WO2020151312A1 - 心脑血管疾病展示方法、装置、设备及存储介质 - Google Patents
心脑血管疾病展示方法、装置、设备及存储介质 Download PDFInfo
- Publication number
- WO2020151312A1 WO2020151312A1 PCT/CN2019/117257 CN2019117257W WO2020151312A1 WO 2020151312 A1 WO2020151312 A1 WO 2020151312A1 CN 2019117257 W CN2019117257 W CN 2019117257W WO 2020151312 A1 WO2020151312 A1 WO 2020151312A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cardio
- cerebrovascular disease
- animation
- cerebrovascular
- user
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T13/00—Animation
- G06T13/20—3D [Three Dimensional] animation
Definitions
- This application relates to the technical field of medical data display, and in particular to a method, device, computer equipment and storage medium for displaying cardio-cerebrovascular diseases.
- This application provides a cardio-cerebrovascular disease display method, device, computer equipment and storage medium, and provides a cardio-cerebrovascular disease display method for the cardio-cerebrovascular disease.
- this application provides a method for displaying cardiovascular and cerebrovascular diseases, the method comprising:
- the present application also provides a cardio-cerebrovascular disease display device, which includes:
- the acquisition module is used to acquire the physical sign information of the user
- the analysis module is used to analyze the type of cardiovascular and cerebrovascular diseases that the user suffers based on the physical sign information of the user;
- the first drawing module is configured to draw a cardio-cerebrovascular disease animation corresponding to the cardio-cerebrovascular disease type through a three-dimensional animation engine according to the cardio-cerebrovascular disease type and the physical sign information;
- the second drawing module is used to evaluate the risk faced by the user according to the cardio-cerebrovascular disease type and the physical sign information, and draw a risk animation corresponding to the risk through a three-dimensional animation engine;
- the display module is used to display the cardio-cerebrovascular disease animation and the risk animation.
- the present application also provides a computer device, the computer device includes a memory and a processor; the memory is used to store a computer program; the processor is used to execute the computer program and when executing the computer program The computer program realizes the above-mentioned cardio-cerebrovascular disease display method.
- the present application also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the processor realizes the above-mentioned cardio-cerebrovascular Disease presentation method.
- This application discloses a cardio-cerebrovascular disease display method, device, computer equipment and storage medium, by acquiring the user's physical sign information; according to the user's physical sign information, analyzing the type of cardio-cerebrovascular disease that the user suffers;
- the cardio-cerebrovascular disease type and the sign information are drawn through a three-dimensional animation engine to draw the cardio-cerebrovascular disease animation corresponding to the cardio-cerebrovascular disease type; the user is evaluated according to the cardio-cerebrovascular disease type and the sign information
- the risk of the disease faced by the user, and the risk animation corresponding to the disease risk is drawn through the three-dimensional animation engine; the cardio-cerebrovascular disease animation and the risk animation can be displayed in a three-dimensional animation display of the cardio-cerebrovascular disease and the risk faced by the user .
- FIG. 1 is a schematic flowchart of a method for displaying cardio-cerebrovascular diseases according to an embodiment of the application
- FIG. 2 is a schematic flowchart of the sub-steps of the method for displaying cerebrovascular diseases in the center of FIG. 1 provided by an embodiment of the application;
- FIG. 3 is a schematic flowchart of another method for displaying cardio-cerebrovascular diseases according to an embodiment of the application.
- FIG. 4 is a schematic flowchart of sub-steps of the method for displaying cerebrovascular diseases in the center of FIG. 3 provided by an embodiment of the application;
- FIG. 5 is a schematic block diagram of the structure of a cardio-cerebrovascular disease display device provided by an embodiment of the application.
- FIG. 6 is a schematic block diagram of the structure of the first drawing module in FIG. 5 according to an embodiment of the application;
- FIG. 7 is a schematic block diagram of the structure of a computer device provided by an embodiment of the present application.
- the embodiments of the application provide a method, device, computer equipment, and storage medium for displaying cardio-cerebrovascular diseases.
- the cardio-cerebrovascular disease display method can be used for 3D animation display of cardio-cerebrovascular diseases in hospitals, social health, physical examination institutions, government disease prevention departments and other institutions.
- FIG. 1 is a schematic flowchart of steps of a method for displaying cardio-cerebrovascular diseases according to an embodiment of the present application.
- the cardio-cerebrovascular disease display method specifically includes the following steps:
- the user's physical sign information includes information such as age, gender, medical history, step counting information, heart rate, pulse, blood pressure, etc.
- the physical sign information of the user can be obtained in real time through a smart wearable device worn by the user, for example, through a smart bracelet. It is also obtained from the wearable device through the interval time period.
- the user's physical sign information can also be obtained by receiving the examination results sent by the physical examination equipment, such as receiving digital medical image information generated from imaging examination equipment such as CT, MRI, and PET.
- the physical signs information of the corresponding user can also be obtained from the medical database center.
- the type of the cardio-cerebrovascular disease that the user suffers is analyzed, and the doctor can determine the type of the cardio-cerebrovascular disease according to the physical sign information.
- the pre-trained neural network model can optionally be input to the neural network model through a large number of cardio-cerebral vascular users’ physical signs information, the neural network model including: convolutional layer, non-linear unit, pooling layer and full connection Floor.
- the feature map is obtained by convolution, and then the feature map is corrected by a nonlinear unit, and the corrected feature map is pooled to obtain a dimensionality-reduced feature map.
- pooling can be achieved through maximum pooling and average pooling And sum pooling; finally, the pooled feature map is input to the fully connected layer and the probability value of the disease is output through the activation function.
- the filter of the convolutional layer is updated through output error adjustment until the error is within the target range.
- cardiovascular and cerebrovascular diseases include: hypertension, hyperlipidemia, arteriosclerosis, cerebral infarction, cerebral hemorrhage, coronary heart disease, angina pectoris, myocardial ischemia, myocardial infarction, heart rate failure, arrhythmia and so on.
- drawing a cardio-cerebrovascular disease animation corresponding to the cardio-cerebrovascular disease type through a three-dimensional animation engine according to the cardio-cerebrovascular disease type and the physical sign information includes the following sub-steps:
- the animation corresponding to the cardio-cerebrovascular disease type through a three-dimensional animation engine (such as OGRE, OpenGVS, Vtree, OSG and other three-dimensional animation engines) according to the symptoms corresponding to the cardio-cerebrovascular disease type, such as when the user has high During blood pressure, the animation is drawn through the three-dimensional animation engine, and the effect of the animation shows that the impact pressure of the blood flow on the blood vessel wall is relatively large. When the user suffers from high blood fat (triglycerides, low-density fat, total cholesterol), the animation effect shows that the blood color is dark yellow, forming atherosclerosis, and the blood vessel wall is also very fragile.
- the cardio-cerebrovascular disease symptoms corresponding to the type of cardio-cerebrovascular disease under general conditions are drawn.
- the drawn animation corresponding to the cardio-cerebrovascular disease type is saved.
- S1032 Adjust the drawn cardio-cerebrovascular disease animation according to the physical sign information to obtain the cardio-cerebrovascular disease animation corresponding to the cardio-cerebrovascular disease type.
- step S1031 draws the cardio-cerebrovascular disease symptoms of the type corresponding to the cardio-cerebrovascular disease under general conditions. In fact, the specific indicators of each user are different, so the drawing is performed in step S1031. Based on the animation of the corresponding type of cardiovascular and cerebrovascular diseases, adjustments are made according to the acquired physical sign information parameters of the user. For example, for hypertension, if step S1031 plots the impact pressure of blood flow on the blood vessel wall when the blood pressure is 160/110mmHg, and the acquired blood pressure of the user is 180/130mmHg, adjust the blood flow impact pressure on the blood vessel wall , Adjust the impact pressure to be greater.
- the same blood pressure is 160/110mmHg, but the older the user, the greater the thickness and fragility of the blood vessel wall.
- the blood lipid index is higher than in step S1031, the slower the blood flow speed will be adjusted, the easier it is to form plaques with the blood vessel wall. In this way, the user can truly watch the animation effect corresponding to the self-physical information.
- the parameters of the physical sign information are adjusted to realize the adjustment of the cardio-cerebrovascular disease animation corresponding to the cardio-cerebrovascular disease type drawn in step 1032. Allow users to understand the consequences that will occur if the indicators continue to deteriorate or the results that will occur if the user's control improves.
- one of the physical sign information parameters of the cardio-cerebrovascular disease animation corresponding to the cardio-cerebrovascular disease type is that the blood pressure is 180/130mmHg
- adjust the blood pressure parameter value such as gradually increasing the blood pressure parameter Value
- the impact pressure of blood flow on the blood vessel wall in the cardio-cerebrovascular disease animation will gradually increase until the blood vessel wall ruptures, so that the user can see the consequences if the blood pressure continues to rise if it is not controlled.
- the blood pressure parameter value is lowered and the blood pressure continues to decrease, the impact pressure of the blood flow on the blood vessel wall in the cardio-cerebrovascular disease animation will gradually decrease until the normal state.
- the risk faced by the user is evaluated.
- the risk assessment category obtained is: the user has high blood pressure and the blood pressure value is above 180/130mmHg .
- the compensatory hypertrophy of myocardium is drawn through a three-dimensional animation engine, which causes cardiac ischemia, hypoxia, the formation of hypertensive heart disease, and the entire process of heart failure.
- the risk assessment category obtained is: the user is at risk of stroke, and the user’s brain blood vessels will be displayed locally.
- the animation simulates the formation of thrombus after the plaque falls off and blocks the brain blood vessels, causing cerebral ischemia and the user’s stroke Or because the user’s cerebral blood vessel wall is too fragile or narrow, and the user’s cerebral hemorrhage causes cerebral hemorrhage.
- 3D real-time calculation models will be used to draw 3D animations to show the process of myocardial infarction, coronary heart disease, and heart failure. In this way, the risk of cardiovascular and cerebrovascular diseases of the user can be dynamically depicted.
- cardio-cerebrovascular disease animation and the risk animation are drawn, they can be displayed directly on the drawing terminal device or sent to other devices for display.
- the cardio-cerebrovascular disease animation corresponding to the cardio-cerebrovascular disease type is drawn by a three-dimensional animation engine, and the cardio-cerebrovascular disease type and the physical signs are
- the physical sign information evaluates the disease risk faced by the user, and the risk animation corresponding to the disease risk is drawn through the three-dimensional animation engine, making the display of cardiovascular and cerebrovascular diseases more vivid and diversified, and users will also have a deeper understanding of the cardiovascular and cerebrovascular diseases Disease characteristics.
- FIG. 3 is a schematic flowchart of another method for displaying cardio-cerebrovascular diseases according to an embodiment of the present application.
- the cardio-cerebrovascular disease display method specifically includes the following steps:
- the physical sign information of the user may be obtained in real time through a smart wearable device worn by the user, for example, through a smart bracelet. It is also obtained from the wearable device through the interval time period.
- the user's physical sign information can also be obtained by receiving the examination results sent by the physical examination equipment, such as receiving digital medical image information generated from imaging examination equipment such as CT, MRI, and PET.
- the physical signs information of the corresponding user can also be obtained from the medical database center.
- the physical sign information includes age, gender, medical history, pedometer information, heart rate, pulse, blood pressure and other information.
- the characteristic value of the physical sign information of the user is compared with the characteristic value of the physical sign information corresponding to the cardio-cerebrovascular disease category stored in advance, and the cardio-cerebrovascular disease is determined according to the comparison result Type of disease.
- the database pre-stores the name of each type of cardio-cerebrovascular disease (disease category) and the corresponding feature value of the corresponding physical sign information, which can be stored in the form of a data table, as shown in Table 1:
- Table 1 Correspondence table of disease category and characteristic value of physical sign information
- the feature value of the physical sign information of the user is compared with the feature value of the physical sign information corresponding to the cardio-cerebrovascular disease category stored in advance, and the cardio-cerebrovascular disease of the user is determined according to the comparison result
- the type includes: calculating the probability that the user suffers from the cardio-cerebrovascular disease of the corresponding category by using the correlation formula according to the feature value of the physical sign information of the user and the feature value of the physical sign information corresponding to the pre-stored cardio-cerebrovascular disease category; When the probability is greater than the preset probability value corresponding to the pre-stored cardio-cerebrovascular disease category, it is determined that the user has a cardio-cerebrovascular disease of the corresponding category.
- the correlation formula is:
- N represents the number of the feature value
- X i represents the i-th feature value of the user information signs
- Y i represents the i-th feature value information stored in advance signs of cardiovascular disease corresponding to the category.
- the acquired user's physical sign information feature values are: X 1 , X 2 ??X n , X 1 , X 2 ??X n represents the value of the corresponding information, such as X 1 Means age 40 years old, X 2 means blood pressure 150/100mmHg.
- the feature values corresponding to the physical sign information of the pre-stored cardio-cerebrovascular disease corresponding category (such as category j) are Y 1 , Y 2 together Y n , Y 1 , Y 2 .... Y n
- the formula for calculating the probability b j of the user suffering from category j is:
- b j ⁇ ⁇ for example, when b j ⁇ 0.5, it is determined that there is a type j cardio-cerebrovascular disease, otherwise it is judged that there is no type j cardio-cerebrovascular disease.
- the preset probability value ⁇ can be adjusted based on experience.
- the pre-stored cardiovascular and cerebrovascular disease categories include disease categories such as hypertension and hyperlipidemia.
- the preset probability values corresponding to the two disease categories are both 0.5. Of course, other values can also be used. Actually make settings.
- the probability corresponding to the hypertension disease category calculated by the correlation formula is 0.6
- the probability corresponding to the hyperlipidemia disease category is calculated as 0.4
- it can be determined that the user suffering from the corresponding category of cardiovascular and cerebrovascular diseases is hypertension.
- drawing a cardio-cerebrovascular disease animation corresponding to the cardio-cerebrovascular disease type through a three-dimensional animation engine according to the cardio-cerebrovascular disease type and the physical sign information includes the following sub-steps :
- a unit animation engine is first used to draw an animation related to the cardiovascular and cerebrovascular systems under normal conditions. For example, if the user suffers from hypertension, the three-dimensional animation engine is used to first draw an animation related to the pressure of the blood flow on the blood vessel wall under normal conditions. If the user suffers from hyperlipidemia, the three-dimensional animation engine is used to first draw the blood flow velocity under normal conditions.
- step S2031 adjustment is made on the basis of the normal cardio-cerebrovascular animation drawn in step S2031 according to the physical sign information of the user, to obtain the cardio-cerebrovascular disease animation corresponding to the cardio-cerebrovascular disease type. For example, if the user suffers from high blood pressure, get the user’s blood pressure as 160/110mmHg, adjust the normal blood pressure value, and gradually adjust the normal blood pressure value to 160/110mmHg, so that the normal cardiovascular and cerebrovascular animations are adjusted accordingly, and the corresponding blood pressure The impact pressure of the flow on the vessel wall may gradually increase, thereby obtaining the corresponding hypertension animation.
- the normal cholesterol and serum triglycerides are gradually adjusted to the corresponding cholesterol and serum triglycerides of the user.
- the blood flow speed in the corresponding normal cardiovascular and cerebrovascular animation will gradually slow down, and the blood color will become darker and yellower, so that the corresponding hyperlipidemia animation will be obtained.
- This step by step allows users to see the contrast effect, deepens the user's impression, and presents the way more vividly.
- S204 Evaluate the disease risk faced by the user according to the cardio-cerebrovascular disease type and the physical sign information, and draw a risk animation corresponding to the disease risk through a three-dimensional animation engine.
- the risk faced by the user is evaluated.
- the risk assessment category obtained is: the user is at risk of suffering from a stroke, which will affect the user’s brain Part of the blood vessels are displayed locally.
- the animation simulates the process of clogging the cerebrovascular after the formation of thrombus after the plaque falls off, causing cerebral ischemia, the process of the user forming a stroke, or the user’s cerebral vascular wall is too fragile or narrow, and the user’s cerebral hemorrhage causes cerebral hemorrhage.
- 3D real-time calculation models will be used to draw 3D animations to show the process of myocardial infarction, coronary heart disease, and heart failure.
- 3D real-time calculation models will be used to draw 3D animations to show the process of myocardial infarction, coronary heart disease, and heart failure.
- S205 Send the cardio-cerebrovascular disease animation and/or the risk animation to a terminal device for display.
- the cardio-cerebrovascular disease animation and/or the risk animation can be sent to the user terminal device, and can be sent to the user or the user's family terminal device, such as mobile phone, IPAD, etc., via WiFi, 4G/5G, etc. Wait. This way users and their families can watch at any time.
- the cardio-cerebrovascular disease animation and the risk animation can be saved in a local database for subsequent viewing.
- the user can modify or edit the received cardio-cerebrovascular disease animation and/or the risk animation through a terminal device. For example, when the user's physical sign information is changed, the user can change the corresponding parameter value of the animation to modify the animation.
- the present application can also display the type and sign information of the cardio-cerebrovascular disease of the patient through VR based on the type and sign information of the cardio-cerebrovascular disease obtained by the analysis.
- Patients can also use VR and other equipment to enter their own virtual human body, observe the internal structure of the cardiovascular system, and more vividly show the relationship between the risk of cardiovascular and cerebrovascular diseases and various indicators of their body (height, weight, blood sugar, blood lipid, blood pressure, etc.).
- FIG. 5 is a schematic structural diagram of a cardio-cerebrovascular disease display device 40 provided in this application.
- the cardio-cerebrovascular disease display device 40 is used for Perform any of the aforementioned cardio-cerebrovascular disease display methods.
- the cardio-cerebrovascular disease display device 40 can be configured in a server or a terminal.
- the server can be an independent server or a server cluster.
- the terminal can be an electronic device such as a mobile phone, a tablet computer, a notebook computer, a desktop computer, a personal digital assistant, and a wearable device.
- the cardio-cerebrovascular disease display device 40 includes:
- the obtaining module 41 is used to obtain physical sign information of the user
- the analysis module 42 is configured to analyze the type of cardiovascular and cerebrovascular diseases that the user suffers based on the physical sign information of the user;
- the first drawing module 43 is configured to draw a cardio-cerebrovascular disease animation corresponding to the cardio-cerebrovascular disease type through a three-dimensional animation engine according to the cardio-cerebrovascular disease type and the physical sign information;
- the second drawing module 44 is configured to evaluate the risk faced by the user according to the cardio-cerebrovascular disease type and the physical sign information, and draw a risk animation corresponding to the risk through a three-dimensional animation engine;
- the display module 45 is used to display the cardio-cerebrovascular disease animation and the risk animation.
- the analysis module 42 includes:
- the analysis sub-module 421 is configured to input the physical sign information of the user into a pre-trained neural network model, and analyze the type of cardiovascular and cerebrovascular diseases the user suffers through the neural network model;
- the comparison module 422 is used to compare the characteristic value of the physical sign information of the user with the characteristic value of the physical sign information corresponding to the cardio-cerebrovascular disease category stored in advance, and determine the type of the cardio-cerebrovascular disease that the user has according to the comparison result .
- the comparison module 422 is further specifically configured to calculate the user’s suffering from the user’s illness according to the characteristic value of the user’s physical sign information and the pre-stored characteristic value of the physical sign information corresponding to the cardio-cerebrovascular disease category. The probability of the corresponding category of cardiovascular and cerebrovascular diseases;
- the probability is greater than the pre-stored preset probability value corresponding to the cardio-cerebrovascular disease category, it is determined that the user has the cardio-cerebrovascular disease of the corresponding category;
- the correlation formula is:
- N represents the number of the feature value
- X i represents the i-th feature value of the user information signs
- Y i represents the i-th feature value information stored in advance signs of cardiovascular disease corresponding to the category.
- FIG. 6, is a schematic block diagram of the structure of the first drawing module 43.
- the first drawing module 43 includes:
- the first drawing sub-module 431 is used to draw a cardio-cerebrovascular disease animation through a three-dimensional animation engine according to the type of the cardio-cerebrovascular disease;
- the first adjustment module 432 is configured to adjust the drawn cardio-cerebrovascular disease animation according to the physical sign information to obtain the cardio-cerebrovascular disease animation corresponding to the cardio-cerebrovascular disease type.
- the first drawing module 43 includes:
- the second drawing submodule 433 is used to draw a normal cardiovascular and cerebrovascular animation through the three-dimensional animation engine
- the second adjustment module 434 is configured to adjust the drawn normal cardio-cerebrovascular animation according to the physical sign information of the user to obtain the cardio-cerebrovascular disease animation corresponding to the cardio-cerebrovascular disease type.
- the first drawing module 43 further includes:
- the third adjustment module 435 is configured to adjust the parameter value of the physical sign information to realize the adjustment of the cardio-cerebrovascular disease animation corresponding to the cardio-cerebrovascular disease type.
- the display module 45 includes:
- the sending module 451 is configured to send the cardio-cerebrovascular disease animation and/or the risk animation to a terminal device, so as to display or modify the cardio-cerebrovascular disease animation and/or the risk animation.
- cardio-cerebrovascular disease display device and the specific working process of each module can be implemented with reference to the aforementioned cardio-cerebrovascular disease display method The corresponding process in the example will not be repeated here.
- cardio-cerebrovascular disease display device can be implemented in the form of a computer program, and the computer program can be run on a computer device as shown in FIG. 7.
- FIG. 7 is a schematic block diagram of a computer device according to an embodiment of the present application.
- the computer equipment can be a server or a terminal.
- the computer device includes a processor, a memory, and a network interface connected through a system bus, where the memory may include a non-volatile storage medium and an internal memory.
- the non-volatile storage medium can store an operating system and a computer program.
- the computer program includes program instructions, and when the program instructions are executed, the processor can execute a cardio-cerebrovascular disease display method.
- the processor is used to provide calculation and control capabilities and support the operation of the entire computer equipment.
- the internal memory provides an environment for the operation of the computer program in the non-volatile storage medium.
- the processor can make the processor execute a cardio-cerebrovascular disease display method.
- the network interface is used for network communication, such as sending assigned tasks.
- the network interface is used for network communication, such as sending assigned tasks.
- FIG. 7 is only a block diagram of part of the structure related to the solution of the present application, and does not constitute a limitation on the computer device to which the solution of the present application is applied.
- the specific computer device may Including more or less parts than shown in the figure, or combining some parts, or having a different part arrangement.
- the processor may be a central processing unit (Central Processing Unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), and application specific integrated circuits (Application Specific Integrated Circuits). Circuit, ASIC), ready-made programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
- the general-purpose processor may be a microprocessor or the processor may also be any conventional processor.
- the processor is used to run a computer program stored in the memory to implement the following steps:
- the cardio-cerebrovascular disease animation corresponding to the type of vascular disease evaluate the disease risk faced by the user according to the cardio-cerebrovascular disease type and the physical sign information, and draw the risk animation corresponding to the disease risk through a three-dimensional animation engine; Describe the cardio-cerebrovascular disease animation and the risk animation.
- the processor is used to implement the following when analyzing the type of cardio-cerebrovascular disease that the user suffers based on the physical sign information of the user:
- the feature value of the physical sign information of the user is compared with the feature value of the physical sign information corresponding to the cardio-cerebrovascular disease category stored in advance, and the type of the cardio-cerebrovascular disease that the user suffers is determined according to the comparison result.
- the processor performs the comparison of the feature value of the physical sign information of the user with the feature value of the pre-stored physical sign information corresponding to the cardio-cerebrovascular disease category, and determines the user according to the comparison result.
- the processor When suffering from the type of cardiovascular and cerebrovascular diseases, it is used to achieve:
- the probability is greater than the pre-stored preset probability value corresponding to the cardio-cerebrovascular disease category, it is determined that the user has the cardio-cerebrovascular disease of the corresponding category;
- the correlation formula is:
- N represents the number of the feature value
- X i represents the i-th feature value of the user information signs
- Y i represents the i-th feature value information stored in advance signs of cardiovascular disease corresponding to the category.
- the processor uses a three-dimensional animation engine to draw the cardio-cerebrovascular disease animation corresponding to the cardio-cerebrovascular disease type according to the cardio-cerebrovascular disease type and the physical sign information.
- cardio-cerebrovascular disease type drawing the cardio-cerebrovascular disease animation through a three-dimensional animation engine
- the drawn cardio-cerebrovascular disease animation is adjusted according to the physical sign information to obtain the cardio-cerebrovascular disease animation corresponding to the cardio-cerebrovascular disease type.
- the processor uses a three-dimensional animation engine to draw the cardio-cerebrovascular disease animation corresponding to the cardio-cerebrovascular disease type according to the cardio-cerebrovascular disease type and the physical sign information.
- the drawn normal cardio-cerebrovascular animation is adjusted according to the physical sign information of the user to obtain the cardio-cerebrovascular disease animation corresponding to the cardio-cerebrovascular disease type.
- the processor realizes the cardio-cerebrovascular disease animation corresponding to the cardio-cerebrovascular disease type, it is further used to achieve:
- the parameter value of the physical sign information is adjusted to realize the adjustment of the cardio-cerebrovascular disease animation corresponding to the cardio-cerebrovascular disease type.
- the processor when the processor realizes the display of the cardio-cerebrovascular disease animation and the risk animation, it is configured to: send the cardio-cerebrovascular disease animation and/or the risk animation to A terminal device to display or modify the cardio-cerebrovascular disease animation and/or the risk animation.
- the embodiments of the present application also provide a computer-readable storage medium, the computer-readable storage medium stores a computer program, the computer program includes program instructions, and the processor executes the program instructions to implement the present application Any of the cardio-cerebrovascular diseases display methods provided in the embodiment.
- the computer-readable storage medium may be the internal storage unit of the computer device described in the foregoing embodiment, such as the hard disk or memory of the computer device.
- the computer-readable storage medium may also be an external storage device of the computer device, such as a plug-in hard disk, a smart media card (SMC), or a secure digital (Secure Digital, SD) equipped on the computer device. ) Card, Flash Card, etc.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Processing Or Creating Images (AREA)
Abstract
本申请公开了心脑血管疾病展示方法、装置、计算机设备及存储介质。通过用户的体征信息分析用户患有的心脑血管疾病类型;根据心脑血管疾病类型和体征信息,通过三维动画引擎绘制心脑血管疾病类型对应的心脑血管疾病动画和风险动画;展示心脑血管疾病动画和风险动画。便于用户知晓心脑血管疾病类型以及风险。
Description
本申请要求于2019年1月23日提交中国专利局、申请号为201910065015.9、发明名称为“心脑血管疾病展示方法、装置、设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及医疗数据展示技术领域,尤其涉及一种心脑血管疾病展示方法、装置、计算机设备及存储介质。
随着社会老龄化和城市化进程加快,居民不健康生活方式等,我国居民心脑血管疾病的患病率不断攀升,呈现在低龄化、低收入群体中快速增长及个体聚集趋势。当用户体检或者去医院进行心脑血管相关体征指标的检查时,医院或体检机构给到用户的体检报告或者检查报告,都是根据检查到的数据信息,通过固定模板的报表或者报告来展现,同时报告或者报表一般是通过静态页面或者打印的纸质方式进行呈现。这种方式展现单一,缺乏多层次的人机交互体验和针对不同个体的个性化展现形式,给到用户的印象也不会很深刻。
发明内容
本申请提供了一种心脑血管疾病展示方法、装置、计算机设备及存储介质,为心脑血管疾病提供了一种心脑血管疾病展示方法。
第一方面,本申请提供了一种心脑血管疾病展示方法,所述方法包括:
获取用户的体征信息;
根据所述用户的体征信息,分析所述用户患有的心脑血管疾病类型;
根据所述心脑血管疾病类型以及所述体征信息,通过三维动画引擎绘制所述心脑血管疾病类型对应的心脑血管疾病动画;
根据所述心脑血管疾病类型以及所述体征信息评估所述用户面临的疾病风险,并通过三维动画引擎绘制所述疾病风险对应的风险动画;
展示所述心脑血管疾病动画和风险动画。
第二方面,本申请还提供了一种心脑血管疾病展示装置,所述装置包括:
获取模块,用于获取用户的体征信息;
分析模块,用于根据所述用户的体征信息,分析所述用户患有的心脑血管疾病类型;
第一绘制模块,用于根据所述心脑血管疾病类型以及所述体征信息,通过三维动画引擎绘制所述心脑血管疾病类型对应的心脑血管疾病动画;
第二绘制模块,用于根据所述心脑血管疾病类型以及所述体征信息评估用户面临的风险,并通过三维动画引擎绘制所述风险对应的风险动画;
展示模块,用于展示所述心脑血管疾病动画和所述风险动画。
第三方面,本申请还提供了一种计算机设备,所述计算机设备包括存储器和处理器;所述存储器用于存储计算机程序;所述处理器,用于执行所述计算机程序并在执行所述计算机程序时实现如上述的心脑血管疾病展示方法。
第四方面,本申请还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如上述的心脑血管疾病展示方法。
本申请公开了一种心脑血管疾病展示方法、装置、计算机设备及存储介质,通过获取用户的体征信息;根据所述用户的体征信息,分析所述用户患有的心脑血管疾病类型;根据所述心脑血管疾病类型以及所述体征信息,通过三维动画引擎绘制所述心脑血管疾病类型对应的心脑血管疾病动画;根据所述心脑血管疾病类型以及所述体征信息评估所述用户面临的疾病风险,并通过三维动画引擎绘制所述疾病风险对应的风险动画;展示所述心脑血管疾病动画和风险动画,可以将用户患有的心脑血管疾病以及面临的风险进行三维动画展示。
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种心脑血管疾病展示方法示意流程图;
图2为本申请实施例提供的图1中心脑血管疾病展示方法的子步骤的示意流程图;
图3为本申请实施例提供的又一种心脑血管疾病展示方法示意流程图;
图4为本申请实施例提供的图3中心脑血管疾病展示方法的子步骤的示意流程图;
图5为本申请实施例提供的一种心脑血管疾病展示装置的结构示意性框图;
图6为本申请实施例提供的图5中的第一绘制模块的结构示意性框图;
图7本申请实施例提供的一种计算机设备的结构示意性框图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清 楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
本申请的实施例提供了一种心脑血管疾病展示方法、装置、计算机设备及存储介质。该心脑血管疾病展示方法可用于医院、社康、体检机构、政府疾病预防部门等其他机构对心脑血管疾病三维动画展示。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,图1是本申请的实施例提供的一种心脑血管疾病展示方法的步骤示意流程图。如图1所示,该心脑血管疾病展示方法,具体包括以下步骤:
S101、获取用户的体征信息。
具体的,本申请实施例中,用户的体征信息包括年龄、性别、病史、计步信息、心率、脉搏、血压等信息。用户的体征信息可以通过用户佩戴的智能穿戴式设备进行实时获取,比如通过智能手环进行实时获取。也通过间隔时间段从穿戴式设备端获取。用户的体征信息还可以通过接收体检设备发送的检查结果从而获取体征信息,比如接收从CT、MRI、PET等影像检查设备所产生的数字化医学影像信息等。也可以从医疗数据库中心获取对应用户的体征信息。
S102、根据所述用户的体征信息,分析所述用户患有的心脑血管疾病类型。
具体地,根据所述用户的体征信息,分析所述用户患有的心脑血管疾病类型,可以通过医生根据体征信息进行判断患有心脑血管疾病类型。
在一实施例中,所述用户的体征信息,分析所述用户患有的心脑血管疾病类型,可以将所述用户的体征信息输入到预先训练好的神经网络模型,通过所述神经网络模型分析用户患有的心脑血管疾病类型。
预先训练好的神经网络模型,可选的,通过大量的心脑血管用户的体征信息,输入到神经网络模型,所述神经网络模型包括:卷积层、非线性单元、池化层以及完全连接层。通过卷积获取特征映射,然后将特征映射通过非线性单元进行修正,并将修正后的特征映射进行池化得到降维的特征映射,具体的,池化可以通过最大池化、平均值池化以及求和池化;最后将池化后的特征映射输入到全连接层通过激活函数输出患病的概率值。通过输出误差调整更新卷积层的过滤器,直到误差在目标范围内,至此,心脑血管疾病卷积神经网络预测模型训练完成。将步骤S101获取到的用户的体征信息输入到预先训练好的神经网路模型,得到是否患有心脑血管疾病以及患病的类型。心脑血管疾病类别包括:高血压、高血脂、动脉硬化、脑梗塞、脑出血、冠心病、心绞痛、心肌缺 血、心肌梗塞、心率衰竭、心律失常等等。
S103、根据所述心脑血管疾病类型以及所述体征信息,通过三维动画引擎绘制所述心脑血管疾病类型对应的心脑血管疾病动画。
具体地,如图2所示,根据所述心脑血管疾病类型以及所述体征信息,通过三维动画引擎绘制所述心脑血管疾病类型对应的心脑血管疾病动画,包括以下子步骤:
S1031、根据所述心脑血管疾病类型,通过三维动画引擎绘制心脑血管疾病动画。
具体地,首先根据所述心脑血管疾病类型对应的症状通过三维动画引擎(比如OGRE、OpenGVS、Vtree、OSG等三维动画引擎)绘制所述心脑血管疾病类型对应的动画,比如当用户有高血压时,通过三维动画引擎绘制动画,通过动画的效果显示出血流对血管壁的冲击压力比较大。当用户患有高血脂(甘油三酯、低密度脂肪、总胆固醇),则动画效果显示血液颜色为暗黄,形成动脉粥样硬化,血管壁也很脆。本步骤中,绘制的是所述心脑血管疾病类型对应的一般情况下的该类型的心脑血管疾病症状。同时对绘制好的该心脑血管疾病类型对应的动画进行保存。
S1032、根据所述体征信息对绘制的心脑血管疾病动画进行调整,得到所述心脑血管疾病类型对应的心脑血管疾病动画。
具体的,步骤S1031绘制的是所述心脑血管疾病类型对应的一般情况下的该类型的心脑血管疾病症状,实际上,每个用户具体的指标是不相同的,这样在步骤S1031绘制的对应类型心脑血管疾病动画的基础上,根据获取到的用户的体征信息参数进行调整。比如对于高血压,步骤S1031若绘制的是血压为160/110mmHg时对应的血流对血管壁的冲击压力,而获取到的用户的血压为180/130mmHg,则调整血流对血管壁的冲击压力,将冲击压力调整到更大。再比如,同样血压为160/110mmHg,但是用户年龄越大,会将血管壁的厚度以及脆度调整得更大。再比如,当用户患有高血脂,但相对于步骤S1031血脂指标更高,则将调整血流速度越慢,越容易和血管壁形成斑块。这样用户可以真实的观看到与自身体征信息相对应的动画效果。
S1033、调整所述体征信息的参数值,以实现对所述心脑血管疾病类型对应的心脑血管疾病动画的调整。
具体地,调整所述体征信息的参数,以实现对步骤1032绘制的所述心脑血管疾病类型对应的心脑血管疾病动画进行调整。让用户能够了解到如果指标继续恶化将会呈现的后果或者如果用户控制好转后将会出现的结果。如前述例子,用户患有高血压,绘制的所述心脑血管疾病类型对应的心脑血管疾病动画的其中一个体征信息参数是血压为180/130mmHg,调整血压参数值,比如逐步增大血压参数值,心脑血管疾病动画中血流对血管壁的冲击压力会逐渐增大,直到 血管壁破裂,这样让用户看到如果不控制,血压继续升高,则出现的后果。反之,降低血压参数值,血压不断降低,则心脑血管疾病动画中血流对血管壁的冲击压力逐渐变小,直到正常的状态。
S104、根据所述心脑血管疾病类型以及所述体征信息评估所述用户面临的疾病风险,并通过三维动画引擎绘制所述疾病风险对应的风险动画。
具体的,根据步骤S102分析得到的心脑血管疾病类型以及所述体征信息,对用户面临的风险进行评估,比如得到的风险评估类别为:用户患有高血压,而且血压值在180/130mmHg以上,通过评估用户的各项体征指标得知用户如不控制会导致心肌代偿性肥大,造成心脏缺血、缺氧,形成高血压性心脏病,随时都可能发生心力衰竭。则通过三维动画引擎绘制心肌代偿性肥大,造成心脏缺血、缺氧,形成高血压性心脏病,以及发生心力衰竭的整个过程。再比如,得到的风险评估类别为:用户有患脑卒中的风险,将会对用户脑部血管进行局部展示,动画模拟斑块脱落后形成血栓后堵塞脑血管,造成大脑缺血,用户形成中风的过程,或者由于用户的脑血管壁过脆过窄,用户脑出血造成脑溢血等状态。同样,也会通过3D即时演算模型,绘制3D动画展现心肌梗死、冠心病、心脏衰竭的过程。这样可以实现对用户心脑血管疾病风险进行动态的描绘。
S105、展示所述心脑血管疾病动画和所述风险动画。
绘制完所述心脑血管疾病动画和所述风险动画之后,可以在绘制终端设备直接展示,也可以发送给其他设备进行展示。
本申请实施例中,根据用户患有的心脑血管疾病类型以及体征信息,通过三维动画引擎绘制所述心脑血管疾病类型对应的心脑血管疾病动画以及根据所述心脑血管疾病类型以及所述体征信息评估所述用户面临的疾病风险,并通过三维动画引擎绘制所述疾病风险对应的风险动画,使得对心脑血管疾病的展示更加生动和多样化,用户也会更深刻了解心脑血管疾病特征。
请参阅图3,图3是本申请的实施例提供的另一种心脑血管疾病展示方法的示意流程图。如图3所示,该心脑血管疾病展示方法,具体包括以下步骤:
S201、获取用户的体征信息。
本申请实施例中,用户的体征信息可以通过用户佩戴的智能穿戴式设备进行实时获取,比如通过智能手环进行实时获取。也通过间隔时间段从穿戴式设备端获取。用户的体征信息还可以通过接收体检设备发送的检查结果从而获取体征信息,比如接收从CT、MRI、PET等影像检查设备所产生的数字化医学影像信息等。也可以从医疗数据库中心获取对应用户的体征信息。体征信息包括年龄、性别、病史、计步信息、心率、脉搏、血压等信息。
S202、根据所述用户的体征信息,分析所述用户患有的心脑血管疾病类型。
在本实施例中,将所述用户的体征信息的特征值与预先存储的心脑血管疾 病类别对应的体征信息的特征值进行比较,根据比较结果确定所述用户患有的心脑血管疾病患病类型。数据库预先存储有心脑血管疾病每类疾病名称(疾病类别)以及对应的体征信息对应的特征值,可以数据表的形式进行存储,如表1所示:
表1疾病类别以及体征信息特征值对应表
具体地,所述将所述用户的体征信息的特征值与预先存储的心脑血管疾病类别对应的体征信息的特征值进行比较,根据比较结果确定所述用户患有的心脑血管疾病患病类型,包括:根据所述用户的体征信息的特征值与预先存储的心脑血管疾病类别对应的体征信息的特征值利用关联公式计算所述用户患有对应类别的心脑血管疾病的概率;当所述概率大于预先存储的心脑血管疾病类别对应的预设概率值时,则判定所述用户患有对应类别的心脑血管疾病。
具体地,所述关联公式为:
按照上述概率计算方法与数据表中存储的所有的类别进行一一比对计算,从而得出用户患有的心脑血管疾病的类型。
例如,获取到的用户的体征信息特征值分别为:X
1、X
2......X
n,X
1、X
2......X
n表示对应信息的数值,比如X
1表示年龄40岁,X
2表示血压150/100mmHg。预先存储的心脑血管疾病对应类别(比如第j类)的体征信息对应的特征值为Y
1、Y
2......Y
n,Y
1、Y
2......Y
n为数值范围或数值,例如Y
1表示对应的年龄范围为>=35岁,Y
2表示对应的血压范围为>=140/90mmHg......将X
1、X
2......X
n与Y
1、Y
2......Y
n进行比较,C
1、C
2......C
n记为比较结果值,当X
i∈Y
i时C
i=1,当
时C
i=0,其中 1≤i≤n。例如X
2表示血压150/100mmHg,表示对应的血压范围为>=140/90mmHg,X
2∈Y
2则C
2=1。最后用户患第j类概率b
j计算公式为:
当b
j≥α时,比如当b
j≥0.5确定患有第j类心脑血管疾病,否则判断没有患第j类心脑血管疾病。预设概率值α,可以根据经验进行调整。
比如,如表1所示,预先存储的心脑血管疾病类别包括高血压和高血脂等疾病类别,其中两个疾病类别对应的预设概率值均为0.5,当然也可以为其他值,具体根据实际进行设定。当通过关联公式计算高血压疾病类别对应的概率为0.6,计算高血脂疾病类别对应的概率为0.4时,由此可以判定所述用户患有对应类别的心脑血管疾病为高血压。当然也有可能用户两种或多种疾病类型都可能患有。
S203、根据所述心脑血管疾病类型以及所述体征信息,通过三维动画引擎绘制所述心脑血管疾病类型对应的心脑血管疾病动画。
在一个实施例中,如图4所示,根据所述心脑血管疾病类型以及所述体征信息,通过三维动画引擎绘制所述心脑血管疾病类型对应的心脑血管疾病动画,包括以下子步骤:
S2031、通过三维动画引擎绘制正常心脑血管动画。
本实施例中,先通过单位动画引擎绘制正常情况下心脑血管相关的动画。比如,若用户患有高血压,则通过三维动画引擎先绘制正常情况下血流对血管壁的压力相关动画。若用户者患有高血脂,则通过三维动画引擎先绘制正常情况下血流的速度。
S2032、根据所述用户的体征信息对绘制的所述正常心脑血管动画进行调整,得到所述心脑血管疾病类型对应的心脑血管疾病动画。
具体的,根据所述用户的体征信息在步骤S2031绘制的正常心脑血管动画的基础上进行调整,得到所述心脑血管疾病类型对应的心脑血管疾病动画。例如,如果用户患有高血压,获取到用户的血压为160/110mmHg,调整正常的血压值,将正常的血压值逐步调整160/110mmHg,这样正常心脑血管动画也对应的调整,对应的血流对血管壁的冲击压力或逐渐增大,从而得到对应的高血压疾病动画。再例如,用户者患有高血脂,获取到用户的胆固醇为260mg/di、血清甘油三酯180mg/di;则逐步调整正常的胆固醇以及血清甘油三酯到用户对应的胆固醇以及血清甘油三酯,这样对应的正常心脑血管动画中血流的速度会逐步变慢,血液颜色越来越暗黄,从而得到对应的高血脂疾病动画。这样一步步,可以让用户看到对比效果,加深用户的印象,呈现方式更加生动形象。
S204、根据所述心脑血管疾病类型以及所述体征信息评估所述用户面临的疾病风险,并通过三维动画引擎绘制所述疾病风险对应的风险动画。
具体的,根据步骤S202分析得到的心脑血管疾病类型以及所述体征信息, 对用户面临的风险进行评估,比如,得到的风险评估类别为:用户有患脑卒中的风险,将会对用户脑部血管进行局部展示,动画模拟斑块脱落后形成血栓后堵塞脑血管,造成大脑缺血,用户形成中风的过程,或者由于用户的脑血管壁过脆过窄,用户脑出血造成脑溢血等状态。同样,也会通过3D即时演算模型,绘制3D动画展现心肌梗死、冠心病、心脏衰竭的过程。这样可以实现对用户心脑血管疾病风险进行动态的描绘,用户也能更深入了解面临的风险,从而可督促用户需要注意和预防。
S205、将所述心脑血管疾病动画和/或所述风险动画发送给终端设备进行展示。
具体的,可以将所述心脑血管疾病动画和/或所述风险动画发送给用户终端设备,可以通过WiFi、4G/5G等网络发送给用户或者用户的家属的终端设备,比如手机、IPAD等等。这样用户以及家属可以随时观看。同时,可以将所述心脑血管疾病动画和所述风险动画保存在本地数据库,以便后续查看。在另一可行的方式中,用户可以通过终端设备对接收到的所述心脑血管疾病动画和/或所述风险动画进行修改或编辑。比如当用户体征信息改变了,用户可以在更改动画相应的参数值,从而对动画进行修改。
在另一实施例中,本申请中还可以根据所述分析得到的心脑血管疾病类型以及体征信息,通过VR进行展示患者心脑血管疾病类型以及体征信息。患者还可以通过VR等设备,进入自己的虚拟人体,观察心血管内部的结构,更加形象生动的展现心脑血管疾病风险和自己身体各个指标(身高体重血糖血脂血压等)的联系。
本申请还提供了一种心脑血管疾病展示装置,请参考图5,图5为本申请还提供的一种心脑血管疾病展示装置40的结构示意图,该心脑血管疾病展示装置40用于执行前述任一项心脑血管疾病展示方法。其中,该心脑血管疾病展示装置40可以配置于服务器或终端中。其中,服务器可以为独立的服务器,也可以为服务器集群。该终端可以是手机、平板电脑、笔记本电脑、台式电脑、个人数字助理和穿戴式设备等电子设备。
该心脑血管疾病展示装置40包括:
获取模块41,用于获取用户的体征信息;
分析模块42,用于根据所述用户的体征信息,分析所述用户患有的心脑血管疾病类型;
第一绘制模块43,用于根据所述心脑血管疾病类型以及所述体征信息,通过三维动画引擎绘制所述心脑血管疾病类型对应的心脑血管疾病动画;
第二绘制模块44,用于根据所述心脑血管疾病类型以及所述体征信息评估用户面临的风险,并通过三维动画引擎绘制所述风险对应的风险动画;
展示模块45,用于展示所述心脑血管疾病动画和所述风险动画。
可选的,所述分析模块42,包括:
分析子模块421,用于将所述用户的体征信息输入到预先训练好的神经网络模型,通过所述神经网络模型分析用户患有的心脑血管疾病类型;
比较模块422,用于将所述用户的体征信息的特征值与预先存储的心脑血管疾病类别对应的体征信息的特征值进行比较,根据比较结果确定所述用户患有的心脑血管疾病类型。
可选的,所述比较模块422,还具体用于:根据所述用户的体征信息的特征值与预先存储的心脑血管疾病类别对应的体征信息的特征值利用关联公式计算所述用户患有对应类别的心脑血管疾病的概率;
当所述概率大于预先存储的心脑血管疾病类别对应的预设概率值时,则判定所述用户患有对应类别的心脑血管疾病;
所述关联公式为:
可选的,参见图6,图6为第一绘制模块43的结构示意框图,第一绘制模块43包括:
第一绘制子模块431,用于根据所述心脑血管疾病类型,通过三维动画引擎绘制心脑血管疾病动画;
第一调整模块432,用于根据所述体征信息对绘制的所述心脑血管疾病动画进行调整,得到所述心脑血管疾病类型对应的心脑血管疾病动画。
可选的,第一绘制模块43包括:
第二绘制子模块433,用于通过三维动画引擎绘制正常心脑血管动画;
第二调整模块434,用于根据所述用户的体征信息对绘制的所述正常心脑血管动画进行调整,得到所述心脑血管疾病类型对应的心脑血管疾病动画。
可选的,所述第一绘制模块43还包括:
第三调整模块435,用于调整所述体征信息的参数值,以实现对所述心脑血管疾病类型对应的心脑血管疾病动画的调整。
可选的,所述展示模块45包括:
发送模块451,用于将所述心脑血管疾病动画和/或所述风险动画发送给终端设备,以便对所述心脑血管疾病动画和/或所述风险动画进行展示或修改。
需要说明的是,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的心脑血管疾病展示装置和各模块的具体工作过程,可以参 考前述心脑血管疾病展示方法实施例中的对应过程,在此不再赘述。
上述的心脑血管疾病展示装置可以实现为一种计算机程序的形式,该计算机程序可以在如图7所示的计算机设备上运行。
请参阅图7,图7是本申请实施例提供的一种计算机设备的示意性框图。该计算机设备可以是服务器或终端。
参阅图7,该计算机设备包括通过系统总线连接的处理器、存储器和网络接口,其中,存储器可以包括非易失性存储介质和内存储器。非易失性存储介质可存储操作系统和计算机程序。该计算机程序包括程序指令,该程序指令被执行时,可使得处理器执行一种心脑血管疾病展示方法。
处理器用于提供计算和控制能力,支撑整个计算机设备的运行。
内存储器为非易失性存储介质中的计算机程序的运行提供环境,该计算机程序被处理器执行时,可使得处理器执行一种心脑血管疾病展示方法。
该网络接口用于进行网络通信,如发送分配的任务等。本领域技术人员可以理解,图7中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
应当理解的是,处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。其中,通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
其中,所述处理器用于运行存储在存储器中的计算机程序,以实现如下步骤:
获取用户的体征信息;根据所述用户的体征信息,分析所述用户患有的心脑血管疾病类型;根据所述心脑血管疾病类型以及所述体征信息,通过三维动画引擎绘制所述心脑血管疾病类型对应的心脑血管疾病动画;根据所述心脑血管疾病类型以及所述体征信息评估所述用户面临的疾病风险,并通过三维动画引擎绘制所述疾病风险对应的风险动画;展示所述心脑血管疾病动画和所述风险动画。
在一个实施例中,所述处理器在实现所述根据所述用户的体征信息,分析所述用户患有的心脑血管疾病类型时,用于实现:
将所述用户的体征信息输入到预先训练好的神经网络模型,通过所述神经网络模型分析用户患有的心脑血管疾病类型;或/和
将所述用户的体征信息的特征值与预先存储的心脑血管疾病类别对应的体征信息的特征值进行比较,根据比较结果确定所述用户患有的心脑血管疾病类型。
在一个实施例中,所述处理器在实现所述将所述用户的体征信息的特征值与预先存储的心脑血管疾病类别对应的体征信息的特征值进行比较,根据比较结果确定所述用户患有的心脑血管疾病类型时,用于实现:
根据所述用户的体征信息的特征值与预先存储的心脑血管疾病类别对应的体征信息的特征值利用关联公式计算所述用户患有对应类别的心脑血管疾病的概率;
当所述概率大于预先存储的心脑血管疾病类别对应的预设概率值时,则判定所述用户患有对应类别的心脑血管疾病;
所述关联公式为:
在一个实施例中,所述处理器在实现所述根据所述心脑血管疾病类型以及所述体征信息,通过三维动画引擎绘制所述心脑血管疾病类型对应的心脑血管疾病动画时,用于实现:
根据所述心脑血管疾病类型,通过三维动画引擎绘制心脑血管疾病动画;
根据所述体征信息对绘制的所述心脑血管疾病动画进行调整,得到所述心脑血管疾病类型对应的心脑血管疾病动画。
在一个实施例中,所述处理器在实现所述根据所述心脑血管疾病类型以及所述体征信息,通过三维动画引擎绘制所述心脑血管疾病类型对应的心脑血管疾病动画时,用于实现:
通过三维动画引擎绘制正常心脑血管动画;
根据所述用户的体征信息对绘制的所述正常心脑血管动画进行调整,得到所述心脑血管疾病类型对应的心脑血管疾病动画。
在一个实施例中,所述处理器在实现所述得到所述心脑血管疾病类型对应的心脑血管疾病动画之后,还用于实现:
调整所述体征信息的参数值,以实现对所述心脑血管疾病类型对应的心脑血管疾病动画的调整。
在一个实施例中,所述处理器在实现所述展示所述心脑血管疾病动画和所述风险动画时,用于实现:将所述心脑血管疾病动画和/或所述风险动画发送给终端设备,以便对所述心脑血管疾病动画和/或所述风险动画进行展示或修改。
本申请的实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序中包括程序指令,所述处理器执行所述程序指令,实现本申请实施例提供的任一项心脑血管疾病展示方法。
其中,所述计算机可读存储介质可以是前述实施例所述的计算机设备的内部存储单元,例如所述计算机设备的硬盘或内存。所述计算机可读存储介质也可以是所述计算机设备的外部存储设备,例如所述计算机设备上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。
Claims (20)
- 一种计算机设备,其中,所述计算机设备包括存储器和处理器;所述存储器用于存储计算机程序;所述处理器,用于执行所述计算机程序并在执行所述计算机程序时实现:获取用户的体征信息;将所述用户的体征信息输入到预先训练好的神经网络模型,通过所述神经网络模型分析用户患有的心脑血管疾病类型;或/和根据所述用户的体征信息的特征值与预先存储的心脑血管疾病类别对应的体征信息的特征值,利用关联公式计算所述用户患有对应类别的心脑血管疾病的概率;当所述概率大于预先存储的心脑血管疾病类别对应的预设概率值时,则判定所述用户患有对应类别的心脑血管疾病;所述关联公式为:根据所述心脑血管疾病类型以及所述体征信息,通过三维动画引擎绘制所述心脑血管疾病类型对应的心脑血管疾病动画;根据所述心脑血管疾病类型以及所述体征信息评估所述用户面临的疾病风险,并通过三维动画引擎绘制所述疾病风险对应的风险动画;展示所述心脑血管疾病动画和所述风险动画。
- 根据权利要求1所述的计算机设备,其中,所述处理器在实现所述根据所述心脑血管疾病类型以及所述体征信息,通过三维动画引擎绘制所述心脑血管疾病类型对应的心脑血管疾病动画时,用于实现:根据所述心脑血管疾病类型,通过三维动画引擎绘制心脑血管疾病动画;根据所述体征信息对绘制的所述心脑血管疾病动画进行调整,得到所述心脑血管疾病类型对应的心脑血管疾病动画。
- 根据权利要求1所述的计算机设备,其中,所述处理器在实现所述根据所述心脑血管疾病类型以及所述体征信息,通过三维动画引擎绘制所述心脑血管疾病类型对应的心脑血管疾病动画时,用于实现:通过三维动画引擎绘制正常心脑血管动画;根据所述用户的体征信息对绘制的所述正常心脑血管动画进行调整,得到所述心脑血管疾病类型对应的心脑血管疾病动画。
- 根据权利要求3所述的计算机设备,其中,所述处理器在实现所述得到所述心脑血管疾病类型对应的心脑血管疾病动画之后,还用于实现:调整所述体征信息的参数值,以实现对所述心脑血管疾病类型对应的心脑血管疾病动画的调整。
- 根据权利要求1所述的计算机设备,其中,所述处理器在实现所述展示所述心脑血管疾病动画和所述风险动画时,用于实现:将所述心脑血管疾病动画和/或所述风险动画发送给终端设备,以便对所述心脑血管疾病动画和/或所述风险动画进行展示或修改。
- 一种心脑血管疾病展示装置,包括:获取模块,用于获取用户的体征信息;分析模块,用于将所述用户的体征信息输入到预先训练好的神经网络模型,通过所述神经网络模型分析用户患有的心脑血管疾病类型;或/和用于根据所述用户的体征信息的特征值与预先存储的心脑血管疾病类别对应的体征信息的特征值,利用关联公式计算所述用户患有对应类别的心脑血管疾病的概率;以及当所述概率大于预先存储的心脑血管疾病类别对应的预设概率值时,则判定所述用户患有对应类别的心脑血管疾病;所述关联公式为:第一绘制模块,用于根据所述心脑血管疾病类型以及所述体征信息,通过三维动画引擎绘制所述心脑血管疾病类型对应的心脑血管疾病动画;第二绘制模块,用于根据所述心脑血管疾病类型以及所述体征信息评估用户面临的风险,并通过三维动画引擎绘制所述风险对应的风险动画;展示模块,用于展示所述心脑血管疾病动画和所述风险动画。
- 根据权利要求6所述的心脑血管疾病展示装置,其中,所述第一绘制模块包括:第一绘制子模块,用于根据所述心脑血管疾病类型,通过三维动画引擎绘制心脑血管疾病动画;第一调整模块,用于根据所述体征信息对绘制的所述心脑血管疾病动画进行调整,得到所述心脑血管疾病类型对应的心脑血管疾病动画。
- 根据权利要求6所述的心脑血管疾病展示装置,其中,所述第一绘制模块包括:第二绘制子模块,用于通过三维动画引擎绘制正常心脑血管动画;第二调整模块,用于根据所述用户的体征信息对绘制的所述正常心脑血管 动画进行调整,得到所述心脑血管疾病类型对应的心脑血管疾病动画。
- 根据权利要求8所述的心脑血管疾病展示装置,其中,所述第一绘制模块还包括:第三调整模块,用于调整所述体征信息的参数值,以实现对所述心脑血管疾病类型对应的心脑血管疾病动画的调整。
- 根据权利要求6所述的心脑血管疾病展示装置,其中,所述展示模块包括:发送模块,用于将所述心脑血管疾病动画和/或所述风险动画发送给终端设备,以便对所述心脑血管疾病动画和/或所述风险动画进行展示或修改。
- 一种计算机可读存储介质,其中,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现:获取用户的体征信息;将所述用户的体征信息输入到预先训练好的神经网络模型,通过所述神经网络模型分析用户患有的心脑血管疾病类型;或/和根据所述用户的体征信息的特征值与预先存储的心脑血管疾病类别对应的体征信息的特征值,利用关联公式计算所述用户患有对应类别的心脑血管疾病的概率;当所述概率大于预先存储的心脑血管疾病类别对应的预设概率值时,则判定所述用户患有对应类别的心脑血管疾病;所述关联公式为:根据所述心脑血管疾病类型以及所述体征信息,通过三维动画引擎绘制所述心脑血管疾病类型对应的心脑血管疾病动画;根据所述心脑血管疾病类型以及所述体征信息评估所述用户面临的疾病风险,并通过三维动画引擎绘制所述疾病风险对应的风险动画;展示所述心脑血管疾病动画和所述风险动画。
- 根据权利要求11所述的计算机可读存储介质,其中,所述处理器在实现所述根据所述心脑血管疾病类型以及所述体征信息,通过三维动画引擎绘制所述心脑血管疾病类型对应的心脑血管疾病动画时,用于实现:根据所述心脑血管疾病类型,通过三维动画引擎绘制心脑血管疾病动画;根据所述体征信息对绘制的所述心脑血管疾病动画进行调整,得到所述心脑血管疾病类型对应的心脑血管疾病动画。
- 根据权利要求11所述的计算机可读存储介质,其中,所述处理器在实现所述根据所述心脑血管疾病类型以及所述体征信息,通过三维动画引擎绘制所述心脑血管疾病类型对应的心脑血管疾病动画时,用于实现:通过三维动画引擎绘制正常心脑血管动画;根据所述用户的体征信息对绘制的所述正常心脑血管动画进行调整,得到所述心脑血管疾病类型对应的心脑血管疾病动画。
- 根据权利要求13所述的计算机可读存储介质,其中,所述处理器在实现所述得到所述心脑血管疾病类型对应的心脑血管疾病动画之后,还用于实现:调整所述体征信息的参数值,以实现对所述心脑血管疾病类型对应的心脑血管疾病动画的调整。
- 根据权利要求11所述的计算机可读存储介质,其中,所述处理器在实现所述展示所述心脑血管疾病动画和所述风险动画时,用于实现:将所述心脑血管疾病动画和/或所述风险动画发送给终端设备,以便对所述心脑血管疾病动画和/或所述风险动画进行展示或修改。
- 一种心脑血管疾病展示方法,包括:获取用户的体征信息;将所述用户的体征信息输入到预先训练好的神经网络模型,通过所述神经网络模型分析用户患有的心脑血管疾病类型;或/和根据所述用户的体征信息的特征值与预先存储的心脑血管疾病类别对应的体征信息的特征值,利用关联公式计算所述用户患有对应类别的心脑血管疾病的概率;当所述概率大于预先存储的心脑血管疾病类别对应的预设概率值时,则判定所述用户患有对应类别的心脑血管疾病;所述关联公式为:根据所述心脑血管疾病类型以及所述体征信息,通过三维动画引擎绘制所述心脑血管疾病类型对应的心脑血管疾病动画;根据所述心脑血管疾病类型以及所述体征信息评估所述用户面临的疾病风险,并通过三维动画引擎绘制所述疾病风险对应的风险动画;展示所述心脑血管疾病动画和所述风险动画。
- 根据权利要求16所述的心脑血管疾病展示方法,其中,所述根据所述心脑血管疾病类型以及所述体征信息,通过三维动画引擎绘制所述心脑血管疾病 类型对应的心脑血管疾病动画,包括:根据所述心脑血管疾病类型,通过三维动画引擎绘制心脑血管疾病动画;根据所述体征信息对绘制的所述心脑血管疾病动画进行调整,得到所述心脑血管疾病类型对应的心脑血管疾病动画。
- 根据权利要求16所述的心脑血管疾病展示方法,其中,所述根据所述心脑血管疾病类型以及所述体征信息,通过三维动画引擎绘制所述心脑血管疾病类型对应的心脑血管疾病动画,包括:通过三维动画引擎绘制正常心脑血管动画;根据所述用户的体征信息对绘制的所述正常心脑血管动画进行调整,得到所述心脑血管疾病类型对应的心脑血管疾病动画。
- 根据权利要求18所述的心脑血管疾病展示方法,其中,所述得到所述心脑血管疾病类型对应的心脑血管疾病动画之后,还包括:调整所述体征信息的参数值,以实现对所述心脑血管疾病类型对应的心脑血管疾病动画的调整。
- 根据权利要求16所述的心脑血管疾病展示方法,其中,所述展示所述心脑血管疾病动画和所述风险动画,包括:将所述心脑血管疾病动画和/或所述风险动画发送给终端设备,以便对所述心脑血管疾病动画和/或所述风险动画进行展示或修改。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG11202008416WA SG11202008416WA (en) | 2019-01-23 | 2019-11-11 | Method and device for display of cardio-cerebrovascular disease, device, and storage medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910065015.9 | 2019-01-23 | ||
CN201910065015.9A CN109840932A (zh) | 2019-01-23 | 2019-01-23 | 心脑血管疾病展示方法、装置、设备及存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020151312A1 true WO2020151312A1 (zh) | 2020-07-30 |
Family
ID=66884022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/117257 WO2020151312A1 (zh) | 2019-01-23 | 2019-11-11 | 心脑血管疾病展示方法、装置、设备及存储介质 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN109840932A (zh) |
SG (1) | SG11202008416WA (zh) |
WO (1) | WO2020151312A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109840932A (zh) * | 2019-01-23 | 2019-06-04 | 平安科技(深圳)有限公司 | 心脑血管疾病展示方法、装置、设备及存储介质 |
CN110970105A (zh) * | 2019-12-04 | 2020-04-07 | 深圳追一科技有限公司 | 体检报告播报方法、装置、电子设备及存储介质 |
CN111126601A (zh) * | 2019-12-24 | 2020-05-08 | 上海商汤智能科技有限公司 | 信息处理方法及装置、电子设备和存储介质 |
CN112652379A (zh) * | 2021-01-12 | 2021-04-13 | 南通大学附属医院 | 一种自动生成肾衰竭患者营养治疗方案的系统及方法 |
CN113066547B (zh) * | 2021-03-16 | 2022-06-24 | 军事科学院系统工程研究院卫勤保障技术研究所 | 一种基于常规无创参数的ards早期动态预警方法与系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015148732A1 (en) * | 2014-03-25 | 2015-10-01 | Massachusetts Institute Of Technology | Apparatus and method for motor function characterization |
CN105096388A (zh) * | 2014-04-23 | 2015-11-25 | 北京冠生云医疗技术有限公司 | 基于计算流体力学的冠状动脉血流仿真系统和方法 |
CN106326654A (zh) * | 2016-08-24 | 2017-01-11 | 北京辛诺创新科技有限公司 | 基于大数据云分析的健康预测系统、智能终端和服务器 |
CN107967945A (zh) * | 2017-12-20 | 2018-04-27 | 姜涵予 | 主观感受的评估方法及装置 |
CN109840932A (zh) * | 2019-01-23 | 2019-06-04 | 平安科技(深圳)有限公司 | 心脑血管疾病展示方法、装置、设备及存储介质 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1297783B1 (en) * | 2001-09-10 | 2005-01-19 | Microlife Intellectual Property GmbH | A blood pressure monitor and a method for determining a risk rate for a disease |
JP4441603B2 (ja) * | 2004-07-13 | 2010-03-31 | 株式会社エヌ・ティ・ティ・データ | リスク評価装置、及び、プログラム |
US20110202486A1 (en) * | 2009-07-21 | 2011-08-18 | Glenn Fung | Healthcare Information Technology System for Predicting Development of Cardiovascular Conditions |
US20130191160A1 (en) * | 2012-01-23 | 2013-07-25 | Orb Health, Inc. | Dynamic Presentation of Individualized and Populational Health Information and Treatment Solutions |
US10172568B2 (en) * | 2014-07-14 | 2019-01-08 | Medtronic, Inc. | Determining prospective risk of heart failure hospitalization |
CN106339576A (zh) * | 2016-07-20 | 2017-01-18 | 美的集团股份有限公司 | 一种健康管理方法和系统 |
CN107895596A (zh) * | 2016-12-19 | 2018-04-10 | 平安科技(深圳)有限公司 | 风险预测方法及系统 |
CN107506602A (zh) * | 2017-09-07 | 2017-12-22 | 北京海融兴通信息安全技术有限公司 | 一种大数据健康预测系统 |
CN108091399A (zh) * | 2017-12-25 | 2018-05-29 | 深圳市慧康医信科技有限公司 | 一种动态疾病模型库的分析方法及系统 |
CN108968933B (zh) * | 2018-06-23 | 2021-04-20 | 桂林医学院附属医院 | 心脑血管疾病检测装置 |
CN108986918A (zh) * | 2018-06-28 | 2018-12-11 | 东软集团股份有限公司 | 辅助诊断方法、装置、终端设备和计算机存储介质 |
CN109087706B (zh) * | 2018-07-13 | 2022-12-02 | 浙江清华长三角研究院 | 基于睡眠大数据的人体健康评估方法及评估系统 |
CN109242836A (zh) * | 2018-08-27 | 2019-01-18 | 百度在线网络技术(北京)有限公司 | 疾病预测方法、装置以及存储介质 |
CN109243608A (zh) * | 2018-09-11 | 2019-01-18 | 北京唐冠天朗科技开发有限公司 | 一种高危人群识别方法和系统 |
-
2019
- 2019-01-23 CN CN201910065015.9A patent/CN109840932A/zh active Pending
- 2019-11-11 SG SG11202008416WA patent/SG11202008416WA/en unknown
- 2019-11-11 WO PCT/CN2019/117257 patent/WO2020151312A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015148732A1 (en) * | 2014-03-25 | 2015-10-01 | Massachusetts Institute Of Technology | Apparatus and method for motor function characterization |
CN105096388A (zh) * | 2014-04-23 | 2015-11-25 | 北京冠生云医疗技术有限公司 | 基于计算流体力学的冠状动脉血流仿真系统和方法 |
CN106326654A (zh) * | 2016-08-24 | 2017-01-11 | 北京辛诺创新科技有限公司 | 基于大数据云分析的健康预测系统、智能终端和服务器 |
CN107967945A (zh) * | 2017-12-20 | 2018-04-27 | 姜涵予 | 主观感受的评估方法及装置 |
CN109840932A (zh) * | 2019-01-23 | 2019-06-04 | 平安科技(深圳)有限公司 | 心脑血管疾病展示方法、装置、设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN109840932A (zh) | 2019-06-04 |
SG11202008416WA (en) | 2020-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020151312A1 (zh) | 心脑血管疾病展示方法、装置、设备及存储介质 | |
US10762450B2 (en) | Diagnosis-driven electronic charting | |
JP6689919B2 (ja) | 医療情報用の進化型コンテキスト臨床データエンジン | |
US8917272B2 (en) | Methods, apparatuses, and computer program products for facilitating visualization and analysis of medical data | |
US20180294060A1 (en) | Technological devices and systems and methods to use the same to obtain biological information | |
US9817946B2 (en) | Graphic representations of health-related status | |
US11900266B2 (en) | Database systems and interactive user interfaces for dynamic conversational interactions | |
US20130111387A1 (en) | Medical information display apparatus and operation method and program | |
JP2012501015A5 (zh) | ||
WO2020181807A1 (zh) | 健康提醒方法、装置、计算机设备及存储介质 | |
US20140136225A1 (en) | Discharge readiness index | |
WO2012003397A2 (en) | Diagnosis-driven electronic charting | |
CN110660482A (zh) | 一种基于大数据的中医处方智能推荐系统及其控制方法 | |
JP2014194721A (ja) | グラフ表示装置およびグラフ表示装置の作動方法並びにグラフ表示プログラム | |
TW201434008A (zh) | 健康狀態的個人化地視覺化呈現 | |
US10909676B2 (en) | Method and system for clinical decision support with local and remote analytics | |
JP7238705B2 (ja) | 診療支援方法、診療支援システム、学習モデルの生成方法、および、診療支援プログラム | |
JP2020523095A (ja) | 患者集団の疾患症状比較を視覚化するためのシステム及び方法 | |
Serrano et al. | The Promise of Artificial Intelligence-Assisted Point-of-Care Ultrasonography in Perioperative Care | |
US20190189288A1 (en) | Providing subject-specific information | |
US20230018077A1 (en) | Medical information processing system, medical information processing method, and storage medium | |
US20220375607A1 (en) | Information processing apparatus, information processing method, and program | |
Peschel et al. | Cloud-based Infrastructure for Interactive Analysis of RNFLT Data | |
US20190108916A1 (en) | Decision-support tools for pediatric obesity | |
US11699232B2 (en) | Brain hub explorer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19911227 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19911227 Country of ref document: EP Kind code of ref document: A1 |