WO2023284552A1 - 一种压差传感器压力平衡体系 - Google Patents

一种压差传感器压力平衡体系 Download PDF

Info

Publication number
WO2023284552A1
WO2023284552A1 PCT/CN2022/102238 CN2022102238W WO2023284552A1 WO 2023284552 A1 WO2023284552 A1 WO 2023284552A1 CN 2022102238 W CN2022102238 W CN 2022102238W WO 2023284552 A1 WO2023284552 A1 WO 2023284552A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
diaphragm
pressure sensor
introduction
box
Prior art date
Application number
PCT/CN2022/102238
Other languages
English (en)
French (fr)
Inventor
唐田
朱建
刘庆
杨小华
Original Assignee
重庆市伟岸测器制造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆市伟岸测器制造股份有限公司 filed Critical 重庆市伟岸测器制造股份有限公司
Publication of WO2023284552A1 publication Critical patent/WO2023284552A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values
    • G01L13/02Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements
    • G01L13/025Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements using diaphragms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values
    • G01L13/06Devices or apparatus for measuring differences of two or more fluid pressure values using electric or magnetic pressure-sensitive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/12Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor

Definitions

  • the invention relates to a pressure measuring device, in particular to a pressure balance system of a differential pressure sensor.
  • a type of flow meter used to detect fluid flow is to detect the pressure values at two different points on the fluid flow path. Since the pressure values at these two points are different, the fluid flow can be calculated.
  • the main body of this type of flowmeter is a fluid pressure detection device, and the core detection element of the fluid pressure detection device is a diaphragm pressure sensor.
  • the diaphragm pressure sensor converts two pressure signals at different positions of the fluid into the change of the capacitance signal, and then the detection circuit at the back end processes the change of the capacitance signal to obtain the differential pressure value of the applied pressure.
  • the diaphragm pressure sensor includes two disc-shaped diaphragm seats, a measuring diaphragm is arranged between the two diaphragm seats, and the two diaphragm seats are connected by butt welding to clamp the measuring diaphragm. Between the measuring diaphragm and the two diaphragm seats, there are pressure transmission chambers for accommodating the liquid pressure transmission medium. The two pressure transmission chambers are respectively connected with pressure transmission channels, which introduce the external pressure to be measured into both sides of the measuring diaphragm. , the size of the measured diaphragm deformation is reflected as the change of the capacitance signal.
  • a cover body is used to cover the diaphragm sensor, and the cover body and the pressure introduction seat are sealed and connected to form
  • the sealed pressure stabilizing chamber is also filled with silicone oil, and the stabilizing chamber is connected to one of the pressure transmitting chambers with the same external pressure source, thus forming a pressure balance system.
  • the external pressure acts on the inside and outside of the diaphragm pressure sensor at the same time, so that the internal and external pressures of the sensor are balanced when the sensor is working, and the sensor is protected.
  • the volume of the pressure stabilizing chamber is large, consumes more silicone oil, increases the cost, and brings challenges to the assembly and sealing between the cover body and the pressure induction seat. More importantly, in order to simplify the structure, the actual design directly connects the pressure stabilizing chamber with one of the pressure transmitting chambers to ensure that the pressure inside and outside the sensor changes synchronously. However, due to the large amount of silicone oil, the volume change during thermal expansion cannot be ignored, which will cause The pressure of the silicon oil in the pressure transmission chamber on the side connected to the pressure stabilization chamber changes significantly on the measuring diaphragm, which also affects the accuracy of the sensor. For this reason, the pressure balance system inside and outside the sensor and the corresponding structure must be further improved.
  • the present invention provides a pressure balance system of a differential pressure sensor.
  • a pressure balance system of a differential pressure sensor comprising a diaphragm pressure sensor, the diaphragm pressure sensor is provided with two pressure transmission cavities, and the two pressure transmission cavities are respectively connected with pressure introduction tubes, the pressure introduction tubes and The outer wall of the diaphragm pressure sensor is sealed.
  • the key is that the outer cover of the diaphragm pressure sensor is provided with a closed voltage stabilization box, and the space between the pressure stabilization box and the diaphragm pressure sensor forms a stable Pressure chamber;
  • the two pressure-introduction tubes pass through the voltage-stabilizing box respectively, and are sealed with the wall of the voltage-stabilizing box;
  • Any one of the pressure introduction tubes is provided with a fluid communication port corresponding to the pressure stabilizing chamber on the tube wall, and the fluid communication port communicates the pressure introduction tube with the pressure stabilization chamber.
  • the present invention has the beneficial effect of providing a compact pressure stabilizing box for the diaphragm pressure sensor, and cleverly connecting one of the pressure transmission chambers with the stabilizing chamber through the fluid communication port, realizing membrane While the internal and external pressure of the chip pressure sensor is balanced, the structure of the entire balance system is kept simple.
  • Figure 1 is a schematic diagram of the installation structure of the diaphragm pressure sensor and the voltage regulator box;
  • Fig. 2 is a structural schematic diagram of a measurement module composed of a diaphragm pressure sensor, a pressure introduction seat and a pressure acquisition seat;
  • Figure 3 is a schematic diagram of the positioning boss on the end face of the diaphragm pressure sensor, in which part of the structure of the voltage regulator box is hidden;
  • Fig. 5 is A-A sectional view among Fig. 4;
  • Fig. 6 is B-B sectional view among Fig. 4;
  • Fig. 7 is the left view of Fig. 4;
  • Fig. 8 is a sectional view of C-C in Fig. 7 .
  • a differential pressure sensor pressure balance system includes a diaphragm pressure sensor 100, the diaphragm pressure sensor 100 is provided with two pressure transmission cavities, and the two pressure transmission cavities are respectively connected with
  • the pressure introduction pipe 130, the pressure introduction pipe 130 is sealed with the outer wall of the diaphragm pressure sensor 100, and the outer cover of the diaphragm pressure sensor 100 is provided with a closed voltage stabilization box 200, and the pressure stabilization box 200 is connected to the outer wall of the diaphragm pressure sensor 100.
  • the space between the diaphragm pressure sensors 100 forms a plenum chamber 230 .
  • the two pressure introduction tubes 130 respectively pass through the voltage stabilizing box 200 and are sealed with the wall of the voltage stabilizing box 200 .
  • a fluid communication port 140 is opened on the tube wall of any one of the pressure guiding tubes 130 , and the fluid communicating port 140 communicates the pressure guiding tube 130 with the stabilizing cavity 230 .
  • the diaphragm pressure sensor 100 is installed on the flowmeter, the two pressure transmission chambers, the pressure introduction tube 130 and the pressure stabilization chamber 230 are all filled with liquid pressure transmission medium, such as silicone oil.
  • the two pressure introduction tubes 130 are respectively connected to external pressure sources, the pressure in the pressure transmission chamber increases, and the pressure in the pressure stabilization chamber 230 also increases synchronously with one of the pressure transmission chambers. In this way, the balance diaphragm type
  • the internal and external pressure of the pressure sensor 100 protects the diaphragm pressure sensor 100 .
  • any segment of the pressure introduction tube 130 located in the pressure stabilizing chamber 230 is disconnected to form the fluid communication port 140 . In this way, the liquid communication channel between the pressure introduction tube 130 and the pressure stabilizing chamber 230 can be enlarged.
  • the two pressure introduction tubes 130 are respectively used to connect to an external high-pressure pressure source and a low-pressure pressure source, wherein a fluid communication port 140 is opened on the wall of the pressure introduction tube 130 used to connect to a high-pressure pressure source, so that the membrane The pressure outside the chip pressure sensor 100 is always not less than the pressure inside it.
  • the shape of the inner wall of the stabilizing box 200 matches the shape of the outer wall of the diaphragm pressure sensor 100, and the inner wall of the stabilizing box 200 is close to Part of the outer wall of the diaphragm pressure sensor 100 facing it forms the pressure stabilizing cavity 230 surrounding the diaphragm pressure sensor 100 , and the stabilizing cavity 230 is a thin-layer cavity.
  • the pressure stabilization box 200 is provided with a pressure induction tube through hole corresponding to each of the pressure induction tubes 130 , and a pressure induction tube sleeve 240 is fixedly pierced through the through hole of the pressure induction tube.
  • the pressure induction tube 130 is pierced inside the pressure introduction tube sleeve 240 , and the pressure introduction tube sleeve 240 is sealed with the pressure induction tube 130 and the voltage stabilization box 200 .
  • the length of the pressure induction pipe sleeve 240 is greater than the wall thickness of the voltage stabilization box 200 , and the outer end of the pressure induction pipe sleeve 240 protrudes from the voltage stabilization box 200 .
  • the longer pressure induction tube sleeve 240 plays a better role in supporting and positioning the pressure induction tube 130, preventing the pressure induction tube 130 from shaking and shifting, and preventing the pressure induction tube 130 from contacting the diaphragm pressure sensor 100 when an external force acts. Pulling damage occurs at the connection, which helps the suspended diaphragm pressure sensor 100 to maintain stability.
  • the through hole of the pressure induction pipe is a stepped hole with a larger diameter at the inner end, and the pipe wall at the inner end of the pressure induction pipe casing 240 is radially thickened to form a pipe wall step 241, which is connected to the step. hole fit.
  • the cooperation stability between the pressure induction pipe casing 240 and the voltage stabilizing box 200 is improved, and the pressure induction pipe casing 240 is prevented from being pressed out under the pressure of the liquid pressure transmission medium in the voltage stabilizing box 200, which also improves tightness.
  • the diaphragm pressure sensor 100 includes two diaphragm seats 110 and a measuring diaphragm 120, wherein the two diaphragm seats 110 are butt welded on the left and right sides, and the measuring diaphragm 120 is fixedly clamped , to form the diaphragm pressure sensor 100 whose outer wall is disc-shaped, and the measuring diaphragm 120 and the two diaphragm seats 110 respectively enclose a pressure transmission cavity.
  • the voltage stabilizing box 200 is a hollow cylinder, and the stabilizing box 200 includes a cylinder 210, the cylinder 210 is set outside the diaphragm pressure sensor 100, and the two ends of the cylinder 210 are buckled respectively. Covered with a circular end plate 220, the cylinder 210 is welded to the two circular end plates 220 respectively, and the two circular end plates 220 are respectively facing the two ends of the diaphragm pressure sensor 100. end.
  • the two pressure introduction tubes 130 extend axially from the centers of the two membrane seats 110 respectively, and the two pressure introduction tubes 130 are sealed with the two membrane seats 110 respectively, and the two pressure introduction tubes 130 pass through the corresponding circular end plates 220 respectively.
  • abutment limits are respectively provided between the inner walls of both ends of the surge box 200 and the corresponding end outer walls of the diaphragm pressure sensor 100. bit structure.
  • the areas of the two ends of the diaphragm pressure sensor 100 outside the space occupied by the abutment limiting structure are equal.
  • the abutting and limiting structures located at both ends of the diaphragm pressure sensor 100 are facing left and right, and are symmetrical with respect to the measuring diaphragm 120 . In this way, the liquid pressure on both ends of the diaphragm pressure sensor 100 and the abutting force from the surge box 200 are consistent and symmetrical.
  • the abutment limit structure includes a positioning boss 111 and a positioning recess 221 that cooperate with each other, one of which is located on the end surface of the diaphragm pressure sensor 100, and the other is located on the The inner wall at the end of the surge box 200 .
  • the positioning boss 111 is located on the end face of the diaphragm pressure sensor 100, and each end face of the diaphragm pressure sensor 100 is provided with at least two positioning bosses 111, located on All the positioning bosses 111 on the same end face of the diaphragm pressure sensor 100 are evenly distributed around the center of the end face, and the inner wall of the end of the voltage regulator box 200 is respectively provided with each of the positioning bosses 111. There are positioning depressions 221 .
  • Each end surface of the diaphragm pressure sensor 100 is provided with at least two arc-shaped positioning bosses 111, the positioning bosses 111 on the same end surface are located on the same ring, and all the positioning bosses 111 on the same end surface are located on the same ring.
  • the positioning bosses 111 are evenly distributed in the circumferential direction around the corresponding pressure introduction tube 130 .
  • two arc-shaped positioning bosses 111 are provided on each end surface of the diaphragm pressure sensor 100 . As shown in FIG. 3 , the gaps between the positioning bosses 111 on the same end face connect the inner area and outer area of the ring surrounded by all the positioning bosses 111 , forming a channel for the flow of the liquid pressure transmission medium.
  • a pressure introducing seat 300 is provided below the voltage stabilizing box 200, and a positioning groove 310 is opened on the upper surface of the pressure introducing seat 300, and the groove bottom of the positioning groove 310 is an arc with a concave surface upward.
  • the voltage stabilizing box 200 is arranged in the positioning groove 310, and the lower part of the voltage stabilizing box 200 is located in the positioning groove 310, wherein the cylinder 210 is close to the groove bottom of the positioning groove 310, and the two sides
  • the two circular end plates 220 are respectively close to the groove walls on both sides of the positioning groove 310 . Since the diaphragm pressure sensor 100 is not in direct contact with the pressure introduction seat 300 and is surrounded by the liquid pressure transmission medium in the pressure stabilization chamber 230 , it is suspended relative to the pressure introduction seat 300 .
  • Two pressure introduction channels 320 are opened on the pressure introduction seat 300, and the two pressure introduction channels 320 are respectively located on both sides of the positioning groove 310, and the two pressure introduction channels 320 are connected with the two pressure introduction tubes. 130 are in one-to-one correspondence and connected.
  • a pressure induction tube socket 321 is provided at one end of the pressure induction channel 320 close to the voltage stabilization box 200 , and the pressure induction tube socket 321 is located below the corresponding pressure induction tube casing 240 .
  • the pressure guiding pipe 130 includes a horizontal section 131 , a vertical section 133 and a curved section 132 .
  • the inner end of the horizontal section 131 communicates with the corresponding chamber of the diaphragm pressure sensor 100, and the outer end of the horizontal section 131 passes through the casing of the diaphragm pressure sensor 100 outwards, and then from the diaphragm pressure sensor 100
  • the above-mentioned pressure induction pipe casing 240 passes through.
  • the vertical section 133 is arranged directly under the pressure introduction pipe sleeve 240, and the curved section 132 is connected between the upper end of the vertical section 133 and the outer end of the horizontal section 131.
  • the lower end of the section 133 is inserted into the corresponding socket 321 of the pressure introduction tube, and the lower end of the vertical section 133 is sealed with the corresponding socket 321 of the pressure introduction tube.
  • the curved section 132 first extends away from the horizontal section 131 and at the same time deviates downwards, and then gradually draws inward towards the horizontal section 131 and connects with the vertical section 133 .
  • the structural design of the pressure induction pipe 130 has the following reasons: Since the wall thickness of the voltage stabilization box 200 is relatively thin, a relatively large length of the pressure induction pipe sleeve 240 is provided to ensure that the horizontal section 131 is stably installed in the pressure induction pipe sleeve 240. At the same time, since the position of the vertical section 133 is limited by the pressure induction tube socket 321, after the relatively large length of the pressure induction tube sleeve 240 is set, the horizontal section 131 and the vertical section 133 cannot pass through directly To connect the pipe bodies bent at right angles, the horizontal section 131 and the vertical section 133 must be connected by the curved section 132 in this embodiment.
  • the pressure introduction channel 320 includes a horizontal pressure introduction section and a vertical pressure introduction section, wherein the upper end of the vertical pressure introduction section is provided with a pressure introduction tube socket 321, and the pressure introduction tube socket 321 is connected to the vertical pressure introduction section.
  • the inner wall of the section is sealed, the lower end of the vertical pressure introduction section is connected to one end of the horizontal pressure introduction section, and the other end of the horizontal pressure introduction section is opened on the outer wall of the pressure introduction seat 300 .
  • the outer end of the pressure introduction port 330 is covered with an isolation diaphragm 340, and the isolation diaphragm 340 closes the outer end of the pressure introduction port 330, so that one of the pressure transmission chambers, the pressure introduction tube 130 connected thereto, the pressure introduction channel 320,
  • the pressure introduction port 330 forms a closed liquid storage cavity, and the other pressure transmission cavity, and the pressure introduction tube 130 connected thereto, the pressure introduction channel 320 , the pressure introduction port 330 and the pressure stabilization chamber 230 form another closed liquid storage cavity. cavity.
  • Each pressure introduction channel 320 is connected with a liquid injection hole.
  • One end of the liquid injection hole communicates with the corresponding pressure introduction channel 320 , and the other end opens on the surface of the pressure introduction seat 300 .
  • the outer end of the liquid injection hole is provided with a detachable plug.
  • the liquid injection holes are used to respectively fill the corresponding liquid holding cavities with liquid pressure transmission medium.
  • one of the liquid holding chambers has an additional pressure stabilizing chamber 230, the volumes of the liquid pressure transmission medium contained in the two liquid holding chambers are different.
  • the volume of the liquid pressure transmission medium in the two liquid holding chambers changes inconsistently, which may cause the pressure change range in the two pressure transmission chambers to be different, resulting in different capacitance changes of the measuring diaphragm 120 .
  • changes in ambient temperature cause pressure imbalances on both sides of the sensor, affecting measurement accuracy.
  • an improvement has been made to the liquid holding chamber that does not include the pressure stabilizing chamber 230 , and a liquid storage chamber 350 is provided on the bottom surface of the pressure introduction seat 300 , and a sealing plug is provided on the opening of the liquid storage chamber 350 .
  • the liquid storage chamber 350 communicates with the liquid storage chamber, and the volume of the liquid storage chamber 350 is roughly the same as that of the pressure stabilizing chamber 230, so that the volume of the liquid pressure transmission medium contained in the two liquid storage chambers is close, so that the measuring diaphragm 120
  • the liquid pressure transmission medium on both sides has the same pressure change range when the temperature changes, and the measurement deviation caused by the ambient temperature change is balanced.
  • a liquid storage flow channel 360 is opened between the liquid storage chamber 350 and the corresponding pressure introduction port 330, and the liquid storage chamber 350, the liquid storage flow channel 360, the pressure introduction channel 320 and the pressure introduction tube connected thereto 130 and the volume of the liquid holding chamber formed by the pressure transmission chamber is consistent with the volume of another liquid holding chamber.
  • the openings of the two pressure introduction ports 330 are relatively opened on a pair of relatively parallel side walls of the pressure introduction seat 300, and are respectively set on the side walls of the pressure introduction seat 300 where the pressure introduction ports 330 are located.
  • Each pressure-taking seat 400 is also provided with a pressure-taking channel 410 and a pressure-taking hole 420, wherein the pressure-taking channel 410 communicates with the pressure-taking hole 420, and the pressure-taking hole 420 is opened on the side wall of the pressure-taking seat 400 facing the pressure-inducing seat 300
  • the pressure tapping hole 420 is directly opposite to the corresponding pressure introduction port 330 , and the area between the pressure tapping hole 420 and the corresponding isolation diaphragm 340 forms a pressure tapping area.
  • each circular end plate 220 is integrally formed with a connector tube 250, and the connector tube 250 is arranged perpendicular to the circular end plate 220, and the inner end of the connector tube 250 is connected to the circular end.
  • the circular end plate 220 is connected with a lead wire through hole, and the lead wire through hole is on the same hole center line as the corresponding connector tube 250, and the diameter of the lead wire through hole is smaller than that of the connector tube. 250 inner diameter.
  • the wire connector tube 250 is embedded with a lead wire connector 260, and the signal lead wire 150 is passed through the lead wire connector 260 and the lead wire through hole, and the lead wire connector 260 seals the lead wire through hole .
  • the assembly structure of the voltage stabilizing box 200 is compatible with the diaphragm pressure sensor 100 .
  • the cylinder 210 is sleeved outside the diaphragm pressure sensor 100, and then the two circular end plates 220 are respectively sleeved on the corresponding signal leads 150 and the horizontal section 131, and gradually move towards the cylinder 210.
  • the corresponding end moves and welds against it.
  • the signal lead wire 150 is designed to be parallel to the direction of the axis of the diaphragm seat 110 for the convenience of assembling the voltage regulator box 200 outside the diaphragm pressure sensor 100 .
  • the two pressure-taking channels 410 are respectively connected to two points on the fluid flow path, and the fluid at two different points enters the corresponding pressure-taking area, and the fluid pressure acts on the corresponding isolation diaphragm 340, and is transmitted through the liquid.
  • the pressure medium is transmitted to the measuring diaphragm 120 so as to measure the fluid pressure at two places to calculate the fluid flow.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

一种压差传感器压力平衡体系,包括膜片式压力传感器(100),该膜片式压力传感器(100)设有两个传压腔体,两个传压腔体分别连接有引压管(130),引压管(130)与膜片式压力传感器(100)的外壁密封,膜片式压力传感器(100)外罩设有封闭的稳压盒(200),稳压盒(200)与膜片式压力传感器(100)之间的空间形成稳压腔(230),两个引压管(130)分别向外穿出稳压盒(200),并与稳压盒(200)的壁密封,其中任意一个引压管(130)的管壁上对应稳压腔(230)开设有流体连通口(140),该流体连通口(140)将引压管(130)与稳压腔(230)连通。该压力平衡体系为膜片式压力传感器(100)提供结构紧凑的稳压盒(200),并且巧妙地通过流体连通口(140)将其中一个传压腔体与稳压腔(230)连通,在实现膜片式压力传感器(100)内外压力平衡的同时,保持整个平衡体系结构简单。

Description

一种压差传感器压力平衡体系 技术领域
本发明涉及一种压力测量装置,具体涉及一种压差传感器压力平衡体系。
背景技术
一类用于检测流体流量的流量计,其检测原理是通过检测流体流动路径上两个不同位点的压力值,由于这两处压力值不同,可以计算得到流体流量。这类流量计的主体为流体压力检测装置,而流体压力检测装置的核心检测元件是膜片式压力传感器。膜片式压力传感器将流体不同位置的两个压力信号转换为电容信号的变化,接着后端的检测电路对电容信号的变化进行处理,得到外加压力的差压值。
膜片式压力传感器包括两个圆饼状的膜座,两个膜座之间设有测量膜片,两个膜座对焊连接,将测量膜片夹紧。测量膜片与两个膜座之间分别设有用于容纳液体传压介质的传压腔体,两个传压腔体分别连接有压力传输通道,其将外部待测压力引入测量膜片两侧,测量膜片变形量的大小反映为电容信号的变化。
将膜片式压力传感器与取压模块连接,流体压力通过取压模块传递给测量膜片。由于液体受压时体积变化极其微小的特点,在测量高压流体时,传压腔体内压显著增大,两个膜座具有向外膨胀变形和相互分离的趋势,高压状态下长时间工作可能使焊缝开裂,导致膜片式压力传感器加速失效。为此,专利文献CN112595450A公开了一种压力传感器密封稳压结构,将膜片式传感器安装在引压座上后,使用罩体扣罩膜片式传感器,罩体与引压座密封连接,形成密封的稳压腔,稳压腔内同样填充硅油,并且稳压腔与其中一个传压腔体连接同一个外部压力源,从而形成压力平衡体系。这样,外加压力同时作用于膜片式压力传感器的内部和外部,从而使传感器工作时内外部压力得到平衡,对传感器起到保护作用。然而,这种结构还存在一些问题。首先,稳压腔体积较大,消耗硅油较多,增加成本,同时给罩体与引压座之间的装配、密封带来挑战。更重要的是,为简化结构,实际设计时直接将稳压腔与其中一个传压腔体连通,以确保传感器内外压力同步变化,但由于硅油较多,受 热膨胀时体积变化不可忽视,会导致连接稳压腔的一侧传压腔体内硅油对测量膜片的压力变化显著,也影响传感器精度。为此,必须进一步改进传感器内外的压力平衡体系及相应的结构。
发明内容
有鉴于此,本发明提供了一种压差传感器压力平衡体系。
其技术方案如下:
一种压差传感器压力平衡体系,包括膜片式压力传感器,该膜片式压力传感器设有两个传压腔体,两个传压腔体分别连接有引压管,所述引压管与所述膜片式压力传感器的外壁密封,其关键在于,所述膜片式压力传感器外罩设有封闭的稳压盒,所述稳压盒与所述膜片式压力传感器之间的空间形成稳压腔;
两个所述引压管分别向外穿出所述稳压盒,并与所述稳压盒的壁密封;
其中任意一个所述引压管的管壁上对应所述稳压腔开设有流体连通口,该流体连通口将所述引压管与所述稳压腔连通。
与现有技术相比,本发明的有益效果:为膜片式压力传感器提供结构紧凑的稳压盒,并且巧妙地通过流体连通口将其中一个传压腔体与稳压腔连通,在实现膜片式压力传感器内外压力平衡的同时,保持整个平衡体系结构简单。
附图说明
图1为膜片式压力传感器与稳压盒的安装结构示意图;
图2为膜片式压力传感器与引压座和取压座组成的测量模块的结构示意图;
图3为膜片式压力传感器端面定位凸台的示意图,图中隐藏了稳压盒的部分结构;
图4为测量模块的整体结构示意图;
图5为图4中A-A剖视图;
图6为图4中B-B剖视图;
图7为图4的左视图;
图8为图7中C-C剖视图。
具体实施方式
以下结合实施例和附图对本发明作进一步说明。
如图1和2所示,一种压差传感器压力平衡体系,包括膜片式压力传感器100,该膜片式压力传感器100设有两个传压腔体,两个传压腔体分别连接有引压管130,所述引压管130与所述膜片式压力传感器100的外壁密封,所述膜片式压力传感器100外罩设有封闭的稳压盒200,所述稳压盒200与所述膜片式压力传感器100之间的空间形成稳压腔230。两个所述引压管130分别向外穿出所述稳压盒200,并与所述稳压盒200的壁密封。其中任意一个引压管130的管壁上对应所述稳压腔230开设有流体连通口140,该流体连通口140将引压管130与稳压腔230连通。由于膜片式压力传感器100安装在流量计上后,两个传压腔体、引压管130和稳压腔230内都填充液体传压介质,如硅油。测量时,两个引压管130分别连接外部压力源,传压腔体内的压力增大,同时稳压腔230内的压力也与其中一个传压腔体同步增大,这样,平衡膜片式压力传感器100内外压力,对膜片式压力传感器100起到保护作用。
在另一种实施方式中,任意一个所述引压管130位于所述稳压腔230内的节段断开,以形成所述流体连通口140。这样,能够扩大引压管130与稳压腔230之间的液体流通通道。
由于两个所述引压管130分别用于连接外部的高压压力源和低压压力源,其中用于连接高压压力源的所述引压管130的管壁上开设有流体连通口140,使得膜片式压力传感器100外的压力始终不小于其内部的压力。
为了使膜片式压力传感器100和稳压盒200结构紧凑,所述稳压盒200的内壁形状与所述膜片式压力传感器100外壁的形状相匹配,所述稳压盒200的内壁处处靠近与其正对的所述膜片式压力传感器100外壁局部,从而形成包绕所述膜片式压力传感器100的所述稳压腔230,稳压腔230为薄层空腔。
如图1所示,所述稳压盒200上对应每个所述引压管130分别开设有引压管过孔,所述引压管过孔内固定穿设有引压管套管240,所述引压管套管240内穿设有所述引压管130,所述引压管套管240与所述引压管130和所述稳压盒200均密封。
所述引压管套管240的长度大于所述稳压盒200壁厚,所述引压管套管240的外端伸出所述稳压盒200。长度较长的引压管套管240对引压管130起 到更好的支撑和定位作用,防止引压管130晃动、移位,避免外力作用时引压管130与膜片式压力传感器100连接处发生拉扯损坏,有助于悬浮设置的膜片式压力传感器100保持稳定。
所述引压管过孔为内端孔径较大的台阶孔,所述引压管套管240的内端管壁径向增厚以形成管壁台阶241,该管壁台阶241与所述台阶孔配合。这样,提高了引压管套管240与稳压盒200之间的配合稳定性,防止引压管套管240在稳压盒200内的液体传压介质的压力作用下被压出,也提高了密封性。
本实施例中,所述膜片式压力传感器100包括两个膜座110和一个测量膜片120,其中两个所述膜座110左右对焊连接,并将所述测量膜片120固定夹持,以形成外壁呈圆盘状的所述膜片式压力传感器100,所述测量膜片120分别与两个所述膜座110之间围成传压腔体。所述稳压盒200为空心圆柱形,所述稳压盒200包括圆筒210,所述圆筒210套设在所述膜片式压力传感器100外,所述圆筒210的两端分别扣盖有一个圆形端板220,所述圆筒210与两个所述圆形端板220分别焊接连接,两个所述圆形端板220分别正对所述膜片式压力传感器100的两端。
两个所述引压管130分别从两个所述膜座110的中心轴向伸出,两个所述引压管130分别与两个所述膜座110密封,两个所述引压管130分别穿过对应的所述圆形端板220。
为使膜片式压力传感器100更稳定地定位在稳压盒200内,所述稳压盒200的两端内壁与所述膜片式压力传感器100的相应端面外壁之间分别设有抵靠限位结构。为使膜片式压力传感器100两端面上受到的液体压力相同,所述抵靠限位结构占位之外的所述膜片式压力传感器100的两端面的面积相等。进一步地,位于所述膜片式压力传感器100两端的所述抵靠限位结构左右正对,并关于测量膜片120对称。这样,膜片式压力传感器100两端面受到的液体压力以及来自稳压盒200的抵靠力均一致且对称。
如图1和3所示,所述抵靠限位结构包括相互配合的定位凸台111和定位凹陷221,二者其中一个位于所述膜片式压力传感器100的端面上,另一个位于所述稳压盒200的端部内壁。
本实施例中,所述定位凸台111位于所述膜片式压力传感器100的端面 上,所述膜片式压力传感器100的每个端面上设有至少两个所述定位凸台111,位于所述膜片式压力传感器100同一端面上的所有所述定位凸台111绕该端面中心环向均匀分布,所述稳压盒200的端部内壁上对应每个所述定位凸台111分别设有定位凹陷221。
为使膜片式压力传感器100的端面上受到的稳压盒200的抵靠力尽可能分布均匀。所述膜片式压力传感器100的每个端面上设有至少两个弧形的所述定位凸台111,同一端面上的所述定位凸台111位于同一个圆环上,同一端面上的所述定位凸台111绕相应的引压管130环向均匀分布。本实施例中膜片式压力传感器100的每个端面上设有两个弧形的定位凸台111。如图3所示,同一端面上的所述定位凸台111之间的缺口将所有所述定位凸台111围成的圆环内部区域和外部区域连通,形成供液体传压介质流动的通道。
如图2和3所示,所述稳压盒200下方设置有引压座300,所述引压座300上表面开设有定位槽310,所述定位槽310的槽底为凹面向上的圆弧面,所述定位槽310内设置有所述稳压盒200,所述稳压盒200的下部位于所述定位槽310内,其中所述圆筒210靠近所述定位槽310的槽底,两个所述圆形端板220分别靠近所述定位槽310的两侧槽壁。由于膜片式压力传感器100并不与引压座300直接接触,且被稳压腔230内的液体传压介质包围,因而相对于引压座300悬浮。
所述引压座300上开设有两个引压通道320,两个所述引压通道320分别位于所述定位槽310两侧,两个所述引压通道320与两个所述引压管130一一对应并连接。
如图1~3所示,所述引压通道320靠近稳压盒200一端设置有引压管插座321,该引压管插座321位于相应的所述引压管套管240下方。所述引压管130包括水平段131、竖向段133和弯曲段132。所述水平段131的内端与所述膜片式压力传感器100的相应腔室连通,所述水平段131的外端向外穿出所述膜片式压力传感器100的壳体,而后从所述引压管套管240内穿出。所述引压管套管240正下方设置有所述竖向段133,所述竖向段133的上端与所述水平段131的外端之间连接有所述弯曲段132,所述竖向段133的下端插设在相应的所述引压管插座321内,并且竖向段133的下端与相应的引压管插 座321密封。所述弯曲段132先向远离所述水平段131的方向延伸的同时向下偏移,再逐渐向靠近所述水平段131的方向内收并与所述竖向段133连接。引压管130的这种结构设计有如下原因:由于稳压盒200的壁厚较薄,设置长度相对较大的引压管套管240保证水平段131通过引压管套管240稳定安装在稳压盒200上;同时,由于竖向段133的位置被引压管插座321所限定,因此设置长度相对较大的引压管套管240后,水平段131与竖向段133不能直接通过直角弯曲的管体进行连接,必须使用本实施例中的弯曲段132将水平段131与竖向段133连接。
结合图4和5可以看到,引压通道320包括水平引压段和竖向引压段,其中竖向引压段的上端设置引压管插座321,引压管插座321与竖向引压段内壁密封,竖向引压段的下端与水平引压段的一端连接,水平引压段的另一端开口于引压座300外侧壁。引压座300外壁上对应两个水平引压段分别开设有引压口330,引压口330为变径孔,其孔径由外到内逐渐缩小,引压口330内端与水平引压段外端连通。引压口330外端覆盖有隔离膜片340,该隔离膜片340将引压口330外端封闭,从而使得其中一个传压腔体、以及与其连接的引压管130、引压通道320、引压口330形成一个封闭的盛液腔体,另一个传压腔体、以及与其连接的引压管130、引压通道320、引压口330和稳压腔230形成另一个封闭的盛液腔体。每个引压通道320连接有注液孔,注液孔的一端与相应的引压通道320连通,另一端开口于引压座300表面,注液孔的外端设有可拆卸堵头。注液孔用于分别向相应的盛液腔体内注满液体传压介质。
由于其中一个盛液腔体多出了一个稳压腔230,两个盛液腔体内盛装的液体传压介质体积不同。当环境温度发生变化时,两个盛液腔体内的液体传压介质体积变化不一致,可能引起两侧传压腔体内的压力变化幅度不同,导致测量膜片120电容变化不同。这种情况下,环境温度变化引发传感器两侧压力不平衡,影响测量精度。为此,对于不包含稳压腔230的盛液腔体进行了改进,在引压座300底面上开设储液室350,储液室350的开口上设有密封塞。储液室350与盛液腔体连通,储液室350的容积大致与稳压腔230的容积相同,这样使得两个盛液腔体内盛装的液体传压介质体积接近,从而使得测量 膜片120两侧的液体传压介质在温度变化时压力变化幅度一致,平衡环境温度变化引起的测量偏差。本实施例中,储液室350与相应的引压口330之间开通有储液流道360,并且储液室350、储液流道360、以及与其相连的引压通道320、引压管130和传压腔体形成的盛液腔体的容积与另一个盛液腔体容积一致。
结合图4~8可以看到,两个引压口330的开口相对开设在引压座300的一对相对平行的侧壁上,在引压口330所在的引压座300侧壁上分别设置有一个取压座400,两个取压座400与引压座300通过螺栓连接,从而与传感器模块组成流量计的测量模块。每个取压座400上还开设有取压通道410和取压孔420,其中取压通道410与取压孔420连通,取压孔420开设在取压座400朝向引压座300的侧壁上,取压孔420与相应的引压口330正对,取压孔420与相应的隔离膜片340之间的区域形成取压区。
如图1和2所示,所述测量膜片120的两侧分别引出有信号引线150,两根所述信号引线150也分别从两个所述膜座110密封引出,两根所述信号引线150沿着平行于所述膜座110轴线的方向设置。每个所述圆形端板220外壁一体成型有接线器管250,所述接线器管250垂直于所述圆形端板220设置,所述接线器管250的内端与所述圆形端板220连接,所述圆形端板220上贯穿有引线过孔,所述引线过孔与相应的所述接线器管250共孔心线,所述引线过孔的孔径小于所述接线器管250的内径。所述接线器管250内嵌设有引线接线器260,所述引线接线器260与所述引线过孔内穿设有所述信号引线150,所述引线接线器260将所述引线过孔密封。
所述稳压盒200的装配结构,与膜片式压力传感器100相适应。组装时,将圆筒210套设在膜片式压力传感器100外,然后将两个圆形端板220分别套在相应的所述信号引线150和水平段131上,并逐渐向圆筒210的相应端部移动并与其贴靠焊接。将信号引线150设计为与膜座110轴线的方向平行,就是为了方便将稳压盒200装配在膜片式压力传感器100外。
测量时,两个取压通道410分别连接流体流动路径上的两个位点,两个不同位点的流体进入相应的取压区,流体压力作用于相应的隔离膜片340,并经液体传压介质传导至测量膜片120,从而测量两处的流体压力,来计算流体 流量。
最后需要说明的是,上述描述仅仅为本发明的优选实施例,本领域的普通技术人员在本发明的启示下,在不违背本发明宗旨及权利要求的前提下,可以做出多种类似的表示,这样的变换均落入本发明的保护范围之内。

Claims (10)

  1. 一种压差传感器压力平衡体系,包括膜片式压力传感器(100),该膜片式压力传感器(100)设有两个传压腔体,两个传压腔体分别连接有引压管(130),所述引压管(130)与所述膜片式压力传感器(100)的外壁密封,其特征在于:所述膜片式压力传感器(100)外罩设有封闭的稳压盒(200),所述稳压盒(200)与所述膜片式压力传感器(100)之间的空间形成稳压腔(230);
    两个所述引压管(130)分别向外穿出所述稳压盒(200),并与所述稳压盒(200)的壁密封;
    其中任意一个所述引压管(130)的管壁上对应所述稳压腔(230)开设有流体连通口(140),该流体连通口(140)将所述引压管(130)与所述稳压腔(230)连通。
  2. 根据权利要求1所述的一种压差传感器压力平衡体系,其特征在于:任意一个所述引压管(130)位于所述稳压腔(230)内的部分断开,以形成所述流体连通口(140)。
  3. 根据权利要求1或2所述的一种压差传感器压力平衡体系,其特征在于:两个所述引压管(130)分别用于连接外部的高压压力源和低压压力源,其中用于连接高压压力源的所述引压管(130)的管壁上开设有所述流体连通口(140)。
  4. 根据权利要求1或2所述的一种压差传感器压力平衡体系,其特征在于:所述稳压盒(200)的内壁形状与所述膜片式压力传感器(100)外壁的形状相匹配,所述稳压盒(200)的内壁处处靠近与其正对的所述膜片式压力传感器(100)外壁局部,从而形成包绕所述膜片式压力传感器(100)的所述稳压腔(230)。
  5. 根据权利要求1或2所述的一种压差传感器压力平衡体系,其特征在 于:所述稳压盒(200)上对应每个所述引压管(130)分别开设有引压管过孔,所述引压管过孔内固定穿设有引压管套管(240),所述引压管套管(240)内穿设有所述引压管(130),所述引压管套管(240)与所述引压管(130)和所述稳压盒(200)均密封;
    所述引压管套管(240)的长度大于所述稳压盒(200)壁厚,所述引压管套管(240)的外端伸出所述稳压盒(200)。
  6. 根据权利要求5所述的一种压差传感器压力平衡体系,其特征在于:所述引压管过孔为内端孔径较大的台阶孔,所述引压管套管(240)的内端管壁径向增厚以形成管壁台阶(241),该管壁台阶(241)与所述台阶孔配合。
  7. 根据权利要求5所述的一种压差传感器压力平衡体系,其特征在于:所述膜片式压力传感器(100)包括两个膜座(110)和一个测量膜片(120),其中两个所述膜座(110)左右对焊连接,并将所述测量膜片(120)固定夹持,以形成外壁呈圆盘状的所述膜片式压力传感器(100),所述测量膜片(120)分别与两个所述膜座(110)之间围成所述传压腔体;
    所述稳压盒(200)为空心圆柱形,所述稳压盒(200)包括圆筒(210),所述圆筒(210)套设在所述膜片式压力传感器(100)外,所述圆筒(210)的两端分别扣盖有一个圆形端板(220),所述圆筒(210)与两个所述圆形端板(220)分别焊接连接,两个所述圆形端板(220)分别正对所述膜片式压力传感器(100)的两端;
    两个所述引压管(130)分别从两个所述膜座(110)的中心轴向伸出,两个所述引压管(130)分别与两个所述膜座(110)密封,两个所述引压管(130)分别穿过对应的所述圆形端板(220)。
  8. 根据权利要求7所述的一种压差传感器压力平衡体系,其特征在于:所述稳压盒(200)下方设置有引压座(300),所述引压座(300)上表面开 设有定位槽(310),所述定位槽(310)的槽底为凹面向上的圆弧面,所述定位槽(310)内设置有所述稳压盒(200),所述稳压盒(200)的下部位于所述定位槽(310)内,其中所述圆筒(210)靠近所述定位槽(310)的槽底,两个所述圆形端板(220)分别靠近所述定位槽(310)的两侧槽壁;
    所述引压座(300)上开设有两个引压通道(320),两个所述引压通道(320)分别位于所述定位槽(310)两侧,两个所述引压通道(320)与两个所述引压管(130)一一对应并连接。
  9. 根据权利要求8所述的一种压差传感器压力平衡体系,其特征在于:所述引压通道(320)靠近所述稳压盒(200)一端设置有引压管插座(321),该引压管插座(321)位于相应的所述引压管套管(240)下方;
    所述引压管(130)包括水平段(131)、竖向段(133)和弯曲段(132);
    所述水平段(131)的内端与所述膜片式压力传感器(100)的相应腔室连通,所述水平段(131)的外端向外穿出所述膜片式压力传感器(100)的壳体,而后从所述引压管套管(240)内穿出,所述引压管套管(240)正下方设置有所述竖向段(133),所述竖向段(133)的上端与所述水平段(131)的外端之间连接有所述弯曲段(132),所述竖向段(133)的下端插设在相应的所述引压管插座(321)内;
    所述弯曲段(132)先向远离所述水平段(131)的方向延伸的同时向下偏移,再逐渐向靠近所述水平段(131)的方向内收并与所述竖向段(133)连接。
  10. 根据权利要求7所述的一种压差传感器压力平衡体系,其特征在于:所述测量膜片(120)的两侧分别引出有信号引线(150),两根所述信号引线(150)也分别从两个所述膜座(110)密封引出,两根所述信号引线(150)沿着平行于所述膜座(110)轴线的方向设置;
    每个所述圆形端板(220)外壁一体成型有接线器管(250),所述接线器管(250)垂直于所述圆形端板(220)设置,所述接线器管(250)的内端与所述圆形端板(220)连接,所述圆形端板(220)上贯穿有引线过孔,所述引线过孔与相应的所述接线器管(250)共孔心线,所述引线过孔的孔径小于所述接线器管(250)的内径;
    所述接线器管(250)内嵌设有引线接线器(260),所述引线接线器(260)与所述引线过孔内穿设有所述信号引线(150),所述引线接线器(260)将所述引线过孔密封。
PCT/CN2022/102238 2021-07-15 2022-06-29 一种压差传感器压力平衡体系 WO2023284552A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110802538.4A CN113670507A (zh) 2021-07-15 2021-07-15 一种压差传感器压力平衡体系
CN202110802538.4 2021-07-15

Publications (1)

Publication Number Publication Date
WO2023284552A1 true WO2023284552A1 (zh) 2023-01-19

Family

ID=78539588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102238 WO2023284552A1 (zh) 2021-07-15 2022-06-29 一种压差传感器压力平衡体系

Country Status (2)

Country Link
CN (1) CN113670507A (zh)
WO (1) WO2023284552A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113670507A (zh) * 2021-07-15 2021-11-19 重庆市伟岸测器制造股份有限公司 一种压差传感器压力平衡体系

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684253A (en) * 1997-01-08 1997-11-04 Honeywell Inc. Differential pressure sensor with stress reducing pressure balancing means
EP2913651A1 (de) * 2014-02-26 2015-09-02 VEGA Grieshaber KG Druckmessumformer mit Druckausgleichsvorrichtung
CN110926685A (zh) * 2019-12-05 2020-03-27 中国航发四川燃气涡轮研究院 微压差传感器的过载保护装置及微压差检测系统
CN111397794A (zh) * 2019-01-02 2020-07-10 通用电气(Ge)贝克休斯有限责任公司 高灵敏度压力传感器封装
CN112595450A (zh) * 2020-12-29 2021-04-02 重庆市伟岸测器制造股份有限公司 一种压力传感器密封稳压结构
CN112665771A (zh) * 2020-12-29 2021-04-16 重庆市伟岸测器制造股份有限公司 隔离式压力传感器
CN113670507A (zh) * 2021-07-15 2021-11-19 重庆市伟岸测器制造股份有限公司 一种压差传感器压力平衡体系
CN215865630U (zh) * 2021-07-15 2022-02-18 重庆市伟岸测器制造股份有限公司 压差传感器压力平衡体系

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684253A (en) * 1997-01-08 1997-11-04 Honeywell Inc. Differential pressure sensor with stress reducing pressure balancing means
EP2913651A1 (de) * 2014-02-26 2015-09-02 VEGA Grieshaber KG Druckmessumformer mit Druckausgleichsvorrichtung
CN111397794A (zh) * 2019-01-02 2020-07-10 通用电气(Ge)贝克休斯有限责任公司 高灵敏度压力传感器封装
CN110926685A (zh) * 2019-12-05 2020-03-27 中国航发四川燃气涡轮研究院 微压差传感器的过载保护装置及微压差检测系统
CN112595450A (zh) * 2020-12-29 2021-04-02 重庆市伟岸测器制造股份有限公司 一种压力传感器密封稳压结构
CN112665771A (zh) * 2020-12-29 2021-04-16 重庆市伟岸测器制造股份有限公司 隔离式压力传感器
CN113670507A (zh) * 2021-07-15 2021-11-19 重庆市伟岸测器制造股份有限公司 一种压差传感器压力平衡体系
CN215865630U (zh) * 2021-07-15 2022-02-18 重庆市伟岸测器制造股份有限公司 压差传感器压力平衡体系

Also Published As

Publication number Publication date
CN113670507A (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
JP3476199B2 (ja) 高圧隔離マウント組立体を有する圧力トランスミッタ
EP2132532B1 (en) Flangeless differential pressure sensor module for industrial process control systems
US5948988A (en) Pressure transducer with flame arrester
CN113551833B (zh) 具有压差传感器保护结构的检测模块
WO2023284552A1 (zh) 一种压差传感器压力平衡体系
US9778130B2 (en) Differential pressure transducer with inspectable welds
CN215865630U (zh) 压差传感器压力平衡体系
CN112595450A (zh) 一种压力传感器密封稳压结构
CN214373070U (zh) 一种隔离式压力传感器
CN112665771A (zh) 隔离式压力传感器
WO2015162113A1 (en) Differential pressure sensor
CN215865607U (zh) 紧凑型压力感应模块
CN214748594U (zh) 压力传感器密封稳压结构
CN215865608U (zh) 压力感应模块及装配结构
CN215865631U (zh) 悬浮式压差传感器外压保持机构
CN215865632U (zh) 压差传感器膜座稳压结构
CN215865629U (zh) 悬浮式压差传感器引压结构
CN113670503A (zh) 一种紧凑型压力感应模块
CN216050422U (zh) 压力平衡体系
CN217542227U (zh) 一种三向取压连接法兰
CN114414131A (zh) 一种宽量程压力测量膜盒
CN214373069U (zh) 差压变送器传感器引压装配结构
CN215865606U (zh) 压力感应模块压力平衡结构
CN214748595U (zh) 差压变送器压力引出机构
CN214373071U (zh) 差压变送器传感器安装机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE