WO2020151352A1 - 光子集成芯片内矢量涡旋光束辐射器及其应用 - Google Patents

光子集成芯片内矢量涡旋光束辐射器及其应用 Download PDF

Info

Publication number
WO2020151352A1
WO2020151352A1 PCT/CN2019/119723 CN2019119723W WO2020151352A1 WO 2020151352 A1 WO2020151352 A1 WO 2020151352A1 CN 2019119723 W CN2019119723 W CN 2019119723W WO 2020151352 A1 WO2020151352 A1 WO 2020151352A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
vortex
femtosecond laser
order
direct writing
Prior art date
Application number
PCT/CN2019/119723
Other languages
English (en)
French (fr)
Inventor
金贤敏
陈媛
沈维冠
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2020151352A1 publication Critical patent/WO2020151352A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12147Coupler

Definitions

  • the invention relates to a technology in the optical field, in particular to a vector vortex beam radiator and a method for generating and transmitting vector vortex light inside a waveguide of a photonic integrated chip.
  • the vector vortex light can carry both spin and orbital angular momentum.
  • the vector vortex beam whose spin varies with space and has a singular point in the center has attracted great interest from researchers.
  • the vector vortex light provides additional new degrees of freedom and new resources for classical information and quantum information. Its inherent infinite dimensions and field structure characteristics make it used to increase the information capacity of classical information, generate high-dimensional quantum states, and measure precision. And quantum communication and quantum computing in high-dimensional Hilbert space. Due to the large-scale application of vector vortex light in the field of classical information and quantum information, it is necessary to develop integrated devices and equipment to integrate the generation, transmission, and manipulation of vector vortex light, so as to avoid its connection errors in the macroscopic optical path.
  • the present invention proposes a vector vortex beam radiator and its application based on the defects and deficiencies of the prior art and combined with the highly flexible characteristics of femtosecond laser processing.
  • the modulated femtosecond laser performs a ring waveguide capable of transmitting vortex light.
  • the phase matching conditions are adjusted by adjusting the size of the ring waveguide to achieve efficient generation of first-order and second-order vortex light; at the same time, the vortex light transmission, generation and Manipulation increases the freedom of processing on the integrated chip.
  • the invention relates to a preparation method of an asymmetric coupler.
  • the femtosecond laser direct writing technology is used to focus the femtosecond laser below the glass surface, and the radius of a ring waveguide capable of transmitting vector vortex light is scanned to reach the single-mode waveguide Phase matching conditions, the processed asymmetric coupler can be used to generate multi-stage vortex mode.
  • the femtosecond laser direct writing refers to setting the femtosecond laser pulse center at 513nm, the pulse duration is 290fs, the repetition frequency is 1MHz, the lens with a numerical aperture of 0.7 is used, and the direct writing speed is 5mm/s.
  • the multiple scans described include: first-order ring waveguide direct writing and second-order ring waveguide direct writing, in which: the single-mode waveguide direct writing power is 154mw, the first-order ring waveguide power is 136-144mw; the second-order ring waveguide power is 142-150mw.
  • the glass is borosilicate.
  • the ring waveguide is scanned multiple times, and the number of times is 12 times.
  • the radius of the first-order ring waveguide is about 3.7 ⁇ m, and the radius of the second-order ring waveguide is about 5 ⁇ m.
  • the condition for achieving phase matching with the single-mode waveguide means that the propagation constant of the single-mode waveguide and the propagation constant of the ring waveguide are equal.
  • the present invention relates to a coupler prepared by the above method, which has an asymmetric structure and is located 170 ⁇ m below the glass surface on average, and includes a ring waveguide and a single-mode waveguide, wherein the single-mode waveguide is elliptical.
  • the present invention relates to the application of the above-mentioned asymmetric coupler, which is used to generate vector vortex light inside a photonic integrated chip.
  • the present invention relates to a chip for realizing the above application, including the asymmetric coupler prepared by the above method.
  • the present invention adopts femtosecond laser direct writing technology to produce vortex light efficiently in transparent hard materials.
  • the chip of the present invention can stably generate first-order and second-order vortex light. When it is low, the vector vortex light is produced.
  • the direct write pulse energy is high, the scalar vortex light is produced, that is, the pure state is efficiently produced, and the generation efficiency is as high as 74%.
  • This not only completes the quantum optical chip technology and enables it to have the function of the vortex fiber in macro optics, but also realizes the miniaturization and integration of vortex light generation and transmission and manipulation, and avoids its impact in the macro optical path. Problems such as connection error, access loss and interface noise improve the stability, reliability, and robustness of the system.
  • Fig. 1 is a schematic diagram of first-order and second-order vortex light generation in the embodiment
  • Figure 1 1 the wave front of the Gaussian light that has entered, 2 the single-mode waveguide, 3 the ring waveguide, 4 the wave front of the second-order vector vortex light emitted from the wave, 5 the beam splitter, and 6 the reference for interference
  • the wave front of Gaussian light, the interference pattern of 7 vortex light and Gaussian light interference
  • FIG. 2 is a schematic diagram of the first-order vector vortex light generation in the embodiment
  • FIG. 3 is a schematic diagram of the variation of the first-order vortex light with the direct write pulse energy in the embodiment
  • Figure 4 is a schematic diagram of the results of the vortex beam array
  • FIG 4 (a) is a schematic diagram of an array type asymmetric directional coupler, (b) is the intensity pattern and interference pattern produced by the first-order vortex beam array, (c) is the intensity produced by the second-order vortex beam array Pattern and interference pattern, (d) is the intensity distribution along the radial direction of the first-order vector vortex light extracted from (b), (e) is the second-order vector vortex light extracted from (c) The radial intensity distribution.
  • the asymmetric coupler and its chip involved in this embodiment include: a coupler composed of a single-mode waveguide 2 and a ring waveguide 3, where the wavefront 1 of the injected Gaussian light passes through Due to the coupling of the evanescent wave between the single-mode waveguide 2 and the ring waveguide 3, the phase matching condition is reached under certain conditions to produce the wavefront 4 of the second-order vector vortex light and be combined with the wavefront 6 of the reference Gaussian light for interference Enter the beam splitter 5 to obtain an interference pattern 7 of vortex light and Gaussian light interference.
  • Gaussian light with different polarizations is incident on the single-mode waveguide of the directional coupler, and is coupled to the adjacent ring waveguide through the evanescent wave to generate vector vortex light with different spatial distributions.
  • the first row H in the figure shows the horizontally polarized Gaussian beam incident on the single-mode waveguide of the asymmetric coupler.
  • the intensity distribution of the vortex light obtained and the intensity distribution obtained by polarization projection analysis are shown in the last column.
  • the spatial polarization distribution of the vector vortex light is radial polarization.
  • the second row V is the intensity distribution of the vortex light obtained when the vertically polarized Gaussian beam is incident and the intensity distribution obtained by the polarization projection analysis on it.
  • the last column refers to the spatial polarization distribution of the vector vortex light at this time characteristic.
  • the third row D is the intensity distribution of the vortex light generated by the diagonally polarized Gaussian beam incident and coupled to the adjacent ring waveguide and the intensity distribution obtained by polarization projection analysis.
  • the last column refers to the vector vortex at this time The spatial polarization distribution characteristics of optical rotation.
  • the fourth row R is the intensity distribution of the vortex light generated by the right-hand circularly polarized Gaussian beam incidentally coupled to the adjacent ring waveguide and the intensity distribution obtained by polarization projection analysis.
  • the last column refers to the space of the vector vortex light Polarization distribution characteristics; the coupling lens used is 16 times, its numerical aperture is 0.25, and the focal length is 11mm.
  • the radius of the ring waveguide that generates the first-order (second-order) vortex light is estimated to be 3.5 ⁇ m (4.9 ⁇ m), taking into account the complexity of femtosecond laser processing and two different waveguides
  • the final implementation obtains a first-order (second-order) waveguide radius of 3.7 ⁇ m (5.0 ⁇ m).
  • the implementation found that when the direct write pulse energy is small, the vector vortex light is generated;
  • Figure 3(b) clearly shows that when the direct write pulse energy is small, the vector vortex light is generated; when the direct write pulse energy is large, the vector vortex light is generated.
  • Scalar vortex light is a pure state, and its conversion efficiency is as high as 74%.
  • both the first-order and second-order vortex lights have a good power fill area, and the first-order and second-order modes generated in this fill area are both better ( See Figure 3(a) and (c)).
  • this embodiment relates to a method for generating a vortex beam array, which includes the following steps:
  • Step 1) A plurality of vortex beam arrays are obtained by femtosecond laser processing and direct writing in the power filling area.
  • Step 2 By interfering the generated vortex beam with the Gaussian beam (see Figure 4(b) and (c)), produce clockwise and counterclockwise spiral interference fringes, verify the order of the generated vector vortex light, and at the same time Analysis of the intensity of the generated vector vortex beams along the radial direction shows that they all have good circular symmetry (see Figure 4(d) and (e)).
  • the asymmetrical directional coupler array in Figure 4 can generate a vortex beam array.
  • the intensity distribution of the vortex beam is analyzed along the radial direction, and it is found that the spot symmetry is good, and it can be used for quantum information processing.
  • the present invention not only improves the quantum optical chip technology and makes it have the function of vortex fiber in macro optics, but also realizes the miniaturization and integration of vortex light generation, transmission and manipulation. It avoids the problems of connection error, access loss and interface noise in the macro optical path, and improves the stability, reliability and robustness of the system. Most importantly, increasing the degree of freedom of processing on the photonic integrated chip will greatly increase the high-dimensional quantum state space on the photonic integrated chip, which can potentially greatly improve the quantum computing capability through on-chip manipulation of super-entanglement.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种光子集成芯片内部矢量涡旋光束辐射器及其应用,通过飞秒激光直写技术,将飞秒激光聚焦在玻璃表面以下,通过扫描能够传输矢量涡旋光的环形波导(3)半径,使之与单模波导(2)达到位相匹配条件,加工出的不对称耦合器用于产生多阶涡旋光模式。芯片能够产生一阶以及二阶涡旋光,转换效率可高达74%。涡旋光本身的高维度及传输、产生及操控于一体将大幅增加量子态空间,从而潜在的可通过片上操控超纠缠等方式大幅提升量子计算能力。

Description

光子集成芯片内矢量涡旋光束辐射器及其应用 技术领域
本发明涉及的是一种光学领域的技术,具体涉及一种矢量涡旋光束辐射器及其在光子集成芯片的波导内部产生并传输矢量涡旋光的方法。
背景技术
光能够同时携带自旋和轨道角动量。近年来,自旋随空间变化并且中心存在奇异点的矢量涡旋光束引起了研究者们极大的兴趣。矢量涡旋光为经典信息和量子信息提供了额外的新自由度和新资源,它内在的无限维度以及场结构特性使得它被用于增加经典信息的信息容量、高维的量子态产生、精密测量以及高维希尔伯特空间的量子通信与量子计算。由于矢量涡旋光在经典信息以及量子信息领域的大规模应用,需要开发集成装置及设备,使得矢量涡旋光产生、传输、及操控处理一体化,以此可以避免其在宏观光路中的连接误差、接入损耗及接口噪声等问题,提高了系统的稳定性、可靠性、鲁棒性。目前,科研工作者利用微环谐振腔(Integrated compact optical vortex beam emitters)实现了将矢量涡旋光从集成装置表面辐射到自由空间,但是,矢量涡旋光在集成芯片内部的产生以及操控和处理还有待解决。此外,飞秒激光加工可以在不损伤材料表面的情况下对材料内部进行有选择性的修饰,制造任意形状的三维结构。
发明内容
本发明根据现有技术的缺陷和不足,并结合飞秒激光加工的高度灵活的特点,提出一种矢量涡旋光束辐射器及其应用,调制后的飞秒激光进行能够 传输涡旋光的环形波导以及单模波导所组成的不对称耦合器结构的加工,通过调控环形波导尺寸来调控位相匹配条件,实现了高效产生一阶以及二阶涡旋光;同时实现集成芯片内部的涡旋光传输、产生与操控,增加了集成芯片上处理的自由度。
本发明是通过以下技术方案实现的:
本发明涉及一种不对称耦合器的制备方法,通过飞秒激光直写技术,即将飞秒激光聚焦在玻璃表面以下,通过扫描能够传输矢量涡旋光的环形波导半径,使之与单模波导达到位相匹配条件,加工出的不对称耦合器能够用于产生多阶涡旋光模式。
所述的飞秒激光直写是指:设置飞秒激光脉冲中心位于513nm,脉冲持续时间为290fs,重复频率为1MHz,使用数值孔径为0.7的透镜,直写速度为5mm/s。
所述的多次扫描,包括:一阶环形波导直写和二阶环形波导直写,其中:单模波导直写功率为154mw,一阶环形波导功率为136-144mw;二阶环形波导功率为142-150mw。
所述的玻璃表面下,优选为玻璃表面以下170μm处,该玻璃为硼硅酸盐。
所述的环形波导多次扫描,其次数为12次。
所述的一阶环形波导半径约为3.7μm,二阶环形波导半径约为5μm。
所述的与单模波导达到位相匹配条件是指:单模波导的传播常数和环形波导传播常数达到相等。
本发明涉及上述方法制备得到的耦合器,为不对称结构,其平均位于玻璃表面以下170μm,包括:环形波导及单模波导,其中单模波导为椭圆形。
本发明涉及上述不对称耦合器的应用,将其用于在光子集成芯片内部产生矢量涡旋光。
本发明涉及一种实现上述应用的芯片,包括上述方法制备得到的不对称耦合器。技术效果
与现有技术相比,本发明采用飞秒激光直写技术,在透明硬质材料中制造能够高效率地产生涡旋光,本发明芯片能够稳定产生一阶以及二阶涡旋光,当直写脉冲能量较低时,产生的是矢量涡旋光,当直写脉冲能量较高时,产生的是标量涡旋光,即高效地产生了纯态,产生效率高达74%。这不仅完善了量子光学芯片技术,使其有了与宏观光学中的涡旋光纤的功能,而且实现了涡旋光产生与传输以及操控的微型化、可集成化,避免了其在宏观光路中的连接误差、接入损耗及接口噪声等问题,提高了系统的稳定性、可靠性、鲁棒性。
附图说明
图1为实施例中一阶及二阶涡旋光生成示意图;
图1中:1打入的高斯光的波阵面、2单模波导、3环形波导、4从波导出射的二阶矢量涡旋光的波阵面、5分束器、6用于干涉的参考高斯光的波阵面、7涡旋光与高斯光干涉的干涉图样;
图2为实施例中一阶矢量涡旋光生成示意图;
图3为实施例中一阶涡旋光随直写脉冲能量的变化示意图;
图3中:(a)为所产生的一阶涡旋光模式和转换效率随着直写脉冲能量的变化,(b)为对(a)中典型的B,D,F模式进行极化分析,(c)为所产生的二阶涡旋光模式和转换效率随着直写脉冲能量的变化,(d)为对(c)中典型的R,S,T模 式进行极化分析;
图4为涡旋束阵列的结果示意图;
图4中:(a)为阵列型不对称定向耦合器示意图,(b)为一阶涡旋束阵列所产生的强度图案以及干涉图案,(c)为二阶涡旋束阵列所产生的强度图案以及干涉图案,(d)为从(b)中所提取输出的一阶矢量涡旋光沿着径向的强度分布,(e)为从(c)中所提取输出的二阶矢量涡旋光沿着径向的强度分布。
具体实施方式
如图1所示,为本实施例涉及的不对称耦合器及其芯片,包括:具有单模波导2与环形波导3所组成的耦合器,其中:打入的高斯光的波阵面1经过单模波导2与环形波导3由于倏逝波耦合,在一定的条件下达到位相匹配条件产生二阶矢量涡旋光的波阵面4并与用于干涉的参考高斯光的波阵面6一并进入分束器5得到涡旋光与高斯光干涉的干涉图样7。
如图2所示,为不同极化的高斯光入射在定向耦合器的单模波导上,经过倏逝波耦合到邻近的环形波导产生不同空间分布的矢量涡旋光。
图中第一行H为水平极化的高斯光束入射在不对称的耦合器的单模波导上,所得到涡旋光的强度分布以及对其做极化投影分析所得到的强度分布,最后一列指的是矢量涡旋光的空间极化分布为径向极化。
第二行V为竖直极化的高斯光束入射所得到的涡旋光的强度分布以及对其做极化投影分析所得到的强度分布,最后一列指的是此时矢量涡旋光的空间极化分布特性。
第三行D为对角极化的高斯光束入射耦合到邻近的环形波导所产生的涡旋光的强度分布以及对其做极化投影分析所得到的强度分布,最后一列指的是此时矢量涡旋光的空间极化分布特性。
第四行R为右手圆偏振的高斯光束入射耦合到邻近的环形波导所产生的涡旋光的强度分布以及对其做极化投影分析所得到的强度分布,最后一列指的是矢量涡旋光的空间极化分布特性;其中采用的耦合透镜为16倍,其数值孔径为0.25,焦距为11mm。
如图3所示,通过模拟位相匹配条件,产生一阶(二阶)涡旋光的环形波导半径预估为3.5μm(4.9μm),考虑到飞秒激光加工的复杂性以及两种不同的波导结构,实施中我们在估计值附近扫描环形波导半径,以期得到较好的模式匹配,最终实施获得一阶(二阶)波导半径分别为3.7μm(5.0μm)。实施发现,当直写脉冲能量较小时,产生的是矢量涡旋光;图3(b)中清晰表明当直写脉冲能量较小时,产生的是矢量涡旋光;当直写脉冲能量较大时,产生的是标量涡旋光,即纯态,且转换效率高达74%;同时一阶和二阶涡旋光均存在一个较好的功率填区,在此填区内产生的一阶及二阶模式均较好(参见图3(a)和(c))。
如图4所示,本实施例涉及一种产生涡旋束阵列的方法,包括以下步骤:
步骤1)在功率填区内通过飞秒激光加工直写得到多个涡旋束阵列。
步骤2)通过对产生的涡旋光束与高斯光束干涉(参见图4(b)和(c)),产生顺时针与逆时针方向的螺旋干涉条纹,验证产生的矢量涡旋光的阶数,同时对产生的矢量涡旋光束沿径向强度分析发现,它们均具有较好的圆对称性(参见图4(d)和(e))。
图4中不对称的定向耦合器阵列能够产生涡旋光束阵列,对此涡旋光束强度分布沿径向方向分析,发现其光斑对称性较好,可将其用于量子信息处理。
与现有技术相比,本发明不仅完善了量子光学芯片技术,使其有了与宏观光学中的涡旋光纤的功能,而且实现了涡旋光产生、传输以及操控的微型化、可集成化,避免了其在宏观光路中的连接误差、接入损耗及接口噪声等问题,提高了系统的稳定性、可靠性、鲁棒性。最重要的是,增加了光子集成芯片上处理的自由度,将大幅增加光子集成芯片上的高维度量子态空间,从而潜在的可以通过片上操控超纠缠等方式大幅提升量子计算能力。
上述具体实施可由本领域技术人员在不背离本发明原理和宗旨的前提下以不同的方式对其进行局部调整,本发明的保护范围以权利要求书为准且不由上述具体实施所限,在其范围内的各个实现方案均受本发明之约束。

Claims (9)

  1. 一种不对称耦合器的制备方法,其特征在于,通过飞秒激光直写技术,即将飞秒激光聚焦在玻璃表面以下,通过扫描能够传输矢量涡旋光的环形波导半径,使之与单模波导达到位相匹配条件,加工出的不对称耦合器用于产生多阶涡旋光模式。
  2. 根据权利要求1所述的方法,其特征是,所述的飞秒激光直写是指:设置飞秒激光脉冲中心位于513nm,脉冲持续时间为290fs,重复频率为1MHz,使用数值孔径为0.7的透镜,直写速度为5mm/s。
  3. 根据权利要求1所述的方法,其特征是,所述的多次扫描,包括:一阶环形波导直写和二阶环形波导直写,其中:单模波导直写功率为154mw,一阶环形波导功率为136-144mw;二阶环形波导功率为142-150mw。
  4. 根据权利要求1所述的方法,其特征是,所述的与单模波导达到位相匹配条件是指:单模波导的传播常数和环形波导传播常数达到相等。
  5. 一种不对称耦合器,其特征在于,根据上述任一权利要求所述的方法制备得到,包括:环形波导及单模波导,其中单模波导为椭圆形。
  6. 根据权利要求5所述的不对称耦合器,其特征是,所述的波导平均位于玻璃表面以下170μm,该玻璃为硼硅酸盐。
  7. 根据权利要求5所述不对称耦合器的应用,其特征在于,将其用于在光子集成芯片内部产生矢量涡旋光。
  8. 根据权利要求7所述的应用,其特征是,所述的矢量涡旋光,包括涡旋光束阵列;通过飞秒激光加工直写得到多个波导阵列组合以产生多个独立的涡旋光束,当该涡旋光束与高斯光束干涉时,产生顺时针与逆时针方向的螺旋干涉条纹。
  9. 一种实现权利要求7或8所述应用的芯片,其特征在于,包括上述任一权利要求所述的不对称耦合器。
PCT/CN2019/119723 2019-01-23 2019-11-20 光子集成芯片内矢量涡旋光束辐射器及其应用 WO2020151352A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910061406.3A CN109683239B (zh) 2019-01-23 2019-01-23 光子集成芯片内矢量涡旋光束辐射器及其应用
CN201910061406.3 2019-01-23

Publications (1)

Publication Number Publication Date
WO2020151352A1 true WO2020151352A1 (zh) 2020-07-30

Family

ID=66193858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119723 WO2020151352A1 (zh) 2019-01-23 2019-11-20 光子集成芯片内矢量涡旋光束辐射器及其应用

Country Status (2)

Country Link
CN (1) CN109683239B (zh)
WO (1) WO2020151352A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109683239B (zh) * 2019-01-23 2023-09-12 上海交大知识产权管理有限公司 光子集成芯片内矢量涡旋光束辐射器及其应用
CN110635021B (zh) * 2019-09-16 2021-04-09 中国科学院上海微系统与信息技术研究所 飞秒激光直写波导耦合超导纳米线单光子探测器
CN113448136B (zh) * 2021-07-26 2022-11-22 中山大学 一种基于涡旋光的集成光学相控阵

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040040646A1 (en) * 2002-08-30 2004-03-04 Hidenori Takahashi Ring resonator
US20070025409A1 (en) * 2005-02-16 2007-02-01 Xiaodong Yang All-silicon raman amplifiers and lasers based on micro ring resonators
CN101672947A (zh) * 2008-09-12 2010-03-17 Jds尤尼弗思公司 光学涡旋延迟器微阵列
CN103399377A (zh) * 2013-07-22 2013-11-20 西安电子科技大学 飞秒激光直写蓝宝石环形光波导及其制备方法
CN103885123A (zh) * 2014-04-16 2014-06-25 上海交通大学 任意偏振态量子比特投影分离芯片及其制造方法
CN204613442U (zh) * 2015-05-08 2015-09-02 中国科学院西安光学精密机械研究所 微结构锯齿形空芯光纤
CN105353463A (zh) * 2015-12-04 2016-02-24 东南大学 一种检测和接收涡旋光场的装置及方法
GB2530500A (en) * 2014-09-23 2016-03-30 Univ Bristol Photon detector
CN109683239A (zh) * 2019-01-23 2019-04-26 上海交通大学 光子集成芯片内矢量涡旋光束辐射器及其应用
CN209296978U (zh) * 2019-01-23 2019-08-23 上海交通大学 用于产生矢量涡旋光的不对称耦合器及其光子集成芯片

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083918A2 (en) * 2001-04-10 2002-10-24 The Trustees Of Columbia University In The City Of New York Novel microarrays and methods of use thereof
GB201209837D0 (en) * 2012-06-01 2012-08-29 Univ Bristol Orbital angular momentum
CN105891950B (zh) * 2016-06-24 2019-05-10 福州大学 一种基于微型环形谐振腔的涡旋可控光发射器
CN107367795B (zh) * 2017-07-27 2019-10-18 中国科学院上海光学精密机械研究所 完美光学涡旋轨道角动量复用/解复用的光纤耦合装置
CN108051885A (zh) * 2017-12-25 2018-05-18 中山大学 径向和角向偏振可调的柱矢量oam发射芯片及其制备方法
CN109100827A (zh) * 2018-07-13 2018-12-28 上海大学 一种用于涡旋光束传输保持的光纤及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040040646A1 (en) * 2002-08-30 2004-03-04 Hidenori Takahashi Ring resonator
US20070025409A1 (en) * 2005-02-16 2007-02-01 Xiaodong Yang All-silicon raman amplifiers and lasers based on micro ring resonators
CN101672947A (zh) * 2008-09-12 2010-03-17 Jds尤尼弗思公司 光学涡旋延迟器微阵列
CN103399377A (zh) * 2013-07-22 2013-11-20 西安电子科技大学 飞秒激光直写蓝宝石环形光波导及其制备方法
CN103885123A (zh) * 2014-04-16 2014-06-25 上海交通大学 任意偏振态量子比特投影分离芯片及其制造方法
GB2530500A (en) * 2014-09-23 2016-03-30 Univ Bristol Photon detector
CN204613442U (zh) * 2015-05-08 2015-09-02 中国科学院西安光学精密机械研究所 微结构锯齿形空芯光纤
CN105353463A (zh) * 2015-12-04 2016-02-24 东南大学 一种检测和接收涡旋光场的装置及方法
CN109683239A (zh) * 2019-01-23 2019-04-26 上海交通大学 光子集成芯片内矢量涡旋光束辐射器及其应用
CN209296978U (zh) * 2019-01-23 2019-08-23 上海交通大学 用于产生矢量涡旋光的不对称耦合器及其光子集成芯片

Also Published As

Publication number Publication date
CN109683239B (zh) 2023-09-12
CN109683239A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
WO2020151352A1 (zh) 光子集成芯片内矢量涡旋光束辐射器及其应用
CN109073910B (zh) 用于从入射电磁波形成近区中的至少一个聚焦波束的设备
JP7199224B2 (ja) 中空ナノジェットレンズによる近傍界フォーカシング
US7643719B1 (en) Superlens and a method for making the same
JPH11218641A (ja) レンズ付き光ファイバとレーザモジュール
CN103594918A (zh) 一种输出空心激光光束的方法和装置
JP2018507386A (ja) レンズフリーイメージングを実行するための装置および方法
JP2001228420A (ja) 広い視野内で光束の方向を動的制御する装置
CN112327397A (zh) 一种飞秒等离子体光栅直写制造大面积体光栅的方法
CN110045459B (zh) 在光子集成芯片的波导内传输轨道角动量的方法
CN107643596A (zh) 一种二元波带片形式的衍射轴锥镜系统及其长焦深成像方法
CN109254336B (zh) 非完全对称微介质轴锥镜相位器件
US9952385B2 (en) Arrangement to optically couple multiple waveguides to a few-mode fiber
CN113283608B (zh) 通用量子计算装置
CN209296978U (zh) 用于产生矢量涡旋光的不对称耦合器及其光子集成芯片
CN113904208B (zh) 一种高纯度拉盖尔高斯光束产生系统及其产生方法
WO2023040615A1 (zh) 一种激光传输装置及离子阱系统
JP2843308B2 (ja) レーザー十字スリット発生装置
CN114047576B (zh) 全光纤轨道角动量光束产生器用的螺旋折变型光纤光栅的制备方法
CN110208908A (zh) 一种光波导回路上的二维聚焦转向镜
CN209896437U (zh) 一种基于正多棱锥的半导体激光单管合束器
JPH06194707A (ja) 光学装置及びレーザシステム
CN116449490B (zh) 三维光量子芯片模组的制备方法及三维光量子芯片模组
CN117250690B (zh) 一种片上波导集成的光场聚焦方法与装置
JP4052505B2 (ja) 近接場半導体光プローブの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911482

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.03.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19911482

Country of ref document: EP

Kind code of ref document: A1