WO2020149379A1 - Photo/moisture curable resin composition and cured body - Google Patents

Photo/moisture curable resin composition and cured body Download PDF

Info

Publication number
WO2020149379A1
WO2020149379A1 PCT/JP2020/001369 JP2020001369W WO2020149379A1 WO 2020149379 A1 WO2020149379 A1 WO 2020149379A1 JP 2020001369 W JP2020001369 W JP 2020001369W WO 2020149379 A1 WO2020149379 A1 WO 2020149379A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable resin
meth
moisture
compound
acrylate
Prior art date
Application number
PCT/JP2020/001369
Other languages
French (fr)
Japanese (ja)
Inventor
元美 塩島
晋治 河田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2020566484A priority Critical patent/JP7470054B2/en
Priority to CN202080008860.3A priority patent/CN113302249B/en
Publication of WO2020149379A1 publication Critical patent/WO2020149379A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • C09J4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09J159/00 - C09J187/00

Definitions

  • the present invention relates to a light moisture curable resin composition and a cured product thereof.
  • narrow frame design a technique of bonding with an adhesive having a narrow line width using a dispenser or the like is required.
  • the laminated body of the semiconductor chips is, for example, after applying an adhesive on one of the semiconductor chips, semi-cured by light irradiation, and laminated the other semiconductor chip via the semi-cured product to temporarily bond the semiconductor chips.
  • the adhesive may be manufactured by a method of completely curing the adhesive and finally bonding the chips.
  • a method of temporarily adhering with an applied adhesive agent and then performing final adhering is being studied.
  • the use of a photo-moisture curable resin composition has been studied as an adhesive for stacking semiconductor chips and for designing a narrow frame.
  • the photo-moisture curable resin composition contains a radically polymerizable compound, a moisture curable urethane resin or a hydrolyzable silyl group-containing resin.
  • a thixotropic agent is added to prevent resin dripping after application, and a hydrolyzable silyl group is included in one molecule in order to improve adhesion.
  • a hydrolyzable silyl group is included in one molecule in order to improve adhesion. It is known to mix modified silicone resins having one or more (see Patent Documents 1 and 2).
  • a crosslinkable silicon group-containing organic polymer As disclosed in Patent Document 3, a crosslinkable silicon group-containing organic polymer, a photobase generator, a fluorine-based compound, and one in one molecule A photo-moisture curable resin composition including a polyfunctional compound having more than (meth)acryloyl groups is also known.
  • the adherend is often temporarily adhered before the main adhesion. Therefore, it is desired to increase not only the adhesive force at the time of main bonding when moisture curing sufficiently progresses after a certain time has elapsed after photocuring but also the so-called initial adhesive force at the time of semi-curing immediately after photocuring.
  • the conventional photo-moisture-curable resin composition it is often difficult for the conventional photo-moisture-curable resin composition to improve the adhesive strength at the time of main bonding, and also to make the initial adhesive strength equal to or more than a certain value.
  • an object of the present invention is to provide a photo-moisture curable resin composition capable of increasing the initial adhesive force immediately after photo-curing to a certain value or more.
  • the inventors of the present invention can solve the above problems by setting the SP values of the radically polymerizable compound and the moisture-curable resin contained in the photo-moisture-curable resin composition to be a certain value or less. Then, the present invention has been completed. That is, the present invention provides the following [1] to [7].
  • [1] contains a radically polymerizable compound, a moisture curable resin, and a photopolymerization initiator, A photo-moisture curable resin composition, wherein the SP value difference between the radically polymerizable compound and the moisture curable resin is 1.0 or less.
  • a photo-moisture curable resin composition capable of increasing the initial adhesive force immediately after photo-curing to a certain value or more.
  • FIG.1(a) is a top view
  • FIG.1(b) is a side view.
  • the curable resin composition of the present invention contains a radical polymerizable compound, a moisture curable resin, and a photopolymerization initiator, and the SP value difference between the radical polymerizable compound and the moisture curable resin is 1.0 or less. Is.
  • the SP value difference is 1.0 or less.
  • the compatibility between the radical polymerizable compound and the moisture curable resin becomes excellent. Therefore, it is presumed that in the curable resin composition after photocuring, so-called bleed-out in which the uncured moisture-curable resin oozes out to the interface with the adherend is suppressed and the initial adhesive strength is improved.
  • the SP value difference between the radically polymerizable compound and the moisture-curable resin exceeds 1.0, the compatibility of the radically polymerizable compound and the moisture-curable resin decreases, and it is presumed that bleed-out cannot be suppressed. , The initial adhesive strength cannot be improved sufficiently.
  • the SP value difference between the radically polymerizable compound and the moisture-curable resin is preferably 0.8 or less, more preferably 0.6 or less, from the viewpoint of suppressing bleed-out and improving the initial adhesive strength.
  • the SP value difference is better as it is smaller, and may be 0 or more. However, since a constant difference is usually generated, it is practically 0.01 or more.
  • the SP value of the moisture-curable resin is preferably 9.5 or more.
  • the SP value of the moisture-curable resin is more preferably 10.0 or more.
  • the SP value of the moisture-curable resin is preferably 12.0 or less, more preferably 11.5 or less, still more preferably 11.0 or less.
  • the SP value of the moisture-curable resin is not more than these upper limit values, the curing performance can be sufficiently secured while reducing the SP value difference with the radically polymerizable compound. Further, by setting the SP value within the above range, the adhesion to the adherend and the like will be good.
  • the SP value of the radically polymerizable compound is preferably 9.0 or more, more preferably 9.5 or more, and preferably 12.0 or less, more preferably 11.5 or less, and 11.0 or less. More preferable. By setting the SP value of the radically polymerizable compound within these ranges, it becomes easy to improve the curing performance and the adhesion to the adherend while reducing the SP value difference from the moisture curable resin.
  • the SP values of the radically polymerizable compound and the moisture-curable resin are calculated by the Fedors method, and when each component is a blended product composed of a plurality of types, The SP value is proportionally distributed by each constituent ratio (mass %) and calculated by a weighted average.
  • the SP value difference is an absolute value obtained by subtracting the SP value of the moisture-curable resin from the SP value of the radically polymerizable compound.
  • the unit of the SP value is (cal/cm 3 ) 1/2 .
  • the light moisture curable resin composition of the present invention preferably has an initial adhesive force of 0.3 MPa or more. Further, the photomoisture curable resin composition of the present invention preferably has an adhesive force of 2.0 MPa or more after 24 hours of photocuring.
  • the initial adhesive strength means the adhesive strength at 25° C. after the photo-moisture curable resin composition is photo-cured. Further, the adhesive force after 24 hours of photocuring means the adhesive force after 24 hours have passed after photocuring the light moisture curable resin composition.
  • the details of the method for measuring the initial adhesive force and the adhesive force after 24 hours of photocuring are as described in Examples below.
  • the adherends can be appropriately temporarily adhered to each other.
  • the adhesive force after 24 hours of photocuring is 2.0 MPa or more, the adherends can be strongly bonded to each other in the main adhesion, for example.
  • the photomoisture curable resin composition more preferably has an initial adhesive force of 0.8 MPa or more in order to enhance the adhesion stability during temporary adhesion.
  • the initial adhesive force is preferably less than 2.0 MPa so that it can be easily reattached during temporary adhesion.
  • the adhesive strength after 24 hours of light curing is more preferably 3.5 MPa or more, and more preferably 4.0 MPa or more in order to more firmly bond the adherends to each other during the main adhesion. preferable.
  • the higher the adhesive strength after 24 hours of photo-curing the better, but is not particularly limited, but may be, for example, 20 MPa or less, or 10 MPa or less.
  • the light moisture curable resin composition of the present invention contains a radically polymerizable compound.
  • the photomoisture curable resin composition is imparted with photocurability by containing a radically polymerizable compound. Since the photo-moisture curable resin composition has photo-curability, it can give a certain adhesive force only by irradiating light, and thus it becomes easy to secure the above-mentioned initial adhesive force.
  • the radically polymerizable compound may have a radically polymerizable functional group in the molecule.
  • a compound having an unsaturated double bond is preferable as the radically polymerizable functional group, and examples thereof include a (meth)acryloyl group, a vinyl group, a styryl group, and an allyl group.
  • a (meth)acryloyl group is preferable from the viewpoint of adhesiveness and the viewpoint of making the SP value easily within the above range, that is, the radically polymerizable compound has a (meth)acryloyl group. It is preferable to contain a compound.
  • the compound having a (meth)acryloyl group is hereinafter also referred to as "(meth)acrylic compound".
  • the content of the (meth)acrylic compound is preferably 50% by mass or more, more preferably 55% by mass or more, and further preferably 60% by mass or more based on the total amount of the radically polymerizable compound.
  • the upper limit is not particularly limited, but is 100% by mass.
  • the radical polymerizable compound may include one or both of a monofunctional compound having one radical polymerizable functional group in one molecule, and a polyfunctional compound having two or more radical polymerizable functional groups in one molecule, From the viewpoint of improving the initial adhesive strength of the light moisture curable resin composition, it is preferable that the amount of the polyfunctional compound is small. Specifically, the content of the polyfunctional compound based on the total amount of the radically polymerizable compound is preferably 25% by mass or less, more preferably 20% by mass or less, and further preferably 5% by mass or less. , 0% by mass, that is, it is also preferable not to contain a polyfunctional compound.
  • the radically polymerizable compound of the present invention preferably contains a nitrogen-containing compound.
  • the initial adhesive strength of the light moisture curable resin composition becomes good.
  • the photo-moisture curable resin composition is applied to the adherend and then photo-cured by irradiation with active energy rays such as ultraviolet rays. At that time, photo-curing is generally performed in the presence of oxygen as described later. It is often done. It is presumed that when the radically polymerizable compound contains a nitrogen-containing compound, it is appropriately photocured even in the presence of oxygen, and thereby the initial adhesive strength is improved.
  • the nitrogen-containing compound may be a compound having a nitrogen atom and a radically polymerizable functional group, and may be a (meth)acrylic compound or a compound other than the (meth)acrylic compound. Further, the nitrogen-containing compound may be monofunctional having one radical-polymerizable functional group or polyfunctional having two or more radical-polymerizable functional groups.
  • the photo-moisture curable resin composition from the viewpoint of enhancing the initial adhesive force, it is better that the content of the polyfunctional compound is small as described above, and the polyfunctional compound in the total amount of the radical polymerizable compound is within the above range. Should be adjusted so that
  • the nitrogen-containing compound may contain one or both of a chain-like nitrogen-containing compound and a nitrogen-containing compound having a cyclic structure, but from the viewpoint of improving the initial adhesive strength of the light moisture curable resin composition, the cyclic compound It is preferable to include a nitrogen-containing compound having a structure, and it is more preferable to use a chain-like nitrogen-containing compound in combination with a nitrogen-containing compound having a cyclic structure.
  • nitrogen-containing compound having a cyclic structure examples include nitrogen-containing compounds having a lactam structure such as N-vinylpyrrolidone and N-vinylcaprolactam, morpholine skeleton-containing compounds such as N-acryloylmorpholine, and N-(meth)acryloyloxyethylhexahydro.
  • nitrogen-containing compounds having a lactam structure such as N-vinylpyrrolidone and N-vinylcaprolactam
  • morpholine skeleton-containing compounds such as N-acryloylmorpholine
  • N-(meth)acryloyloxyethylhexahydro examples include cyclic imide compounds such as phthalimide.
  • amide group- or imide group-containing compounds such as N-vinylcaprolactam and N-(meth)acryloyloxyethylhexahydrophthalimide are more preferable, and amide group-containing compounds such as N-vinylcap
  • chain-like nitrogen-containing compound examples include chain-like nitrogen-containing compounds such as dimethylamino(meth)acrylate, diethylamino(meth)acrylate, aminomethyl(meth)acrylate, aminoethyl(meth)acrylate, and dimethylaminoethyl(meth)acrylate.
  • Chain-like (meth)acrylamides such as amino group-containing (meth)acrylates, diacetone acrylamides, N,N-dimethyl acrylamides, N,N-diethyl acrylamides, N-isopropyl acrylamides, N-hydroxyethyl acrylamides, acrylamides and methacrylamides Examples thereof include compounds and N-vinylacetamide.
  • the chain nitrogen-containing compound may be urethane (meth)acrylate.
  • the urethane (meth)acrylate for example, a compound obtained by reacting an isocyanate compound with a (meth)acrylic acid derivative having a hydroxyl group can be used.
  • a catalytic amount of a tin compound it is preferable to use a catalytic amount of a tin compound as a catalyst.
  • the urethane (meth)acrylate may be monofunctional or polyfunctional such as bifunctional, but monofunctional is preferable as described above.
  • Examples of the (meth)acrylic acid derivative having a hydroxyl group include dihydric alcohols such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol and polyethylene glycol.
  • dihydric alcohols such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol and polyethylene glycol.
  • Mono(meth)acrylates, mono(meth)acrylates or di(meth)acrylates of trihydric alcohols such as trimethylolethane, trimethylolpropane and glycerin, and epoxies such as bisphenol A type epoxy (meth)acrylates ) Acrylate and the like can be mentioned.
  • Examples of the isocyanate compound used for obtaining the urethane (meth)acrylate include, for example, isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4, 4'-diisocyanate (MDI), hydrogenated MDI, polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris( Polyisocyanate compounds such as isocyanate phenyl)thiophosphate, tetramethylxylylene diisocyanate and 1,6,11-undecane triisocyanate can be mentioned.
  • the isocyanate compound a chain-extended polyisocyanate compound obtained by reacting a polyol with an excess isocyanate compound can also be used.
  • the polyol include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, polycaprolactone diol, and the like.
  • a polyfunctional urethane (meth)acrylate can be obtained by using these polyisocyanate compounds.
  • Isocyanate compounds used to obtain urethane (meth) acrylate include butane isocyanate, hexane isocyanate, decane isocyanate and other alkane monoisocyanates, cyclopentane isocyanate, cyclohexane isocyanate, isophorone monoisocyanate and other cyclic aliphatic monoisocyanate and other fatty acids Group monoisocyanates are mentioned. A monofunctional urethane (meth)acrylate can be obtained by using these monoisocyanate compounds.
  • the monofunctional urethane (meth)acrylate is more preferably a urethane (meth)acrylate obtained by reacting the above-mentioned monoisocyanate compound with a mono(meth)acrylate of a divalent alcohol,
  • a preferred specific example is 1,2-ethanediol 1-acrylate 2-(N-butylcarbamate).
  • urethane (meth)acrylates include, for example, M-1100, M-1200, M-1210, M-1600 (all manufactured by Toagosei Co., Ltd.), EBECRYL230, EBECRYL270, EBECRYL8402, EBECRYL8411, and the like.
  • Resin UN-1255, Art Resin UN-330, Art Resin UN-3320HB, Art Resin UN-1200TPK, Art Resin SH-500B (all manufactured by Negami Kogyo Co., Ltd.), U-2HA, U-2PHA, U-3HA, U -4HA, U-6H, U-6LPA, U-6HA, U-10H, U-15HA, U-122A, U-122P, U-108, U-108A, U-324A, U-340A, U-340P , U-1084A, U-2061BA, UA-340P, UA-4100, UA-4000, UA-4200, UA-4400, UA-5201P, UA-7100, UA-7200, UA-W2A (all are Shin-Nakamura Chemical Industrial Co., Ltd.), AI-600, AH-600, AT-600, UA-101I, UA-101T, UA-306H, UA-306I, UA-306T (all manufactured by Kyoeisha Chemical
  • the chain nitrogen-containing compound preferably contains urethane (meth)acrylate
  • the urethane (meth)acrylate is preferably monofunctional as described above, but in addition to monofunctional, polyfunctional such as bifunctional. You may have the urethane (meth)acrylate of.
  • the content of the nitrogen-containing compound based on the total amount of the radical-polymerizable compound is preferably 10% by mass or more, more preferably 30% by mass or more, and further preferably from the viewpoint of improving the initial adhesive strength of the moisture-curable resin composition. It is 50% by mass or more, and most preferably 60% by mass or more.
  • the content of the nitrogen-containing compound may be 100% by mass or less, but preferably 95% by mass or less, more preferably 90% by mass in order to contain an appropriate amount of a radically polymerizable compound other than the nitrogen-containing compound. There is no more than mass%.
  • the mass ratio (cyclic/chain) of the contained compound is preferably 0.1 or more, more preferably 0.2 or more, and further preferably 0.4 or more. Further, the mass ratio (cyclic/chain) of the nitrogen-containing compound having a cyclic structure to the chain-like nitrogen-containing compound is preferably 2.0 or less, more preferably 1.5 or less, from the same viewpoint as above. 2 or less is more preferable.
  • the radically polymerizable compound of the present invention preferably contains a compound other than the above-mentioned nitrogen-containing compound (hereinafter, also referred to as non-nitrogen-containing compound).
  • the nitrogen-free compound may be a monofunctional compound having one radically polymerizable functional group, a polyfunctional compound having two or more radically polymerizable functional groups, or may include both of them.
  • the polyfunctional compound is preferably contained in a small amount, and more preferably not contained. Specifically, as described above, the content of the polyfunctional compound based on the total amount of the radically polymerizable compound may be adjusted within the above range.
  • the nitrogen-free compound is not particularly limited as long as it is a compound having a radically polymerizable functional group, but a (meth)acrylic compound is preferable, and a (meth)acrylic acid ester compound is mentioned among them.
  • the (meth)acrylic acid ester compound may be monofunctional or polyfunctional, but monofunctional is preferable.
  • the polyfunctionality may be bifunctional or trifunctional or higher. Examples of the monofunctional (meth)acrylic acid ester compound include alkyl (meth)acrylate, alicyclic structure-containing (meth)acrylate, and aromatic ring-containing (meth)acrylate.
  • alkyl (meth)acrylate examples include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, t-butyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isononyl (meth)acrylate, isodecyl (meth)acrylate, lauryl (meth)acrylate, isomyristyl (meth)acrylate, stearyl (meth) ) Alkyl (meth)acrylates having an alkyl group having 1 to 18 carbon atoms, such as acrylate.
  • Examples of the alicyclic structure-containing (meth)acrylate include cyclohexyl (meth)acrylate, 4-tert-butylcyclohexyl (meth)acrylate, 3,3,5-trimethylcyclohexyl (meth)acrylate, isobornyl (meth)acrylate and dicyclopentenyl. Examples thereof include (meth)acrylate having an alicyclic structure such as (meth)acrylate.
  • aromatic ring-containing (meth)acrylates examples include phenyl(meth)acrylates such as benzyl(meth)acrylate and 2-phenylethyl(meth)acrylate, and phenoxyalkyl(meth)acrylates such as phenoxyethyl(meth)acrylate.
  • phenyl(meth)acrylates such as benzyl(meth)acrylate and 2-phenylethyl(meth)acrylate
  • phenoxyalkyl(meth)acrylates such as phenoxyethyl(meth)acrylate.
  • cyclic ether group containing (meth)acrylate as a monofunctional (meth)acrylic acid ester compound.
  • the cyclic ether group-containing (meth)acrylate include (meth)acrylates having an epoxy ring, an oxetane ring, a tetrahydrofuran ring, a dioxolane ring, a dioxane ring and the like.
  • the epoxy ring-containing (meth)acrylate include glycidyl (meth)acrylate.
  • the oxetane ring-containing (meth)acrylate include (3-ethyloxetane-3-yl)methyl(meth)acrylate.
  • Examples of the tetrahydrofuran ring-containing (meth)acrylate include tetrahydrofurfuryl (meth)acrylate and (meth)acrylic acid ester of tetrahydrofurfuryl alcohol.
  • the (meth)acrylic acid ester of tetrahydrofurfuryl alcohol may be a polymer ester of (meth)acrylic acid (for example, a molecular weight of about 150 to 550).
  • the dioxolane ring-containing (meth)acrylate includes (2-methyl-2-ethyl-1,3-dioxolan-4-yl)methyl (meth)acrylate and (2,2-cyclohexyl-1,3-dioxolane-4- Ilyl)methyl (meth)acrylate and the like.
  • Examples of the (meth)acrylate having a dioxane ring include cyclic trimethylolpropane formal (meth)acrylate.
  • the monofunctional (meth)acrylic acid ester compound 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate
  • polyoxyethylene-based (meth)acrylates such as eth
  • bifunctional (meth)acrylic acid ester compound examples include 1,3-butanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, and 1,6-hexanediol di(meth)acrylate.
  • trifunctional or higher functional (meth)acrylic acid ester compounds include trimethylolpropane tri(meth)acrylate, ethylene oxide-added trimethylolpropane tri(meth)acrylate, propylene oxide-added trimethylolpropane tri(meth)acrylate, Caprolactone-modified trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, glycerin tri(meth)acrylate, propylene oxide-added glycerin tri(meth)acrylate, tris(meth)acryloyloxyethyl phosphate, ditrimethylolpropane tetra Examples thereof include (meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, and dipentaerythritol hexa(meth)acrylate.
  • the nitrogen-free compound is preferably monofunctional as described above, and preferably contains at least one selected from acrylic (meth)acrylate, alicyclic structure-containing (meth)acrylate, and aromatic ring-containing (meth)acrylate. ..
  • the content of the non-nitrogen-containing compound based on the total amount of the radical-polymerizable compound may be 0% by mass or more, but is preferably 5% by mass or more from the viewpoint of improving the initial adhesive strength of the light moisture curable resin composition. , And more preferably 10 mass% or more. And it is preferably 90% by mass or less, more preferably 70% by mass or less, further preferably 50% by mass or less, and most preferably 40% by mass or less.
  • the content of the radically polymerizable compound in the light moisture curable resin composition is preferably 20% by mass or more based on the total amount of the light moisture curable resin composition.
  • the content of the radically polymerizable compound is 20% by mass or more, the photomoisture curable resin composition can be provided with appropriate photocurability, and the initial adhesive strength becomes good.
  • the content of the radically polymerizable compound is more preferably 30% by mass or more, and further preferably 55% by mass or more.
  • the content of the radically polymerizable compound is preferably 80% by mass or less based on the total amount of the light moisture curable resin composition.
  • the photocurable resin composition can contain a certain amount or more of the curable resin, and it becomes easy to impart proper curability to the composition.
  • the content of the radically polymerizable compound is more preferably 75% by mass or less, and further preferably 70% by mass or less.
  • the photo-moisture curable resin composition of the present invention contains a moisture curable resin, thereby imparting moisture curability. Moisture-curable resin can be cured without heating the curable resin composition.Therefore, when curing the curable resin composition, the adherend or the adherend such as electronic parts around the adherence is damaged by heating. It can be prevented. Further, the moisture-curing property makes it easy to enhance the adhesiveness when cured, and the adhesive force after 24 hours of photocuring is easily enhanced as described above.
  • Examples of the moisture-curable resin used in the present invention include a moisture-curable urethane resin and a hydrolyzable silyl group-containing resin, and among them, a moisture-curable urethane resin is preferable.
  • the moisture-curable resin preferably contains either a compound having a polycarbonate skeleton or a compound having a polyester skeleton. By having any of these, the moisture-curable resin has an SP value within the desired range described above, and it is easy to reduce the difference from the SP value of the radically polymerizable compound.
  • both a compound having a polycarbonate skeleton and a compound having a polyester skeleton may be used, but it is preferable to use one of them.
  • a polycarbonate skeleton or a polyester skeleton can be introduced into the moisture-curable resin by using a polycarbonate polyol or a polyester polyol as described below for the polyol compound constituting the urethane resin. ..
  • the moisture-curable urethane resin has an isocyanate group.
  • the moisture-curable urethane resin is cured by the reaction of the isocyanate group in the molecule with the moisture in the air or the adherend.
  • the moisture-curable urethane resin may have only one isocyanate group in one molecule, or may have two or more isocyanate groups. Above all, it is preferable to have isocyanate groups at both ends of the main chain of the molecule.
  • the moisture-curable urethane resin can be obtained by reacting a polyol compound having two or more hydroxyl groups in one molecule with a polyisocyanate compound having two or more isocyanate groups in one molecule.
  • polyol compound which is a raw material of the moisture-curable urethane resin a known polyol compound which is usually used in the production of polyurethane can be used.
  • polyester polyol, polyether polyol, polyalkylene polyol, polycarbonate polyol and the like. are listed. These polyol compounds may be used alone or in combination of two or more. Among these, as described above, it is preferable to use polyester polyol or polycarbonate polyol from the viewpoint of reducing the SP value difference from the radically polymerizable compound. Further, among these, polycarbonate polyol is preferable.
  • the polycarbonate polyol it is possible to provide a light moisture curable resin composition having excellent weather resistance, heat resistance, moisture resistance and the like of a cured product.
  • polyester polyols examples include polyester polyols obtained by the reaction of a polyvalent carboxylic acid and a polyol, and polycaprolactone polyols such as poly- ⁇ -caprolactone diol obtained by ring-opening polymerization of ⁇ -caprolactone.
  • polyvalent carboxylic acid as a raw material of the polyester polyol include terephthalic acid, isophthalic acid, 1,5-naphthalic acid, 2,6-naphthalic acid, succinic acid, glutaric acid, adipic acid, pimelic acid and suberic acid.
  • polyester polyol examples include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, Examples include diethylene glycol and cyclohexanediol.
  • polycarbonate polyol a polycarbonate diol is preferable, and specific examples of the polycarbonate diol include a compound represented by the following formula (1).
  • R is a divalent hydrocarbon group having 4 to 16 carbon atoms, and n is an integer of 1 to 500.
  • R is preferably an aliphatic saturated hydrocarbon group.
  • R is an aliphatic saturated hydrocarbon group, heat resistance tends to be good. Also, yellowing is less likely to occur due to heat deterioration and the weather resistance is also improved.
  • R composed of an aliphatic saturated hydrocarbon group may have a chain structure or a cyclic structure, but it is preferable to have a chain structure from the viewpoint of easily improving stress relaxation property and flexibility. Further, R in the chain structure may be linear or branched. n is preferably 5 to 200, more preferably 10 to 150, and further preferably 20 to 50. Further, R contained in the polycarbonate polyol constituting the moisture-curable urethane resin (a1) may be used alone or in combination of two or more.
  • At least a part thereof is preferably a chained aliphatic saturated hydrocarbon group having 6 or more carbon atoms, and more preferably at least a part thereof is a chained aliphatic saturated carbon group. It is preferably a saturated hydrocarbon group.
  • a chain-like aliphatic saturated hydrocarbon group having 7 or more carbon atoms it becomes easy to improve stress relaxation property and flexibility.
  • the polycarbonate diol is a compound represented by the above formula (1)
  • the proportion of the chained aliphatic saturated hydrocarbon group having 7 or more carbon atoms is 20 mol% or more based on R contained in all the polycarbonate diols.
  • the chain-like aliphatic saturated hydrocarbon group having 7 or more carbon atoms preferably has 8 or more and 12 or less carbon atoms, and more preferably 8 or more and 10 or less carbon atoms.
  • R may be linear groups such as a tetramethylene group, a pentylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, a nonamethylene group, and a decamethylene group, and for example, a 3-methylpentylene group.
  • the polycarbonate polyol may be a copolymer containing R having 6 or less carbon atoms and R having 7 or more carbon atoms in one molecule, and in this case, all R are chain-like aliphatic saturated carbon atoms. It is preferably a hydrogen group.
  • R may contain a linear aliphatic saturated hydrocarbon group or a branched aliphatic saturated hydrocarbon group. As R in the polycarbonate polyol, branched R and linear R may be used in combination, or linear R may be used alone. The polycarbonate polyols may be used alone or in combination of two or more.
  • aromatic polyisocyanate compound and an aliphatic polyisocyanate compound are preferably used as the polyisocyanate compound as a raw material for the moisture-curable urethane resin.
  • aromatic polyisocyanate compound examples include diphenylmethane diisocyanate, liquid modified products of diphenylmethane diisocyanate, polymeric MDI, tolylene diisocyanate, and naphthalene-1,5-diisocyanate.
  • Examples of the aliphatic polyisocyanate compound include hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, norbornane diisocyanate, transcyclohexane-1,4-diisocyanate, isophorone diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate, cyclohexane diisocyanate. , Bis(isocyanatomethyl)cyclohexane, dicyclohexylmethane diisocyanate, and the like.
  • polyisocyanate compound an aromatic polyisocyanate compound is preferable, and diphenylmethane diisocyanate and a modified product thereof are more preferable, from the viewpoint of increasing the adhesive strength after full curing. Further, from the viewpoint of easily imparting stress relaxation property, flexibility and the like to the cured product of the light moisture curable resin composition, an aliphatic polyisocyanate compound is preferable.
  • the polyisocyanate compound may be used alone or in combination of two or more kinds.
  • the hydrolyzable silyl group-containing resin used in the present invention is cured by the reaction of the hydrolyzable silyl group in the molecule with the water in the air or the adherend.
  • the hydrolyzable silyl group-containing resin may have only one hydrolyzable silyl group in one molecule, or may have two or more hydrolyzable silyl groups. Above all, it is preferable to have a hydrolyzable silyl group at both ends of the main chain of the molecule.
  • the hydrolyzable silyl group-containing resin does not include those having an isocyanate group.
  • the hydrolyzable silyl group is represented by the following formula (2).
  • R 1's each independently represent an optionally substituted alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, Alternatively, it is a triorganosiloxy group represented by —OSiR 2 3 (R 2 is independently a hydrocarbon group having 1 to 20 carbon atoms).
  • each X is independently a hydroxy group or a hydrolyzable group.
  • a is an integer of 1 to 3.
  • the hydrolyzable group is not particularly limited, and examples thereof include a halogen atom, an alkoxy group, an alkenyloxy group, an aryloxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an acid amide group, an aminooxy group and a mercapto group.
  • a halogen atom, an alkoxy group, an alkenyloxy group, and an acyloxy group are preferable because of their high activity.
  • alkoxy groups such as a methoxy group and an ethoxy group are more preferable, and a methoxy group and an ethoxy group are more preferable, because they are mildly hydrolyzable and are easy to handle.
  • an ethoxy group and an isopropenoxy group in which the compounds eliminated by the reaction are ethanol and acetone, respectively are preferable.
  • the above-mentioned hydroxy group or the above-mentioned hydrolyzable group can be bonded to 1 silicon atom in the range of 1 to 3.
  • these groups may be the same or different.
  • a in the above formula (2) is preferably 2 or 3, and particularly preferably 3. Further, a is preferably 2 from the viewpoint of storage stability.
  • R 1 in the above formula (2) is, for example, an alkyl group such as a methyl group or an ethyl group, a cycloalkyl group such as a cyclohexyl group, an aryl group such as a phenyl group, an aralkyl group such as a benzyl group, or a trimethylsiloxy group. , Chloromethyl group, methoxymethyl group and the like. Of these, a methyl group is preferred.
  • hydrolyzable silyl group examples include a methyldimethoxysilyl group, trimethoxysilyl group, triethoxysilyl group, tris(2-propenyloxy)silyl group, triacetoxysilyl group, (chloromethyl)dimethoxysilyl group, ( (Chloromethyl)diethoxysilyl group, (dichloromethyl)dimethoxysilyl group, (1-chloroethyl)dimethoxysilyl group, (1-chloropropyl)dimethoxysilyl group, (methoxymethyl)dimethoxysilyl group, (methoxymethyl)diethoxysilyl group Group, (ethoxymethyl)dimethoxysilyl group, (1-methoxyethyl)dimethoxysilyl group, (aminomethyl)dimethoxysilyl group, (N,N-dimethylaminomethyl)dimethoxysilyl group, (N,N-
  • hydrolyzable silyl group-containing resin examples include a hydrolyzable silyl group-containing polyurethane resin and the like.
  • a method for producing the hydrolyzable silyl group-containing polyurethane resin for example, when a polyurethane resin is produced by reacting a polyol compound with a polyisocyanate compound, a silyl group-containing compound such as a silane coupling agent is further added.
  • Examples include a method of reacting. Specific examples thereof include a method for synthesizing a urethane oligomer having a hydrolyzable silyl group described in JP-A-2017-48345.
  • the polyol compound and the polyisocyanate compound used for the hydrolyzable silyl group-containing polyurethane resin are the same as the polyol compound and the polyisocyanate compound used for the moisture-curable urethane resin described above, and therefore the description thereof will be omitted. ..
  • silane coupling agent examples include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris( ⁇ -methoxy-ethoxy)silane, ⁇ -(3,4-epoxycyclohexyl)-ethyltrimethoxysilane, ⁇ -glycidoxy.
  • silane coupling agents may be used alone or in combination of two or more.
  • the moisture-curable urethane resin may have both an isocyanate group and a hydrolyzable silyl group.
  • a moisture-curable urethane resin having both an isocyanate group and a hydrolyzable silyl group is obtained by first obtaining a moisture-curable urethane resin having an isocyanate group by the above-mentioned method, and further subjecting the moisture-curable urethane resin to silane coupling. It is preferably produced by reacting an agent.
  • the details of the moisture-curable urethane resin having an isocyanate group are as described above.
  • the moisture-curable silane coupling agent may be appropriately selected from those listed above and used, but from the viewpoint of reactivity with an isocyanate group, a silane coupling agent having an amino group or a mercapto group. Is preferably used. Preferred specific examples include N-( ⁇ -aminoethyl)- ⁇ -aminopropyltrimethoxysilane, N-( ⁇ -aminoethyl)- ⁇ -aminopropyltrimethyldimethoxysilane, and N-phenyl- ⁇ -aminopropyltrimethoxysilane. Examples thereof include silane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -aminopropyltrimethoxysilane and 3-isocyanatopropyltrimethoxysilane.
  • the moisture curable resin may have a radically polymerizable functional group.
  • a group having an unsaturated double bond is preferable, and a (meth)acryloyl group is particularly preferable from the viewpoint of reactivity.
  • the moisture-curable resin having a radical-polymerizable functional group is not included in the above radical-polymerizable compound and is treated as a moisture-curable resin.
  • the moisture-curable resin may be appropriately selected from the above-mentioned various resins and used alone or in combination of two or more.
  • the weight average molecular weight of the moisture curable resin is not particularly limited, but the preferred lower limit is 800 and the preferred upper limit is 20,000. When the weight average molecular weight is within this range, it becomes easy to adjust the storage elastic modulus, viscosity and the like of the curable composition within the above ranges.
  • the more preferable lower limit of the weight average molecular weight of the moisture-curable resin is 1,500, the more preferable upper limit thereof is 12,000, the still more preferable lower limit thereof is 2,000, and the still more preferable upper limit thereof is 8,000.
  • the said weight average molecular weight is a value calculated
  • Shodex LF-804 (manufactured by Showa Denko KK) is used as a column for measuring the weight average molecular weight in terms of polystyrene by GPC. Moreover, tetrahydrofuran is mentioned as a solvent used for GPC.
  • the content of the moisture curable resin in the light moisture curable resin composition is preferably 15% by mass or more based on the total amount of the light moisture curable resin composition.
  • the content of the moisture-curable resin is 15% by mass or more, the moisture-curable resin can be provided with appropriate moisture-curability, and the adhesive force after 24 hours of photocuring can be easily increased.
  • the content of the light moisture curable resin is more preferably 20% by mass or more and 25% by mass or more.
  • the content of the moisture-curable resin is preferably 75% by mass or less based on the total amount of the light-moisture-curable resin composition.
  • the light-moisture curable resin composition can contain a certain amount or more of the radically polymerizable compound, and it becomes easy to impart appropriate photocurability.
  • the initial adhesive strength is easily improved.
  • the content of the radically polymerizable compound is more preferably 60% by mass or less, still more preferably 40% by mass or less.
  • the mass ratio of the radical polymerizable compound to the moisture curable resin is preferably 20/80 or more and 90/10 or less, and 30/70 or more 80 /20 or less is more preferable.
  • the photo-moisture curable resin composition can be imparted with a good balance of photo-curability and moisture-curability, and both the initial adhesive force and the adhesive force after 24 hours of photo-curing are desired. Easy to adjust within the range.
  • the content of the radically polymerizable compound is larger, and specifically, it is more preferably more than 50/50 and 80/20 or less, and 60/40 or more 80/20. The following is even more preferable.
  • the photo-moisture curable resin composition of the present invention further contains a photopolymerization initiator.
  • the curable resin composition appropriately contains photocurability by containing a photopolymerization initiator.
  • the photopolymerization initiator include benzophenone compounds, acetophenone compounds, alkylphenone photopolymerization initiators, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, and thioxanthone.
  • photopolymerization initiators include, for example, IRGACURE184, IRGACURE369, IRGACURE379, IRGACURE379EG, IRGACURE651, IRGACURE784, IRGACURE819, IRGACURE907, IRGACURE2959, IRGACUREINACURE, ACGAURE, and IRGACURE OTHER.
  • examples thereof include ether, benzoin ethyl ether, benzoin isopropyl ether (all manufactured by Tokyo Kasei Kogyo Co., Ltd.).
  • the content of the photopolymerization initiator in the curable resin composition is preferably 0.01 parts by mass or more and 10 parts by mass or less, more preferably 0.5 parts by mass or more and 5 parts by mass with respect to 100 parts by mass of the radically polymerizable compound. Below the section. When the content of the photopolymerization initiator is within these ranges, the curable resin composition obtained has excellent photocurability and storage stability. Moreover, by setting it as the said range, a photoradical polymerization compound will be hardened appropriately and it becomes easy to make adhesive strength favorable.
  • the curable resin composition preferably contains a moisture curing acceleration catalyst that accelerates the moisture curing reaction of the moisture curable resin.
  • a moisture curing acceleration catalyst that accelerates the moisture curing reaction of the moisture curable resin.
  • the moisture curing accelerating catalyst include amine compounds and metal catalysts.
  • Examples of the amine compound include compounds having a morpholine skeleton such as di(methylmorpholino)diethyl ether, 4-morpholinopropylmorpholine and 2,2′-dimorpholinodiethyl ether, bis(2-dimethylaminoethyl)ether, 1,2 A dimethylamino group-containing amine compound having two dimethylamino groups such as bis(dimethylamino)ethane, triethylamine, 1,4-diazabicyclo[2.2.2]octane, 2,6,7-trimethyl-1,4 -Diazabicyclo[2.2.2]octane and the like.
  • a morpholine skeleton such as di(methylmorpholino)diethyl ether, 4-morpholinopropylmorpholine and 2,2′-dimorpholinodiethyl ether, bis(2-dimethylaminoethyl)ether, 1,2 A dimethylamino group-containing amine compound having
  • the metal-based catalyst examples include tin compounds such as di-n-butyltin dilaurylate, di-n-butyltin diacetate and tin octylate, zinc compounds such as zinc octylate and zinc naphthenate, zirconium tetraacetylacetonate, copper naphthenate, Other metal compounds such as cobalt naphthenate may be mentioned.
  • the moisture curing accelerating catalyst is preferably an amine compound, more preferably a compound having a morpholine skeleton.
  • the content of the moisture curing accelerating catalyst is preferably 0.01 parts by mass or more and 8 parts by mass or less, and more preferably 0.1 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the moisture curable resin.
  • the content of the moisture curing accelerating catalyst is within the above range, the effect of accelerating the moisture curing reaction becomes excellent without deteriorating the storage stability and the like of the curable resin composition.
  • the curable resin composition may contain a coupling agent.
  • a coupling agent By including a coupling agent in the curable resin composition, it becomes easy to improve the adhesive force.
  • the coupling agent include silane coupling agents, titanate coupling agents, zirconate coupling agents, and the like. Among them, the silane coupling agent is preferable because it has an excellent effect of improving the adhesiveness.
  • silane coupling agent examples include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltriethoxysilane, and 2-(3,4-epoxycyclohexyl)ethyl.
  • Trimethoxysilane 3-glycidoxypropylmethyldiethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-(2-aminoethyl)aminopropyltrimethoxysilane, 3-(2- Aminoethyl)aminopropyltriethoxysilane, 3-(2-aminoethyl)aminopropylmethyldimethoxysilane, 3-(meth)acryloyloxypropyltrimethoxysilane, 3-(meth)acryloyloxypropyltriethoxysilane, 3-( (Meth)acryloyloxypropylmethyldimethoxysilane, 3-(meth)acryloyloxypropylmethyldiethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-isocyanatepropyltrimethoxysilane, 3-isocyanate
  • titanate-based coupling agent examples include titanium diisopropoxybis(acetylacetonate), titanium tetraacetylacetonate, titanium diisopropoxybis(ethylacetoacetate), and the like.
  • zirconate-based coupling agent examples include zirconium tetranormal propoxide and silconium tetranormal butoxide.
  • a silane coupling agent is preferable as the coupling agent.
  • silane coupling agents such as 3-isocyanatepropyltrimethoxysilane, 3-isocyanatepropylmethyldimethoxysilane, 3-isocyanatepropyltriethoxysilane, and 3-isocyanatepropylmethyldiethoxysilane.
  • isocyanate group-containing silane coupling agents such as 3-isocyanatepropyltrimethoxysilane, 3-isocyanatepropylmethyldimethoxysilane, 3-isocyanatepropyltriethoxysilane, and 3-isocyanatepropylmethyldiethoxysilane.
  • the coupling agents may be used alone or in combination of two or more.
  • the content of the coupling agent is 0.05 parts by mass or more and 10 parts by mass or more based on 100 parts by mass of the total amount of the radically polymerizable compound and the moisture curable resin.
  • the amount is preferably not more than 0.2 parts by mass, more preferably not less than 0.2 parts by mass and not more than 5 parts by mass, still more preferably not less than 0.5 parts by mass and not more than 3 parts by mass.
  • the curable resin composition of the present invention may contain a filler.
  • the filler By containing the filler, the curable resin composition of the present invention has suitable thixotropy and can sufficiently retain the shape after coating.
  • a particulate material may be used as the filler.
  • an inorganic filler is preferable, and examples thereof include silica, talc, titanium oxide, zinc oxide, calcium carbonate and the like. Of these, silica is preferable because the resulting curable resin composition has excellent ultraviolet light transmittance.
  • the filler may be subjected to hydrophobic surface treatment such as silylation treatment, alkylation treatment and epoxidation treatment. The filler may be used alone or in combination of two or more.
  • the content of the filler is preferably 1 part by mass or more and 25 parts by mass or less, more preferably 2 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the total amount of the radically polymerizable compound and the moisture-curable resin, and further. It is preferably 3 parts by mass or more and 15 parts by mass or less.
  • the curable resin composition of the present invention may contain other additives such as wax particles, ionic liquids, colorants, expanded particles, expanded particles, and reactive diluents, in addition to the components described above. Good.
  • the curable resin composition may be diluted with a solvent, if necessary. When the curable resin composition is diluted with a solvent, the parts by mass of the curable resin composition is based on the solid content, that is, the parts by mass excluding the solvent.
  • the curable resin composition of the present invention As a method for producing the curable resin composition of the present invention, using a mixer, a moisture-curable resin, a radical-polymerizable compound, and a photopolymerization initiator, and further, if necessary, blended to promote moisture curing
  • a method of mixing with other additives such as a catalyst, a filler, and a coupling agent.
  • the mixer include a homodisper, a homomixer, a universal mixer, a planetary mixer (planetary stirring device), a kneader, and three rolls.
  • the light moisture curable resin composition of the present invention is cured and used as a cured product.
  • the photo-moisture curable resin composition of the present invention can be bonded between adherends by being cured while being placed between adherends.
  • the photo-moisture curable resin composition may be applied to one adherend and then photo-cured by irradiation with light, for example, in a B stage state (that is, semi-cured).
  • One adherend may be superposed on the other adherend via the semi-cured light moisture curable resin composition, and the adherends may be temporarily bonded.
  • the photo-moisture curable resin composition has a good adhesive force (that is, initial adhesive force) immediately after being semi-cured, so that the adherends can be temporarily adhered with an appropriate adhesive force.
  • the photo-moisture curable resin composition applied to one adherend is photo-cured before being laminated on the other adherend. Therefore, most of the photo-moisture curable resin composition is photo-cured in a state of being exposed to the atmosphere (that is, in a state of being in contact with oxygen), but as described above, the radical-polymerizable compound contains a nitrogen-containing compound. By containing it, the initial adhesive strength becomes good even when it is cured in the presence of oxygen. Then, the curable resin composition in the semi-cured state is fully cured by curing the moisture-curable resin with moisture, and the adherends that are superposed through the curable resin composition have a sufficient adhesive force. To be joined.
  • the application of the curable resin composition to the adherend may be performed with, for example, a dispenser, but is not particularly limited.
  • the light irradiated during photocuring is not particularly limited as long as it is an active energy ray that can cure the radically polymerizable compound, but ultraviolet rays are preferable.
  • the curable resin composition When the curable resin composition is completely cured by moisture, it may be left in the air for a predetermined time.
  • the curable resin composition of the present invention is preferably used as an adhesive for electronic devices. Therefore, the adherend is not particularly limited, but is preferably various parts constituting the electronic device.
  • the various components constituting the electronic device include electronic components or substrates on which the electronic components are mounted, and more specifically, various electronic components provided on the display element, substrates on which the electronic components are mounted, semiconductor chips, etc. Are listed.
  • the adherend may be made of metal, glass, plastic, or the like.
  • the shape of the adherend is not particularly limited, and examples thereof include a film shape, a sheet shape, a plate shape, a panel shape, a tray shape, a rod (rod shape) shape, a box shape, and a housing shape. ..
  • the curable resin composition of the present invention is used, for example, inside an electronic device to bond substrates to each other to obtain an assembled component.
  • the assembly component thus obtained has the first substrate, the second substrate, and the cured product of the present invention, and at least a part of the first substrate is at least a part of the second substrate. Is bonded to the resin via a cured body.
  • at least one electronic component is preferably attached to each of the first substrate and the second substrate.
  • the curable resin composition of the present invention is preferably used for narrow frame applications.
  • narrow frame applications For example, in various display device devices such as display devices for mobile phones such as smartphones, an adhesive is applied on a narrow rectangular frame-shaped (that is, narrow frame) base, and the display is performed through the adhesive. A panel, a touch panel, or the like is assembled, and the curable resin composition of the present invention may be used as the adhesive agent.
  • the curable resin composition of the present invention is preferably used for semiconductor chip applications. In the application of semiconductor chips, the curable resin composition of the present invention is used, for example, to bond semiconductor chips to each other.
  • the aluminum substrate 11 has a width of 1.0 ⁇ 0.1 mm, a length of 25 ⁇ 2 mm, and a thickness of 0.4 ⁇ 0.1 mm.
  • the photo-moisture curable resin composition 10 was applied so that it was irradiated with ultraviolet rays of 3,000 mJ/cm 2 with a mercury lamp to be photo-cured. After that, the glass plate 12 was attached to the aluminum substrate 11, a weight of 100 g was placed, and allowed to stand for 10 minutes at 25° C. and 50 RH% to be moisture-cured to obtain an adhesiveness evaluation sample 13.
  • the aluminum substrate 11 and the glass plate 12 were pulled in a shearing direction S at a speed of 5 mm/sec using a tensile tester (“Autograph AG-X”, manufactured by Shimadzu Corporation) in an atmosphere of 25° C.
  • the strength at the time of peeling was measured and used as the initial adhesive strength.
  • the initial adhesive strength was evaluated according to the following evaluation criteria. AA: 0.8 MPa or more A: 0.3 MPa or more and less than 0.8 MPa B: Less than 0.3 MPa
  • Adhesive strength after 24 hours of light curing A sample was prepared in the same manner as the initial adhesive force, and the photo-moisture curable resin composition 10 was photo-cured. After that, the glass plate 12 was attached to the aluminum substrate 11, a weight of 100 g was placed, and allowed to stand at 25° C. and 50 RH% for 24 hours to be moisture-cured to obtain an adhesiveness evaluation sample 13. Using the sample 13 for evaluation of adhesiveness, the sample 13 was pulled in the shearing direction S in the same manner as in the method of measuring the initial adhesive force, and the strength when the aluminum substrate 11 and the glass plate 12 were peeled off was measured and after 24 hours of photocuring. Adhesive strength. The adhesive strength after 24 hours of photocuring was evaluated according to the following evaluation criteria. A: 2.0 MPa or more B: Less than 2.0 MPa
  • the moisture-curable urethane resin used in each example and comparative example was produced according to the following synthesis example.
  • Synthesis example 1 A polyol compound A (hydroxyl value: 110 mg KOH, "BENEBiOL NL1010DB” manufactured by Mitsubishi Chemical Corporation) was prepared. 100 parts by mass of the polyol compound A and 0.01 part by mass of dibutyltin dilaurate were placed in a 500 mL separable flask and mixed under vacuum (20 mmHg or less) at 100° C. for 30 minutes.
  • the components other than the moisture-curable urethane resin used in each example and comparative example were as follows.
  • Cyclic nitrogen-containing compound N-vinyl- ⁇ -caprolactam (manufactured by Tokyo Chemical Industry Co., Ltd., trade name "NVC")
  • NVC N-vinyl- ⁇ -caprolactam
  • Monofunctional urethane acrylate 1,2-ethanediol 1-acrylate 2-(N-butylcarbamate) (Osaka Organic Chemical Co., Ltd., trade name "Biscoat #216", monofunctional)
  • Bifunctional urethane acrylate manufactured by Daicel Ornex Co., Ltd.,
  • Examples 1 to 6, Comparative Examples 1 to 3 According to the compounding ratio shown in Table 1, each material was stirred at a temperature of 50° C. with a planetary stirring device (“Awatori Kentaro” made by Shinky Co., Ltd.) and then at a temperature of 50° C. with a three-roll ceramic roll. The mixture was uniformly mixed to obtain curable resin compositions of Examples 1-6 and Comparative Examples 1-3.

Abstract

The present invention provides a photo/moisture curable resin composition which has good initial adhesive force. A photo/moisture curable resin composition according to the present invention contains a radically polymerizable compound, a moisture curable resin and a photopolymerization initiator; and the SP value difference between the radically polymerizable compound and the moisture curable resin is 1 or less.

Description

光湿気硬化性樹脂組成物、及び硬化体Light moisture curable resin composition and cured product
 本発明は、光湿気硬化性樹脂組成物、及びその硬化体に関する。 The present invention relates to a light moisture curable resin composition and a cured product thereof.
 近年、半導体チップ等の電子部品では、高集積化、小型化が要求されており、例えば、接着剤層を介して複数の薄い半導体チップを接合して半導体チップの積層体とすることがある。また、各種表示素子付きモバイル機器が普及している現代において、表示素子の小型化の手法として、画像表示部を狭額縁化することが行われている(以下、「狭額縁設計」ともいう)。狭額縁設計においては、ディスペンサーなどを用いて細い線幅とした接着剤により接着する技術が要求される。 In recent years, electronic components such as semiconductor chips have been required to be highly integrated and miniaturized. For example, a plurality of thin semiconductor chips may be joined via an adhesive layer to form a laminated body of semiconductor chips. In addition, in the present age when mobile devices with various display elements are prevalent, as a method of downsizing the display elements, narrowing the frame of the image display unit is performed (hereinafter, also referred to as “narrow frame design”). .. In narrow frame design, a technique of bonding with an adhesive having a narrow line width using a dispenser or the like is required.
 半導体チップの積層体は、例えば、一方の半導体チップ上に接着剤を塗布した後、光照射により半硬化し、その半硬化物を介して他方の半導体チップを積層し半導体チップ間を仮接着し、その後、接着剤を全硬化させ、チップ間を本接着する方法等により製造されることがある。同様に、狭額縁設計でも、塗布した接着剤で仮接着した後に本接着させる方法が検討されている。半導体チップの積層用途、狭額縁設計用途における接着剤としては、光湿気硬化性樹脂組成物の使用が検討されている。 The laminated body of the semiconductor chips is, for example, after applying an adhesive on one of the semiconductor chips, semi-cured by light irradiation, and laminated the other semiconductor chip via the semi-cured product to temporarily bond the semiconductor chips. After that, the adhesive may be manufactured by a method of completely curing the adhesive and finally bonding the chips. Similarly, also in the narrow frame design, a method of temporarily adhering with an applied adhesive agent and then performing final adhering is being studied. The use of a photo-moisture curable resin composition has been studied as an adhesive for stacking semiconductor chips and for designing a narrow frame.
 光湿気硬化性樹脂組成物は、一般的に、ラジカル重合性化合物、湿気硬化性ウレタン樹脂又は加水分解性シリル基含有樹脂を含むことが知られている。光湿気硬化性樹脂組成物では、塗布後の樹脂だれを防止するために揺変性付与剤が配合されることや、接着性などを向上させるために、1分子中に加水分解性シリル基を2個以上有する変成シリコーン樹脂を配合することなどが知られている(特許文献1、2参照)。
 また、光湿気硬化性樹脂組成物としては、特許文献3に開示されるように、架橋性ケイ素基含有有機重合体と、光塩基発生剤と、フッ素系化合物と、1分子中に1個を超える(メタ)アクリロイル基を有する多官能化合物とを備える光湿気硬化性樹脂組成物なども知られている。
It is generally known that the photo-moisture curable resin composition contains a radically polymerizable compound, a moisture curable urethane resin or a hydrolyzable silyl group-containing resin. In the photo-moisture curable resin composition, a thixotropic agent is added to prevent resin dripping after application, and a hydrolyzable silyl group is included in one molecule in order to improve adhesion. It is known to mix modified silicone resins having one or more (see Patent Documents 1 and 2).
In addition, as the light moisture curable resin composition, as disclosed in Patent Document 3, a crosslinkable silicon group-containing organic polymer, a photobase generator, a fluorine-based compound, and one in one molecule A photo-moisture curable resin composition including a polyfunctional compound having more than (meth)acryloyl groups is also known.
特開2004-18621号公報JP 2004-18621A 特開2018-2925号公報Japanese Patent Laid-Open No. 2018-2925 国際公開2016/104787号International publication 2016/104787
 半導体チップの積層用途、狭額縁設計用途などで使用される光湿気硬化性樹脂組成物は、上記したように、本接着する前に被着体を仮接着することが多い。そのため、光硬化後に一定時間経過して湿気硬化が十分に進行した際の本接着時の接着力のみならず、光硬化直後の半硬化時におけるいわゆる初期接着力も高くすることが望まれている。しかし、従来の光湿気硬化性樹脂組成物は、本接着時の接着力を向上させつつ、初期接着力も一定値以上にすることは困難なことが多い。 As described above, in the photo-moisture curable resin composition used for semiconductor chip stacking applications, narrow frame design applications, etc., the adherend is often temporarily adhered before the main adhesion. Therefore, it is desired to increase not only the adhesive force at the time of main bonding when moisture curing sufficiently progresses after a certain time has elapsed after photocuring but also the so-called initial adhesive force at the time of semi-curing immediately after photocuring. However, it is often difficult for the conventional photo-moisture-curable resin composition to improve the adhesive strength at the time of main bonding, and also to make the initial adhesive strength equal to or more than a certain value.
 そこで、本発明は、光硬化直後の初期接着力を一定値以上にできる光湿気硬化性樹脂組成物を提供することを課題とする。 Therefore, an object of the present invention is to provide a photo-moisture curable resin composition capable of increasing the initial adhesive force immediately after photo-curing to a certain value or more.
 本発明者らは、鋭意検討の結果、光湿気硬化性樹脂組成物に含有される、ラジカル重合性化合物と湿気硬化性樹脂とのSP値を一定値以下とすることで、上記課題を解決できることを見出し、本発明を完成させた。すなわち、本発明は、以下の[1]~[7]を提供する。
[1]ラジカル重合性化合物と、湿気硬化性樹脂と、光重合開始剤とを含み、
 前記ラジカル重合性化合物と前記湿気硬化性樹脂とのSP値差が、1.0以下である光湿気硬化性樹脂組成物。
[2]前記湿気硬化性樹脂のSP値が9.5以上である、上記[1]に記載の光湿気硬化性樹脂組成物。
[3]前記湿気硬化性樹脂が、ポリカーボネート骨格を有する化合物、又はポリエステル骨格を有する化合物のいずれかを含む、上記[1]又は[2]に記載の光湿気硬化性樹脂組成物。
[4]前記湿気硬化性樹脂が、湿気硬化性ウレタン樹脂を含む、上記[1]~[3]のいずれか1項に記載の光湿気硬化性樹脂組成物。
[5]前記ラジカル重合性化合物が、(メタ)アクリロイル基を有する化合物を含有する上記[1]~[4]のいずれか1項に記載の光湿気硬化性樹脂組成物。
[6]前記湿気硬化性樹脂に対する前記ラジカル重合性化合物の質量比(ラジカル重合性化合物/湿気硬化性樹脂)が、20/80以上90/10以下である、[1]~[5]のいずれか1項に記載の光湿気硬化性樹脂組成物。
[7]上記[1]~[6]のいずれか1項に記載の硬化性樹脂組成物の硬化体。
As a result of intensive studies, the inventors of the present invention can solve the above problems by setting the SP values of the radically polymerizable compound and the moisture-curable resin contained in the photo-moisture-curable resin composition to be a certain value or less. Then, the present invention has been completed. That is, the present invention provides the following [1] to [7].
[1] contains a radically polymerizable compound, a moisture curable resin, and a photopolymerization initiator,
A photo-moisture curable resin composition, wherein the SP value difference between the radically polymerizable compound and the moisture curable resin is 1.0 or less.
[2] The photo-moisture curable resin composition according to the above [1], wherein the moisture curable resin has an SP value of 9.5 or more.
[3] The photo-moisture curable resin composition according to the above [1] or [2], wherein the moisture curable resin contains either a compound having a polycarbonate skeleton or a compound having a polyester skeleton.
[4] The photo-moisture curable resin composition according to any one of the above [1] to [3], wherein the moisture curable resin contains a moisture curable urethane resin.
[5] The photo-moisture curable resin composition according to any one of [1] to [4] above, wherein the radically polymerizable compound contains a compound having a (meth)acryloyl group.
[6] Any of [1] to [5], wherein the mass ratio of the radical-polymerizable compound to the moisture-curable resin (radical-polymerizable compound/moisture-curable resin) is 20/80 or more and 90/10 or less. The light-moisture curable resin composition according to item 1.
[7] A cured product of the curable resin composition according to any one of [1] to [6] above.
 本発明によれば、光硬化直後の初期接着力を一定値以上にできる光湿気硬化性樹脂組成物を提供する。 According to the present invention, there is provided a photo-moisture curable resin composition capable of increasing the initial adhesive force immediately after photo-curing to a certain value or more.
接着性試験方法を示す概略図であり、図1(a)が平面図、図1(b)が側面図である。It is the schematic which shows the adhesiveness test method, FIG.1(a) is a top view and FIG.1(b) is a side view.
 以下、本発明について詳細に説明する。
<硬化性樹脂組成物>
 本発明の硬化性樹脂組成物は、ラジカル重合性化合物と、湿気硬化性樹脂と、光重合開始剤とを含み、ラジカル重合性化合物と湿気硬化性樹脂とのSP値差が、1.0以下である。
 本発明では、SP値差を1.0以下とすることで、光湿気硬化性樹脂組成物の光硬化直後の初期接着力を向上させることができる。その原理は定かではないが以下のように推定される。SP値差を1.0以下とすると、ラジカル重合性化合物と湿気硬化性樹脂の相溶性が優れたものとなる。そのため、光硬化後の硬化性樹脂組成物において、未硬化の湿気硬化性樹脂が、被着体との界面に浸み出すいわゆるブリードアウトが抑制され、初期接着力が向上すると推定される。
Hereinafter, the present invention will be described in detail.
<Curable resin composition>
The curable resin composition of the present invention contains a radical polymerizable compound, a moisture curable resin, and a photopolymerization initiator, and the SP value difference between the radical polymerizable compound and the moisture curable resin is 1.0 or less. Is.
In the present invention, by setting the SP value difference to 1.0 or less, the initial adhesive force of the light moisture curable resin composition immediately after photocuring can be improved. The principle is not clear, but it is estimated as follows. When the SP value difference is 1.0 or less, the compatibility between the radical polymerizable compound and the moisture curable resin becomes excellent. Therefore, it is presumed that in the curable resin composition after photocuring, so-called bleed-out in which the uncured moisture-curable resin oozes out to the interface with the adherend is suppressed and the initial adhesive strength is improved.
 一方で、ラジカル重合性化合物と湿気硬化性樹脂とのSP値差が1.0より大きくなると、ラジカル重合性化合物と湿気硬化性樹脂の相溶性が低下して、ブリードアウトが抑制できないと推定され、初期接着力を十分に向上させることができない。
 ラジカル重合性化合物と湿気硬化性樹脂とのSP値差は、ブリードアウトを抑制して、初期接着力を向上させる観点から、0.8以下が好ましく、0.6以下がより好ましい。また、上記SP値差は、小さければ小さいほどよく、0以上であればよいが、通常は一定の差が生じるので、実用的には0.01以上などになる。
On the other hand, if the SP value difference between the radically polymerizable compound and the moisture-curable resin exceeds 1.0, the compatibility of the radically polymerizable compound and the moisture-curable resin decreases, and it is presumed that bleed-out cannot be suppressed. , The initial adhesive strength cannot be improved sufficiently.
The SP value difference between the radically polymerizable compound and the moisture-curable resin is preferably 0.8 or less, more preferably 0.6 or less, from the viewpoint of suppressing bleed-out and improving the initial adhesive strength. The SP value difference is better as it is smaller, and may be 0 or more. However, since a constant difference is usually generated, it is practically 0.01 or more.
 本発明において、湿気硬化性樹脂のSP値は9.5以上であることが好ましい。湿気硬化性樹脂のSP値を9.5以上とすると、ラジカル重合性化合物とのSP値の差を小さくしやすくなる。そのような観点から、湿気硬化性樹脂のSP値は、10.0以上であることがより好ましい。
 また、湿気硬化性樹脂のSP値は、12.0以下が好ましく、11.5以下がより好ましく、11.0以下がさらに好ましい。湿気硬化性樹脂のSP値をこれら上限値以下とすると、ラジカル重合性化合物とのSP値差を小さくしつつ、硬化性能を十分に確保できる。また、SP値を上記範囲内とすることで、被着体に対する接着性なども良好となる。
In the present invention, the SP value of the moisture-curable resin is preferably 9.5 or more. When the SP value of the moisture-curable resin is 9.5 or more, it becomes easy to reduce the difference in SP value from the radically polymerizable compound. From such a viewpoint, the SP value of the moisture-curable resin is more preferably 10.0 or more.
The SP value of the moisture-curable resin is preferably 12.0 or less, more preferably 11.5 or less, still more preferably 11.0 or less. When the SP value of the moisture-curable resin is not more than these upper limit values, the curing performance can be sufficiently secured while reducing the SP value difference with the radically polymerizable compound. Further, by setting the SP value within the above range, the adhesion to the adherend and the like will be good.
 一方で、ラジカル重合性化合物のSP値は、好ましく9.0以上、より好ましくは9.5以上であり、また、12.0以下が好ましく、11.5以下がより好ましく、11.0以下がさらに好ましい。ラジカル重合性化合物のSP値をこれら範囲内とすることで、湿気硬化性樹脂とのSP値差を小さくしつつ、硬化性能、被着体に対する接着性なども良好にしやすくなる。 On the other hand, the SP value of the radically polymerizable compound is preferably 9.0 or more, more preferably 9.5 or more, and preferably 12.0 or less, more preferably 11.5 or less, and 11.0 or less. More preferable. By setting the SP value of the radically polymerizable compound within these ranges, it becomes easy to improve the curing performance and the adhesion to the adherend while reducing the SP value difference from the moisture curable resin.
 なお、本発明において、ラジカル重合性化合物及び湿気硬化性樹脂のSP値は、Fedors法により算出したものであり、各成分が複数種から構成されるブレンド物である場合には、各構成成分のSP値を各構成割合(質量%)で比例配分して加重平均で算出する。また、SP値差は、ラジカル重合性化合物のSP値から湿気硬化性樹脂のSP値を引いたものを絶対値で表したものである。なお、SP値の単位は(cal/cm31/2である。 In the present invention, the SP values of the radically polymerizable compound and the moisture-curable resin are calculated by the Fedors method, and when each component is a blended product composed of a plurality of types, The SP value is proportionally distributed by each constituent ratio (mass %) and calculated by a weighted average. The SP value difference is an absolute value obtained by subtracting the SP value of the moisture-curable resin from the SP value of the radically polymerizable compound. The unit of the SP value is (cal/cm 3 ) 1/2 .
 本発明の光湿気硬化性樹脂組成物は、初期接着力が0.3MPa以上であることが好ましい。また、本発明の光湿気硬化性樹脂組成物は、光硬化24時間後の接着力が2.0MPa以上であることが好ましい。
 なお、初期接着力とは、光湿気硬化性樹脂組成物を光硬化した後の25℃における接着力を意味する。また、光硬化24時間後の接着力とは、光湿気硬化性樹脂組成物を光硬化し、24時間経過した後の接着力を意味する。初期接着力及び光硬化24時間後の接着力の測定方法の詳細は後述する実施例で記載するとおりである。
 光湿気硬化性樹脂組成物は、25℃における初期接着力が0.3MPa以上であると、被着体同士を適切に仮接着できるようになる。また、光硬化24時間後の接着力が2.0MPa以上であると、例えば本接着において被着体同士を強固に接合することができる。
The light moisture curable resin composition of the present invention preferably has an initial adhesive force of 0.3 MPa or more. Further, the photomoisture curable resin composition of the present invention preferably has an adhesive force of 2.0 MPa or more after 24 hours of photocuring.
The initial adhesive strength means the adhesive strength at 25° C. after the photo-moisture curable resin composition is photo-cured. Further, the adhesive force after 24 hours of photocuring means the adhesive force after 24 hours have passed after photocuring the light moisture curable resin composition. The details of the method for measuring the initial adhesive force and the adhesive force after 24 hours of photocuring are as described in Examples below.
When the initial adhesive force at 25° C. of the light moisture curable resin composition is 0.3 MPa or more, the adherends can be appropriately temporarily adhered to each other. Further, when the adhesive force after 24 hours of photocuring is 2.0 MPa or more, the adherends can be strongly bonded to each other in the main adhesion, for example.
 光湿気硬化性樹脂組成物は、仮接着時の接着安定性を高めるために、初期接着力が0.8MPa以上であることがより好ましい。また、仮接着時に貼り直しなども容易にできるようにするために、初期接着力は2.0MPa未満が好ましい。
 また、光湿気硬化性樹脂組成物は、本接着時に被着体同士をより強固に接合するために、光硬化24時間後の接着力が3.5MPa以上がより好ましく、4.0MPa以上がさらに好ましい。また、光硬化24時間後の接着力は、高ければ高いほどよく特に限定されないが、例えば20MPa以下であり、また、10MPa以下でもよい。
The photomoisture curable resin composition more preferably has an initial adhesive force of 0.8 MPa or more in order to enhance the adhesion stability during temporary adhesion. In addition, the initial adhesive force is preferably less than 2.0 MPa so that it can be easily reattached during temporary adhesion.
Further, in the light moisture curable resin composition, the adhesive strength after 24 hours of light curing is more preferably 3.5 MPa or more, and more preferably 4.0 MPa or more in order to more firmly bond the adherends to each other during the main adhesion. preferable. Further, the higher the adhesive strength after 24 hours of photo-curing, the better, but is not particularly limited, but may be, for example, 20 MPa or less, or 10 MPa or less.
 以下、光湿気硬化性樹脂組成物に含有される各成分についてより詳細に説明する。
[ラジカル重合性化合物]
 本発明の光湿気硬化性樹脂組成物は、ラジカル重合性化合物を含有する。光湿気硬化性樹脂組成物は、ラジカル重合性化合物を含有することで光硬化性が付与される。光湿気硬化性樹脂組成物は、光硬化性を有することで、光照射するだけで一定の接着力が付与できるので、上記した初期接着力を確保しやすくなる。
 ラジカル重合性化合物としては、分子中にラジカル重合性官能基を有すればよい。ラジカル重合性官能基としては不飽和二重結合を有する化合物が好適であり、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基などが挙げられる。
Hereinafter, each component contained in the light moisture curable resin composition will be described in more detail.
[Radical polymerizable compound]
The light moisture curable resin composition of the present invention contains a radically polymerizable compound. The photomoisture curable resin composition is imparted with photocurability by containing a radically polymerizable compound. Since the photo-moisture curable resin composition has photo-curability, it can give a certain adhesive force only by irradiating light, and thus it becomes easy to secure the above-mentioned initial adhesive force.
The radically polymerizable compound may have a radically polymerizable functional group in the molecule. A compound having an unsaturated double bond is preferable as the radically polymerizable functional group, and examples thereof include a (meth)acryloyl group, a vinyl group, a styryl group, and an allyl group.
 上記したもの中では、接着性の観点、及びSP値を上記した範囲内としやすくする観点から、(メタ)アクリロイル基が好適であり、すなわち、ラジカル重合性化合物は、(メタ)アクリロイル基を有する化合物を含有することが好ましい。なお、(メタ)アクリロイル基を有する化合物は、以下、「(メタ)アクリル化合物」ともいう。
 (メタ)アクリル化合物の含有量は、ラジカル重合性化合物全量基準で、50質量%以上が好ましく、55質量%以上が好ましく、60質量%以上がさらに好ましい。また、上限値は、特に限定されないが、100質量%である。
Among the above, a (meth)acryloyl group is preferable from the viewpoint of adhesiveness and the viewpoint of making the SP value easily within the above range, that is, the radically polymerizable compound has a (meth)acryloyl group. It is preferable to contain a compound. The compound having a (meth)acryloyl group is hereinafter also referred to as "(meth)acrylic compound".
The content of the (meth)acrylic compound is preferably 50% by mass or more, more preferably 55% by mass or more, and further preferably 60% by mass or more based on the total amount of the radically polymerizable compound. The upper limit is not particularly limited, but is 100% by mass.
 ラジカル重合性化合物は、1分子中に1つのラジカル重合性官能基を有する単官能化合物、1分子中に2以上のラジカル重合性官能基を有する多官能化合物の一方又は両方を含んでもよいが、光湿気硬化性樹脂組成物の初期接着力を向上させる観点から、多官能化合物の量は少ない方が好ましい。具体的には、ラジカル重合性化合物全量基準における多官能化合物の含有量は25質量%以下であることが好ましく、20質量%以下であることがより好ましく、5質量%以下であることが更に好ましく、0質量%、すなわち多官能化合物を含有しないことも好ましい。 The radical polymerizable compound may include one or both of a monofunctional compound having one radical polymerizable functional group in one molecule, and a polyfunctional compound having two or more radical polymerizable functional groups in one molecule, From the viewpoint of improving the initial adhesive strength of the light moisture curable resin composition, it is preferable that the amount of the polyfunctional compound is small. Specifically, the content of the polyfunctional compound based on the total amount of the radically polymerizable compound is preferably 25% by mass or less, more preferably 20% by mass or less, and further preferably 5% by mass or less. , 0% by mass, that is, it is also preferable not to contain a polyfunctional compound.
(窒素含有化合物)
 本発明のラジカル重合性化合物は、窒素含有化合物を含むことが好ましい。窒素含有化合物を用いることにより、光湿気硬化性樹脂組成物の初期接着力が良好になる。光湿気硬化性樹脂組成物は、被着体に塗布した後、紫外線などの活性エネルギー線を照射して光硬化されるが、その際、一般的には後述するように酸素存在下で光硬化されることが多い。ラジカル重合性化合物が窒素含有化合物を含有すると、酸素存在下でも適切に光硬化され、それにより、初期接着力が良好になると推定される。
 窒素含有化合物は、窒素原子及びラジカル重合性官能基を有する化合物であればよく、(メタ)アクリル化合物でもよいし、(メタ)アクリル化合物以外の化合物でもよい。また、窒素含有化合物は、1つのラジカル重合性官能基を有する単官能であってもよいし、2以上のラジカル重合性官能基を有する多官能であってもよい。ただし、光湿気硬化性樹脂組成物は、初期接着力を高める観点から、上記のように多官能化合物の含有量が少ないほうがよく、ラジカル重合性化合物全量基準における多官能化合物が上記範囲内となるように調整されるとよい。
(Nitrogen-containing compound)
The radically polymerizable compound of the present invention preferably contains a nitrogen-containing compound. By using the nitrogen-containing compound, the initial adhesive strength of the light moisture curable resin composition becomes good. The photo-moisture curable resin composition is applied to the adherend and then photo-cured by irradiation with active energy rays such as ultraviolet rays. At that time, photo-curing is generally performed in the presence of oxygen as described later. It is often done. It is presumed that when the radically polymerizable compound contains a nitrogen-containing compound, it is appropriately photocured even in the presence of oxygen, and thereby the initial adhesive strength is improved.
The nitrogen-containing compound may be a compound having a nitrogen atom and a radically polymerizable functional group, and may be a (meth)acrylic compound or a compound other than the (meth)acrylic compound. Further, the nitrogen-containing compound may be monofunctional having one radical-polymerizable functional group or polyfunctional having two or more radical-polymerizable functional groups. However, the photo-moisture curable resin composition, from the viewpoint of enhancing the initial adhesive force, it is better that the content of the polyfunctional compound is small as described above, and the polyfunctional compound in the total amount of the radical polymerizable compound is within the above range. Should be adjusted so that
 窒素含有化合物は、鎖状の窒素含有化合物及び環状構造を有する窒素含有化合物の一方又は両方を含有してもよいが、光湿気硬化性樹脂組成物の初期接着力を良好とする観点から、環状構造を有する窒素含有化合物を含むことが好ましく、鎖状の窒素含有化合物と、環状構造を有する窒素含有化合物を併用することがより好ましい。 The nitrogen-containing compound may contain one or both of a chain-like nitrogen-containing compound and a nitrogen-containing compound having a cyclic structure, but from the viewpoint of improving the initial adhesive strength of the light moisture curable resin composition, the cyclic compound It is preferable to include a nitrogen-containing compound having a structure, and it is more preferable to use a chain-like nitrogen-containing compound in combination with a nitrogen-containing compound having a cyclic structure.
 環状構造を有する窒素含有化合物としては、N-ビニルピロリドン、N-ビニルカプロラクタムなどのラクタム構造を有する窒素含有化合物、N-アクリロイルモルホリンなどのモルホリン骨格含有化合物、N-(メタ)アクリロイルオキシエチルヘキサヒドロフタルイミド等の環状イミド化合物などが挙げられる。これらの中では、具体的にはN-ビニルカプロラクタム、N-(メタ)アクリロイルオキシエチルヘキサヒドロフタルイミドなどのアミド基又はイミド基含有化合物がより好ましく、N-ビニルカプロラクタムなどのアミド基含有化合物がさらに好ましい。 Examples of the nitrogen-containing compound having a cyclic structure include nitrogen-containing compounds having a lactam structure such as N-vinylpyrrolidone and N-vinylcaprolactam, morpholine skeleton-containing compounds such as N-acryloylmorpholine, and N-(meth)acryloyloxyethylhexahydro. Examples thereof include cyclic imide compounds such as phthalimide. Among these, specifically, amide group- or imide group-containing compounds such as N-vinylcaprolactam and N-(meth)acryloyloxyethylhexahydrophthalimide are more preferable, and amide group-containing compounds such as N-vinylcaprolactam are further preferable. preferable.
 鎖状の窒素含有化合物としては、例えば、ジメチルアミノ(メタ)アクリレート、ジエチルアミノ(メタ)アクリレート、アミノメチル(メタ)アクリレート、アミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート等の鎖状のアミノ基含有(メタ)アクリレート、ジアセトンアクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、N-イソプロピルアクリルアミド、N-ヒドロキシエチルアクリルアミド、アクリルアミド、メタクリルアミド等の鎖状の(メタ)アクリルアミド化合物、N-ビニルアセトアミドなどが挙げられる。 Examples of the chain-like nitrogen-containing compound include chain-like nitrogen-containing compounds such as dimethylamino(meth)acrylate, diethylamino(meth)acrylate, aminomethyl(meth)acrylate, aminoethyl(meth)acrylate, and dimethylaminoethyl(meth)acrylate. Chain-like (meth)acrylamides such as amino group-containing (meth)acrylates, diacetone acrylamides, N,N-dimethyl acrylamides, N,N-diethyl acrylamides, N-isopropyl acrylamides, N-hydroxyethyl acrylamides, acrylamides and methacrylamides Examples thereof include compounds and N-vinylacetamide.
 また、鎖状の窒素含有化合物としては、ウレタン(メタ)アクリレートであってもよい。ウレタン(メタ)アクリレートは、例えば、イソシアネート化合物に、水酸基を有する(メタ)アクリル酸誘導体を、反応させたものを使用することができる。ここで、イソシアネート化合物と(メタ)アクリル酸誘導体の反応には、触媒として触媒量のスズ系化合物などを使用するとよい。ウレタン(メタ)アクリレートは、単官能でも、2官能などの多官能でもよいが、上記のとおり単官能が好ましい。 Further, the chain nitrogen-containing compound may be urethane (meth)acrylate. As the urethane (meth)acrylate, for example, a compound obtained by reacting an isocyanate compound with a (meth)acrylic acid derivative having a hydroxyl group can be used. Here, in the reaction between the isocyanate compound and the (meth)acrylic acid derivative, it is preferable to use a catalytic amount of a tin compound as a catalyst. The urethane (meth)acrylate may be monofunctional or polyfunctional such as bifunctional, but monofunctional is preferable as described above.
 上記水酸基を有する(メタ)アクリル酸誘導体としては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等の二価のアルコールのモノ(メタ)アクリレートや、トリメチロールエタン、トリメチロールプロパン、グリセリン等の三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレートや、ビスフェノールA型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート等が挙げられる。 Examples of the (meth)acrylic acid derivative having a hydroxyl group include dihydric alcohols such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol and polyethylene glycol. Mono(meth)acrylates, mono(meth)acrylates or di(meth)acrylates of trihydric alcohols such as trimethylolethane, trimethylolpropane and glycerin, and epoxies such as bisphenol A type epoxy (meth)acrylates ) Acrylate and the like can be mentioned.
 ウレタン(メタ)アクリレートを得るために使用するイソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシリレンジイソシアネート、1,6,11-ウンデカントリイソシアネート等のポリイソシアネート化合物が挙げられる。 Examples of the isocyanate compound used for obtaining the urethane (meth)acrylate include, for example, isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4, 4'-diisocyanate (MDI), hydrogenated MDI, polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris( Polyisocyanate compounds such as isocyanate phenyl)thiophosphate, tetramethylxylylene diisocyanate and 1,6,11-undecane triisocyanate can be mentioned.
 また、イソシアネート化合物としては、ポリオールと過剰のイソシアネート化合物との反応により得られる鎖延長されたポリイソシアネート化合物も使用することができる。ここで、ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等が挙げられる。
 これらポリイソシアネート化合物を使用することで、多官能のウレタン(メタ)アクリレートを得ることができる。
Further, as the isocyanate compound, a chain-extended polyisocyanate compound obtained by reacting a polyol with an excess isocyanate compound can also be used. Here, examples of the polyol include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, polycaprolactone diol, and the like.
A polyfunctional urethane (meth)acrylate can be obtained by using these polyisocyanate compounds.
 ウレタン(メタ)アクリレートを得るために使用するイソシアネート化合物としては、ブタンイソシアネート、ヘキサンイソシアネート、デカンイソシアネートなどのアルカンモノイソシアネート、シクロペンタンイソシアネート、シクロヘキサンイソシアネート、イソホロンモノイソシアネートなどの環状脂肪族モノイソシアネートなどの脂肪族モノイソシアネートが挙げられる。これらモノイソシアネート化合物を使用することで、単官能のウレタン(メタ)アクリレートを得ることができる。
 単官能のウレタン(メタ)アクリレートは、より具体的には、上記したモノイソシアネート化合物と、二価のアルコールのモノ(メタ)アクリレートとを反応して得られたウレタン(メタ)アクリレートが好ましく、その好適な具体例としては、1,2-エタンジオール1-アクリラート2-(N-ブチルカルバマート)が挙げられる。
Isocyanate compounds used to obtain urethane (meth) acrylate include butane isocyanate, hexane isocyanate, decane isocyanate and other alkane monoisocyanates, cyclopentane isocyanate, cyclohexane isocyanate, isophorone monoisocyanate and other cyclic aliphatic monoisocyanate and other fatty acids Group monoisocyanates are mentioned. A monofunctional urethane (meth)acrylate can be obtained by using these monoisocyanate compounds.
More specifically, the monofunctional urethane (meth)acrylate is more preferably a urethane (meth)acrylate obtained by reacting the above-mentioned monoisocyanate compound with a mono(meth)acrylate of a divalent alcohol, A preferred specific example is 1,2-ethanediol 1-acrylate 2-(N-butylcarbamate).
 上記ウレタン(メタ)アクリレートのうち市販されているものとしては、例えば、M-1100、M-1200、M-1210、M-1600(いずれも東亞合成社製)、EBECRYL230、EBECRYL270、EBECRYL8402、EBECRYL8411、EBECRYL8412、EBECRYL8413、EBECRYL8804、EBECRYL8803、EBECRYL8807、EBECRYL9270、EBECRYL210、EBECRYL4827、EBECRYL6700、EBECRYL220、EBECRYL2220(いずれもダイセル・オルネクス社製)、アートレジンUN-9000H、アートレジンUN-9000A、アートレジンUN-7100、アートレジンUN-1255、アートレジンUN-330、アートレジンUN-3320HB、アートレジンUN-1200TPK、アートレジンSH-500B(いずれも根上工業社製)、U-2HA、U-2PHA、U-3HA、U-4HA、U-6H、U-6LPA、U-6HA、U-10H、U-15HA、U-122A、U-122P、U-108、U-108A、U-324A、U-340A、U-340P、U-1084A、U-2061BA、UA-340P、UA-4100、UA-4000、UA-4200、UA-4400、UA-5201P、UA-7100、UA-7200、UA-W2A(いずれも新中村化学工業社製)、AI-600、AH-600、AT-600、UA-101I、UA-101T、UA-306H、UA-306I、UA-306T(いずれも共栄社化学株式会社製)、CN-902、CN-973、CN-9021、CN-9782、CN-9833(いずれもアルケマ社製)、ビスコート#216(大阪有機化学工業株式会社)等が挙げられる。 Commercially available urethane (meth)acrylates include, for example, M-1100, M-1200, M-1210, M-1600 (all manufactured by Toagosei Co., Ltd.), EBECRYL230, EBECRYL270, EBECRYL8402, EBECRYL8411, and the like. EBECRYL8412, EBECRYL8413, EBECRYL8804, EBECRYL8803, EBECRYL8807, EBECRYL9270, EBECRYL210, EBECRYL4827, EBURES9U, NEU, NEU, NEE, UR, NEU, NEU, NEU, NEE, NEU, NEE, NEU, NEE, AH. Resin UN-1255, Art Resin UN-330, Art Resin UN-3320HB, Art Resin UN-1200TPK, Art Resin SH-500B (all manufactured by Negami Kogyo Co., Ltd.), U-2HA, U-2PHA, U-3HA, U -4HA, U-6H, U-6LPA, U-6HA, U-10H, U-15HA, U-122A, U-122P, U-108, U-108A, U-324A, U-340A, U-340P , U-1084A, U-2061BA, UA-340P, UA-4100, UA-4000, UA-4200, UA-4400, UA-5201P, UA-7100, UA-7200, UA-W2A (all are Shin-Nakamura Chemical Industrial Co., Ltd.), AI-600, AH-600, AT-600, UA-101I, UA-101T, UA-306H, UA-306I, UA-306T (all manufactured by Kyoeisha Chemical Co., Ltd.), CN-902. Examples thereof include CN-973, CN-9021, CN-9782, CN-9833 (all manufactured by Arkema), Viscoat #216 (Osaka Organic Chemical Industry Co., Ltd.) and the like.
 鎖状の窒素含有化合物は、上記のなかでは、ウレタン(メタ)アクリレートを含むことが好ましく、ウレタン(メタ)アクリレートは上記のとおり単官能が好ましいが、単官能に加えて2官能などの多官能のウレタン(メタ)アクリレートを有していてもよい。 Among the above, the chain nitrogen-containing compound preferably contains urethane (meth)acrylate, and the urethane (meth)acrylate is preferably monofunctional as described above, but in addition to monofunctional, polyfunctional such as bifunctional. You may have the urethane (meth)acrylate of.
 ラジカル重合性化合物全量基準における窒素含有化合物の含有量は、湿気硬化性樹脂組成物の初期接着力を良好とする観点から、好ましくは10質量%以上、より好ましくは30質量%以上、更に好ましくは50質量%以上であり、最も好ましくは60質量%以上である。また、窒素含有化合物の上記含有量は、100質量%以下であればよいが、窒素含有化合物以外のラジカル重合性化合物を適切な量含有させるために、好ましくは95質量%以下、より好ましくは90質量%以下ある。 The content of the nitrogen-containing compound based on the total amount of the radical-polymerizable compound is preferably 10% by mass or more, more preferably 30% by mass or more, and further preferably from the viewpoint of improving the initial adhesive strength of the moisture-curable resin composition. It is 50% by mass or more, and most preferably 60% by mass or more. The content of the nitrogen-containing compound may be 100% by mass or less, but preferably 95% by mass or less, more preferably 90% by mass in order to contain an appropriate amount of a radically polymerizable compound other than the nitrogen-containing compound. There is no more than mass%.
 鎖状の窒素含有化合物と、環状構造を有する窒素含有化合物を併用する場合、光湿気硬化性樹脂組成物の初期接着力を良好とする観点から、鎖状の窒素含有化合物に対する環状構造を有する窒素含有化合物の質量比(環状/鎖状)は、0.1以上が好ましく、0.2以上がより好ましく、0.4以上がさらに好ましい。また、鎖状の窒素含有化合物に対する環状構造を有する窒素含有化合物の質量比(環状/鎖状)は、上記同様の観点から、2.0以下が好ましく、1.5以下がより好ましく、1.2以下がさらに好ましい。 When a chain-shaped nitrogen-containing compound and a nitrogen-containing compound having a cyclic structure are used in combination, nitrogen having a cyclic structure for the chain-shaped nitrogen-containing compound from the viewpoint of improving the initial adhesive strength of the photo-moisture curable resin composition. The mass ratio (cyclic/chain) of the contained compound is preferably 0.1 or more, more preferably 0.2 or more, and further preferably 0.4 or more. Further, the mass ratio (cyclic/chain) of the nitrogen-containing compound having a cyclic structure to the chain-like nitrogen-containing compound is preferably 2.0 or less, more preferably 1.5 or less, from the same viewpoint as above. 2 or less is more preferable.
(窒素含有化合物以外のラジカル重合性化合物)
 本発明のラジカル重合性化合物は、上記した窒素含有化合物以外の化合物(以下、窒素非含有化合物ともいう)を含むことが好ましい。
 窒素非含有化合物は、ラジカル重合性官能基を1つ有する単官能化合物でもよいし、ラジカル重合性官能基を2つ以上有する多官能化合物であってもよいし、これらの両方を含んでもよいが、光湿気硬化性樹脂組成物の初期接着力を高める観点から、多官能化合物は少ない方が好ましく、含有しないことがより好ましい。具体的には、上記したとおり、ラジカル重合性化合物全量基準における多官能化合物の含有量を上記した範囲内に調整するとよい。
(Radical polymerizable compounds other than nitrogen-containing compounds)
The radically polymerizable compound of the present invention preferably contains a compound other than the above-mentioned nitrogen-containing compound (hereinafter, also referred to as non-nitrogen-containing compound).
The nitrogen-free compound may be a monofunctional compound having one radically polymerizable functional group, a polyfunctional compound having two or more radically polymerizable functional groups, or may include both of them. From the viewpoint of increasing the initial adhesive strength of the light moisture curable resin composition, the polyfunctional compound is preferably contained in a small amount, and more preferably not contained. Specifically, as described above, the content of the polyfunctional compound based on the total amount of the radically polymerizable compound may be adjusted within the above range.
 窒素非含有化合物としては、ラジカル重合性官能基を有する化合物であれば特に制限されないが、(メタ)アクリル化合物が好ましく、中でも(メタ)アクリル酸エステル化合物が挙げられる。(メタ)アクリル酸エステル化合物は、上記のとおり、単官能、多官能のいずれでもよいが、単官能が好ましい。多官能は2官能でもよいが、3官能以上でもよい。
 単官能の(メタ)アクリル酸エステル化合物としては、アルキル(メタ)アクリレート、脂環構造含有(メタ)アクリレート、芳香環含有(メタ)アクリレートなどが挙げられる。
The nitrogen-free compound is not particularly limited as long as it is a compound having a radically polymerizable functional group, but a (meth)acrylic compound is preferable, and a (meth)acrylic acid ester compound is mentioned among them. As described above, the (meth)acrylic acid ester compound may be monofunctional or polyfunctional, but monofunctional is preferable. The polyfunctionality may be bifunctional or trifunctional or higher.
Examples of the monofunctional (meth)acrylic acid ester compound include alkyl (meth)acrylate, alicyclic structure-containing (meth)acrylate, and aromatic ring-containing (meth)acrylate.
 アルキル(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレートなど、アルキル基の炭素数が1~18のアルキル(メタ)アクリレートが挙げられる。
 脂環構造含有(メタ)アクリレートとしては、シクロヘキシル(メタ)アクリレート、4-tert-ブチルシクロヘキシル(メタ)アクリレート、3,3,5-トリメチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート等の脂環式構造を有する(メタ)アクリレートが挙げられる。
 芳香環含有(メタ)アクリレートとしては、例えば、ベンジル(メタ)アクリレート、2-フェニルエチル(メタ)アクリレート等のフェニルアルキル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等のフェノキシアルキル(メタ)アクリレートなどが挙げられる。
Examples of the alkyl (meth)acrylate include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, t-butyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isononyl (meth)acrylate, isodecyl (meth)acrylate, lauryl (meth)acrylate, isomyristyl (meth)acrylate, stearyl (meth) ) Alkyl (meth)acrylates having an alkyl group having 1 to 18 carbon atoms, such as acrylate.
Examples of the alicyclic structure-containing (meth)acrylate include cyclohexyl (meth)acrylate, 4-tert-butylcyclohexyl (meth)acrylate, 3,3,5-trimethylcyclohexyl (meth)acrylate, isobornyl (meth)acrylate and dicyclopentenyl. Examples thereof include (meth)acrylate having an alicyclic structure such as (meth)acrylate.
Examples of aromatic ring-containing (meth)acrylates include phenyl(meth)acrylates such as benzyl(meth)acrylate and 2-phenylethyl(meth)acrylate, and phenoxyalkyl(meth)acrylates such as phenoxyethyl(meth)acrylate. Are listed.
 また、単官能の(メタ)アクリル酸エステル化合物としては、環状エーテル基含有(メタ)アクリレートを使用してもよい。環状エーテル基含有(メタ)アクリレートとしては、エポキシ環、オキセタン環、テトラヒドロフラン環、ジオキソラン環、ジオキサン環などを有する(メタ)アクリレートが挙げられる。
 エポキシ環含有(メタ)アクリレートとしては、例えば、グリシジル(メタ)アクリレートが挙げられる。オキセタン環含有(メタ)アクリレートとしては、(3-エチルオキセタン-3-イル)メチル(メタ)アクリレートが挙げられる。テトラヒドロフラン環含有(メタ)アクリレートとしては、テトラヒドロフルフリル(メタ)アクリレート、テトラヒドロフルフリルアルコールの(メタ)アクリル酸エステルなどが挙げられる。テトラヒドロフルフリルアルコールの(メタ)アクリル酸エステルは、(メタ)アクリル酸の多量体エステル(例えば、分子量150~550程度)であってもよい。ジオキソラン環含有(メタ)アクリレートとしては、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート、(2,2-シクロヘキシル-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレートなどが挙げられる。ジオキサン環を有する(メタ)アクリレートとしては、環状トリメチロールプロパンホルマール(メタ)アクリレートなどが挙げられる。
Moreover, you may use cyclic ether group containing (meth)acrylate as a monofunctional (meth)acrylic acid ester compound. Examples of the cyclic ether group-containing (meth)acrylate include (meth)acrylates having an epoxy ring, an oxetane ring, a tetrahydrofuran ring, a dioxolane ring, a dioxane ring and the like.
Examples of the epoxy ring-containing (meth)acrylate include glycidyl (meth)acrylate. Examples of the oxetane ring-containing (meth)acrylate include (3-ethyloxetane-3-yl)methyl(meth)acrylate. Examples of the tetrahydrofuran ring-containing (meth)acrylate include tetrahydrofurfuryl (meth)acrylate and (meth)acrylic acid ester of tetrahydrofurfuryl alcohol. The (meth)acrylic acid ester of tetrahydrofurfuryl alcohol may be a polymer ester of (meth)acrylic acid (for example, a molecular weight of about 150 to 550). The dioxolane ring-containing (meth)acrylate includes (2-methyl-2-ethyl-1,3-dioxolan-4-yl)methyl (meth)acrylate and (2,2-cyclohexyl-1,3-dioxolane-4- Ilyl)methyl (meth)acrylate and the like. Examples of the (meth)acrylate having a dioxane ring include cyclic trimethylolpropane formal (meth)acrylate.
 また、単官能の(メタ)アクリル酸エステル化合物としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレートなどのアルコキシアルキル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、エトキシエチレングリコール(メタ)アクリレートなどのアルコキシエチレングリコール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、エトキシトリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレートなどのポリオキシエチレン系(メタ)アクリレートなども挙げられる。
 また、単官能の(メタ)アクリル化合物としては、アクリル酸、メタクリル酸などのカルボキシル含有(メタ)アクリル化合物などを使用してもよい。
Further, as the monofunctional (meth)acrylic acid ester compound, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate Such as hydroxyalkyl (meth)acrylate, 2-methoxyethyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate, alkoxyalkyl (meth)acrylate such as 2-butoxyethyl (meth)acrylate, methoxyethylene glycol (meth) Acrylate, alkoxyethylene glycol (meth)acrylate such as ethoxyethylene glycol (meth)acrylate, methoxydiethylene glycol (meth)acrylate, methoxytriethylene glycol (meth)acrylate, methoxypolyethylene glycol (meth)acrylate, ethylcarbitol (meth)acrylate And polyoxyethylene-based (meth)acrylates such as ethoxydiethylene glycol (meth)acrylate, ethoxytriethylene glycol (meth)acrylate, and ethoxypolyethylene glycol (meth)acrylate.
As the monofunctional (meth)acrylic compound, a carboxyl-containing (meth)acrylic compound such as acrylic acid or methacrylic acid may be used.
 2官能の(メタ)アクリル酸エステル化合物としては、例えば、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。 Examples of the bifunctional (meth)acrylic acid ester compound include 1,3-butanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, and 1,6-hexanediol di(meth)acrylate. 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di(meth)acrylate, ethylene glycol di (Meth)acrylate, diethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, polypropylene glycol di (Meth)acrylate, ethylene oxide-added bisphenol A di(meth)acrylate, propylene oxide-added bisphenol A di(meth)acrylate, ethylene oxide-added bisphenol F di(meth)acrylate, dimethylol dicyclopentadienyl di(meth)acrylate, neo Pentyl glycol di(meth)acrylate, 2-hydroxy-3-(meth)acryloyloxypropyl(meth)acrylate, carbonate diol di(meth)acrylate, polyether diol di(meth)acrylate, polyester diol di(meth)acrylate , Polycaprolactone diol di(meth)acrylate, polybutadiene diol di(meth)acrylate and the like.
 また、3官能以上の(メタ)アクリル酸エステル化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。 Examples of trifunctional or higher functional (meth)acrylic acid ester compounds include trimethylolpropane tri(meth)acrylate, ethylene oxide-added trimethylolpropane tri(meth)acrylate, propylene oxide-added trimethylolpropane tri(meth)acrylate, Caprolactone-modified trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, glycerin tri(meth)acrylate, propylene oxide-added glycerin tri(meth)acrylate, tris(meth)acryloyloxyethyl phosphate, ditrimethylolpropane tetra Examples thereof include (meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, and dipentaerythritol hexa(meth)acrylate.
 窒素非含有化合物は、上記したとおり単官能が好ましく、また、アクリル(メタ)アクリレート、脂環構造含有(メタ)アクリレート、芳香環含有(メタ)アクリレートから選択される少なくとも1種を含むことが好ましい。また、これらに加えて、さらに、接着力を向上させる観点から、オキセタン環含有(メタ)アクリレートなどの環状エーテル基含有(メタ)アクリレートを含むことも好ましい。 The nitrogen-free compound is preferably monofunctional as described above, and preferably contains at least one selected from acrylic (meth)acrylate, alicyclic structure-containing (meth)acrylate, and aromatic ring-containing (meth)acrylate. .. In addition to these, it is also preferable to further include a cyclic ether group-containing (meth)acrylate such as an oxetane ring-containing (meth)acrylate from the viewpoint of improving the adhesive force.
 ラジカル重合性化合物全量基準における窒素非含有化合物の含有量は、0質量%以上であればよいが、光湿気硬化性樹脂組成物の初期接着力を良好とする観点から、好ましくは5質量%以上、より好ましくは10質量%以上である。そして好ましくは90質量%以下であり、より好ましくは70質量%以下、更に好ましくは50質量%以下であり、最も好ましくは40質量%以下である。 The content of the non-nitrogen-containing compound based on the total amount of the radical-polymerizable compound may be 0% by mass or more, but is preferably 5% by mass or more from the viewpoint of improving the initial adhesive strength of the light moisture curable resin composition. , And more preferably 10 mass% or more. And it is preferably 90% by mass or less, more preferably 70% by mass or less, further preferably 50% by mass or less, and most preferably 40% by mass or less.
 光湿気硬化性樹脂組成物におけるラジカル重合性化合物の含有量は、光湿気硬化性樹脂組成物全量基準で、20質量%以上が好ましい。ラジカル重合性化合物を20質量%以上とすると、光湿気硬化性樹脂組成物に適切な光硬化性を付与でき、初期接着力が良好となる。これら観点から、ラジカル重合性化合物の上記含有量は、30質量%以上がより好ましく、55質量%以上がさらに好ましい。
 また、ラジカル重合性化合物の含有量は、光湿気硬化性樹脂組成物全量基準で、80質量%以下が好ましい。ラジカル重合性化合物を80質量%以下とすると、光湿気硬化性樹脂組成物に湿気硬化性樹脂を一定量以上含有させることが可能になり、適切な湿気硬化性を付与しやすくなる。そのような観点から、ラジカル重合性化合物の上記含有量は、75質量%以下がより好ましく、70質量%以下がさらに好ましい。
The content of the radically polymerizable compound in the light moisture curable resin composition is preferably 20% by mass or more based on the total amount of the light moisture curable resin composition. When the content of the radically polymerizable compound is 20% by mass or more, the photomoisture curable resin composition can be provided with appropriate photocurability, and the initial adhesive strength becomes good. From these viewpoints, the content of the radically polymerizable compound is more preferably 30% by mass or more, and further preferably 55% by mass or more.
Further, the content of the radically polymerizable compound is preferably 80% by mass or less based on the total amount of the light moisture curable resin composition. When the content of the radically polymerizable compound is 80% by mass or less, the photocurable resin composition can contain a certain amount or more of the curable resin, and it becomes easy to impart proper curability to the composition. From such a viewpoint, the content of the radically polymerizable compound is more preferably 75% by mass or less, and further preferably 70% by mass or less.
[湿気硬化性樹脂]
 本発明の光湿気硬化性樹脂組成物は、湿気硬化性樹脂を含有し、それにより、湿気硬化性が付与される。湿気硬化性を有すると、硬化性樹脂組成物を加熱しなくても硬化できるため、硬化性樹脂組成物を硬化するとき、接着部または接着部周辺の電子部品などの被着体が加熱により損傷などすることを防止できる。また、湿気硬化性であることで硬化したときの接着性を高めやすくなり、光硬化24時間後の接着力を上記したように高めやすくなる。
[Moisture curable resin]
The photo-moisture curable resin composition of the present invention contains a moisture curable resin, thereby imparting moisture curability. Moisture-curable resin can be cured without heating the curable resin composition.Therefore, when curing the curable resin composition, the adherend or the adherend such as electronic parts around the adherence is damaged by heating. It can be prevented. Further, the moisture-curing property makes it easy to enhance the adhesiveness when cured, and the adhesive force after 24 hours of photocuring is easily enhanced as described above.
 本発明で使用する湿気硬化性樹脂としては、例えば、湿気硬化性ウレタン樹脂、加水分解性シリル基含有樹脂等が挙げられ、なかでも、湿気硬化性ウレタン樹脂が好ましい。
 また、湿気硬化性樹脂は、ポリカーボネート骨格を有する化合物又はポリエステル骨格を有する化合物のいずれかを含むことが好ましい。これらのいずれかを有することで、湿気硬化性樹脂は、SP値が上記した所望の範囲内となり、ラジカル重合性化合物のSP値との差を小さくしやすくなる。湿気硬化性樹脂は、ポリカーボネート骨格を有する化合物及びポリエステル骨格を有する化合物の両方が使用されてもよいが、いずれか一方が使用されることが好ましい。
 また、湿気硬化性樹脂においては、例えば、ウレタン樹脂を構成するポリオール化合物に後述するようにポリカーボネートポリオール又はポリエステルポリオールを使用することで、湿気硬化性樹脂にポリカーボネート骨格又はポリエステル骨格を導入することができる。
Examples of the moisture-curable resin used in the present invention include a moisture-curable urethane resin and a hydrolyzable silyl group-containing resin, and among them, a moisture-curable urethane resin is preferable.
The moisture-curable resin preferably contains either a compound having a polycarbonate skeleton or a compound having a polyester skeleton. By having any of these, the moisture-curable resin has an SP value within the desired range described above, and it is easy to reduce the difference from the SP value of the radically polymerizable compound. As the moisture curable resin, both a compound having a polycarbonate skeleton and a compound having a polyester skeleton may be used, but it is preferable to use one of them.
Further, in the moisture-curable resin, for example, a polycarbonate skeleton or a polyester skeleton can be introduced into the moisture-curable resin by using a polycarbonate polyol or a polyester polyol as described below for the polyol compound constituting the urethane resin. ..
(湿気硬化性ウレタン樹脂)
 湿気硬化性ウレタン樹脂は、イソシアネート基を有する。湿気硬化性ウレタン樹脂は、分子内のイソシアネート基が空気中又は被着体中の水分と反応して硬化する。湿気硬化性ウレタン樹脂は、1分子中にイソシアネート基を1個のみ有していてもよいし、2個以上有していてもよい。なかでも、分子の主鎖両末端にイソシアネート基を有することが好ましい。
(Moisture curable urethane resin)
The moisture-curable urethane resin has an isocyanate group. The moisture-curable urethane resin is cured by the reaction of the isocyanate group in the molecule with the moisture in the air or the adherend. The moisture-curable urethane resin may have only one isocyanate group in one molecule, or may have two or more isocyanate groups. Above all, it is preferable to have isocyanate groups at both ends of the main chain of the molecule.
 湿気硬化性ウレタン樹脂は、1分子中に2個以上の水酸基を有するポリオール化合物と、1分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物とを反応させることにより得ることができる。
 上記ポリオール化合物とポリイソシアネート化合物との反応は、通常、ポリオール化合物中の水酸基(OH)とポリイソシアネート化合物中のイソシアネート基(NCO)のモル比で[NCO]/[OH]=2.0~2.5の範囲で行われる。
The moisture-curable urethane resin can be obtained by reacting a polyol compound having two or more hydroxyl groups in one molecule with a polyisocyanate compound having two or more isocyanate groups in one molecule.
The above-mentioned reaction between the polyol compound and the polyisocyanate compound is usually carried out by the molar ratio of the hydroxyl group (OH) in the polyol compound and the isocyanate group (NCO) in the polyisocyanate compound [NCO]/[OH]=2.0 to 2 It is performed in the range of 0.5.
 湿気硬化性ウレタン樹脂の原料となるポリオール化合物としては、ポリウレタンの製造に通常用いられている公知のポリオール化合物を使用することができ、例えば、ポリエステルポリオール、ポリエーテルポリオール、ポリアルキレンポリオール、ポリカーボネートポリオール等が挙げられる。これらのポリオール化合物は、1種単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。
 これらの中では、上記のとおり、ラジカル重合性化合物とのSP値差を小さくする観点からは、ポリエステルポリオール又はポリカーボネートポリオールを使用することが好ましい。また、これらの中では、ポリカーボネートポリオールが好ましい。ポリカーボネートポリオールを使用することで、硬化物の耐候性、耐熱性、耐湿性などに優れた光湿気硬化性樹脂組成物を提供できる。
As the polyol compound which is a raw material of the moisture-curable urethane resin, a known polyol compound which is usually used in the production of polyurethane can be used. For example, polyester polyol, polyether polyol, polyalkylene polyol, polycarbonate polyol and the like. Are listed. These polyol compounds may be used alone or in combination of two or more.
Among these, as described above, it is preferable to use polyester polyol or polycarbonate polyol from the viewpoint of reducing the SP value difference from the radically polymerizable compound. Further, among these, polycarbonate polyol is preferable. By using the polycarbonate polyol, it is possible to provide a light moisture curable resin composition having excellent weather resistance, heat resistance, moisture resistance and the like of a cured product.
 上記ポリエステルポリオールとしては、例えば、多価カルボン酸とポリオールとの反応により得られるポリエステルポリオール、ε-カプロラクトンを開環重合して得られるポリ-ε-カプロラクトンジオール等のポリカプロラクトンポリオールが挙げられる。
 ポリエステルポリオールの原料となる上記多価カルボン酸としては、例えば、テレフタル酸、イソフタル酸、1,5-ナフタル酸、2,6-ナフタル酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカメチレンジカルボン酸、ドデカメチレンジカルボン酸等が挙げられる。
 ポリエステルポリオールの原料となるポリオールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、シクロヘキサンジオール等が挙げられる。
Examples of the above-mentioned polyester polyols include polyester polyols obtained by the reaction of a polyvalent carboxylic acid and a polyol, and polycaprolactone polyols such as poly-ε-caprolactone diol obtained by ring-opening polymerization of ε-caprolactone.
Examples of the polyvalent carboxylic acid as a raw material of the polyester polyol include terephthalic acid, isophthalic acid, 1,5-naphthalic acid, 2,6-naphthalic acid, succinic acid, glutaric acid, adipic acid, pimelic acid and suberic acid. , Azelaic acid, sebacic acid, decamethylenedicarboxylic acid, dodecamethylenedicarboxylic acid and the like.
Examples of the polyol as a raw material of the polyester polyol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, Examples include diethylene glycol and cyclohexanediol.
 ポリカーボネートポリオールとしては、ポリカーボネートジオールが好ましく、ポリカーボネートジオールの好ましい具体例としては、以下の式(1)で表される化合物が挙げられる。 As the polycarbonate polyol, a polycarbonate diol is preferable, and specific examples of the polycarbonate diol include a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001

 式(1)においてRは炭素数4~16の二価の炭価水素基、nは1~500の整数である。
Figure JPOXMLDOC01-appb-C000001

In the formula (1), R is a divalent hydrocarbon group having 4 to 16 carbon atoms, and n is an integer of 1 to 500.
 式(1)において、Rは、好ましくは脂肪族飽和炭化水素基である。Rが脂肪族飽和炭化水素基であることで、耐熱性が良好になりやすくなる。また、熱劣化などにより黄変等も生じにくくなり耐候性も良好となる。脂肪族飽和炭化水素基からなるRは、鎖状構造又は環状構造を有していてもよいが、応力緩和性や柔軟性を良好にしやすい観点から、鎖状構造を有することが好ましい。また、鎖状構造のRは直鎖状又は分岐状のいずれでもよい。
 nは5~200であることが好ましく、10~150であることがより好ましく、20~50であることがさらに好ましい。
 また、湿気硬化性ウレタン樹脂(a1)を構成するポリカーボネートポリオールに含まれるRは、1種単独で使用してよいし、2種以上を併用してもよい。2種以上併用する場合には、少なくとも一部が炭素数6以上の鎖状の脂肪族飽和炭化水素基であることが好ましく、より好ましくは少なくとも一部が炭素数7以上の鎖状の脂肪族飽和炭化水素基であることが好ましい。
 炭素数7以上の鎖状の脂肪族飽和炭化水素基を含むことで、応力緩和性や柔軟性を良好にしやすくなる。ポリカーボネートジオールが上記式(1)で表される化合物である場合、炭素数7以上の鎖状の脂肪族飽和炭化水素基の割合は、全ポリカーボネートジオールに含まれるRに対して、20モル%以上100モル%以下が好ましく、30%以上100モル%以下がより好ましく、50%以上100モル%以下がさらに好ましい。
 炭素数7以上の鎖状の脂肪族飽和炭化水素基は、好ましくは炭素数8以上12以下であり、さらに好ましくは炭素数8以上10以下である。
 Rの具体例としては、テトラメチレン基、ペンチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基などの直鎖状であってもよいし、例えば3-メチルペンチレン基などのメチルペンチレン基、メチルオクタメチレン基などの分岐状であってもよい。1分子中における複数のRは、互いに同一であってもよいし、異なっていてもよい。したがって、一分子中に2種類以上のRを含んでもよく、その場合、好ましくは一分子中に2種又は3種のRを含む。例えば、ポリカーボネートポリオールは、1分子中に炭素数6以下のRと、炭素数7以上のRを含有する共重合体であってもよく、この場合、いずれのRも鎖状の脂肪族飽和炭化水素基であるとよい。
 また、Rは直鎖状の脂肪族飽和炭化水素基を含んでもよいし、分岐状の脂肪族飽和炭化水素基を含んでもよい。ポリカーボネートポリオールにおけるRは分岐状と直鎖状のRが併用されていてもよいし、直鎖状のRが単独で使用されていてもよい。
 なお、ポリカーボネートポリオールは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
In formula (1), R is preferably an aliphatic saturated hydrocarbon group. When R is an aliphatic saturated hydrocarbon group, heat resistance tends to be good. Also, yellowing is less likely to occur due to heat deterioration and the weather resistance is also improved. R composed of an aliphatic saturated hydrocarbon group may have a chain structure or a cyclic structure, but it is preferable to have a chain structure from the viewpoint of easily improving stress relaxation property and flexibility. Further, R in the chain structure may be linear or branched.
n is preferably 5 to 200, more preferably 10 to 150, and further preferably 20 to 50.
Further, R contained in the polycarbonate polyol constituting the moisture-curable urethane resin (a1) may be used alone or in combination of two or more. When two or more kinds are used in combination, at least a part thereof is preferably a chained aliphatic saturated hydrocarbon group having 6 or more carbon atoms, and more preferably at least a part thereof is a chained aliphatic saturated carbon group. It is preferably a saturated hydrocarbon group.
By containing a chain-like aliphatic saturated hydrocarbon group having 7 or more carbon atoms, it becomes easy to improve stress relaxation property and flexibility. When the polycarbonate diol is a compound represented by the above formula (1), the proportion of the chained aliphatic saturated hydrocarbon group having 7 or more carbon atoms is 20 mol% or more based on R contained in all the polycarbonate diols. 100 mol% or less is preferable, 30% or more and 100 mol% or less is more preferable, and 50% or more and 100 mol% or less is further preferable.
The chain-like aliphatic saturated hydrocarbon group having 7 or more carbon atoms preferably has 8 or more and 12 or less carbon atoms, and more preferably 8 or more and 10 or less carbon atoms.
Specific examples of R may be linear groups such as a tetramethylene group, a pentylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, a nonamethylene group, and a decamethylene group, and for example, a 3-methylpentylene group. It may be branched such as methylpentylene group and methyloctamethylene group. A plurality of R's in one molecule may be the same as or different from each other. Therefore, two or more kinds of R may be contained in one molecule, and in that case, preferably two or three kinds of R are contained in one molecule. For example, the polycarbonate polyol may be a copolymer containing R having 6 or less carbon atoms and R having 7 or more carbon atoms in one molecule, and in this case, all R are chain-like aliphatic saturated carbon atoms. It is preferably a hydrogen group.
Further, R may contain a linear aliphatic saturated hydrocarbon group or a branched aliphatic saturated hydrocarbon group. As R in the polycarbonate polyol, branched R and linear R may be used in combination, or linear R may be used alone.
The polycarbonate polyols may be used alone or in combination of two or more.
 湿気硬化性ウレタン樹脂の原料となるポリイソシアネート化合物としては、芳香族ポリイソシアネート化合物、脂肪族ポリイソシアネート化合物が好適に用いられる。
 芳香族ポリイソシアネート化合物としては、例えば、ジフェニルメタンジイソシアネート、ジフェニルメタンジイソシアネートの液状変性物、ポリメリックMDI、トリレンジイソシアネート、ナフタレン-1,5-ジイソシアネート等が挙げられる。
 脂肪族ポリイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、ノルボルナンジイソシアネート、トランスシクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート、水添キシリレンジイソシアネート、水添ジフェニルメタンジイソシアネート、シクロヘキサンジイソシアネート、ビス(イソシアネートメチル)シクロヘキサン、ジシクロヘキシルメタンジイソシアネート等が挙げられる。
 ポリイソシアネート化合物としては、なかでも、全硬化後の接着力を高くできる観点からは、芳香族ポリイソシアネート化合物が好ましく、中でもジフェニルメタンジイソシアネート及びその変性物がより好ましい。また、光湿気硬化性樹脂組成物の硬化物に、応力緩和性、柔軟性などを付与しやすくする観点からは、脂肪族ポリイソシアネート化合物が好ましい。
 ポリイソシアネート化合物は、単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。
An aromatic polyisocyanate compound and an aliphatic polyisocyanate compound are preferably used as the polyisocyanate compound as a raw material for the moisture-curable urethane resin.
Examples of the aromatic polyisocyanate compound include diphenylmethane diisocyanate, liquid modified products of diphenylmethane diisocyanate, polymeric MDI, tolylene diisocyanate, and naphthalene-1,5-diisocyanate.
Examples of the aliphatic polyisocyanate compound include hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, norbornane diisocyanate, transcyclohexane-1,4-diisocyanate, isophorone diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate, cyclohexane diisocyanate. , Bis(isocyanatomethyl)cyclohexane, dicyclohexylmethane diisocyanate, and the like.
As the polyisocyanate compound, an aromatic polyisocyanate compound is preferable, and diphenylmethane diisocyanate and a modified product thereof are more preferable, from the viewpoint of increasing the adhesive strength after full curing. Further, from the viewpoint of easily imparting stress relaxation property, flexibility and the like to the cured product of the light moisture curable resin composition, an aliphatic polyisocyanate compound is preferable.
The polyisocyanate compound may be used alone or in combination of two or more kinds.
(加水分解性シリル基含有樹脂)
 本発明で使用する加水分解性シリル基含有樹脂は、分子内の加水分解性シリル基が空気中又は被着体中の水分と反応して硬化する。
 加水分解性シリル基含有樹脂は、1分子中に加水分解性シリル基を1個のみ有していてもよいし、2個以上有していてもよい。なかでも、分子の主鎖両末端に加水分解性シリル基を有することが好ましい。なお、上記加水分解性シリル基含有樹脂として、イソシアネート基を有するものを含まない。
(Hydrolysable silyl group-containing resin)
The hydrolyzable silyl group-containing resin used in the present invention is cured by the reaction of the hydrolyzable silyl group in the molecule with the water in the air or the adherend.
The hydrolyzable silyl group-containing resin may have only one hydrolyzable silyl group in one molecule, or may have two or more hydrolyzable silyl groups. Above all, it is preferable to have a hydrolyzable silyl group at both ends of the main chain of the molecule. The hydrolyzable silyl group-containing resin does not include those having an isocyanate group.
 加水分解性シリル基は、下記式(2)で表される。
Figure JPOXMLDOC01-appb-C000002

 式(2)中、Rは、それぞれ独立に、置換されていてもよい炭素数1以上20以下のアルキル基、炭素数6以上20以下のアリール基、炭素数7以上20以下のアラルキル基、又は、-OSiR (Rは、それぞれ独立に、炭素数1以上20以下の炭化水素基である)で示されるトリオルガノシロキシ基である。また、式(2)中、Xは、それぞれ独立に、ヒドロキシ基又は加水分解性基である。さらに、式(2)中、aは、1~3の整数である。
The hydrolyzable silyl group is represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000002

In formula (2), R 1's each independently represent an optionally substituted alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, Alternatively, it is a triorganosiloxy group represented by —OSiR 2 3 (R 2 is independently a hydrocarbon group having 1 to 20 carbon atoms). Further, in the formula (2), each X is independently a hydroxy group or a hydrolyzable group. Further, in the formula (2), a is an integer of 1 to 3.
 上記加水分解性基は特に限定されず、例えば、ハロゲン原子、アルコキシ基、アルケニルオキシ基、アリールオキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基等が挙げられる。なかでも、活性が高いことから、ハロゲン原子、アルコキシ基、アルケニルオキシ基、アシルオキシ基が好ましい。また、加水分解性が穏やかで取扱いやすいことから、メトキシ基、エトキシ基等のアルコキシ基がより好ましく、メトキシ基、エトキシ基がさらに好ましい。また、安全性の観点からは、反応により脱離する化合物がそれぞれエタノール、アセトンである、エトキシ基、イソプロペノキシ基が好ましい。 The hydrolyzable group is not particularly limited, and examples thereof include a halogen atom, an alkoxy group, an alkenyloxy group, an aryloxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an acid amide group, an aminooxy group and a mercapto group. Are listed. Of these, a halogen atom, an alkoxy group, an alkenyloxy group, and an acyloxy group are preferable because of their high activity. Further, alkoxy groups such as a methoxy group and an ethoxy group are more preferable, and a methoxy group and an ethoxy group are more preferable, because they are mildly hydrolyzable and are easy to handle. Further, from the viewpoint of safety, an ethoxy group and an isopropenoxy group, in which the compounds eliminated by the reaction are ethanol and acetone, respectively are preferable.
 上記ヒドロキシ基又は上記加水分解性基は、1個のケイ素原子に対して、1~3個の範囲で結合することができる。上記ヒドロキシ基又は上記加水分解性基が1個のケイ素原子に対して2個以上結合する場合には、それらの基は同一であってもよいし、異なっていてもよい。 The above-mentioned hydroxy group or the above-mentioned hydrolyzable group can be bonded to 1 silicon atom in the range of 1 to 3. When two or more hydroxy groups or hydrolyzable groups are bonded to one silicon atom, these groups may be the same or different.
 上記式(2)におけるaは、硬化性の観点から、2又は3であることが好ましく、3であることが特に好ましい。また、保存安定性の観点からは、aは、2であることが好ましい。
 また、上記式(2)におけるRとしては、例えば、メチル基、エチル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、フェニル基等のアリール基、ベンジル基等のアラルキル基、トリメチルシロキシ基、クロロメチル基、メトキシメチル基等があげられる。なかでも、メチル基が好ましい。
From the viewpoint of curability, a in the above formula (2) is preferably 2 or 3, and particularly preferably 3. Further, a is preferably 2 from the viewpoint of storage stability.
R 1 in the above formula (2) is, for example, an alkyl group such as a methyl group or an ethyl group, a cycloalkyl group such as a cyclohexyl group, an aryl group such as a phenyl group, an aralkyl group such as a benzyl group, or a trimethylsiloxy group. , Chloromethyl group, methoxymethyl group and the like. Of these, a methyl group is preferred.
 上記加水分解性シリル基としては、例えば、メチルジメトキシシリル基、トリメトキシシリル基、トリエトキシシリル基、トリス(2-プロペニルオキシ)シリル基、トリアセトキシシリル基、(クロロメチル)ジメトキシシリル基、(クロロメチル)ジエトキシシリル基、(ジクロロメチル)ジメトキシシリル基、(1-クロロエチル)ジメトキシシリル基、(1-クロロプロピル)ジメトキシシリル基、(メトキシメチル)ジメトキシシリル基、(メトキシメチル)ジエトキシシリル基、(エトキシメチル)ジメトキシシリル基、(1-メトキシエチル)ジメトキシシリル基、(アミノメチル)ジメトキシシリル基、(N,N-ジメチルアミノメチル)ジメトキシシリル基、(N,N-ジエチルアミノメチル)ジメトキシシリル基、(N,N-ジエチルアミノメチル)ジエトキシシリル基、(N-(2-アミノエチル)アミノメチル)ジメトキシシリル基、(アセトキシメチル)ジメトキシシリル基、(アセトキシメチル)ジエトキシシリル基等が挙げられる。 Examples of the hydrolyzable silyl group include a methyldimethoxysilyl group, trimethoxysilyl group, triethoxysilyl group, tris(2-propenyloxy)silyl group, triacetoxysilyl group, (chloromethyl)dimethoxysilyl group, ( (Chloromethyl)diethoxysilyl group, (dichloromethyl)dimethoxysilyl group, (1-chloroethyl)dimethoxysilyl group, (1-chloropropyl)dimethoxysilyl group, (methoxymethyl)dimethoxysilyl group, (methoxymethyl)diethoxysilyl group Group, (ethoxymethyl)dimethoxysilyl group, (1-methoxyethyl)dimethoxysilyl group, (aminomethyl)dimethoxysilyl group, (N,N-dimethylaminomethyl)dimethoxysilyl group, (N,N-diethylaminomethyl)dimethoxy Silyl group, (N,N-diethylaminomethyl)diethoxysilyl group, (N-(2-aminoethyl)aminomethyl)dimethoxysilyl group, (acetoxymethyl)dimethoxysilyl group, (acetoxymethyl)diethoxysilyl group, etc. Can be mentioned.
 加水分解性シリル基含有樹脂としては、例えば、加水分解性シリル基含有ポリウレタン樹脂等が挙げられる。
 上記加水分解性シリル基含有ポリウレタン樹脂を製造する方法としては、例えば、ポリオール化合物とポリイソシアネート化合物とを反応させてポリウレタン樹脂を製造する際に、さらに、シランカップリング剤等のシリル基含有化合物を反応させる方法等が挙げられる。具体的には例えば、特開2017-48345号公報に記載されている加水分解性シリル基を有するウレタンオリゴマーの合成方法等が挙げられる。
 なお、加水分解性シリル基含有ポリウレタン樹脂に使用されるポリオール化合物、ポリイソシアネート化合物は、上記した湿気硬化性ウレタン樹脂に使用されるポリオール化合物、ポリイソシアネート化合物と同様であるので、その説明は省略する。
Examples of the hydrolyzable silyl group-containing resin include a hydrolyzable silyl group-containing polyurethane resin and the like.
As a method for producing the hydrolyzable silyl group-containing polyurethane resin, for example, when a polyurethane resin is produced by reacting a polyol compound with a polyisocyanate compound, a silyl group-containing compound such as a silane coupling agent is further added. Examples include a method of reacting. Specific examples thereof include a method for synthesizing a urethane oligomer having a hydrolyzable silyl group described in JP-A-2017-48345.
The polyol compound and the polyisocyanate compound used for the hydrolyzable silyl group-containing polyurethane resin are the same as the polyol compound and the polyisocyanate compound used for the moisture-curable urethane resin described above, and therefore the description thereof will be omitted. ..
 上記シランカップリング剤としては、例えば、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシ-エトキシ)シラン、β-(3,4-エポキシシクロヘキシル)-エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等が挙げられる。なかでも、γ-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシランが好ましい。これらのシランカップリング剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。 Examples of the silane coupling agent include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris(β-methoxy-ethoxy)silane, β-(3,4-epoxycyclohexyl)-ethyltrimethoxysilane, γ-glycidoxy. Propyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-methacryloxypropyltrimethoxysilane, N-(β-aminoethyl)-γ-aminopropyltrimethoxysilane, N-(β-aminoethyl) -Γ-aminopropyltrimethyldimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane Examples thereof include methoxysilane and 3-isocyanatopropyltriethoxysilane. Of these, γ-mercaptopropyltrimethoxysilane, 3-isocyanatepropyltrimethoxysilane, and 3-isocyanatepropyltriethoxysilane are preferable. These silane coupling agents may be used alone or in combination of two or more.
 なお、湿気硬化性ウレタン樹脂は、イソシアネート基と加水分解性シリル基の両方を有していてもよい。イソシアネート基と加水分解性シリル基の両方を有する湿気硬化性ウレタン樹脂は、まず、上記した方法にてイソシアネート基を有する湿気硬化性ウレタン樹脂を得て、さらに該湿気硬化性ウレタン樹脂にシランカップリング剤を反応させることで製造することが好ましい。
 なお、イソシアネート基を有する湿気硬化性ウレタン樹脂の詳細は上記したとおりである。なお、湿気硬化性に反応させるシランカップリング剤としては、上記で列挙したものから適宜選択して使用すればよいが、イソシアネート基との反応性の観点からアミノ基又はメルカプト基を有するシランカップ剤を使用することが好ましい。好ましい具体的としては、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン等が挙げられる。
The moisture-curable urethane resin may have both an isocyanate group and a hydrolyzable silyl group. A moisture-curable urethane resin having both an isocyanate group and a hydrolyzable silyl group is obtained by first obtaining a moisture-curable urethane resin having an isocyanate group by the above-mentioned method, and further subjecting the moisture-curable urethane resin to silane coupling. It is preferably produced by reacting an agent.
The details of the moisture-curable urethane resin having an isocyanate group are as described above. The moisture-curable silane coupling agent may be appropriately selected from those listed above and used, but from the viewpoint of reactivity with an isocyanate group, a silane coupling agent having an amino group or a mercapto group. Is preferably used. Preferred specific examples include N-(β-aminoethyl)-γ-aminopropyltrimethoxysilane, N-(β-aminoethyl)-γ-aminopropyltrimethyldimethoxysilane, and N-phenyl-γ-aminopropyltrimethoxysilane. Examples thereof include silane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane and 3-isocyanatopropyltrimethoxysilane.
 さらに、湿気硬化性樹脂は、ラジカル重合性官能基を有していてもよい。湿気硬化性樹脂が有していてもよいラジカル重合性官能基としては、不飽和二重結合を有する基が好ましく、特に反応性の面から(メタ)アクリロイル基がより好ましい。なお、ラジカル重合性官能基を有する湿気硬化性樹脂は、上記したラジカル重合性化合物には含まず、湿気硬化性樹脂として扱う。
 湿気硬化性樹脂は、上記した各種の樹脂から適宜選択して1種単独で使用してもよいし、2種以上併用してもよい。
Furthermore, the moisture curable resin may have a radically polymerizable functional group. As the radically polymerizable functional group that the moisture-curable resin may have, a group having an unsaturated double bond is preferable, and a (meth)acryloyl group is particularly preferable from the viewpoint of reactivity. The moisture-curable resin having a radical-polymerizable functional group is not included in the above radical-polymerizable compound and is treated as a moisture-curable resin.
The moisture-curable resin may be appropriately selected from the above-mentioned various resins and used alone or in combination of two or more.
 湿気硬化性樹脂の重量平均分子量は特に限定されないが、好ましい下限は800、好ましい上限は20,000である。重量平均分子量がこの範囲であると、硬化性組成物の貯蔵弾性率、粘度などを上記した範囲内に調整しやすくなる。
 湿気硬化性樹脂の重量平均分子量のより好ましい下限は1,500、より好ましい上限は12,000、さらに好ましい下限は2,000、さらに好ましい上限は8,000である。
 なお、本明細書において上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による重量平均分子量を測定する際のカラムとしては、Shodex LF-804(昭和電工社製)が挙げられる。また、GPCで用いる溶媒としては、テトラヒドロフランが挙げられる。
The weight average molecular weight of the moisture curable resin is not particularly limited, but the preferred lower limit is 800 and the preferred upper limit is 20,000. When the weight average molecular weight is within this range, it becomes easy to adjust the storage elastic modulus, viscosity and the like of the curable composition within the above ranges.
The more preferable lower limit of the weight average molecular weight of the moisture-curable resin is 1,500, the more preferable upper limit thereof is 12,000, the still more preferable lower limit thereof is 2,000, and the still more preferable upper limit thereof is 8,000.
In addition, in this specification, the said weight average molecular weight is a value calculated|required by polystyrene conversion by measuring by gel permeation chromatography (GPC). Shodex LF-804 (manufactured by Showa Denko KK) is used as a column for measuring the weight average molecular weight in terms of polystyrene by GPC. Moreover, tetrahydrofuran is mentioned as a solvent used for GPC.
 光湿気硬化性樹脂組成物における湿気硬化性樹脂の含有量は、光湿気硬化性樹脂組成物全量基準で、15質量%以上が好ましい。湿気硬化性樹脂を15質量%以上とすると、湿気硬化性樹脂に適切な湿気硬化性を付与で、光硬化24時間後の接着力を高めやすくなる。これら観点から、光湿気硬化性樹脂の上記含有量は、20質量%以上がより好ましく、25質量%以上が好ましい。
 また、湿気硬化性樹脂の含有量は、光湿気硬化性樹脂組成物全量基準で、75質量%以下が好ましい。光湿気硬化性樹脂を75質量%以下とすると、光湿気硬化性樹脂組成物にラジカル重合性化合物を一定量以上含有させることが可能になり、適切な光硬化性を付与しやすくなる。また、初期接着力も向上させやすくなる。そのような観点から、ラジカル重合性化合物の上記含有量は、60質量%以下がより好ましく、40質量%以下がよりさらに好ましい。
The content of the moisture curable resin in the light moisture curable resin composition is preferably 15% by mass or more based on the total amount of the light moisture curable resin composition. When the content of the moisture-curable resin is 15% by mass or more, the moisture-curable resin can be provided with appropriate moisture-curability, and the adhesive force after 24 hours of photocuring can be easily increased. From these viewpoints, the content of the light moisture curable resin is more preferably 20% by mass or more and 25% by mass or more.
The content of the moisture-curable resin is preferably 75% by mass or less based on the total amount of the light-moisture-curable resin composition. When the light-moisture curable resin is 75% by mass or less, the light-moisture curable resin composition can contain a certain amount or more of the radically polymerizable compound, and it becomes easy to impart appropriate photocurability. In addition, the initial adhesive strength is easily improved. From such a viewpoint, the content of the radically polymerizable compound is more preferably 60% by mass or less, still more preferably 40% by mass or less.
 光湿気硬化性樹脂組成物において、湿気硬化性樹脂に対するラジカル重合性化合物の質量比(ラジカル重合性化合物/湿気硬化性樹脂)は、20/80以上90/10以下が好ましく、30/70以上80/20以下がより好ましい。質量比がこれら範囲内となることで、光湿気硬化性樹脂組成物にバランスよく、光硬化性と湿気硬化性を付与でき、初期接着力及び光硬化24時間後の接着力のいずれも所望の範囲内に調整しやすくなる。また、初期接着力をより高くする観点からは、ラジカル重合性化合物の含有量が多いほうがよく、具体的には、50/50より大きく80/20以下がさらに好ましく、60/40以上80/20以下がよりさらに好ましい。 In the light moisture curable resin composition, the mass ratio of the radical polymerizable compound to the moisture curable resin (radical polymerizable compound/moisture curable resin) is preferably 20/80 or more and 90/10 or less, and 30/70 or more 80 /20 or less is more preferable. When the mass ratio falls within these ranges, the photo-moisture curable resin composition can be imparted with a good balance of photo-curability and moisture-curability, and both the initial adhesive force and the adhesive force after 24 hours of photo-curing are desired. Easy to adjust within the range. Further, from the viewpoint of further increasing the initial adhesive strength, it is better that the content of the radically polymerizable compound is larger, and specifically, it is more preferably more than 50/50 and 80/20 or less, and 60/40 or more 80/20. The following is even more preferable.
(光重合開始剤)
 本発明の光湿気硬化性樹脂組成物は、さらに光重合開始剤を含有する。硬化性樹脂組成物は、光重合開始剤を含有することで、光硬化性が適切に付与される。
 光重合開始剤としては、例えば、ベンゾフェノン系化合物、アセトフェノン系化合物、アルキルフェノン系光重合開始剤、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、チオキサントン等が挙げられる。
 上記光重合開始剤のうち市販されているものとしては、例えば、IRGACURE184、IRGACURE369、IRGACURE379、IRGACURE379EG、IRGACURE651、IRGACURE784、IRGACURE819、IRGACURE907、IRGACURE2959、IRGACURE OXE01、IRGACURE TPO(いずれもBASF社製)、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル(いずれも東京化成工業社製)等が挙げられる。
(Photopolymerization initiator)
The photo-moisture curable resin composition of the present invention further contains a photopolymerization initiator. The curable resin composition appropriately contains photocurability by containing a photopolymerization initiator.
Examples of the photopolymerization initiator include benzophenone compounds, acetophenone compounds, alkylphenone photopolymerization initiators, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, and thioxanthone. To be
Examples of commercially available photopolymerization initiators include, for example, IRGACURE184, IRGACURE369, IRGACURE379, IRGACURE379EG, IRGACURE651, IRGACURE784, IRGACURE819, IRGACURE907, IRGACURE2959, IRGACUREINACURE, ACGAURE, and IRGACURE OTHER. Examples thereof include ether, benzoin ethyl ether, benzoin isopropyl ether (all manufactured by Tokyo Kasei Kogyo Co., Ltd.).
 硬化性樹脂組成物における光重合開始剤の含有量は、ラジカル重合性化合物100質量部に対して、好ましくは0.01質量部以上10質量部以下、より好ましくは0.5質量部以上5質量部以下である。光重合開始剤の含有量がこれら範囲内であることにより、得られる硬化性樹脂組成物が光硬化性及び保存安定性に優れたものとなる。また、上記範囲内とすることで、光ラジカル重合化合物が適切に硬化され、接着力を良好にしやすくなる。 The content of the photopolymerization initiator in the curable resin composition is preferably 0.01 parts by mass or more and 10 parts by mass or less, more preferably 0.5 parts by mass or more and 5 parts by mass with respect to 100 parts by mass of the radically polymerizable compound. Below the section. When the content of the photopolymerization initiator is within these ranges, the curable resin composition obtained has excellent photocurability and storage stability. Moreover, by setting it as the said range, a photoradical polymerization compound will be hardened appropriately and it becomes easy to make adhesive strength favorable.
(湿気硬化促進触媒)
 硬化性樹脂組成物は、湿気硬化性樹脂の湿気硬化反応を促進させる湿気硬化促進触媒を含有することが好ましい。湿気硬化促進触媒を使用することにより、硬化性樹脂組成物は、湿気硬化性がより優れたものとなり、接着力を高めやすくなる。
 湿気硬化促進触媒としては、具体的にはアミン系化合物、金属系触媒などが挙げられる。アミン系化合物としては、ジ(メチルモルホリノ)ジエチルエーテル、4-モルホリノプロピルモルホリン、2,2’-ジモルホリノジエチルエーテル等のモルホリン骨格を有する化合物、ビス(2-ジメチルアミノエチル)エーテル、1,2-ビス(ジメチルアミノ)エタンなどのジメチルアミノ基を2つ有するジメチルアミノ基含有アミン化合物、トリエチルアミン、1,4-ジアザビシクロ[2.2.2]オクタン、2,6,7-トリメチル-1,4-ジアザビシクロ[2.2.2]オクタン等が挙げられる。
 金属系触媒としては、ジラウリル酸ジn-ブチルスズ、ジ酢酸ジn-ブチルスズ、オクチル酸スズ等のスズ化合物、オクチル酸亜鉛、ナフテン酸亜鉛等の亜鉛化合物、ジルコニウムテトラアセチルアセトナート、ナフテン酸銅、ナフテン酸コバルト等のその他の金属化合物が挙げられる。
 湿気硬化促進触媒は、上記した中ではアミン系化合物であることが好ましく、モルホリン骨格を有する化合物がより好ましい。
(Moisture curing acceleration catalyst)
The curable resin composition preferably contains a moisture curing acceleration catalyst that accelerates the moisture curing reaction of the moisture curable resin. By using the moisture-curing accelerating catalyst, the curable resin composition has more excellent moisture-curing property, and the adhesive force is easily increased.
Specific examples of the moisture curing accelerating catalyst include amine compounds and metal catalysts. Examples of the amine compound include compounds having a morpholine skeleton such as di(methylmorpholino)diethyl ether, 4-morpholinopropylmorpholine and 2,2′-dimorpholinodiethyl ether, bis(2-dimethylaminoethyl)ether, 1,2 A dimethylamino group-containing amine compound having two dimethylamino groups such as bis(dimethylamino)ethane, triethylamine, 1,4-diazabicyclo[2.2.2]octane, 2,6,7-trimethyl-1,4 -Diazabicyclo[2.2.2]octane and the like.
Examples of the metal-based catalyst include tin compounds such as di-n-butyltin dilaurylate, di-n-butyltin diacetate and tin octylate, zinc compounds such as zinc octylate and zinc naphthenate, zirconium tetraacetylacetonate, copper naphthenate, Other metal compounds such as cobalt naphthenate may be mentioned.
Among the above, the moisture curing accelerating catalyst is preferably an amine compound, more preferably a compound having a morpholine skeleton.
 湿気硬化促進触媒の含有量は、湿気硬化性樹脂100質量部に対して、0.01質量部以上8質量部以下が好ましく、0.1質量部以上5質量部以下がより好ましい。湿気硬化促進触媒の含有量が上記範囲内であることにより、硬化性樹脂組成物の保存安定性等を悪化させることなく、湿気硬化反応を促進させる効果が優れたものとなる。 The content of the moisture curing accelerating catalyst is preferably 0.01 parts by mass or more and 8 parts by mass or less, and more preferably 0.1 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the moisture curable resin. When the content of the moisture curing accelerating catalyst is within the above range, the effect of accelerating the moisture curing reaction becomes excellent without deteriorating the storage stability and the like of the curable resin composition.
(カップリング剤)
 硬化性樹脂組成物は、カップリング剤を含有してもよい。硬化性樹脂組成物にカップリング剤を含有させることで、接着力を向上させやすくなる。カップリング剤としては、例えば、シランカップリング剤、チタネート系カップリング剤、ジルコネート系カップリング剤等が挙げられる。なかでも、接着性を向上させる効果に優れることから、シランカップリング剤が好ましい。
(Coupling agent)
The curable resin composition may contain a coupling agent. By including a coupling agent in the curable resin composition, it becomes easy to improve the adhesive force. Examples of the coupling agent include silane coupling agents, titanate coupling agents, zirconate coupling agents, and the like. Among them, the silane coupling agent is preferable because it has an excellent effect of improving the adhesiveness.
 シランカップリング剤としては、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリエトキシシラン、3-(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、3-(メタ)アクリロイルオキシプロピルメチルジエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルメチルジメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルメチルジエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジエトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、テジルトリメトキシシラン、1,6-ビス(トリメトキシリル)ヘキサン等が挙げられる。 Examples of the silane coupling agent include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltriethoxysilane, and 2-(3,4-epoxycyclohexyl)ethyl. Trimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-(2-aminoethyl)aminopropyltrimethoxysilane, 3-(2- Aminoethyl)aminopropyltriethoxysilane, 3-(2-aminoethyl)aminopropylmethyldimethoxysilane, 3-(meth)acryloyloxypropyltrimethoxysilane, 3-(meth)acryloyloxypropyltriethoxysilane, 3-( (Meth)acryloyloxypropylmethyldimethoxysilane, 3-(meth)acryloyloxypropylmethyldiethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-isocyanatepropyltrimethoxysilane, 3-isocyanatepropylmethyldimethoxysilane, 3- Isocyanatopropyltriethoxysilane, 3-isocyanatopropylmethyldiethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldiethoxysilane, methyltri Methoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane , Octyltriethoxysilane, tedyltrimethoxysilane, 1,6-bis(trimethoxylyl)hexane and the like.
 上記チタネート系カップリング剤としては、例えば、チタンジイソプロポキシビス(アセチルアセトネート)、チタンテトラアセチルアセトネート、チタンジイソプロポキシビス(エチルアセトアセテート)等が挙げられる。
 上記ジルコネート系カップリング剤としては、例えば、ジルコニウムテトラノルマルプロポキシド、シルコニウムテトラノルマルブトキシド等が挙げられる。
 カップリング剤としては、シランカップリング剤が好ましい。また、シランカップリング剤の中でも、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルメチルジメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルメチルジエトキシシランなどのイソシアネート基含有シランカップリング剤が好ましい。
 カップリング剤は、1種単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
Examples of the titanate-based coupling agent include titanium diisopropoxybis(acetylacetonate), titanium tetraacetylacetonate, titanium diisopropoxybis(ethylacetoacetate), and the like.
Examples of the zirconate-based coupling agent include zirconium tetranormal propoxide and silconium tetranormal butoxide.
A silane coupling agent is preferable as the coupling agent. Among the silane coupling agents, isocyanate group-containing silane coupling agents such as 3-isocyanatepropyltrimethoxysilane, 3-isocyanatepropylmethyldimethoxysilane, 3-isocyanatepropyltriethoxysilane, and 3-isocyanatepropylmethyldiethoxysilane. Is preferred.
The coupling agents may be used alone or in combination of two or more.
 光湿気硬化性樹脂組成物がカップリング剤を含有する場合、カップリング剤の含有量は、ラジカル重合性化合物と湿気硬化性樹脂の合計量100質量部に対して、0.05質量部以上10質量部以下が好ましく、0.2質量部以上5質量部以下がより好ましく、0.5質量部以上3質量部以下がさらに好ましい。カップリング剤の含有量がこれら範囲内とすることで、接着力を向上させやすくなる。 When the photo-moisture curable resin composition contains a coupling agent, the content of the coupling agent is 0.05 parts by mass or more and 10 parts by mass or more based on 100 parts by mass of the total amount of the radically polymerizable compound and the moisture curable resin. The amount is preferably not more than 0.2 parts by mass, more preferably not less than 0.2 parts by mass and not more than 5 parts by mass, still more preferably not less than 0.5 parts by mass and not more than 3 parts by mass. By setting the content of the coupling agent within these ranges, it becomes easy to improve the adhesive strength.
(充填剤)
 本発明の硬化性樹脂組成物は、充填剤を含有してもよい。充填剤を含有することにより、本発明の硬化性樹脂組成物は、好適なチクソ性を有するものとなり、塗布後の形状を充分に保持することができる。充填剤としては、粒子状のものを使用すればよい。
 充填剤としては、無機充填剤が好ましく、例えば、シリカ、タルク、酸化チタン、酸化亜鉛、炭酸カルシウム等が挙げられる。なかでも、得られる硬化性樹脂組成物が紫外線透過性に優れるものとなることから、シリカが好ましい。また、充填剤は、シリル化処理、アルキル化処理、エポキシ化処理等の疎水性表面処理がなされていてもよい。
 充填剤は、1種単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
 充填剤の含有量は、ラジカル重合性化合物と湿気硬化性樹脂の合計量100質量部に対して、好ましくは1質量部以上25質量部以下、より好ましくは2質量部以上20質量部以下、さらに好ましくは3質量部以上15質量部以下である。
(filler)
The curable resin composition of the present invention may contain a filler. By containing the filler, the curable resin composition of the present invention has suitable thixotropy and can sufficiently retain the shape after coating. A particulate material may be used as the filler.
As the filler, an inorganic filler is preferable, and examples thereof include silica, talc, titanium oxide, zinc oxide, calcium carbonate and the like. Of these, silica is preferable because the resulting curable resin composition has excellent ultraviolet light transmittance. Further, the filler may be subjected to hydrophobic surface treatment such as silylation treatment, alkylation treatment and epoxidation treatment.
The filler may be used alone or in combination of two or more.
The content of the filler is preferably 1 part by mass or more and 25 parts by mass or less, more preferably 2 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the total amount of the radically polymerizable compound and the moisture-curable resin, and further. It is preferably 3 parts by mass or more and 15 parts by mass or less.
 本発明の硬化性樹脂組成物は、上記で述べた成分以外にも、ワックス粒子、イオン液体、着色剤、発泡粒子、膨張粒子、反応性希釈剤などのその他の添加剤を含有していてもよい。
 硬化性樹脂組成物は、必要に応じて、溶剤により希釈されていてもよい。硬化性樹脂組成物が溶剤により希釈される場合、硬化性樹脂組成物の質量部は、固形分基準であり、すなわち、溶剤を除いた質量部を意味する。
The curable resin composition of the present invention may contain other additives such as wax particles, ionic liquids, colorants, expanded particles, expanded particles, and reactive diluents, in addition to the components described above. Good.
The curable resin composition may be diluted with a solvent, if necessary. When the curable resin composition is diluted with a solvent, the parts by mass of the curable resin composition is based on the solid content, that is, the parts by mass excluding the solvent.
 本発明の硬化性樹脂組成物を製造する方法としては、混合機を用いて、湿気硬化性樹脂、ラジカル重合性化合物、および光重合開始剤、さらに、必要に応じて配合される、湿気硬化促進触媒、充填剤、カップリング剤などのその他の添加剤とを混合する方法等が挙げられる。混合機としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー(遊星式撹拌装置)、ニーダー、3本ロール等が挙げられる。 As a method for producing the curable resin composition of the present invention, using a mixer, a moisture-curable resin, a radical-polymerizable compound, and a photopolymerization initiator, and further, if necessary, blended to promote moisture curing Examples include a method of mixing with other additives such as a catalyst, a filler, and a coupling agent. Examples of the mixer include a homodisper, a homomixer, a universal mixer, a planetary mixer (planetary stirring device), a kneader, and three rolls.
[硬化体]
 本発明の光湿気硬化性樹脂組成物は、硬化され、硬化体として使用されるものである。本発明の光湿気硬化性樹脂組成物は、例えば、被着体間に配置された状態で、硬化されることで被着体間を接合できる。
 具体的には、光湿気硬化性樹脂組成物は、一方の被着体に塗布し、その後、光照射により光硬化させ、例えばBステージ状態(すなわち、半硬化)にするとよい。一方の被着体は、半硬化された光湿気硬化性樹脂組成物を介して、他方の被着体に重ね合わされ、被着体間を仮接着させるとよい。本発明では、光湿気硬化性樹脂組成物は、半硬化直後の接着力(すなわち、初期接着力)が良好となるので、適切な接着力で、被着体間を仮接着できる。
 ここで、一般的に一方の被着体に塗布された光湿気硬化性樹脂組成物は、他方の被着体に重ねられる前に、光硬化される。したがって、光湿気硬化性樹脂組成物は、大部分が大気中に露出した状態で(すなわち、酸素に接触した状態で)光硬化されるが、上記したようにラジカル重合性化合物が窒素含有化合物を含有することで、酸素存在下で硬化されても初期接着力が良好となる。
 その後、半硬化状態の硬化性樹脂組成物は、湿気硬化性樹脂を湿気により硬化させることで、全硬化させ、硬化性樹脂組成物を介して重ね合わせた被着体間が十分な接着力で接合される。
[Cured product]
The light moisture curable resin composition of the present invention is cured and used as a cured product. The photo-moisture curable resin composition of the present invention can be bonded between adherends by being cured while being placed between adherends.
Specifically, the photo-moisture curable resin composition may be applied to one adherend and then photo-cured by irradiation with light, for example, in a B stage state (that is, semi-cured). One adherend may be superposed on the other adherend via the semi-cured light moisture curable resin composition, and the adherends may be temporarily bonded. In the present invention, the photo-moisture curable resin composition has a good adhesive force (that is, initial adhesive force) immediately after being semi-cured, so that the adherends can be temporarily adhered with an appropriate adhesive force.
Here, generally, the photo-moisture curable resin composition applied to one adherend is photo-cured before being laminated on the other adherend. Therefore, most of the photo-moisture curable resin composition is photo-cured in a state of being exposed to the atmosphere (that is, in a state of being in contact with oxygen), but as described above, the radical-polymerizable compound contains a nitrogen-containing compound. By containing it, the initial adhesive strength becomes good even when it is cured in the presence of oxygen.
Then, the curable resin composition in the semi-cured state is fully cured by curing the moisture-curable resin with moisture, and the adherends that are superposed through the curable resin composition have a sufficient adhesive force. To be joined.
 被着体への硬化性樹脂組成物の塗布は、例えばディスペンサーで行うとよいが、特に限定されない。また、光硬化時に照射する光は、ラジカル重合性化合物が硬化できる活性エネルギー線であれば特に限定されないが、紫外線が好ましい。また、硬化性樹脂組成物は、湿気により全硬化させるときには、大気中に所定時間放置すればよい。 The application of the curable resin composition to the adherend may be performed with, for example, a dispenser, but is not particularly limited. The light irradiated during photocuring is not particularly limited as long as it is an active energy ray that can cure the radically polymerizable compound, but ultraviolet rays are preferable. When the curable resin composition is completely cured by moisture, it may be left in the air for a predetermined time.
 本発明の硬化性樹脂組成物は、好ましくは電子機器用接着剤に使用される。したがって、被着体は、特に限定されないが、好ましくは、電子機器を構成する各種部品である。電子機器を構成する各種部品としては、電子部品、又は電子部品が取り付けられる基板などであり、より具体的には、表示素子に設けられる各種の電子部品、電子部品が取り付けられる基板、半導体チップなどが挙げられる。被着体の材質としては、金属、ガラス、プラスチック等のいずれでもよい。また、被着体の形状としては、特に限定されず、例えば、フィルム状、シート状、板状、パネル状、トレイ状、ロッド(棒状体)状、箱体状、筐体状等が挙げられる。 The curable resin composition of the present invention is preferably used as an adhesive for electronic devices. Therefore, the adherend is not particularly limited, but is preferably various parts constituting the electronic device. The various components constituting the electronic device include electronic components or substrates on which the electronic components are mounted, and more specifically, various electronic components provided on the display element, substrates on which the electronic components are mounted, semiconductor chips, etc. Are listed. The adherend may be made of metal, glass, plastic, or the like. The shape of the adherend is not particularly limited, and examples thereof include a film shape, a sheet shape, a plate shape, a panel shape, a tray shape, a rod (rod shape) shape, a box shape, and a housing shape. ..
 例えば、本発明の硬化性樹脂組成物は、電子機器内部などにおいて、例えば基板と基板とを接着して組立部品を得るために使用される。このようにして得られた組立部品は、第1の基板と、第2の基板と、本発明の硬化体を有し、第1の基板の少なくとも一部が、第2の基板の少なくとも一部に硬化体を介して接合される。なお、第1の基板及び第2の基板は、好ましくは、それぞれ少なくとも1つの電子部品が取り付けられている。 For example, the curable resin composition of the present invention is used, for example, inside an electronic device to bond substrates to each other to obtain an assembled component. The assembly component thus obtained has the first substrate, the second substrate, and the cured product of the present invention, and at least a part of the first substrate is at least a part of the second substrate. Is bonded to the resin via a cured body. In addition, at least one electronic component is preferably attached to each of the first substrate and the second substrate.
 また、本発明の硬化性樹脂組成物は、狭額縁用途で使用されることが好ましい。例えば、スマートフォンなどの携帯電話用表示装置等の各種表示素装置では、細幅の四角枠状(すなわち、狭額縁)のベースの上に、接着剤が塗布されて、その接着剤を介して表示パネル、タッチパネルなどが組み付けられるが、その接着剤として、本発明の硬化性樹脂組成物を使用するとよい。
 さらに、本発明の硬化性樹脂組成物は、半導体チップ用途で使用することが好ましい。本発明の硬化性樹脂組成物は、半導体チップの用途では、例えば、半導体チップ同士を接合するために使用される。
Further, the curable resin composition of the present invention is preferably used for narrow frame applications. For example, in various display device devices such as display devices for mobile phones such as smartphones, an adhesive is applied on a narrow rectangular frame-shaped (that is, narrow frame) base, and the display is performed through the adhesive. A panel, a touch panel, or the like is assembled, and the curable resin composition of the present invention may be used as the adhesive agent.
Furthermore, the curable resin composition of the present invention is preferably used for semiconductor chip applications. In the application of semiconductor chips, the curable resin composition of the present invention is used, for example, to bond semiconductor chips to each other.
 本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。 The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
 本実施例において、各種物性を以下のように評価した。
(初期接着力)
 図1(a)、(b)に示すように、ディスペンサーを用いて、アルミニウム基板11に幅1.0±0.1mm、長さ25±2mm、及び厚さが0.4±0.1mmとなるように光湿気硬化性樹脂組成物10を塗布し、水銀ランプで紫外線を3,000mJ/cm照射することによって光硬化させた。その後、アルミニウム基板11にガラス板12を貼り合わせ、100gの重りを置き、25℃、50RH%で10分間放置することにより湿気硬化させて、接着性評価用サンプル13を得た。
 その後、25℃の雰囲気下で引張り試験機(「オートグラフAG-X」、株式会社島津製作所製)を用いて剪断方向Sに5mm/secの速度で引張り、アルミニウム基板11とガラス板12とが剥がれる際の強度を測定して初期接着力とした。
 初期接着力は、以下の評価基準で評価した。
  AA:0.8MPa以上
   A:0.3MPa以上0.8MPa未満
   B:0.3MPa未満
In this example, various physical properties were evaluated as follows.
(Initial adhesion)
As shown in FIGS. 1A and 1B, using a dispenser, the aluminum substrate 11 has a width of 1.0±0.1 mm, a length of 25±2 mm, and a thickness of 0.4±0.1 mm. The photo-moisture curable resin composition 10 was applied so that it was irradiated with ultraviolet rays of 3,000 mJ/cm 2 with a mercury lamp to be photo-cured. After that, the glass plate 12 was attached to the aluminum substrate 11, a weight of 100 g was placed, and allowed to stand for 10 minutes at 25° C. and 50 RH% to be moisture-cured to obtain an adhesiveness evaluation sample 13.
Then, the aluminum substrate 11 and the glass plate 12 were pulled in a shearing direction S at a speed of 5 mm/sec using a tensile tester (“Autograph AG-X”, manufactured by Shimadzu Corporation) in an atmosphere of 25° C. The strength at the time of peeling was measured and used as the initial adhesive strength.
The initial adhesive strength was evaluated according to the following evaluation criteria.
AA: 0.8 MPa or more A: 0.3 MPa or more and less than 0.8 MPa B: Less than 0.3 MPa
(光硬化24時間後接着力)
 初期接着力と同様の方法で、サンプルを作製して、光湿気硬化性樹脂組成物10を光硬化させた。その後、アルミニウム基板11にガラス板12を貼り合わせ、100gの重りを置き、25℃、50RH%で24時間放置することにより湿気硬化させて、接着性評価用サンプル13を得た。
 接着性評価用サンプル13を用いて、初期接着力の測定方法と同様にサンプル13をせん断方向Sに引張り、アルミニウム基板11とガラス板12とが剥がれる際の強度を測定して光硬化24時間後接着力とした。光硬化24時間後接着力は、以下の評価基準で評価した。
   A:2.0MPa以上
   B:2.0MPa未満
(Adhesive strength after 24 hours of light curing)
A sample was prepared in the same manner as the initial adhesive force, and the photo-moisture curable resin composition 10 was photo-cured. After that, the glass plate 12 was attached to the aluminum substrate 11, a weight of 100 g was placed, and allowed to stand at 25° C. and 50 RH% for 24 hours to be moisture-cured to obtain an adhesiveness evaluation sample 13.
Using the sample 13 for evaluation of adhesiveness, the sample 13 was pulled in the shearing direction S in the same manner as in the method of measuring the initial adhesive force, and the strength when the aluminum substrate 11 and the glass plate 12 were peeled off was measured and after 24 hours of photocuring. Adhesive strength. The adhesive strength after 24 hours of photocuring was evaluated according to the following evaluation criteria.
A: 2.0 MPa or more B: Less than 2.0 MPa
 各実施例、比較例で使用した湿気硬化性ウレタン樹脂は、以下の合成例に従って作製した。
[合成例1]
 ポリオール化合物A(水酸基価:110mgKOH、三菱ケミカル社製、「BENEBiOL NL1010DB」)を用意した。ポリオール化合物A100質量部と、0.01質量部のジブチル錫ジラウレートとを500mL容のセパラブルフラスコに入れ、真空下(20mmHg以下)、100℃で30分間撹拌し混合した。その後常圧とし、ポリイソシアネート化合物としてジフェニルメタンジイソシアネート(日曹商事社製、「Pure MDI」)52質量部を入れ、80℃で3時間撹拌して反応させ、ポリカーボネート骨格ウレタン(重量平均分子量6,600)を得た。
The moisture-curable urethane resin used in each example and comparative example was produced according to the following synthesis example.
[Synthesis example 1]
A polyol compound A (hydroxyl value: 110 mg KOH, "BENEBiOL NL1010DB" manufactured by Mitsubishi Chemical Corporation) was prepared. 100 parts by mass of the polyol compound A and 0.01 part by mass of dibutyltin dilaurate were placed in a 500 mL separable flask and mixed under vacuum (20 mmHg or less) at 100° C. for 30 minutes. Thereafter, the pressure was adjusted to normal pressure, 52 parts by mass of diphenylmethane diisocyanate (“Pure MDI” manufactured by Nisso Shoji Co., Ltd.) was added as a polyisocyanate compound, and the mixture was reacted by stirring at 80° C. for 3 hours to give a polycarbonate skeleton urethane (weight average molecular weight 6,600). ) Got.
[合成例2]
 ポリオール化合物B(水酸基価:212mgKOH、ダイセル化学社製、「Placcel205U」、ポリカプロラクトンポリオール)を100質量部と、0.01質量部のジブチル錫ジラウレートとを500mL容のセパラブルフラスコに入れ、真空下(20mmHg以下)、100℃で30分間撹拌し、混合した。その後常圧とし、ポリイソシアネート化合物としてジフェニルメタンジイソシアネート(日曹商事社製、「Pure MDI」)100質量部を入れ、80℃で3時間撹拌して反応させ、ポリエステル骨格ウレタン(重量平均分子量6,300)を得た。
[Synthesis example 2]
100 parts by mass of polyol compound B (hydroxyl value: 212 mgKOH, manufactured by Daicel Chemical Industries, "Placcel 205U", polycaprolactone polyol) and 0.01 parts by mass of dibutyltin dilaurate were placed in a separable flask of 500 mL volume and under vacuum. (20 mmHg or less), stirred at 100° C. for 30 minutes and mixed. Thereafter, the pressure was adjusted to normal pressure, 100 parts by mass of diphenylmethane diisocyanate (manufactured by Nisso Shoji Co., Ltd., “Pure MDI”) was added as a polyisocyanate compound, and the mixture was reacted by stirring at 80° C. for 3 hours, and polyester skeleton urethane (weight average molecular weight 6,300 ) Got.
[合成例3]
 ポリオール化合物C(ポリテトラメチレンエーテルグリコール、三菱化学社製、「PTMG-2000」)を100質量部と、0.01質量部のジブチル錫ジラウレートとを500mL容のセパラブルフラスコに入れ、真空下(20mmHg以下)、100℃で30分間撹拌し、混合した。その後常圧とし、ポリイソシアネート化合物としてジフェニルメタンジイソシアネート(日曹商事社製、「Pure MDI」)26.5質量部を入れ、80℃で3時間撹拌して反応させ、ポリエーテル骨格ウレタン(重量平均分子量2,700)を得た。
[Synthesis example 3]
100 parts by mass of polyol compound C (polytetramethylene ether glycol, "PTMG-2000" manufactured by Mitsubishi Chemical Co., Ltd.) and 0.01 part by mass of dibutyltin dilaurate were placed in a 500 mL separable flask under vacuum ( 20 mmHg or less), and stirred at 100° C. for 30 minutes to mix. Then, at normal pressure, 26.5 parts by mass of diphenylmethane diisocyanate (“Pure MDI” manufactured by Nisso Shoji Co., Ltd.) was added as a polyisocyanate compound, and the mixture was reacted by stirring at 80° C. for 3 hours to give a polyether skeleton urethane (weight average molecular weight). 2,700) was obtained.
 各実施例、比較例で使用した、湿気硬化性ウレタン樹脂以外の成分は、以下のとおりであった。
(ラジカル重合性化合物)
 環状窒素含有化合物:N-ビニル-ε-カプロラクタム(東京化成工業株式会社製、商品名「NVC」)
 単官能アクリレート(1):ブチルアクリレート(東京化成工業株式会社製、単官能)
 単官能アクリレート(2):テトラヒドロフルフリルアルコールの(メタ)アクリル酸多量体エステル(大阪有機化学工業株式会社製、商品名「ビスコート#150D」、単官能)
 単官能ウレタンアクリレート:1,2-エタンジオール1-アクリラート2-(N-ブチルカルバマート)(大阪有機化学工業株式会社製、商品名「ビスコート#216」、単官能)
 二官能ウレタンアクリレート:ダイセル・オルネクス社製、商品名「EBECRYL8413」、2官能ウレタンアクリレート
 光重合開始剤(1):2-(ジメチルアミノ)-2-(4-メチルベンジル)-1-(4-モルホリノフェニル)ブタン-1-オン、BASF社製、商品名「Irgacure 379EG」
 光重合開始剤(2):ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、BASF社製、商品名「Irgacure TPO」
湿気硬化促進触媒:2,2’-ジモルホリノジエチルエーテル、サンアプロ社製、商品名「U-CAT 660M」
 充填剤:トリメチルシリル化処理シリカ(日本アエロジル社製、「RY 200S」、一次粒子径7nm)
The components other than the moisture-curable urethane resin used in each example and comparative example were as follows.
(Radical polymerizable compound)
Cyclic nitrogen-containing compound: N-vinyl-ε-caprolactam (manufactured by Tokyo Chemical Industry Co., Ltd., trade name "NVC")
Monofunctional acrylate (1): Butyl acrylate (Tokyo Chemical Industry Co., Ltd., monofunctional)
Monofunctional acrylate (2): (meth)acrylic acid polymer ester of tetrahydrofurfuryl alcohol (Osaka Organic Chemical Industry Co., Ltd., trade name "Biscoat #150D", monofunctional)
Monofunctional urethane acrylate: 1,2-ethanediol 1-acrylate 2-(N-butylcarbamate) (Osaka Organic Chemical Co., Ltd., trade name "Biscoat #216", monofunctional)
Bifunctional urethane acrylate: manufactured by Daicel Ornex Co., Ltd., trade name "EBECRYL8413", bifunctional urethane acrylate photopolymerization initiator (1): 2-(dimethylamino)-2-(4-methylbenzyl)-1-(4- Morpholinophenyl)butan-1-one, manufactured by BASF, trade name "Irgacure 379EG"
Photopolymerization initiator (2): diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, manufactured by BASF, trade name "Irgacure TPO"
Moisture curing accelerating catalyst: 2,2'-dimorpholino diethyl ether, manufactured by San-Apro, trade name "U-CAT 660M"
Filler: trimethylsilylated silica (“AE 200S” manufactured by Nippon Aerosil Co., Ltd., primary particle diameter 7 nm)
[実施例1~6、比較例1~3]
 表1に記載された配合比に従い、各材料を、遊星式撹拌装置(シンキー社製、「あわとり練太郎」)にて温度50℃で撹拌した後、セラミック3本ロールにて温度50℃で均一に混合して実施例1~6、比較例1~3の硬化性樹脂組成物を得た。
[Examples 1 to 6, Comparative Examples 1 to 3]
According to the compounding ratio shown in Table 1, each material was stirred at a temperature of 50° C. with a planetary stirring device (“Awatori Kentaro” made by Shinky Co., Ltd.) and then at a temperature of 50° C. with a three-roll ceramic roll. The mixture was uniformly mixed to obtain curable resin compositions of Examples 1-6 and Comparative Examples 1-3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 各実施例1~6に示すように、ラジカル重合性化合物と湿気硬化性樹脂とのSP値差(ΔSP値)を小さくすることで、初期接着力を十分に高くできた。それに対して、比較例ではSP値差が大きくなったため、初期接着力を高くできなかった。 As shown in each of Examples 1 to 6, by reducing the SP value difference (ΔSP value) between the radically polymerizable compound and the moisture curable resin, the initial adhesive strength could be sufficiently increased. On the other hand, in the comparative example, the SP value difference was large, so that the initial adhesive strength could not be increased.

Claims (7)

  1.  ラジカル重合性化合物と、湿気硬化性樹脂と、光重合開始剤とを含み、
     前記ラジカル重合性化合物と前記湿気硬化性樹脂とのSP値差が、1.0以下である光湿気硬化性樹脂組成物。
    A radically polymerizable compound, a moisture curable resin, and a photopolymerization initiator,
    A photo-moisture curable resin composition, wherein the SP value difference between the radically polymerizable compound and the moisture curable resin is 1.0 or less.
  2.  前記湿気硬化性樹脂のSP値が9.5以上である、請求項1に記載の光湿気硬化性樹脂組成物。 The photo-moisture curable resin composition according to claim 1, wherein the moisture curable resin has an SP value of 9.5 or more.
  3.  前記湿気硬化性樹脂が、ポリカーボネート骨格を有する化合物、又はポリエステル骨格を有する化合物のいずれかを含む、請求項1又は2に記載の光湿気硬化性樹脂組成物。 The photo-moisture curable resin composition according to claim 1 or 2, wherein the moisture curable resin contains either a compound having a polycarbonate skeleton or a compound having a polyester skeleton.
  4.  前記湿気硬化性樹脂が、湿気硬化性ウレタン樹脂を含む、請求項1~3のいずれか1項に記載の光湿気硬化性樹脂組成物。 The light moisture curable resin composition according to any one of claims 1 to 3, wherein the moisture curable resin contains a moisture curable urethane resin.
  5.  前記ラジカル重合性化合物が、(メタ)アクリロイル基を有する化合物を含有する請求項1~4のいずれか1項に記載の光湿気硬化性樹脂組成物。 The photo-moisture curable resin composition according to any one of claims 1 to 4, wherein the radically polymerizable compound contains a compound having a (meth)acryloyl group.
  6.  前記湿気硬化性樹脂に対する前記ラジカル重合性化合物の質量比(ラジカル重合性化合物/湿気硬化性樹脂)が、20/80以上90/10以下である、請求項1~5のいずれか1項に記載の光湿気硬化性樹脂組成物。 6. The mass ratio of the radically polymerizable compound to the moisture curable resin (radical polymerizable compound/moisture curable resin) is 20/80 or more and 90/10 or less, according to claim 1. The light-moisture curable resin composition of.
  7.  請求項1~6のいずれか1項に記載の硬化性樹脂組成物の硬化体。 A cured product of the curable resin composition according to any one of claims 1 to 6.
PCT/JP2020/001369 2019-01-18 2020-01-16 Photo/moisture curable resin composition and cured body WO2020149379A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020566484A JP7470054B2 (en) 2019-01-18 2020-01-16 Photo-curable moisture-curable resin composition and cured product
CN202080008860.3A CN113302249B (en) 2019-01-18 2020-01-16 Photo-moisture curable resin composition and cured body

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019007381 2019-01-18
JP2019-007381 2019-01-18
JP2019012366 2019-01-28
JP2019-012366 2019-01-28
JP2019-143266 2019-08-02
JP2019143266 2019-08-02

Publications (1)

Publication Number Publication Date
WO2020149379A1 true WO2020149379A1 (en) 2020-07-23

Family

ID=71614435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001369 WO2020149379A1 (en) 2019-01-18 2020-01-16 Photo/moisture curable resin composition and cured body

Country Status (4)

Country Link
JP (1) JP7470054B2 (en)
CN (1) CN113302249B (en)
TW (1) TW202037624A (en)
WO (1) WO2020149379A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021230373A1 (en) * 2020-05-15 2021-11-18 積水化学工業株式会社 Photo/moisture-curable resin composition, adhesive for electronic component, cured body and electronic component
WO2022114186A1 (en) * 2020-11-30 2022-06-02 積水化学工業株式会社 Moisture-curable resin composition and adhesive for electronic appliance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133326A (en) * 2006-11-27 2008-06-12 Denki Kagaku Kogyo Kk Curable composition
JP2009197053A (en) * 2008-02-19 2009-09-03 Hitachi Kasei Polymer Co Ltd One component type moisture curing urethane resin adhesive composition
JP2013018853A (en) * 2011-07-11 2013-01-31 Seiko Epson Corp Ultraviolet-curable inkjet ink composition and recording method
WO2015056717A1 (en) * 2013-10-18 2015-04-23 積水化学工業株式会社 Light/moisture-curable resin composition, adhesive for electronic component, and adhesive for display device
WO2017164200A1 (en) * 2016-03-22 2017-09-28 東洋インキScホールディングス株式会社 Coating agent composition for printing, and printed matter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011691A1 (en) * 2011-07-19 2013-01-24 株式会社ブリヂストン Light-curing resin composition, and plumbing member and functional panel using same
JP2016199671A (en) * 2015-04-09 2016-12-01 積水化学工業株式会社 Photo/moisture curable resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133326A (en) * 2006-11-27 2008-06-12 Denki Kagaku Kogyo Kk Curable composition
JP2009197053A (en) * 2008-02-19 2009-09-03 Hitachi Kasei Polymer Co Ltd One component type moisture curing urethane resin adhesive composition
JP2013018853A (en) * 2011-07-11 2013-01-31 Seiko Epson Corp Ultraviolet-curable inkjet ink composition and recording method
WO2015056717A1 (en) * 2013-10-18 2015-04-23 積水化学工業株式会社 Light/moisture-curable resin composition, adhesive for electronic component, and adhesive for display device
WO2017164200A1 (en) * 2016-03-22 2017-09-28 東洋インキScホールディングス株式会社 Coating agent composition for printing, and printed matter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021230373A1 (en) * 2020-05-15 2021-11-18 積水化学工業株式会社 Photo/moisture-curable resin composition, adhesive for electronic component, cured body and electronic component
WO2022114186A1 (en) * 2020-11-30 2022-06-02 積水化学工業株式会社 Moisture-curable resin composition and adhesive for electronic appliance

Also Published As

Publication number Publication date
TW202037624A (en) 2020-10-16
JP7470054B2 (en) 2024-04-17
CN113302249B (en) 2023-07-07
JPWO2020149379A1 (en) 2021-11-25
CN113302249A (en) 2021-08-24

Similar Documents

Publication Publication Date Title
JP5844504B1 (en) Light moisture curable resin composition, adhesive for electronic parts, and adhesive for display elements
JP6641255B2 (en) Adhesives for electronic components and adhesives for display elements
WO2020149379A1 (en) Photo/moisture curable resin composition and cured body
WO2021230373A1 (en) Photo/moisture-curable resin composition, adhesive for electronic component, cured body and electronic component
JP2024026609A (en) Curable resin composition and cured product
JP2016074783A (en) Photo- and moisture-curable resin composition
WO2020149377A1 (en) Curable resin composition and cured body
WO2022004416A1 (en) Photo/moisture curable resin composition and cured body
WO2020241803A1 (en) Curable resin composition, cured object, and electronic component
JP2020045403A (en) Curable resin composition, cured product, electronic component, and assembly component
WO2019203277A1 (en) Curable resin composition, cured body, electronic part and assembly part
WO2022114186A1 (en) Moisture-curable resin composition and adhesive for electronic appliance
WO2023153514A1 (en) Photo/moisture-curable resin composition, adhesive for electronic component, and adhesive for display element
WO2023176795A1 (en) Light-moisture curable resin composition, adhesive agent for electronic component, and adhesive agent for display element
WO2022260053A1 (en) Photo/moisture-curable resin composition, adhesive for electronic components, cured body, and electronic component
WO2024009957A1 (en) Light/moisture curable resin composition, cured product, use of light/moisture curable resin composition, and end face protection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20741381

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020566484

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20741381

Country of ref document: EP

Kind code of ref document: A1