WO2020150947A1 - 一种用于气体流量测量的超声波测量装置 - Google Patents

一种用于气体流量测量的超声波测量装置 Download PDF

Info

Publication number
WO2020150947A1
WO2020150947A1 PCT/CN2019/072906 CN2019072906W WO2020150947A1 WO 2020150947 A1 WO2020150947 A1 WO 2020150947A1 CN 2019072906 W CN2019072906 W CN 2019072906W WO 2020150947 A1 WO2020150947 A1 WO 2020150947A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
measurement
module housing
ultrasonic
circuit board
Prior art date
Application number
PCT/CN2019/072906
Other languages
English (en)
French (fr)
Inventor
于强
冷小广
刘立国
刘泽山
Original Assignee
青岛积成电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛积成电子股份有限公司 filed Critical 青岛积成电子股份有限公司
Publication of WO2020150947A1 publication Critical patent/WO2020150947A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details

Definitions

  • the invention relates to an ultrasonic measuring device for gas flow measurement, belonging to the technical field of ultrasonic measurement.
  • One of the measurement methods in the gas flow measurement device is ultrasonic gas measurement.
  • the commercialization of gas-mediated ultrasonic measurement devices is not yet mature, and ultrasonic measurement devices have defects such as low measurement accuracy.
  • the present invention provides an ultrasonic measuring device for gas flow measurement with high measurement accuracy.
  • an ultrasonic measuring device for gas flow measurement which is characterized by: comprising a measuring connecting pipe, a measuring pipeline structure, an oblique block, the measuring pipeline structure including a measuring module A group of housings, a plurality of guide vanes are arranged in parallel in the measuring module housing, a diversion channel along the axial direction is formed between the guide vanes, and two ultrasonic transducers are arranged on the measuring module housing
  • the two ultrasonic transducers are arranged in a V-shaped reflective structure along the axial direction of the measurement module housing, and the measurement module housing is provided with a reflector on the side opposite to the ultrasonic transducer,
  • the two ultrasonic transducers and the reflection sheet form a V-shaped reflection sound path structure.
  • the reflection sound path between the ultrasonic transducer and the reflection sheet passes through the diversion channel, and the outer upper part of the measurement module housing
  • There is a circuit board accommodating cavity a measuring circuit board is sealed in the circuit board accommodating cavity, the ultrasonic transducer is electrically connected to the measuring circuit board, and the outer side of the measuring module housing is also provided with connection terminals and
  • the measurement circuit board is electrically connected, and the measurement connection pipe and the oblique block are respectively connected to both ends of the measurement module housing and communicate with the inner cavity of the measurement module housing.
  • the measurement connecting pipe is used to connect with the gas pipeline
  • the oblique block is used to guide the gas when entering the measurement pipeline structure
  • the measurement pipeline structure is used for gas flow measurement.
  • the guide vane is formed in the measurement module housing Several diversion channels, the gas passing through the diversion channel can reduce eddy currents, which can effectively reduce the unevenness of the air flow caused by the transducer body in the measurement pipeline, and improve the measurement accuracy; two ultrasonic transducers are used to send and receive ultrasonic signals , The reflector is used to reflect the ultrasonic signal.
  • the V-shaped reflection sound path structure composed of the ultrasonic transducer and the reflector, because the two transducers are V-shaped reflections, greatly increase the measurement path length and improve the measurement accuracy;
  • the measuring circuit board is connected with the ultrasonic transducer to output related signals;
  • the connection terminal is used as the connection terminal between the measuring circuit board and the external module.
  • the measurement connection pipe and the oblique block are respectively detachably connected to the two ends of the measurement module housing by screws.
  • the measurement module housing and the measurement connecting pipe and the oblique block are hermetically connected by a boss and a groove.
  • the cross section of the inner cavity of the measurement module housing is rectangular.
  • an inner side wall of the measurement module housing is provided with a flow guide fixing plate, and the flow guide is fixedly installed in the measurement module housing through the flow guide fixing plate.
  • the measuring circuit board is provided with a temperature sensor and a pressure sensor for detecting the temperature and pressure values of the gaseous medium in the measuring module housing and transmitting them to the measuring circuit board.
  • An air hole communicating with the circuit board containing cavity is provided.
  • the gaseous medium in the housing of the measuring module enters the circuit board containing cavity through the vent hole.
  • the temperature and pressure values of the gaseous medium can be detected by the temperature sensor and pressure sensor to be transmitted to the measuring circuit board.
  • the circuit board containing cavity is provided with a gas containing cavity which can form a sealed cavity with the measuring circuit board, and the temperature sensor and the pressure sensor are located in the gas containing cavity.
  • the vent hole communicates with the gas containing cavity.
  • the axis of the measurement connection pipe is perpendicular to the axis of the measurement module housing.
  • two ultrasonic transducer installation parts arranged in a V shape are provided on the measurement module housing, and the ultrasonic transducer is sealed by a pressure plate and a sealing member. Installed in the ultrasonic transducer installation part.
  • a buffer pad is arranged between the ultrasonic transducer and the pressure plate.
  • the beneficial effects of the present invention are: by adopting the V-shaped reflection sound path structure, the two transducers are V-shaped reflection, which greatly increases the measurement path length and improves the measurement accuracy; With the guide vane, the gas medium can reduce eddy currents when passing through the diversion channel formed by the guide vane, which can effectively reduce the unevenness of the air flow caused by the transducer body in the measurement pipeline, and can improve the measurement accuracy.
  • Figure 1 is a front view of the present invention
  • Figure 2 is a left side view of Figure 1;
  • Fig. 3 is a schematic sectional view of A-A in Fig. 2;
  • Fig. 4 is a schematic sectional view of B-B in Fig. 1;
  • Figure 5 is a cross-sectional view of C-C in Figure 1;
  • Figure 6 is a schematic view of the three-dimensional structure of the present invention.
  • an ultrasonic measuring device for gas flow measurement includes a measuring connecting pipe 2, a measuring pipe structure, and an oblique block 7.
  • the measuring connecting pipe 2 is a connecting piece between the measuring structure and the gas pipeline, and forms a connection seal with the casing of the ultrasonic gas meter and the measuring pipeline structure.
  • An O-ring 1 is provided on one end of the measuring connection pipe 2 connected with the gas pipeline for sealing connection with the gas pipeline.
  • the measurement pipeline structure includes a measurement module housing 4 with a cavity inside the measurement module housing 4, the cross section of the inner cavity of the measurement module housing 4 is rectangular, and a plurality of There are two guide vanes 11, and a guide channel along the axial direction is formed between the guide vanes 11.
  • the front and back two inner side walls of the measurement module housing 4 are respectively provided with guide fixing plates 12, and the guide plates 11 are fixedly installed in the measuring module housing 4 through the guide fixing plates 12.
  • the measurement module housing 4 is provided with two V-shaped ultrasonic transducer mounting parts 14, the cavities of the two ultrasonic transducer mounting parts 14 are communicated with the inside of the measurement module housing 4,
  • An ultrasonic transducer 3 is installed in the ultrasonic transducer installation part 14 respectively.
  • the ultrasonic transducer 3 is sealed and installed in the ultrasonic transducer installation part 14 through the pressure plate 6, the guide seal ring 17, and the positioning seal 18, for protection
  • a cushion 19 is provided between the ultrasonic transducer 3 and the pressure plate 6.
  • the two ultrasonic transducers 3 are arranged along the axial direction of the measurement module housing 4 in a V-shaped reflective structure.
  • the measuring module housing 4 is provided with a reflection sheet 8 on the side opposite to the ultrasonic transducer 3, and the two ultrasonic transducers 3 and the reflection sheet 8 form a V-shaped reflection sound path structure.
  • the ultrasonic transducer The reflected sound path between 3 and the reflective sheet 8 passes through the diversion channel.
  • the measuring module housing 4 is provided with a circuit board accommodating cavity 13 in the upper part of the outer side.
  • the circuit board accommodating cavity 13 is provided with a measuring circuit board 9.
  • the measuring circuit board 9 is filled with structural sealant 10 in the circuit board accommodating cavity 13 Sealed in the circuit board containing cavity 13.
  • the ultrasonic transducer 3 is electrically connected to the measurement circuit board 9.
  • the measurement circuit board 9 is the prior art.
  • the outer side of the measuring module housing 4 is also provided with a connecting terminal 5 which is electrically connected to the measuring circuit board 9, and can be connected to an external module through the connecting terminal 5.
  • the measurement connection pipe 2 and the oblique block 7 are respectively connected to the two ends of the measurement module housing 4 and communicate with the inner cavity of the measurement module housing 4, wherein the measurement connection pipe 2 and the measurement module housing The angle between 4 and 4 can be adjusted according to the flow simulation situation. In order to facilitate processing and assembly, it is preferable that the axis of the measurement connecting pipe 2 is perpendicular to the axis of the measurement module housing 4.
  • the connecting ends of the measuring connecting pipe 2 and the oblique block 7 and the measuring module housing 4 are provided with bumps, and the two connecting ends of the measuring module housing 4 are respectively provided with the bumps
  • the housing 4 of the measuring module and the measuring connecting pipe 2 and the inclined block 7 are sealed and connected by screws using the bosses and grooves. Seals are provided between the bosses and grooves at both ends. Pad 15 and sealing rubber pad 16.
  • the measuring circuit board 9 in order to facilitate the measurement of the temperature and pressure parameters of the gaseous medium in the measuring module housing 4, the measuring circuit board 9 is also provided for detecting the temperature of the gaseous medium in the measuring module housing 4 , The pressure value is transmitted to the temperature sensor and pressure sensor of the measuring circuit board 9.
  • a vent 20 communicating with the circuit board containing cavity 13 is provided on the measurement module housing 4.
  • a gas containing cavity 22 that can form a sealed cavity with the measuring circuit board 9 is provided in the circuit board containing cavity 13, and the temperature sensor and the pressure sensor are located In the gas receiving cavity 22, the vent hole 20 is in communication with the gas receiving cavity 22.
  • the gas in the measuring module housing 4 enters the gas containing cavity through the vent 20 and contacts the temperature sensor and pressure sensor on the measuring circuit board 9.
  • the temperature sensor and pressure sensor can easily detect the temperature inside the measuring module housing 4 And pressure parameters, the temperature sensor and pressure sensor will transmit the measured data to the measuring circuit board 9.
  • the temperature and pressure data collected by the measuring circuit board can be displayed on the external LCD after processing.
  • the present invention When the present invention is used, it is installed in the shell of the ultrasonic gas meter, the gas medium enters the measurement pipeline structure through the oblique block 7, and flows to one end of the measurement connecting pipe 2 through the diversion channel formed by the deflector 11, the ultrasonic transducer 3 Transceiving ultrasonic signals, the time difference is calculated by the measuring circuit board 9.
  • the temperature sensor and pressure sensor set on the measuring circuit board 9 detect the pressure and temperature of the gas medium, and then measure the flow of the gas medium, and the flow value is transmitted to the terminal External module.

Landscapes

  • Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

一种用于气体流量测量的超声波测量装置,包括测量管路结构、分别连接在测量管路结构两端的测量连接管(2)和斜向块(7);测量管路结构包括测量模组壳体(4),测量模组壳体(4)内平行设置多个导流片(11)形成沿轴向的导流通道;测量模组壳体(4)上设置两个超声波换能器(3),两个超声波换能器(3)呈V型反射结构沿测量模组壳体(4)的轴向布置,测量模组壳体(4)内设置反射片(8),两个超声波换能器(3)、反射片(8)构成V型反射声路结构,超声波换能器(3)与反射片(8)之间的反射声路自导流通道通过;测量模组壳体(4)外侧上部设置电路板容纳腔(13),电路板容纳腔(13)内密封设置测量电路板(9),超声波换能器(3)与测量电路板(9)电连接,测量模组壳体(4)的外侧设置接线端子(5)与测量电路板(9)电连接。

Description

一种用于气体流量测量的超声波测量装置
本发明涉及一种用于气体流量测量的超声波测量装置,属于超声波测量技术领域。
气体流量测量装置中测量手段之一即为超声波气体测量。目前气介超声波测量装置产品化尚未成熟,超声波测量装置存在测量精度低等缺陷。
因此,提出一种测量精度高的超声波测量装置。
发明内容
针对现有技术中存在的上述缺陷,本发明提供了一种测量精度高的用于气体流量测量的超声波测量装置。
本发明是通过如下技术方案来实现的:一种用于气体流量测量的超声波测量装置,其特征是:包括测量连接管、测量管路结构、斜向块,所述测量管路结构包括测量模组壳体,所述测量模组壳体内平行设置有多个导流片,导流片之间形成有沿轴向的导流通道,所述测量模组壳体上设置有两个超声波换能器,两个超声波换能器呈V型反射结构沿所述测量模组壳体的轴向布置,所述测量模组壳体内在与所述超声波换能器相对的一侧设置有反射片,两个所述超声波换能器、反射片构成V型反射声路结构,超声波换能器与反射片之间的反射声路自所述导流通道通过,所述测量模组壳体外侧上部带有电路板容纳腔,所述电路板容纳腔内密封设置有测量电路板,所述超声波换能器与所述测量电路板电连接,所述测量模组壳体的外侧还设置有接线端子与所述测量电路板电连接,所述测量连接管和斜向块分别连接在所述测量模组壳体的两端并与所述测量模组壳体内腔连通。
本发明中,测量连接管用于与气体管路连接,斜向块用于气体进入测量管路结构时导向,测量管路结构用于气体流量测量,其中的导流片在测量模组壳体内形成若干导流通道,气体通过导流通道可减少涡流,可有效地降低测量管路中换能器主体引起的气流不均匀性,使其测量精度得以提高;两个超声波换能器用于收发超声波信号,反射片用于反射超声波信号,超声波换能器、反射片构成的V型反射声路结构,由于两个换能器是V型反射,极大地增大了测量路径长度,提高了测量精度;测量电路板与超声波换能器连接,可输出相关信号;接线端子用于作为测量电路板与外部模块的连接端子。本发明使用时,安装在超声波气表的壳体内,气体介质经斜向块进入测量管路结构,并通过导流片形成的导流通道流向测量连接管一端,超声波换能器收发超声波信号,由测量电路板测量出气体介质的流量,流量值由接线端子传输给外部模块。
进一步的,为便于加工及装配,所述测量连接管和斜向块分别通过螺钉可拆卸地连接在所述测量模组壳体的两端。
进一步的,为保证各连接部件的密封性,所述测量模组壳体与所述测量连接管和斜向块之间通过凸台和凹槽密封连。
进一步的,为保证测量精度,所述测量模组壳体的内腔截面为矩形。
进一步的,所述测量模组壳体的内侧壁上设置有导流固定板,所述导流片通过所述导流固定板固定安装在所述测量模组壳体内。
进一步的,所述测量电路板上设置有用于检测所述测量模组壳体内气体介质的温度、压力数值并传输给所述测量电路板的温度传感器和压力传感器,所述测量模组壳体上设有与所述电路板容纳腔连通的透气孔。测量模组壳体内的气体介质通过透气孔进入电路板容纳腔,通过温度传感器和压力传感器可检测出气体介质的温度、压力数值,以传输给测量电路板,该结构设计使得超声波测量装置结构更加简洁,便于模块化,也更便于装配。
更进一步的,为保证测量准确及安全可靠性,所述电路板容纳腔内设有可与所述测量电路板形成密封腔体的气体容纳腔,所述温度传感器和压力传感器位于所述气体容纳腔内,所述透气孔与所述气体容纳腔连通。
进一步的,为便于加工及装配,所述测量连接管的轴线与所述测量模组壳体的轴线垂直设置。
进一步的,为保证超声波换能器安装的可靠性,所述测量模组壳体上设置有两个呈V型设置的超声波换能器安装部,所述超声波换能器通过压板和密封件密封安装在所述超声波换能器安装部内。
进一步的,为保护超声波换能器,在所述超声波换能器与所述压板之间设置有缓冲垫。
本发明的有益效果是:本发明通过采用V型反射声路结构,由于两个换能器是V型反射,极大地增大了测量路径长度,提高了测量精度;通过在测量模组壳体内设置导流片,气体介质在经过导流片形成的导流通道时可减少涡流,可有效地降低测量管路中换能器主体引起的气流不均匀性,能够提高测量精度。
附图说明
图1是本发明的主视图;
图2是图1的左视图;
图3是图2中的A-A剖视示意图;
图4是图1中的B-B剖视示意图;
图5是图1中的C-C剖视图;
图6是本发明的立体结构示意图;
图中,1、O型圈,2、测量连接管,3、超声波换能器,4、测量模组壳体,5、接线端子,6、压板,7、斜向块,8、反射片,9、测量电路板,10、结构密封胶,11、导流片,12、导流固定板,13、电路板容纳腔,14、超声波换能器安装部,15、密封垫,16、固定胶垫,17、导向密封圈,18、定位密封垫,19、缓冲垫,20、透气孔,21、温度传感器和压力传感器,22、气体容纳腔。
具体实施方式
下面通过非限定性的实施例并结合附图对本发明作进一步的说明:
如附图所示,一种用于气体流量测量的超声波测量装置,其包括测量连接管2、测量管路结构、斜向块7。测量连接管2为测量结构与气体管路的连接件,其与超声波气表的外壳及测量管路结构一起形成了连接密封。测量连接管2的与气体管路连接的一端上设置O型圈1用于与气体管路之间的密封连接。所述测量管路结构包括测量模组壳体4,测量模组壳体4内部具有空腔,测量模组壳体4内腔的截面为矩形,在测量模组壳体4内平行设置有多个导流片11,导流片11之间形成有沿轴向的导流通道。测量模组壳体4的前后两个内侧壁上分别设置有导流固定板12,所述导流片11通过所述导流固定板12固定安装在测量模组壳体4内。所述测量模组壳体4上设置有两个呈V型设置的超声波换能器安装部14,两个超声波换能器安装部14内腔均与测量模组壳体4内部相通,两个超声波换能器安装部14内分别安装有一个超声波换能器3,超声波换能器3通过压板6、导向密封圈17、定位密封垫18密封安装在超声波换能器安装部14内,为保护超声波换能器,在超声波换能器3与压板6之间设置有缓冲垫19。两个超声波换能器3呈V型反射结构沿所述测量模组壳体4的轴向布置。所述测量模组壳体4内在与超声波换能器3相对的一侧设置有反射片8,两个所述超声波换能器3、反射片8构成V型反射声路结构,超声波换能器3与反射片8之间的反射声路自所述导流通道通过。所述测量模组壳体4外侧上部带有电路板容纳腔13,所述电路板容纳腔13内设置有测量电路板9,测量电路板9通过在电路板容纳腔13内灌注结构密封胶10密封在电路板容纳腔13内。所述超声波换能器3与测量电路板9电连接。所述测量电路板9为现有技术。所述测量模组壳体4的外侧还设置有接线端子5与所述测量电路板9电连接,通过接线端子5可与外部模块连接。所述测量连接管2和斜向块7分别连接在所述测量模组壳体4的两端并与所述测量模组壳体4内腔连通,其中测量连接管2与测量模组壳体4之间根据流量仿真情况可调整角度,为便于加工及装配,优选测量连接管2的轴线与所述测量模组壳体4的轴线垂直设置。为保证密封效果,测量连接管2和斜向块7与测量模组壳体4连接端均设置有凸块,测量模组壳体4的两个连接端分别设置有可与所述凸块配合的凹槽,测量模组壳体4与测量连接管2和斜向块7之间通过螺钉利用所述凸台和凹槽相配合密封连接,两端的凸台和凹槽之间分别设置有密封垫15和密封胶垫16。
本实施例中,为便于对测量模组壳体4内气体介质的温度、压力参数进行测量,所述测量电路板9上还设置有用于检测所述测量模组壳体4内气体介质的温度、压力数值并传输给所述测量电路板9的温度传感器和压力传感器。为便于传感器对气体介质进行检测,在测量模组壳体4上设有与所述电路板容纳腔13连通的透气孔20。为保证测量准确及安全可靠性,本实施例中优选,在所述电路板容纳腔13内设有可与测量电路板9形成密封腔体的气体容纳腔22,所述温度传感器和压力传感器位于所述气体容纳腔22内,所述透气孔20与所述气体容纳腔22连通。测量模组壳体4内的气体通过透气孔20进入气体容纳腔与测量电路板9上的温度传感器和压力传感器接触,温度传感器和压力传感器就可方便地检测测量模组壳体4内部的温度及压力参数,温度传感器和压力传感器将测量的数据传输给测量电路板9,测量电路板将采集到的温度、压力数据处理后可显示到外置的LCD上。
本发明使用时,其安装在超声波气表的壳体内,气体介质经斜向块7进入测量管路结构,并通过导流片11形成的导流通道流向测量连接管2一端,超声波换能器3收发超声波信号,由测量电路板9计算出时间差,测量电路板9上设置的温度传感器和压力传感器检测出气体介质的压力和温度,继而测量出气体介质的流量,流量值由接线端子传输给外部模块。
本实施例中的其他部分均为现有技术,在此不再赘述。

Claims (10)

1、一种用于气体流量测量的超声波测量装置,其特征是:包括测量连接管(2)、测量管路结构、斜向块(7),所述测量管路结构包括测量模组壳体(4),所述测量模组壳体(4)内平行设置有多个导流片(11),导流片(11)之间形成有沿轴向的导流通道,所述测量模组壳体(4)上设置有两个超声波换能器(3),两个超声波换能器(3)呈V型反射结构沿所述测量模组壳体(4)的轴向布置,所述测量模组壳体(4)内在与所述超声波换能器(3)相对的一侧设置有反射片(8),两个所述超声波换能器(3)、反射片(8)构成V型反射声路结构,超声波换能器(3)与反射片(8)之间的反射声路自所述导流通道通过,所述测量模组壳体(4)外侧上部带有电路板容纳腔(13),所述电路板容纳腔(13)内密封设置有测量电路板(9),所述超声波换能器(3)与所述测量电路板(9)电连接,所述测量模组壳体(4)的外侧还设置有接线端子(5)与所述测量电路板(9)电连接,所述测量连接管(2)和斜向块(7)分别连接在所述测量模组壳体(4)的两端并与所述测量模组壳体(4)内腔连通。
2、根据权利要求1所述的用于气体流量测量的超声波测量装置,其特征是:所述测量连接管(2)和斜向块(7)分别通过螺钉可拆卸地连接在所述测量模组壳体(4)的两端。
3、根据权利要求2所述的用于气体流量测量的超声波测量装置,其特征是:所述测量模组壳体(4)与所述测量连接管(2)和斜向块(7)之间通过凸台和凹槽密封连接。
4、根据权利要求1所述的用于气体流量测量的超声波测量装置,其特征是:所述测量模组壳体(4)的内腔截面为矩形。
5、根据权利要求1所述的用于气体流量测量的超声波测量装置,其特征是:所述测量模组壳体(4)的内侧壁上设置有导流固定板(12),所述导流片(11)通过所述导流固定板(12)固定安装在所述测量模组壳体(4)内。
6、根据权利要求1所述的用于气体流量测量的超声波测量装置,其特征是:所述测量电路板(9)上设置有用于检测所述测量模组壳体(4)内气体介质的温度、压力数值并传输给所述测量电路板(9)的温度传感器和压力传感器,所述测量模组壳体(4)上设有与所述电路板容纳腔(13)连通的透气孔(20)。
7、根据权利要求6所述的用于气体流量测量的超声波测量装置,其特征是:所述电路板容纳腔(13)内设有可与所述测量电路板(9)形成密封腔体的气体容纳腔(22),所述温度传感器和压力传感器位于所述气体容纳腔(22)内,所述透气孔(20)与所述气体容纳腔(22)连通。
8、根据权利要求1所述的用于气体流量测量的超声波测量装置,其特征是:所述测量连接管(2)的轴线与所述测量模组壳体(4)的轴线垂直设置。
9、根据权利要求1或2或3或4或5或6或7或8所述的用于气体流量测量的超声波测量装置,其特征是:所述测量模组壳体(4)上设置有两个呈V型设置的超声波换能器安装部(14),所述超声波换能器(3)通过压板(6)和密封件密封安装在所述超声波换能器安装部(14)内。
10、根据权利要求9所述的用于气体流量测量的超声波测量装置,其特征是:在所述超声波换能器(3)与所述压板(6)之间设置有缓冲垫(19)。
PCT/CN2019/072906 2019-01-21 2019-01-24 一种用于气体流量测量的超声波测量装置 WO2020150947A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910053311.7A CN109655118A (zh) 2019-01-21 2019-01-21 一种用于气体流量测量的超声波测量装置
CN201910053311.7 2019-01-21

Publications (1)

Publication Number Publication Date
WO2020150947A1 true WO2020150947A1 (zh) 2020-07-30

Family

ID=66120680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072906 WO2020150947A1 (zh) 2019-01-21 2019-01-24 一种用于气体流量测量的超声波测量装置

Country Status (2)

Country Link
CN (1) CN109655118A (zh)
WO (1) WO2020150947A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1455865A (zh) * 2001-01-22 2003-11-12 帝人株式会社 利用超声波测定气体浓度和流量的装置及方法
CN102830164A (zh) * 2012-08-23 2012-12-19 郑州光力科技股份有限公司 一种甲烷浓度在线检测方法及装置
CN104458916A (zh) * 2013-09-16 2015-03-25 阿金纳股份公司 用于测量液体或气体流的系统或方法
CN207019729U (zh) * 2017-08-01 2018-02-16 青岛积成电子股份有限公司 用于气体流量测量的组合型轴向对射式超声波换能器
CN108027263A (zh) * 2015-09-16 2018-05-11 霍尼韦尔国际公司 用于测量较小尺寸的气体的超声仪
WO2018141469A1 (de) * 2017-02-03 2018-08-09 Diehl Metering Gmbh Ultraschallzähler und verfahren zur erfassung einer durchflussgrösse

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1455865A (zh) * 2001-01-22 2003-11-12 帝人株式会社 利用超声波测定气体浓度和流量的装置及方法
CN102830164A (zh) * 2012-08-23 2012-12-19 郑州光力科技股份有限公司 一种甲烷浓度在线检测方法及装置
CN104458916A (zh) * 2013-09-16 2015-03-25 阿金纳股份公司 用于测量液体或气体流的系统或方法
CN108027263A (zh) * 2015-09-16 2018-05-11 霍尼韦尔国际公司 用于测量较小尺寸的气体的超声仪
WO2018141469A1 (de) * 2017-02-03 2018-08-09 Diehl Metering Gmbh Ultraschallzähler und verfahren zur erfassung einer durchflussgrösse
CN207019729U (zh) * 2017-08-01 2018-02-16 青岛积成电子股份有限公司 用于气体流量测量的组合型轴向对射式超声波换能器

Also Published As

Publication number Publication date
CN109655118A (zh) 2019-04-19

Similar Documents

Publication Publication Date Title
US6912925B2 (en) Acoustic meter assembly
US8596140B2 (en) Flow meter with ultrasound transducer directly connected to and fixed to measurement circuit board
JP5728657B2 (ja) 超音波流量計測ユニット
BRPI1104088A2 (pt) conjunto de transdutor ultrassânico
RU2532611C2 (ru) Способ и система преобразовательного блока ультразвукового расходомера
CN101509817A (zh) 流体压差测量装置
JP5728639B2 (ja) 超音波流量計
JP6095096B2 (ja) 超音波流量計
CN101273257A (zh) 具有声压传感器的压力变送器
CN111141344A (zh) 一种超声水表换能器及其超声水表
WO2020150947A1 (zh) 一种用于气体流量测量的超声波测量装置
JP4415662B2 (ja) 超音波流量計
WO2023284552A1 (zh) 一种压差传感器压力平衡体系
JP7203302B2 (ja) 超音波流量計
CN209485455U (zh) 一种用于气体流量测量的超声波测量装置
CN111272240A (zh) 一种内置式斜反射多声道超声波流量测量模块及流量计
JP7232672B2 (ja) 計測装置
CN219301700U (zh) 流量检测装置
CN108918018A (zh) 一种共平面差压传感器
CN110849429A (zh) 一种油气回收超声波流量计
CN211717528U (zh) 一种内置式斜反射多声道超声波流量测量模块及流量计
JP4163880B2 (ja) 差圧検出器、その差圧検出器を備えた流量計および液面計
CN219121617U (zh) 一种双余度差压变送器
CN215448061U (zh) 一种基于文丘里管取压的差压流量计
CN213301351U (zh) 一种多声道超声波气体流量计

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912000

Country of ref document: EP

Kind code of ref document: A1