳奥比中光科技有限公司 自适应调整的激光投影模组及深度相机
CN107167997A (zh) * 2017-06-05 2017-09-15 深圳奥比中光科技有限公司 激光投影模组及深度相机
CN107884066A (zh) * 2017-09-29 2018-04-06 深圳奥比中光科技有限公司 基于泛光功能的光传感器及其3d成像装置
CN109901353A (zh) * 2019-01-25 2019-06-18 深圳市光鉴科技有限公司 一种光投射系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9330324B2 (en) * 2005-10-11 2016-05-03 Apple Inc. Error compensation in three-dimensional mapping
US20090219253A1 (en) * 2008-02-29 2009-09-03 Microsoft Corporation Interactive Surface Computer with Switchable Diffuser
US9535537B2 (en) * 2010-11-18 2017-01-03 Microsoft Technology Licensing, Llc Hover detection in an interactive display device
US9729853B2 (en) * 2012-02-03 2017-08-08 Lumentum Operations Llc Low profile depth camera
JP6186679B2 (ja) * 2012-08-09 2017-08-30 旭硝子株式会社 照明光学系、計測装置及びそれに用いられる回折光学素子
WO2015183869A1 (en) * 2014-05-30 2015-12-03 3M Innovative Properties Company Variable viewing angle optical systems
JP6353165B2 (ja) * 2014-11-07 2018-07-04 スリーエム イノベイティブ プロパティズ カンパニー 切替可能ディフューザを含む光学装置
EP3243101A4 (en) * 2015-01-10 2018-09-26 LEIA Inc. Two-dimensional/three-dimensional (2d/3d) switchable display backlight and electronic display
CN107783353B (zh) * 2016-08-26 2020-07-10 光宝电子(广州)有限公司 用于捕捉立体影像的装置及系统
US10705214B2 (en) * 2017-07-14 2020-07-07 Microsoft Technology Licensing, Llc Optical projector having switchable light emission patterns
CN114995015A (zh) * 2018-01-15 2022-09-02 奥比中光科技集团股份有限公司 多功能照明模组
CN108337492B (zh) * 2018-01-15 2020-04-17 深圳奥比中光科技有限公司 动态投影成像装置
CN108828786A (zh) * 2018-06-21 2018-11-16 深圳市光鉴科技有限公司 一种3d摄像头
CN111323931B (zh) * 2019-01-15 2023-04-14 深圳市光鉴科技有限公司 光投射系统和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150138325A1 (en) * 2013-11-18 2015-05-21 Samsung Electronics Co., Ltd. Camera integrated with light source
CN106200249A (zh) * 2016-08-30 2016-12-07 辽宁中蓝电子科技有限公司 结构光和rgb传感器模组整体式集成系统3d相机
CN107167996A (zh) * 2017-06-05 2017-09-15 深圳奥比中光科技有限公司 自适应调整的激光投影模组及深度相机
CN107167997A (zh) * 2017-06-05 2017-09-15 深圳奥比中光科技有限公司 激光投影模组及深度相机
CN107884066A (zh) * 2017-09-29 2018-04-06 深圳奥比中光科技有限公司 基于泛光功能的光传感器及其3d成像装置
CN109901353A (zh) * 2019-01-25 2019-06-18 深圳市光鉴科技有限公司 一种光投射系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3916480A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115184956A (zh) * 2022-09-09 2022-10-14 荣耀终端有限公司 Tof传感器系统和电子设备
CN115184956B (zh) * 2022-09-09 2023-01-13 荣耀终端有限公司 Tof传感器系统和电子设备

Also Published As

Publication number Publication date
CN113253474A (zh) 2021-08-13
CN113253475A (zh) 2021-08-13
EP3916480B1 (en) 2023-04-19
CN113253473A (zh) 2021-08-13
CN109901353B (zh) 2021-05-07
EP3916480A1 (en) 2021-12-01
CN109901353A (zh) 2019-06-18
EP3916480A4 (en) 2022-04-06

Similar Documents

Publication Publication Date Title
WO2020151493A1 (zh) 一种光投射系统
WO2020147622A1 (zh) 光投射系统和方法
US10564521B1 (en) Switchable diffuser projection systems and methods
US11422262B2 (en) Switchable diffuser projection systems and methods
US10585173B1 (en) Systems and methods for enhanced ToF resolution
US10931860B2 (en) Display device and electronic apparatus with 3D camera module
US9285477B1 (en) 3D depth point cloud from timing flight of 2D scanned light beam pulses
WO2020187175A1 (zh) 一种光投射系统及光投射方法
KR20150021935A (ko) 이미지 형성 지향성 백라이트를 위한 광원 조절
KR102153045B1 (ko) 파장 분리 소자 및 이를 포함하는 3차원 영상 획득 장치
AU2016264601B2 (en) Illuminator
KR20220164480A (ko) 다중 광학 경로 이미징 기법들 및 능동 심도 감지 기법들을 위한 공유된 이미터
CN102985786A (zh) 投光器和用于距离测定的视觉系统
CN111798798A (zh) 具有光学感测器的显示器及其光学感测模组
KR102101865B1 (ko) 카메라 장치
CN208569285U (zh) 投影模组、光电装置及电子设备
EP3944000B1 (en) System and method for enhancing time-of-flight resolution
CN108490630B (zh) 激光投射模组、深度相机和电子装置
CN209590493U (zh) 一种投影器和深度相机
Schnabel Mobile 3D Sensing
KR20200041851A (ko) 카메라 장치
CN117308811A (zh) 一种结构光相机及智能设备
CN117178195A (zh) 用于获取3d空间信息的光学系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20744642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020744642

Country of ref document: EP

Effective date: 20210825