WO2020149571A1 - Method for transferring semiconductor light emitting elements - Google Patents

Method for transferring semiconductor light emitting elements Download PDF

Info

Publication number
WO2020149571A1
WO2020149571A1 PCT/KR2020/000358 KR2020000358W WO2020149571A1 WO 2020149571 A1 WO2020149571 A1 WO 2020149571A1 KR 2020000358 W KR2020000358 W KR 2020000358W WO 2020149571 A1 WO2020149571 A1 WO 2020149571A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
semiconductor light
emitting device
temporary fixed
substrate
Prior art date
Application number
PCT/KR2020/000358
Other languages
French (fr)
Korean (ko)
Inventor
김경민
정겨울
Original Assignee
주식회사 세미콘라이트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190005202A external-priority patent/KR20200088933A/en
Priority claimed from KR1020190005201A external-priority patent/KR102121407B1/en
Application filed by 주식회사 세미콘라이트 filed Critical 주식회사 세미콘라이트
Publication of WO2020149571A1 publication Critical patent/WO2020149571A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof

Definitions

  • the present disclosure (Disclosure) relates to a method of transferring a semiconductor light emitting device as a whole, and particularly to a method of transferring a plurality of semiconductor light emitting devices to a substrate at a time.
  • the present disclosure (Disclosure) relates to a transfer device of a semiconductor light emitting device as a whole, and more particularly to a device for transferring a plurality of semiconductor light emitting devices to a substrate at a time.
  • the semiconductor light emitting device means a semiconductor optical device that generates light through recombination of electrons and holes, and examples include a group 3 nitride semiconductor light emitting device (LED, LD).
  • the group 3 nitride semiconductor is composed of a compound of Al(x)Ga(y)In(1-x-y)N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x+y ⁇ 1).
  • a GaAs-based semiconductor light-emitting device used for red light emission is exemplified.
  • LCD Liguid Crystal Display
  • AMOLED Active Matrix Organic Light Emitting Diodes
  • FIG. 1 and 2 are views showing an example of a method of transferring a semiconductor light emitting device described in Korean Patent Publication No. 2018-0079863. For convenience of explanation, some drawing symbols have been changed.
  • the active matrix substrate 10 on which the control circuit is formed is prepared (S1). Thereafter, a plurality of solder bumps 11 and 12 are first transferred and printed on the upper surface of the active matrix substrate 10 (S2). Thereafter, a plurality of semiconductor light emitting devices 20 are subjected to secondary transfer printing on the top surface of the active matrix substrate 10 (S3).
  • the semiconductor light emitting elements 20 arranged in a matrix arrangement on the semiconductor light emitting element support 21 using the roll-to-roll transfer printing technique are original. It includes moving and attaching on the active matrix substrate 10 as it is in a matrix arrangement.
  • an adhesive carrier 30, a pick-up roller 31, and a positioning roller 32 are used.
  • bonding by heating and compression of the solder bumps 11 and 12 may be performed.
  • the solder bumps 11 and 12 may be heated and compressed. Bonding may also occur.
  • the transfer head When using the transfer head to transfer individually, there is an advantage of high accuracy of transfer, but there is a disadvantage that the transfer time is long.
  • the transfer time When transporting at one time by using the adhesive carrier 30, the transfer time is shortened, but the arrangement of the semiconductor light emitting elements in the process of separating the adhesive carrier 30 before bonding by heating and compression of the solder bumps 11 and 12 is performed. It can be distracting.
  • the adhesive carrier 30 and the substrate 10 The arrangement of semiconductor light emitting devices may be disturbed due to a difference in thermal expansion coefficient of.
  • the semiconductor light emitting devices In order to prevent the arrangement of the semiconductor light emitting devices from being disturbed due to a difference in thermal expansion coefficient in the bonding process by the solder bumps 11 and 12 without separating the adhesive carrier 30, it is necessary to compress the semiconductor light emitting device with a constant force.
  • the semiconductor light emitting device may be damaged by compression.
  • the present disclosure is to provide a method of transferring a semiconductor light emitting device that solves the problem of a method of transferring a semiconductor light emitting device using an adhesive carrier.
  • the present disclosure is to provide a semiconductor light emitting device transfer device that solves the problem of a method of transporting a semiconductor light emitting device using an adhesive carrier.
  • a plurality of solder bumps are arranged and a substrate including a temporary fixed layer covering a plurality of solder bumps and a plurality of Preparing an adhesive carrier in which the semiconductor light emitting elements are arranged; Aligning a plurality of semiconductor light emitting elements of the adhesive carrier to correspond to a plurality of solder bumps on the substrate; Moving one of the substrate and the adhesive carrier so that the temporary fixed layer contacts the plurality of semiconductor light emitting elements; Lowering the temperature of the temporary fixed bed; And bonding a plurality of semiconductor semiconductor light-emitting device by melting the solder bumps (bonding) to the substrate; is provided a method of transferring a semiconductor light-emitting device comprising a.
  • a semiconductor light emitting device transport device a plurality of solder bumps are arranged and a substrate including a temporary fixing layer covering a plurality of solder bumps is fixed.
  • a cooling unit for lowering the temperature of the temporary fixed layer of the substrate; is provided with a semiconductor light emitting device transfer device comprising a.
  • FIG. 1 and 2 are views showing an example of a method of transferring a semiconductor light emitting device described in Korean Patent Publication No. 2018-0079863,
  • FIG. 3 is a flowchart illustrating an example of a method of transferring a semiconductor light emitting device according to the present disclosure
  • FIG. 4 is a view showing an example of a substrate according to the present disclosure
  • FIG. 5 is a view showing an example of an adhesive carrier according to the present disclosure
  • 6 to 7 are views showing an example of steps S2 to S6,
  • FIG. 8 is a conceptual view showing an example of a transfer device of a semiconductor light emitting device according to the present disclosure
  • FIG. 9 is a view showing an example of a cooling unit according to the present disclosure.
  • FIG. 10 is a view showing another example of the transfer device of the semiconductor light emitting device according to the present disclosure.
  • FIG. 3 is a flowchart illustrating an example of a method of transferring a semiconductor light emitting device according to the present disclosure.
  • a substrate including a plurality of solder bumps and a temporary fixed layer covering the plurality of solder bumps and an adhesive carrier including a plurality of semiconductor light emitting devices are prepared (S1). Thereafter, a plurality of semiconductor light emitting elements are arranged on the plurality of solder bumps (S2). Thereafter, one of the substrate and the adhesive carrier is moved so that the temporary fixed layer contacts the plurality of semiconductor light emitting elements (S3). Thereafter, the temperature of the temporary fixed bed is lowered (S4). Thereafter, the adhesive carrier is removed (S5). Thereafter, the solder bumps are melted to bond a plurality of semiconductor semiconductor light emitting devices to the substrate (S6). Each step will be described in detail in FIGS. 4 to 7.
  • FIG. 4 is a view showing an example of a substrate according to the present disclosure.
  • FIG. 4(a) is a plan view and FIG. 4(b) is a cross-sectional view taken along AA'.
  • the substrate 100 may be a PCB (Printed Circuit Moard) on which the circuit pattern 120 is formed.
  • PCB printed Circuit Moard
  • the substrate 100 includes a circuit pattern 120 that can be electrically connected to a semiconductor light emitting element for each pixel 110.
  • the circuit pattern 120 is illustrated only in a part of the pixel 110, but the circuit pattern 120 may be formed in all the pixels 110.
  • the substrate 100 includes a plurality of solder bumps 130 used to bond the semiconductor light emitting device to the substrate 100.
  • the solder bump 130 may be a SAC (Sn-Ag-Cu) ball.
  • the substrate 100 may include a temporary fixed layer 140 covering the solder bumps 130.
  • the temporary fixing layer 140 may be formed of at least one of flux, epoxy, and epoxy flux.
  • solder bump 130 is formed of tin (Sn) or SAC (Sn-Ag-Cu)
  • tin (Sn) or SAC (Sn-Ag-Cu) there is a disadvantage that the melting point is higher than when the solder bump 130 is formed of Sn-Pb, but when using flux, tin (Sn) ) Or SAC (Sn-Ag-Cu) can be used to lower the melting point of the solder bump 130, so most of them are used when using the solder bump 130 formed of tin (Sn) or SAC (Sn-Ag-Cu). Doing.
  • the flux used as a temporary fixing layer 140 is used to form an adhesive carrier without using an adhesive layer other than the flux.
  • a plurality of semiconductor light-emitting devices attached to the substrate 100 can be temporarily fixed before bonding to the substrate 100, and will be described in detail with reference to FIGS. 6 to 7.
  • FIG. 5 is a view showing an example of an adhesive carrier according to the present disclosure.
  • Fig. 5(a) is a plan view and Fig. 5(b) is a cross-sectional view taken along BB'.
  • the adhesive carrier 200 may include an adhesive layer 202 on which the adhesive force fluctuates by ultraviolet rays on a substrate 201 through which ultraviolet rays can pass.
  • the plurality of semiconductor light emitting devices 210, 220 and 230 are arranged in contact with the adhesive layer 202.
  • the arrangement of the plurality of semiconductor light emitting devices 210, 220 and 230 may be arranged corresponding to the pixel 110 and the circuit pattern 120 of the substrate 100.
  • the virtual pixel 241 is illustrated by the dotted line 240 so as to be compared with the pixel 110 of the substrate 100.
  • one semiconductor light emitting element may be located for each virtual pixel 241, three semiconductor light emitting elements emitting different colors are positioned in the present disclosure. For example, as shown in FIG.
  • the semiconductor light emitting device 210 emitting red light, the semiconductor light emitting device 220 emitting green light, and the semiconductor light emitting device 230 emitting blue light become one unit, thereby forming a virtual pixel 241.
  • the semiconductor light emitting elements 210, 220, and 230 are shown in a part of the virtual pixel 241, but the semiconductor light emitting elements 210, 220, and 230 are positioned in all the virtual pixels 241.
  • various types of flip chips, vertical chips and lateral chips are possible for the semiconductor light emitting device, but the flip chip is preferable because it is easy to bond to the substrate 100. Referring to FIG.
  • the flip-chip type semiconductor light emitting device 210 shows that the opposite surfaces of the electrodes 211 and 212 are adhered to the adhesive carrier 200 so as to adhere to the adhesive layer 202.
  • the semiconductor light emitting devices 210, 220, and 230 are arranged to increase the adhesion of the adhesive layer 202 by irradiating ultraviolet rays after arranging the semiconductor light emitting devices 210, 220, 230 on the adhesive carrier 200, as shown in FIG. Can be fixed to the adhesive carrier 200.
  • the method of transferring the plurality of semiconductor light emitting devices 210, 220, and 230 from the wafer to the adhesive carrier 200 may be transferred using a transfer head.
  • 6 to 7 are views showing an example of steps S2 to S6.
  • Figure 6(a) shows step S2
  • Figure 6(b) shows step S3
  • Figure 6(c) shows step S4
  • Figure 7(a) shows step S5
  • Figure 7(b) shows step S6.
  • a plurality of semiconductor light emitting devices 210 of the adhesive carrier 200 are aligned on the plurality of solder bumps 130 of the substrate 100 (S2).
  • the electrodes 211 and 212 of the semiconductor light emitting device 210 are arranged to be positioned on the same dotted line 250 as the solder bumps 130.
  • one of the substrate 100 and the adhesive carrier 200 is moved to make the temporary fixed layer 140 and the plurality of semiconductor light emitting devices 210 contact (S3).
  • the thickness of the temporary fixing layer 140 is exaggerated for explanation, and the thickness of the temporary fixing layer 140 may be 0.05 mm or less. However, when the thickness of the temporary fixing layer 140 is greater than 0.05 mm, bonding failure may occur when the semiconductor light emitting device 210 is bonded to the substrate 100. When the temporary fixed layer 140 and the plurality of semiconductor light emitting devices 210 contact each other, at least a portion of the semiconductor light emitting device 210 may enter the temporary fixed layer 140. In FIG. 6( b ), the electrodes 211 and 212 of the semiconductor light emitting device 210 are inside the temporary fixed layer 140.
  • the temporary fixed layer 140 has a viscosity that allows at least a portion of the semiconductor light emitting device 210 to enter the temporary fixed layer 140.
  • the temporary fixed layer 140 is a liquid state having a constant viscosity and is not a solid state. 6(c), the temperature of the temporary fixed layer 140 is lowered while at least a portion of the semiconductor light emitting device 210 is introduced into the temporary fixed layer 140.
  • the temperature of the temporary fixed bed 140 is lowered to 0° C. or lower by continuously lowering the temperature. It is preferably lowered to minus 40°C. Since the viscosity of the temporary fixed layer 140 having a lower temperature is increased, the semiconductor light emitting device 210 may be fixed to the temporary fixed layer 140 without moving.
  • the temperature of the temporary fixed layer 140 is lowered so that the viscous size of the temporary fixed layer 140 has a size such that the semiconductor light emitting device 210 cannot move in the temporary fixed layer 140.
  • the temporary fixing layer 140 becomes completely frozen at 40°C below zero, so that the semiconductor light emitting device 210 can be more surely fixed.
  • the temporary fixed layer 140 may be maintained at about 40°C for 10 minutes.
  • the semiconductor light emitting device 210 may be damaged.
  • no additional adhesive is required since the semiconductor light emitting device 210 is fixed to the temporary fixed layer 140 by lowering the temperature, no additional adhesive is required.
  • the S4 step proceeds at a low temperature (below 0° C.) in which deformation due to heat of the adhesive carrier 200 and the substrate 100 hardly occurs due to a difference in thermal expansion coefficient between the adhesive carrier 200 and the substrate 100. Almost no problem occurs due to the arrangement of the semiconductor light emitting device 210 is disturbed.
  • the adhesive carrier 200 is separated from the semiconductor light emitting device 210 and removed (S5).
  • the UV 260 irradiation may be performed simultaneously with the cooling process of the temporary fixed layer 140 in step S4.
  • the solder bump 130 is melted to bond the plurality of semiconductor light emitting devices 210 to the substrate 100 (S6).
  • the temporary pinned layer 140 may be removed.
  • the solder bump 130 may be melted through a reflow process.
  • the semiconductor light emitting device 210 and the substrate 100 are made of a transparent material (eg, epoxy resin, silicone resin, etc.) to protect the circuit pattern 120 of the semiconductor light emitting device 210 and the substrate 100. It can be covered with an encapsulant.
  • the substrate 100 is the active matrix substrate 10 shown in FIG. 1, it can be used as it is, but in the case of a general PCB substrate, it is covered with an encapsulant and then cut in units of pixels 110 to produce three colors (eg, red, green , Blue).
  • FIG. 8 is a conceptual view showing an example of a transfer device for a semiconductor light emitting device according to the present disclosure.
  • the transfer device 300 of the semiconductor light emitting device includes a first fixing plate 310 fixing a substrate 100 including a temporary fixing layer 140 in which a plurality of solder bumps 130 are arranged and covering the plurality of solder bumps 130. ), a second fixing plate 320 to which the adhesive carrier 200 on which the plurality of semiconductor light emitting elements 210 are arranged is fixed, and a cooling unit 330 to lower the temperature of the temporary fixing layer 140 of the substrate 100.
  • it may include an ultraviolet irradiation unit 340 for irradiating ultraviolet light toward the adhesive carrier (200).
  • the position of the ultraviolet irradiation unit 340 is not limited as long as it irradiates ultraviolet light toward the adhesive carrier 200, but is preferably located on the second fixing plate 320.
  • the second fixing plate 320 is formed of a material (for example, glass) that can transmit ultraviolet rays to irradiate ultraviolet light onto the adhesive carrier 200 on the second fixing plate 320 so that the ultraviolet rays reach the adhesive carrier 200. It is desirable to be.
  • the ultraviolet irradiation unit 340 is not limited as long as it emits ultraviolet light such as a semiconductor light emitting device or a fluorescent lamp as a light source emitting ultraviolet light.
  • the cooling unit 330 may maintain the temperature of the temporary fixed layer 140 at minus 40°C within 10 minutes to make the temporary fixed layer 140 frozen.
  • the first a fixed plate 310 and the second fixed plate 320 has a vacuum suction port 311, and the substrate 100 and the adhesive carrier 200 are first and second fixed plates 310 and 300 by using the vacuum suction port 311. 2 can be fixed to the fixing plate (320).
  • a vacuum device (not shown) for sucking air through the vacuum suction port may be connected to the tube 301.
  • the first fixing plate 310, the second fixing plate 320, the cooling unit 330 and the ultraviolet irradiation unit 340 to which the body 302 can be attached to the control unit that can control the transfer device 300 (not shown) May be built-in and may control the transfer device 300 through the user interface 303.
  • the substrate 100 and the adhesive carrier 200 fixed to the first fixing plate 310 and the second fixing plate 320 are moved. Can be sorted. Moving at least one of the first fixing plate 310 and the second fixing plate 320 in the xy plane is by attaching an xy stage (not shown) to at least one of the first a fixing plate 310 and the second fixing plate 320.
  • first fixing plate 310 and the second fixing plate 320 may be moved in the z-axis direction to make the semiconductor light emitting element 210 and the temporary fixing layer 140 contact.
  • the movement in the z-axis direction may manually and automatically move at least one of the first fixing plate 310 and the second fixing plate 320 along the z-axis moving guide 304.
  • the first fixing plate 310 is at the bottom of the body 302 and the second fixing plate 320 is at the top, but is not limited thereto, and the first fixing plate 310 is the second fixing plate at the top of the body 302 ( 320) may be located in the lower portion of the body 302, in this case, the ultraviolet irradiation unit 340 and the cooling unit 330 may be placed in an appropriate position to perform each function.
  • FIG 9 is a view showing an example of a cooling unit according to the present disclosure.
  • Cooling unit 330 is not limited to the cooling method or structure as long as the temperature of the temporary fixed layer 140 is lowered.
  • the cooling unit 330 is located under the first fixing plate 310, and the cooling unit 330 uses the Peltier effect to open the first fixing plate 310. It is a method of cooling and cooling the temporary fixed layer 140 through cooling of the first fixing plate 310.
  • the cooling unit 330 may be located on the side surface of the first fixing plate 310, but is preferably located under the first fixing plate 310 for cooling efficiency.
  • metal plates 332 and 333 are positioned with the thermoelectric element 331 interposed therebetween.
  • the upper metal plate 332 may be the first fixing plate 310.
  • the cooling unit 330 may be a nitrogen gas injection nozzle 330. That is, the temperature of the temporary fixed layer 140 may be lowered by injecting nitrogen gas supplied through a tube (not shown) into the temporary fixed layer 140 through the injection nozzle 330.
  • the nitrogen gas is used, the first fixing plate 310 does not need to be cooled, so the first fixing plate 310 does not need to use a material having good heat transfer rate, such as metal.
  • FIG. 10 is a view showing another example of a transfer device for a semiconductor light emitting device according to the present disclosure.
  • the transfer device of the semiconductor light emitting device may include a cover 350 covering the first fixing plate 310.
  • the semiconductor light emitting device 210 may be bonded to the substrate 100 by covering the cover 350 and performing a reflow process corresponding to step S6 inside the cover 350.
  • the semiconductor light emitting device transfer device is substantially the same as the semiconductor light emitting device transfer device shown in FIG. 8 except for those described with reference to FIG. 10.
  • a method for transferring a semiconductor light emitting device comprising: preparing a substrate including a temporary fixed layer covering a plurality of solder bumps and covering a plurality of solder bumps and an adhesive carrier having a plurality of semiconductor light emitting devices; Aligning a plurality of semiconductor light emitting elements of the adhesive carrier to correspond to a plurality of solder bumps on the substrate; Moving one of the substrate and the adhesive carrier so that the temporary fixed layer contacts the plurality of semiconductor light emitting elements; Lowering the temperature of the temporary fixed bed; And bonding the plurality of semiconductor semiconductor light emitting elements to the substrate by melting the solder bumps.
  • a method of transferring a semiconductor light emitting device comprising the step of lowering the temperature of the temporary fixing layer and removing the adhesive carrier between the step of bonding a plurality of semiconductor semiconductor light emitting devices to a substrate by melting solder bumps.
  • the temporary fixing layer is a method of transferring a semiconductor light emitting device formed of one of flux, epoxy, and epoxy flux.
  • the step of moving one of the substrate and the adhesive carrier so that the plurality of semiconductor light emitting elements come into contact with the temporary fixed layer is a method of transferring a semiconductor light emitting element moving so that at least a portion of the semiconductor light emitting element enters the temporary fixed layer.
  • the step of lowering the temperature of the temporary fixed layer is a method of transferring a semiconductor light emitting device to lower the temperature of the temporary fixed layer to 0°C or less.
  • the step of lowering the temperature of the temporary pinned layer is a method of transferring a semiconductor light emitting device to lower the temperature of the temporary pinned layer to make the state of the temporary pinned layer from a liquid state to a solid state.
  • the step of lowering the temperature of the temporary pinned layer is a method of transferring the semiconductor light emitting element by lowering the temperature of the temporary pinned layer so that the viscosity of the temporary pinned layer is greater than or equal to the size at which the semiconductor light emitting element is fixed to the temporary pinned layer.
  • a method of transporting a semiconductor light emitting device comprising irradiating ultraviolet rays to the adhesive carrier to lower the adhesive force between the adhesive carrier and the plurality of semiconductor light emitting elements.
  • a method of transporting a semiconductor light-emitting device wherein the adhesive carrier comprises a substrate that transmits ultraviolet rays and an adhesive layer whose adhesive force varies with ultraviolet rays.
  • Arrangement of a plurality of semiconductor light emitting elements in an adhesive carrier is a method of transferring a semiconductor light emitting element in which three semiconductor light emitting elements emitting different colors are arranged in one unit.
  • the solder bump is a SAC ball, and the upper surface of the solder bump is a flat surface of the semiconductor light emitting device transfer method.
  • a semiconductor light emitting device transfer apparatus comprising: a first fixing plate for fixing a substrate including a temporary fixing layer in which a plurality of solder bumps are arranged and covering a plurality of solder bumps; A second fixing plate to which an adhesive carrier in which a plurality of semiconductor light emitting elements are arranged is fixed; And a cooling unit that lowers the temperature of the temporary fixed layer of the substrate.
  • a UV light irradiating unit for irradiating ultraviolet light toward the adhesive carrier
  • the second fixing plate is a semiconductor light emitting device transfer device formed of a material that can transmit ultraviolet rays.
  • the cooling unit is a device for transferring a semiconductor light emitting device that lowers the temperature of the temporary fixed layer to 0°C or less.
  • the cooling unit is a semiconductor light emitting device transfer device that maintains the temperature of the temporary fixed layer at minus 40°C within 10 minutes.
  • the first fixing plate includes a vacuum suction port, and a semiconductor light emitting device transfer device for fixing the substrate to the first fixing plate using the vacuum suction port.
  • the second fixing plate includes a vacuum suction port, and a semiconductor light emitting device transfer device for fixing the adhesive carrier to the second fixing plate using the vacuum suction port.
  • a semiconductor light emitting device transfer device that moves at least one of the first fixing plate and the second fixing plate in the xy plane to align the substrate and the adhesive carrier.
  • a semiconductor light emitting device transfer device that moves at least one of the first fixed plate and the second fixed plate in the z-axis direction to contact the temporary fixed layer of the substrate and the plurality of semiconductor light emitting elements of the adhesive carrier.
  • a cover for covering the first fixing plate includes, a semiconductor light emitting device transfer device capable of a reflow process inside the cover while the cover is covered.
  • a transfer device for a semiconductor light emitting device that solves the problem of a method for transporting a semiconductor light emitting device using an adhesive carrier without using a transport head.

Abstract

The present disclosure relates to a method for transferring semiconductor light emitting elements, the method including: a step for preparing a substrate on which a plurality of solder bumps are arranged and which includes a temporary fixed layer that covers the plurality of solder bumps, and preparing an adhesive carrier in which a plurality of semiconductor light emitting elements are arranged; a step in which the plurality of semiconductor light emitting elements of the adhesive carrier are correspondingly arranged on the plurality of solder bumps of the substrate; a step for moving one among the substrate and the adhesive carrier such that the temporary fixed layer contacts the plurality of semiconductor light emitting elements; a step for lowering the temperature of the temporary fixed layer; and a step for melting the solder bumps and bonding the plurality of semiconductor light emitting elements to the substrate.

Description

반도체 발광소자의 이송방법Method of transferring semiconductor light emitting element
본 개시(Disclosure)는 전체적으로 반도체 발광소자의 이송방법에 관한 것으로, 특히 한 번에 복수 개의 반도체 발광소자를 기판에 이송하는 방법에 관한 것이다.The present disclosure (Disclosure) relates to a method of transferring a semiconductor light emitting device as a whole, and particularly to a method of transferring a plurality of semiconductor light emitting devices to a substrate at a time.
또한 본 개시(Disclosure)는 전체적으로 반도체 발광소자의 이송장치에 관한 것으로, 특히 한 번에 복수 개의 반도체 발광소자를 기판에 이송하는 장치에 관한 것이다.In addition, the present disclosure (Disclosure) relates to a transfer device of a semiconductor light emitting device as a whole, and more particularly to a device for transferring a plurality of semiconductor light emitting devices to a substrate at a time.
여기서, 반도체 발광소자는 전자와 정공의 재결합을 통해 빛을 생성하는 반도체 광소자를 의미하며, 3족 질화물 반도체 발광소자(LED, LD)를 예로 들 수 있다. 3족 질화물 반도체는 Al(x)Ga(y)In(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)로 된 화합물로 이루어진다. 이외에도 적색 발광에 사용되는 GaAs계 반도체 발광소자 등을 예로 들 수 있다.Here, the semiconductor light emitting device means a semiconductor optical device that generates light through recombination of electrons and holes, and examples include a group 3 nitride semiconductor light emitting device (LED, LD). The group 3 nitride semiconductor is composed of a compound of Al(x)Ga(y)In(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1). In addition, a GaAs-based semiconductor light-emitting device used for red light emission is exemplified.
여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art). Here, background technology is provided in connection with the present disclosure, and this does not necessarily mean prior art.
최근에는 디스플레이 기술분야에서 박형, 플렉서블 등의 우수한 특성을 가지는 디스플레이 장치가 개발되고 있다. 이에 반해, 현재 상용화된 주요 디스플레이는 LCD(Liguid Crystal Display)와 AMOLED(Active MatrixOrganic Light Emitting Diodes)로 대표되고 있다. 그러나, LCD의 경우에 빠르지 않은 반응 시간과, 플렉서블의 구현이 어렵다는 문제점이 존재하고, AMOLED의 경우에 수명이 짧고, 양산 수율이 좋지 않을 뿐 아니라 플렉서블의 정도가 약하다는 취약점이 존재한다. 한편, 발광 다이오드(Light Emitting Diode: LED)는 전류를 빛으로 변환시키는 잘 알려진 반도체 발광소자로 반도체 발광소자를 이용한 직접 발광형 디스플레이가 개발되고 있다. 특히 반도체 발광소자의 크기가 작아지면서(미니 LED, 마이크로 LED 등) LCD 나 AMOLED 디스플레이가 갖는 문제를 해결하기 위해 반도체 발광소자를 사용한 직접 발광형 디스플레이 개발이 활발히 이루어지고 있다. 반도체 발광소자를 이용한 직접 발광형 디스플레이에 대한 선행기술로는 한국등록특허공보 제1890934호에 기재되어 있다. 다만 반도체 발광소자를 디스플레이에 적용하는 경우에 웨이퍼 상에서 반도체 발광소자를 다량으로 성장시킨 후에 디스플레이의 픽셀에 해당하는 위치로 이송시키는 것이 필요하다. 이러한 이송의 방법 중에는 PDMS 스템프 방식의 이송헤드(Head)나 정전 그립퍼(gripper) 헤드를 이용하는 방법 등이 있으나, 이들은 모두 높은 제작 비용과 낮은 생산 수율이라는 문제를 가지고 있다. 이송헤드와 관련된 선행기술로는 한국등록특허공보 제1793543호, 제1704152호 등에 기재되어 있다.2. Description of the Related Art Recently, display devices having excellent characteristics such as thin and flexible have been developed in the field of display technology. On the other hand, the main displays currently commercialized are represented by LCD (Liguid Crystal Display) and AMOLED (Active Matrix Organic Light Emitting Diodes). However, in the case of LCD, there are problems that the reaction time is not fast and the implementation of the flexible is difficult, and in the case of the AMOLED, the life span is short, the mass production yield is poor, and the degree of flexibility is weak. Meanwhile, a light emitting diode (LED) is a well-known semiconductor light emitting device that converts current into light, and a direct light emitting display using a semiconductor light emitting device has been developed. In particular, as the size of the semiconductor light emitting device becomes smaller (mini LED, micro LED, etc.), to solve the problems of the LCD or AMOLED display, direct light emitting display using the semiconductor light emitting device is actively being developed. Prior art for a direct light emitting display using a semiconductor light emitting device is described in Korean Registered Patent Publication No. 1890934. However, when a semiconductor light emitting device is applied to a display, it is necessary to transfer the semiconductor light emitting device to a position corresponding to a pixel of the display after growing a large amount of the semiconductor light emitting device on the wafer. Among these transfer methods, there is a method using a PDMS stamp-type transfer head or an electrostatic gripper head, but they all have problems of high production cost and low production yield. Prior art related to the transfer head is described in Korean Registered Patent Publication Nos. 1793543 and 1704152.
도 1 및 도 2는 한국공개특허공보 제2018-0079863호에 기재된 반도체 발광소자의 이송방법의 일 예를 보여주는 도면이다. 설명의 편의를 위해 도면 기호를 일부 변경하였다.1 and 2 are views showing an example of a method of transferring a semiconductor light emitting device described in Korean Patent Publication No. 2018-0079863. For convenience of explanation, some drawing symbols have been changed.
먼저 제어 회로가 형성된 액티브 매트릭스 기판(10)이 준비된다(S1). 이후 다수의 솔더 범프(11, 12)들이 액티브 매트릭스 기판(10)의 상면에 1차 전사 프린팅된다(S2). 이후 다수의 반도체 발광소자(20)들이 액티브 매트릭스 기판(10)의 상면에 2차 전사 프린팅 된다(S3). 2차 전사 프린팅 단계(S3)는, 롤투롤(roll to roll) 방식의 전사 프린팅 기술을 이용하여, 반도체 발광소자 지지체(21) 상에 일정 행렬 배열로 배치된 반도체 발광소자(20)들을 원래의 행렬 배열 그대로 액티브 매트릭스 기판(10) 상에 옮겨 부착시키는 것을 포함한다. 2차 전사 프린팅을 위해, 접착 캐리어(30)와, 픽업 롤러(31)와, 플레이싱 롤러(32)가 이용된다. 2차 전사 프린팅 단계와 동시에 솔더 범프(11, 12)들의 가열 및 압축에 의한 본딩이 이루어질 수 있으며, 그와 달리, 2차 전사 프린팅 단계 후, 솔더 범프(11, 12) 들의 가열 및 압축에 의한 본딩이 이루어질 수도 있다.First, the active matrix substrate 10 on which the control circuit is formed is prepared (S1). Thereafter, a plurality of solder bumps 11 and 12 are first transferred and printed on the upper surface of the active matrix substrate 10 (S2). Thereafter, a plurality of semiconductor light emitting devices 20 are subjected to secondary transfer printing on the top surface of the active matrix substrate 10 (S3). In the second transfer printing step S3, the semiconductor light emitting elements 20 arranged in a matrix arrangement on the semiconductor light emitting element support 21 using the roll-to-roll transfer printing technique are original. It includes moving and attaching on the active matrix substrate 10 as it is in a matrix arrangement. For secondary transfer printing, an adhesive carrier 30, a pick-up roller 31, and a positioning roller 32 are used. At the same time as the second transfer printing step, bonding by heating and compression of the solder bumps 11 and 12 may be performed. Alternatively, after the second transfer printing step, the solder bumps 11 and 12 may be heated and compressed. Bonding may also occur.
이송헤드를 이용하여 개별적으로 이송하는 경우 이송의 정확도가 높은 장점이 있지만 이송시간이 오래 걸리는 단점이 있다. 접착 캐리어(30)를 이용하여 한 번에 이송하는 경우 이송시간이 단축되지만 솔더 범프(11, 12)들의 가열 및 압축에 의하여 본딩 전에 접착 캐리어(30)를 분리하는 과정에서 반도체 발광소자의 배열이 흐트러질 수 있다. 또한 접착 캐리어(30)를 분리하지 않고 솔더 범프(11, 12)에 의한 본딩을 하는 경우에도 솔더 범프(11, 12)에 의한 본딩이 고온에서 이루어지기 때문에 접착 캐리어(30)와 기판(10)의 열팽창계수의 차이로 반도체 발광소자의 배열이 흐트러질 수 있다. 접착 캐리어(30)를 분리하지 않고 솔더 범프(11, 12)에 의한 본딩 과정에서 열팽창 계수의 차이로 인해 반도체 발광소자의 배열이 흐트러지는 것을 방지하기 위해서 반도체 발광소자를 일정한 힘으로 누르는 압축이 필요하며, 압축에 의해 반도체 발광소자에 손상이 갈 수도 있다. When using the transfer head to transfer individually, there is an advantage of high accuracy of transfer, but there is a disadvantage that the transfer time is long. When transporting at one time by using the adhesive carrier 30, the transfer time is shortened, but the arrangement of the semiconductor light emitting elements in the process of separating the adhesive carrier 30 before bonding by heating and compression of the solder bumps 11 and 12 is performed. It can be distracting. In addition, even when bonding by solder bumps 11 and 12 without separating the adhesive carrier 30, since the bonding by the solder bumps 11 and 12 is performed at a high temperature, the adhesive carrier 30 and the substrate 10 The arrangement of semiconductor light emitting devices may be disturbed due to a difference in thermal expansion coefficient of. In order to prevent the arrangement of the semiconductor light emitting devices from being disturbed due to a difference in thermal expansion coefficient in the bonding process by the solder bumps 11 and 12 without separating the adhesive carrier 30, it is necessary to compress the semiconductor light emitting device with a constant force. The semiconductor light emitting device may be damaged by compression.
본 개시에서는 접착 캐리어를 사용하는 반도체 발광소자의 이송방법의 문제점을 해결한 반도체 발광소자의 이송방법을 제공하고자 한다.The present disclosure is to provide a method of transferring a semiconductor light emitting device that solves the problem of a method of transferring a semiconductor light emitting device using an adhesive carrier.
또한 본 개시에서는 접착 캐리어를 사용하는 반도체 발광소자의 이송방법의 문제점을 해결한 반도체 발광소자의 이송장치를 제공하고자 한다.In addition, the present disclosure is to provide a semiconductor light emitting device transfer device that solves the problem of a method of transporting a semiconductor light emitting device using an adhesive carrier.
이에 대하여 '발명의 실시를 위한 형태'의 후단에 기술한다.This will be described at the end of'Form for Invention'.
여기서는, 본 개시의 전체적인 요약(Summary)이 제공되며, 이것이 본 개시의 외연을 제한하는 것으로 이해되어서는 아니 된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).Here, an overall summary of the present disclosure is provided, which should not be understood as limiting the appearance of the present disclosure.(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).
본 개시에 따른 일 태양에 의하면(According to one aspect of the present disclosure), 반도체 발광소자의 이송방법에 있어서, 복수의 솔더 범프가 배열되고 복수의 솔더 범프를 덮고 있는 임시 고정층을 포함하는 기판 및 복수의 반도체 발광소자가 배열된 접착 캐리어를 준비하는 단계; 기판의 복수의 솔더 범프 위에 접착 캐리어의 복수의 반도체 발광소자가 대응되도록 정렬하는 단계; 임시 고정층과 복수의 반도체 발광소자가 접촉하도록 기판 및 접착 캐리어 중 하나를 이동하는 단계; 임시 고정층의 온도를 낮추는 단계; 그리고 솔더 범프를 녹여 복수의 반도체 반도체 발광소자를 기판에 본딩(bonding)하는 단계;를 포함하는 반도체 발광소자의 이송방법이 제공된다.According to an aspect of the present disclosure (According to one aspect of the present disclosure), in a method of transferring a semiconductor light emitting device, a plurality of solder bumps are arranged and a substrate including a temporary fixed layer covering a plurality of solder bumps and a plurality of Preparing an adhesive carrier in which the semiconductor light emitting elements are arranged; Aligning a plurality of semiconductor light emitting elements of the adhesive carrier to correspond to a plurality of solder bumps on the substrate; Moving one of the substrate and the adhesive carrier so that the temporary fixed layer contacts the plurality of semiconductor light emitting elements; Lowering the temperature of the temporary fixed bed; And bonding a plurality of semiconductor semiconductor light-emitting device by melting the solder bumps (bonding) to the substrate; is provided a method of transferring a semiconductor light-emitting device comprising a.
본 개시에 따른 다른 태양에 의하면(According to another aspect of the present disclosure), 반도체 발광소자의 이송장치에 있어서, 복수의 솔더 범프가 배열되고 복수의 솔더 범프를 덮고 있는 임시 고정층을 포함하는 기판을 고정하는 제1 고정판; 복수의 반도체 발광소자가 배열된 접착 캐리어가 고정되는 제2 고정판; 그리고 기판의 임시 고정층의 온도를 낮추는 냉각부;를 포함하는 반도체 발광소자의 이송장치가 제공된다.According to another aspect of the present disclosure (According to another aspect of the present disclosure), in a semiconductor light emitting device transport device, a plurality of solder bumps are arranged and a substrate including a temporary fixing layer covering a plurality of solder bumps is fixed. The first fixed plate; A second fixing plate to which an adhesive carrier in which a plurality of semiconductor light emitting elements are arranged is fixed; And a cooling unit for lowering the temperature of the temporary fixed layer of the substrate; is provided with a semiconductor light emitting device transfer device comprising a.
이에 대하여 '발명의 실시를 위한 형태'의 후단에 기술한다.This will be described at the end of'Form for Invention'.
도 1 및 도 2는 한국공개특허공보 제2018-0079863호에 기재된 반도체 발광소자의 이송방법의 일 예를 보여주는 도면,1 and 2 are views showing an example of a method of transferring a semiconductor light emitting device described in Korean Patent Publication No. 2018-0079863,
도 3은 본 개시에 따른 반도체 발광소자의 이송방법의 일 예를 나타내는 흐름도,3 is a flowchart illustrating an example of a method of transferring a semiconductor light emitting device according to the present disclosure,
도 4는 본 개시에 따른 기판의 일 예를 보여주는 도면,4 is a view showing an example of a substrate according to the present disclosure,
도 5는 본 개시에 따른 접착 캐리어의 일 예를 보여주는 도면,5 is a view showing an example of an adhesive carrier according to the present disclosure,
도 6 내지 도 7은 S2 단계 내지 S6 단계의 일 예를 도시한 도면,6 to 7 are views showing an example of steps S2 to S6,
도 8은 본 개시에 따른 반도체 발광소자의 이송장치의 일 예를 보여주는 개념도,8 is a conceptual view showing an example of a transfer device of a semiconductor light emitting device according to the present disclosure,
도 9는 본 개시에 따른 냉각부의 일 예를 보여주는 도면,9 is a view showing an example of a cooling unit according to the present disclosure,
도 10은 본 개시에 따른 반도체 발광소자의 이송장치의 다른 예를 보여주는 도면.10 is a view showing another example of the transfer device of the semiconductor light emitting device according to the present disclosure.
이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)). 이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)).Hereinafter, the present disclosure will be described in detail with reference to the accompanying drawings (The present disclosure will now be described in detail with reference to the accompanying drawing(s)). Hereinafter, the present disclosure will be described in detail with reference to the accompanying drawings (The present disclosure will now be described in detail with reference to the accompanying drawing(s)).
도 3은 본 개시에 따른 반도체 발광소자의 이송방법의 일 예를 보여주는 흐름도이다.3 is a flowchart illustrating an example of a method of transferring a semiconductor light emitting device according to the present disclosure.
반도체 발광소자의 이송방법은 먼저 복수의 솔더 범프가 배열되고 복수의 솔더 범프를 덮고 있는 임시 고정층을 포함하는 기판 및 복수의 반도체 발광소자가 배열된 접착 캐리어를 준비한다(S1). 이후 복수의 솔더 범프 위에 복수의 반도체 발광소자가 대응되도록 정렬한다(S2). 이후 임시 고정층과 복수의 반도체 발광소자가 접촉하도록 기판 및 접착 캐리어 중 하나를 이동한다(S3). 이후 임시 고정층의 온도를 낮춘다(S4). 이후 접착 캐리어를 제거한다(S5). 이후 솔더 범프를 녹여 복수의 반도체 반도체 발광소자를 기판에 본딩(bonding)한다(S6). 각각의 단계에 대해서 도 4 내지 도 7에서 자세히 설명한다.In a method of transferring a semiconductor light emitting device, first, a substrate including a plurality of solder bumps and a temporary fixed layer covering the plurality of solder bumps and an adhesive carrier including a plurality of semiconductor light emitting devices are prepared (S1). Thereafter, a plurality of semiconductor light emitting elements are arranged on the plurality of solder bumps (S2). Thereafter, one of the substrate and the adhesive carrier is moved so that the temporary fixed layer contacts the plurality of semiconductor light emitting elements (S3). Thereafter, the temperature of the temporary fixed bed is lowered (S4). Thereafter, the adhesive carrier is removed (S5). Thereafter, the solder bumps are melted to bond a plurality of semiconductor semiconductor light emitting devices to the substrate (S6). Each step will be described in detail in FIGS. 4 to 7.
도 4는 본 개시에 따른 기판의 일 예를 보여주는 도면이다.4 is a view showing an example of a substrate according to the present disclosure.
도 4(a)는 평면도이고 도 4(b)는 AA'를 따라 자른 단면도이다. 4(a) is a plan view and FIG. 4(b) is a cross-sectional view taken along AA'.
기판(100)은 회로패턴(120)이 형성된 PCB(Printed Circuit Moard)일 수 있다. 예를 들어 도 1에 기재된 액티브 매트릭스 기판(10)일 수 있으며, 도 4는 회로패턴(120)이 형성된 반대면에 회로패턴(120)과 전기적으로 연결된 전극이 형성된 PCB를 보여준다. 기판(100)은 픽셀(110)마다 반도체 발광소자와 전기적으로 연결될 수 있는 회로패턴(120)을 포함하고 있다. 도 4에서는 설명의 편의를 위해 회로패턴(120)을 픽셀(110) 일부에만 도시하였지만 모든 픽셀(110)에 회로패턴(120)이 형성될 수 있다. 또한 기판(100)은 반도체 발광소자를 기판(100)에 본딩(bonding)하기 위해 사용되는 복수의 솔더 범프(130)를 포함하고 있다. 솔더 범프(130)는 SAC(Sn-Ag-Cu) 볼(ball) 일 수 있다. 또한 기판(100)은 솔더 범프(130)를 덮고 있는 임시 고정층(140)을 포함할 수 있다. 임시 고정층(140)은 플럭스(Flux), 에폭시(Epoxy) 및 에폭시 플럭시 중 적어도 하나의 물질로 형성될 수 있다. 솔더 범프(130)가 주석(Sn) 또는 SAC(Sn-Ag-Cu)로 형성된 경우 Sn-Pb로 솔더 범프(130)가 형성되었을 때 보다 녹는점이 높아지는 단점이 있는데 플럭스를 사용하는 경우 주석(Sn) 또는 SAC(Sn-Ag-Cu)로 형성된 솔더 범프(130)의 녹는점을 낮출 수 있어서 주석(Sn) 또는 SAC(Sn-Ag-Cu)로 형성된 솔더 범프(130)를 사용하는 경우 대부분 사용하고 있다. 본 개시에서는 주석(Sn) 또는 SAC(Sn-Ag-Cu)로 형성된 솔더 범프(130)를 사용하는 경우 사용되는 플럭스를 임시 고정층(140)으로 사용하여 플럭스 이외에 별도로 접착층을 사용하지 않고서도 접착 캐리어에 부착된 복수의 반도체 발광소자를 기판(100)에 본딩하기 전에 임시 고정할 수 있도록 하였으며 자세한 것은 도 6 내지 도 7에서 설명한다.The substrate 100 may be a PCB (Printed Circuit Moard) on which the circuit pattern 120 is formed. For example, it may be the active matrix substrate 10 described in FIG. 1, and FIG. 4 shows a PCB on which an electrode electrically connected to the circuit pattern 120 is formed on an opposite surface on which the circuit pattern 120 is formed. The substrate 100 includes a circuit pattern 120 that can be electrically connected to a semiconductor light emitting element for each pixel 110. In FIG. 4, for convenience of description, the circuit pattern 120 is illustrated only in a part of the pixel 110, but the circuit pattern 120 may be formed in all the pixels 110. In addition, the substrate 100 includes a plurality of solder bumps 130 used to bond the semiconductor light emitting device to the substrate 100. The solder bump 130 may be a SAC (Sn-Ag-Cu) ball. In addition, the substrate 100 may include a temporary fixed layer 140 covering the solder bumps 130. The temporary fixing layer 140 may be formed of at least one of flux, epoxy, and epoxy flux. When the solder bump 130 is formed of tin (Sn) or SAC (Sn-Ag-Cu), there is a disadvantage that the melting point is higher than when the solder bump 130 is formed of Sn-Pb, but when using flux, tin (Sn) ) Or SAC (Sn-Ag-Cu) can be used to lower the melting point of the solder bump 130, so most of them are used when using the solder bump 130 formed of tin (Sn) or SAC (Sn-Ag-Cu). Doing. In the present disclosure, when a solder bump 130 formed of tin (Sn) or SAC (Sn-Ag-Cu) is used, the flux used as a temporary fixing layer 140 is used to form an adhesive carrier without using an adhesive layer other than the flux. A plurality of semiconductor light-emitting devices attached to the substrate 100 can be temporarily fixed before bonding to the substrate 100, and will be described in detail with reference to FIGS. 6 to 7.
도 5는 본 개시에 따른 접착 캐리어의 일 예를 보여주는 도면이다.5 is a view showing an example of an adhesive carrier according to the present disclosure.
도 5(a)는 평면도이고 도 5(b)는 BB'를 따라 자른 단면도이다. Fig. 5(a) is a plan view and Fig. 5(b) is a cross-sectional view taken along BB'.
접착 캐리어(200)는 자외선이 투과할 수 있는 기재(201) 위에 자외선에 의해 접착력이 변동하는 접착층(202)을 포함할 수 있다. 복수의 반도체 발광소자(210, 220, 230)는 접착층(202)과 접촉하여 배열된다. 복수의 반도체 발광소자(210, 220, 230)의 배열은 기판(100)의 픽셀(110) 및 회로패턴(120)에 대응하여 배열될 수 있다. 기판(100)의 픽셀(110)과 비교할 수 있도록 점선(240)으로 가상의 픽셀(241)을 도시하였다. 가상의 픽셀(241)마다 1개의 반도체 발광소자가 위치할 수도 있지만 본 개시에서는 서로 다른 색을 발광하는 3 개의 반도체 발광소자가 위치하고 있다. 예를 들어 도 5와 같이 적색을 발광하는 반도체 발광소자(210), 녹색을 발광하는 반도체 발광소자(220) 및 청색을 발광하는 반도체 발광소자(230)가 하나의 단위가 되어 가상의 픽셀(241) 내부에 위치할 수 있다. 도 5에서도 설명의 편의를 위해 가상의 픽셀(241) 일부에만 반도체 발광소자(210, 220, 230)를 도시하였으나 모든 가상의 픽셀(241)에 반도체 발광소자(210, 220, 230)가 위치할 수 있다. 또한 반도체 발광소자는 플립칩, 수직칩 및 래터럴 칩의 다양한 종류가 가능하지만 플립칩이 기판(100)에 본딩하기 용이하여 바람직하다. 도 5(b)를 보면 플립칩 형태의 반도체 발광소자(210)가 전극(211, 212)의 반대 면이 접착층(202)에 접착하도록 접착 캐리어(200)에 접착되어 있는 것을 보여준다. 별도로 도시하지는 않았지만 도 5와 같이 반도체 발광소자(210, 220, 230)를 접착 캐리어(200)에 배열한 후 자외선을 조사하여 접착층(202)의 접착력을 높여 반도체 발광소자(210, 220, 230)가 접착 캐리어(200)에 고정될 수 있다. 웨이퍼에서 복수의 반도체 발광소자(210, 220, 230)를 접착 캐리어(200)로 이송하는 방법은 이송헤드를 사용하여 이송할 수 있다. The adhesive carrier 200 may include an adhesive layer 202 on which the adhesive force fluctuates by ultraviolet rays on a substrate 201 through which ultraviolet rays can pass. The plurality of semiconductor light emitting devices 210, 220 and 230 are arranged in contact with the adhesive layer 202. The arrangement of the plurality of semiconductor light emitting devices 210, 220 and 230 may be arranged corresponding to the pixel 110 and the circuit pattern 120 of the substrate 100. The virtual pixel 241 is illustrated by the dotted line 240 so as to be compared with the pixel 110 of the substrate 100. Although one semiconductor light emitting element may be located for each virtual pixel 241, three semiconductor light emitting elements emitting different colors are positioned in the present disclosure. For example, as shown in FIG. 5, the semiconductor light emitting device 210 emitting red light, the semiconductor light emitting device 220 emitting green light, and the semiconductor light emitting device 230 emitting blue light become one unit, thereby forming a virtual pixel 241. ) Can be located inside. In FIG. 5, for convenience of explanation, only the semiconductor light emitting elements 210, 220, and 230 are shown in a part of the virtual pixel 241, but the semiconductor light emitting elements 210, 220, and 230 are positioned in all the virtual pixels 241. Can. In addition, various types of flip chips, vertical chips and lateral chips are possible for the semiconductor light emitting device, but the flip chip is preferable because it is easy to bond to the substrate 100. Referring to FIG. 5( b), the flip-chip type semiconductor light emitting device 210 shows that the opposite surfaces of the electrodes 211 and 212 are adhered to the adhesive carrier 200 so as to adhere to the adhesive layer 202. Although not separately shown, the semiconductor light emitting devices 210, 220, and 230 are arranged to increase the adhesion of the adhesive layer 202 by irradiating ultraviolet rays after arranging the semiconductor light emitting devices 210, 220, 230 on the adhesive carrier 200, as shown in FIG. Can be fixed to the adhesive carrier 200. The method of transferring the plurality of semiconductor light emitting devices 210, 220, and 230 from the wafer to the adhesive carrier 200 may be transferred using a transfer head.
도 6 내지 도 7은 S2 단계 내지 S6 단계의 일 예를 도시한 도면이다.6 to 7 are views showing an example of steps S2 to S6.
도 6(a)는 S2 단계, 도 6(b)는 S3 단계, 도 6(c)는 S4 단계, 도 7(a)는 S5 단계 및 도 7(b)는 S6 단계를 보여준다. 도 6(a)를 보면 기판(100)의 복수의 솔더 범프(130) 위에 접착 캐리어(200)의 복수의 반도체 발광소자(210)가 대응되도록 정렬한다(S2). 예를 들어 반도체 발광소자(210)의 전극(211, 212)이 솔더 범프(130)와 동일한 점선(250)에 위치하도록 정렬한다. 이후 도 6(b)와 같이 기판(100) 및 접착 캐리어(200) 중 하나를 이동하여 임시 고정층(140)과 복수의 반도체 발광소자(210)가 접촉하도록 한다(S3). 임시 고정층(140)의 두께는 설명을 위해 과장된 것으로 임시 고정층(140)의 두께는 0.05mm 이하일 수 있다. 다만 임시 고정층(140)의 두께가 0.05mm 이상으로 두꺼운 경우 반도체 발광소자(210)가 기판(100)에 본딩되는 경우 본딩 불량이 발생할 수 있다. 임시 고정층(140)과 복수의 반도체 발광소자(210)가 접촉하는 경우 임시 고정층(140) 내부로 반도체 발광소자(210)의 적어도 일부가 들어갈 수 있다. 도 6(b)에서는 반도체 발광소자(210)의 전극(211, 212)이 임시 고정층(140) 내부에 들어가 있다. 임시 고정층(140)은 임시 고정층(140) 내부로 반도체 발광소자(210)의 적어도 일부가 들어갈 수 있는 점성을 갖는 것이 바람직하다. 예를 들어 임시 고정층(140)은 일정한 점성을 갖는 액체상태이며 고체상태가 아니다. 이후 도 6(c)를 보면 임시 고정층(140) 내부로 반도체 발광소자(210)의 적어도 일부가 들어간 상태에서 임시 고정층(140)의 온도를 낮춘다. 온도를 지속적으로 낮추어 임시 고정층(140)의 온도를 0℃ 이하로 낮춘다. 바람직하게는 영하 40℃ 로 낮춘다. 온도가 낮아진 임시 고정층(140)의 점성이 높아져 반도체 발광소자(210)가 임시 고정층(140)에 움직이지 않고 고정될 수 있다. 즉 임시 고정층(140)의 점성 크기가 임시 고정층(140)에서 반도체 발광소자(210)가 움직일 수 없을 정도의 크기를 갖도록 임시 고정층(140)의 온도를 낮춘다. 영하 40℃ 에서 임시 고정층(140)은 완전히 언 고체상태가 되어 반도체 발광소자(210)가 더 확실히 고정될 수 있다. 특히 임시 고정층(140)을 완전히 언 상태로 만들기 위해 영하 40℃ 에서 10분 정도 임시 고정층(140)을 유지할 수 있다. 영하 40℃ 보다 더 낮거나 10분 이상 유지하는 경우 반도체 발광소자(210)에 손상을 줄 수 있다. 또한 온도를 낮추어 임시 고정층(140)에 반도체 발광소자(210)가 고정되기 때문에 별도의 접착제가 필요 없다. 더 나아가 접착 캐리어(200)와 기판(100)의 열에 따른 변형이 거의 발생하지 않는 저온(0℃ 이하) 상태에서 S4 단계가 진행되어 접착 캐리어(200)와 기판(100)의 열팽창계수의 차이로 인한 반도체 발광소자(210)의 배열이 흐트러지는 문제가 거의 발생하지 않는다. 이후 자외선(260)을 접착 캐리어(200)에 조사하여 접착층(202)의 접착력을 낮춘 후 접착 캐리어(200)를 반도체 발광소자(210)로부터 분리하여 제거한다(S5). 자외선(260) 조사는 S4 단계에서 임시 고정층(140)의 냉각 공정과 동시에 진행할 수도 있다. 이후 솔더 범프(130)를 녹여 복수의 반도체 발광소자(210)를 기판(100)에 본딩한다(S6). 본딩 후 임시 고정층(140)은 제거될 수 있다. 예를 들어 리플로우(Reflow) 공정을 통해 솔더 범프(130)를 녹일 수 있다. 이후 도시하지는 않았지만 반도체 발광소자(210) 및 기판(100)의 회로패턴(120)을 보호하기 위해서 반도체 발광소자(210) 및 기판(100)을 투명한 재질(예 : 에폭시 수지, 실리콘 수지 등)의 봉지재로 덮을 수 있다. 더 나아가 기판(100)이 도 1에 기재된 액티브 매트릭스 기판(10)인 경우 그대로 사용할 수 있지만 일반 PCB 기판인 경우 봉지재로 덮은 후 픽셀(110) 단위로 절단하여 3 가지 색(예 : 적색, 녹색, 청색)을 포함한 RGB 패키지로 사용할 수도 있다. Figure 6(a) shows step S2, Figure 6(b) shows step S3, Figure 6(c) shows step S4, Figure 7(a) shows step S5, and Figure 7(b) shows step S6. Referring to FIG. 6(a), a plurality of semiconductor light emitting devices 210 of the adhesive carrier 200 are aligned on the plurality of solder bumps 130 of the substrate 100 (S2). For example, the electrodes 211 and 212 of the semiconductor light emitting device 210 are arranged to be positioned on the same dotted line 250 as the solder bumps 130. Thereafter, as shown in FIG. 6(b), one of the substrate 100 and the adhesive carrier 200 is moved to make the temporary fixed layer 140 and the plurality of semiconductor light emitting devices 210 contact (S3). The thickness of the temporary fixing layer 140 is exaggerated for explanation, and the thickness of the temporary fixing layer 140 may be 0.05 mm or less. However, when the thickness of the temporary fixing layer 140 is greater than 0.05 mm, bonding failure may occur when the semiconductor light emitting device 210 is bonded to the substrate 100. When the temporary fixed layer 140 and the plurality of semiconductor light emitting devices 210 contact each other, at least a portion of the semiconductor light emitting device 210 may enter the temporary fixed layer 140. In FIG. 6( b ), the electrodes 211 and 212 of the semiconductor light emitting device 210 are inside the temporary fixed layer 140. It is preferable that the temporary fixed layer 140 has a viscosity that allows at least a portion of the semiconductor light emitting device 210 to enter the temporary fixed layer 140. For example, the temporary fixed layer 140 is a liquid state having a constant viscosity and is not a solid state. 6(c), the temperature of the temporary fixed layer 140 is lowered while at least a portion of the semiconductor light emitting device 210 is introduced into the temporary fixed layer 140. The temperature of the temporary fixed bed 140 is lowered to 0° C. or lower by continuously lowering the temperature. It is preferably lowered to minus 40°C. Since the viscosity of the temporary fixed layer 140 having a lower temperature is increased, the semiconductor light emitting device 210 may be fixed to the temporary fixed layer 140 without moving. That is, the temperature of the temporary fixed layer 140 is lowered so that the viscous size of the temporary fixed layer 140 has a size such that the semiconductor light emitting device 210 cannot move in the temporary fixed layer 140. The temporary fixing layer 140 becomes completely frozen at 40°C below zero, so that the semiconductor light emitting device 210 can be more surely fixed. In particular, in order to make the temporary fixed layer 140 completely frozen, the temporary fixed layer 140 may be maintained at about 40°C for 10 minutes. When the temperature is lower than minus 40°C or maintained for 10 minutes or more, the semiconductor light emitting device 210 may be damaged. In addition, since the semiconductor light emitting device 210 is fixed to the temporary fixed layer 140 by lowering the temperature, no additional adhesive is required. Furthermore, the S4 step proceeds at a low temperature (below 0° C.) in which deformation due to heat of the adhesive carrier 200 and the substrate 100 hardly occurs due to a difference in thermal expansion coefficient between the adhesive carrier 200 and the substrate 100. Almost no problem occurs due to the arrangement of the semiconductor light emitting device 210 is disturbed. Thereafter, by irradiating ultraviolet rays 260 on the adhesive carrier 200 to lower the adhesive strength of the adhesive layer 202, the adhesive carrier 200 is separated from the semiconductor light emitting device 210 and removed (S5). The UV 260 irradiation may be performed simultaneously with the cooling process of the temporary fixed layer 140 in step S4. Thereafter, the solder bump 130 is melted to bond the plurality of semiconductor light emitting devices 210 to the substrate 100 (S6). After bonding, the temporary pinned layer 140 may be removed. For example, the solder bump 130 may be melted through a reflow process. Although not shown, the semiconductor light emitting device 210 and the substrate 100 are made of a transparent material (eg, epoxy resin, silicone resin, etc.) to protect the circuit pattern 120 of the semiconductor light emitting device 210 and the substrate 100. It can be covered with an encapsulant. Furthermore, when the substrate 100 is the active matrix substrate 10 shown in FIG. 1, it can be used as it is, but in the case of a general PCB substrate, it is covered with an encapsulant and then cut in units of pixels 110 to produce three colors (eg, red, green , Blue).
도 8은 본 개시에 따른 반도체 발광소자의 이송장치의 일 예를 보여주는 개념도이다.8 is a conceptual view showing an example of a transfer device for a semiconductor light emitting device according to the present disclosure.
반도체 발광소자의 이송장치(300)는 복수의 솔더 범프(130)가 배열되고 복수의 솔더 범프(130)를 덮고 있는 임시 고정층(140)을 포함하는 기판(100)을 고정하는 제1 고정판(310), 복수의 반도체 발광소자(210)가 배열된 접착 캐리어(200)가 고정되는 제2 고정판(320) 및 기판(100)의 임시 고정층(140)의 온도를 낮추는 냉각부(330)를 포함할 수 있다. 또한 접착 캐리어(200)를 향해 자외선을 조사하는 자외선 조사부(340)를 포함할 수 있다. 자외선 조사부(340)의 위치는 접착 캐리어(200)를 향해 자외선을 조사하는 한 한정되지 않지만 제2 고정판(320) 위에 위치하는 것이 바람직하다. 제2 고정판(320) 위에서 접착 캐리어(200)를 향해 자외선을 조사하여 자외선이 접착 캐리어(200)에 도달하기 위해서 제2 고정판(320)은 자외선을 투과할 수 있는 재질(예 : 유리 )로 형성되는 것이 바람직하다. 도시하지는 않았지만 자외선 조사부(340)에는 자외선을 발광하는 광원으로 반도체 발광소자 또는 형광 램프 등 자외선을 발광하는 것이라면 제한이 없다. 냉각부(330)는 임시 고정층(140)의 온도를 0℃ 이하로 낮추는 것이라면 냉각 방식이나 형태에 제한이 없으며 도 9에서 다시 설명한다. 냉각부(330)는 임시 고정층(140)의 온도를 영하 40℃ 에서 10 분 이내로 유지하여 임시 고정층(140)을 언 상태로 만들 수 있다. 제1 ㄱ고정판(310) 및 제2 고정판(320)에는 진공 흡입구(311)가 있으며, 진공 흡입구(311)를 사용하여 기판(100) 및 접착 캐리어(200)를 제1 고정판(310) 및 제2 고정판(320)에 고정할 수 있다. 진공 흡입구를 통해 공기를 흡입하기 위한 진공장치(미도시)는 관(301)으로 연결될 수 있다. 제1 고정판(310), 제2 고정판(320), 냉각부(330) 및 자외선 조사부(340)가 부착될 수 있는 몸통(302)에는 이송장치(300)를 제어할 수 있는 제어부(미도시)가 내장되어 있을 수 있으며 사용자 인터페이스(303)를 통해 이송장치(300)를 제어할 수 있다. 또한 제1 고정판(310) 및 제2 고정판(320) 중 적어도 하나를 xy 평면에서 이동하여 제1 고정판(310) 및 제2 고정판(320)에 고정된 기판(100)과 접착 캐리어(200)를 정렬할 수 있다. 제1 고정판(310) 및 제2 고정판(320) 중 적어도 하나를 xy 평면에서 이동하는 것은 제1 ㄱ고정판(310) 및 제2 고정판(320) 중 적어도 하나에 xy 스테이지(미도시)를 부착하여 수동 또는 자동으로 제어할 수 있다. 또한 제1 고정판(310) 및 제2 고정판(320) 중 적어도 하나를 z 축 방향으로 이동하여 반도체 발광소자(210)와 임시 고정층(140)을 접촉하게 할 수 있다. z 축 방향으로 이동은 z 축 이동 가이드(304)를 따라 제1 고정판(310) 및 제2 고정판(320) 중 적어도 하나를 수동 및 자동으로 이동할 수 있다. 도 8에서는 제1 고정판(310)이 몸통(302)의 하부에 있고 제2 고정판(320)이 상부에 있지만 이에 한정되지 않고 제1 고정판(310)이 몸통(302)의 상부에 제2 고정판(320)이 몸통(302)의 하부에 위치할 수 있으며, 이 경우 자외선 조사부(340) 및 냉각부(330)은 각각의 기능을 수행하기 위해 적절한 위치에 놓여질 수 있다. The transfer device 300 of the semiconductor light emitting device includes a first fixing plate 310 fixing a substrate 100 including a temporary fixing layer 140 in which a plurality of solder bumps 130 are arranged and covering the plurality of solder bumps 130. ), a second fixing plate 320 to which the adhesive carrier 200 on which the plurality of semiconductor light emitting elements 210 are arranged is fixed, and a cooling unit 330 to lower the temperature of the temporary fixing layer 140 of the substrate 100. Can. In addition, it may include an ultraviolet irradiation unit 340 for irradiating ultraviolet light toward the adhesive carrier (200). The position of the ultraviolet irradiation unit 340 is not limited as long as it irradiates ultraviolet light toward the adhesive carrier 200, but is preferably located on the second fixing plate 320. The second fixing plate 320 is formed of a material (for example, glass) that can transmit ultraviolet rays to irradiate ultraviolet light onto the adhesive carrier 200 on the second fixing plate 320 so that the ultraviolet rays reach the adhesive carrier 200. It is desirable to be. Although not illustrated, the ultraviolet irradiation unit 340 is not limited as long as it emits ultraviolet light such as a semiconductor light emitting device or a fluorescent lamp as a light source emitting ultraviolet light. If the cooling unit 330 is to lower the temperature of the temporary fixed layer 140 to 0°C or less, there is no limitation in the cooling method or shape, and it will be described again in FIG. 9. The cooling unit 330 may maintain the temperature of the temporary fixed layer 140 at minus 40°C within 10 minutes to make the temporary fixed layer 140 frozen. The first a fixed plate 310 and the second fixed plate 320 has a vacuum suction port 311, and the substrate 100 and the adhesive carrier 200 are first and second fixed plates 310 and 300 by using the vacuum suction port 311. 2 can be fixed to the fixing plate (320). A vacuum device (not shown) for sucking air through the vacuum suction port may be connected to the tube 301. The first fixing plate 310, the second fixing plate 320, the cooling unit 330 and the ultraviolet irradiation unit 340 to which the body 302 can be attached to the control unit that can control the transfer device 300 (not shown) May be built-in and may control the transfer device 300 through the user interface 303. In addition, by moving at least one of the first fixing plate 310 and the second fixing plate 320 in the xy plane, the substrate 100 and the adhesive carrier 200 fixed to the first fixing plate 310 and the second fixing plate 320 are moved. Can be sorted. Moving at least one of the first fixing plate 310 and the second fixing plate 320 in the xy plane is by attaching an xy stage (not shown) to at least one of the first a fixing plate 310 and the second fixing plate 320. It can be controlled manually or automatically. In addition, at least one of the first fixing plate 310 and the second fixing plate 320 may be moved in the z-axis direction to make the semiconductor light emitting element 210 and the temporary fixing layer 140 contact. The movement in the z-axis direction may manually and automatically move at least one of the first fixing plate 310 and the second fixing plate 320 along the z-axis moving guide 304. In FIG. 8, the first fixing plate 310 is at the bottom of the body 302 and the second fixing plate 320 is at the top, but is not limited thereto, and the first fixing plate 310 is the second fixing plate at the top of the body 302 ( 320) may be located in the lower portion of the body 302, in this case, the ultraviolet irradiation unit 340 and the cooling unit 330 may be placed in an appropriate position to perform each function.
도 9는 본 개시에 따른 냉각부의 일 예를 보여주는 도면이다.9 is a view showing an example of a cooling unit according to the present disclosure.
본 개시에 따른 냉각부(330)는 임시 고정층(140)의 온도를 낮추는 것이라면 냉각 방식이나 구조에 제한이 없다. 예를 들어 도 8 및 도 9(a)와 같이 제1 고정판(310) 아래에 냉각부(330)가 위치하고, 냉각부(330)는 펠티어(Peltier) 효과를 이용하여 제1 고정판(310)을 냉각하고 제1 고정판(310) 냉각을 통해 임시 고정층(140)을 냉각하는 방식이다. 냉각부(330)는 제1 고정판(310)의 측면에 위치할 수도 있지만 냉각 효율을 위해 제1 고정판(310) 아래에 위치하는 것이 바람직하다. 냉각부(330)는 열전소자(331)를 사이에 두고 금속판(332, 333)이 위치한다. 상부 금속판(332)은 제1 고정판(310)일 수 있다. 또한 도 9(b)를 보면 냉각부(330)는 질소가스 분사노즐(330)일 수 있다. 즉 관(미도시)을 통해 공급된 질소가스를 분사노즐(330)을 통해 임시 고정층(140)에 분사하여 임시 고정층(140)의 온도를 낮출 수 있다. 질소가스를 사용하는 경우 제1 고정판(310)이 냉각될 필요가 없기 때문에 제1 고정판(310)은 금속과 같이 열전달율이 좋은 재질을 사용하지 않아도 된다. Cooling unit 330 according to the present disclosure is not limited to the cooling method or structure as long as the temperature of the temporary fixed layer 140 is lowered. For example, as shown in FIGS. 8 and 9(a), the cooling unit 330 is located under the first fixing plate 310, and the cooling unit 330 uses the Peltier effect to open the first fixing plate 310. It is a method of cooling and cooling the temporary fixed layer 140 through cooling of the first fixing plate 310. The cooling unit 330 may be located on the side surface of the first fixing plate 310, but is preferably located under the first fixing plate 310 for cooling efficiency. In the cooling unit 330, metal plates 332 and 333 are positioned with the thermoelectric element 331 interposed therebetween. The upper metal plate 332 may be the first fixing plate 310. Also, referring to FIG. 9( b), the cooling unit 330 may be a nitrogen gas injection nozzle 330. That is, the temperature of the temporary fixed layer 140 may be lowered by injecting nitrogen gas supplied through a tube (not shown) into the temporary fixed layer 140 through the injection nozzle 330. When the nitrogen gas is used, the first fixing plate 310 does not need to be cooled, so the first fixing plate 310 does not need to use a material having good heat transfer rate, such as metal.
도 10은 본 개시에 따른 반도체 발광소자의 이송장치의 다른 예를 보여주는 도면이다.10 is a view showing another example of a transfer device for a semiconductor light emitting device according to the present disclosure.
반도체 발광소자의 이송장치는 제1 고정판(310)을 덮는 덮개(350)를 포함할 수 있다. 덮개(350)를 덮고 덮개(350) 내부에서 S6 단계에 해당하는 리플로우 공정을 진행하여 반도체 발광소자(210)가 기판(100)에 본딩될 수 있다. 도 10에서 설명한 것을 제외하고 반도체 발광소자 이송장치는 도 8에 기재된 반도체 발광소자 이송장치와 실질적으로 동일하다. The transfer device of the semiconductor light emitting device may include a cover 350 covering the first fixing plate 310. The semiconductor light emitting device 210 may be bonded to the substrate 100 by covering the cover 350 and performing a reflow process corresponding to step S6 inside the cover 350. The semiconductor light emitting device transfer device is substantially the same as the semiconductor light emitting device transfer device shown in FIG. 8 except for those described with reference to FIG. 10.
이하 본 개시의 다양한 실시 형태에 대하여 설명한다.Hereinafter, various embodiments of the present disclosure will be described.
(1) 반도체 발광소자의 이송방법에 있어서, 복수의 솔더 범프가 배열되고 복수의 솔더 범프를 덮고 있는 임시 고정층을 포함하는 기판 및 복수의 반도체 발광소자가 배열된 접착 캐리어를 준비하는 단계; 기판의 복수의 솔더 범프 위에 접착 캐리어의 복수의 반도체 발광소자가 대응되도록 정렬하는 단계; 임시 고정층과 복수의 반도체 발광소자가 접촉하도록 기판 및 접착 캐리어 중 하나를 이동하는 단계; 임시 고정층의 온도를 낮추는 단계; 그리고 솔더 범프를 녹여 복수의 반도체 반도체 발광소자를 기판에 본딩(bonding)하는 단계;를 포함하는 반도체 발광소자의 이송방법.(1) A method for transferring a semiconductor light emitting device, comprising: preparing a substrate including a temporary fixed layer covering a plurality of solder bumps and covering a plurality of solder bumps and an adhesive carrier having a plurality of semiconductor light emitting devices; Aligning a plurality of semiconductor light emitting elements of the adhesive carrier to correspond to a plurality of solder bumps on the substrate; Moving one of the substrate and the adhesive carrier so that the temporary fixed layer contacts the plurality of semiconductor light emitting elements; Lowering the temperature of the temporary fixed bed; And bonding the plurality of semiconductor semiconductor light emitting elements to the substrate by melting the solder bumps.
(2) 임시 고정층의 온도를 낮추는 단계와 솔더 범프를 녹여 복수의 반도체 반도체 발광소자를 기판에 본딩(bonding)하는 단계 사이에 접착 캐리어를 제거하는 단계를 포함하는 반도체 발광소자의 이송방법.(2) A method of transferring a semiconductor light emitting device comprising the step of lowering the temperature of the temporary fixing layer and removing the adhesive carrier between the step of bonding a plurality of semiconductor semiconductor light emitting devices to a substrate by melting solder bumps.
(3) 임시 고정층은 플럭스(Flux), 에폭시(Epoxy) 및 에폭시 플럭시 중 하나의 물질로 형성된 반도체 발광소자의 이송방법.(3) The temporary fixing layer is a method of transferring a semiconductor light emitting device formed of one of flux, epoxy, and epoxy flux.
(4) 임시 고정층과 복수의 반도체 발광소자가 접촉하도록 기판 및 접착 캐리어 중 하나를 이동하는 단계는 임시 고정층 내부로 반도체 발광소자의 적어도 일부가 들어가도록 이동하는 반도체 발광소자의 이송방법.(4) The step of moving one of the substrate and the adhesive carrier so that the plurality of semiconductor light emitting elements come into contact with the temporary fixed layer is a method of transferring a semiconductor light emitting element moving so that at least a portion of the semiconductor light emitting element enters the temporary fixed layer.
(5) 임시 고정층의 온도를 낮추는 단계는 임시 고정층의 온도를 0℃ 이하로 낮추는 반도체 발광소자의 이송방법.(5) The step of lowering the temperature of the temporary fixed layer is a method of transferring a semiconductor light emitting device to lower the temperature of the temporary fixed layer to 0°C or less.
(6) 임시 고정층의 온도를 낮추는 단계는 임시 고정층의 온도를 낮추어 임시 고정층의 상태를 액체상태에서 고체상태로 만드는 반도체 발광소자의 이송방법.(6) The step of lowering the temperature of the temporary pinned layer is a method of transferring a semiconductor light emitting device to lower the temperature of the temporary pinned layer to make the state of the temporary pinned layer from a liquid state to a solid state.
(7) 임시 고정층의 온도를 낮추는 단계는 임시 고정층의 온도를 낮추어 임시 고정층의 점성 크기가 반도체 발광소자가 임시 고정층에 고정되는 크기 이상으로 만드는 반도체 발광소자의 이송방법.(7) The step of lowering the temperature of the temporary pinned layer is a method of transferring the semiconductor light emitting element by lowering the temperature of the temporary pinned layer so that the viscosity of the temporary pinned layer is greater than or equal to the size at which the semiconductor light emitting element is fixed to the temporary pinned layer.
(8) 접착 캐리어를 제거하는 단계에서 접착 캐리어에 자외선을 조사하여 접착 캐리어와 복수의 반도체 발광소자 사이의 접착력을 낮추는 것을 포함하는 반도체 발광소자의 이송방법.(8) In the step of removing the adhesive carrier, a method of transporting a semiconductor light emitting device comprising irradiating ultraviolet rays to the adhesive carrier to lower the adhesive force between the adhesive carrier and the plurality of semiconductor light emitting elements.
(9) 접착 캐리어는 자외선을 투과하는 기재 및 자외선에 의해 접착력이 변동하는 접착층을 포함하는 반도체 발광소자의 이송방법.(9) A method of transporting a semiconductor light-emitting device, wherein the adhesive carrier comprises a substrate that transmits ultraviolet rays and an adhesive layer whose adhesive force varies with ultraviolet rays.
(10) 접착 캐리어에 복수의 반도체 발광소자의 배열은 서로 다른 색을 발광하는 3개의 반도체 발광소자가 하나의 단위로 배열된 반도체 발광소자의 이송방법.(10) Arrangement of a plurality of semiconductor light emitting elements in an adhesive carrier is a method of transferring a semiconductor light emitting element in which three semiconductor light emitting elements emitting different colors are arranged in one unit.
(11) 솔더 범프는 SAC 볼(Ball)이며, 솔더 범프의 상면은 평탄면인 반도체 발광소자의 이송방법.(11) The solder bump is a SAC ball, and the upper surface of the solder bump is a flat surface of the semiconductor light emitting device transfer method.
(12) 반도체 발광소자의 이송장치에 있어서, 복수의 솔더 범프가 배열되고 복수의 솔더 범프를 덮고 있는 임시 고정층을 포함하는 기판을 고정하는 제1 고정판; 복수의 반도체 발광소자가 배열된 접착 캐리어가 고정되는 제2 고정판; 그리고 기판의 임시 고정층의 온도를 낮추는 냉각부;를 포함하는 반도체 발광소자의 이송장치.(12) A semiconductor light emitting device transfer apparatus comprising: a first fixing plate for fixing a substrate including a temporary fixing layer in which a plurality of solder bumps are arranged and covering a plurality of solder bumps; A second fixing plate to which an adhesive carrier in which a plurality of semiconductor light emitting elements are arranged is fixed; And a cooling unit that lowers the temperature of the temporary fixed layer of the substrate.
(13) 접착 캐리어를 향해 자외선을 조사하는 자외선 조사부;를 포함하는 반도체 발광소자의 이송장치(13) A UV light irradiating unit for irradiating ultraviolet light toward the adhesive carrier;
(14) 제2 고정판은 자외선이 투과할 수 있는 재질로 형성된 반도체 발광소자의 이송장치.(14) The second fixing plate is a semiconductor light emitting device transfer device formed of a material that can transmit ultraviolet rays.
(15) 냉각부는 임시 고정층의 온도를 0℃ 이하로 낮추는 반도체 발광소자의 이송장치.(15) The cooling unit is a device for transferring a semiconductor light emitting device that lowers the temperature of the temporary fixed layer to 0°C or less.
(16) 냉각부는 임시 고정층의 온도를 영하 40 ℃ 에서 10분 이내로 유지하는 반도체 발광소자의 이송장치.(16) The cooling unit is a semiconductor light emitting device transfer device that maintains the temperature of the temporary fixed layer at minus 40°C within 10 minutes.
(17) 제1 고정판은 진공 흡입구를 포함하며, 진공 흡입구를 사용하여 기판을 제1 고정판에 고정하는 반도체 발광소자의 이송장치.(17) The first fixing plate includes a vacuum suction port, and a semiconductor light emitting device transfer device for fixing the substrate to the first fixing plate using the vacuum suction port.
(18) 제2 고정판은 진공 흡입구를 포함하며, 진공 흡입구를 사용하여 접착 캐리어를 제2 고정판에 고정하는 반도체 발광소자의 이송장치.(18) The second fixing plate includes a vacuum suction port, and a semiconductor light emitting device transfer device for fixing the adhesive carrier to the second fixing plate using the vacuum suction port.
(19) 제1 고정판 및 제2 고정판 중 적어도 하나를 xy 평면에서 이동하여 기판과 접착 캐리어를 정렬하는 반도체 발광소자 이송장치.(19) A semiconductor light emitting device transfer device that moves at least one of the first fixing plate and the second fixing plate in the xy plane to align the substrate and the adhesive carrier.
(20) 제1 고정판 및 제2 고정판 중 적어도 하나를 z축 방향으로 이동하여 기판의 임시 고정층과 접착 캐리어의 복수의 반도체 발광소자를 접촉하는 반도체 발광소자 이송장치.(20) A semiconductor light emitting device transfer device that moves at least one of the first fixed plate and the second fixed plate in the z-axis direction to contact the temporary fixed layer of the substrate and the plurality of semiconductor light emitting elements of the adhesive carrier.
(21) 제1 고정판을 덮는 덮개;를 포함하며, 덮개를 덮은 상태에서 덮개 내부에서 리플로우 공정이 가능한 반도체 발광소자 이송장치.(21) A cover for covering the first fixing plate; includes, a semiconductor light emitting device transfer device capable of a reflow process inside the cover while the cover is covered.
본 개시에 의하면, 이송헤드를 사용하지 않고 접착 캐리어를 사용하는 반도체 발광소자의 이송방법의 문제점을 해결한 반도체 발광소자의 이송방법을 얻을 수 있다.According to the present disclosure, it is possible to obtain a method of transferring a semiconductor light emitting element that solves the problem of a method of transferring a semiconductor light emitting element using an adhesive carrier without using a transfer head.
본 개시에 의하면, 이송헤드를 사용하지 않고 접착 캐리어를 사용하는 반도체 발광소자의 이송방법의 문제점을 해결한 반도체 발광소자의 이송장치를 얻을 수 있다.According to the present disclosure, it is possible to obtain a transfer device for a semiconductor light emitting device that solves the problem of a method for transporting a semiconductor light emitting device using an adhesive carrier without using a transport head.

Claims (11)

  1. 반도체 발광소자의 이송방법에 있어서,In the method of transporting a semiconductor light emitting device,
    복수의 솔더 범프가 배열되고 복수의 솔더 범프를 덮고 있는 임시 고정층을 포함하는 기판 및 복수의 반도체 발광소자가 배열된 접착 캐리어를 준비하는 단계;Preparing a substrate including a temporary fixed layer covering a plurality of solder bumps and covering the plurality of solder bumps and an adhesive carrier in which the plurality of semiconductor light emitting elements are arranged;
    기판의 복수의 솔더 범프 위에 접착 캐리어의 복수의 반도체 발광소자가 대응되도록 정렬하는 단계;Aligning a plurality of semiconductor light emitting elements of the adhesive carrier to correspond to a plurality of solder bumps on the substrate;
    임시 고정층과 복수의 반도체 발광소자가 접촉하도록 기판 및 접착 캐리어 중 하나를 이동하는 단계;Moving one of the substrate and the adhesive carrier so that the temporary fixed layer contacts the plurality of semiconductor light emitting elements;
    임시 고정층의 온도를 낮추는 단계; 그리고Lowering the temperature of the temporary fixed bed; And
    솔더 범프를 녹여 복수의 반도체 반도체 발광소자를 기판에 본딩(bonding)하는 단계;를 포함하는 반도체 발광소자의 이송방법.A method of transporting a semiconductor light emitting device comprising; melting a solder bump to bond a plurality of semiconductor semiconductor light emitting devices to a substrate.
  2. 제1항에 있어서,According to claim 1,
    임시 고정층의 온도를 낮추는 단계와 솔더 범프를 녹여 복수의 반도체 반도체 발광소자를 기판에 본딩(bonding)하는 단계 사이에 접착 캐리어를 제거하는 단계를 포함하는 반도체 발광소자의 이송방법.And removing the adhesive carrier between the step of lowering the temperature of the temporary pinned layer and bonding the plurality of semiconductor semiconductor light emitting elements to the substrate by melting the solder bumps.
  3. 제1항에 있어서,According to claim 1,
    임시 고정층은 플럭스(Flux), 에폭시(Epoxy) 및 에폭시 플럭시 중 하나의 물질로 형성된 반도체 발광소자의 이송방법.The temporary fixed layer is a method of transferring a semiconductor light emitting device formed of one of flux, epoxy, and epoxy flux.
  4. 제1항에 있어서,According to claim 1,
    임시 고정층과 복수의 반도체 발광소자가 접촉하도록 기판 및 접착 캐리어 중 하나를 이동하는 단계는The step of moving one of the substrate and the adhesive carrier so that the temporary fixed layer and the plurality of semiconductor light emitting elements contact each other
    임시 고정층 내부로 반도체 발광소자의 적어도 일부가 들어가도록 이동하는 반도체 발광소자의 이송방법.A method of transferring a semiconductor light emitting device that moves so that at least a portion of the semiconductor light emitting device enters the temporary fixed layer.
  5. 제1항에 있어서,According to claim 1,
    임시 고정층의 온도를 낮추는 단계는The step of lowering the temperature of the temporary fixed bed
    임시 고정층의 온도를 0℃ 이하로 낮추는 반도체 발광소자의 이송방법.A method of transferring a semiconductor light emitting device that lowers the temperature of the temporary fixed layer to 0°C or less.
  6. 제1항에 있어서,According to claim 1,
    임시 고정층의 온도를 낮추는 단계는The step of lowering the temperature of the temporary fixed bed
    임시 고정층의 온도를 낮추어 임시 고정층의 상태를 액체상태에서 고체상태로 만드는 반도체 발광소자의 이송방법.A method of transferring a semiconductor light emitting device that lowers the temperature of the temporary fixed layer to change the state of the temporary fixed layer from a liquid state to a solid state.
  7. 제1항에 있어서,According to claim 1,
    임시 고정층의 온도를 낮추는 단계는The step of lowering the temperature of the temporary fixed bed
    임시 고정층의 온도를 낮추어 임시 고정층의 점성 크기가 반도체 발광소자가 임시 고정층에 고정되는 크기 이상으로 만드는 반도체 발광소자의 이송방법.A method of transporting a semiconductor light emitting device that lowers the temperature of the temporary fixed layer to make the viscous size of the temporary fixed layer more than the size at which the semiconductor light emitting device is fixed to the temporary fixed layer.
  8. 제2항에 있어서,According to claim 2,
    접착 캐리어를 제거하는 단계에서 접착 캐리어에 자외선을 조사하여 접착 캐리어와 복수의 반도체 발광소자 사이의 접착력을 낮추는 것을 포함하는 반도체 발광소자의 이송방법.A method of transferring a semiconductor light emitting device comprising irradiating ultraviolet rays to the adhesive carrier in a step of removing the adhesive carrier to lower the adhesive force between the adhesive carrier and the plurality of semiconductor light emitting devices.
  9. 제8항에 있어서,The method of claim 8,
    접착 캐리어는 자외선을 투과하는 기재 및 자외선에 의해 접착력이 변동하는 접착층을 포함하는 반도체 발광소자의 이송방법.The adhesive carrier is a method of transporting a semiconductor light emitting device including a substrate that transmits ultraviolet rays and an adhesive layer whose adhesive force varies with ultraviolet rays.
  10. 제1항에 있어서,According to claim 1,
    접착 캐리어에 복수의 반도체 발광소자의 배열은 서로 다른 색을 발광하는 3개의 반도체 발광소자가 하나의 단위로 배열된 반도체 발광소자의 이송방법.Arrangement of a plurality of semiconductor light emitting devices on an adhesive carrier is a method of transporting a semiconductor light emitting device in which three semiconductor light emitting devices emitting different colors are arranged as a unit.
  11. 제1항에 있어서,According to claim 1,
    솔더 범프는 SAC 볼(Ball)이며,The solder bump is SAC Ball,
    솔더 범프의 상면은 평탄면인 반도체 발광소자의 이송방법.A method of transferring a semiconductor light emitting device, wherein the upper surface of the solder bump is a flat surface.
PCT/KR2020/000358 2019-01-15 2020-01-09 Method for transferring semiconductor light emitting elements WO2020149571A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020190005202A KR20200088933A (en) 2019-01-15 2019-01-15 Apparatus for transferring semiconductor light emitting device
KR1020190005201A KR102121407B1 (en) 2019-01-15 2019-01-15 Method for transferring semiconductor light emitting device
KR10-2019-0005202 2019-01-15
KR10-2019-0005201 2019-01-15

Publications (1)

Publication Number Publication Date
WO2020149571A1 true WO2020149571A1 (en) 2020-07-23

Family

ID=71613386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/000358 WO2020149571A1 (en) 2019-01-15 2020-01-09 Method for transferring semiconductor light emitting elements

Country Status (1)

Country Link
WO (1) WO2020149571A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335386A (en) * 1997-05-30 1998-12-18 T I F:Kk Semiconductor mounting method
JP2014229856A (en) * 2013-05-27 2014-12-08 パナソニック株式会社 Electronic component mounting method
JP2016167544A (en) * 2015-03-10 2016-09-15 ソニー株式会社 Electronic component, electronic component mounting board and mounting method of electronic component
KR20170011427A (en) * 2015-07-23 2017-02-02 삼성전자주식회사 Method of bonding a bump of a semiconductor package and apparatus for performing the same
KR20170096127A (en) * 2014-12-19 2017-08-23 글로 에이비 Method of making a light emitting diode array on a backplane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335386A (en) * 1997-05-30 1998-12-18 T I F:Kk Semiconductor mounting method
JP2014229856A (en) * 2013-05-27 2014-12-08 パナソニック株式会社 Electronic component mounting method
KR20170096127A (en) * 2014-12-19 2017-08-23 글로 에이비 Method of making a light emitting diode array on a backplane
JP2016167544A (en) * 2015-03-10 2016-09-15 ソニー株式会社 Electronic component, electronic component mounting board and mounting method of electronic component
KR20170011427A (en) * 2015-07-23 2017-02-02 삼성전자주식회사 Method of bonding a bump of a semiconductor package and apparatus for performing the same

Similar Documents

Publication Publication Date Title
WO2020013478A1 (en) Micro-led display and method for manufacturing same
WO2018169243A1 (en) Method for manufacturing display device
WO2021125775A1 (en) Micro-led transfer method and micro-led transfer apparatus
WO2018030695A1 (en) Led module and method for preparing same
WO2019160307A1 (en) Method of arraying micro-led chips for producing led display panel and multi-chip carrier used therefor
WO2021085935A1 (en) Light-emitting element for display, and display apparatus having same
WO2011062408A2 (en) Laser sealing device for glass substrates
WO2021045482A1 (en) Micro led display and method for manufacturing the same
WO2015133705A1 (en) Light emitting device package, backlight unit, lighting device, and method for manufacturing light emitting device package
WO2021029657A1 (en) Micro led display and manufacturing method thereof
WO2020218850A1 (en) Light-emitting diode display panel, display device having same, and method for manufacturing same
US20190103532A1 (en) Laminating structure of electronic device using transferring element, transferring apparatus for fabricating the electronic device and method for fabricating the electronic device
WO2021080311A1 (en) Led display device
WO2020004716A1 (en) Apparatus for simultaneously transferring micro-devices to target object
WO2021002653A1 (en) Method and apparatus for manufacturing led panel
WO2013024916A1 (en) Wavelength conversion chip for a light emitting diode, and method for manufacturing same
WO2020149571A1 (en) Method for transferring semiconductor light emitting elements
CN116779732A (en) Micro-LED chip batch transfer device and batch transfer welding method
KR102121407B1 (en) Method for transferring semiconductor light emitting device
WO2020096325A1 (en) Micro-led positioning error correcting carrier and micro-led transfer system
KR20200088933A (en) Apparatus for transferring semiconductor light emitting device
CN213424968U (en) Miniature LED transfer device
WO2020242175A1 (en) Light emitting element having cantilever electrode, display panel having same, and display device
WO2019088323A1 (en) Stacking structure of electronic element using transfer member, transfer equipment for manufacturing electronic element, and method for manufacturing electronic element
WO2015115858A1 (en) Light emitting device package, backlight unit and method for manufacturing light emitting device package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20740979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20740979

Country of ref document: EP

Kind code of ref document: A1