WO2020151269A1 - 一种白光激光光源及激光投影光源 - Google Patents

一种白光激光光源及激光投影光源 Download PDF

Info

Publication number
WO2020151269A1
WO2020151269A1 PCT/CN2019/112273 CN2019112273W WO2020151269A1 WO 2020151269 A1 WO2020151269 A1 WO 2020151269A1 CN 2019112273 W CN2019112273 W CN 2019112273W WO 2020151269 A1 WO2020151269 A1 WO 2020151269A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser
white
light source
lens
Prior art date
Application number
PCT/CN2019/112273
Other languages
English (en)
French (fr)
Inventor
周少丰
黄良杰
蒋羽玲
Original Assignee
深圳市星汉激光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市星汉激光科技有限公司 filed Critical 深圳市星汉激光科技有限公司
Publication of WO2020151269A1 publication Critical patent/WO2020151269A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/68Details of reflectors forming part of the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • F21V9/45Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity by adjustment of photoluminescent elements

Definitions

  • This application relates to the field of high-brightness lighting, and in particular to a white-light laser light source and a laser projection light source.
  • laser as a white light source has the advantages of high power, high brightness, high efficiency, low energy consumption, long life and small size. It is currently the best solution in the field of high-brightness lighting.
  • a blue laser is usually used to irradiate a fluorescent wheel with red and yellow phosphors to excite a white light source.
  • the purpose of the present application is to provide a white light laser light source and a laser projection light source that can extract waste heat and reduce the loss of the fluorescent wheel.
  • an embodiment of the present application provides a white light laser source, including a laser source, a galvanometer, and a fluorescent wheel;
  • the optical axes of the laser source and the fluorescent wheel are perpendicular to each other and both pass through the optical center of the galvanometer.
  • the light emitted by the laser source is deflected by the galvanometer at different angles and then exits to the fluorescent wheel. Excitation at different positions produces white light.
  • the phosphor wheel includes a phosphor sheet layer and a substrate, the phosphor sheet layer is coated on the substrate, and the laser light reflected by the galvanometer is irradiated on the phosphor sheet layer to excite white light.
  • the phosphor sheet layer is phosphor with a preset ratio of yellow and red.
  • the laser source is a blue light source.
  • it further includes: a first lens arranged on the optical axis of the fluorescent wheel, and the white light emitted from the fluorescent wheel exits through the first lens.
  • the first lens is a collimating lens, which is used to make the emitted light emerge horizontally.
  • the first lens is a condensing lens for converging and exiting the emitted light.
  • it further includes: a second lens, which is arranged on the optical axis of the first lens and before the focal point in the direction of the light emitted by the first lens, for making the emitted light horizontal Shoot out.
  • a second lens which is arranged on the optical axis of the first lens and before the focal point in the direction of the light emitted by the first lens, for making the emitted light horizontal Shoot out.
  • an embodiment of the present application provides a laser projection light source, including: a color wheel, and at least one white laser light source as described in the first aspect, the color wheel is arranged at In the emission direction of the white laser light source, the white light emitted by the white laser light source emits monochromatic light after passing through the color wheel.
  • the color wheel is arranged in the direction of the light emitted from the optical axis of the first lens or the second lens, and the color wheel is provided with multiple color blocks of different colors.
  • the beneficial effect of the present application is: different from the prior art, the embodiments of the present application provide a white-light laser light source and a laser projection light source; the white-light laser light source passes through the galvanometer at different angles. After being deflected, it is excited on the fluorescent wheel to generate white light, and the heat of the incident position is cooled by the continuous change of the incident position, thereby avoiding damage to the light source device due to overheating.
  • FIG. 1 is a schematic diagram of the structure and optical path of a white laser light source provided in Embodiment 1 of the present application;
  • FIG. 2 is a schematic diagram of the structure and optical path of a white laser light source provided in the second embodiment of the present application;
  • FIG. 3 is a schematic diagram of the structure and optical path of a laser projection light source provided in Embodiment 3 of the present application;
  • FIG. 4 is a schematic diagram of the structure and optical path of a laser projection light source provided in Embodiment 4 of the present application;
  • FIG. 5 is a schematic diagram of the structure of three color wheels provided by an embodiment of the present application.
  • this application uses the direction of light transmission as a reference to define the position of the components.
  • the fluorescent wheel is in the "front” side of the galvanometer, and the periphery in this direction is the “side” direction. "One side”.
  • the embodiments of the application describe a white-light laser light source and a laser projection light source in the field of high-brightness illumination.
  • the white-light laser light source includes a laser source, a galvanometer, and a fluorescent wheel.
  • White light can be emitted through the white-light laser light source, and the fluorescent wheel Can get effective heat dissipation.
  • FIG. 1 is a schematic diagram of the structure and optical path of a white light laser source provided in Embodiment 1 of the present application.
  • a white light laser source is provided, including: a laser source 10 and a galvanometer 20 And the fluorescent wheel 34, the optical axes of the laser source 10 and the fluorescent wheel 34 are perpendicular to each other and both pass through the optical center of the galvanometer 20, and the light emitted by the laser source 10 passes through the galvanometer 20 at different angles. After being deflected, it is emitted to different positions of the fluorescent wheel 34 to excite white light.
  • the white laser light source further includes: a first lens 50.
  • the above-mentioned laser source 10 is a blue light source with a wavelength between 400 nm and 480 nm. Compared with light sources of other colors, the blue light source has a shorter wavelength and higher energy, and can excite white light with higher brightness.
  • the above-mentioned galvanometer 20 is a vibrating lens or a vibrating lens group that can be steered at multiple angles and has high sensitivity. It can be connected to a control chip or a control circuit or a mechanical control device to control its steering during operation.
  • the galvanometer 20 has reflectivity. High features.
  • the light reflected by the galvanometer 20 can be controlled to move at a set track on the fluorescent wheel 34 at a constant speed.
  • the reflected laser light can be The fluorescent wheel 34 moves clockwise or counterclockwise in a uniform speed track such as Archimedes spiral.
  • the rotation angle and speed of the galvanometer 20 depend on the track of the laser hitting the fluorescent wheel 34, and the maximum angle that the galvanometer 20 can rotate depends on the distance between the galvanometer 20 and the fluorescent wheel 34.
  • the above-mentioned actual control method of the galvanometer 20 can be set according to the application scene, the conditions of other optical elements, and the specific structural requirements of the white laser light source, and does not need to be restricted to the limitations of the embodiments of the present application.
  • the phosphor wheel 34 includes a phosphor sheet layer 30 and a substrate 40.
  • the phosphor sheet layer 30 is coated on the substrate 40.
  • the laser light reflected by the galvanometer 20 is irradiated on the phosphor sheet layer 30 to generate excitation.
  • the phosphor sheet 30 is a phosphor with a preset ratio of yellow to red. Increasing the proportion of red in the phosphor can effectively increase the color rendering index of white light, but too much red powder will cause the white light to be distorted. , The specific ratio of yellow powder and red powder in the phosphor needs to be set according to the actual situation.
  • the blue light emitted by the laser source 10 is reflected by the galvanometer 20 to the phosphor wheel, and the red powder and yellow powder in the phosphor layer 30 are excited to produce red light and yellow light, and the red light, yellow light and blue light are finally synthesized into white light Shoot out.
  • the blue light source Due to the high energy of blue light, the blue light source is used as the laser source 10 to hit the phosphor layer 30 of the fluorescent wheel 34, and a large amount of heat will be generated during the wavelength conversion process.
  • the energy burns the substrate 40 of the phosphor wheel 34 and the phosphor layer 30 on the phosphor wheel 34 falls off, which affects the life of the phosphor wheel 34. Therefore, adding a galvanometer 20 to change the position of the blue light hitting the phosphor layer 30 can make The heat at the incident position is continuously cooled.
  • the above-mentioned first lens 50 is arranged on the optical axis of the fluorescent wheel 34, and the white light emitted from the fluorescent wheel 34 is emitted through the first lens 50.
  • the first lens 50 is a collimating lens, which is used for horizontally emitting the emitted light. In practical applications, the galvanometer 20 rotates rapidly, so the light emitted through the first lens 50 can basically be regarded as a uniform spot.
  • the first lens 50 is a convex lens.
  • the embodiments of the present application provide a white light laser light source.
  • the reflection angle of the galvanometer is continuously changed to change the position of the laser light incident on the phosphor sheet layer, which can realize sufficient heat dissipation of the substrate and the phosphor sheet
  • the full utilization of the layer slows down the aging speed of the fluorescent wheel and increases the service life of the white laser light source.
  • FIG. 2 is a schematic diagram of the structure and optical path of a white light laser source provided in the second embodiment of the present application.
  • a white light laser source is provided, including: a laser source 10 and a galvanometer 20 And the fluorescent wheel 34, the optical axes of the laser source 10 and the fluorescent wheel 34 are perpendicular to each other and both pass through the optical center of the galvanometer 20, and the light emitted by the laser source 10 passes through the galvanometer 20 at different angles. After being deflected, it is emitted to different positions of the fluorescent wheel 34 to excite white light.
  • the white laser light source further includes: a first lens 50 and a second lens 60.
  • the above-mentioned laser source 10 is a blue light source with a wavelength between 400 nm and 480 nm. Compared with light sources of other colors, the blue light source has a shorter wavelength and higher energy, and can excite white light with higher brightness.
  • the above-mentioned galvanometer 20 is a vibrating lens or a vibrating lens group that can be steered at multiple angles and has high sensitivity. It can be connected to a control chip or a control circuit or a mechanical control device to control its steering during operation.
  • the galvanometer 20 has reflectivity. High features.
  • the light reflected by the galvanometer 20 can be controlled to move at a set track on the fluorescent wheel 34 at a constant speed.
  • the reflected laser light can be The fluorescent wheel 34 moves clockwise or counterclockwise in a uniform speed track such as Archimedes spiral.
  • the rotation angle and speed of the galvanometer 20 depend on the trajectory of the laser hitting the fluorescent wheel 34, and the maximum angle that the galvanometer 20 needs to rotate depends on the distance between the galvanometer 20 and the fluorescent wheel 34.
  • the above-mentioned actual control method of the galvanometer 20 can be set according to the application scene, the conditions of other optical elements, and the specific structural requirements of the white laser light source, and does not need to be restricted to the limitations of the embodiments of the present application.
  • the phosphor wheel 34 includes a phosphor sheet layer 30 and a substrate 40.
  • the phosphor sheet layer 30 is coated on the substrate 40.
  • the laser light reflected by the galvanometer 20 is irradiated on the phosphor sheet layer 30 to generate excitation.
  • the phosphor sheet 30 is a phosphor with a preset ratio of yellow to red. Increasing the proportion of red in the phosphor can effectively increase the color rendering index of white light, but too much red powder will cause the white light to be distorted. , The specific ratio of yellow powder and red powder in the phosphor needs to be set according to the actual situation.
  • the blue light emitted by the laser source 10 is reflected by the galvanometer 20 to the phosphor wheel, and the red powder and yellow powder in the phosphor layer 30 are excited to produce red light and yellow light, and the red light, yellow light and blue light are finally synthesized into white light Shoot out.
  • the blue light source Due to the high energy of blue light, the blue light source is used as the laser source 10 to hit the phosphor layer 30 of the fluorescent wheel 34, and a large amount of heat will be generated during the wavelength conversion process.
  • the energy burns the substrate 40 of the phosphor wheel 34 and the phosphor layer 30 on the phosphor wheel 34 falls off, which affects the life of the phosphor wheel 34. Therefore, adding a galvanometer 20 to change the position of the blue light hitting the phosphor layer 30 can make The heat at the incident position is continuously cooled.
  • the above-mentioned first lens 50 is arranged on the optical axis of the fluorescent wheel 34, and the white light emitted from the fluorescent wheel 34 is emitted through the first lens 50.
  • the first lens 50 is a converging lens, which is used to converge and exit the emitted light.
  • the first lens 50 is a convex lens.
  • the above-mentioned second lens 60 is arranged on the optical axis of the first lens 50 and before the focal point in the direction of the light emitted by the first lens 50, and is used for horizontally emitting the emitted light.
  • the second lens is arranged where the emitted light is condensed to a certain distance near the axis, so that the emitted light at this time is emitted horizontally.
  • the galvanometer 20 rotates rapidly, so the light emitted through the first lens 50 can basically be regarded as a uniform spot.
  • the second lens 60 is a convex lens.
  • the embodiments of the present application provide a white light laser light source.
  • the reflection angle of the galvanometer is continuously changed to change the position of the laser light incident on the phosphor sheet layer, which can realize sufficient heat dissipation of the substrate and the phosphor sheet
  • the full utilization of the layer slows down the aging speed of the fluorescent wheel and increases the service life of the white laser light source.
  • the emitted light of the white laser light source provided in the embodiment of the present application can emit off-axis, with a smaller emitted spot, more concentrated energy, and higher brightness.
  • FIG. 3 is a schematic diagram of the structure and optical path of a laser projection light source provided in the third embodiment of the present application.
  • a laser projection light source is provided, which includes a color wheel 70, And, at least one white light laser light source as described in the first embodiment, the color wheel 70 is arranged in the direction of the light emitted from the white light laser light source, and the white light emitted by the white light laser light source passes through the color wheel 70 and then exits monochromatic light.
  • the above-mentioned color wheel 70 is arranged in the direction of light emitted from the optical axis of the first lens 50, and the color wheel 70 is provided with a plurality of color blocks of different colors.
  • FIG. 5 is a schematic structural diagram of three color wheels provided by an embodiment of the present application.
  • the color wheel 70 is a color wheel a, and a color block is provided on the color wheel a.
  • the color block is a circular band set on the edge of the color wheel a, the color block, that is, the circular band is divided into four evenly divided into four different colors.
  • the galvanometer 20 always reflects the incident light to the fluorescent wheel 34 parallel to the annular band on the edge of the color wheel a, and then emits monochromatic light through the annular band on the edge of the color wheel a. Since the change of the reflection angle of the galvanometer 20 causes the emitted light to rotate, the emitted light will automatically be emitted to different color blocks on the color wheel a, and monochromatic light will be emitted in time.
  • the number of color blocks and the size of the color blocks set on the color wheel a, the size of the ring on the edge of the color wheel a, the colors set on the color wheel a, etc. can be determined according to It is actually required to be set and does not need to be limited to the limitations of the embodiments of this application.
  • the color block a can be painted in black except for the ring belt, that is, the part where the color block is arranged to prevent light leakage.
  • the color wheel 70 may also be in the style of the color wheel b or the color wheel c shown in FIG. 5, wherein the color wheel b is evenly distributed from the center of the color wheel to the surroundings. b is divided into four color blocks. Color wheel c is similar to color wheel a. The color block is also provided with a ring belt. The ring belt of color wheel c is not set on the edge of color wheel c, but is set between the center and the edge. Part, the four color blocks of the color wheel b and the color wheel c are respectively provided with four different colors.
  • the number of color blocks and the size of the color blocks set on the color wheel b and the color wheel c, the size of the circular band at the edge of the color wheel c, the color wheel b and the color wheel c can be set according to actual needs, and do not need to be restricted to the limitations of the embodiments of the present application.
  • the color wheel c can be painted black except for the circular belt, that is, the part where the color blocks are set to prevent light leakage.
  • the color wheel 70 may also be provided with two ring belts, and the emitted light may emit monochromatic light through one of the ring belts, or may emit light through the two ring belts.
  • the galvanometer 20 crosses the light. On the two circular belts of the reflection belt, since the galvanometer 20 rotates fast, two colors of monochromatic light can be emitted simultaneously from the two circular belts.
  • the laser projection light source adopts at least one of the above-mentioned white laser light sources, and each white laser light source is matched with an identical or different color wheel 70, so that the laser projection light source can finally project a colored image.
  • the settings of the white laser light source and the color wheel 70 in the laser projection light source can be set according to actual application scenarios, and do not need to be limited by the embodiments of the present application.
  • the embodiment of the present application provides a laser projection light source.
  • the reflection angle of the galvanometer is continuously changed to change the position of the laser light incident on the phosphor layer and the color wheel, which can realize sufficient heat dissipation of the substrate and
  • the full utilization of the phosphor layer slows down the aging speed of the phosphor wheel and increases the service life of the laser projection light source.
  • FIG 4 is a schematic diagram of the structure and optical path of a laser projection light source provided in Embodiment 4 of the present application.
  • a laser projection light source is provided, including: a color wheel 70, and At least one white light laser light source as described in the first embodiment above, the color wheel 70 is arranged in the direction of the light emitted from the white light laser light source, and the white light emitted by the white laser light source passes through the color wheel 70 and then exits the single Shade.
  • the above-mentioned color wheel 70 is arranged in the direction of the light emitted from the optical axis of the second lens 60, and the color wheel 70 is provided with a plurality of color blocks of different colors.
  • FIG. 5 is a schematic diagram of the structure of three color wheels provided by an embodiment of the present application.
  • the color wheel 70 is a color wheel b, on the color wheel b from the center of the color wheel to the periphery
  • the color wheel b is divided into four color blocks on average, and four different colors are respectively set on the color blocks.
  • the galvanometer 20 always reflects the incident light into the fluorescent wheel 34, and then emits monochromatic light after passing through the color block of the color wheel b. Due to the change of the reflection angle of the galvanometer 20, the emitted light rotates. Therefore, the emitted light will automatically be emitted to different color blocks on the color wheel b, and monochromatic light will be emitted in a time-sharing manner.
  • the number of color blocks and the size of the color blocks set on the color wheel b, the colors set on the color wheel b, etc. can be set according to actual needs, and do not need to be limited to the embodiments of this application. The limit.
  • the color wheel 70 may also be in the style of the color wheel a or the color wheel c shown in FIG. 5, wherein the color blocks on the color wheel a and the color wheel c are both set on On the circular belt, the circular belt of color wheel a is set on the edge of color wheel a, and the circular belt of color wheel c is not set on the edge of color wheel c, but is set on the center and the middle part of the edge.
  • the four color blocks of wheel b and color wheel c are respectively provided with four different colors.
  • the number and size of color blocks set on the color wheel a and the color wheel c, the colors set on the color wheel a and the color wheel c, etc., the color wheel a and The size of the circular band of the color wheel c can be set according to actual needs, and does not need to be restricted to the limitations of the embodiments of the present application.
  • the color wheel a and the color wheel c can be painted in black except for the circular belt, that is, the part where the color blocks are arranged to prevent light leakage.
  • the color wheel 70 may also be provided with two ring belts, and the emitted light may emit monochromatic light through one of the ring belts, or may emit light through the two ring belts.
  • the galvanometer 20 crosses the light. On the two circular belts of the reflection belt, since the galvanometer 20 rotates fast, two colors of monochromatic light can be emitted simultaneously from the two circular belts.
  • the laser projection light source adopts at least one of the above-mentioned white laser light sources, and each white laser light source is matched with an identical or different color wheel 70, so that the laser projection light source can finally project a colored image.
  • the settings of the white laser light source and the color wheel 70 in the laser projection light source can be set according to actual application scenarios, and do not need to be limited by the embodiments of the present application.
  • the embodiment of the present application provides a laser projection light source.
  • the reflection angle of the galvanometer is continuously changed to change the position of the laser light incident on the phosphor layer and the color wheel, which can realize sufficient heat dissipation of the substrate and The full utilization of the phosphor layer slows down the aging speed of the phosphor wheel and increases the service life of the laser projection light source.
  • the emitted light of the white laser light source provided in the embodiment of the present application can emit off-axis, with smaller emitting spot, more concentrated energy, and higher brightness.
  • the embodiments of the application provide a white light laser light source and a laser projection light source; the white light laser light source is deflected by a galvanometer at different angles and then hits the fluorescent wheel to excite white light. The incident position is changed to cool the incident position. Heat, so as to avoid overheating damage to the light source device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Projection Apparatus (AREA)
  • Lasers (AREA)

Abstract

一种高亮度照明领域的白光激光光源及激光投影光源;白光激光光源包括:激光源(10)、振镜(20)和荧光轮(34),激光源(10)发出的激光经过振镜(20)不同角度的偏转后出射到荧光轮(34)的不同位置上激发产生白光,该白光激光光源和激光投影光源能够出射白色光,作为一种高亮度照明用的白色光源,且光源内部的荧光轮能够得到较好的散热效果。

Description

一种白光激光光源及激光投影光源 技术领域
本申请涉及高亮度照明领域,特别涉及一种白光激光光源及激光投影光源。
背景技术
相比于LED、氙灯等白光源,激光作为白光源具有功率高、亮度高、效率高、能耗低、寿命长且体积小等优点,是目前高亮度照明领域的最佳方案。在现有技术中,通常用蓝光激光器照射到有红黄双色荧光粉的荧光轮上激发产生白光源。
在实现本申请过程中,发明人发现以上相关技术中至少存在如下问题:蓝光激光器照射在荧光轮上时,波长的转换过程会产生大量热量,由于荧光轮上荧光粉的吸收效率有限,蓝光入射后会产生大量的废热,集中于一点时温度过高容易烧毁荧光轮,同时热量也容易损坏荧光轮上的基板,使荧光粉脱落或烧坏,整个光源装置也会因为过热导致其他光学元件的损坏。
发明内容
针对现有技术的上述缺陷,本申请的目的是提供一种能够导出废热、减少荧光轮损耗的白光激光光源及激光投影光源。
本申请的目的是通过如下技术方案实现的:
为解决上述技术问题,第一方面,本申请实施例中提供了一种白光激光光源,包括:激光源、振镜和荧光轮;
所述激光源和所述荧光轮的光轴相互垂直且皆穿过所述振镜的光学中心,所述激光源发出的光经过所述振镜不同角度的偏转后出射到所述荧光轮的不同位置上激发产生白光。
可选的,所述荧光轮包括荧光粉片层和基板,所述荧光粉片层涂覆在所述基板上,所述振镜反射的激光照射到所述荧光粉片层上激发产生 白光。
可选的,所述荧光粉片层为预设黄、红配比的荧光粉。
可选的,所述激光源为蓝光源。
可选的,还包括:第一透镜,所述第一透镜设置在所述荧光轮的光轴上,从所述荧光轮出射的白光经所述第一透镜出射。
可选的,所述第一透镜为准直透镜,用于使出射光水平出射。
可选的,所述第一透镜为会聚透镜,用于使出射光会聚出射。
可选的,还包括:第二透镜,所述第二透镜设置在所述第一透镜的光轴上,且设置在所述第一透镜出射光方向上的焦点之前,用于使出射光水平出射。
为解决上述技术问题,第二方面,本申请实施例中提供了一种激光投影光源,包括:色轮,以及,至少一个如上述第一方面所述的白光激光光源,所述色轮设置在所述白光激光光源的出射光方向上,所述白光激光光源出射的白光经所述色轮后出射单色光。
可选的,所述色轮设置在所述第一透镜或第二透镜光轴的出射光方向上,所述色轮设置有多种不同颜色的色块。
与现有技术相比,本申请的有益效果是:区别于现有技术的情况,本申请实施例中提供了一种白光激光光源及激光投影光源;所述白光激光光源通过振镜不同角度的偏转后打在荧光轮上激发产生白光,通过入射位置的不断改变来冷却入射位置的热量,从而避免过热对光源装置的损坏。
附图说明
一个或多个实施例中通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件/模块和步骤表示为类似的元件/模块和步骤,除非有特别申明,附图中的图不构成比例限制。
图1是本申请实施例一中提供的一种白光激光光源的结构及光路示意图;
图2是本申请实施例二中提供的一种白光激光光源的结构及光路示意图;
图3是本申请实施例三中提供的一种激光投影光源的结构及光路示意图;
图4是本申请实施例四中提供的一种激光投影光源的结构及光路示意图;
图5是本申请实施例提供的三种色轮的结构示意图。
具体实施方式
下面结合具体实施例对本申请进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本申请,但不以任何形式限制本申请。应当指出的是,对本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进。这些都属于本申请的保护范围。
为了便于连接结构限定,本申请以光线传输的方向为参考进行部件的位置限定,例如,荧光轮在振镜的“前”方,沿此方向周围为“侧”方向,激光源在振镜的“一侧”。
本申请实施例描述一种高亮度照明领域的白光激光光源及激光投影光源,所述白光激光光源包括:激光源、振镜和荧光轮,经过所述白光激光光源能够出射白色光,且荧光轮能够得到有效散热。
具体地,下面结合附图,对本申请实施例作进一步阐述。
实施例一
请参见图1,图1是本申请实施例一中提供的一种白光激光光源的结构及光路示意图,本申请的实施例中提供了一种白光激光光源,包括:激光源10、振镜20和荧光轮34,所述激光源10和所述荧光轮34的光轴相互垂直且皆穿过所述振镜20的光学中心,所述激光源10发出的光经过所述振镜20不同角度的偏转后出射到所述荧光轮34的不同位置上激发产生白光。所述白光激光光源还包括:第一透镜50。
上述激光源10为蓝光源,波长在400nm-480nm之间,蓝光源相较 于其他颜色的光源波长更短,能量更高,能够激发产生更高亮度的白光。
上述振镜20为一可多角度转向且灵敏度较高的振动镜片或振动镜片组,工作时可连接至控制芯片或控制电路或机械控制装置对其转向进行控制,所述振镜20具有反射率高的特点。
在实际应用中,可以控制振镜20反射出的光在荧光轮34上以设定好的轨迹匀速移动,例如,控制振镜20在一定时间内转动的不同的角度时,反射出的激光能够在荧光轮34上以阿基米德螺线等匀速轨迹顺时针或逆时针移动。具体地,所述振镜20转动的角度和速度取决于激光打在荧光轮34上的轨迹,所述振镜20所能够转动的最大角度取决于振镜20与荧光轮34之间的距离。针对上述对振镜20的实际控制方式可根据应用场景、其他光学元件的情况、白光激光光源的具体结构需求进行设置,不需要拘泥于本申请实施例的限定。
上述荧光轮34包括荧光粉片层30和基板40,所述荧光粉片层30涂覆在所述基板40上,所述振镜20反射的激光照射到所述荧光粉片层30上激发产生白光。所述荧光粉片层30为预设黄、红配比的荧光粉,其中,增加荧光粉中红粉的比例,能够有效提升白光的显色指数,但红粉比例过多会导致白光颜色失真,因此,荧光粉中具体的黄粉和红粉的配比需要根据实际情况进行设置。
所述激光源10发出的蓝光经过所述振镜20反射到荧光轮上,激发所述荧光粉片层30中的红粉和黄粉产生红光和黄光,红光、黄光和蓝光最终合成白光出射。由于蓝光能量较高,蓝光源作为激光源10打在荧光轮34的荧光粉片层30,波长转换过程中会产生大量的热量,长时间打在荧光轮34的同一点上会产生很高的能量烧坏荧光轮34的基板40且是荧光轮34上的荧光粉片层30脱落,影响荧光轮34的寿命,因此,加入振镜20改变蓝光打在荧光粉片层30上的位置能够让入射位置的热量不断冷却。
上述第一透镜50设置在所述荧光轮34的光轴上,从所述荧光轮34出射的白光经所述第一透镜50出射。所述第一透镜50为准直透镜,用于使出射光水平出射。在实际应用中,所述振镜20快速转动,因此经 过第一透镜50出射的光基本可以看成是一个均匀的光斑。所述第一透镜50为凸透镜。
本申请实施例提供一种白光激光光源,在所述白光激光光源中,通过不断改变振镜的反射角,从而改变激光入射至荧光粉片层的位置,能够实现基板的充分散热以及荧光粉片层的充分利用,减慢荧光轮的老化速度,提高白光激光光源的使用寿命。
实施例二
请参见图2,图2是本申请实施例二中提供的一种白光激光光源的结构及光路示意图,本申请的实施例中提供了一种白光激光光源,包括:激光源10、振镜20和荧光轮34,所述激光源10和所述荧光轮34的光轴相互垂直且皆穿过所述振镜20的光学中心,所述激光源10发出的光经过所述振镜20不同角度的偏转后出射到所述荧光轮34的不同位置上激发产生白光。所述白光激光光源还包括:第一透镜50和第二透镜60。
上述激光源10为蓝光源,波长在400nm-480nm之间,蓝光源相较于其他颜色的光源波长更短,能量更高,能够激发产生更高亮度的白光。
上述振镜20为一可多角度转向且灵敏度较高的振动镜片或振动镜片组,工作时可连接至控制芯片或控制电路或机械控制装置对其转向进行控制,所述振镜20具有反射率高的特点。
在实际应用中,可以控制振镜20反射出的光在荧光轮34上以设定好的轨迹匀速移动,例如,控制振镜20在一定时间内转动的不同的角度时,反射出的激光能够在荧光轮34上以阿基米德螺线等匀速轨迹顺时针或逆时针移动。具体地,所述振镜20转动的角度和速度取决于激光打在荧光轮34上的轨迹,所述振镜20所需转动的最大角度取决于振镜20与荧光轮34之间的距离。针对上述对振镜20的实际控制方式可根据应用场景、其他光学元件的情况、白光激光光源的具体结构需求进行设置,不需要拘泥于本申请实施例的限定。
上述荧光轮34包括荧光粉片层30和基板40,所述荧光粉片层30涂覆在所述基板40上,所述振镜20反射的激光照射到所述荧光粉片层 30上激发产生白光。所述荧光粉片层30为预设黄、红配比的荧光粉,其中,增加荧光粉中红粉的比例,能够有效提升白光的显色指数,但红粉比例过多会导致白光颜色失真,因此,荧光粉中具体的黄粉和红粉的配比需要根据实际情况进行设置。
所述激光源10发出的蓝光经过所述振镜20反射到荧光轮上,激发所述荧光粉片层30中的红粉和黄粉产生红光和黄光,红光、黄光和蓝光最终合成白光出射。由于蓝光能量较高,蓝光源作为激光源10打在荧光轮34的荧光粉片层30,波长转换过程中会产生大量的热量,长时间打在荧光轮34的同一点上会产生很高的能量烧坏荧光轮34的基板40且是荧光轮34上的荧光粉片层30脱落,影响荧光轮34的寿命,因此,加入振镜20改变蓝光打在荧光粉片层30上的位置能够让入射位置的热量不断冷却。
上述第一透镜50设置在所述荧光轮34的光轴上,从所述荧光轮34出射的白光经所述第一透镜50出射。所述第一透镜50为会聚透镜,用于使出射光会聚出射。所述第一透镜50为凸透镜。
上述第二透镜60设置在所述第一透镜50的光轴上,且设置在所述第一透镜50出射光方向上的焦点之前,用于使出射光水平出射。所述第二透镜设置在出射光会聚到近轴一定距离处,使此时的出射光水平出射。在实际应用中,振镜20快速转动,因此经过第一透镜50出射的光基本可以看成是一个均匀的光斑。所述第二透镜60为凸透镜。
本申请实施例提供一种白光激光光源,在所述白光激光光源中,通过不断改变振镜的反射角,从而改变激光入射至荧光粉片层的位置,能够实现基板的充分散热以及荧光粉片层的充分利用,减慢荧光轮的老化速度,提高白光激光光源的使用寿命。此外,相比于实施例一,本申请实施例提供的白光激光光源的出射光能够近轴出射,出射光斑更小,能量更集中,亮度更高。
实施例三
请参见图3和图5,图3是本申请实施例三中提供的一种激光投影 光源的结构及光路示意图,本申请的实施例中提供了一种激光投影光源,包括:色轮70,以及,至少一个如上述实施例一所述的白光激光光源,所述色轮70设置在所述白光激光光源的出射光方向上,所述白光激光光源出射的白光经所述色轮70后出射单色光。
需要说明的是,由于本实施例中的白光激光光源与实施例一提供的白光激光光源基于相同的发明构思,因此,此处不再详述。
上述色轮70设置在所述第一透镜50光轴的出射光方向上,所述色轮70设置有多种不同颜色的色块。请参见图5,图5是本申请实施例提供的三种色轮的结构示意图,在本申请实施例中,所述色轮70为色轮a,在色轮a上设置有色块,所述色块为设置在色轮a边缘的圆环带,色块,即圆环带总共平均分为四块,分别设置有四种不同的颜色。
在本申请的一种实施例中,振镜20始终将入射光反射至与色轮a边缘的圆环带平行的荧光轮34中,再通过色轮a边缘的圆环带出射单色光,由于振镜20反射角变化导致出射光旋转,因此出射光会自动出射到色轮a上的不同色块,分时地出射单色光。在其他的一些实施例中,所述色轮a上设置的色块数量和色块大小,所述色轮a边缘的圆环带的大小,所述色轮a上设置的颜色等,可根据实际需要进行设置,不需要拘泥于本申请实施例的限定。此外,色块a上除了圆环带,即设置有色块的部分以外,可以涂黑,防止漏光。
此外,在其他的一些实施例中,所述色轮70也可以是图5中所示的色轮b或者色轮c的样式,其中,色轮b上从色轮中心向四周平均将色轮b分为四块色块,色轮c与色轮a相似色块同样设置有圆环带,色轮c的圆环带未设置在色轮c的边缘,而是设置在圆心与边缘的中间部分,所述色轮b和色轮c的四个色块上分别设置有四种不同的颜色。与所述色轮a相似的,所述色轮b和色轮c上设置的色块数量和色块大小,色轮c边缘的圆环带的大小,所述色轮b和色轮c上设置的颜色等,可根据实际需要进行设置,不需要拘泥于本申请实施例的限定,色轮c上除了圆环带,即设置有色块的部分以外,可以涂黑,防止漏光。
此外,在其他的一些实施例中,也不需要拘泥于图5中三种色轮的 样式,所述色块在色轮70上的大小、范围、形状、数量可以根据实际情况进行设置,不需要拘泥于本申请实施例的设定。例如,所述色轮70上还可以设置有两个圆环带,出射光可以通过其中一个圆环带出射单色光,也可以通过两个圆环带出射光,振镜20交叉将光反射带两个圆环带上,由于振镜20转动速度快,从两个圆环带能够同时出射两种颜色的单色光。
在实际应用中,所述激光投影光源中采用至少一个上述的白光激光光源,每一白光激光光源配合设置一相同或不同的色轮70,使得最终所述激光投影光源能够投影出彩色的图像。具体地,所述激光投影光源内白色激光光源和色轮70的设置可根据实际应用场景进行设置,不需要拘泥本申请实施例的限定。
本申请实施例提供一种激光投影光源,在所述激光投影光源中,通过不断改变振镜的反射角,从而改变激光入射至荧光粉片层及色轮的位置,能够实现基板的充分散热以及荧光粉片层的充分利用,减慢荧光轮的老化速度,提高激光投影光源的使用寿命。
实施例四
参见图3和图5,图4是本申请实施例四中提供的一种激光投影光源的结构及光路示意图,本申请的实施例中提供了一种激光投影光源,包括:色轮70,以及,至少一个如上述实施例一所述的白光激光光源,所述色轮70设置在所述白光激光光源的出射光方向上,所述白光激光光源出射的白光经所述色轮70后出射单色光。
需要说明的是,由于本实施例中的白光激光光源与实施例二提供的白光激光光源基于相同的发明构思,因此,此处不再详述。
上述色轮70设置在所述第二透镜60光轴的出射光方向上,所述色轮70设置有多种不同颜色的色块。请参见图5,图5是本申请实施例提供的三种色轮的结构示意图,在本申请实施例中,所述色轮70为色轮b,在色轮b上从色轮中心向四周平均将色轮b分为四块色块,色块上分别设置有四种不同的颜色。
在本申请的一种实施例中,振镜20始终将入射光反射至荧光轮34中,再通过色轮b的色块后出射单色光,由于振镜20反射角变化导致出射光旋转,因此出射光会自动出射到色轮b上的不同色块,分时地出射单色光。在其他的一些实施例中,所述色轮b上设置的色块数量和色块大小,所述色轮b上设置的颜色等,可根据实际需要进行设置,不需要拘泥于本申请实施例的限定。
此外,在其他的一些实施例中,所述色轮70也可以是图5中所示的色轮a或者色轮c的样式,其中,色轮a和色轮c上的色块皆设置在圆环带上,色轮a的圆环带设置在色轮a的边缘,色轮c的圆环带未设置在色轮c的边缘,而是设置在圆心与边缘的中间部分,所述色轮b和色轮c的四个色块上分别设置有四种不同的颜色。与所述色轮b相似的,所述色轮a和色轮c上设置的色块数量和色块大小,所述色轮a和色轮c上设置的颜色等,所述色轮a和色轮c的圆环带的大小,可根据实际需要进行设置,不需要拘泥于本申请实施例的限定。此外,所述色轮a和色轮c上除了圆环带,即设置有色块的部分以外,可以涂黑,防止漏光。
此外,在其他的一些实施例中,也不需要拘泥于图5中三种色轮的样式,所述色块在色轮70上的大小、范围、形状、数量可以根据实际情况进行设置,不需要拘泥于本申请实施例的设定。例如,所述色轮70上还可以设置有两个圆环带,出射光可以通过其中一个圆环带出射单色光,也可以通过两个圆环带出射光,振镜20交叉将光反射带两个圆环带上,由于振镜20转动速度快,从两个圆环带能够同时出射两种颜色的单色光。
在实际应用中,所述激光投影光源中采用至少一个上述的白光激光光源,每一白光激光光源配合设置一相同或不同的色轮70,使得最终所述激光投影光源能够投影出彩色的图像。具体地,所述激光投影光源内白色激光光源和色轮70的设置可根据实际应用场景进行设置,不需要拘泥本申请实施例的限定。
本申请实施例提供一种激光投影光源,在所述激光投影光源中,通 过不断改变振镜的反射角,从而改变激光入射至荧光粉片层及色轮的位置,能够实现基板的充分散热以及荧光粉片层的充分利用,减慢荧光轮的老化速度,提高激光投影光源的使用寿命。此外,相比于实施例三,本申请实施例提供的白光激光光源的出射光能够近轴出射,出射光斑更小,能量更集中,亮度更高。
本申请实施例中提供了一种白光激光光源及激光投影光源;所述白光激光光源通过振镜不同角度的偏转后打在荧光轮上激发产生白光,通过入射位置的不断改变来冷却入射位置的热量,从而避免过热对光源装置的损坏。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或不同实施例中的技术特征之间也可以进行组合,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例中所记载的技术方案进行修改,或者对其中区域技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例中技术方案的范围。

Claims (10)

  1. 一种白光激光光源,其特征在于,包括:激光源、振镜和荧光轮;
    所述激光源和所述荧光轮的光轴相互垂直且皆穿过所述振镜的光学中心,所述激光源发出的光经过所述振镜不同角度的偏转后出射到所述荧光轮的不同位置上激发产生白光。
  2. 根据权利要求1所述的白光激光光源,其特征在于,
    所述荧光轮包括荧光粉片层和基板,所述荧光粉片层涂覆在所述基板上,所述振镜反射的激光照射到所述荧光粉片层上激发产生白光。
  3. 根据权利要求2所述的白光激光光源,其特征在于,
    所述荧光粉片层为预设黄、红配比的荧光粉。
  4. 根据权利要求3所述的白光激光光源,其特征在于,
    所述激光源为蓝光源。
  5. 根据权利要求1-4任一项所述的白光激光光源,其特征在于,还包括:第一透镜,所述第一透镜设置在所述荧光轮的光轴上,从所述荧光轮出射的白光经所述第一透镜出射。
  6. 根据权利要求5所述的白光激光光源,其特征在于,
    所述第一透镜为准直透镜,用于使出射光水平出射。
  7. 根据权利要求5所述的白光激光光源,其特征在于,
    所述第一透镜为会聚透镜,用于使出射光会聚出射。
  8. 根据权利要求7所述的白光激光光源,其特征在于,还包括:第二透镜,所述第二透镜设置在所述第一透镜的光轴上,且设置在所述第一透镜出射光方向上的焦点之前,用于使出射光水平出射。
  9. 一种激光投影光源,其特征在于,包括:色轮,以及,至少一个如权利要求6或权利要求8所述的白光激光光源,所述色轮设置在所述白光激光光源的出射光方向上,所述白光激光光源出射的白光经所述色轮后出射单色光。
  10. 根据权利要求9所述的激光投影光源,其特征在于,
    所述色轮设置在所述第一透镜或第二透镜光轴的出射光方向上,所 述色轮设置有多种不同颜色的色块。
PCT/CN2019/112273 2019-01-24 2019-10-21 一种白光激光光源及激光投影光源 WO2020151269A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201920128723.8U CN209294839U (zh) 2019-01-24 2019-01-24 一种白光激光光源及激光投影光源
CN201920128723.8 2019-01-24

Publications (1)

Publication Number Publication Date
WO2020151269A1 true WO2020151269A1 (zh) 2020-07-30

Family

ID=67642779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112273 WO2020151269A1 (zh) 2019-01-24 2019-10-21 一种白光激光光源及激光投影光源

Country Status (2)

Country Link
CN (1) CN209294839U (zh)
WO (1) WO2020151269A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209294839U (zh) * 2019-01-24 2019-08-23 深圳市星汉激光科技有限公司 一种白光激光光源及激光投影光源

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000347287A (ja) * 1999-06-04 2000-12-15 Sanyo Electric Co Ltd 投写型映像表示装置
CN101308257A (zh) * 2008-06-07 2008-11-19 王勇竞 产生合成图像的系统
US20120242912A1 (en) * 2011-03-23 2012-09-27 Panasonic Corporation Light source apparatus and image display apparatus using the same
CN106195929A (zh) * 2016-09-03 2016-12-07 超视界激光科技(苏州)有限公司 激光光源模组
CN209294839U (zh) * 2019-01-24 2019-08-23 深圳市星汉激光科技有限公司 一种白光激光光源及激光投影光源

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000347287A (ja) * 1999-06-04 2000-12-15 Sanyo Electric Co Ltd 投写型映像表示装置
CN101308257A (zh) * 2008-06-07 2008-11-19 王勇竞 产生合成图像的系统
US20120242912A1 (en) * 2011-03-23 2012-09-27 Panasonic Corporation Light source apparatus and image display apparatus using the same
CN106195929A (zh) * 2016-09-03 2016-12-07 超视界激光科技(苏州)有限公司 激光光源模组
CN209294839U (zh) * 2019-01-24 2019-08-23 深圳市星汉激光科技有限公司 一种白光激光光源及激光投影光源

Also Published As

Publication number Publication date
CN209294839U (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
TWI486699B (zh) 光源系統
US8662690B2 (en) Multi-colored illumination system with wavelength converter and method
US9075299B2 (en) Light source with wavelength conversion device and filter plate
US7506985B2 (en) Projection light source having multiple light emitting diodes
US9175829B2 (en) Illumination apparatus with phosphor wheel
US9890929B2 (en) Polyhedron, rotational arrangements, light source arrangements, a light source device, a lighting device, a three-dimensional body and projectors
TWI442165B (zh) 投影機光機裝置
JP2014075221A (ja) 光源装置
JP2013537642A (ja) 半導体光源と発光性材料とを含むプロジェクションシステム
JP2017120380A (ja) 照明システム及び投影装置
JP2013029831A (ja) 照明装置及び投写型映像表示装置
US10394110B2 (en) Phosphor wheel module, light source device, and projection display apparatus
US20140028984A1 (en) Light source apparatus and projection display apparatus
CN105045025A (zh) 投影光源设备及具有其的投影装置、控制光斑运动的方法
TW201310156A (zh) 投影機光源裝置
TW201317701A (zh) 投影機光機裝置
JP2013041170A (ja) 光源装置及びプロジェクター
JP2016177272A (ja) 光源装置および投写型表示装置
JP5737769B2 (ja) 蛍光体カラーホイル、それを内蔵する投写型表示装置及び投写型表示方法
US11493838B2 (en) Optical device
WO2020151269A1 (zh) 一种白光激光光源及激光投影光源
WO2021259276A1 (zh) 光源组件和投影设备
WO2021259274A1 (zh) 光源组件和投影设备
WO2021259268A1 (zh) 光源组件和投影设备
CN202018555U (zh) 一种用于固体光源投影机的彩色调制盘

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911148

Country of ref document: EP

Kind code of ref document: A1