WO2020151311A1 - 体积测量系统及方法 - Google Patents

体积测量系统及方法 Download PDF

Info

Publication number
WO2020151311A1
WO2020151311A1 PCT/CN2019/117130 CN2019117130W WO2020151311A1 WO 2020151311 A1 WO2020151311 A1 WO 2020151311A1 CN 2019117130 W CN2019117130 W CN 2019117130W WO 2020151311 A1 WO2020151311 A1 WO 2020151311A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
laser
emitting device
distance
laser emitting
Prior art date
Application number
PCT/CN2019/117130
Other languages
English (en)
French (fr)
Inventor
余峰
Original Assignee
艾信智慧医疗科技发展(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艾信智慧医疗科技发展(苏州)有限公司 filed Critical 艾信智慧医疗科技发展(苏州)有限公司
Publication of WO2020151311A1 publication Critical patent/WO2020151311A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F17/00Methods or apparatus for determining the capacity of containers or cavities, or the volume of solid bodies

Definitions

  • the invention relates to the field of measurement technology, in particular to a volume measurement system and method.
  • the volume of objects involves logistics sorting, logistics billing, loading and transportation, and warehouse storage, it is necessary to obtain the volume of objects; the product volume on the assembly line is an important part of the production and circulation of material products. parameter.
  • the present invention proposes a volume measurement system and method.
  • a volume measurement system for measuring the volume of objects the objects are all rectangular parallelepiped, the system includes:
  • Conveyor belt used to transport goods in the conveying direction
  • a laser emitting device is arranged above the conveyor belt to emit laser light downward, and when the laser light is irradiated on the article, a landing point is formed on the article;
  • the photographing device is spaced apart from the laser emitting device in the conveying direction, and is located at the same height as the laser emitting device, so as to photograph the article when the laser is irradiated on the article and output the photographed image; the optical axis of the photographing device and the conveyor belt or The intersection of the objects is the image center of the photographed image, and the optical axis of the photographing device is parallel to the laser light emitted by the laser emitting device;
  • a data processing device that is connected to the photographing device to acquire and process the photographed image; the data processing device includes an area estimator to identify and calculate the area of the object on the photographed image;
  • the data processing device further includes a height estimator for measuring the height of the article, and the height estimator includes an angle measuring unit for measuring the angle of the landing point to the center of the image relative to the imaging device, and for obtaining the distance from the laser emitting device to the conveyor belt.
  • the data processing device also includes a volume estimator communicatively connected with the height estimator and the area estimator, and calculates the volume of the object by obtaining the height and area of the object.
  • the laser emitted by the laser emitting device has several lasers, which are arranged in a row perpendicular to the conveying direction on the horizontal plane.
  • the photographing device includes an image sensor unit for identifying the brightest point formed by the laser beam irradiated on the article, and taking the brightest point as the landing point.
  • the image sensor unit uses ccd photosensitive elements.
  • a number of pixels are provided on the captured image, and the distances between adjacent pixels in the transmission direction are the same.
  • the angle measurement unit calculates the number of pixels between the drop point and the image center to obtain The angle of the drop point to the center of the image relative to the camera.
  • the measurement method includes:
  • the step of "acquiring the angle ⁇ from the drop point to the image center relative to the imaging device" specifically includes:
  • the step of "experimentally obtaining the radian value R and radian error T of the pixel" is specifically:
  • the laser emitted by the laser emitting device has several lasers arranged in a column shape perpendicular to the conveying direction, and the "calibration of the laser irradiation forming point in the captured image as the landing point" specifically includes: identifying The light spot irradiated by the laser light emitted by the laser emitting device in the captured image is determined to be the spot with the highest brightness.
  • the step of "calculating the bottom area S of the article" specifically includes:
  • the volume measurement system and method proposed by the present invention use the imaging device to image the object and the laser emitted to the object to form a landing point, and obtain the landing point to the center of the image relative to the imaging device through a height calculator.
  • the angle and the distance between the shooting device and the laser emitting device are used to obtain the distance between the laser emitting device and the surface of the object, and then the height of the object is obtained, thereby obtaining the volume of the object.
  • the data processing only the image taken is analyzed, so the occupied Data analysis resources are small, work efficiency is improved in the process of goods transportation, and the measurement is more accurate.
  • Figure 1 is a schematic diagram of the structure of the volume measurement system of the present invention.
  • Figure 2 is a flow chart of the volume measurement method in the present invention.
  • Figure 3 is a schematic diagram of the height calculation of the article in the present invention.
  • 100 volume measurement system
  • 1 article
  • 2 conveyor belt
  • 3 laser emitting device
  • 4 photographing device
  • 41 image sensor unit
  • 5 data processing device
  • O drop point.
  • the present invention proposes a volume measurement system 100, which is used to measure the volume of an article 1, all of which are cuboid-shaped, and the system includes:
  • Conveyor belt 2 used to transport items 1 in the conveying direction
  • the laser emitting device 3 is arranged above the conveyor belt 2 to emit laser light downward, and when the laser light irradiates the article 1, a landing point O is formed on the article 1;
  • the photographing device 4 is spaced apart from the laser emitting device 3 in the conveying direction, and is located at the same height as the laser emitting device 3, so as to photograph the article 1 when the laser is irradiated on the article 1 and output the photographed image.
  • the photographing device The intersection of the optical axis of 4 and the conveyor belt or article is the image center of the captured image.
  • the optical axis of the imaging device 4 is parallel to the laser emitted by the laser emitting device 3, and the optical axis of the imaging device 4 is emitted from the laser emitting device 3.
  • the laser is perpendicular to the conveyor belt; here, the shooting device 4 uses an industrial high-speed camera, because it can record a dynamic image at a high frequency, generally can reach a speed of 1000 to 10000 frames per second, making it move The captured image obtained when the item 1 is clear enough to improve the accuracy of subsequent calculation results.
  • the data processing device 5 is data-connected with the photographing device 4 to obtain and process the photographed image; here, the data processing device 5 generally adopts an industrial computer, which has higher antimagnetic, dustproof, Anti-shock ability, with the ability to work continuously for a long time, more suitable for configuration in industrial and commercial fields.
  • the data processing device 5 includes an area measurer to identify and calculate the area of the article 1 on the captured image;
  • the data processing device 5 also includes a height estimator for measuring the height of the article 1, and the height estimator includes an angle measuring unit for measuring the angle of the landing point O to the image center relative to the imaging device 4, and for obtaining laser emission A first distance measuring unit for the vertical distance of the device 3 from the conveyor belt 2, and a second distance measuring unit for obtaining the distance between the imaging device 4 and the laser emitting device 3;
  • the height estimator obtains the angle between the landing point O and the image center relative to the imaging device 4 and the distance between the imaging device 4 and the laser emitting device 3 to obtain the distance between the laser emitting device 3 and the surface of the article 1, and then obtain The height of item 1;
  • the data processing device 5 also includes a volume estimator communicatively connected with the height estimator and the area estimator, and obtains the height of the item 1 and the area of the item 1 to calculate the volume of the item 1.
  • a number of pixels are set on the captured image, and the distances between adjacent pixels in the transmission direction are the same, and the angle measurement unit calculates the number of pixels between the landing point O and the image center to obtain the landing point O The angle to the center of the image relative to the camera 4.
  • the laser light emitted by the laser emitting device 3 has several lasers, and they are arranged in a row perpendicular to the conveying direction on the horizontal plane.
  • the photographing device 4 includes an image sensor unit 41, which is used to identify the brightest point formed by the column-shaped laser light irradiated on the article, and use the brightest point as the landing point O.
  • the image sensor unit 41 uses a ccd photosensitive element. Because the ccd photosensitive element is made of high-sensitivity semiconductor materials, it can easily identify the brightest points formed by the column-shaped laser. At the same time, its imaging quality is good, so that the final image is captured clearer.
  • the present invention also proposes a volume measurement method based on the volume measurement system 100 as described above, and the measurement method includes:
  • the step of “acquiring the angle ⁇ from the landing point O to the image center relative to the imaging device 4” specifically includes:
  • the angle ⁇ from the landing point O to the center of the image relative to the imaging device 4 is obtained according to N*R+T.
  • step of "experimentally obtaining the radian value R and radian error T of the pixel” is specifically:
  • Two test objects are measured in the volume measurement system 100 to obtain the number of pixels N 1 , N 2 from the drop point O to the image center respectively;
  • the "calibration of the laser irradiation forming point in the captured image as the landing point O" specifically includes: identifying the light spot irradiated by the laser light emitted by the laser emitting device 3 in the captured image, and determining that the light spot with the highest brightness is the landing point O; Yes, the ccd photosensitive element identifies the light spot with the highest brightness and transmits the information to the data processing device 5, and the data processing device 5 calibrates it and calculates the landing point O and the number of pixels in the image center.
  • the step of "calculating the bottom area S of the article 1" specifically includes:
  • the distance between AB and BC is calculated according to the formula of the distance between the two points of the coordinates, L and W; here, the values of L and W are the length of AB and BC on the captured image multiplied by a ratio, and the ratio is the actual
  • the ratio of the length of the contour of item 1 to the length on the captured image can be obtained according to the formula for the distance between two points in the coordinate system
  • the present invention proposes a volume measurement system 100 and a method.
  • the object 1 and the laser emitted to the object 1 are imaged by the imaging device 4 to form the landing point O, and the height and area of the object 1 are obtained through data processing, thereby

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种体积测量系统及方法,方法包括:获取激光发射装置(3)距传送带(2)的垂直距离F;标定激光照射形成点为落点O;获取落点O至图像中心相对拍摄装置(4)的角度θ;获取拍摄装置(4)与激光发射装置(3)间的距离h;获得激光发射装置(3)与物品(1)的距离M;确定物品(1)体积。体积测量方法在数据处理上只需分析拍摄图像,占用分析资源小,提高了工作效率且测量更精准。

Description

体积测量系统及方法 技术领域
本发明涉及测量技术领域,特别是一种体积测量系统及方法。
背景技术
在商业和工业等领域,物品运输的重要性不言而喻。随着电子商务的飞速发展,网络购物量也在飞速的增加,带动着物流行业的快速发展;工业的流水线工程可对物品的生产、流通进行管理。
在现在的物流行业,物体的体积因涉及到物流分拣、物流计费、装车运输和仓库存储等,获取物体的体积是必须的;流水线上的产品体积是物料产品生产流通中的一个重要参数。
因此,如何高效率的测量物品体积,成为一个亟待解决的问题。
发明内容
为了解决上述技术问题,本发明提出了一种体积测量系统及方法。
为了实现上述目的,本发明提供的技术方案如下:一种体积测量系统,用于测量物品的体积,物品均为长方体状,所述系统包括:
传送带,用于物品在传送方向上运输;
激光发射装置,设置于所述传送带上方以朝下发射激光,激光照射到物品上时,在物品上形成落点;
拍摄装置,与所述激光发射装置在传送方向上间隔设置,并与激光发射装置位于同一高度,以在激光照射到物品上时对物品进行拍摄,并输出拍摄图像;拍摄装置光轴与传送带或物品的交点即为拍摄图像的图像中心,所述拍摄装置的光轴与激光发射装置发出的激光相平行;
数据处理装置,与所述拍摄装置数据连接以获取并处理所述拍摄图像;所述数据处理装置包括面积测算器以识别并计算拍摄图像上的物品面积;
所述数据处理装置还包括用以测算物品高度的高度测算器,所述高度测算器包括用以测量落点至图像中心相对拍摄装置的角度的角度测算部、用以获取激光发射装置距离传送带的垂直距离的第一测距部、和用以获取拍摄装置与激光发射装置之间距离的第二测距部;
所述数据处理装置还包括与所述高度测算器及面积测算器通讯连接的体积测算器,通过获取物品高度和物品面积以计算获得物品的体积。
作为本发明的进一步改进,所述激光发射装置发出的激光具有若干个,并在水平面上呈垂直于传送方向排列的列状。
作为本发明的进一步改进,所述拍摄装置包括图像传感器单元,所述图像传感器单元用以识别列状激光中照射在物品形成的最亮的点,并将该最亮的点作为落点,所述图像传感器单元采用ccd感光元件。
作为本发明的进一步改进,拍摄图像上设置有若干个像素点,相邻像素点在传送方向上 的距离一致,所述角度测算部通过计算落点至图像中心之间的像素点个数以获得落点至图像中心相对拍摄装置的角度。
作为本发明的进一步改进,所述测量方法包括:
确认物品被放置于朝传送方向运动的传送带上;
获取激光发射装置距离传送带的垂直距离F;
在激光照射于物品上时,对物品进行拍摄;
获取拍摄图像并标定图像中激光照射形成点为落点;
获取落点至图像中心相对拍摄装置的角度θ;
获取拍摄装置与激光发射装置之间的距离h;
通过h/tanθ获得激光发射装置与物品表面之间的距离M;
通过F-M确定物品高度E;
计算并获取拍摄图像中物品的面积S;
根据V=S*E确定物品的体积V。
作为本发明的进一步改进,所述“获取落点至图像中心相对拍摄装置的角度θ”步骤具体为:
实验获得像素的弧度值R和弧度误差T;
获取图像中心到落点的像素个数N;
根据N*R+T获取落点至图像中心相对拍摄装置的角度θ。
作为本发明的进一步改进,所述“实验获得像素的弧度值R和弧度误差T”步骤具体为:
获取两个测试物品,并对两个测试物品的长度、宽度和高度进行测量;
在所述体积测量系统中对两个测试物品进行测量以分别获得落点至图像中心的像素个数N 1、N 2
根据方程E=F-h/tan(N*R+T)将N 1与N 2的值分别代入以获得像素的弧度值R和弧度误差T。
作为本发明的进一步改进,所述激光发射装置发出的激光具有若干个,并呈沿垂直于传送方向排列的列状,所述“标定拍摄图像中激光照射形成点为落点”具体包括:识别拍摄图像中激光发射装置发出的激光所照射的光点,判断亮度最大的光点为落点。
作为本发明的进一步改进,所述“计算物品底面积S”步骤具体包括:
以拍摄图像为平面建立坐标系;
在拍摄图像中识别物品轮廓;
标记物品轮廓中位于最外侧的四个点,并依次记为A、B、C和D,其中AB所在直线垂直于BC所在直线,依次获取A、B、C三点坐标为(x 1,y 1)、(x 2,y 2)、(x 3,y 3);
根据坐标两点间距离公式分别计算得出AB和BC的距离L和W;
计算物品面积S=L*W。
本发明的有益效果是:本发明提出的一种体积测量系统及方法,通过拍摄装置对物品及激光发射至物品上形成落点的成像,经过高度测算器获取落点至图像中心相对拍摄装置的角度及拍摄装置与激光发射装置之间的距离,获得激光发射装置与物品表面之间的距离,进而再获得物品的高度,从而获得物品体积,在数据处理上只需分析拍摄图像,因此占用的数据分析资源小,在物品运输过程中提高了工作效率,同时测量更精准。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本发明中体积测量系统的结构示意图;
图2为本发明中体积测量方法的流程图;
图3为本发明中物品高度计算的原理图;
图4为本发明中拍摄物品的面积测量的原理图;
其中,100——体积测量系统,1——物品,2——传送带,3——激光发射装置,4——拍摄装置,41——图像传感器单元,5——数据处理装置,O——落点。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,除非另有规定和限定,需要说明的是,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
如图1所示,本发明提出了一种体积测量系统100,用于测量物品1的体积,物品1均为长方体状,所述系统包括:
传送带2,用于物品1在传送方向上运输;
激光发射装置3,设置于所述传送带2上方以朝下发射激光,激光照射到物品1上时,在物品1上形成落点O;
拍摄装置4,与所述激光发射装置3在传送方向上间隔设置,并与激光发射装置3位于 同一高度,以在激光照射到物品1上时对物品1进行拍摄,并输出拍摄图像,拍摄装置4的光轴与传送带或物品的交点即为拍摄图像的图像中心,所述拍摄装置4的光轴与激光发射装置3发出的激光相平行,并且拍摄装置4的光轴与激光发射装置3发出的激光均与传送带相垂直;这里,所述拍摄装置4采用工业高速摄像机,由于其能够以很高的频率记录一个动态的图像,一般能达到每秒1000~10000帧的速度,使得在拍摄移动的物品1时所获得的拍摄图像足够清晰,提高了后续计算结果的准确率。
数据处理装置5,与所述拍摄装置4数据连接以获取并处理所述拍摄图像;这里,所述数据处理装置5一般采用工控电脑,与普通计算机相比,具有更高的防磁、防尘、防冲击能力,具有连续长时间工作的能力,更适合在工业和商业等领域配置。
所述数据处理装置5包括面积测算器以识别并计算拍摄图像上的物品1面积;
所述数据处理装置5还包括用以测算物品1高度的高度测算器,所述高度测算器包括用以测量落点O至图像中心相对拍摄装置4的角度的角度测算部、用以获取激光发射装置3距离传送带2的垂直距离的第一测距部、和用以获取拍摄装置4与激光发射装置3之间距离的第二测距部;
所述高度测算器通过获取落点O至图像中心相对拍摄装置4的角度及拍摄装置4与激光发射装置3之间的距离,获得激光发射装置3与物品1表面之间的距离,进而再获得物品1的高度;
所述数据处理装置5还包括与所述高度测算器及面积测算器通讯连接的体积测算器,通过获取物品1高度和物品1面积以计算获得物品1的体积。
具体的,拍摄图像上设置有若干个像素点,相邻像素点在传送方向上的距离一致,所述角度测算部通过计算落点O至图像中心之间的像素点个数以获得落点O至图像中心相对拍摄装置4的角度。
在本发明具体实施方式中,所述激光发射装置3发出的激光具有若干个,并在水平面上呈垂直于传送方向排列的列状。
所述拍摄装置4包括图像传感器单元41,所述图像传感器单元41用以识别列状激光中照射在物品形成的最亮的点,并将该最亮的点作为落点O,优选的,所述图像传感器单元41采用ccd感光元件,由于ccd感光元件采用高感光度的半导体材料制成,因此能够很容易识别出列状激光形成的最亮的点,同时其成像质量好,使得最终拍摄图像更清晰。
如图2至图4所示,本发明还提出了一种基于如上所述的体积测量系统100的体积测量方法,所述测量方法包括:
确认物品1被放置于朝传送方向运动的传送带上;
获取激光发射装置3距离传送带2的垂直距离F;具体由所述高度测算器的第一测高部获取;
获取拍摄图像并标定图像中激光照射形成点为落点O;
获取落点O至图像中心相对拍摄装置4的角度θ;具体由所述高度测算器的角度测算部获取;
获取拍摄装置4与激光发射装置3之间的距离h;具体由所述高度测算器获取。
通过h/tanθ获得激光发射装置3与物品1表面之间的距离M;
通过F-M确定物品1高度E;
计算并获取拍摄图像中物品1的面积S;具体由所述面积测算器获得。
根据V=S*E确定物品1的体积,其中,V为物品1体积。
具体的,所述“获取落点O至图像中心相对拍摄装置4的角度θ”步骤具体为:
实验获得像素的弧度值R和弧度误差T;
获取图像中心到落点O的像素个数N;
根据N*R+T获取落点O至图像中心相对拍摄装置4的角度θ。
进一步的,所述“实验获得像素的弧度值R和弧度误差T”步骤具体为:
获取两个测试物品,并对两个测试物品的长度、宽度和高度进行测量;
在所述体积测量系统100中对两个测试物品进行测量以分别获得落点O至图像中心的像素个数N 1、N 2
根据方程E=F-h/tan(N*R+T)将N 1与N 2的值分别代入以获得像素的弧度值R和弧度误差T;这里,测试物品数量可以超过两个,多次实验使得计算得出的弧度值R和弧度误差T的值误差更小,从而使得最终体积计算值更准确。
另外,所述“标定拍摄图像中激光照射形成点为落点O”具体包括:识别拍摄图像中激光发射装置3发出的激光所照射的光点,判断亮度最大的光点为落点O;具体的,由所述ccd感光元件识别出亮度最大的光点并将信息传输至数据处理装置5,所述数据处理装置5对其标定后计算得到落点O与图像中心的像素个数。
所述“计算物品1底面积S”步骤具体包括:
以拍摄图像为平面建立坐标系;
在拍摄图像中识别物品1轮廓;
标记物品1轮廓中位于最外侧的四个点,并依次记为A、B、C和D,其中AB所在直线 垂直于BC所在直线,依次获取A、B、C三点坐标为(x 1,y 1)、(x 2,y 2)、(x 3,y 3);
根据坐标两点间距离公式分别计算得出AB和BC的距离L和W;这里,L和W的值均为拍摄图像上AB和BC的长度乘以一比例值得出,所述比例值为实际物品1轮廓长度与拍摄图像上的长度之比,根据坐标系中两点间距离公式可得
Figure PCTCN2019117130-appb-000001
Figure PCTCN2019117130-appb-000002
计算物品1面积S=L*W。
综上所述,本发明提出了一种体积测量系统100及方法,通过拍摄装置4对物品1及激光发射至物品1上形成落点O的成像,经过数据处理获得物品1高度和面积,从而获得物品1体积,在数据处理上只需分析拍摄图像,因此占用的数据分析资源小,在物品1运输过程中提高了工作效率,同时测量更准确。
以上所述的仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (9)

  1. 一种体积测量系统,用于测量物品的体积,物品均为长方体状,其特征在于,所述系统包括:
    传送带,用于物品在传送方向上运输;
    激光发射装置,设置于所述传送带上方以朝下发射激光,激光照射到物品上时,在物品上形成落点;
    拍摄装置,与所述激光发射装置在传送方向上间隔设置,并与激光发射装置位于同一高度,以在激光照射到物品上时对物品进行拍摄,并输出拍摄图像;拍摄装置光轴与传送带或物品的交点即为拍摄图像的图像中心,所述拍摄装置的光轴与激光发射装置发出的激光相平行;
    数据处理装置,与所述拍摄装置数据连接以获取并处理所述拍摄图像;所述数据处理装置包括面积测算器以识别并计算拍摄图像上的物品面积;
    所述数据处理装置还包括用以测算物品高度的高度测算器,所述高度测算器包括用以测量落点至图像中心相对拍摄装置的角度的角度测算部、用以获取激光发射装置距离传送带的垂直距离的第一测距部、和用以获取拍摄装置与激光发射装置之间距离的第二测距部;
    所述数据处理装置还包括与所述高度测算器及面积测算器通讯连接的体积测算器,通过获取物品高度和物品面积以计算获得物品的体积。
  2. 根据权利要求1所述的一种体积测量系统,其特征在于,所述激光发射装置发出的激光具有若干个,并在水平面上呈垂直于传送方向排列的列状。
  3. 根据权利要求2所述的一种体积测量系统,其特征在于,所述拍摄装置包括图像传感器单元,所述图像传感器单元用以识别列状激光中照射在物品形成的最亮的点,并将该最亮的点作为落点,所述图像传感器单元采用ccd感光元件。
  4. 根据权利要求1所述的一种体积测量系统,其特征在于,拍摄图像上设置有若干个像素点,相邻像素点在传送方向上的距离一致,所述角度测算部通过计算落点至图像中心之间的像素点个数以获得落点至图像中心相对拍摄装置的角度。
  5. 一种基于权利1-4中任一项所述的体积测量系统的体积测量方法,其特征在于,所述测量方法包括:
    确认物品被放置于朝传送方向运动的传送带上;
    获取激光发射装置距离传送带的垂直距离F;
    在激光照射于物品上时,对物品进行拍摄;
    获取拍摄图像并标定图像中激光照射形成点为落点;
    获取落点至图像中心相对拍摄装置的角度θ;
    获取拍摄装置与激光发射装置之间的距离h;
    通过h/tanθ获得激光发射装置与物品表面之间的距离M;
    通过F-M确定物品高度E;
    计算并获取拍摄图像中物品的面积S;
    根据V=S*E确定物品的体积V。
  6. 根据权利要求5所述的一种体积测量方法,其特征在于,所述“获取落点至图像中心相对拍摄装置的角度θ”步骤具体为:
    实验获得像素的弧度值R和弧度误差T;
    获取图像中心到落点的像素个数N;
    根据N*R+T获取落点至图像中心相对拍摄装置的角度θ。
  7. 根据权利要求6所述的一种体积测量方法,其特征在于,所述“实验获得像素的弧度值R和弧度误差T”步骤具体为:
    获取两个测试物品,并对两个测试物品的长度、宽度和高度进行测量;
    在所述体积测量系统中对两个测试物品进行测量以分别获得落点至图像中心的像素个数N 1、N 2
    根据方程E=F-h/tan(N*R+T)将N 1与N 2的值分别代入以获得像素的弧度值R和弧度误差T。
  8. 根据权利要求4所述的一种体积测量方法,其特征在于,所述激光发射装置发出的激光具有若干个,并呈沿垂直于传送方向排列的列状,所述“标定拍摄图像中激光照射形成点为落点”具体包括:识别拍摄图像中激光发射装置发出的激光所照射的光点,判断亮度最大的光点为落点。
  9. 根据权利要求4所述的一种体积测量方法,其特征在于,所述“计算物品底面积S”步骤具体包括:
    以拍摄图像为平面建立坐标系;
    在拍摄图像中识别物品轮廓;
    标记物品轮廓中位于最外侧的四个点,并依次记为A、B、C和D,其中AB所在直线垂直于BC所在直线,依次获取A、B、C三点坐标为(x 1,y 1)、(x 2,y 2)、(x 3,y 3);
    根据坐标两点间距离公式分别计算得出AB和BC的距离L和W;
    计算物品面积S=L*W。
PCT/CN2019/117130 2019-01-22 2019-11-11 体积测量系统及方法 WO2020151311A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910058580.2 2019-01-22
CN201910058580.2A CN109540241A (zh) 2019-01-22 2019-01-22 体积测量系统及方法

Publications (1)

Publication Number Publication Date
WO2020151311A1 true WO2020151311A1 (zh) 2020-07-30

Family

ID=65838351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117130 WO2020151311A1 (zh) 2019-01-22 2019-11-11 体积测量系统及方法

Country Status (2)

Country Link
CN (1) CN109540241A (zh)
WO (1) WO2020151311A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2782165C1 (ru) * 2021-12-15 2022-10-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет путей сообщения" (СГУПС), г. Новосибирск Способ определения объема транспортируемого конвейерной лентой сыпучего материала

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109540241A (zh) * 2019-01-22 2019-03-29 艾信智慧医疗科技发展(苏州)有限公司 体积测量系统及方法
CN111747062B (zh) * 2019-09-03 2021-06-15 南京北路智控科技股份有限公司 一种基于面激光雷达的煤流检测方法
CN111442758A (zh) * 2020-03-27 2020-07-24 云南电网有限责任公司玉溪供电局 一种带增距望远功能的激光测速测距装置和方法
CN111598957A (zh) * 2020-05-13 2020-08-28 武汉市异方体科技有限公司 一种基于线性激光的手持体积测量装置
CN112254647A (zh) * 2020-09-04 2021-01-22 广东科学技术职业学院 基于摄像装置的物体识别及间距测量方法及装置
CN112229478A (zh) * 2020-09-09 2021-01-15 广东韶钢工程技术有限公司 一种料堆作业过程中高度变化的监测方法及系统
CN113375566B (zh) * 2021-06-09 2023-09-08 江苏中科贯微自动化科技有限公司 物体尺寸的精确测量方法及系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273211A (ja) * 1993-03-23 1994-09-30 Aisin Seiki Co Ltd 非接触容積測定装置
EP0851207A1 (en) * 1996-12-31 1998-07-01 Datalogic S.P.A. Process and apparatus for measuring the volume of an object by means of a laser scanner and a CCD detector
WO2002061368A2 (en) * 2001-02-01 2002-08-08 Marel Hf. Method and apparatus for determining a three dimensional image of a moving object by means of light
CN102278942A (zh) * 2010-06-09 2011-12-14 乐金电子(天津)电器有限公司 用于微波炉的食物高度测量方法
CN106918312A (zh) * 2017-03-30 2017-07-04 招商局重庆交通科研设计院有限公司 基于机械视觉的路面标线剥落面积检测装置及方法
CN107655536A (zh) * 2017-10-24 2018-02-02 浙江华睿科技有限公司 一种物体体积测量系统及方法
CN108627211A (zh) * 2017-03-20 2018-10-09 深圳市力得得力技术有限公司 一种体积测量仪及其测量方法
CN109029303A (zh) * 2018-06-11 2018-12-18 广东工业大学 物体底面积参数的测量方法、装置、系统及可读存储介质
CN109029618A (zh) * 2018-07-11 2018-12-18 苏州科技大学 单目视觉包装箱体积测量方法
CN109540241A (zh) * 2019-01-22 2019-03-29 艾信智慧医疗科技发展(苏州)有限公司 体积测量系统及方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273211A (ja) * 1993-03-23 1994-09-30 Aisin Seiki Co Ltd 非接触容積測定装置
EP0851207A1 (en) * 1996-12-31 1998-07-01 Datalogic S.P.A. Process and apparatus for measuring the volume of an object by means of a laser scanner and a CCD detector
WO2002061368A2 (en) * 2001-02-01 2002-08-08 Marel Hf. Method and apparatus for determining a three dimensional image of a moving object by means of light
CN102278942A (zh) * 2010-06-09 2011-12-14 乐金电子(天津)电器有限公司 用于微波炉的食物高度测量方法
CN108627211A (zh) * 2017-03-20 2018-10-09 深圳市力得得力技术有限公司 一种体积测量仪及其测量方法
CN106918312A (zh) * 2017-03-30 2017-07-04 招商局重庆交通科研设计院有限公司 基于机械视觉的路面标线剥落面积检测装置及方法
CN107655536A (zh) * 2017-10-24 2018-02-02 浙江华睿科技有限公司 一种物体体积测量系统及方法
CN109029303A (zh) * 2018-06-11 2018-12-18 广东工业大学 物体底面积参数的测量方法、装置、系统及可读存储介质
CN109029618A (zh) * 2018-07-11 2018-12-18 苏州科技大学 单目视觉包装箱体积测量方法
CN109540241A (zh) * 2019-01-22 2019-03-29 艾信智慧医疗科技发展(苏州)有限公司 体积测量系统及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2782165C1 (ru) * 2021-12-15 2022-10-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет путей сообщения" (СГУПС), г. Новосибирск Способ определения объема транспортируемого конвейерной лентой сыпучего материала

Also Published As

Publication number Publication date
CN109540241A (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
WO2020151311A1 (zh) 体积测量系统及方法
US8939074B2 (en) Color-based linear three dimensional acquisition system and method
US7397550B2 (en) Parts manipulation and inspection system and method
JP6408654B1 (ja) 検査装置
US20140098223A1 (en) Size measurement apparatus and size measurement method
US10151580B2 (en) Methods of inspecting a 3D object using 2D image processing
US20100188499A1 (en) System and method for inspecting a wafer
CN111750804B (zh) 一种物体测量的方法及设备
CN113474618B (zh) 使用多光谱3d激光扫描的对象检查的系统和方法
TW201520511A (zh) 三次元測定裝置、三次元測定方法及基板之製造方法
US20110025823A1 (en) Three-dimensional measuring apparatus
JP2012242138A (ja) 形状計測装置
JP2006317408A (ja) 反り検査装置
JP4156457B2 (ja) 被測定物の外径測定方法、外径測定装置及び外周面研削装置
CN114608458A (zh) 装片胶厚度检测装置及方法
US11603560B2 (en) Particle measuring method, particle measuring apparatus, and nucleic acid concentration measuring system
CN112229478A (zh) 一种料堆作业过程中高度变化的监测方法及系统
CN111906043B (zh) 位姿检测方法及系统
JP2018044863A (ja) 計測装置、計測方法、システム及び物品の製造方法
CN117437305B (zh) 安检机标定方法及相关方法、装置、设备和存储介质
WO2023037671A1 (ja) メンテナンス方法、及び電子部品の製造方法
CN109297686B (zh) 图形线宽测量方法及系统、数据处理装置
CN115574725B (zh) 一种基于线结构光的钢板尺寸测量方法及系统
CN113624162A (zh) 一种半导体器件的找正和检测方法及应用
JP7122456B2 (ja) 計測装置および表面実装機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19910998

Country of ref document: EP

Kind code of ref document: A1