WO2020151160A1 - 基于浮式平台的多能源发电系统 - Google Patents

基于浮式平台的多能源发电系统 Download PDF

Info

Publication number
WO2020151160A1
WO2020151160A1 PCT/CN2019/090457 CN2019090457W WO2020151160A1 WO 2020151160 A1 WO2020151160 A1 WO 2020151160A1 CN 2019090457 W CN2019090457 W CN 2019090457W WO 2020151160 A1 WO2020151160 A1 WO 2020151160A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
wave energy
water column
air
generation system
Prior art date
Application number
PCT/CN2019/090457
Other languages
English (en)
French (fr)
Inventor
施伟
王亚坡
张礼贤
唐业
由际昆
宁德志
滕斌
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US16/631,125 priority Critical patent/US10947955B2/en
Publication of WO2020151160A1 publication Critical patent/WO2020151160A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/141Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector
    • F03B13/142Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector which creates an oscillating water column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/24Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy to produce a flow of air, e.g. to drive an air turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/008Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations the wind motor being combined with water energy converters, e.g. a water turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Definitions

  • the invention belongs to the technical field of ocean renewable energy utilization, and particularly relates to a multi-energy power generation system based on a floating platform, and an integrated power generation system that combines wind energy and oscillating water column wave energy based on a tension leg (TLP) platform.
  • TLP tension leg
  • the invention provides a multi-energy power generation system based on a TLP platform, and an integrated power generation system integrating wind energy and an oscillating water column wave energy system is established in the ocean by using the TLP platform support structure.
  • the invention can make full use of marine renewable resources, achieve the purpose of improving the utilization rate of the TLP platform and reducing the total cost, thereby improving economic benefits.
  • Multi-energy power generation system based on floating platform, wind turbine-oscillating water column (OWC) wave energy integrated power generation system based on TLP floating platform, including offshore wind power generation system and oscillating water column wave energy power generation device3;
  • OBC wind turbine-oscillating water column
  • the offshore wind power generation system includes a wind turbine 1, a tower 2 and a TLP platform 8.
  • the wind turbine 1 is a megawatt horizontal axis wind generator connected to the TLP platform 8 through the tower 2; the TLP platform 8 is tensioned
  • the tendons 6 and the anchoring system 11 are connected to the seabed 7;
  • the oscillating water column type wave energy generating device 3 is fixed on the three pontoons of the TLP platform 8 through the support 5; the oscillating water column type wave energy generating device 3 includes the shell body of the wave energy generating device, the air chamber 10 and the air Turbine generator 9; the space in the shell body of the wave energy power generation device is the air chamber 10, the waves enter from all directions, the top is provided with a circular air outlet, and the air turbine generator 9 is installed at the air outlet; Put the wind turbine-oscillating water column wave energy integrated power generation system based on the TLP floating platform in the water area. Under the action of the waves, the waves enter the air chamber 10 through the oscillating water column wave energy power generation device 3 to form an oscillating water column that vibrates up and down. The oscillating water column reciprocates up and down to make the gas in the air chamber 10 reciprocate through the air outlet on the top of the air chamber 10, thereby driving the air turbine generator 9 to generate electricity;
  • the upper part of the air chamber 10 is a mushroom shape formed by parabolic rotation, and the lower part is a hollow cylinder, which ensures that the pressure at the end of the air flow is increased, and the air turbine generator 9 is promoted faster to rotate and the power generation efficiency is improved; the air chamber 10 is arranged Three oblique steel braces realize the solid connection between the air chamber 10 and the pillar.
  • the air turbine generator 9 adopts a two-way air turbine generator
  • the oscillating water column wave energy power generation device converts the up and down reciprocating motion of the water column into the reciprocating motion of the gas, and then completes the wave energy generation through the air turbine generator.
  • the invention makes full use of the advantages of the tension leg and the wave energy device sharing platform and power transmission system.
  • the wave energy generating device is arranged symmetrically on the three buoys of the TLP platform in the circumferential direction, which can appropriately reduce the wave load.
  • the TLP platform fan has good motion response characteristics, good overall stability and broad development prospects.
  • the wave energy device adopts a mushroom shape, which reduces the wave load and improves the stability of the system.
  • the new floating multi-energy power generation system improves the effective utilization rate of the sea area, reduces construction and maintenance costs, and promotes the commercial application of wave energy devices.
  • Fig. 1 is a schematic structural diagram of the floating wind energy-wave energy integrated system of the present invention.
  • Fig. 2 is a three-dimensional diagram of the floating wind energy-wave energy integrated system of the present invention.
  • Figures 1 and 2 show the implementation of a floating platform-based multi-energy power generation system according to the present invention.
  • the horizontal axis fan 1 is connected to the TLP floating platform 8 through a tower 2.
  • the wave energy generating device is an oscillating water column type wave energy generating device.
  • the wave energy generating device is located near the sea level of the TLP platform.
  • the wave energy generating device 3 is fastened to the pillar 5 through a steel brace 4, which supports the wave energy generation The role of device 3.
  • the wind generator 1 is driven by the wind to rotate, convert the wind into mechanical energy, and then drive the wind generator to generate electricity through a gear box.
  • the water column in the oscillating water column type wave energy power generation device 3 reciprocates under the action of the undulating external force, and then is converted into the reciprocating motion of the gas in the air chamber 10, thereby driving the air turbine generator 9 to generate electricity.
  • the two-way air turbine generator is adopted, so that the wave can be used for power generation during the wave rise and fall, with good power generation continuity and high efficiency.
  • the method is as follows: the wind generator 1 generates electric energy under the action of the wind; the oscillating water column type wave energy power generation device 3 is fixed near the sea level through the steel brace 4 and the pillar 5, and the waves rushing to the bottom of the wave energy power generation device 3 enter the wave In the power generating device 3, a water column vibrating up and down is generated in the air chamber 10.
  • the air turbine generator is driven 9 Generate electricity to generate electricity.
  • the electric energy generated by the wind turbine and the electric energy generated by the wave energy device are collected, they are sent to the grid through the transmission system for users to use.
  • the construction and installation process based on the floating wind energy-wave energy integrated system is as follows: first, the TLP platform and wave energy power generation device are processed on land; then the wave energy power generation device is installed on the TLP platform; then the professional construction ship will be used to assemble it.
  • the TLP platform and wave energy device are consigned to the designated sea area; then the tension tendon 6 is installed to realize the fixed connection between the TLP platform and the seabed surface; finally the tower 2 and the top fan 1 are installed to complete the multi-energy power generation based on the floating platform Construction and installation of the system.
  • the present invention adopts a floating foundation based on the TLP platform, which can be adapted to sea areas of different water depths; wind power generation and wave power generation are located on the same platform, so that the two share the support platform and power transmission supporting system, to a large extent
  • the above reduces the cost of power generation; the stable and reasonable structure further proves the feasibility of the present invention and has significant technical effects.

Abstract

一种基于浮式平台的多能源发电系统,具体为基于TLP浮式平台的风机-振荡水柱式波浪能集成发电系统,包括海上风力发电系统和振荡水柱式波浪能发电装置;海上风力发电系统包括风机(1)、塔筒(2);振荡水柱式波浪能发电装置(3)包括波浪能发电装置的外壳本体、气室(10)以及空气透平发电机(9)。该系统可充分利用海上可再生资源,达到提高TLP平台利用率并降低总成本的目的,从而提高经济效益。

Description

基于浮式平台的多能源发电系统 技术领域
本发明属于海洋可再生能源利用技术领域,尤其涉及了一种基于浮式平台的多能源发电系统,以张力腿(TLP)平台为基础将风能和振荡水柱式波浪能相结合的集成发电系统。
背景技术
随着世界经济的飞速发展,能源供需矛盾日益突出,能源问题日益严重。另一方面,化石能源的大量消耗又造成环境恶化,导致全球变暖,气候极端现象频发。因此,能源结构调整亟待解决,发展可再生能源势在必行,而海洋可再生能源的开发利用已成为世界各国发展可再生能源的重点。可再生能源的开发利用对于我国治理大气污染、调整能源结构具有战略意义。风能、波浪能作为最具发展前景的海洋可再生能源,越来越受世界各国的重视。波浪能发电装置,由于能量转化效率低,发电成本较高,可靠性较低,在一定程度上限制了其商业化的发展。随着海上风电技术的发展,逐渐由近海走向深海,而浮式海上风机尚处于发展的初期阶段。在海外已有的浮式风机示范项目中,主要有:半潜式,Spar式,TLP式,驳船式等,而TLP平台由于其具有良好的运动响应特性,整体平稳性能好,发展潜力巨大。随着我国海上风电的安装设备和安装技术的发展,TLP平台在我国海上风电产业中有着广泛的应用前景。充分将风能和波浪能发电装置相结合,可以有效的提高海洋空间资源的利用效率,提高整体发电系统的经济性,是推进波浪能发电产业化的有效途径。
技术问题
本发明提供了一种基于TLP平台的多能源发电系统,在海洋中利用TLP平台支撑结构建立了风能、振荡水柱式波浪能系统于一体的集成发电系统。该发明可充分利用海上可再生资源,达到提高TLP平台利用率并降低总成本的目的,从而提高经济效益。
技术解决方案
基于浮式平台的多能源发电系统,基于TLP浮式平台的风机-振荡水柱式(OWC)波浪能集成发电系统,包括海上风力发电系统和振荡水柱式波浪能发电装置3;
所述的海上风力发电系统包括风机1、塔筒2和TLP平台8;所述的风机1为兆瓦级水平轴风力发电机,其通过塔筒2与TLP平台8相连;TLP平台8通过张力筋腱6及锚固系统11与海床7的相连;
所述的振荡水柱式波浪能发电装置3通过支柱5固定在TLP平台8的三个浮筒上;所述的振荡水柱式波浪能发电装置3包括波浪能发电装置的外壳本体、气室10以及空气透平发电机9;波浪能发电装置的外壳本体内的空间即为气室10,波浪从各个方向进入,顶部设有圆形出气口,出气口处安装有空气透平发电机9;使用时,将基于TLP浮式平台的风机-振荡水柱式波浪能集成发电系统放在水域中,在波浪作用下,波浪经振荡水柱式波浪能发电装置3进入气室10而形成上下振动的振荡水柱,振荡水柱作上下往复运动使气室10内的气体往复通过气室10顶部的出气口,进而驱动空气透平发电机9发电;
所述的气室10上部为抛物线旋转而成的蘑菇形,下部为空心圆柱体,保证气流末端压强增大,更快的推动空气透平发电机9转动,提高发电效率;气室10内布置3根斜向钢撑,实现气室10与支柱的固接。
所述的空气透平发电机9采用双向空气透平发电机;
振荡水柱式波浪能发电装置将水柱的上下往复运动转化气体的往复运动,进而通过空气透平发电机完成波浪能的发电。本发明充分利用了张力腿的优势和波浪能装置共享平台及电力传输系统。
所述波浪能发电装置周向对称布置于TLP平台的三个浮筒上,可适当减小波浪载荷。
有益效果
(1)TLP平台风机具有良好的运动响应特性,整体平稳性能好,发展前景广阔。
(2)将海上风电同波浪能发电装置有效结合,共用海上平台、变压、输电等设备,提高了系统的整体发电功率,增加了发电量和有效工作小时数,降低了投资成本。
(3)波浪能装置采用蘑菇状,降低了波浪载荷,提高了系统的稳定性能。
(4)该新型浮式多能源发电系统提高了海域的有效利用率,降低了建设成本和维修费用,促进了波浪能装置商业化的应用。
附图说明
图1是本发明的浮式风能-波浪能集成系统结构示意图。
图2是本发明的浮式风能-波浪能集成系统三维图。
图中:1风机;2塔筒;3振荡水柱式波浪能发电装置;4钢撑;5支柱;
6张力腿;7海床;8TLP平台;9空气透平发电机;10气室;11锚固系统。
本发明的实施方式
为了加深对本发明的理解,下面结合附图和技术方案,对本发明作进一步说明。
图1、图2出示了本发明所述的一种基于浮式平台的多能源发电系统的实施方式。
如图1所示,水平轴风机1 通过塔筒2与TLP浮式平台8相连。波浪能发电装置是振荡水柱式波浪能发电装置,波浪能发电装置设在TLP平台的海平面附近,波浪能发电装置3通过钢撑4紧固在支柱5上,钢撑起到支撑波浪能发电装置3的作用。风力发电机1在风力的推动下做旋转运动,将风力转换成机械能,再经过齿轮箱,驱动风力发电机发电。另一方面,振荡水柱式波浪能发电装置3内的水柱在波浪起伏的外力作用下做往复运动,进而转化为气室10内气体的往复运动,从而驱动空气透平发电机9发电。采用双向空气透平发电机,因而波浪起落过程均可用来发电,发电连续性较好,效率高。
该方法为:风力发电机1在风力作用下发出电能;振荡水柱式波浪能发电装置3通过钢撑4和支柱5在海平面附近固连,涌向波浪能发电装置3底部的波浪进入到波浪能发电装置3内,在气室10中产生上下振动的水柱,水柱上下振动运动时使气室10内的气体往复通过气室上端的出气口,气体往复通过出气口时驱动空气透平发电机9发电,产生电能。风力发电机产生的电能和波浪能装置产生的电能汇集后,通过传输系统送至电网,供用户使用。
基于浮式风能-波浪能集成系统的施工安装流程如下:首先,在陆上加工制作TLP平台和波浪能发电装置;随后将波浪能发电装置安装在TLP平台上;然后利用专业施工船将组装好的TLP平台和波浪能装置托运到指定海域;随后将张力筋腱6安装,实现TLP平台与海床面的固连;最后安装塔筒2和顶部风机1,完成基于浮式平台的多能源发电系统的施工安装。
由此,本发明采用的是基于TLP平台的浮式基础,能适应于不同水深的海域;风力发电、波浪能发电位于同一平台上,使二者共享支撑平台和电力传输配套系统,很大程度上降低了发电的成本;结构稳定合理,更进一步证明了本发明的可实施性,具有显著的技术效果。

Claims (2)

  1. 一种基于浮式平台的多能源发电系统,具体为基于TLP浮式平台的风机-振荡水柱式波浪能集成发电系统,包括海上风力发电系统和振荡水柱式波浪能发电装置(3);其特征在于,
    所述的海上风力发电系统包括风机(1)、塔筒(2)和TLP平台(8);所述的风机(1)为兆瓦级水平轴风力发电机,其通过塔筒(2)与TLP平台(8)相连;TLP平台(8)通过张力筋腱(6)及锚固系统(11)与海床(7)的相连;
    所述的振荡水柱式波浪能发电装置(3)通过支柱(5)固定在TLP平台(8)的三个浮筒上;所述的振荡水柱式波浪能发电装置(3)包括波浪能发电装置的外壳本体、气室(10)以及空气透平发电机(9);波浪能发电装置的外壳本体内的空间即为气室(10),波浪从各个方向进入,顶部设有圆形出气口,出气口处安装有空气透平发电机(9);使用时,将基于TLP浮式平台的风机-振荡水柱式波浪能集成发电系统放在水域中,在波浪作用下,波浪经振荡水柱式波浪能发电装置(3)进入气室(10)而形成上下振动的振荡水柱,振荡水柱作上下往复运动使气室(10)内的气体往复通过气室(10)顶部的出气口,进而驱动空气透平发电机(9)发电;
    所述的气室(10)上部为抛物线旋转而成的蘑菇形,下部为空心圆柱体,保证气流末端压强增大,更快的推动空气透平发电机(9)转动,提高发电效率;气室(10)内布置3根斜向钢撑,实现气室(10)与支柱的固接。
  2. 根据权利要求1所述的基于浮式平台的多能源发电系统,其特征在于,所述的空气透平发电机(9)采用双向空气透平发电机。
PCT/CN2019/090457 2019-01-23 2019-06-10 基于浮式平台的多能源发电系统 WO2020151160A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/631,125 US10947955B2 (en) 2019-01-23 2019-06-10 Multi-energy power generation system based on floating type platform

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910063277.1 2019-01-23
CN201910063277.1A CN109653935A (zh) 2019-01-23 2019-01-23 基于浮式平台的多能源发电系统

Publications (1)

Publication Number Publication Date
WO2020151160A1 true WO2020151160A1 (zh) 2020-07-30

Family

ID=66119345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090457 WO2020151160A1 (zh) 2019-01-23 2019-06-10 基于浮式平台的多能源发电系统

Country Status (3)

Country Link
US (1) US10947955B2 (zh)
CN (1) CN109653935A (zh)
WO (1) WO2020151160A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115748582A (zh) * 2022-11-23 2023-03-07 华南理工大学 一种兼做波浪能-太阳能发电装置的浮式防波堤集成系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109653935A (zh) * 2019-01-23 2019-04-19 大连理工大学 基于浮式平台的多能源发电系统
CN110205643B (zh) * 2019-06-19 2021-05-14 西南石油大学 一种利用风能降低电解水能耗的装置
DK181023B1 (en) 2021-02-25 2022-09-30 Frans Christensen Henrik Wave energy plant
CN113090439B (zh) * 2021-04-02 2023-02-24 武汉理工大学 一种基于多浮子阵列的波浪能发电装置
CN114033618B (zh) * 2021-09-28 2023-05-26 南京航空航天大学 一种深远海浮式风-浪-流联合发电装置
CN115143019A (zh) * 2022-06-09 2022-10-04 山东科技大学 一种基于光伏发电和波浪能发电一体化浮沉避灾发电装置
CN116002002A (zh) * 2023-02-02 2023-04-25 大连理工大学 一种装配减载增稳装置的张力腿式风-波能互补浮式平台
CN117404246B (zh) * 2023-12-13 2024-03-05 海南中南标质量科学研究院有限公司 海洋气流发电机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009064737A1 (en) * 2007-11-12 2009-05-22 Oceanwind Technology, Llc. Power generation assemblies
WO2009078735A1 (en) * 2007-12-19 2009-06-25 As Quatro Apparatus for wave power generation
CN101915202A (zh) * 2010-07-15 2010-12-15 上海交通大学 风能波浪能联合发电系统
CN103832557A (zh) * 2014-03-24 2014-06-04 长沙理工大学 一种漂浮式波浪能-风能综合利用平台
CN107387327A (zh) * 2017-09-11 2017-11-24 大连理工大学 一种新型浮式风能‑波浪能联合发电系统
CN107575337A (zh) * 2017-10-18 2018-01-12 大连理工大学 基于张力腿平台垂直轴风力机与垂向‑水平两向波浪能发电集成结构
CN108061010A (zh) * 2017-11-09 2018-05-22 大连理工大学 一种适用于近海的单桩式风能-波浪能集成发电系统
CN109026542A (zh) * 2018-08-10 2018-12-18 浙江大学 漂浮式风能-波浪能联合发电系统
CN109653935A (zh) * 2019-01-23 2019-04-19 大连理工大学 基于浮式平台的多能源发电系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3047781A1 (de) * 1980-12-18 1982-07-22 Klöckner-Humboldt-Deutz AG, 5000 Köln Luftgekuehlte brennkraftmaschine mit einem kuehlluftgeblaese
NZ577070A (en) * 2006-10-20 2012-05-25 Maritime Technologies Ltd A floatable wave energy converter and a method for improving the efficiency of a floatable wave energy converter
US8207622B2 (en) * 2008-02-20 2012-06-26 Knowledge Based Systems, Inc. Inertial mass power generation
WO2010067177A2 (en) * 2008-12-10 2010-06-17 Stellenbosch University Wave energy convertor
CN102797617A (zh) * 2012-08-14 2012-11-28 中国华能集团清洁能源技术研究院有限公司 一种海上风电与海洋波浪能联合发电装置
DK2944801T3 (en) * 2014-05-14 2017-09-18 Sener Ing & Sist DEVICE TO COLLECT WAVE ENERGY
CN103967713B (zh) * 2014-05-14 2016-06-01 大连理工大学 基于浮式张力腿平台的风能-波浪能集成发电结构
CN104229085A (zh) * 2014-09-04 2014-12-24 长沙理工大学 一种结合振荡水柱式波能装置的海上风力机平台
CN106014862A (zh) * 2016-05-19 2016-10-12 哈尔滨工程大学 一种新型浮式多浮子风浪能混合发电装置
CN206419162U (zh) * 2017-01-17 2017-08-18 上海海洋大学 一种风能和波浪能集成发电装置
US10947952B2 (en) * 2017-09-11 2021-03-16 Dalian University Of Technology Floating wind-wave integrated power generation system
CN107842459B (zh) * 2017-11-08 2023-05-12 大连理工大学 振荡水柱与振荡浮子组合式波能转换装置
CN209586579U (zh) * 2019-01-23 2019-11-05 大连理工大学 基于浮式平台的多能源发电系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009064737A1 (en) * 2007-11-12 2009-05-22 Oceanwind Technology, Llc. Power generation assemblies
WO2009078735A1 (en) * 2007-12-19 2009-06-25 As Quatro Apparatus for wave power generation
CN101915202A (zh) * 2010-07-15 2010-12-15 上海交通大学 风能波浪能联合发电系统
CN103832557A (zh) * 2014-03-24 2014-06-04 长沙理工大学 一种漂浮式波浪能-风能综合利用平台
CN107387327A (zh) * 2017-09-11 2017-11-24 大连理工大学 一种新型浮式风能‑波浪能联合发电系统
CN107575337A (zh) * 2017-10-18 2018-01-12 大连理工大学 基于张力腿平台垂直轴风力机与垂向‑水平两向波浪能发电集成结构
CN108061010A (zh) * 2017-11-09 2018-05-22 大连理工大学 一种适用于近海的单桩式风能-波浪能集成发电系统
CN109026542A (zh) * 2018-08-10 2018-12-18 浙江大学 漂浮式风能-波浪能联合发电系统
CN109653935A (zh) * 2019-01-23 2019-04-19 大连理工大学 基于浮式平台的多能源发电系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115748582A (zh) * 2022-11-23 2023-03-07 华南理工大学 一种兼做波浪能-太阳能发电装置的浮式防波堤集成系统

Also Published As

Publication number Publication date
US10947955B2 (en) 2021-03-16
US20200362821A1 (en) 2020-11-19
CN109653935A (zh) 2019-04-19

Similar Documents

Publication Publication Date Title
WO2020151160A1 (zh) 基于浮式平台的多能源发电系统
US10890162B2 (en) Wind energy, wave energy and tidal energy integrated power generation system based on monopile foundation
CN109026542A (zh) 漂浮式风能-波浪能联合发电系统
CN106014862A (zh) 一种新型浮式多浮子风浪能混合发电装置
CN102146873B (zh) 具有周向稳定柱的单柱式海上风力发电装置
US20200208611A1 (en) Deep-sea energy integrated system based on floating wind turbine and current energy device
CN109737009B (zh) 基于海上浮式平台的风能—波浪能联合发电装置及发电方法
US10947952B2 (en) Floating wind-wave integrated power generation system
CN107387327A (zh) 一种新型浮式风能‑波浪能联合发电系统
CN108061010A (zh) 一种适用于近海的单桩式风能-波浪能集成发电系统
CN109441727B (zh) 海上波能-风能集成系统及集成发电方法
CN207485595U (zh) 基于单桩式风能-波浪能-潮流能集成发电系统
CN210212699U (zh) 一种耦合深海养殖网箱的海上浮式风电装备
CN103926080B (zh) 海上浮动式风力机水池模型试验用造风装置
CN109611284A (zh) 一种新型浮式多能源集成发电系统
CN112539140A (zh) 一种软刚臂系泊的多风机浮式系统
CN102454553B (zh) 一种漂浮式风电场
CN203285614U (zh) 漂浮式风力机
CN207111309U (zh) 一种新型浮式风能‑波浪能联合发电系统
CN206647210U (zh) 一种海上浮式垂直轴风力发电机
CN111779631A (zh) 一种海上风浪联合发电装置
CN102606408B (zh) 海上风力发电机组
CN209586579U (zh) 基于浮式平台的多能源发电系统
CN209908663U (zh) 一种新型浮式多能源集成发电系统
CN217115953U (zh) 一种融合海洋能、光伏与风能的海上发电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911048

Country of ref document: EP

Kind code of ref document: A1