WO2020151371A1 - 大密度航煤、超低凝柴油与低凝特种润滑油基础油的生产方法 - Google Patents

大密度航煤、超低凝柴油与低凝特种润滑油基础油的生产方法 Download PDF

Info

Publication number
WO2020151371A1
WO2020151371A1 PCT/CN2019/122316 CN2019122316W WO2020151371A1 WO 2020151371 A1 WO2020151371 A1 WO 2020151371A1 CN 2019122316 W CN2019122316 W CN 2019122316W WO 2020151371 A1 WO2020151371 A1 WO 2020151371A1
Authority
WO
WIPO (PCT)
Prior art keywords
pour point
diesel
ultra
catalyst
low pour
Prior art date
Application number
PCT/CN2019/122316
Other languages
English (en)
French (fr)
Inventor
冯亮
王金林
万慧一
Original Assignee
内蒙古晟道催化技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 内蒙古晟道催化技术有限公司 filed Critical 内蒙古晟道催化技术有限公司
Publication of WO2020151371A1 publication Critical patent/WO2020151371A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects

Definitions

  • the invention relates to a method for producing high-density jet fuel, ultra-low pour point diesel and low pour point special lubricating oil base oil from medium and low temperature coal tar through a three-stage combined process of fluidized bed hydrocracking and fixed bed hydrogenation, which belongs to the processing technology of inferior heavy oil field.
  • the residual oil content of inferior heavy oil is very high.
  • the core technology of processing is to increase the yield of light oil through residual oil and vacuum gas oil.
  • the residual oil of inferior heavy oil has the characteristics of high sulfur, high carbon residue, high nitrogen and high metal.
  • the requirements for processing technology are very high.
  • the more mature processing technologies for low-quality heavy oil include coking, residue hydrogenation and catalytic degradation.
  • the commonly used coking process is the process of hydrogenation of residual oil, including fluidized bed, fixed bed, moving bed + fixed bed, suspended bed, etc., which can treat low-quality heavy oil and asphalt.
  • the existing low-quality heavy oil treatment products have the following problems: the utilization rate of the whole fraction of medium and low temperature coal tar is low, and the product value is low; in addition, the current conventional diesel can not meet the use in alpine areas, the density of aviation fuel products is low, and the flying distance of aircraft is short.
  • the object of the present invention is to provide a medium and low temperature coal tar through a three-stage combined process of fluidized bed hydrocracking and fixed bed hydro-upgrading to produce high-density jet fuel, ultra-low pour point diesel and low pour point special lubricating oil base oil
  • the method can solve the technical problems of low medium and low temperature coal tar utilization rate, poor product properties and low value.
  • a production method of base oil for high-density jet fuel, ultra-low pour point diesel and low pour point special lubricating oil includes the following steps:
  • the upgraded mixed fraction is mixed with fresh hydrogen and circulating hydrogen into the fixed bed precious metal hydroisomerization and dearomatization unit.
  • the gas product enters the pipe network, and the liquid The product enters the 2# atmospheric and vacuum fractionation unit for fractionation to obtain the final naphtha, high-density jet fuel, ultra-low pour point diesel and low pour point special lubricant base oil products.
  • the catalyst of the fluidized bed hydrocracking unit is a metal catalyst supported by Al 2 O 3 , and the metal is a combination of two or three of Ni, Co, Mo, and W, Ni: Co :Mo:W metal mass ratio is 0 ⁇ 5:0 ⁇ 3:1, and the mass ratio of total metal to catalyst is 20% ⁇ 40%;
  • the reactor used in the fluidized bed hydrocracking unit is a boiling reactor with a circulating pump Bed reactor; the reactor operating conditions are 15-25MPa reaction pressure, 410-460°C reaction temperature, total feed volume space velocity 0.3-2.0h -1 , hydrogen/oil volume ratio 800-1700;
  • the catalyst The storage capacity in the reactor is 30-50%, and the yield of vacuum tail oil in the product is 5-10w%.
  • the mass ratio of Co:Ni:Mo is 1 to 5:1 to 3:1; when the metal is Co, W and Mo, the Co:W:Mo metal The mass ratio is 1 to 5:1 to 3:1, and when the metal is Ni and Mo, the mass ratio of Ni to Mo is 2.5:1.
  • the reactor used in the fixed-bed hydro-upgrading unit is a fixed-bed reactor, containing a supported catalyst with functions of olefin saturation, metal removal, desulfurization, denitrification, and vacuum distillate cracking, and is Co, Two or three kinds of Mo, Ni, W metals are supported on Al 2 O 3 proprietary catalysts, the mass ratio of other metals to Mo is 0 ⁇ 4:0 ⁇ 4:1, and the total metal mass is the mass of the catalyst Al 2 O 3 is neutral or weakly acidic alumina with a pH of 5 to 7; the operating conditions of the fixed-bed hydro-upgrading reactor are reaction pressure of 12-18 MPa and reaction temperature of 220-400°C , The total feed volume space velocity is 0.2 ⁇ 1.0h -1 , the hydrogen/oil volume ratio is 800 ⁇ 1500, the S content in the upgraded product is ⁇ 5 ⁇ g ⁇ g -1 , and the N content is ⁇ 5 ⁇ g ⁇ g -1 .
  • the fixed-bed precious metal hydrogenation reactor is a fixed-bed reactor containing a supported catalyst with aromatic saturation and isomerization functions, and the catalyst is a Pt and Pd bimetal supported on Al 2 O 3
  • the catalyst the total metal mass of which is 0.2 to 1.5% of the mass of the catalyst, the mass ratio of Pt and Pd is 1:0.1 to 1:1;
  • the reactor operating conditions are the reaction pressure of 12-20 MPa and the reaction temperature of 210-350°C,
  • the total feed volume space velocity is 0.2 ⁇ 1.5h -1
  • the hydrogen/oil volume ratio is 600 ⁇ 1200.
  • the liquid product in the step (4) is cut according to the ultra-low pour point diesel scheme, and the liquid product is fractionated into the following products in the 2# atmospheric and vacuum fractionation unit: IBP ⁇ 180°C fraction is used as a high-quality raw material for catalytic reforming
  • the naphtha products are diesel products with the distillate at 180 ⁇ 350°C as ultra-low pour point diesel, and the distillate at 350 ⁇ 500°C as base oil products of low pour point special lubricants.
  • the liquid product in step (4) is cut according to the high-density jet fuel fractionation scheme, and the liquid product is fractionated into the following products in the 2# atmospheric and vacuum fractionation unit: IBP ⁇ 140°C fraction is a high-quality raw material for catalytic reforming
  • the light naphtha products are divided into high-density aviation fuel at 140 ⁇ 280°C, and the high-density diesel is divided into heavy diesel products at 280 ⁇ 350°C, and the low-condensing special lubricating oil is divided into 350 ⁇ 500°C.
  • Base oil products are divided into high-density aviation fuel at 140 ⁇ 280°C, and the high-density diesel is divided into heavy diesel products at 280 ⁇ 350°C, and the low-condensing special lubricating oil is divided into 350 ⁇ 500°C. Base oil products.
  • the vacuum tail oil obtained in the step (2) is used to prepare new carbon materials or blended pitch.
  • the invention improves the yield of naphtha, diesel oil and wax oil in the product through a fluidized bed hydrocracking reaction; reduces the yield of wax oil products through a fixed bed hydro-upgrading reaction, and improves the yield and quality of the IBP ⁇ 350°C fraction;
  • the fixed bed precious metal hydrogenation reaction improves the component structure of jet fuel and diesel fractions, so that the final product can meet the quality requirements of ultra-low pour point diesel, high-density jet fuel and low pour point special lubricant base oil products.
  • the method provided by the invention can produce high-end products with high yield and high value, and has great prospects for popularization and application.
  • Figure 1 is a process flow diagram of the present invention.
  • the invention discloses a method for producing high-density jet fuel, ultra-low pour point diesel and low pour point special lubricating oil base oil by a three-stage combined process of fluidized bed hydrocracking and fixed bed hydro-upgrading of medium and low temperature coal tar.
  • Technicians can learn from the content of this article and appropriately improve the process parameters.
  • the similar replacements and modifications are obvious to those skilled in the art, and they are all considered to be included in the present invention.
  • the methods and references of the present invention have been described through preferred embodiments, and relevant personnel can obviously modify or appropriately change and combine the methods and applications described herein without departing from the content, spirit and scope of the present invention to achieve and Apply the technology of the present invention.
  • a method for producing high-density jet fuel, ultra-low pour point diesel and low pour point special lubricant base oil through a three-stage combined process of fluidized bed hydrocracking and fixed bed hydro-upgrading of medium and low temperature coal tar includes the following steps:
  • the upgraded mixed fraction is mixed with fresh hydrogen and circulating hydrogen into the fixed bed precious metal hydroisomerization and dearomatization unit.
  • the gas product enters the pipe network, and the liquid The product enters the 2# atmospheric and vacuum fractionation unit for fractionation to obtain the final naphtha, high-density jet fuel, ultra-low pour point diesel and low pour point special lubricant base oil products.
  • the catalyst of the fluidized bed hydrocracking unit is a metal catalyst with Al 2 O 3 as a carrier, and the metal is a combination of two or three of Ni, Co, Mo, and W, Ni: Co: Mo:
  • the mass ratio of W metal is 0-5:0-3:1, and the mass ratio of the total metal to the catalyst is 20%-40%;
  • the reactor used in the fluidized bed hydrocracking unit is a fluidized bed reactor with a circulating pump
  • the operating conditions of the reactor are the reaction pressure of 15-25MPa, the reaction temperature of 410-460°C, the total feed volume space velocity of 0.3-2.0h -1 , and the hydrogen/oil volume ratio of 800-1700; the catalyst is in the reactor
  • the reserve is 30-50%, and the yield of vacuum tail oil in the product is 5-10w%.
  • the mass ratio of Co:Ni:Mo is 1-5:1 to 3:1; when the metal is Co, W, and Mo, the mass ratio of Co:W:Mo is 1 ⁇ 5:1 ⁇ 3:1, when the metal is Ni and Mo, the metal mass ratio of Ni and Mo is 2.5:1; particularly preferably, the metal mass ratio of Co:Ni:Mo is 3:2:1 or Co: The W:Mo metal mass ratio is 4:2:1 or the Ni:Mo metal mass ratio is 2.5:1.
  • the reactor used in the fixed-bed hydro-upgrading unit is a fixed-bed reactor, which contains a supported catalyst with functions of olefin saturation, metal removal, desulfurization, denitrification and vacuum distillate cracking, and is Co, Mo, Ni 2 or 3 types of W metal are supported on Al 2 O 3 proprietary catalysts.
  • the mass ratio of other metals to Mo is 0 ⁇ 4:0 ⁇ 4:1, and the total metal mass is 15 ⁇ of the catalyst mass.
  • Al 2 O 3 is neutral or weakly acidic alumina, pH is 5-7;
  • the operating conditions of the fixed-bed hydro-upgrading reactor are reaction pressure 12-18MPa, reaction temperature 220-400°C, total inlet
  • the material volume space velocity is 0.2 ⁇ 1.0h -1
  • the hydrogen/oil volume ratio is 800 ⁇ 1500
  • the S content in the upgraded product is ⁇ 5 ⁇ g ⁇ g -1
  • the N content is ⁇ 5 ⁇ g ⁇ g -1 .
  • the fixed-bed precious metal hydrogenation reactor is a fixed-bed reactor containing a supported catalyst with aromatic saturation and isomerization functions.
  • the catalyst is a catalyst in which Pt and Pd bimetals are supported on Al 2 O 3 .
  • the total mass of metal is 0.2 ⁇ 1.5% of the mass of the catalyst, and the mass ratio of Pt and Pd is 1:0.1 ⁇ 1:1; the operating conditions of the reactor are reaction pressure 12-20MPa, reaction temperature 210-350°C, total feed
  • the volumetric space velocity is 0.2 ⁇ 1.5h -1 , and the hydrogen/oil volume ratio is 600 ⁇ 1200.
  • the liquid product can be cut according to the ultra-low pour point diesel program: the liquid product is fractionated in the 2# atmospheric and vacuum fractionation unit into a naphtha product (IBP ⁇ 180°C fraction) that can be used as a high-quality raw material for catalytic reforming, which can be used as an ultra-low Diesel products of condensed diesel (180 ⁇ 350°C distillate) and base oil products (350 ⁇ 500°C distillate) as low-condensing special lubricating oil.
  • a naphtha product IBP ⁇ 180°C fraction
  • Diesel products of condensed diesel 180 ⁇ 350°C distillate
  • base oil products 350 ⁇ 500°C distillate
  • the liquid product can be cut according to the high-density jet fuel fractionation scheme: the liquid product is fractionated in the 2# atmospheric and vacuum fractionation unit into a light naphtha product (IBP ⁇ 140°C fraction) that can be used as a high-quality raw material for catalytic reforming.
  • IBP ⁇ 140°C fraction a light naphtha product
  • High-density aviation fuel jet fuel products 140 ⁇ 280°C fraction
  • heavy diesel products 280 ⁇ 350°C fraction
  • low-pour-point special lubricant base oil products 350 ⁇ 500°C) Distillate.
  • Example 1 The 1# medium and low temperature coal tar used in Example 1 comes from Inner Mongolia, and its properties are shown in Table 1.
  • the catalyst is a Ni-Mo/Al 2 O 3 catalyst, the mass ratio of Ni:Mo metal is 2.5:1, the mass ratio of total metals to the catalyst is 30%, the reaction pressure is 16MPa, the reaction temperature is 440°C, and the total feed volume space velocity is 0.5 h -1 , the hydrogen/oil volume ratio is 1500; the storage capacity of the catalyst in the reactor is 35%, and the yield of the vacuum tail oil in the product is 8%.
  • the fixed-bed hydro-upgrading unit adopts
  • the catalyst is Co-Ni-Mo/Al 2 O 3 , the metal mass ratio of Co:Ni:Mo is 2.5:2.5:1, the total metal mass is 20% of the catalyst mass, and Al 2 O 3 is neutral alumina , PH is 6, reaction pressure is 16MPa, reaction temperature is 340°C, total feed volume space velocity is 0.5h -1 , hydrogen/oil volume ratio is 1200, S content in the upgraded product is ⁇ 5 ⁇ g ⁇ g -1 , N content is ⁇ 5 ⁇ g ⁇ G -1
  • the upgraded mixed fraction is mixed with fresh hydrogen and circulating hydrogen into the fixed bed precious metal hydroisomerization and dearomatization unit.
  • the gas product enters the pipe network, and the liquid The product enters the 2# atmospheric and vacuum fractionation unit for fractionation to obtain the final naphtha, high-density jet fuel, ultra-low pour point diesel and low pour point special lubricant base oil products.
  • the catalyst used in fixed-bed precious metal hydrogenation is Pt-Pd/Al 2 O 3 catalyst, the total metal mass is 0.4% of the catalyst mass, the mass ratio of Pt:Pd is 1:0.3, the reaction pressure is 16MPa, and the reaction temperature is 240°C , The total feed volume space velocity is 0.2h -1 , and the hydrogen/oil volume ratio is 800.
  • the liquid product is fractionated according to the ultra-low pour point diesel scheme to produce high-quality naphtha, ultra-low pour point diesel and low pour point special lubricant base oil.
  • the results are shown in Tables 2 to 4; the liquid product is carried out according to the high-density jet fuel fractionation scheme Fractional distillation produces high-quality light naphtha, high-density jet fuel, high-density heavy diesel oil and low-pour-point special lubricant base oil.
  • Tables 5 to 7 The properties of the vacuum distillate are consistent with the data in Table 4.
  • Aromatic potential content/w% 62.61 Aromatic content (volume fraction)/% 0.0 Olefin content (volume fraction)/% 0.0
  • the 2# medium and low temperature coal tar used in Example 2 comes from Shaanxi, and its properties are shown in Table 8.
  • the catalyst is a Co-W-Mo/Al 2 O 3 catalyst, the mass ratio of Co:W:Mo metal is 4:2:1, the mass ratio of total metals to the catalyst is 20%, the reaction pressure is 25MPa, the reaction temperature is 460°C, and the total
  • the feed volume space velocity is 2.0 h -1 , the hydrogen/oil volume ratio is 1700; the storage capacity of the catalyst in the reactor is 30%, and the yield of the vacuum tail oil in the product is 5%.
  • the fixed-bed hydro-upgrading unit adopts
  • the catalyst is W-Mo/Al 2 O 3 catalyst, the W:Mo metal mass ratio is 4:1, the total metal mass is 15% of the catalyst mass, Al 2 O 3 is weakly acidic alumina, the pH is 7, and the reaction
  • the pressure is 18MPa, the reaction temperature is 220°C, the total feed volume space velocity is 1.0h -1 , the hydrogen/oil volume ratio is 800, the S content in the upgraded product is ⁇ 5 ⁇ g ⁇ g -1 , and the N content is ⁇ 5 ⁇ g ⁇ g -1 .
  • the upgraded mixed fraction is mixed with fresh hydrogen and circulating hydrogen into the fixed bed precious metal hydroisomerization and dearomatization unit.
  • the gas product enters the pipe network, and the liquid The product enters the 2# atmospheric and vacuum fractionation unit for fractionation to obtain the final naphtha, high-density jet fuel, ultra-low pour point diesel and low pour point special lubricant base oil products.
  • the catalyst used in fixed-bed precious metal hydrogenation is Pt-Pd/Al 2 O 3 catalyst, the total metal mass is 0.2% of the catalyst mass, the mass ratio of Pt:Pd is 1:1, the reaction pressure is 20MPa, and the reaction temperature is 210°C , The total feed volume space velocity is 0.4h -1 , and the hydrogen/oil volume ratio is 1200.
  • the liquid product is fractionated according to the ultra-low pour point diesel scheme to produce high-quality naphtha, ultra-low pour point diesel and low pour point special lubricant base oil.
  • the results are shown in Table 9 to Table 11; the liquid product is carried out according to the high-density jet fuel fractionation scheme Fractional distillation produces high-quality light naphtha, high-density jet fuel, high-density heavy diesel oil and low-pour-point special lubricant base oil.
  • Tables 12-14 The properties of the vacuum distillate are consistent with the data in Table 11.
  • the 3# medium and low temperature coal tar used in Example 3 comes from Hebei, and its properties are shown in Table 15.
  • the catalyst is a Co-Ni-Mo/Al 2 O 3 catalyst, the mass ratio of Co:Ni:Mo metal is 3:2:1, the mass ratio of the total metal to the catalyst is 40%, the reaction pressure is 15MPa, the reaction temperature is 410°C, and the total
  • the feed volume space velocity is 0.3 h -1 , the hydrogen/oil volume ratio is 800; the storage capacity of the catalyst in the reactor is 50%, and the yield of the vacuum tail oil in the product is 10%.
  • the fixed-bed hydro-upgrading unit adopts
  • the catalyst is Ni-Mo/Al 2 O 3 , the mass ratio of Ni:Mo metal is 2:1, the total mass of metal is 45% of the mass of the catalyst, Al 2 O 3 is weakly acidic alumina, the pH is 5, and the reaction
  • the pressure is 12MPa, the reaction temperature is 440°C, the total feed volume space velocity is 0.2h -1 , the hydrogen/oil volume ratio is 1500, the S content in the upgraded product is ⁇ 5 ⁇ g ⁇ g -1 , and the N content is ⁇ 5 ⁇ g ⁇ g
  • the upgraded mixed fraction is mixed with fresh hydrogen and circulating hydrogen into the fixed bed precious metal hydroisomerization and dearomatization unit.
  • the gas product enters the pipe network, and the liquid The product enters the 2# atmospheric and vacuum fractionation unit for fractionation to obtain the final naphtha, high-density jet fuel, ultra-low pour point diesel and low pour point special lubricant base oil products.
  • the catalyst used in fixed-bed precious metal hydrogenation is Pt-Pd/Al 2 O 3 catalyst, the total metal mass is 0.6% of the catalyst mass, the mass ratio of Pt:Pd is 1:0.1, the reaction pressure is 12MPa, and the reaction temperature is 350°C , The total feed volume space velocity is 1.5h -1 , and the hydrogen/oil volume ratio is 600.
  • the liquid product is fractionated according to the ultra-low pour point diesel scheme to produce high-quality naphtha, ultra-low pour point diesel and low pour point special lubricant base oil.
  • the results are shown in Tables 16-18; the liquid product is carried out according to the high-density jet fuel fractionation scheme Fractional distillation produces high-quality light naphtha, high-density jet fuel, high-density heavy diesel oil and low-pour-point special lubricant base oil.
  • Tables 19-21 The properties of the vacuum distillate are consistent with the data in Table 18.

Abstract

本发明涉及一种大密度航煤、超低凝柴油与低凝特种润滑油基础油的生产方法,包括下述步骤:中低温煤焦油经过沸腾床加氢裂化、固定床加氢改质和固定床贵金属加氢异构化三个反应单元生产出全馏分产品,再通过专有的分馏方案,获得高收率的大密度航煤、超低凝柴油以及一部分低凝特种润滑油基础油产品,具有极大的推广应用前景。

Description

大密度航煤、超低凝柴油与低凝特种润滑油基础油的生产方法 技术领域
本发明涉及一种中低温煤焦油通过沸腾床加氢裂化与固定床加氢三段组合工艺生产大密度航煤、超低凝柴油与低凝特种润滑油基础油的方法,属于劣质重油加工工艺领域。
背景技术
世界经济快速发展,对石油需求的不断增长。而常规石油储量日益减少,使得非常规石油资源-劣质重油已成为21世纪重的能源资源之一。中国2011年原没消费量达4.59亿吨,其中包括2.25亿吨的重质油,中国进口和加工劣质重油量也在迅速提高,如中国石油即将加工委内瑞拉超重油将达到3000万吨/年。另外,国内稠油、超稠油产量也在逐年提高,特别是辽河、新疆等油区,然而许多企业在加大量重质燃油方面仍然面临较大难度。利用劣质重油高效转化生产清洁轻质油品,是应对石油资源短缺的必由之路。
劣质重油的渣油含量很高,加工的核心技术就是通过渣油与减压瓦斯油提高轻质油的收率,劣质重油的渣油具有高硫、高残炭、高氮、高金属的特征,对于加工工艺的要求很高。目前,较为成熟的劣质重油加工工艺包括焦化、渣油加氢和催化劣化几种。目前常用的为焦化处理工艺,渣油加氢的工艺包括沸腾床、固定床、移动床+固定床、悬浮床等方式,能够处理劣质重油和沥青。但现有劣质重油处理的产品存在如下的问题:中低温煤焦油全馏分利用率低,产品价值低;另外,目前常规柴油无法满足高寒地区使用,航煤产品密度小、飞行器行驶距离短。
发明内容:
鉴于此,本发明的目的是提供一种中低温煤焦油通过沸腾床加氢裂化与固定床加氢改质三段组合工艺生产大密度航煤、超低凝柴油与低凝特种润滑油基础油的方法,能够解决中低温煤焦油利用率低,产品性质差、价值低的技术问题。
为了实现上述目的,本发明提供如下技术方案:
一种大密度航煤、超低凝柴油与低凝特种润滑油基础油的生产方法,包括以下步骤:
(1)中低温煤焦油与新鲜氢和循环氢混合后直接进入沸腾床加氢裂化单元,产生的气体产物进管网,液体产物进入1#常减压分馏单元;
(2)液体产物经1#常减压分馏单元分馏成石脑油、柴油、减压馏分油和减压尾油;
(3)所述的石脑油、柴油与减压馏分油混合后,与新鲜氢和循环氢混合进入固定床加氢改质单元,在固定床加氢改质单元反应后,气体产物进管网,液体产物进入闪蒸汽提塔,分离出溶解在液体产物中的硫化氢与氨,得到改质后的石脑油、柴油和减压馏分油的混合馏分;
(4)所述改质后的混合馏分,与新鲜氢和循环氢混合进入固定床贵金属加氢异构化与脱芳烃单元,在固定床贵金属加氢单元反应后,气体产物进管网,液体产物进入2#常减压分馏单元,进行分馏,得到最终的石脑油、大密度航煤、超低凝柴油与低凝特种润滑油基础油产品。
优选地,所述沸腾床加氢裂化单元的催化剂为以Al 2O 3为载体的金属催化剂,所述金属为Ni、Co、Mo、W金属中的两种或三种复配,Ni:Co:Mo:W 金属质量比为0~5:0~3:1,总金属占催化剂的质量比为20%~40%;所述沸腾床加氢裂化单元采用的反应器为带循环泵的沸腾床反应器;所述反应器操作条件为反应压力15~25MPa,反应温度410~460℃,总进料体积空速0.3~2.0h -1,氢/油体积比为800~1700;所述催化剂在反应器的藏量为30~50%,产物中减压尾油的收率为5~10w%。
优选地,所述金属为Co、Ni和Mo时,Co:Ni:Mo金属质量比为1~5:1~3:1;所述金属为Co、W和Mo时,Co:W:Mo金属质量比为1~5:1~3:1,所述金属为Ni和Mo时,Ni和Mo金属质量比为2.5:1。
优选地,所述固定床加氢改质单元采用的反应器为固定床反应器,含有具有烯烃饱和、脱除金属、脱硫、脱氮和减压馏分油裂化功能的负载型催化剂,为Co、Mo、Ni、W金属中的2种或3种负载在Al 2O 3的专有催化剂,其他金属与Mo的金属质量比为0~4:0~4:1,其金属总质量为催化剂质量的15~45%,Al 2O 3为中性或弱酸性氧化铝,pH为5~7;所述固定床加氢改质反应器操作条件为反应压力12~18MPa,反应温度220~400℃,总进料体积空速0.2~1.0h -1,氢/油体积比为800~1500,改质产物中S含量<5μg·g -1,N含量<5μg·g -1
优选地,所述固定床贵金属加氢采用的反应器为固定床反应器,含有具有芳烃饱和和异构化功能的负载型催化剂,所述催化剂为Pt、Pd双金属负载在Al 2O 3的催化剂,其金属总质量为催化剂质量的0.2~1.5%,Pt和Pd的质量比为1:0.1~1:1;所述反应器操作条件为反应压力12~20MPa,反应温度210~350℃,总进料体积空速0.2~1.5h -1,氢/油体积比为600~1200。
优选地,所述步骤(4)中的液体产物按超低凝柴油方案进行馏分切割,液体产品在2#常减压分馏单元分馏成以下产品:IBP~180℃馏分作为催化重整的优 质原料的石脑油产品,180~350℃馏分为超低凝柴油的柴油产品,350~500℃馏分为低凝特种润滑油基础油产品。
优选地,述步骤(4)中的液体产物按大密度航煤分馏方案进行馏分切割,液体产品在2#常减压分馏单元分馏成以下产品:IBP~140℃馏分为催化重整的优质原料的轻石脑油产品,140~280℃馏分为大密度航空燃料的航煤产品,280~350℃馏分为大密度柴油调和组分的重柴油产品,350~500℃馏分为低凝特种润滑油基础油产品。
优选地,所述步骤(2)得到的减压尾油用于制备新型碳材料或调和沥青。
本发明的有益效果:
本发明通过沸腾床加氢裂化反应提高产物中石脑油、柴油和蜡油的收率;通过固定床加氢改质反应降低蜡油产品收率,提高IBP~350℃馏分的收率和品质;通过固定床贵金属加氢反应改善航煤和柴油馏分中的组分结构,使最终产品满足超低凝柴油、大密度航煤和低凝特种润滑油基础油产品的质量要求。本发明提供的方法可生产高收率、高价值的高端产品,具有极大的推广应用前景。
附图说明:
图1为本发明的工艺流程图。
具体实施方式:
本发明公开了一种中低温煤焦油通过沸腾床加氢裂化与固定床加氢改质三段组合工艺生产大密度航煤、超低凝柴油与低凝特种润滑油基础油的方法,本领域技术人员可以借鉴本文内容,适当改进工艺参数实现。特别需要指出的是,所述类似的替换和改动对本领域技术人员来说是显而易见的,它们都被视为包括在本发明。本发明的方法及引用已经通过较佳实施例进行了描述,相关人员明显能在不脱离本发明内容、精神和范围内对本文所述的方法和应用进行改动或适当变更与组合,来实现和应用本发明技术。
如图1所示,一种中低温煤焦油通过沸腾床加氢裂化与固定床加氢改质三段组合工艺生产大密度航煤、超低凝柴油与低凝特种润滑油基础油的方法,包括以下步骤:
(1)中低温煤焦油与新鲜氢和循环氢混合后直接进入沸腾床加氢裂化单元,产生的气体产物进管网,液体产物进入1#常减压分馏单元;
(2)液体产物经1#常减压分馏单元分馏成石脑油、柴油、减压馏分油和减压尾油;
(3)所述的石脑油、柴油与减压馏分油混合后,与新鲜氢和循环氢混合进入固定床加氢改质单元,在固定床加氢改质单元反应后,气体产物进管网,液体产物进入闪蒸汽提塔,分离出溶解在液体产物中的硫化氢与氨,得到改质后的石脑油、柴油和减压馏分油的混合馏分;
(4)所述改质后的混合馏分,与新鲜氢和循环氢混合进入固定床贵金属加氢异构化与脱芳烃单元,在固定床贵金属加氢单元反应后,气体产物进管网,液体产物进入2#常减压分馏单元,进行分馏,得到最终的石脑油、大密度航煤、超低凝柴油与低凝特种润滑油基础油产品。
所述沸腾床加氢裂化单元的催化剂为以Al 2O 3为载体的金属催化剂,所述金属为Ni、Co、Mo、W金属中的两种或三种复配,Ni:Co:Mo:W金属质量比为0~5:0~3:1,总金属占催化剂的质量比为20%~40%;所述沸腾床加氢裂化单元采用的反应器为带循环泵的沸腾床反应器;所述反应器操作条件为反应压力15~25MPa,反应温度410~460℃,总进料体积空速0.3~2.0h -1,氢/油体积比为800~1700;所述催化剂在反应器的藏量为30~50%,产物中减压尾油的收率为5~10w%。
所述金属为Co、Ni和Mo时,Co:Ni:Mo金属质量比为1~5:1~3:1;所述金属为Co、W和Mo时,Co:W:Mo金属质量比为1~5:1~3:1,所述金属为Ni和Mo时,Ni和Mo金属质量比为2.5:1;特别优选为Co:Ni:Mo金属质量比为3:2:1或Co:W:Mo金属质量比为4:2:1或Ni:Mo金属质量比为2.5:1。
所述固定床加氢改质单元采用的反应器为固定床反应器,含有具有烯烃饱和、脱除金属、脱硫、脱氮和减压馏分油裂化功能的负载型催化剂,为Co、Mo、Ni、W金属中的2种或3种负载在Al 2O 3的专有催化剂,其他金属与Mo的金属质量比为0~4:0~4:1,其金属总质量为催化剂质量的15~45%,Al 2O 3为中性或弱酸性氧化铝,pH为5~7;所述固定床加氢改质反应器操作条件为反应压力12~18MPa,反应温度220~400℃,总进料体积空速0.2~1.0h -1,氢/油体积比为800~1500,改质产物中S含量<5μg·g -1,N含量<5μg·g -1
所述固定床贵金属加氢采用的反应器为固定床反应器,含有具有芳烃饱和和异构化功能的负载型催化剂,所述催化剂为Pt、Pd双金属负载在Al 2O 3的催化剂,其金属总质量为催化剂质量的0.2~1.5%,Pt和Pd的质量比为1:0.1~1:1;所述反应器操作条件为反应压力12~20MPa,反应温度210~350℃,总进料体积空速0.2~1.5h -1,氢/油体积比为600~1200。
液体产物可按超低凝柴油方案进行馏分切割:液体产品在2#常减压分馏单元分馏成可作为催化重整的优质原料的石脑油产品(IBP~180℃馏分)、可作为超低凝柴油的柴油产品(180~350℃馏分)和作为低凝特种润滑油基础油产品(350~500℃馏分)。
液体产物可按大密度航煤分馏方案进行馏分切割:液体产品在2#常减压分馏单元分馏成可作为催化重整的优质原料的轻石脑油产品(IBP~140℃馏分)、可作为大密度航空燃料的航煤产品(140~280℃馏分)、可作为大密度柴油调和 组分的重柴油产品(280~350℃馏分)和作为低凝特种润滑油基础油产品(350~500℃馏分)。
实施例1
实施例1使用的1#中低温煤焦油来自内蒙古,其性质如表1所示。
表1 1#中低温煤焦油原料性质
项目 1#中低温煤焦油
密度(20℃),g·cm -3 1.0970
水含量,w% 1.59
C含量,w% 80.95
H含量,w% 8.09
S含量,w% 0.59
N含量,w% 1.15
残炭,w% 7.60
沥青质,w% 32.41
甲苯不溶物,w% 6.49
按以下操作条件以3#中低温煤焦油生产大密度航煤、超低凝柴油与低凝特种润滑油基础油,包括如下步骤:
(1)中低温煤焦油与新鲜氢和循环氢混合后直接进入沸腾床加氢裂化单元,产生的气体产物进管网,液体产物进入1#常减压分馏单元;沸腾床加氢裂化单元的催化剂为Ni-Mo/Al 2O 3催化剂,Ni:Mo金属质量比为2.5:1,总金属占催化剂的质量比为30%,反应压力16MPa,反应温度440℃,总进料体积空速0.5h -1,氢/油体积比为1500;所述催化剂在反应器的藏量为35%,产物中减压尾油的收率为8%。
(2)液体产物经1#常减压分馏单元分馏成石脑油、柴油、减压馏分油和减压尾油;
(3)所述的石脑油、柴油与减压馏分油混合后,与新鲜氢和循环氢混合进入固定床加氢改质单元,在固定床加氢改质单元反应后,气体产物进管网,液体产物进入闪蒸汽提塔,分离出溶解在液体产物中的硫化氢与氨,得到改质后的石脑油、柴油和减压馏分油的混合馏分;固定床加氢改质单元采用的催化剂为Co-Ni-Mo/Al 2O 3催化剂,Co:Ni:Mo金属质量比为2.5:2.5:1,其金属总质量为催化剂质量的20%,Al 2O 3为中性氧化铝,pH为6,反应压力16MPa,反应温度340℃,总进料体积空速0.5h -1,氢/油体积比为1200,改质产物中S含量<5μg·g -1,N含量<5μg·g -1
(4)所述改质后的混合馏分,与新鲜氢和循环氢混合进入固定床贵金属加氢异构化与脱芳烃单元,在固定床贵金属加氢单元反应后,气体产物进管网,液体产物进入2#常减压分馏单元,进行分馏,得到最终的石脑油、大密度航煤、超低凝柴油与低凝特种润滑油基础油产品。固定床贵金属加氢采用的催化剂为Pt-Pd/Al 2O 3的催化剂,其金属总质量为催化剂质量的0.4%,Pt:Pd的质量比为1:0.3,反应压力16MPa,反应温度240℃,总进料体积空速0.2h -1,氢/油体积比为800。
液体产物按超低凝柴油方案进行分馏,生产优质石脑油、超低凝柴油和低凝特种润滑油基础油,结果如表2~表4所示;液体产物按大密度航煤分馏方案进行分馏,生产优质轻石脑油、大密度航煤、大密度重柴油和低凝特种润滑油基础油,结果如表5~表7所示,减压馏分油性质与表4中数据一致。
表2 石脑油产品(IBP~180℃)性质
分析项目 石脑油
收率(占煤焦油原料,质量分数),% 32.27
密度(20℃)/g·cm -3 0.7660
S/μg·g -1 <1.0
N/μg·g -1 <1.0
芳烃潜含量/w% 62.61
芳烃含量(体积分数)/% 0.0
烯烃含量(体积分数)/% 0.0
表3 柴油产品(180~350℃)性质
分析项目 柴油
收率(占煤焦油原料,质量分数),% 48.28
密度(20℃)/g·cm -3 0.8804
凝点/℃ <-60
冷滤点/℃ <-45
闪点(闭口)/℃ 79.1
C/w% 86.22
H/w% 13.25
S/μg·g -1 1.1
N/μg·g -1 1.0
十六烷值 45
十六烷值指数/ASTM D4737-96a 36.07
多环芳烃含量(质量分数)/% 0.2
表4 减压馏分油(350~500℃)性质
分析项目 减压馏分油
收率(占煤焦油原料,质量分数),% 12.30
密度(20℃)/g·cm -3 0.9100
粘度指数 117
凝点/℃ -35
C/w% 86.67
H/w% 13.30
S/μg·g -1 1.2
N/μg·g -1 2.3
烃族组成  
链烷烃 36.4
总环烷烃 60.6
其中:一环 36.5
二环 13.8
三环 10.3
总芳烃 3.0
其中:一环 2.5
二环 0.5
胶质 0.0
表5 轻石脑油产品(IBP~140℃)性质
分析项目 轻石脑油
收率(占煤焦油原料,质量分数),% 21.77
密度(20℃)/g·cm -3 0.7370
S/μg·g -1 <1.0
N/μg·g -1 <1.0
芳烃潜含量/w% 63.31
芳烃含量(体积分数)/% 0.0
烯烃含量(体积分数)/% 0.0
表6 航煤产品(140~280℃)性质
分析项目 航煤组分
收率(占煤焦油原料,质量分数),% 46.06
密度(20℃)/g·cm -3 0.8546
粘度(20℃)/mm 2·s -1 2.892
溴价/mgBr 2·(100g油) -1 52.20
冰点/℃ <-57.0
烟点/mm 22.1
闪点(闭口)/℃ 50
净热值/(MJ/kg) 43.01
总酸值/mgKOH·g -1 0.04
C/w% 85.84
H/w% 13.52
总硫含量(质量分数)/μg·g -1 1.0
硫醇硫(质量分数)/μg·g -1 <1,低于检测下限
总氮含量(质量分数)/μg·g -1 1.0
铜片腐蚀(100℃,2h)/级 0
银片腐蚀(50℃,4h)/级 1
表7 重柴油产品(280~350℃)性质
分析项目 重柴油
收率(占煤焦油原料,质量分数),% 12.72
密度(20℃)/g·cm -3 0.9048
凝点/℃ <-60
冷滤点/℃ <-45
闪点(闭口)/℃ 136
C/w% 86.81
H/w% 12.93
S/μg·g -1 1.9
N/μg·g -1 1.1
十六烷值 50
十六烷值指数/ASTM D4737-96a 43.69
多环芳烃含量(质量分数)/% 0.4
实施例2
实施例2使用的2#中低温煤焦油来自陕西,其性质如表8所示。
表8 2#中低温煤焦油原料性质
项目 2#中低温煤焦油
密度(20℃),g·cm -3 1.0757
水含量,w% 1.24
C含量,w% 80.41
H含量,w% 8.62
S含量,w% 0.41
N含量,w% 0.96
残炭,w% 11.83
沥青质,w% 28.61
甲苯不溶物,w% 5.27
按以下操作条件以2#中低温煤焦油生产大密度航煤、超低凝柴油与低凝特种润滑油基础油,包括以下步骤:
(1)中低温煤焦油与新鲜氢和循环氢混合后直接进入沸腾床加氢裂化单元,产生的气体产物进管网,液体产物进入1#常减压分馏单元;沸腾床加氢裂化单元的催化剂为Co-W-Mo/Al 2O 3催化剂,Co:W:Mo金属质量比为4:2:1,总金属占催化剂的质量比为20%,反应压力25MPa,反应温度460℃,总进料体积空速2.0h -1,氢/油体积比为1700;所述催化剂在反应器的藏量为30%,产物中减压尾油的收率为5%。
(2)液体产物经1#常减压分馏单元分馏成石脑油、柴油、减压馏分油和减压尾油;
(3)所述的石脑油、柴油与减压馏分油混合后,与新鲜氢和循环氢混合进入固定床加氢改质单元,在固定床加氢改质单元反应后,气体产物进管网,液体产物进入闪蒸汽提塔,分离出溶解在液体产物中的硫化氢与氨,得到改质后的石脑油、柴油和减压馏分油的混合馏分;固定床加氢改质单元采用的催化剂为W-Mo/Al 2O 3催化剂,W:Mo金属质量比为4:1,其金属总质量为催化剂质量的15%,Al 2O 3为弱酸性氧化铝,pH为7,反应压力18MPa,反应温度220℃,总进料体积空速1.0h -1,氢/油体积比为800,改质产物中S含量<5μg·g -1,N含量<5μg·g -1
(4)所述改质后的混合馏分,与新鲜氢和循环氢混合进入固定床贵金属加氢异构化与脱芳烃单元,在固定床贵金属加氢单元反应后,气体产物进管网,液体产物进入2#常减压分馏单元,进行分馏,得到最终的石脑油、大密度航煤、超低凝柴油与低凝特种润滑油基础油产品。固定床贵金属加氢采用的催化剂为Pt-Pd/Al 2O 3的催化剂,其金属总质量为催化剂质量的0.2%,Pt:Pd的质量比为1:1,反应压力20MPa,反应温度210℃,总进料体积空速0.4h -1,氢/油体积比为1200。
液体产物按超低凝柴油方案进行分馏,生产优质石脑油、超低凝柴油和低凝特种润滑油基础油,结果如表9~表11所示;液体产物按大密度航煤分馏方案进行分馏,生产优质轻石脑油、大密度航煤、大密度重柴油和低凝特种润滑油基础油,结果如表12~表14所示,减压馏分油性质与表11中数据一致。
表9 石脑油产品(IBP~180℃)性质
分析项目 石脑油
收率(占煤焦油原料,质量分数),% 34.32
密度(20℃)/g·cm -3 0.7657
S/μg·g -1 <1.0
N/μg·g -1 <1.0
芳烃潜含量/w% 67.24
芳烃含量(体积分数)/% 0.0
烯烃含量(体积分数)/% 0.0
表10 柴油产品(180~350℃)性质
分析项目 柴油
收率(占煤焦油原料,质量分数),% 47.12
密度(20℃)/g·cm -3 0.8815
凝点/℃ <-60
冷滤点/℃ <-45
闪点(闭口)/℃ 82.2
C/w% 86.14
H/w% 13.32
S/μg·g -1 1.0
N/μg·g -1 1.0
十六烷值 46.1
十六烷值指数/ASTM D4737-96a 37.01
多环芳烃含量(质量分数)/% 0.1
表11 减压馏分油(350~500℃)性质
分析项目 减压馏分油
收率(占煤焦油原料,质量分数),% 11.15
密度(20℃)/g·cm -3 0.9114
粘度指数 115
凝点/℃ -35
C/w% 86.62
H/w% 13.35
S/μg·g -1 1.4
N/μg·g -1 2.0
烃族组成  
链烷烃 33.1
总环烷烃 64.2
其中:一环 41.3
二环 20.5
三环 2.4
总芳烃 2.7
其中:一环 1.8
二环 0.9
胶质 0.0
表12 轻石脑油产品(IBP~140℃)性质
分析项目 轻石脑油
收率(占煤焦油原料,质量分数),% 25.61
密度(20℃)/g·cm -3 0.7362
S/μg·g -1 <1.0
N/μg·g -1 <1.0
芳烃潜含量/w% 65.22
芳烃含量(体积分数)/% 0.0
烯烃含量(体积分数)/% 0.0
表13 航煤产品(140~280℃)性质
分析项目 航煤组分
收率(占煤焦油原料,质量分数),% 45.46
密度(20℃)/g·cm -3 0.8544
粘度(20℃)/mm 2·s -1 2.883
溴价/mgBr 2·(100g油) -1 52.12
冰点/℃ <-57.0
烟点/mm 23.5
闪点(闭口)/℃ 55
净热值/(MJ/kg) 44.12
总酸值/mgKOH·g -1 0.02
C/w% 85.82
H/w% 13.51
总硫含量(质量分数)/μg·g -1 <1.0
硫醇硫(质量分数)/μg·g -1 <1,低于检测下限
总氮含量(质量分数)/μg·g -1 1.0
铜片腐蚀(100℃,2h)/级 0
银片腐蚀(50℃,4h)/级 1
表14 重柴油产品(280~350℃)性质
分析项目 重柴油
收率(占煤焦油原料,质量分数),% 10.37
密度(20℃)/g·cm -3 0.9053
凝点/℃ <-60
冷滤点/℃ <-45
闪点(闭口)/℃ 140
C/w% 87.04
H/w% 12.87
S/μg·g -1 1.5
N/μg·g -1 1.1
十六烷值 47
十六烷值指数/ASTM D4737-96a 42.88
多环芳烃含量(质量分数)/% 0.2
实施例3
实施例3使用的3#中低温煤焦油来自河北,其性质如表15所示。
表15 3#中低温煤焦油原料性质
项目 3#中低温煤焦油
密度(20℃),g·cm -3 1.0128
水含量,w% 1.34
C含量,w% 83.12
H含量,w% 9.26
S含量,w% 0.33
N含量,w% 0.65
残炭,w% 0.50
沥青质,w% 0.64
甲苯不溶物,w% 2.40
按以下操作条件以3#中低温煤焦油生产大密度航煤、超低凝柴油与低凝特种润滑油基础油,包括以下步骤:
(1)中低温煤焦油与新鲜氢和循环氢混合后直接进入沸腾床加氢裂化单元,产生的气体产物进管网,液体产物进入1#常减压分馏单元;沸腾床加氢裂化单元的催化剂为Co-Ni-Mo/Al 2O 3催化剂,Co:Ni:Mo金属质量比为3:2:1,总金属占催化剂的质量比为40%,反应压力15MPa,反应温度410℃,总进料体积空速0.3h -1,氢/油体积比为800;所述催化剂在反应器的藏量为50%,产物中减压尾油的收率为10%。
(2)液体产物经1#常减压分馏单元分馏成石脑油、柴油、减压馏分油和减压尾油;
(3)所述的石脑油、柴油与减压馏分油混合后,与新鲜氢和循环氢混合进入固定床加氢改质单元,在固定床加氢改质单元反应后,气体产物进管网,液体产物进入闪蒸汽提塔,分离出溶解在液体产物中的硫化氢与氨,得到改质后的石脑油、柴油和减压馏分油的混合馏分;固定床加氢改质单元采用的催化剂为Ni-Mo/Al 2O 3催化剂,Ni:Mo金属质量比为2:1,其金属总质量为催化剂质量的45%,Al 2O 3为弱酸性氧化铝,pH为5,反应压力12MPa,反应温度440℃,总进料体积空速0.2h -1,氢/油体积比为1500,改质产物中S含量<5μg·g -1,N含量<5μg·g -1
(4)所述改质后的混合馏分,与新鲜氢和循环氢混合进入固定床贵金属加氢异构化与脱芳烃单元,在固定床贵金属加氢单元反应后,气体产物进管网,液体产物进入2#常减压分馏单元,进行分馏,得到最终的石脑油、大密度航煤、超低凝柴油与低凝特种润滑油基础油产品。固定床贵金属加氢采用的催化剂为Pt-Pd/Al 2O 3的催化剂,其金属总质量为催化剂质量的0.6%,Pt:Pd的质量比为1:0.1,反应压力12MPa,反应温度350℃,总进料体积空速1.5h -1,氢/油体积比为600。
液体产物按超低凝柴油方案进行分馏,生产优质石脑油、超低凝柴油和低凝特种润滑油基础油,结果如表16~表18所示;液体产物按大密度航煤分馏方案进行分馏,生产优质轻石脑油、大密度航煤、大密度重柴油和低凝特种润滑油基础油,结果如表19~表21所示,减压馏分油性质与表18中数据一致。
表16 石脑油产品(IBP~180℃)性质
分析项目 石脑油
收率(占煤焦油原料,质量分数),% 33.18
密度(20℃)/g·cm -3 0.7664
S/μg·g -1 <1.0
N/μg·g -1 <1.0
芳烃潜含量/w% 62.59
芳烃含量(体积分数)/% 0.0
烯烃含量(体积分数)/% 0.0
表17 柴油产品(180~350℃)性质
分析项目 柴油
收率(占煤焦油原料,质量分数),% 45.54
密度(20℃)/g·cm -3 0.8804
凝点/℃ <-60
冷滤点/℃ <-45
闪点(闭口)/℃ 79.1
C/w% 86.22
H/w% 13.25
S/μg·g -1 1.0
N/μg·g -1 1.0
十六烷值 45.2
十六烷值指数/ASTM D4737-96a 36.14
多环芳烃含量(质量分数)/% 0.0
表18 减压馏分油(350~500℃)性质
分析项目 减压馏分油
收率(占煤焦油原料,质量分数),% 8.28
密度(20℃)/g·cm -3 0.9100
粘度指数 121
凝点/℃ -35
C/w% 86.57
H/w% 13.32
S/μg·g -1 1.3
N/μg·g -1 1.7
烃族组成  
链烷烃 31.5
总环烷烃 65.3
其中:一环 38.9
二环 21.2
三环 5.2
总芳烃 3.2
其中:一环 2.2
二环 1.0
胶质 0.0
表19 轻石脑油产品(IBP~140℃)性质
分析项目 轻石脑油
收率(占煤焦油原料,质量分数),% 21.77
密度(20℃)/g·cm -3 0.7378
S/μg·g -1 <1.0
N/μg·g -1 <1.0
芳烃潜含量/w% 63.21
芳烃含量(体积分数)/% 0.0
烯烃含量(体积分数)/% 0.0
表20 航煤产品(140~280℃)性质
分析项目 航煤组分
收率(占煤焦油原料,质量分数),% 45.23
密度(20℃)/g·cm -3 0.8546
粘度(20℃)/mm 2·s -1 2.892
溴价/mgBr 2·(100g油) -1 52.21
冰点/℃ <-57.0
烟点/mm 22.6
闪点(闭口)/℃ 50
净热值/(MJ/kg) 43.05
总酸值/mgKOH·g -1 0.04
C/w% 85.88
H/w% 13.63
总硫含量(质量分数)/μg·g -1 <1.0
硫醇硫(质量分数)/μg·g -1 <1,低于检测下限
总氮含量(质量分数)/μg·g -1 <1.0
铜片腐蚀(100℃,2h)/级 0
银片腐蚀(50℃,4h)/级 0
表21 重柴油产品(280~350℃)性质
分析项目 重柴油
收率(占煤焦油原料,质量分数),% 11.72
密度(20℃)/g·cm -3 0.9048
凝点/℃ <-60
冷滤点/℃ <-45
闪点(闭口)/℃ 137
C/w% 87.07
H/w% 12.89
S/μg·g -1 1.2
N/μg·g -1 1.7
十六烷值 49
十六烷值指数/ASTM D4737-96a 43.37
多环芳烃含量(质量分数)/% 0.1
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖性特点相一致的最宽的范围。

Claims (8)

  1. 一种大密度航煤、超低凝柴油与低凝特种润滑油基础油的生产方法,其特征在于,包括以下步骤:
    (1)中低温煤焦油与新鲜氢和循环氢混合后直接进入沸腾床加氢裂化单元,产生的气体产物进管网,液体产物进入1#常减压分馏单元;
    (2)液体产物经1#常减压分馏单元分馏成石脑油、柴油、减压馏分油和减压尾油;
    (3)所述的石脑油、柴油与减压馏分油混合后,与新鲜氢和循环氢混合进入固定床加氢改质单元,在固定床加氢改质单元反应后,气体产物进管网,液体产物进入闪蒸汽提塔,分离出溶解在液体产物中的硫化氢与氨,得到改质后的石脑油、柴油和减压馏分油的混合馏分;
    (4)所述改质后的混合馏分,与新鲜氢和循环氢混合进入固定床贵金属加氢异构化与脱芳烃单元,在固定床贵金属加氢单元反应后,气体产物进管网,液体产物进入2#常减压分馏单元,进行分馏,得到最终的石脑油、大密度航煤、超低凝柴油与低凝特种润滑油基础油产品。
  2. 根据权利要求1所述的一种大密度航煤、超低凝柴油与低凝特种润滑油基础油的生产方法,其特征在于:所述沸腾床加氢裂化单元的催化剂为以Al 2O 3为载体的金属催化剂,所述金属为Ni、Co、Mo、W金属中的两种或三种复配,Ni:Co:Mo:W金属质量比为0~5:0~3:1,总金属占催化剂的质量比为20%~40%;所述沸腾床加氢裂化单元采用的反应器为带循环泵的沸腾床反应器;所述反应器操作条件为反应压力15~25MPa,反应温度410~460℃,总进料体积空速0.3~2.0h -1,氢/油体积比为800~1700;所述催化剂在反应器的藏量为30~50%,产物中减压尾油的收率为5~10w%。
  3. 根据权利要求2所述的一种大密度航煤、超低凝柴油与低凝特种润滑油基础油的生产方法,其特征在于:所述金属为Co、Ni和Mo时,Co:Ni:Mo金属质量比为1~5:1~3:1;所述金属为Co、W和Mo时,Co:W:Mo金属质量比为1~5:1~3:1,所述金属为Ni和Mo时,Ni和Mo金属质量比为2.5:1。
  4. 根据权利要求1所述的一种大密度航煤、超低凝柴油与低凝特种润滑油基础油的生产方法,其特征在于:所述固定床加氢改质单元采用的反应器为固定床反应器,含有具有烯烃饱和、脱除金属、脱硫、脱氮和减压馏分油裂化功能的负载型催化剂,为Co、Mo、Ni、W金属中的2种或3种负载在Al 2O 3的专有催化剂,其他金属与Mo的金属质量比为0~4:0~4:1,其金属总质量为催化剂质量的15~45%,Al 2O 3为中性或弱酸性氧化铝,pH为5~7;所述固定床加氢改质反应器操作条件为反应压力12~18MPa,反应温度220~400℃,总进料体积空速0.2~1.0h -1,氢/油体积比为800~1500,改质产物中S含量<5μg·g -1,N含量<5μg·g -1
  5. 根据权利要求1所述的一种大密度航煤、超低凝柴油与低凝特种润滑油基础油的生产方法,其特征在于:所述固定床贵金属加氢采用的反应器为固定床反应器,含有具有芳烃饱和和异构化功能的负载型催化剂,所述催化剂为Pt、Pd双金属负载在Al 2O 3的催化剂,其金属总质量为催化剂质量的0.2~1.5%,Pt和Pd的质量比为1:0.1~1:1;所述反应器操作条件为反应压力12~20MPa,反应温度210~350℃,总进料体积空速0.2~1.5h -1,氢/油体积比为600~1200。
  6. 根据权利要求1所述的一种大密度航煤、超低凝柴油与低凝特种润滑油基础油的生产方法,其特征在于:所述步骤(4)中的液体产物按超低凝柴油方案进行馏分切割,液体产品在2#常减压分馏单元分馏成以下产品:IBP~180℃馏分作为催化重整的优质原料的石脑油产品,180~350℃馏分为超低凝柴油的柴油产品,350~500℃馏分为低凝特种润滑油基础油产品。
  7. 根据权利要求1所述的一种大密度航煤、超低凝柴油与低凝特种润滑油基础油的生产方法,其特征在于:所述步骤(4)中的液体产物按大密度航煤分馏方案进行馏分切割,液体产品在2#常减压分馏单元分馏成以下产品:IBP~140℃馏分为催化重整的优质原料的轻石脑油产品,140~280℃馏分为大密度航空燃料的航煤产品,280~350℃馏分为大密度柴油调和组分的重柴油产品,350~500℃馏分为低凝特种润滑油基础油产品。
  8. 根据权利要求1所述的一种大密度航煤、超低凝柴油与低凝特种润滑油基础油的生产方法,其特征在于:所述步骤(2)得到的减压尾油用于制备新型碳材料或调和沥青。
PCT/CN2019/122316 2019-01-25 2019-12-02 大密度航煤、超低凝柴油与低凝特种润滑油基础油的生产方法 WO2020151371A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910074999.7 2019-01-25
CN201910074999.7A CN109666510A (zh) 2019-01-25 2019-01-25 大密度航煤、超低凝柴油与低凝特种润滑油基础油的生产方法

Publications (1)

Publication Number Publication Date
WO2020151371A1 true WO2020151371A1 (zh) 2020-07-30

Family

ID=66150271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122316 WO2020151371A1 (zh) 2019-01-25 2019-12-02 大密度航煤、超低凝柴油与低凝特种润滑油基础油的生产方法

Country Status (2)

Country Link
CN (1) CN109666510A (zh)
WO (1) WO2020151371A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109666510A (zh) * 2019-01-25 2019-04-23 内蒙古晟道催化技术有限公司 大密度航煤、超低凝柴油与低凝特种润滑油基础油的生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4323446A (en) * 1979-08-30 1982-04-06 Hydrocarbon Research, Inc. Multi-zone coal conversion process using particulate carrier material
CN105419864A (zh) * 2015-11-13 2016-03-23 王树宽 全氢型煤焦油制备高辛烷值汽油、航煤和环烷基基础油的系统及方法
CN108102699A (zh) * 2016-11-25 2018-06-01 中国石油化工股份有限公司 一种煤焦油综合利用方法
CN108641749A (zh) * 2018-05-11 2018-10-12 内蒙古晟源科技有限公司 一种通过中低温煤焦油生产高品质燃料的加氢组合工艺方法
CN109666510A (zh) * 2019-01-25 2019-04-23 内蒙古晟道催化技术有限公司 大密度航煤、超低凝柴油与低凝特种润滑油基础油的生产方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106147854B (zh) * 2015-04-28 2018-02-23 中国石油化工股份有限公司 一种由煤焦油生产大比重航空煤油的方法
CN104946306B (zh) * 2015-05-26 2017-06-16 中国石油大学(华东) 一种煤焦油全馏分悬浮床加氢裂化和固定床加氢改质组合方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4323446A (en) * 1979-08-30 1982-04-06 Hydrocarbon Research, Inc. Multi-zone coal conversion process using particulate carrier material
CN105419864A (zh) * 2015-11-13 2016-03-23 王树宽 全氢型煤焦油制备高辛烷值汽油、航煤和环烷基基础油的系统及方法
CN108102699A (zh) * 2016-11-25 2018-06-01 中国石油化工股份有限公司 一种煤焦油综合利用方法
CN108641749A (zh) * 2018-05-11 2018-10-12 内蒙古晟源科技有限公司 一种通过中低温煤焦油生产高品质燃料的加氢组合工艺方法
CN109666510A (zh) * 2019-01-25 2019-04-23 内蒙古晟道催化技术有限公司 大密度航煤、超低凝柴油与低凝特种润滑油基础油的生产方法

Also Published As

Publication number Publication date
CN109666510A (zh) 2019-04-23

Similar Documents

Publication Publication Date Title
AU2018222933B2 (en) Combined hydrogenation process method for producing high-quality fuel by medium-low-temperature coal tar
CN101210198B (zh) 一种生产优质柴油和优质重整原料的加氢方法
CN104611056B (zh) 一种低温费托合成产物的加氢处理方法
CN103695031B (zh) 一种由煤焦油生产柴油兼产船用燃料油调和组分的方法
RU2679662C1 (ru) Устройство и способ для изготовления дизельного масла и реактивного топлива при использовании синтетической нефти от синтеза фишера-тропша
CN101787307A (zh) 一种汽油加氢脱硫方法
WO2017181813A1 (zh) 低温费托合成油与劣质原料油联合加氢生产优质柴油的方法及其设备
CN105419867A (zh) 一种利用生物质油生产绿色环保运输燃料的组合加氢方法及装置
CN101538482A (zh) 一种中低温煤焦油深加工方法
CN1752188A (zh) 一种燃料油的生产方法
CN113372952B (zh) 利用煤焦油富环状烃馏分生产航空煤油的方法
WO2020151371A1 (zh) 大密度航煤、超低凝柴油与低凝特种润滑油基础油的生产方法
CN103773473B (zh) 一种生产优质喷气燃料的两段加氢裂化方法
CN104277879A (zh) 一种中低温煤焦油的两级浆态床加氢工艺
CN109988623B (zh) 灵活反序加氢裂化工艺
CN109988610B (zh) 一种灵活两段加氢裂化方法
CN103773463B (zh) 一种两段加氢裂化方法
CN105623731A (zh) 一种以蒽油为原料制备高密度煤基喷气燃料的方法
CN110016363A (zh) 费托合成油加工产柴油和润滑油基础油的方法及系统
CN110540873B (zh) 一种环烷基油的处理方法
CN1233797C (zh) 一种煤直接液化柴油的加氢改质方法
CN102911722B (zh) 一种费托合成油加氢提质方法
CN106398762A (zh) 一种由费托合成油加氢生产中间馏分油的方法
CN103059958B (zh) 催化裂化和催化汽油加氢联合工艺方法
CN105694967A (zh) 一种煤焦油的加工方法以及用该方法获得的高辛烷值汽油

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911805

Country of ref document: EP

Kind code of ref document: A1