CN109254336B - 非完全对称微介质轴锥镜相位器件 - Google Patents

非完全对称微介质轴锥镜相位器件 Download PDF

Info

Publication number
CN109254336B
CN109254336B CN201811292140.5A CN201811292140A CN109254336B CN 109254336 B CN109254336 B CN 109254336B CN 201811292140 A CN201811292140 A CN 201811292140A CN 109254336 B CN109254336 B CN 109254336B
Authority
CN
China
Prior art keywords
micro
asymmetric
light
axicon
bessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201811292140.5A
Other languages
English (en)
Other versions
CN109254336A (zh
Inventor
匡登峰
黄曾鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN201811292140.5A priority Critical patent/CN109254336B/zh
Publication of CN109254336A publication Critical patent/CN109254336A/zh
Application granted granted Critical
Publication of CN109254336B publication Critical patent/CN109254336B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/001Axicons, waxicons, reflaxicons
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

产生非对称贝塞尔光束的非完全对称微介质轴锥镜相位器件,该器件是由一个高度变化率为非线性的微介质结构和一个高度变化率为线性的微介质结构组合构成,当入射光垂直入射非完全对称微介质轴锥镜相位器件底面并通过该器件之后,在器件前端形成具有非对称强度分布的弯月形光场。区别于传统贝塞尔光束器件的圆环形光场分布,本发明器件由于具有非对称的特性,致使其产生的光场不仅仅类似贝塞尔光束的聚焦特性,同时也具有独特的强度变化规律和能量流动特性。具体表现为:非对称贝塞尔光束在对光束能量的要求比较宽松时拥有比贝塞尔光束更长的工作距离,强度变化也更加均匀。这一特性使非对称贝塞尔光束在显微照明方面有很大的潜力,尤其是在显微光片照明方面。

Description

非完全对称微介质轴锥镜相位器件
技术领域
本发明属于光学和光电技术领域,涉及微光学器件制作、光矢量场的控制以及利用光场对粒子的操控。其最大的特点是非完全对称的轴锥镜结构带来的具有非对称变化规律的非对称贝塞尔光场,这种特殊的光场拥有更长的工作距离和更均匀的能量变化,在如光镊,光通信,量子信息传输,超分辨成像,显微照明,粒子捕获和筛选等领域有重要的应用前景。
背景技术
贝塞尔光束由于其在自由空间的特定距离传播时没有衍射现象的特点,经过细小障碍物时可以自愈的特点,使其在超分辨显微成像以及通信领域有着重要的应用价值,另外它具有轨道角动量的特点使它相对于拉盖尔高斯光束而言在微粒操纵领域具有显著的优势。而产生贝塞尔光束最简单的办法就是利用轴锥镜,本发明通过自主设计的轴锥镜结构,成功的产生了具有独特优势的非对称贝塞尔光束。相对于贝塞尔光束,该器件产生的非对称贝塞尔光束在传播过程中有着更加稳定的光斑尺寸和更加均匀的能量分布,因此在对光束工作距离有更严格需求的场合,该器件产生的非对称贝塞尔光束便是一个有竞争力的选择。
发明内容
本发明目的是为产生具有更优秀工作距离的非对称贝塞尔光束,提供一种非对称高度分布函数的非完全对称轴锥镜相位器件。
本发明提供的非完全对称微介质轴锥镜相位器件所产生的非对称贝塞尔光束在传播时会产生非对称的弯月形光斑,而且这一光斑的尺寸会在传输过程中比贝塞尔光束的圆斑更加稳定。产生这一非对称的方法是直接设计非对称的锥结构,通过非对称的高度分布函数得到非对称的相位分布函数,进而控制器件的复振幅透过率来产生非对称贝塞尔光束。所述器件是一个在x轴的正半轴和负半轴拥有不同的高度变化率的微介质轴锥镜结构,这两个高度变化函数一个为线性另一个为非线性,该器件在直角坐标系下的结构方程为:
Figure BSA0000172958560000021
器件的透过率函数可以表示为
Figure BSA0000172958560000022
其中:其中:
Figure BSA0000172958560000023
λ是入射光波长,h0是锥体的高度且
Figure BSA0000172958560000024
n为材料折射率,R为器件底面半径,θ为空间点在底面的投影与原点连线与x轴正半轴的夹角,
Figure BSA0000172958560000025
为任意0~2π的角度,决定着非线性部分的占比。
所述的器件材料为玻璃基底以及高分子塑料镜片;入射波长λ是百纳米量级,R器件底面半径在微米量级,h0锥体的高度在微米量级,入射光应垂直器件底面入射。据上述分析,在非线性部分和线性部分入射的入射光会有不同的出射复振幅。这一非对称的复振幅分布会导致两部分的光束在光轴之外的地方汇聚,从而形成弯月形的非对称光斑。
本发明的优点和积极效果:
本发明提供的非完全对称微介质轴锥镜相位器件,当入射光垂直入射非完全对称轴锥镜器件底面并通过该器件之后,由于非对称的高度分布函数,导致了出射光的非对称特性,产生了非对称贝塞尔光束。
不同于一般的轴锥镜器件产生的是具有圆形光斑的贝塞尔光束。由于本发明中微介质轴锥镜结构的引入了非线性的部分
Figure BSA0000172958560000026
与线性部分
Figure BSA0000172958560000027
形成了非完全对称结构,这也是本发明最大的创新之处。入射光经非完全对称微介质轴锥镜之后形成的非对称贝塞尔光束与一般轴锥镜产生的贝塞尔光束相比有如下特点:1、拥有非对称的光斑形状即弯月形光斑,这一光斑形状在某些特殊需求的场合比如形成光片时有更加明显的优势。2、拥有更稳定的光斑尺寸,在自由空间传播时,非对称贝塞尔光束的光斑尺寸相比贝塞尔光束的光斑尺寸的变化范围更小,并且变化率更小。3、拥有更稳定的能量分布,非对称贝塞尔光束与贝塞尔光束在传播过程中中心强度的变化规律基本一致,但是变化区间上而言非对称贝塞尔明显更有优势。
附图说明
图1是能够产生非对称贝塞尔光束的非完全对称微介质轴锥镜器件的三视图。其中:(a)是非完全对称微介质轴锥镜器件的主剖视图;(b)是非完全对称微介质轴锥镜器件的左剖视图;(c)是非完全对称微介质轴锥镜器件的俯视图。
图2是非对称贝塞尔光束在xy平面内的电场强度E在不同传播距离上的分布图(a)电场E在z=2.4μm处xy平面上的强度分布图(b)电场E在z=2.8μm处xy平面上的强度分布图(c)电场E在z=3.6μm处xy平面上的强度分布图(d)电场E在z=6μm处xy平面上的强度分布图。
图3是非对称贝塞尔光束和贝塞尔光束的光斑尺寸随传播距离的变化规律,其中蓝色曲线为贝塞尔光束,红色曲线为非对称贝塞尔光束。
图4是非对称贝塞尔光束和贝塞尔光束的光束中心能量随传播距离的变化规律,其中蓝色曲线为贝塞尔光束,红色曲线为非对称贝塞尔光束。
具体实施方式
实施例1
如图1所示,本发明提供的能产生具有非对称贝塞尔光束的非完全对称微介质轴锥镜相位器件由两个非对称的微介质结构复合构成(以
Figure BSA0000172958560000031
k=2为例),其在直角坐标系的结构方程为:
Figure BSA0000172958560000032
其中:h0是锥体的高度且
Figure BSA0000172958560000033
R为器件底面半径,θ为空间点在底面的投影与原点连线与x轴正半轴的夹角。
本发明中非完全对称微介质轴锥镜相位器件的制作可采用光刻工艺和干法刻蚀技术来实现。其具体步骤如下:
(1)利用激光直写/电子束直写方法在光敏介质上曝光,并通过显影制作非完全对称微介质轴锥镜相位器件。
(2)利用反应离子刻蚀/电感耦合等离子体刻蚀技术将非完全对称微介质轴锥镜相位器件转移到光学玻璃上。
具体应用实例1
非完全对称微介质轴锥镜相位器件的具体参数以如下为例:
材料为玻璃,入射波长λinc=500nm,折射率n=1.5,底面半径R=2240nm,高度h0=1000nm。入射光为线偏振光且线偏振光的偏振方向沿x正方向。
图2是非对称贝塞尔光束在xy平面内的电场强度E在不同传播距离上的分布图(a)电场E在z=2.4μm处xy平面上的强度分布图(b)电场E在z=2.8μm处xy平面上的强度分布图(c)电场E在z=3.6μm处xy平面上的强度分布图(d)电场E在z=6μm处xy平面上的强度分布图,图2可以看到非对称贝塞尔光束特有的弯月形光斑和它的产生与消失。
图3是非对称贝塞尔光束和贝塞尔光束的光斑尺寸随传播距离的变化规律,其中蓝色曲线为贝塞尔光束,红色曲线为非对称贝塞尔光束。图3可以看出非对称贝塞尔光束的光斑大小随传播距离十分稳定。
图4是非对称贝塞尔光束和贝塞尔光束的光束中心能量随传播距离的变化规律,其中蓝色曲线为贝塞尔光束,红色曲线为非对称贝塞尔光束。图4可以看出非对称贝塞尔光束在传播过程中光束中心能量变化区间相对比较小,即在能量上有更高的稳定性。
当入射光垂直入射非完全对称微介质轴锥镜相位器件底面并通过该器件之后,经过非完全对称微介质轴锥镜相位器件结构的聚焦作用和非对称特性,最终在器件前端形成具有非对称强度分布的非对称贝塞尔光束。此器件可以被应用于显微照明的光源,有利于提高光源的稳定性和减小光片厚度,也可以用于微粒子操纵筛选,且有利于提高粒子筛选和粒子操纵的效率。

Claims (3)

1.一种非完全对称微介质轴锥镜相位器件,其特征在于该器件拥有非完全对称的组合结构;该器件的微介质锥结构在柱坐标系(ρ,θ,z)下的结构方程为:
Figure FSB0000192832150000011
其中:以底面圆圆心为原点,以底面作为x-y面,垂直底面方向为z轴,建立直角坐标系(x,y,z);转化为柱坐标系后,
Figure FSB0000192832150000012
为空间点在底面的投影与原点连线与x轴正半轴的夹角,
Figure FSB0000192832150000013
为空间点在底面的投影与原点的距离;
Figure FSB0000192832150000014
为任意0~2π的角度,决定着非线性部分的占比,k为非线性部分的曲线阶数,R为器件底面半径,h0是锥体的高度且
Figure FSB0000192832150000015
λ是入射光波长,n是介质材料折射率;当入射光以垂直底面方向入射并通过该器件之后,由于在非线性部分光束经过的介质厚度与光束入射的位置的关系是非线性的,且在两个部分光束出射的面不一样,出射光束将会在非完全对称微介质轴锥镜相位器件前端形成具有非对称光场分布的弯月形光场,即非对称的贝塞尔光束。
2.根据权利要求1所述的非完全对称微介质轴锥镜相位器件,其特征在于由于微介质锥结构的非对称性,这种非对称特性是由非线性的部分
Figure FSB0000192832150000016
与线性部分
Figure FSB0000192832150000017
形成了非对称结构造成的,它主要与非线性部分所占比例以及非线性部分的曲线阶数(k)有关,将非线性部分的占比或者曲线阶数改变可以得到类似的非完全对称轴锥镜结构;当入射光经过非完全对称轴锥镜相位器件时在结构前端形成特定弯月形光场,该光场不同于贝塞尔光束光场的圆环状分布,具有极高的非对称度。
3.根据权利要求1所述的非完全 对称微介质轴锥镜相位器件,其特征在于:所述的器件材料为玻璃基底以及高分子塑料镜片;入射光波长为百纳米量级,入射使应垂直器件表面入射;入射光为线偏振光且线偏振光的偏振方向沿x正方向。
CN201811292140.5A 2018-11-01 2018-11-01 非完全对称微介质轴锥镜相位器件 Expired - Fee Related CN109254336B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811292140.5A CN109254336B (zh) 2018-11-01 2018-11-01 非完全对称微介质轴锥镜相位器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811292140.5A CN109254336B (zh) 2018-11-01 2018-11-01 非完全对称微介质轴锥镜相位器件

Publications (2)

Publication Number Publication Date
CN109254336A CN109254336A (zh) 2019-01-22
CN109254336B true CN109254336B (zh) 2021-06-04

Family

ID=65044487

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811292140.5A Expired - Fee Related CN109254336B (zh) 2018-11-01 2018-11-01 非完全对称微介质轴锥镜相位器件

Country Status (1)

Country Link
CN (1) CN109254336B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110531523B (zh) * 2019-09-02 2022-04-12 南开大学 指数型非线性微轴锥镜阵列
CN113465885B (zh) * 2021-06-18 2024-04-26 深圳市鼎鑫盛光学科技有限公司 一种贝塞尔玻璃切割头光束质量测试系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102306217A (zh) * 2011-08-12 2012-01-04 北京理工大学 基于非线性一维海面分形模型的电磁散射系数估计方法
JP2012119098A (ja) * 2010-11-29 2012-06-21 Gigaphoton Inc 光学装置、レーザ装置および極端紫外光生成装置
CN106896615A (zh) * 2017-03-10 2017-06-27 南开大学 非线性螺旋相位器件
CN107003530A (zh) * 2014-11-19 2017-08-01 通快激光与系统工程有限公司 用于射束成形的光学系统
CN107003531A (zh) * 2014-11-19 2017-08-01 通快激光与系统工程有限公司 用于非对称光学射束成形的系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8711211B2 (en) * 2010-06-14 2014-04-29 Howard Hughes Medical Institute Bessel beam plane illumination microscope

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119098A (ja) * 2010-11-29 2012-06-21 Gigaphoton Inc 光学装置、レーザ装置および極端紫外光生成装置
CN102306217A (zh) * 2011-08-12 2012-01-04 北京理工大学 基于非线性一维海面分形模型的电磁散射系数估计方法
CN107003530A (zh) * 2014-11-19 2017-08-01 通快激光与系统工程有限公司 用于射束成形的光学系统
CN107003531A (zh) * 2014-11-19 2017-08-01 通快激光与系统工程有限公司 用于非对称光学射束成形的系统
CN106896615A (zh) * 2017-03-10 2017-06-27 南开大学 非线性螺旋相位器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
复杂介质球对矢量有形光束的散射及操控力研究;屈檀;《中国博士学位论文全文数据库》;20160715;全文 *

Also Published As

Publication number Publication date
CN109254336A (zh) 2019-01-22

Similar Documents

Publication Publication Date Title
KR102436892B1 (ko) 입사 전자기파로부터, 근거리 구역에서 적어도 하나의 집속된 빔을 형성하는 디바이스
CN112601990B (zh) 包括双材料结构的衍射光栅
US11396474B2 (en) Method for manufacturing a device for forming at least one focused beam in a near zone
CN106597578B (zh) 新月风车型超结构表面
CN109254336B (zh) 非完全对称微介质轴锥镜相位器件
CN103862171A (zh) 双波长飞秒激光制备二维周期金属颗粒阵列结构的方法
CN109590606A (zh) 一种飞秒激光相位振幅协同整形加工蝶形纳米缝隙的方法
CN101126897A (zh) 一种基于微透镜阵列的连续面形微结构成形方法
CN103675969A (zh) 高效率斜双层光栅
CN109244811B (zh) 一种大暗斑反高斯空心激光光源
Minin et al. Photonic lenses with whispering gallery waves at Janus particles
CN100547440C (zh) 一种用于双光子微细加工的三维超分辨衍射光学器件及其设计方法
CN104597562A (zh) 近红外宽波段定向传播和聚焦的表面等离激元透镜
CN103364856A (zh) Te偏振垂直入射-1级高效率倾斜透射石英光栅
WO2020151352A1 (zh) 光子集成芯片内矢量涡旋光束辐射器及其应用
Umhofer et al. Refractive and diffractive laser beam shaping optics: High end components for material processing
CN104793462A (zh) 一种微纳米结构成形方法
CN110531523B (zh) 指数型非线性微轴锥镜阵列
WO2024050973A1 (zh) 一种反射式弯曲叉形面光栅的制备装置和方法
CN106125165B (zh) 一种实现亚波长聚焦的超薄平凹透镜
CN105182544A (zh) 单轴对称微螺旋锥器件
Wu et al. Direct generation of Airy beams at designed Fourier planes using integrated Airy phase plates
CN106896615A (zh) 非线性螺旋相位器件
Qu et al. Application of ultrafast laser beam shaping in micro-optical elements
CN209844202U (zh) 一种半导体激光空心激光光源发射装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210604

Termination date: 20211101

CF01 Termination of patent right due to non-payment of annual fee