WO2020149382A1 - Non-positive displacement type pump and liquid supply device - Google Patents

Non-positive displacement type pump and liquid supply device Download PDF

Info

Publication number
WO2020149382A1
WO2020149382A1 PCT/JP2020/001379 JP2020001379W WO2020149382A1 WO 2020149382 A1 WO2020149382 A1 WO 2020149382A1 JP 2020001379 W JP2020001379 W JP 2020001379W WO 2020149382 A1 WO2020149382 A1 WO 2020149382A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
pump
case
suction port
discharge port
Prior art date
Application number
PCT/JP2020/001379
Other languages
French (fr)
Japanese (ja)
Inventor
多津也 蓮子
伸一郎 堀底
直樹 竹内
知司 大村
龍太郎 小林
Original Assignee
株式会社ミツバ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツバ filed Critical 株式会社ミツバ
Priority to BR112021014002-6A priority Critical patent/BR112021014002A2/en
Priority to EP20741647.0A priority patent/EP3913228A4/en
Priority to JP2020566487A priority patent/JP7350020B2/en
Priority to CN202080009587.6A priority patent/CN113423956B/en
Publication of WO2020149382A1 publication Critical patent/WO2020149382A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D5/00Pumps with circumferential or transverse flow
    • F04D5/002Regenerative pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • F02M37/10Feeding by means of driven pumps electrically driven submerged in fuel, e.g. in reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/165Sealings between pressure and suction sides especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/188Rotors specially for regenerative pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/669Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D5/00Pumps with circumferential or transverse flow
    • F04D5/002Regenerative pumps
    • F04D5/008Details of the stator, e.g. channel shape

Definitions

  • the present invention relates to a non-positive displacement pump and a liquid supply device.
  • the non-volumetric pump includes a substantially disk-shaped impeller and a pump case formed so as to cover the entire impeller.
  • the impeller has a plurality of blades formed side by side in the circumferential direction.
  • a plurality of through-flow passages that penetrate the impeller in the plate thickness direction are formed between the blade portions.
  • the pump case houses the impeller rotatably. Further, the pump case has a suction port and a discharge port which are arranged on both sides of the impeller.
  • a non-volume pump is used as a liquid supply device (fuel pump) for vehicles such as motorcycles and four-wheeled vehicles. This type of liquid supply device is arranged in a fuel tank.
  • a seal is provided between the discharge port and the suction port in the direction of rotation of the impeller so that the discharge port and the suction port do not communicate with each other.
  • the circumferential length of the seal portion determines the flow rate characteristic of the non-displacement type pump. That is, if the length of the seal portion in the circumferential direction is short, the amount of fuel drawn into the through passage of the impeller is increased by that much, so that the discharge flow rate of the non-volumetric pump is increased. On the other hand, if the length of the seal portion in the circumferential direction is long, the amount of fuel drawn into the through flow passage of the impeller is reduced by that amount, so the discharge flow rate of the non-volumetric pump is reduced.
  • one of the objects of the present invention is to provide a non-volume pump and a liquid supply device capable of reducing noise during driving while ensuring an appropriate discharge flow rate.
  • the non-positive displacement pump according to the first aspect of the present invention is A disc-shaped impeller, A pump case formed so as to cover the entire impeller and rotatably accommodating the impeller with a radial center of the impeller as a rotation center;
  • the impeller is A plurality of blade portions formed side by side in the circumferential direction, near the outer peripheral portion of the impeller, A plurality of through-flow passages formed between the blade portions adjacent to each other in the circumferential direction and penetrating the impeller in the plate thickness direction
  • the pump case is A storage unit for storing the impeller, A suction port that penetrates the storage portion and the outside of the pump case in the plate thickness direction of the impeller, and that communicates with the through-flow passage, Disposed on the opposite side of the suction port with the impeller interposed therebetween, while penetrating the storage part and the outside of the pump case in the plate thickness direction, a discharge port communicating with the through flow passage, A seal portion provided between the suction port and the discharge port in the circumfer
  • the pump case is An upper case that is in sliding contact with one surface of the impeller and covers the one surface, A lower case that is in sliding contact with the other surface of the impeller opposite to the one surface, and covers the other surface,
  • the storage portion is defined by the upper case and the lower case,
  • the upper case is The discharge port, An arc-shaped first flow path groove provided on a first sliding contact surface facing the impeller and communicating with the discharge port,
  • the lower case is The inlet, An arc-shaped second flow path groove provided on a second sliding contact surface facing the impeller and communicating with the suction port,
  • the seal portion is It is between the discharge port and the suction port and on the rotation trajectory of the through-flow passage.
  • the liquid supply apparatus is The non-positive displacement pump according to the first aspect or the second aspect, A motor unit for driving the non-positive displacement pump, The rotation shaft of the motor unit and the impeller are connected so as not to rotate relative to each other.
  • an appropriate discharge flow rate of the non-displacement pump can be secured. Further, the circumferential distance of the seal portion can be made appropriate, and the reduced pressure boiling of the liquid sent from the discharge port to the suction port can be suppressed. Therefore, it is possible to reduce noise when the non-displacement pump is driven.
  • FIG. 1 is a perspective view of a liquid supply device according to an embodiment of the present invention.
  • FIG. 2 is a sectional view taken along the axial direction of the liquid supply apparatus according to the embodiment of the present invention.
  • FIG. 3 is a perspective view of the impeller according to the embodiment of the present invention.
  • FIG. 4 is a plan view of the upper case according to the embodiment of the present invention viewed from the lower case side.
  • FIG. 5 is a plan view of the lower case according to the embodiment of the present invention as viewed from the upper case side.
  • FIG. 6 is a schematic view of a cross section taken along the axial direction of the pump unit according to the embodiment of the present invention.
  • FIG. 7 is a graph comparing the discharge flow rate of fuel in the case where each sealing portion according to the embodiment of the present invention meets and does not satisfy the sealing condition.
  • FIG. 8 is a graph showing changes in the fuel discharge flow rate and the fuel sound pressure level in the embodiment of the present invention.
  • FIG. 1 is a perspective view of the liquid supply apparatus 1.
  • FIG. 2 is a sectional view taken along the axial direction of the liquid supply apparatus 1.
  • the liquid supply device 1 is used as a fuel pump for vehicles such as motorcycles and four-wheeled vehicles.
  • the liquid supply device 1 is a so-called in-tank type fuel pump arranged in a fuel tank (not shown).
  • the liquid supply device 1 is fitted into the substantially cylindrical metal housing 2 and the inner peripheral surface of the housing 2, and is arranged side by side in the axial direction of the housing 2.
  • the motor unit 3 and the pump unit 4 are provided.
  • the housing 2, the motor unit 3, and the pump unit 4 are arranged coaxially.
  • the liquid supply apparatus 1 is used with the pump unit 4 facing downward in the gravity direction. Therefore, in the following description, the motor unit 3 side may be referred to as the upper side and the pump unit 4 side may be referred to as the lower side.
  • the axial direction of the housing 2, the motor unit 3, and the pump unit 4 is simply the axial direction
  • the radial direction of the housing 2, the motor unit 3, and the pump unit 4 is simply the radial direction, the housing 2, and the motor unit.
  • the circumferential direction of 3 and the pump portion 4 is simply referred to as the circumferential direction.
  • the housing 2 has a motor fitting portion 11 into which the motor portion 3 is fitted, a pump fitting portion 12 into which the pump portion 4 is fitted, the diameter of which is reduced through a step from the motor fitting portion 11. Is integrally molded.
  • a positioning projection 13 is formed on the inner peripheral surface of the pump fitting portion 12 so as to project inward in the radial direction.
  • the positioning protrusion 13 is formed by pressing the housing 2 from the outside in the radial direction by, for example, pressing.
  • the positioning protrusion 13 positions the housing 2 and the pump unit 4 in the circumferential direction.
  • the positioning protrusion 13 is formed in a rectangular shape that is long in the axial direction when viewed in the radial direction.
  • an inner flange portion 12a that extends inward in the radial direction is bent and extends from the lower end of the pump fitting portion 12 in the housing 2.
  • the positioning protrusion 13 and the inner flange 12a position the housing 2 and the pump 4 in the axial direction.
  • the motor unit 3 for example, a brushed motor is adopted.
  • the motor unit 3 closes a substantially cylindrical yoke 5, a permanent magnet 8 provided on the inner peripheral surface of the yoke 5, an armature 6 rotatably provided in the yoke 5, and an upper opening 5 a of the yoke 5.
  • the outlet cover 7 and the brush 25 housed in the outlet cover 7 are the main components.
  • the outer peripheral surface of the yoke 5 is fitted to the inner peripheral surface of the housing 2.
  • the yoke 5 serves as a magnetic path through which the magnetic flux of the permanent magnet 8 passes.
  • the upper opening 5a of the yoke 5 is fitted to the outer peripheral surface of a spigot portion 31 of the outlet cover 7, which will be described later.
  • Positioning of the outlet cover 7 and the yoke 5 in the circumferential direction is carried out by concave and convex fitting between a positioning projection (not shown) formed on the outlet cover 7 and a yoke positioning recess (not shown) formed on the yoke 5.
  • Two permanent magnets 8 are provided on the inner peripheral surface of the yoke 5.
  • the permanent magnet 8 is formed in a substantially semicircular shape along the inner peripheral surface of the yoke 5 when viewed in the axial direction.
  • the axial length of the permanent magnet 8 is set longer than the axial length of the armature core 15.
  • the permanent magnets 8 are arranged so that both axial ends thereof protrude (overhang) from both axial ends of the armature core 15.
  • the magnetic field orientation of the permanent magnet 8 is along the radial direction (the thickness direction of the permanent magnet 8).
  • Such permanent magnets 8 are arranged to face each other in the radial direction around the rotary shaft 14.
  • a minute gap is formed between the inner peripheral surface of the permanent magnet 8 and the radially outer end of the tooth 17 and the resin mold portion 22 of the armature core 15 which will be described later.
  • the armature 6 is fitted and fixed to the rotating shaft 14, the armature core 15 fitted and fixed to the outer peripheral surface of the rotating shaft 14, and the outer peripheral surface of the rotating shaft 14 closer to the outlet cover 7 than the armature core 15.
  • the commutator 16 is mainly used.
  • the armature core 15 has a plurality of teeth 17 that radially extend outward in the radial direction. Winding wires (not shown) are wound around these teeth 17. The end portion of the winding (not shown) is connected to the commutator 16.
  • the commutator 16 is a so-called disc type commutator having a resin-made commutator main body 18 formed in a substantially disc shape. A plurality of segments 19 are arranged side by side in the circumferential direction on one surface 18a of the commutator body 18 opposite to the armature core 15.
  • a riser 21 that is bent and extends toward the armature core 15 side through the outer peripheral surface of the commutator body 18 is integrally formed at the radially outer end of the segment 19.
  • One end of a winding (not shown) is connected to each riser 21.
  • the resin mold portion 22 is formed in a substantially columnar shape. Further, the resin mold portion 22 extends from the pump portion 4 side with respect to the armature core 15 to approximately the center in the axial direction of the commutator body 18. Only the radially outer ends (outer peripheral surface) of the teeth 17 of the armature core 15 are exposed, and the winding wire (not shown) is buried in the resin mold portion 22. A round chamfered portion 22a is formed at a corner portion of the end of the resin mold portion 22 on the pump portion 4 side. As a result, the end of the resin mold portion 22 on the pump portion 4 side is tapered.
  • the outlet cover 7 is formed in a substantially bottomed tubular shape having an opening 7a on the armature core 15 side.
  • the bottom cylindrical portion 7b of the outlet cover 7 is integrally formed with a bearing cylindrical portion 23 projecting toward the armature core 15 side at a substantially radial center thereof.
  • the upper end portion 14a of the rotary shaft 14 is rotatably supported by the bearing cylindrical portion 23.
  • brush holders 24 are integrally formed on the bottom portion 7b of the outlet cover 7 on both sides of the bearing cylindrical portion 23.
  • the brush holder 24 is formed in a box shape having an opening on the commutator 16 side.
  • the brush 25 is accommodated in the brush holder 24 so as to be slidable along the axial direction.
  • a coil spring 26 is stored in the brush holder 24 in a compressed and deformed form.
  • the brush 25 is biased toward the commutator 16 side by a coil spring 26.
  • the tip of the brush 25 projects from the brush holder 24 and is in sliding contact with the segment 19.
  • the bottom portion 7b of the outlet cover 7 is provided with a terminal 27 that vertically penetrates the bottom portion 7b.
  • the brush 25 is connected to the terminal 27 via a pigtail (not shown).
  • An external power source (not shown) is connected to the terminal 27.
  • external power is supplied to the winding (not shown) via the terminal 27, the pigtail (not shown), the brush 25, and the segment 19.
  • a discharge port 28 protruding upward is integrally formed on the bottom portion 7b of the outlet cover 7.
  • the discharge port 28 is a portion where the fuel pumped up by the liquid supply device 1 is discharged, and is connected to a fuel flow path (not shown). Further, the inside and outside of the outlet cover 7 are communicated with each other via the discharge port 28.
  • a positioning piece 32 extending downward is integrally formed on the peripheral wall 7c of the outlet cover 7.
  • the positioning piece 32 is interposed between the permanent magnets 8 and positions the permanent magnet 8 (yoke 5) and the outlet cover 7.
  • the peripheral wall 7c of the outlet cover 7 is formed with a fitting ridge portion 29 over the entire outer peripheral surface so as to project radially outward.
  • the outer diameter of the fitting protruding portion 29 is set to be substantially the same as the inner diameter of the motor fitting portion 11 in the housing 2.
  • the outer peripheral surface of the fitting convex strip 29 is fitted to the inner peripheral surface of the motor fitting portion 11.
  • the upper opening edge 11a of the motor fitting portion 11 is caulked inward in the radial direction from above the fitting protruding portion 29 of the outlet cover 7.
  • a lower part of the peripheral wall 7c of the outlet cover 7 below the fitting protrusion part 29 is an inlay part 31 which is inlay-fitted with the yoke 5.
  • the lower end of the rotary shaft 14 is inserted into the pump unit 4.
  • a non-volume pump having an impeller 40 is used as the pump unit 4.
  • the pump unit 4 includes an impeller 40 and a pump case 41 formed so as to cover the entire impeller 40.
  • the pump case 41 is fitted into the pump fitting portion 12 of the housing 2.
  • FIG. 3 is a perspective view of the impeller 40.
  • the impeller 40 is a member made of a resin material and formed into a substantially disc shape.
  • An insertion hole 61 through which the lower end portion 14b of the rotary shaft 14 can be inserted is formed at a substantially center of the impeller 40 in the radial direction.
  • the lower end portion 14b of the rotary shaft 14 is formed in a substantially D-shaped cross section orthogonal to the axial direction.
  • the insertion hole 61 of the impeller 40 is formed in a substantially D shape when viewed in the axial direction so as to correspond to the cross-sectional shape of the lower end portion 14b of the rotary shaft 14.
  • a plurality of blade portions 62 (see also FIG. 6) having a substantially L-shaped cross section along the axial direction are formed near the outer peripheral portion of the impeller 40.
  • the blade portions 62 are arranged side by side at equal intervals in the circumferential direction so that the circumferential directions are the same.
  • a through passage 63 is formed between the blade portions 62 adjacent to each other in the circumferential direction. The through flow passage 63 penetrates in the plate thickness direction of the impeller 40.
  • the pump case 41 that covers the entire impeller 40 includes an upper case 43, a middle case 44, and a lower case 42.
  • FIG. 4 is a plan view of the upper case 43 viewed from the lower case 42 side (downward).
  • the upper case 43 is disposed on the motor section 3 side of the impeller 40.
  • the upper case 43 is formed in a substantially disc shape so as to cover the upper surface of the impeller 40.
  • a middle case 44 is joined to the outer peripheral portion of the upper case 43.
  • the outer diameter of the upper case 43 is set to be slightly smaller than the outer diameter of the yoke 5.
  • An insertion hole 46 through which the lower end portion 14b of the rotary shaft 14 can be inserted is formed at the center of the upper case 43 in the radial direction.
  • the rotary shaft 14 is rotatably supported in the insertion hole 46 via a slide bearing 59.
  • a substantially annular recess 47 is formed so as to surround the periphery of the insertion hole 46 when viewed in the axial direction.
  • the outer peripheral side of the recess 47 is a contact surface 43b with which the yoke 5 contacts. Since a sufficient space is secured for the contact surface 43b, buckling deformation of the contact surface 43b and the yoke 5 is suppressed even when the lower end of the yoke 5 is contacted with the contact surface 43b. It
  • a discharge port 48 penetrating the upper case 43 in the vertical direction is formed near the outer periphery of the recess 47.
  • a concave portion 48a that widens the opening of the ejection port 48 is formed at the periphery of the ejection port 48.
  • the recess 48a is formed so as to widen toward the lower surface 43c of the upper case 43.
  • the lower surface 43c of the upper case 43 is a first sliding contact surface 43d that is in sliding contact with the impeller 40.
  • a first flow channel groove 64 having a substantially arc shape (substantially C-shaped) when viewed from the axial direction is formed at a position facing the through flow channel 63 of the impeller 40 in the axial direction. ..
  • One end of the first flow path groove 64 in the circumferential direction is communicated with the discharge port 48 (recessed portion 48a).
  • a tapered portion 64a is formed at the other end of the first flow path groove 64 in the circumferential direction so as to be tapered when viewed in the axial direction.
  • the middle case 44 is formed in a substantially ring shape so as to surround the outer peripheral surface of the impeller 40.
  • the middle case 44 is formed integrally with the upper case 43.
  • the outer diameter of the middle case 44 is set to be slightly larger than the outer diameter of the upper case 43.
  • the thickness of the middle case 44 in the axial direction is formed to be substantially the same as or slightly larger than the plate thickness of the impeller 40.
  • FIG. 5 is a plan view of the lower case 42 seen from the upper case 43 side (upper side).
  • the lower case 42 is shown to be generally coincident.
  • the lower case 42 is arranged below the impeller 40.
  • the pump case 41 is formed by an upper case 43 integrally formed with a middle case 44 and a lower case 42 so as to cover the entire impeller 40.
  • the lower surface 43c of the upper case 43 and the upper surface 42a of the lower case 42 form a storage portion 60 that stores the impeller 40.
  • the lower case 42 is formed in a substantially disc shape.
  • the outer diameter of the lower case 42 is set to be substantially the same as the outer diameter of the middle case 44.
  • a substantially cylindrical suction port 53 protruding downward is formed on the outer peripheral side.
  • a tapered hole portion 53a is formed on the upper surface 42a side of the lower case 42 so that the opening area gradually increases toward the upper surface 42a.
  • a step portion 49 is formed on the outer peripheral edge of the lower surface 42b of the lower case 42. The step portion 49 is formed by reducing the diameter of the lower case 42 on the lower surface 42b side. The step portion 49 is formed at a position overlapping the inner flange portion 12a of the housing 2 when viewed in the axial direction.
  • the upper surface 42a of the lower case 42 is a second sliding contact surface 42c that is in sliding contact with the impeller 40.
  • a bearing accommodating recess 54 is formed at a substantially radial center thereof so that the lower end portion 14b of the rotary shaft 14 is exposed.
  • the thrust bearing 55 is housed in the bearing housing recess 54.
  • the lower end portion 14b of the rotary shaft 14 is rotatably supported by the lower case 42 while being in contact with the thrust bearing 55.
  • the thrust bearing 55 receives the thrust load of the rotary shaft 14.
  • the second sliding contact surface 42c of the lower case 42 is substantially axially opposed to the through passage 63 of the impeller 40 and to the first passage groove 64 of the upper case 43 in the axial direction.
  • An arcuate (substantially C-shaped) second flow path groove 65 is formed.
  • One end of the second flow path groove 65 in the circumferential direction is communicated with the suction port 53 (tapered hole portion 53a).
  • a tapered portion 65a is formed so as to be tapered when viewed in the axial direction.
  • a deaeration hole 68 is formed so as to penetrate in the plate thickness direction of the lower case 42, slightly closer to the suction port 53 than the center between the suction port 53 and the tapered portion 65a.
  • the deaeration hole 68 is a hole for discharging vapor (air bubbles) generated in the pump case 41.
  • the discharge port 48 communicated with one end in the circumferential direction of the first flow channel 64, the tapered portion 64 a formed at the other end in the circumferential direction of the first flow channel 64, and the second flow channel 65.
  • the suction port 53 which communicates with one end in the circumferential direction, and the tapered portion 65a, which is formed at the other end in the circumferential direction of the second flow channel groove 65, are arranged alternately. That is, the discharge port 48 axially faces the tapered portion 65a of the second flow path groove 65.
  • the suction port 53 axially faces the tapered portion 64a of the first flow channel 64.
  • the first seal portion 66 for performing the operation is provided between the suction port 53 (tapered hole portion 53a) in the second sliding contact surface 42c of the lower case 42 and the tapered portion 65a of the second flow path groove 65. Between the suction port 53 (tapered hole portion 53a) in the second sliding contact surface 42c of the lower case 42 and the tapered portion 65a of the second flow path groove 65, fuel leakage from the tapered portion 65a to the suction port 53 is suppressed.
  • the second seal portion 67 for The circumferential range (length) of the first seal portion 66 and the circumferential range (length) of the second seal portion 67 match.
  • first seal portion 66 and the second seal portion 67 Details of the first seal portion 66 and the second seal portion 67 will be described later. As can be understood from FIG. 6, the first seal portion 66 and the second seal portion 67 are located between the discharge port 48 and the suction port 53 and on the rotation trajectory of the through passage 63.
  • a square ring 50 as a seal member is attached to the step portion 49 formed on the lower surface 42b of the lower case 42.
  • the square ring 50 is a member having a substantially rectangular cross section and made of a material having excellent oil resistance such as fluororubber.
  • the outer diameter of the square ring 50 is set to be slightly smaller than the outer diameter of the lower case 42. For this reason, the outer peripheral surfaces of the upper case 43, the middle case 44, and the lower case 42 are fitted to the pump fitting portion 12 of the housing 2.
  • a minute gap is formed between the outer peripheral surface of the square ring 50 and the inner peripheral surface of the pump fitting portion 12 of the housing 2.
  • the square ring 50 is brought into contact with the inner flange portion 12a of the housing 2.
  • the positioning protrusion 13 of the housing 2 is inserted into a recess (not shown) formed on the outer peripheral surface of the pump case 41.
  • the housing 2 and the pump portion 4 are positioned in the circumferential direction.
  • the upper opening edge 11a of the motor fitting portion 11 is fitted to the fitting ridge portion of the outlet cover 7 while the square ring 50 is slightly crushed by the step portion 49 of the lower case 42 and the inner flange portion 12a. From above 29, crimp inward in the radial direction.
  • the pump portion 4 is fitted into the pump fitting portion 12 of the housing 2.
  • the motor portion 3 is fitted into the motor fitting portion 11 of the housing 2. Then, the motor part 3 and the pump part 4 are positioned with respect to the housing 2, and the housing 2, the motor part 3 and the pump part 4 are integrated. Further, the square ring 50 ensures the sealing property between the housing 2 and the pump portion 4.
  • FIG. 6 is a schematic view of a cross section along the axial direction of the pump unit 4.
  • the impeller 40 is rotated integrally with the rotating shaft 14.
  • the fuel N is sucked up into the pump case 41 through the suction port 53.
  • the sucked fuel N enters the through passage 63 of the impeller 40, and further enters the first passage groove 64 of the upper case 43 and the second passage groove 65 of the lower case 42.
  • a swirling flow is generated between the impeller 40 and the pump case 41. Due to this swirling flow, the pressure of the fuel in the through passage 63 is increased toward the discharge port 48.
  • the boosted fuel N is discharged into the yoke 5 of the motor unit 3 through the discharge port 48. That is, the pressure of the fuel N at the discharge port 48 is higher than the pressure of the fuel N at the suction port 53.
  • a first seal portion 66 and a second seal portion 67 are provided between the discharge port 48 and the suction port 53. Therefore, the fuel N discharged from the discharge port 48 may leak to a portion of the suction port 53, the first flow channel 64, and the second flow channel 65 that intersects the suction port 53 in the axial direction. It is suppressed.
  • the fuel N discharged into the yoke 5 is pressure-fed to the discharge port 28 through a minute gap between the permanent magnet 8 and the resin mold portion 22 (radially outer ends of the teeth 17 of the armature core 15). Then, the fuel is pressure-fed to the engine (not shown) or the like via the discharge port 28.
  • the circumferential range (length) of the first seal portion 66 and the circumferential range (length) of the second seal portion 67 are set as follows. It is set.
  • a straight line connecting both circumferential ends of the first seal portion 66 and the axis C of the rotary shaft 14 is defined as L1.
  • the both ends in the circumferential direction of the first seal portion 66 are a portion where the straight line L1 passing through the axis C contacts the tapered portion 64a of the first flow path groove 64 and a portion where the straight line L1 contacts the recess 48a of the discharge port 48. ..
  • a straight line connecting both circumferential ends of the second seal portion 67 and the axis C of the rotary shaft 14 is defined as L2.
  • the both ends in the circumferential direction of the second seal portion 67 are locations where the straight line L2 passing through the axis C contacts the tapered portion 65a of the second flow channel groove 65 and the taper hole portion 53a of the suction port 53.
  • the angles ⁇ 1 and ⁇ 2 are set so that 43° ⁇ 1 ⁇ 47° and 43° ⁇ 2 ⁇ 47°.
  • the first seal portion 66 and the second seal portion 67 are formed in a size capable of closing at least two through flow passages 63 between both ends in the circumferential direction.
  • the condition of each of the seal portions 66 and 67 having a size capable of closing the at least two through-flow passages 63 and satisfying the above expression (1) is referred to as a seal condition hereinafter.
  • FIG. 7 when the vertical axis represents the fuel discharge flow rate (hereinafter, simply referred to as fuel discharge flow rate) [L/h] by the pump unit 4, it does not satisfy the case where the seal portions 66 and 67 satisfy the seal condition. It is a graph which compared the discharge flow rate of fuel with the case.
  • “conventional” means that the angle ⁇ 1 between the two straight lines L1 of the first seal portion 66 is 22° and the angle ⁇ 2 between the two straight lines L2 of the second seal portion 67 is 24. This is the case.
  • the “conventional” angles ⁇ 1 and ⁇ 2 do not satisfy the above equation (1).
  • the vertical axis represents the fuel discharge flow rate [L/h] and the fuel sound pressure level [dB] near the suction port 53 when high-pressure fuel has been sent to the suction port 53.
  • 6 is a graph showing changes in the fuel discharge flow rate and the fuel sound pressure level when the axes are angles ⁇ 1 and ⁇ 2 [°] between the two straight lines L1 and L2 of the seal portions 66 and 67. As shown in FIG. 8, within the range in which the angles ⁇ 1 and ⁇ 2 between the two straight lines L1 and L2 of the respective seal portions 66 and 67 satisfy the above equation (1), while satisfying the desired discharge flow rate range W, It can be confirmed that the sound pressure level of can be reduced.
  • the range W of the discharge flow rate is defined as a range in which an acceptable sound pressure level and a practically desirable discharge flow rate can be achieved when the liquid supply apparatus 1 of this type is actually used.
  • the pump portion 4 when each of the seal portions 66 and 67 satisfies the seal condition, the pump portion 4 can secure an appropriate fuel discharge flow rate. Further, the angles ⁇ 1 and ⁇ 2 between the two straight lines L1 and L2 of the seal portions 66 and 67 satisfy the above equation (1), so that the circumferential range (length) of the seal portions 66 and 67 is appropriate. You can As a result, depressurization boiling of the fuel sent from the discharge port 48 to the suction port 53 can be suppressed, the sound pressure level of the pump unit 4 can be reduced, and the noise when the pump unit 4 is driven can be reduced.
  • the pump case 41 of the pump unit 4 has an upper case 43 that covers the upper surface of the impeller 40 and a lower case 42 that covers the lower surface of the impeller 40.
  • the upper case 43 has a discharge port 48 for discharging fuel from the pump unit 4, and a first flow path groove 64 formed in the first sliding contact surface 43d.
  • the lower case 42 has a suction port 53 for sucking fuel into the pump portion 4, and a second flow path groove 65 formed in the second sliding contact surface 42c.
  • the first seal portion 66 is formed between the discharge port 48 (recess 48 a) on the first sliding contact surface 43 d of the upper case 43 and the tapered portion 64 a of the first flow path groove 64.
  • a second seal portion 67 is formed between the suction port 53 (taper hole portion 53a) on the second sliding contact surface 42c of the lower case 42 and the tapered portion 65a of the second flow path groove 65.
  • the liquid supply device 1 used as a fuel pump for a vehicle such as a motorcycle or a four-wheel vehicle has been described.
  • the liquid supply device 1 can be used to pump various liquids.
  • the pump case 41 is configured by the upper case 43, the middle case 44, and the lower case 42 has been described.
  • the present invention is not limited to this, and the integrated upper case 43 and middle case 44 may be referred to as one upper case 43.
  • the pump case 41 only needs to have the storage portion 60 that rotatably stores the impeller 40, and may not be divided into the upper case 43 and the lower case 42.
  • the middle case 44 and the lower case 42 may be integrated, and the middle case 44 and the lower case 42 may be referred to as one lower case 42.
  • the non-positive displacement pump and the liquid supply device of the present invention for example, it is possible to suppress the depressurization boiling of the liquid leaked from the discharge port to the suction port while appropriately ensuring the discharge flow rate.
  • the present invention having this effect is useful for a fuel pump for vehicles such as motorcycles and four-wheeled vehicles.
  • SYMBOLS 1 Liquid supply device, 3... Motor part, 4... Pump part (non-volume pump), 14... Rotation shaft, 40... Impeller, 41... Pump case, 42... Lower case, 42c... 2nd sliding contact surface, 43... Upper case, 43d... First sliding contact surface, 48... Discharge port, 53... Suction port, 60... Storage section, 62... Blade section, 63... Through channel, 64... First channel groove, 65... Second flow Road groove, 66... First seal part (seal part), 67... Second seal part (seal part), C... Shaft center (rotation center), L1, L2... Straight line, ⁇ 1, ⁇ 2... Angle

Abstract

A pump unit (4), which is a non-positive displacement type pump provided in a liquid supply device (1), has a first seal section (66) and a second seal section (67) provided between an intake port (53) and a discharge port (48) in the circumferential direction of an impeller (40). An angle between the two straight lines connecting the circumferential ends of each seal portion (66, 67) and the center of rotation of the impeller (40) is 43° or more and 47° or less. Each seal portion (66, 67) has a size making it possible to close at least two through flow paths (63) between both ends in the circumferential direction.

Description

非容積型ポンプ及び液体供給装置Non-volume pump and liquid supply device
 本発明は、非容積型ポンプ及び液体供給装置に関する。 The present invention relates to a non-positive displacement pump and a liquid supply device.
 非容積型ポンプは、略円板状のインペラと、インペラの全体を覆うように形成されたポンプケースと、を備えている。インペラには、複数の羽根部が周方向に並んで形成されている。各羽根部の間には、インペラを板厚方向に貫通する複数の貫通流路が形成されている。ポンプケースは、インペラを回転自在に収容する。また、ポンプケースは、インペラを挟んで両側に配置された吸入口、及び吐出口を有している。
 このような非容積型ポンプは、例えば自動二輪車や四輪車等の車両用の液体供給装置(燃料ポンプ)として用いられる。この種の液体供給装置は、燃料タンク内に配置される。
The non-volumetric pump includes a substantially disk-shaped impeller and a pump case formed so as to cover the entire impeller. The impeller has a plurality of blades formed side by side in the circumferential direction. A plurality of through-flow passages that penetrate the impeller in the plate thickness direction are formed between the blade portions. The pump case houses the impeller rotatably. Further, the pump case has a suction port and a discharge port which are arranged on both sides of the impeller.
Such a non-volume pump is used as a liquid supply device (fuel pump) for vehicles such as motorcycles and four-wheeled vehicles. This type of liquid supply device is arranged in a fuel tank.
 このような構成のもと、インペラを回転させると、ポンプケースの吸入口を介してインペラの貫通流路に燃料が入り込む。貫通流路に入り込んだ燃料は、インペラの回転に伴って圧縮されながら吐出口へと送られる。この後、吐出口から燃料が吐出される。燃料が吐出された貫通流路には、インペラの回転に伴って再び吸入口を介して燃料が入り込む。 Under this structure, when the impeller is rotated, fuel enters the impeller through passage through the suction port of the pump case. The fuel that has entered the through passage is sent to the discharge port while being compressed as the impeller rotates. Then, the fuel is discharged from the discharge port. The fuel again flows into the through-flow passage from which the fuel has been discharged, through the suction port as the impeller rotates.
 ここで、インペラの回転方向に向かって吐出口から吸入口に至る間は、吐出口と吸入口とが連通しないようにシール部とされている。シール部を設けることにより、吐出口の燃料が吸入口側へと漏出されてしまうことを抑制できる。また、シール部の周方向の長さによって、非容積型ポンプの流量特性が決定される。すなわち、シール部の周方向の長さが短いと、この分インペラの貫通流路に引き込める燃料が増大されるので、非容積型ポンプの吐出流量が増大される。これに対し、シール部の周方向の長さが長いと、この分インペラの貫通流路に引き込める燃料が減少されるので、非容積型ポンプの吐出流量が減少される。  Here, a seal is provided between the discharge port and the suction port in the direction of rotation of the impeller so that the discharge port and the suction port do not communicate with each other. By providing the seal portion, it is possible to prevent the fuel at the discharge port from leaking to the suction port side. Further, the circumferential length of the seal portion determines the flow rate characteristic of the non-displacement type pump. That is, if the length of the seal portion in the circumferential direction is short, the amount of fuel drawn into the through passage of the impeller is increased by that much, so that the discharge flow rate of the non-volumetric pump is increased. On the other hand, if the length of the seal portion in the circumferential direction is long, the amount of fuel drawn into the through flow passage of the impeller is reduced by that amount, so the discharge flow rate of the non-volumetric pump is reduced.
日本国特許第4952180号公報Japanese Patent No. 4952180 日本国特開2015-86804号公報Japanese Patent Laid-Open No. 2015-86804
 しかしながら、上述の従来技術にあっては、吐出口でインペラの貫通流路から完全に燃料が排出しきれず、そのまま圧力の高い燃料が吸入口まで送られると、吸入口で急激に燃料が低圧となり、減圧沸騰が生じる可能性があった。この際の燃料の圧力変動により、騒音が発生する可能性があった。 However, in the above-mentioned conventional technique, when the fuel cannot be completely discharged from the through-flow passage of the impeller at the discharge port and the high-pressure fuel is sent to the suction port as it is, the fuel rapidly becomes low pressure at the suction port. There was a possibility that reduced pressure boiling could occur. At this time, noise may be generated due to the fuel pressure fluctuation.
 そこで、本発明の目的の一つは、適正な吐出流量を確保しつつ、駆動時の騒音を低減できる非容積型ポンプ及び液体供給装置を提供することである。 Therefore, one of the objects of the present invention is to provide a non-volume pump and a liquid supply device capable of reducing noise during driving while ensuring an appropriate discharge flow rate.
 本発明の第1の側面に係る非容積型ポンプは、
 円板状のインペラと、
 前記インペラの全体を覆うように形成され、前記インペラの径方向中心を回転中心とし
て前記インペラを回転自在に収容したポンプケースと、を備え、
 前記インペラは、
 前記インペラの外周部寄りに、周方向に並んで形成された複数の羽根部と、
 前記周方向に隣接する前記羽根部の間に形成され、前記インペラを板厚方向に貫通する複数の貫通流路と、を有し、
 前記ポンプケースは、
 前記インペラを収納する収納部と、
 前記収納部と前記ポンプケースの外側とを前記インペラの板厚方向に貫通するとともに、前記貫通流路に連通する吸入口と、
 前記インペラを挟んで前記吸入口とは反対側に配置され、前記収納部と前記ポンプケースの外側とを前記板厚方向に貫通するとともに、前記貫通流路に連通する吐出口と、
 前記周方向における前記吸入口と前記吐出口との間に設けられるシール部と、を有し、
 前記シール部の前記周方向における両端と、前記回転中心と、を結ぶ2つの直線の間の角度は、43°以上47°以下であり、
 前記シール部は、前記両端の間に少なくとも2つの前記貫通流路を閉塞可能な大きさを有する。
The non-positive displacement pump according to the first aspect of the present invention is
A disc-shaped impeller,
A pump case formed so as to cover the entire impeller and rotatably accommodating the impeller with a radial center of the impeller as a rotation center;
The impeller is
A plurality of blade portions formed side by side in the circumferential direction, near the outer peripheral portion of the impeller,
A plurality of through-flow passages formed between the blade portions adjacent to each other in the circumferential direction and penetrating the impeller in the plate thickness direction,
The pump case is
A storage unit for storing the impeller,
A suction port that penetrates the storage portion and the outside of the pump case in the plate thickness direction of the impeller, and that communicates with the through-flow passage,
Disposed on the opposite side of the suction port with the impeller interposed therebetween, while penetrating the storage part and the outside of the pump case in the plate thickness direction, a discharge port communicating with the through flow passage,
A seal portion provided between the suction port and the discharge port in the circumferential direction,
An angle between two straight lines connecting both ends of the seal portion in the circumferential direction and the rotation center is 43° or more and 47° or less,
The seal part has a size capable of closing at least two of the through flow paths between the both ends.
 このように構成することで、非容積型ポンプの適正な吐出流量を確保できる。また、シール部の周方向の距離を適正にでき、吐出口から吸入口に送られる液体の減圧沸騰を抑制できる。このため、非容積型ポンプの駆動時の騒音を低減できる。 With this configuration, it is possible to secure the proper discharge flow rate of the non-displacement type pump. Further, the circumferential distance of the seal portion can be made appropriate, and the reduced pressure boiling of the liquid sent from the discharge port to the suction port can be suppressed. Therefore, it is possible to reduce noise when the non-displacement pump is driven.
 本発明の第2の側面では、上記第1の側面において、
 前記ポンプケースは、
 前記インペラの一面に摺接され、前記一面を覆うアッパーケースと、
 前記インペラの前記一面とは反対側の他面に摺接され、前記他面を覆うロワケースと、を有し、
 前記アッパーケースと前記ロワケースとにより前記収納部が画成され、
 前記アッパーケースは、
 前記吐出口と、
 前記インペラに面する第1摺接面に設けられるとともに前記吐出口に連通される円弧状の第1流路溝と、を有し、
 前記ロワケースは、
 前記吸入口と、
 前記インペラに面する第2摺接面に設けられるとともに前記吸入口に連通される円弧状の第2流路溝と、を有し、
 前記シール部は、
 前記吐出口と前記吸入口との間であり且つ前記貫通流路の回転軌跡上にある。
In the 2nd side surface of this invention, in the said 1st side surface,
The pump case is
An upper case that is in sliding contact with one surface of the impeller and covers the one surface,
A lower case that is in sliding contact with the other surface of the impeller opposite to the one surface, and covers the other surface,
The storage portion is defined by the upper case and the lower case,
The upper case is
The discharge port,
An arc-shaped first flow path groove provided on a first sliding contact surface facing the impeller and communicating with the discharge port,
The lower case is
The inlet,
An arc-shaped second flow path groove provided on a second sliding contact surface facing the impeller and communicating with the suction port,
The seal portion is
It is between the discharge port and the suction port and on the rotation trajectory of the through-flow passage.
 このように構成することで、簡素な構造で適正な吐出流量を確保しつつ、駆動時の騒音を低減可能な非容積型ポンプを提供できる。 By configuring in this way, it is possible to provide a non-volumetric pump that can reduce noise during driving while ensuring an appropriate discharge flow rate with a simple structure.
 本発明の第3の側面に係る液体供給装置は、
 上記第1の側面又は上記第2の側面に記載の非容積型ポンプと、
 前記非容積型ポンプを駆動するモータ部と、を備え、
 前記モータ部の回転軸と前記インペラとが相対回転不能に連結されている。
The liquid supply apparatus according to the third aspect of the present invention is
The non-positive displacement pump according to the first aspect or the second aspect,
A motor unit for driving the non-positive displacement pump,
The rotation shaft of the motor unit and the impeller are connected so as not to rotate relative to each other.
 このように構成することで、適正な吐出流量を確保しつつ、駆動時の騒音を低減可能な非容積型ポンプを提供できる。 With this configuration, it is possible to provide a non-volumetric pump that can reduce noise during driving while ensuring an appropriate discharge flow rate.
 本発明によれば、非容積型ポンプの適正な吐出流量を確保できる。また、シール部の周方向の距離を適正にでき、吐出口から吸入口に送られる液体の減圧沸騰を抑制できる。このため、非容積型ポンプの駆動時の騒音を低減できる。 According to the present invention, an appropriate discharge flow rate of the non-displacement pump can be secured. Further, the circumferential distance of the seal portion can be made appropriate, and the reduced pressure boiling of the liquid sent from the discharge port to the suction port can be suppressed. Therefore, it is possible to reduce noise when the non-displacement pump is driven.
図1は、本発明の実施形態における液体供給装置の斜視図である。FIG. 1 is a perspective view of a liquid supply device according to an embodiment of the present invention. 図2は、本発明の実施形態における液体供給装置の軸方向に沿う断面図である。FIG. 2 is a sectional view taken along the axial direction of the liquid supply apparatus according to the embodiment of the present invention. 図3は、本発明の実施形態におけるインペラの斜視図である。FIG. 3 is a perspective view of the impeller according to the embodiment of the present invention. 図4は、本発明の実施形態におけるアッパーケースをロワケース側からみた平面図である。FIG. 4 is a plan view of the upper case according to the embodiment of the present invention viewed from the lower case side. 図5は、本発明の実施形態におけるロワケースをアッパーケース側からみた平面図である。FIG. 5 is a plan view of the lower case according to the embodiment of the present invention as viewed from the upper case side. 図6は、本発明の実施形態におけるポンプ部の軸方向に沿う断面の簡略図である。FIG. 6 is a schematic view of a cross section taken along the axial direction of the pump unit according to the embodiment of the present invention. 図7は、本発明の実施形態における各シール部がシール条件を満たす場合と満たさない場合との燃料の吐出流量を比較したグラフである。FIG. 7 is a graph comparing the discharge flow rate of fuel in the case where each sealing portion according to the embodiment of the present invention meets and does not satisfy the sealing condition. 図8は、本発明の実施形態における燃料の吐出流量、及び燃料の音圧レベルの変化を示すグラフである。FIG. 8 is a graph showing changes in the fuel discharge flow rate and the fuel sound pressure level in the embodiment of the present invention.
 次に、本発明の実施形態を図面に基づいて説明する。 Next, an embodiment of the present invention will be described with reference to the drawings.
(液体供給装置)
 図1は、液体供給装置1の斜視図である。図2は、液体供給装置1の軸方向に沿う断面図である。
 液体供給装置1は、自動二輪車や四輪車等の車両用の燃料ポンプとして用いられる。液体供給装置1は、不図示の燃料タンク内に配置されるいわゆるインタンク式の燃料ポンプである。
(Liquid supply device)
FIG. 1 is a perspective view of the liquid supply apparatus 1. FIG. 2 is a sectional view taken along the axial direction of the liquid supply apparatus 1.
The liquid supply device 1 is used as a fuel pump for vehicles such as motorcycles and four-wheeled vehicles. The liquid supply device 1 is a so-called in-tank type fuel pump arranged in a fuel tank (not shown).
 図1、図2に示すように、液体供給装置1は、略円筒状で金属製のハウジング2と、ハウジング2の内周面に嵌合され、それぞれハウジング2の軸方向に並んで配置されたモータ部3、及びポンプ部4と、を備えている。ハウジング2、モータ部3、及びポンプ部4は、同軸上に配置されている。
 液体供給装置1は、ポンプ部4を重力方向下側に向けて使用される。このため、以下の説明では、モータ部3側を上方、ポンプ部4側を下方などと称する場合がある。また、以下の説明では、ハウジング2、モータ部3、及びポンプ部4の軸方向を単に軸方向、ハウジング2、モータ部3、及びポンプ部4の径方向を単に径方向、ハウジング2、モータ部3、及びポンプ部4の周方向を単に周方向と称する。
As shown in FIGS. 1 and 2, the liquid supply device 1 is fitted into the substantially cylindrical metal housing 2 and the inner peripheral surface of the housing 2, and is arranged side by side in the axial direction of the housing 2. The motor unit 3 and the pump unit 4 are provided. The housing 2, the motor unit 3, and the pump unit 4 are arranged coaxially.
The liquid supply apparatus 1 is used with the pump unit 4 facing downward in the gravity direction. Therefore, in the following description, the motor unit 3 side may be referred to as the upper side and the pump unit 4 side may be referred to as the lower side. In the following description, the axial direction of the housing 2, the motor unit 3, and the pump unit 4 is simply the axial direction, and the radial direction of the housing 2, the motor unit 3, and the pump unit 4 is simply the radial direction, the housing 2, and the motor unit. The circumferential direction of 3 and the pump portion 4 is simply referred to as the circumferential direction.
 ハウジング2は、モータ部3が嵌合されるモータ嵌合部11と、モータ嵌合部11よりも段差を介して縮径形成され、ポンプ部4が嵌合されるポンプ嵌合部12と、が一体成形されたものである。ポンプ嵌合部12の内周面には、径方向内側に向かって突出する位置決め凸部13が形成されている。位置決め凸部13は、ハウジング2を径方向外側から例えばプレス加工等により押圧することでなる。位置決め凸部13は、ハウジング2とポンプ部4との周方向の位置決めを行う。位置決め凸部13は、径方向からみて軸方向に長い長方形状に形成されている。
 また、ハウジング2におけるポンプ嵌合部12の下端には、径方向内側に向かう内フランジ部12aが屈曲延出されている。これら位置決め凸部13、及び内フランジ部12aは、ハウジング2とポンプ部4との軸方向の位置決めを行う。
The housing 2 has a motor fitting portion 11 into which the motor portion 3 is fitted, a pump fitting portion 12 into which the pump portion 4 is fitted, the diameter of which is reduced through a step from the motor fitting portion 11. Is integrally molded. A positioning projection 13 is formed on the inner peripheral surface of the pump fitting portion 12 so as to project inward in the radial direction. The positioning protrusion 13 is formed by pressing the housing 2 from the outside in the radial direction by, for example, pressing. The positioning protrusion 13 positions the housing 2 and the pump unit 4 in the circumferential direction. The positioning protrusion 13 is formed in a rectangular shape that is long in the axial direction when viewed in the radial direction.
Further, an inner flange portion 12a that extends inward in the radial direction is bent and extends from the lower end of the pump fitting portion 12 in the housing 2. The positioning protrusion 13 and the inner flange 12a position the housing 2 and the pump 4 in the axial direction.
 モータ部3としては、例えばブラシ付きモータが採用される。モータ部3は、略円筒状のヨーク5と、ヨーク5の内周面に設けられた永久磁石8と、ヨーク5内に回転自在に設けられるアーマチュア6と、ヨーク5の上開口部5aを閉塞するアウトレットカバー7と、アウトレットカバー7に収納されているブラシ25と、を主構成としている。ヨーク5の外周面がハウジング2の内周面に嵌合されている。 As the motor unit 3, for example, a brushed motor is adopted. The motor unit 3 closes a substantially cylindrical yoke 5, a permanent magnet 8 provided on the inner peripheral surface of the yoke 5, an armature 6 rotatably provided in the yoke 5, and an upper opening 5 a of the yoke 5. The outlet cover 7 and the brush 25 housed in the outlet cover 7 are the main components. The outer peripheral surface of the yoke 5 is fitted to the inner peripheral surface of the housing 2.
 ヨーク5は、永久磁石8の磁束が通る磁路となる。ヨーク5の上開口部5aは、アウトレットカバー7における後述のインロー部31の外周面に嵌合される。アウトレットカバー7とヨーク5との周方向の位置決めは、アウトレットカバー7に形成される不図示の位置決め凸部とヨーク5に形成される不図示のヨーク位置決め凹部との凹凸嵌合により行われる。 The yoke 5 serves as a magnetic path through which the magnetic flux of the permanent magnet 8 passes. The upper opening 5a of the yoke 5 is fitted to the outer peripheral surface of a spigot portion 31 of the outlet cover 7, which will be described later. Positioning of the outlet cover 7 and the yoke 5 in the circumferential direction is carried out by concave and convex fitting between a positioning projection (not shown) formed on the outlet cover 7 and a yoke positioning recess (not shown) formed on the yoke 5.
 ヨーク5の内周面には、2つの永久磁石8が設けられている。永久磁石8は、軸方向からみてヨーク5の内周面に沿うように略半円状に形成されている。永久磁石8における軸方向の長さは、アーマチュアコア15の軸方向の長さよりも長く設定されている。そして、アーマチュアコア15の軸方向両端から永久磁石8の軸方向両端が突出するように(オーバーハングするように)配置されている。永久磁石8の磁場配向は径方向(永久磁石8の厚さ方向)に沿っている。
 このような永久磁石8は、回転軸14を中心に径方向で対向配置されている。永久磁石8の内周面とアーマチュアコア15における後述のティース17及び樹脂モールド部22の径方向外側端との間には、微小隙間が形成される。
Two permanent magnets 8 are provided on the inner peripheral surface of the yoke 5. The permanent magnet 8 is formed in a substantially semicircular shape along the inner peripheral surface of the yoke 5 when viewed in the axial direction. The axial length of the permanent magnet 8 is set longer than the axial length of the armature core 15. The permanent magnets 8 are arranged so that both axial ends thereof protrude (overhang) from both axial ends of the armature core 15. The magnetic field orientation of the permanent magnet 8 is along the radial direction (the thickness direction of the permanent magnet 8).
Such permanent magnets 8 are arranged to face each other in the radial direction around the rotary shaft 14. A minute gap is formed between the inner peripheral surface of the permanent magnet 8 and the radially outer end of the tooth 17 and the resin mold portion 22 of the armature core 15 which will be described later.
 アーマチュア6は、回転軸14と、回転軸14の外周面に嵌合固定されているアーマチュアコア15と、回転軸14のアーマチュアコア15よりもアウトレットカバー7寄りの外周面に嵌合固定されているコンミテータ16と、を主構成としている。 The armature 6 is fitted and fixed to the rotating shaft 14, the armature core 15 fitted and fixed to the outer peripheral surface of the rotating shaft 14, and the outer peripheral surface of the rotating shaft 14 closer to the outlet cover 7 than the armature core 15. The commutator 16 is mainly used.
 アーマチュアコア15は、径方向外側に向かって放射状に延びる複数のティース17を有している。これらティース17に不図示の巻線が巻回されている。不図示の巻線の端末部は、コンミテータ16に接続されている。
 コンミテータ16は、略円板状に形成された樹脂製のコンミテータ本体18を有する、いわゆるディスク型のコンミテータである。コンミテータ本体18のアーマチュアコア15とは反対側の一面18aに複数のセグメント19が周方向に並んで配置されている。セグメント19の径方向外側端には、コンミテータ本体18の外周面を通ってアーマチュアコア15側に屈曲延出されるライザ21が一体成形されている。各ライザ21に、不図示の巻線の一端が接続されている。
The armature core 15 has a plurality of teeth 17 that radially extend outward in the radial direction. Winding wires (not shown) are wound around these teeth 17. The end portion of the winding (not shown) is connected to the commutator 16.
The commutator 16 is a so-called disc type commutator having a resin-made commutator main body 18 formed in a substantially disc shape. A plurality of segments 19 are arranged side by side in the circumferential direction on one surface 18a of the commutator body 18 opposite to the armature core 15. A riser 21 that is bent and extends toward the armature core 15 side through the outer peripheral surface of the commutator body 18 is integrally formed at the radially outer end of the segment 19. One end of a winding (not shown) is connected to each riser 21.
 このように形成されたアーマチュア6は、殆どが樹脂モールド部22によって覆われている。樹脂モールド部22は、略円柱状に形成されている。また、樹脂モールド部22は、アーマチュアコア15よりもポンプ部4側からコンミテータ本体18の軸方向略中央に至る間に延在されている。アーマチュアコア15は、ティース17の径方向外側端(外周面)のみが露出されており、不図示の巻線は樹脂モールド部22に埋没されている。樹脂モールド部22のポンプ部4側端には、角部に丸面取り部22aが形成されている。これにより、樹脂モールド部22のポンプ部4側端は先細りになる。 Most of the armature 6 formed in this way is covered by the resin mold portion 22. The resin mold portion 22 is formed in a substantially columnar shape. Further, the resin mold portion 22 extends from the pump portion 4 side with respect to the armature core 15 to approximately the center in the axial direction of the commutator body 18. Only the radially outer ends (outer peripheral surface) of the teeth 17 of the armature core 15 are exposed, and the winding wire (not shown) is buried in the resin mold portion 22. A round chamfered portion 22a is formed at a corner portion of the end of the resin mold portion 22 on the pump portion 4 side. As a result, the end of the resin mold portion 22 on the pump portion 4 side is tapered.
 アウトレットカバー7は、アーマチュアコア15側に開口部7aを有する略有底筒状に形成されている。アウトレットカバー7の底部7bには、径方向略中央に、アーマチュアコア15側に向かって突出する軸受円筒部23が一体成形されている。この軸受円筒部23に、回転軸14の上端部14aが回転自在に支持されている。 The outlet cover 7 is formed in a substantially bottomed tubular shape having an opening 7a on the armature core 15 side. The bottom cylindrical portion 7b of the outlet cover 7 is integrally formed with a bearing cylindrical portion 23 projecting toward the armature core 15 side at a substantially radial center thereof. The upper end portion 14a of the rotary shaft 14 is rotatably supported by the bearing cylindrical portion 23.
 また、アウトレットカバー7の底部7bには、軸受円筒部23を挟んで両側に、ブラシホルダ24が一体成形されている。ブラシホルダ24は、コンミテータ16側が開口された箱状に形成されている。ブラシホルダ24に、ブラシ25が軸方向に沿ってスライド移動自在に収納されている。また、ブラシホルダ24には、コイルスプリング26が圧縮変形した形で収納されている。ブラシ25は、コイルスプリング26によってコンミテータ16側に向かって付勢されている。ブラシ25の先端は、ブラシホルダ24から突出されてセグメント19に摺接されている。 Further, brush holders 24 are integrally formed on the bottom portion 7b of the outlet cover 7 on both sides of the bearing cylindrical portion 23. The brush holder 24 is formed in a box shape having an opening on the commutator 16 side. The brush 25 is accommodated in the brush holder 24 so as to be slidable along the axial direction. A coil spring 26 is stored in the brush holder 24 in a compressed and deformed form. The brush 25 is biased toward the commutator 16 side by a coil spring 26. The tip of the brush 25 projects from the brush holder 24 and is in sliding contact with the segment 19.
 また、アウトレットカバー7の底部7bには、この底部7bを上下方向に貫通する端子27が設けられている。ブラシ25は、不図示のピグテールを介して端子27に接続されている。端子27には、不図示の外部電源が接続される。これにより、端子27、不図示のピグテール、ブラシ25、及びセグメント19を介して不図示の巻線に外部電力が供給される。
 また、アウトレットカバー7の底部7bには、上方に向かって突出する吐出ポート28が一体成形されている。吐出ポート28は、液体供給装置1によって汲み上げられる燃料が吐出される箇所であり、不図示の燃料流路に接続されている。また、吐出ポート28を介し、アウトレットカバー7の内外が連通されている。
Further, the bottom portion 7b of the outlet cover 7 is provided with a terminal 27 that vertically penetrates the bottom portion 7b. The brush 25 is connected to the terminal 27 via a pigtail (not shown). An external power source (not shown) is connected to the terminal 27. As a result, external power is supplied to the winding (not shown) via the terminal 27, the pigtail (not shown), the brush 25, and the segment 19.
A discharge port 28 protruding upward is integrally formed on the bottom portion 7b of the outlet cover 7. The discharge port 28 is a portion where the fuel pumped up by the liquid supply device 1 is discharged, and is connected to a fuel flow path (not shown). Further, the inside and outside of the outlet cover 7 are communicated with each other via the discharge port 28.
 アウトレットカバー7の周壁7cには、下方に向かって延出する位置決め片32が一体成形されている。位置決め片32は永久磁石8の間に介在され、永久磁石8(ヨーク5)とアウトレットカバー7との位置決めを行う。 A positioning piece 32 extending downward is integrally formed on the peripheral wall 7c of the outlet cover 7. The positioning piece 32 is interposed between the permanent magnets 8 and positions the permanent magnet 8 (yoke 5) and the outlet cover 7.
 また、アウトレットカバー7の周壁7cには、外周面に全周に渡って嵌合凸条部29が径方向外側に張り出すように形成されている。嵌合凸条部29の外径は、ハウジング2におけるモータ嵌合部11の内径とほぼ同一に設定されている。このような嵌合凸条部29の外周面が、モータ嵌合部11の内周面に嵌合されている。モータ嵌合部11の上開口縁部11aは、アウトレットカバー7の嵌合凸条部29の上から径方向内側にかしめられる。また、アウトレットカバー7の周壁7cにおける嵌合凸条部29よりも下側は、ヨーク5とインロー嵌合されるインロー部31とされている。 Further, the peripheral wall 7c of the outlet cover 7 is formed with a fitting ridge portion 29 over the entire outer peripheral surface so as to project radially outward. The outer diameter of the fitting protruding portion 29 is set to be substantially the same as the inner diameter of the motor fitting portion 11 in the housing 2. The outer peripheral surface of the fitting convex strip 29 is fitted to the inner peripheral surface of the motor fitting portion 11. The upper opening edge 11a of the motor fitting portion 11 is caulked inward in the radial direction from above the fitting protruding portion 29 of the outlet cover 7. Further, a lower part of the peripheral wall 7c of the outlet cover 7 below the fitting protrusion part 29 is an inlay part 31 which is inlay-fitted with the yoke 5.
(ポンプ部)
 回転軸14の下端部は、ポンプ部4に挿入されている。
 ポンプ部4は、インペラ40を有する非容積型のポンプが用いられている。ポンプ部4は、インペラ40と、インペラ40の全体を覆うように形成されたポンプケース41と、により構成されている。ポンプケース41が、ハウジング2のポンプ嵌合部12に嵌合される。
(Pump part)
The lower end of the rotary shaft 14 is inserted into the pump unit 4.
As the pump unit 4, a non-volume pump having an impeller 40 is used. The pump unit 4 includes an impeller 40 and a pump case 41 formed so as to cover the entire impeller 40. The pump case 41 is fitted into the pump fitting portion 12 of the housing 2.
(インペラ)
 図3は、インペラ40の斜視図である。
 図2、図3に示すように、インペラ40は、樹脂材料からなる略円板状に形成された部材である。インペラ40の径方向略中央には、回転軸14の下端部14bを挿通可能な挿通孔61が形成されている。ここで、回転軸14の下端部14bは、軸方向に直交する断面形状が略D字状に形成されている。また、インペラ40の挿通孔61は、回転軸14における下端部14bの断面形状に対応するように、軸方向からみて略D字状に形成されている。このような挿通孔61に、回転軸14の下端部14bが挿入されることにより、回転軸14とインペラ40とが相対回転不能に一体となって回転される。
(Impeller)
FIG. 3 is a perspective view of the impeller 40.
As shown in FIGS. 2 and 3, the impeller 40 is a member made of a resin material and formed into a substantially disc shape. An insertion hole 61 through which the lower end portion 14b of the rotary shaft 14 can be inserted is formed at a substantially center of the impeller 40 in the radial direction. Here, the lower end portion 14b of the rotary shaft 14 is formed in a substantially D-shaped cross section orthogonal to the axial direction. Further, the insertion hole 61 of the impeller 40 is formed in a substantially D shape when viewed in the axial direction so as to correspond to the cross-sectional shape of the lower end portion 14b of the rotary shaft 14. By inserting the lower end portion 14b of the rotary shaft 14 into such an insertion hole 61, the rotary shaft 14 and the impeller 40 are integrally rotated so that they cannot rotate relative to each other.
 インペラ40の外周部寄りには、軸方向に沿う断面が略L字状の羽根部62(図6も参照)が複数形成されている。各羽根部62は、周方向の向きが同じ向きとなるように、周方向に等間隔に並んで配置されている。周方向に隣接する各羽根部62の間には、貫通流路63が形成されている。貫通流路63は、インペラ40の板厚方向に貫通されている。 A plurality of blade portions 62 (see also FIG. 6) having a substantially L-shaped cross section along the axial direction are formed near the outer peripheral portion of the impeller 40. The blade portions 62 are arranged side by side at equal intervals in the circumferential direction so that the circumferential directions are the same. A through passage 63 is formed between the blade portions 62 adjacent to each other in the circumferential direction. The through flow passage 63 penetrates in the plate thickness direction of the impeller 40.
(ポンプケース)
 図2に示すように、インペラ40の全体を覆うポンプケース41は、アッパーケース43と、ミドルケース44と、ロワケース42と、により構成されている。
(Pump case)
As shown in FIG. 2, the pump case 41 that covers the entire impeller 40 includes an upper case 43, a middle case 44, and a lower case 42.
 図4は、アッパーケース43をロワケース42側(下方)からみた平面図である。
 図2、図4に示すように、アッパーケース43は、インペラ40のモータ部3側に配置されている。アッパーケース43は、インペラ40の上面を覆うように略円板状に形成されている。アッパーケース43の外周部に、ミドルケース44が接合されている。アッパーケース43の外径は、ヨーク5の外径よりも若干小さく設定されている。
FIG. 4 is a plan view of the upper case 43 viewed from the lower case 42 side (downward).
As shown in FIGS. 2 and 4, the upper case 43 is disposed on the motor section 3 side of the impeller 40. The upper case 43 is formed in a substantially disc shape so as to cover the upper surface of the impeller 40. A middle case 44 is joined to the outer peripheral portion of the upper case 43. The outer diameter of the upper case 43 is set to be slightly smaller than the outer diameter of the yoke 5.
 アッパーケース43の径方向中央には、回転軸14の下端部14bを挿通可能な挿通孔46が形成されている。この挿通孔46に滑り軸受59を介して回転軸14が回転自在に支持されている。
 また、アッパーケース43の上面43aには、挿通孔46の周囲を取り囲むように軸方向からみて略円環状の凹部47が形成されている。アッパーケース43の上面43aにおいて、凹部47よりも外周側は、ヨーク5が当接される当接面43bとなる。当接面43bは十分なスペースが確保されているので、当接面43bにヨーク5の下端を当接させても、これら当接面43bやヨーク5が座屈変形してしまうことが抑制される。
An insertion hole 46 through which the lower end portion 14b of the rotary shaft 14 can be inserted is formed at the center of the upper case 43 in the radial direction. The rotary shaft 14 is rotatably supported in the insertion hole 46 via a slide bearing 59.
Further, on the upper surface 43a of the upper case 43, a substantially annular recess 47 is formed so as to surround the periphery of the insertion hole 46 when viewed in the axial direction. On the upper surface 43a of the upper case 43, the outer peripheral side of the recess 47 is a contact surface 43b with which the yoke 5 contacts. Since a sufficient space is secured for the contact surface 43b, buckling deformation of the contact surface 43b and the yoke 5 is suppressed even when the lower end of the yoke 5 is contacted with the contact surface 43b. It
 また、アッパーケース43の上面43aには、凹部47の外周部寄りに、アッパーケース43を上下方向に貫通する吐出口48が形成されている。アッパーケース43の下面43cには、吐出口48の周縁に、吐出口48の開口を広げる凹部48aが形成されている。凹部48aは、アッパーケース43の下面43cに向かうに従って末広がりとなるように形成されている。 Further, on the upper surface 43a of the upper case 43, a discharge port 48 penetrating the upper case 43 in the vertical direction is formed near the outer periphery of the recess 47. On the lower surface 43c of the upper case 43, a concave portion 48a that widens the opening of the ejection port 48 is formed at the periphery of the ejection port 48. The recess 48a is formed so as to widen toward the lower surface 43c of the upper case 43.
 アッパーケース43の下面43cは、インペラ40に摺接される第1摺接面43dである。第1摺接面43dには、軸方向でインペラ40の貫通流路63と対向する位置に、軸方向からみて略円弧状(略C字状)の第1流路溝64が形成されている。第1流路溝64の周方向一端は、吐出口48(凹部48a)に連通されている。第1流路溝64の周方向他端には、軸方向からみて先細りとなるように先細り部64aが形成されている。 The lower surface 43c of the upper case 43 is a first sliding contact surface 43d that is in sliding contact with the impeller 40. On the first sliding contact surface 43d, a first flow channel groove 64 having a substantially arc shape (substantially C-shaped) when viewed from the axial direction is formed at a position facing the through flow channel 63 of the impeller 40 in the axial direction. .. One end of the first flow path groove 64 in the circumferential direction is communicated with the discharge port 48 (recessed portion 48a). A tapered portion 64a is formed at the other end of the first flow path groove 64 in the circumferential direction so as to be tapered when viewed in the axial direction.
 ミドルケース44は、インペラ40の外周面を取り囲むように略リング状に形成されている。ミドルケース44は、アッパーケース43と一体に形成されている。ミドルケース44の外径は、アッパーケース43の外径よりも若干大きく設定されている。ミドルケース44によって、インペラ40の径方向中心と、回転軸14の軸心Cとが一致される。ミドルケース44の軸方向の厚さは、インペラ40の板厚と略同一か、若干厚くなるように形成されている。これにより、インペラ40とアッパーケース43との間、及びインペラ40とロワケース42との間に、それぞれ所定のクリアランスが形成される。 The middle case 44 is formed in a substantially ring shape so as to surround the outer peripheral surface of the impeller 40. The middle case 44 is formed integrally with the upper case 43. The outer diameter of the middle case 44 is set to be slightly larger than the outer diameter of the upper case 43. By the middle case 44, the radial center of the impeller 40 and the axis C of the rotary shaft 14 are aligned. The thickness of the middle case 44 in the axial direction is formed to be substantially the same as or slightly larger than the plate thickness of the impeller 40. As a result, predetermined clearances are formed between the impeller 40 and the upper case 43 and between the impeller 40 and the lower case 42, respectively.
 図5は、ロワケース42をアッパーケース43側(上方)からみた平面図である。説明の便宜上、図5では、図4に示すアッパーケース43が有する第1シール部66の周方向の位置と、図5に示すロワケース42が有する第2シール部67の周方向の位置と、が概ね一致するように、ロワケース42が図示されている。
 図2、図5に示すように、ロワケース42は、インペラ40の下方に配置されている。ポンプケース41は、ミドルケース44が一体に形成されたアッパーケース43と、ロワケース42とで、インペラ40の全体を覆うように形成されている。アッパーケース43の下面43cと、ロワケース42の上面42aとにより、インペラ40を収納する収納部60が形成される。
 ロワケース42は、略円板状に形成されている。ロワケース42の外径は、ミドルケース44の外径とほぼ同一に設定されている。
FIG. 5 is a plan view of the lower case 42 seen from the upper case 43 side (upper side). For convenience of description, in FIG. 5, the circumferential position of the first seal portion 66 of the upper case 43 shown in FIG. 4 and the circumferential position of the second seal portion 67 of the lower case 42 shown in FIG. The lower case 42 is shown to be generally coincident.
As shown in FIGS. 2 and 5, the lower case 42 is arranged below the impeller 40. The pump case 41 is formed by an upper case 43 integrally formed with a middle case 44 and a lower case 42 so as to cover the entire impeller 40. The lower surface 43c of the upper case 43 and the upper surface 42a of the lower case 42 form a storage portion 60 that stores the impeller 40.
The lower case 42 is formed in a substantially disc shape. The outer diameter of the lower case 42 is set to be substantially the same as the outer diameter of the middle case 44.
 ロワケース42の下面42bには、外周側に、下方に向かって突出した略円筒状の吸入口53が形成されている。吸入口53の内周面には、ロワケース42の上面42a側に、この上面42aに向かうに従って徐々に開口面積が大きくなるようにテーパ孔部53aが形成されている。
 また、ロワケース42の下面42bには、外周縁に、段差部49が形成されている。段差部49は、ロワケース42の下面42b側を縮径させることにより形成される。段差部49は、軸方向からみて、ハウジング2の内フランジ部12aと重なる位置に形成されている。
On the lower surface 42b of the lower case 42, a substantially cylindrical suction port 53 protruding downward is formed on the outer peripheral side. On the inner peripheral surface of the suction port 53, a tapered hole portion 53a is formed on the upper surface 42a side of the lower case 42 so that the opening area gradually increases toward the upper surface 42a.
Further, a step portion 49 is formed on the outer peripheral edge of the lower surface 42b of the lower case 42. The step portion 49 is formed by reducing the diameter of the lower case 42 on the lower surface 42b side. The step portion 49 is formed at a position overlapping the inner flange portion 12a of the housing 2 when viewed in the axial direction.
 ロワケース42の上面42aは、インペラ40に摺接される第2摺接面42cである。ロワケース42の上面42aには、径方向略中央に、回転軸14の下端部14bが臨まされる軸受収納凹部54が形成されている。この軸受収納凹部54に、スラスト軸受55が収納されている。回転軸14の下端部14bは、スラスト軸受55に当接された状態でロワケース42に回転自在に支持される。スラスト軸受55は、回転軸14のスラスト荷重を受ける。 The upper surface 42a of the lower case 42 is a second sliding contact surface 42c that is in sliding contact with the impeller 40. On the upper surface 42a of the lower case 42, a bearing accommodating recess 54 is formed at a substantially radial center thereof so that the lower end portion 14b of the rotary shaft 14 is exposed. The thrust bearing 55 is housed in the bearing housing recess 54. The lower end portion 14b of the rotary shaft 14 is rotatably supported by the lower case 42 while being in contact with the thrust bearing 55. The thrust bearing 55 receives the thrust load of the rotary shaft 14.
 ロワケース42の第2摺接面42cには、軸方向でインペラ40の貫通流路63と対向する位置で、かつアッパーケース43の第1流路溝64と対向する位置に、軸方向からみて略円弧状(略C字状)の第2流路溝65が形成されている。第2流路溝65の周方向一端は、吸入口53(テーパ孔部53a)に連通されている。第2流路溝65の周方向他端には、軸方向からみて先細りとなるように先細り部65aが形成されている。
 また、第2流路溝65には、吸入口53と先細り部65aとの間の中央よりもやや吸入口53寄りに、脱気孔68がロワケース42の板厚方向に貫通形成されている。脱気孔68は、ポンプケース41内で発生するベーパ(気泡)を排出するための孔である。
The second sliding contact surface 42c of the lower case 42 is substantially axially opposed to the through passage 63 of the impeller 40 and to the first passage groove 64 of the upper case 43 in the axial direction. An arcuate (substantially C-shaped) second flow path groove 65 is formed. One end of the second flow path groove 65 in the circumferential direction is communicated with the suction port 53 (tapered hole portion 53a). At the other end of the second flow path groove 65 in the circumferential direction, a tapered portion 65a is formed so as to be tapered when viewed in the axial direction.
Further, in the second flow path groove 65, a deaeration hole 68 is formed so as to penetrate in the plate thickness direction of the lower case 42, slightly closer to the suction port 53 than the center between the suction port 53 and the tapered portion 65a. The deaeration hole 68 is a hole for discharging vapor (air bubbles) generated in the pump case 41.
 ここで、第1流路溝64の周方向一端に連通されている吐出口48、及び第1流路溝64の周方向他端に形成されている先細り部64aと、第2流路溝65の周方向一端に連通されている吸入口53、及び第2流路溝65の周方向他端に形成されている先細り部65aとは、互い違いに配置されている。すなわち、吐出口48は、第2流路溝65の先細り部65aと軸方向で対向している。吸入口53は、第1流路溝64の先細り部64aと軸方向で対向している。 Here, the discharge port 48 communicated with one end in the circumferential direction of the first flow channel 64, the tapered portion 64 a formed at the other end in the circumferential direction of the first flow channel 64, and the second flow channel 65. The suction port 53, which communicates with one end in the circumferential direction, and the tapered portion 65a, which is formed at the other end in the circumferential direction of the second flow channel groove 65, are arranged alternately. That is, the discharge port 48 axially faces the tapered portion 65a of the second flow path groove 65. The suction port 53 axially faces the tapered portion 64a of the first flow channel 64.
 また、アッパーケース43の第1摺接面43dにおける吐出口48(凹部48a)と第1流路溝64の先細り部64aとの間は、吐出口48から先細り部64aへの燃料の漏出を抑制するための第1シール部66となる。ロワケース42の第2摺接面42cにおける吸入口53(テーパ孔部53a)と第2流路溝65の先細り部65aとの間は、先細り部65aから吸入口53への燃料の漏出を抑制するための第2シール部67となる。第1シール部66の周方向の範囲(長さ)と第2シール部67の周方向の範囲(長さ)は、一致している。これら第1シール部66及び第2シール部67についての詳細は後述する。図6から理解されるように、第1シール部66及び第2シール部67は、吐出口48と吸入口53との間であり且つ貫通流路63の回転軌跡上に位置している。 Further, between the discharge port 48 (recess 48 a) and the tapered portion 64 a of the first flow path groove 64 in the first sliding contact surface 43 d of the upper case 43, the leakage of fuel from the discharge port 48 to the tapered portion 64 a is suppressed. The first seal portion 66 for performing the operation is provided. Between the suction port 53 (tapered hole portion 53a) in the second sliding contact surface 42c of the lower case 42 and the tapered portion 65a of the second flow path groove 65, fuel leakage from the tapered portion 65a to the suction port 53 is suppressed. The second seal portion 67 for The circumferential range (length) of the first seal portion 66 and the circumferential range (length) of the second seal portion 67 match. Details of the first seal portion 66 and the second seal portion 67 will be described later. As can be understood from FIG. 6, the first seal portion 66 and the second seal portion 67 are located between the discharge port 48 and the suction port 53 and on the rotation trajectory of the through passage 63.
 ロワケース42の下面42bに形成された段差部49には、シール部材としての角リング50が装着される。角リング50は、断面が略矩形状に形成されたフッ素ゴム等の耐油性に優れた材料からなる部材である。角リング50の外径は、ロワケース42の外径よりも若干小さく設定されている。このため、ハウジング2のポンプ嵌合部12には、アッパーケース43、ミドルケース44、及びロワケース42の外周面が嵌合される。角リング50の外周面とハウジング2のポンプ嵌合部12の内周面との間には、微小隙間が形成される。 A square ring 50 as a seal member is attached to the step portion 49 formed on the lower surface 42b of the lower case 42. The square ring 50 is a member having a substantially rectangular cross section and made of a material having excellent oil resistance such as fluororubber. The outer diameter of the square ring 50 is set to be slightly smaller than the outer diameter of the lower case 42. For this reason, the outer peripheral surfaces of the upper case 43, the middle case 44, and the lower case 42 are fitted to the pump fitting portion 12 of the housing 2. A minute gap is formed between the outer peripheral surface of the square ring 50 and the inner peripheral surface of the pump fitting portion 12 of the housing 2.
 このような構成のもと、ハウジング2内にモータ部3とポンプ部4とを収納する際、ハウジング2の内フランジ部12aに角リング50を当接させる。この際、ポンプケース41の外周面に形成されている不図示の凹部に、ハウジング2の位置決め凸部13を挿入させる。これにより、ハウジング2とポンプ部4との周方向の位置決めが行われる。 With this configuration, when the motor unit 3 and the pump unit 4 are housed in the housing 2, the square ring 50 is brought into contact with the inner flange portion 12a of the housing 2. At this time, the positioning protrusion 13 of the housing 2 is inserted into a recess (not shown) formed on the outer peripheral surface of the pump case 41. As a result, the housing 2 and the pump portion 4 are positioned in the circumferential direction.
 また、ロワケース42の段差部49と内フランジ部12aとにより、角リング50を若干押し潰した状態のまま、モータ嵌合部11の上開口縁部11aを、アウトレットカバー7の嵌合凸条部29の上から径方向内側にかしめる。これにより、ハウジング2のポンプ嵌合部12に、ポンプ部4が嵌合される。また、ハウジング2のモータ嵌合部11に、モータ部3が嵌合される。そして、ハウジング2に対するモータ部3及びポンプ部4の位置決めが行われ、ハウジング2、モータ部3、及びポンプ部4が一体化される。さらに、角リング50により、ハウジング2とポンプ部4との間のシール性が確保される。 Further, the upper opening edge 11a of the motor fitting portion 11 is fitted to the fitting ridge portion of the outlet cover 7 while the square ring 50 is slightly crushed by the step portion 49 of the lower case 42 and the inner flange portion 12a. From above 29, crimp inward in the radial direction. As a result, the pump portion 4 is fitted into the pump fitting portion 12 of the housing 2. Further, the motor portion 3 is fitted into the motor fitting portion 11 of the housing 2. Then, the motor part 3 and the pump part 4 are positioned with respect to the housing 2, and the housing 2, the motor part 3 and the pump part 4 are integrated. Further, the square ring 50 ensures the sealing property between the housing 2 and the pump portion 4.
(液体供給装置の動作)
 次に、図2、図6に基づいて、液体供給装置1の動作について説明する。
 図6は、ポンプ部4の軸方向に沿う断面の簡略図である。
 図2、図6に示すように、モータ部3の回転軸14を回転させると、この回転軸14と一体となってインペラ40が回転される。すると、吸入口53を介してポンプケース41内に燃料Nが吸い上げられる。吸い上げられた燃料Nは、インペラ40の貫通流路63内に入り込み、さらに、アッパーケース43の第1流路溝64、及びロワケース42の第2流路溝65に入り込む。そして、インペラ40とポンプケース41との間で旋回流が発生する。この旋回流により、吐出口48に向かうに従って貫通流路63内の燃料が昇圧される。
(Operation of liquid supply device)
Next, the operation of the liquid supply apparatus 1 will be described based on FIGS. 2 and 6.
FIG. 6 is a schematic view of a cross section along the axial direction of the pump unit 4.
As shown in FIGS. 2 and 6, when the rotating shaft 14 of the motor unit 3 is rotated, the impeller 40 is rotated integrally with the rotating shaft 14. Then, the fuel N is sucked up into the pump case 41 through the suction port 53. The sucked fuel N enters the through passage 63 of the impeller 40, and further enters the first passage groove 64 of the upper case 43 and the second passage groove 65 of the lower case 42. Then, a swirling flow is generated between the impeller 40 and the pump case 41. Due to this swirling flow, the pressure of the fuel in the through passage 63 is increased toward the discharge port 48.
 昇圧された燃料Nは、吐出口48を介してモータ部3のヨーク5内に吐出される。つまり、吐出口48の燃料Nの圧力は、吸入口53の燃料Nの圧力に対して大きい。吐出口48と吸入口53との間には、第1シール部66及び第2シール部67が設けられている。このため、吸入口53、第1流路溝64、及び第2流路溝65のうちの吸入口53と軸方向で交わる箇所に、吐出口48から吐出される燃料Nが漏出されることが抑制されている。
 ヨーク5内に吐出された燃料Nは、永久磁石8と樹脂モールド部22(アーマチュアコア15におけるティース17の径方向外側端)との間の微小隙間を介し、吐出ポート28に圧送される。この後、吐出ポート28を介して不図示のエンジン等に燃料が圧送される。
The boosted fuel N is discharged into the yoke 5 of the motor unit 3 through the discharge port 48. That is, the pressure of the fuel N at the discharge port 48 is higher than the pressure of the fuel N at the suction port 53. A first seal portion 66 and a second seal portion 67 are provided between the discharge port 48 and the suction port 53. Therefore, the fuel N discharged from the discharge port 48 may leak to a portion of the suction port 53, the first flow channel 64, and the second flow channel 65 that intersects the suction port 53 in the axial direction. It is suppressed.
The fuel N discharged into the yoke 5 is pressure-fed to the discharge port 28 through a minute gap between the permanent magnet 8 and the resin mold portion 22 (radially outer ends of the teeth 17 of the armature core 15). Then, the fuel is pressure-fed to the engine (not shown) or the like via the discharge port 28.
 ここで、インペラ40の貫通流路63において、吐出口48側で完全に燃料Nが吐出しきらず、そのまま圧力の高い燃料Nが吸入口53近傍、詳しくは吸入口53、第1流路溝64、及び第2流路溝65のうちの吸入口53と軸方向で交わる箇所にまで漏出した場合、吸入口53で急激に燃料Nが低圧となって減圧沸騰が生じ、この際の燃料Nの圧力変動により、騒音が発生する可能性がある。そこで、このような燃料Nの漏出を抑制するべく、第1シール部66の周方向の範囲(長さ)、及び第2シール部67の周方向の範囲(長さ)を、以下のように設定している。 Here, in the through flow passage 63 of the impeller 40, the fuel N is not completely discharged on the discharge port 48 side, and the fuel N having a high pressure is in the vicinity of the suction port 53, more specifically, the suction port 53, the first flow channel groove 64. , And in the portion of the second flow path groove 65 that intersects with the suction port 53 in the axial direction, the fuel N suddenly becomes a low pressure at the suction port 53 and depressurization boiling occurs. Noise can occur due to pressure fluctuations. Therefore, in order to suppress such leakage of the fuel N, the circumferential range (length) of the first seal portion 66 and the circumferential range (length) of the second seal portion 67 are set as follows. It is set.
 すなわち、図4に示すように、第1シール部66の周方向両端と回転軸14の軸心Cとを結ぶ直線をL1とする。ここで、第1シール部66の周方向両端とは、軸心Cを通る直線L1が、第1流路溝64の先細り部64aと接する箇所と、吐出口48の凹部48aと接する箇所とする。
 また、図5に示すように、第2シール部67の周方向両端と回転軸14の軸心Cとを結ぶ直線をL2とする。ここで、第2シール部67の周方向両端とは、軸心Cを通る直線L2が、第2流路溝65の先細り部65aと接する箇所と、吸入口53のテーパ孔部53aと接する箇所とする。
That is, as shown in FIG. 4, a straight line connecting both circumferential ends of the first seal portion 66 and the axis C of the rotary shaft 14 is defined as L1. Here, the both ends in the circumferential direction of the first seal portion 66 are a portion where the straight line L1 passing through the axis C contacts the tapered portion 64a of the first flow path groove 64 and a portion where the straight line L1 contacts the recess 48a of the discharge port 48. ..
Further, as shown in FIG. 5, a straight line connecting both circumferential ends of the second seal portion 67 and the axis C of the rotary shaft 14 is defined as L2. Here, the both ends in the circumferential direction of the second seal portion 67 are locations where the straight line L2 passing through the axis C contacts the tapered portion 65a of the second flow channel groove 65 and the taper hole portion 53a of the suction port 53. And
 アッパーケース43の第1摺接面43dのうち、2つの直線L1の間で、かつインペラ40の羽根部62及び貫通流路63と軸方向で対向する箇所が、第1シール部66を構成する。また、ロワケース42の第2摺接面42cのうち、2つの直線L2の間で、かつインペラ40の羽根部62及び貫通流路63と軸方向で対向する箇所が、第2シール部67を構成する。 A portion of the first sliding contact surface 43d of the upper case 43, which is between the two straight lines L1 and axially faces the blade portion 62 and the through passage 63 of the impeller 40, constitutes a first seal portion 66. .. Further, a portion of the second sliding contact surface 42c of the lower case 42 that is between the two straight lines L2 and that axially opposes the blade portion 62 and the through passage 63 of the impeller 40 constitutes the second seal portion 67. To do.
 2つの直線L1の間の角度θ1、及び2つの直線L2の間の角度θ2は、それぞれ
 θ1≒θ2=45°±2°・・・(1)
 を満たすように設定されている。換言すると、角度θ1及びθ2は、43°≦θ1≦47°であり且つ43°≦θ2≦47°であるように、設定されている。
 また、図6に詳示するように、第1シール部66、及び第2シール部67は、周方向両端の間に少なくとも2つの貫通流路63を閉塞可能な大きさに形成されている。なお、この少なくとも2つの貫通流路63を閉塞可能な大きさで、かつ上記式(1)を満たす各シール部66,67の条件を、以下ではシール条件という。
The angle θ1 between the two straight lines L1 and the angle θ2 between the two straight lines L2 are respectively θ1≈θ2=45°±2° (1)
Is set to meet. In other words, the angles θ1 and θ2 are set so that 43°≦θ1≦47° and 43°≦θ2≦47°.
Further, as shown in detail in FIG. 6, the first seal portion 66 and the second seal portion 67 are formed in a size capable of closing at least two through flow passages 63 between both ends in the circumferential direction. In addition, the condition of each of the seal portions 66 and 67 having a size capable of closing the at least two through-flow passages 63 and satisfying the above expression (1) is referred to as a seal condition hereinafter.
 次に、図7、図8に基づいて、シール条件を満たす各シール部66,67の効果について説明する。
 図7は、縦軸をポンプ部4による燃料の吐出流量(以下、単に燃料の吐出流量という)[L/h]とした場合において、各シール部66,67がシール条件を満たす場合と満たさない場合との燃料の吐出流量を比較したグラフである。
 なお、図7において、「従来」とは、第1シール部66の2つの直線L1の間の角度θ1が22°であり、第2シール部67の2つの直線L2の間の角度θ2が24°である場合である。「従来」の角度θ1,θ2は、上記式(1)を満たさない。図7において、「45°-1」とは、各シール部66,67の2つの直線L1,L2間の間の角度θ1,θ2が45°-1である場合であり、上記式(1)を満たす。図7において、「45°-2」とは、各シール部66,67の2つの直線L1,L2間の間の角度θ1,θ2が45°-2である場合であり、上記式(1)を満たす。図7において、「67°」とは、各シール部66,67の2つの直線L1,L2間の間の角度θ1,θ2が67°である場合であり、上記式(1)を満たさない。
Next, based on FIGS. 7 and 8, the effects of the seal portions 66 and 67 satisfying the seal condition will be described.
In FIG. 7, when the vertical axis represents the fuel discharge flow rate (hereinafter, simply referred to as fuel discharge flow rate) [L/h] by the pump unit 4, it does not satisfy the case where the seal portions 66 and 67 satisfy the seal condition. It is a graph which compared the discharge flow rate of fuel with the case.
In FIG. 7, “conventional” means that the angle θ1 between the two straight lines L1 of the first seal portion 66 is 22° and the angle θ2 between the two straight lines L2 of the second seal portion 67 is 24. This is the case. The “conventional” angles θ1 and θ2 do not satisfy the above equation (1). In FIG. 7, “45°−1” is a case where the angles θ1 and θ2 between the two straight lines L1 and L2 of the seal portions 66 and 67 are 45°−1, and the above formula (1) is used. Meet In FIG. 7, “45°-2” is a case where the angles θ1 and θ2 between the two straight lines L1 and L2 of the seal portions 66 and 67 are 45°-2, and the above formula (1) is used. Meet In FIG. 7, “67°” means that the angles θ1 and θ2 between the two straight lines L1 and L2 of the seal portions 66 and 67 are 67°, which does not satisfy the above formula (1).
 図7に示すように、各シール部66,67がシール条件を満たす場合、従来と比較して、若干燃料の吐出流量が減少するものの、「67°」と比較して燃料の吐出流量は多いことが確認できる。 As shown in FIG. 7, when each of the seal portions 66 and 67 satisfies the sealing condition, the fuel discharge flow rate is slightly reduced as compared with the conventional one, but the fuel discharge flow rate is larger than “67°”. You can confirm that.
 図8は、縦軸を燃料の吐出流量[L/h]、及び圧力の高い燃料が吸入口53まで送られてしまった場合の吸入口53近傍における燃料の音圧レベル[dB]とし、横軸を各シール部66,67の2つの直線L1,L2間の間の角度θ1,θ2[°]とした場合の燃料の吐出流量、及び燃料の音圧レベルの変化を示すグラフである。
 図8に示すように、各シール部66,67の2つの直線L1,L2間の間の角度θ1,θ2が上記式(1)満たす範囲において、所望の吐出流量の範囲Wを満たしつつ、燃料の音圧レベルを低減できることが確認できる。吐出流量の範囲Wは、この種の液体供給装置1を実際に使用するにあたり、許容し得る音圧レベルと実用上望ましい吐出流量との両立を図り得る範囲として、定められている。
 各シール部66,67がシール条件を満たす場合、従来と比較して音圧レベルを低減することが可能であり、また、「67°」と比較して流量の条件を満たすことが可能となる。そのため、各シール部66,67がシール条件を満たす場合、流量や音圧レベルにおける性能のバランスが良いことが確認できる。
In FIG. 8, the vertical axis represents the fuel discharge flow rate [L/h] and the fuel sound pressure level [dB] near the suction port 53 when high-pressure fuel has been sent to the suction port 53. 6 is a graph showing changes in the fuel discharge flow rate and the fuel sound pressure level when the axes are angles θ1 and θ2 [°] between the two straight lines L1 and L2 of the seal portions 66 and 67.
As shown in FIG. 8, within the range in which the angles θ1 and θ2 between the two straight lines L1 and L2 of the respective seal portions 66 and 67 satisfy the above equation (1), while satisfying the desired discharge flow rate range W, It can be confirmed that the sound pressure level of can be reduced. The range W of the discharge flow rate is defined as a range in which an acceptable sound pressure level and a practically desirable discharge flow rate can be achieved when the liquid supply apparatus 1 of this type is actually used.
When each of the seal portions 66 and 67 satisfies the seal condition, it is possible to reduce the sound pressure level as compared with the conventional case, and it is possible to satisfy the flow rate condition as compared with “67°”. .. Therefore, it can be confirmed that when the sealing portions 66 and 67 satisfy the sealing conditions, the performances at the flow rate and the sound pressure level are well balanced.
 したがって、上述の実施形態によれば、各シール部66,67がシール条件を満たす場合、ポンプ部4は、適正な燃料の吐出流量を確保できる。また、各シール部66,67の2つの直線L1,L2間の間の角度θ1,θ2が上記式(1)満たすことにより、各シール部66,67の周方向の範囲(長さ)を適正にできる。この結果、吐出口48から吸入口53に送られる燃料の減圧沸騰を抑制でき、ポンプ部4の音圧レベルを低減してポンプ部4の駆動時の騒音を低減できる。 Therefore, according to the above-described embodiment, when each of the seal portions 66 and 67 satisfies the seal condition, the pump portion 4 can secure an appropriate fuel discharge flow rate. Further, the angles θ1 and θ2 between the two straight lines L1 and L2 of the seal portions 66 and 67 satisfy the above equation (1), so that the circumferential range (length) of the seal portions 66 and 67 is appropriate. You can As a result, depressurization boiling of the fuel sent from the discharge port 48 to the suction port 53 can be suppressed, the sound pressure level of the pump unit 4 can be reduced, and the noise when the pump unit 4 is driven can be reduced.
 また、ポンプ部4のポンプケース41は、インペラ40の上面を覆うアッパーケース43と、インペラ40の下面を覆うロワケース42と、を有している。アッパーケース43は、ポンプ部4から燃料を吐出する吐出口48と、第1摺接面43dに形成された第1流路溝64と、を有している。ロワケース42は、ポンプ部4に燃料を吸い上げる吸入口53と、第2摺接面42cに形成された第2流路溝65と、を有している。そして、アッパーケース43の第1摺接面43dにおける吐出口48(凹部48a)と第1流路溝64の先細り部64aとの間を第1シール部66としている。また、ロワケース42の第2摺接面42cにおける吸入口53(テーパ孔部53a)と第2流路溝65の先細り部65aとの間を第2シール部67としている。このような構成で、インペラ40、第1流路溝64、及び第2流路溝65を利用して燃料をモータ部3に圧送し、各シール部66,67によって燃料の漏出を確実に抑制できるので、ポンプ部4の構成を簡素化できる。 The pump case 41 of the pump unit 4 has an upper case 43 that covers the upper surface of the impeller 40 and a lower case 42 that covers the lower surface of the impeller 40. The upper case 43 has a discharge port 48 for discharging fuel from the pump unit 4, and a first flow path groove 64 formed in the first sliding contact surface 43d. The lower case 42 has a suction port 53 for sucking fuel into the pump portion 4, and a second flow path groove 65 formed in the second sliding contact surface 42c. The first seal portion 66 is formed between the discharge port 48 (recess 48 a) on the first sliding contact surface 43 d of the upper case 43 and the tapered portion 64 a of the first flow path groove 64. A second seal portion 67 is formed between the suction port 53 (taper hole portion 53a) on the second sliding contact surface 42c of the lower case 42 and the tapered portion 65a of the second flow path groove 65. With such a configuration, the impeller 40, the first flow path groove 64, and the second flow path groove 65 are used to pressure-feed the fuel to the motor unit 3, and the seal portions 66 and 67 reliably suppress the leakage of the fuel. Therefore, the structure of the pump unit 4 can be simplified.
 なお、本発明は上述の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において、上述の実施形態に種々の変更を加えたものを含む。 The present invention is not limited to the above-described embodiment, and includes various modifications of the above-described embodiment without departing from the spirit of the present invention.
 例えば、上述の実施形態では、自動二輪車や四輪車等の車両用の燃料ポンプとして用いられる液体供給装置1について説明した。しかしながら、液体供給装置1は、さまざまな液体を圧送するために用いることが可能である。 For example, in the above-described embodiment, the liquid supply device 1 used as a fuel pump for a vehicle such as a motorcycle or a four-wheel vehicle has been described. However, the liquid supply device 1 can be used to pump various liquids.
 また、上述の実施形態では、モータ部3として、例えばブラシ付きモータを採用した場合について説明した。しかしながら、これに限られるものではなく、モータ部3として、例えばブラシレスモータを採用することも可能である。 Further, in the above-described embodiment, the case where a motor with a brush is adopted as the motor unit 3 has been described. However, the invention is not limited to this, and it is also possible to employ, for example, a brushless motor as the motor unit 3.
 また、上述の実施形態では、ポンプケース41は、アッパーケース43、ミドルケース44、及びロワケース42により構成されている場合について説明した。しかしながら、これに限られるものではなく、一体化されたアッパーケース43とミドルケース44とを1つのアッパーケース43と称してもよい。さらに、ポンプケース41は、インペラ40を回転自在に収納する収納部60を有していればよく、アッパーケース43、とロワケース42とで分割構成されていなくてもよい。例えば、ミドルケース44とロワケース42とを一体化し、これらミドルケース44とロワケース42とを1つのロワケース42と称してもよい。 Further, in the above-described embodiment, the case where the pump case 41 is configured by the upper case 43, the middle case 44, and the lower case 42 has been described. However, the present invention is not limited to this, and the integrated upper case 43 and middle case 44 may be referred to as one upper case 43. Further, the pump case 41 only needs to have the storage portion 60 that rotatably stores the impeller 40, and may not be divided into the upper case 43 and the lower case 42. For example, the middle case 44 and the lower case 42 may be integrated, and the middle case 44 and the lower case 42 may be referred to as one lower case 42.
 本出願は、2019年1月16日出願の日本特許出願(特願2019-004877)に基づくものであり、それらの内容はここに参照として取り込まれる。 This application is based on the Japanese patent application (Japanese Patent Application No. 2019-004877) filed on January 16, 2019, the contents of which are incorporated herein by reference.
 本発明の非容積型ポンプ及び液体供給装置によれば、例えば、吐出流量を適正に確保しながら、吐出口から吸入口へ漏出した液体の減圧沸騰を抑制できる。この効果を奏する本発明は、例えば、自動二輪車や四輪車等の車両用の燃料ポンプに関して有用である。 According to the non-positive displacement pump and the liquid supply device of the present invention, for example, it is possible to suppress the depressurization boiling of the liquid leaked from the discharge port to the suction port while appropriately ensuring the discharge flow rate. The present invention having this effect is useful for a fuel pump for vehicles such as motorcycles and four-wheeled vehicles.
1…液体供給装置、3…モータ部、4…ポンプ部(非容積型ポンプ)、14…回転軸、40…インペラ、41…ポンプケース、42…ロワケース、42c…第2摺接面、43…アッパーケース、43d…第1摺接面、48…吐出口、53…吸入口、60…収納部、62…羽根部、63…貫通流路、64…第1流路溝、65…第2流路溝、66…第1シール部(シール部)、67…第2シール部(シール部)、C…軸心(回転中心)、L1,L2…直線、θ1,θ2…角度 DESCRIPTION OF SYMBOLS 1... Liquid supply device, 3... Motor part, 4... Pump part (non-volume pump), 14... Rotation shaft, 40... Impeller, 41... Pump case, 42... Lower case, 42c... 2nd sliding contact surface, 43... Upper case, 43d... First sliding contact surface, 48... Discharge port, 53... Suction port, 60... Storage section, 62... Blade section, 63... Through channel, 64... First channel groove, 65... Second flow Road groove, 66... First seal part (seal part), 67... Second seal part (seal part), C... Shaft center (rotation center), L1, L2... Straight line, θ1, θ2... Angle

Claims (3)

  1.  円板状のインペラと、
     前記インペラの全体を覆うように形成され、前記インペラの径方向中心を回転中心とし
    て前記インペラを回転自在に収容したポンプケースと、を備え、
     前記インペラは、
     前記インペラの外周部寄りに、周方向に並んで形成された複数の羽根部と、
     前記周方向に隣接する前記羽根部の間に形成され、前記インペラを板厚方向に貫通する複数の貫通流路と、を有し、
     前記ポンプケースは、
     前記インペラを収納する収納部と、
     前記収納部と前記ポンプケースの外側とを前記インペラの板厚方向に貫通するとともに、前記貫通流路に連通する吸入口と、
     前記インペラを挟んで前記吸入口とは反対側に配置され、前記収納部と前記ポンプケースの外側とを前記板厚方向に貫通するとともに、前記貫通流路に連通する吐出口と、
     前記周方向における前記吸入口と前記吐出口との間に設けられるシール部と、を有し、
     前記シール部の前記周方向における両端と、前記回転中心と、を結ぶ2つの直線の間の角度は、43°以上47°以下であり、
     前記シール部は、前記両端の間に少なくとも2つの前記貫通流路を閉塞可能な大きさを有する、
     非容積型ポンプ。
    A disc-shaped impeller,
    A pump case formed so as to cover the entire impeller and rotatably accommodating the impeller with a radial center of the impeller as a rotation center;
    The impeller is
    A plurality of blade portions formed side by side in the circumferential direction, near the outer peripheral portion of the impeller,
    A plurality of through-flow passages formed between the vane portions adjacent to each other in the circumferential direction and penetrating the impeller in the plate thickness direction,
    The pump case is
    A storage unit for storing the impeller,
    A suction port that penetrates the storage part and the outside of the pump case in the plate thickness direction of the impeller, and that communicates with the through-flow passage,
    Disposed on the opposite side of the suction port with the impeller interposed therebetween, while penetrating the storage part and the outside of the pump case in the plate thickness direction, and a discharge port communicating with the through flow passage,
    A seal portion provided between the suction port and the discharge port in the circumferential direction,
    An angle between two straight lines connecting both ends of the seal portion in the circumferential direction and the rotation center is 43° or more and 47° or less,
    The seal portion has a size capable of closing at least two of the through flow paths between the both ends,
    Non displacement pump.
  2.  請求項1に記載の非容積型ポンプにおいて、
     前記ポンプケースは、
     前記インペラの一面に摺接され、前記一面を覆うアッパーケースと、
     前記インペラの前記一面とは反対側の他面に摺接され、前記他面を覆うロワケースと、を有し、
     前記アッパーケースと前記ロワケースとにより前記収納部が画成され、
     前記アッパーケースは、
     前記吐出口と、
     前記インペラに面する第1摺接面に設けられるとともに前記吐出口に連通される円弧状の第1流路溝と、を有し、
     前記ロワケースは、
     前記吸入口と、
     前記インペラに面する第2摺接面に設けられるとともに前記吸入口に連通される円弧状の第2流路溝と、を有し、
     前記シール部は、
     前記吐出口と前記吸入口との間であり且つ前記貫通流路の回転軌跡上にある
     非容積型ポンプ。
    The non-positive displacement pump according to claim 1,
    The pump case is
    An upper case that is in sliding contact with one surface of the impeller and covers the one surface,
    A lower case that is in sliding contact with the other surface of the impeller opposite to the one surface, and covers the other surface,
    The storage portion is defined by the upper case and the lower case,
    The upper case is
    The discharge port,
    An arc-shaped first flow path groove provided on a first sliding contact surface facing the impeller and communicating with the discharge port,
    The lower case is
    The inlet,
    An arc-shaped second flow path groove provided on a second sliding contact surface facing the impeller and communicating with the suction port,
    The seal portion is
    A non-volumetric pump that is located between the discharge port and the suction port and located on the rotation path of the through-flow passage.
  3.  請求項1又は請求項2に記載の非容積型ポンプと、
     前記非容積型ポンプを駆動するモータ部と、を備え、
     前記モータ部の回転軸と前記インペラとが相対回転不能に連結されている、
     液体供給装置。
    A non-positive displacement pump according to claim 1 or 2,
    A motor unit for driving the non-positive displacement pump,
    The rotation shaft of the motor unit and the impeller are connected so as not to rotate relative to each other,
    Liquid supply device.
PCT/JP2020/001379 2019-01-16 2020-01-16 Non-positive displacement type pump and liquid supply device WO2020149382A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112021014002-6A BR112021014002A2 (en) 2019-01-16 2020-01-16 NON-POSITIVE DISPLACEMENT PUMP AND LIQUID SUPPLY DEVICE
EP20741647.0A EP3913228A4 (en) 2019-01-16 2020-01-16 Non-positive displacement type pump and liquid supply device
JP2020566487A JP7350020B2 (en) 2019-01-16 2020-01-16 Non-displacement pumps and liquid supply devices
CN202080009587.6A CN113423956B (en) 2019-01-16 2020-01-16 Non-positive displacement pump and liquid supply device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-004877 2019-01-16
JP2019004877 2019-01-16

Publications (1)

Publication Number Publication Date
WO2020149382A1 true WO2020149382A1 (en) 2020-07-23

Family

ID=71613073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001379 WO2020149382A1 (en) 2019-01-16 2020-01-16 Non-positive displacement type pump and liquid supply device

Country Status (5)

Country Link
EP (1) EP3913228A4 (en)
JP (1) JP7350020B2 (en)
CN (1) CN113423956B (en)
BR (1) BR112021014002A2 (en)
WO (1) WO2020149382A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0849683A (en) * 1994-08-06 1996-02-20 Robert Bosch Gmbh Carrying unit carrying fuel from storage tank of internal combustion engine for automobile
JP2000230492A (en) * 1999-02-09 2000-08-22 Aisan Ind Co Ltd Hydraulic pump
JP2006291802A (en) * 2005-04-08 2006-10-26 Aisan Ind Co Ltd Fuel pump
KR100893143B1 (en) * 2007-10-19 2009-04-16 현담산업 주식회사 Impeller case of fuel pump
JP4952180B2 (en) 2006-10-04 2012-06-13 株式会社デンソー Fuel pump
JP2014206065A (en) * 2013-04-11 2014-10-30 株式会社日本自動車部品総合研究所 Fuel pump
JP2015086804A (en) 2013-10-31 2015-05-07 株式会社デンソー Fuel pump
JP2019004877A (en) 2017-06-20 2019-01-17 三菱ケミカルフーズ株式会社 Emulsion composition and beverage

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3424520C2 (en) * 1984-07-04 1986-07-10 SWF Auto-Electric GmbH, 7120 Bietigheim-Bissingen Fuel pump
GB2253010B (en) * 1990-12-15 1994-04-20 Dowty Defence & Air Syst Regenerative pump
US5338165A (en) * 1991-11-25 1994-08-16 Ford Motor Company Automotive fuel pump with modular pump housing
GB9315625D0 (en) * 1993-07-28 1993-09-08 Dowty Defence & Air Syst Pumps
JP2005120834A (en) 2003-10-14 2005-05-12 Aisan Ind Co Ltd Fuel pump
DE10348008A1 (en) 2003-10-15 2005-05-19 Siemens Ag Fuel pump
CN100392251C (en) * 2004-07-05 2008-06-04 薛肇江 Electric and fuel double groove impeller pump
JP4912149B2 (en) 2004-09-08 2012-04-11 株式会社ミツバ Fuel pump
JP2010144609A (en) * 2008-12-18 2010-07-01 Mitsubishi Electric Corp Fuel pump
DE102010004379A1 (en) 2009-12-16 2011-06-22 Continental Automotive GmbH, 30165 Fuel pump
US9249806B2 (en) 2011-02-04 2016-02-02 Ti Group Automotive Systems, L.L.C. Impeller and fluid pump
JP5653531B2 (en) * 2011-10-13 2015-01-14 三菱電機株式会社 Fuel pump

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0849683A (en) * 1994-08-06 1996-02-20 Robert Bosch Gmbh Carrying unit carrying fuel from storage tank of internal combustion engine for automobile
JP2000230492A (en) * 1999-02-09 2000-08-22 Aisan Ind Co Ltd Hydraulic pump
JP2006291802A (en) * 2005-04-08 2006-10-26 Aisan Ind Co Ltd Fuel pump
JP4952180B2 (en) 2006-10-04 2012-06-13 株式会社デンソー Fuel pump
KR100893143B1 (en) * 2007-10-19 2009-04-16 현담산업 주식회사 Impeller case of fuel pump
JP2014206065A (en) * 2013-04-11 2014-10-30 株式会社日本自動車部品総合研究所 Fuel pump
JP2015086804A (en) 2013-10-31 2015-05-07 株式会社デンソー Fuel pump
JP2019004877A (en) 2017-06-20 2019-01-17 三菱ケミカルフーズ株式会社 Emulsion composition and beverage

Also Published As

Publication number Publication date
BR112021014002A2 (en) 2021-09-21
EP3913228A4 (en) 2022-10-26
CN113423956A (en) 2021-09-21
JP7350020B2 (en) 2023-09-25
EP3913228A1 (en) 2021-11-24
CN113423956B (en) 2024-02-02
JPWO2020149382A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
JP4623217B2 (en) Fuel supply pump
JP2012228178A (en) Fuel pump
US20070065315A1 (en) Fluid pump having bearing hold
US9835159B2 (en) Fuel pump having pulsation dampening branch flow paths
JP2012031807A (en) Fuel pump
WO2020149382A1 (en) Non-positive displacement type pump and liquid supply device
JP3402330B2 (en) Fuel supply device
JP2014013029A (en) Fluid pump
WO2020149383A1 (en) Motor unit and liquid supply device
JP6546958B2 (en) Fuel supply system
JP2010138704A (en) Pressure regulator and fuel supply device
JP6591713B1 (en) Fuel supply device
US20040228721A1 (en) Fuel pump
US7950898B2 (en) Fuel pump having impeller
JP6921666B2 (en) Pressure controller and fuel supply
JP2019015268A (en) Pressure control device and fuel supply device
JP2018150840A (en) Fuel pump
JP4978247B2 (en) Fuel pump
CN214036097U (en) Electric oil pump
CN115539397A (en) Pump device
JP6524295B1 (en) Fuel supply system
JP2021101110A (en) Fuel pump and its assembly method
JP2017190692A (en) Fuel supply device
JP2024051754A (en) Pumping equipment
JP2010249099A (en) Fuel pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20741647

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020566487

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021014002

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020741647

Country of ref document: EP

Effective date: 20210816

ENP Entry into the national phase

Ref document number: 112021014002

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210715