WO2023153514A1 - Photo/moisture-curable resin composition, adhesive for electronic component, and adhesive for display element - Google Patents

Photo/moisture-curable resin composition, adhesive for electronic component, and adhesive for display element Download PDF

Info

Publication number
WO2023153514A1
WO2023153514A1 PCT/JP2023/004815 JP2023004815W WO2023153514A1 WO 2023153514 A1 WO2023153514 A1 WO 2023153514A1 JP 2023004815 W JP2023004815 W JP 2023004815W WO 2023153514 A1 WO2023153514 A1 WO 2023153514A1
Authority
WO
WIPO (PCT)
Prior art keywords
moisture
curable resin
resin composition
meth
light
Prior art date
Application number
PCT/JP2023/004815
Other languages
French (fr)
Japanese (ja)
Inventor
涼馬 石立
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Publication of WO2023153514A1 publication Critical patent/WO2023153514A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16

Definitions

  • the present invention relates to a light moisture-curable resin composition, an adhesive for electronic parts, and an adhesive for display elements.
  • Patent Document 1 discloses a light-moisture-curable resin composition having excellent light-shielding properties and adhesiveness. It is proposed to blacken the light and moisture-curable resin composition by using it.
  • the light-moisture-curable adhesive does not exhibit sufficient adhesive strength (initial adhesive strength) immediately after bonding, and has the disadvantage that it takes time to bond members together. . Therefore, conventionally, a light and moisture-curable resin composition capable of exhibiting excellent initial adhesive strength immediately after photocuring has been studied.
  • Patent Document 2 when the composition is linearly applied to a polycarbonate plate and adhered to a glass plate via the composition immediately after photocuring, the ratio of the widths of the bonded portions (inside/outside ratio) of each plate is measured.
  • a light and moisture-curable resin composition is disclosed in which the viscosity is kept within a certain range while keeping the viscosity within a certain range.
  • an object of the present invention is to provide a photo-moisture-curable resin composition having high photo-curability even when it is blackened to impart light-shielding properties.
  • the present inventors have found that the OD value of a 1 mm thick cured product containing a radically polymerizable compound, a moisture-curable resin, a photoradical polymerization initiator, and zirconium nitride after photocuring is 2 or more, the present invention was completed by finding a solution to the above-described problems with a light and moisture-curable resin composition.
  • the present invention provides the following [1] to [19].
  • Photo-moisture curing which contains a radically polymerizable compound, a moisture-curable resin, a photoradical polymerization initiator, and zirconium nitride, and has an OD value of 2 or more in a 1 mm-thick cured product after photocuring. mold resin composition.
  • the content of the zirconium nitride is 0.1 parts by mass or more and 1.5 parts by mass or less with respect to 100 parts by mass of the total amount of the radically polymerizable compound and the moisture-curable resin.
  • a light and moisture-curable resin composition is 0.1 parts by mass or more and 1.5 parts by mass or less with respect to 100 parts by mass of the total amount of the radically polymerizable compound and the moisture-curable resin.
  • a light and moisture-curable resin composition [14] The light and moisture-curable resin composition according to any one of [1] to [13], which further contains a filler. [15] An adhesive for electronic parts, comprising the light moisture-curable resin composition according to any one of [1] to [14]. [16] An adhesive for display elements, comprising the light and moisture-curable resin composition according to any one of [1] to [14]. [17] A cured product of the light and moisture-curable resin composition according to any one of [1] to [14]. [18] Use of the light moisture-curable resin composition according to any one of [1] to [14] for electronic parts. [19] Use of the light moisture-curable resin composition according to any one of [1] to [14] for a display element.
  • FIG.2 (a) is a top view
  • FIG.2(b) is a side view
  • FIG.3 (a) is immediately after crimping
  • FIG.3(b) is 1 hour after crimping.
  • the light and moisture-curable resin composition of the present invention contains a radically polymerizable compound, a moisture-curable resin, a photoradical polymerization initiator, and zirconium nitride.
  • the light and moisture-curable resin composition of the present invention contains zirconium nitride.
  • the photo-moisture-curable resin composition contains zirconium nitride, so that even when it is blackened so that the OD value is above a certain level, as described later, it is possible to maintain high photocurability.
  • the light and moisture-curable resin composition contains zirconium nitride, so that the transmittance of visible light is suppressed to a certain level or less, while the transmittance of low wavelengths such as ultraviolet rays is kept above a certain level. Therefore, it is presumed that the light for photocuring can reach the inside of the light and moisture-curable resin composition. In addition, if the photocurability can be increased, the initial adhesive strength tends to be improved.
  • the average primary particle size of the zirconium nitride used in the present invention is not particularly limited, but is preferably 1 nm or more and 700 nm or less, more preferably 5 nm or more and 500 nm or less, and still more preferably 10 nm or more and 100 nm or less.
  • the average primary particle size of zirconium nitride is at least the above lower limit, it becomes easier to adjust the OD value of the light and moisture-curable resin composition to a certain level or more.
  • the particle size of the zirconium nitride is equal to or less than the above upper limit value, the handleability of the light and moisture-curable resin composition is improved.
  • the average primary particle size can be obtained, for example, by measuring 50 or more particles using a scanning electron microscope and calculating the average value.
  • zirconium nitride can be a commercially available product such as "UB-1" (manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd.).
  • the content of zirconium nitride in the light and moisture-curable resin composition of the present invention is preferably 0.1 parts by mass or more and 1.5 parts by mass or less with respect to 100 parts by mass of the total amount of the radically polymerizable compound and the moisture-curable resin. , more preferably 0.2 to 1.2 parts by mass, more preferably 0.3 to 1.0 parts by mass.
  • the photo-moisture-curable resin composition of the present invention has an optical density (OD value) of 2 or more as a cured product having a thickness of 1 mm after photocuring. If the OD value is less than 2, the light-shielding property becomes insufficient, and when used in a display element or the like, light leakage may occur, and high contrast may not be obtained.
  • the OD value is preferably 2.5 or more, more preferably 3 or more.
  • the above OD value is preferably as high as possible from the viewpoint of light-shielding properties, but the content of zirconium nitride and other coloring agents is set to a certain level or less, and the viewpoint of improving photocurability and the light and moisture-curable resin composition.
  • the OD value after curing of the light moisture-curable resin composition can be measured using an optical densitometer. For the above OD value, it is preferable to use a sample having a thickness of 1 mm obtained by photocuring the light and moisture-curable resin composition.
  • the light and moisture-curable resin composition of the present invention contains a radically polymerizable compound.
  • the photo-moisture-curable resin composition is imparted with photocurability by containing a radically polymerizable compound. Since the light-moisture-curable resin composition has photocurability, a certain amount of adhesive strength can be imparted only by irradiating with light, making it easier to secure an appropriate initial adhesive strength. In addition, the hardness can be increased to a certain level or higher only by irradiating with light, making it easy to secure handleability.
  • the radically polymerizable compound may have a radically polymerizable functional group in its molecule. A compound having an unsaturated double bond is preferable as the radically polymerizable functional group, and examples thereof include (meth)acryloyl group, vinyl group, styryl group, and allyl group.
  • a (meth)acryloyl group is preferable from the viewpoint of adhesiveness, that is, the radically polymerizable compound preferably contains a compound having a (meth)acryloyl group.
  • the compound which has a (meth)acryloyl group is hereafter also called a "(meth)acrylic compound.”
  • (meth)acryloyl group means acryloyl group or (meth)acryloyl group
  • (meth)acryl means acryl or methacryl, and other similar terms are the same. be.
  • the radically polymerizable compound is one or both of a monofunctional radically polymerizable compound having one radically polymerizable functional group in one molecule and a multifunctional radically polymerizable compound having two or more radically polymerizable functional groups in one molecule.
  • it may contain, from the viewpoint of improving the initial adhesive strength of the light moisture-curable resin composition, it is preferable to contain a monofunctional radically polymerizable compound.
  • the radically polymerizable compound more preferably contains at least a monofunctional (meth)acrylic compound, which is a (meth)acrylic compound, as the monofunctional radically polymerizable compound.
  • the monofunctional radically polymerizable compound may be a polymerized prepolymer having repeating units, but it is usually preferable to use a monofunctional monomer having no repeating units.
  • the light and moisture-curable resin composition preferably contains a large amount of a monofunctional radically polymerizable compound as a radically polymerizable compound.
  • a large amount of a monofunctional radically polymerizable compound is contained as the radically polymerizable compound, it is possible to increase the initial adhesive strength because the adhesion area when another adherend is press-bonded after photocuring can be increased.
  • the content of the monofunctional radically polymerizable compound in the light and moisture-curable resin composition is 70 parts by mass or more with respect to 100 parts by mass of the radically polymerizable compound.
  • the upper limit of the content of the monofunctional radically polymerizable compound is not particularly limited, and may be 100 parts by mass or less.
  • the radically polymerizable compound preferably contains a nitrogen-containing compound as a monofunctional radically polymerizable compound.
  • a nitrogen-containing compound tends to improve the adhesive strength of the light and moisture-curable resin composition.
  • the light-moisture-curable resin composition is applied to an adherend and then photocured by irradiating it with an active energy ray such as ultraviolet rays. It is often done. It is presumed that when the radically polymerizable compound contains a nitrogen-containing compound, it is appropriately photocured even in the presence of oxygen, thereby improving the adhesive strength.
  • the nitrogen-containing compound may contain one or both of a linear nitrogen-containing compound and a nitrogen-containing compound having a cyclic structure. It is more preferable to use a chain nitrogen-containing compound and a nitrogen-containing compound having a cyclic structure in combination.
  • Nitrogen-containing compounds having a cyclic structure include nitrogen-containing compounds having a lactam structure such as N-vinylpyrrolidone and N-vinyl- ⁇ -caprolactam, morpholine skeleton-containing compounds such as N-acryloylmorpholine, N-(meth)acryloyloxy cyclic imide compounds such as ethylhexahydrophthalimide; Among these, specifically, amide group-containing compounds such as N-vinyl- ⁇ -caprolactam are more preferable.
  • a nitrogen-containing compound having a cyclic structure is also referred to as a cyclic nitrogen-containing compound, and a radically polymerizable compound in which a nitrogen atom is contained in the atoms constituting the ring itself is a cyclic nitrogen-containing compound, and other nitrogen-containing compounds.
  • the compound is a chain nitrogen-containing compound.
  • chain nitrogen-containing compounds examples include chain nitrogen-containing compounds such as dimethylamino (meth) acrylate, diethylamino (meth) acrylate, aminomethyl (meth) acrylate, aminoethyl (meth) acrylate, and dimethylaminoethyl (meth) acrylate.
  • Chain (meth)acrylamides such as amino group-containing (meth)acrylates, diacetoneacrylamide, N,N-dimethylacrylamide, N,N-diethylacrylamide, N-isopropylacrylamide, N-hydroxyethylacrylamide, acrylamide, and methacrylamide compound, N-vinylacetamide, and the like.
  • the chain nitrogen-containing compound may be a monofunctional urethane (meth)acrylate.
  • a monofunctional urethane (meth)acrylate when using a urethane resin, especially a urethane resin having a polycarbonate skeleton, as a moisture-curable resin, compatibility with the moisture-curable resin is improved and adhesive strength is improved. Easy to improve.
  • urethane (meth)acrylate has a relatively high polarity, so it is easy to increase the adhesive strength especially to glass.
  • a monofunctional urethane (meth)acrylate can be used, for example, obtained by reacting an isocyanate compound with a (meth)acrylic acid derivative having a hydroxyl group.
  • (meth)acrylic acid derivatives having a hydroxyl group include dihydric alcohols such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and polyethylene glycol. and mono(meth)acrylates of trihydric alcohols such as trimethylolethane, trimethylolpropane and glycerin.
  • Isocyanate compounds used to obtain urethane (meth)acrylates include alkane monoisocyanates such as butane isocyanate, hexane isocyanate and decane isocyanate; group monoisocyanates. More specifically, the monofunctional urethane (meth)acrylate is preferably a urethane (meth)acrylate obtained by reacting the monoisocyanate compound described above with a mono(meth)acrylate of a dihydric alcohol.
  • a preferred specific example is 1,2-ethanediol 1-acrylate 2-(N-butylcarbamate).
  • the chain nitrogen-containing compound preferably contains a monofunctional urethane (meth)acrylate, and a monofunctional urethane (meth)acrylate and a monofunctional urethane (meth)acrylate such as a (meth)acrylamide compound. It is also preferable to use compounds other than acrylate together.
  • the content of the nitrogen-containing compound as a monofunctional radically polymerizable compound with respect to 100 parts by mass of the radically polymerizable compound in the light and moisture-curable resin composition is from the viewpoint of improving the adhesive strength of the light and moisture-curable resin composition. , preferably 10 parts by mass or more, more preferably 30 parts by mass or more, still more preferably 40 parts by mass or more, and most preferably 50 parts by mass or more.
  • the content of the nitrogen-containing compound as the monofunctional radically polymerizable compound is preferably 95 parts by mass or less, more preferably 90 parts by mass, in order to contain an appropriate amount of the radically polymerizable compound other than the nitrogen-containing compound. parts or less, more preferably 85 parts by mass or less.
  • the monofunctional radically polymerizable compound has a linear nitrogen-containing compound and a nitrogen-containing compound having a cyclic structure
  • the monofunctional radically polymerizable compound has a nitrogen-containing compound having a cyclic structure relative to the linear nitrogen-containing compound.
  • (cyclic/chain) is preferably 0.1 or more and 2.0 or less, more preferably 0.2 or more and 1.5 or less, and still more preferably 0.4 or more and 1.2 or less.
  • the monofunctional radically polymerizable compound contained in the radically polymerizable compound preferably contains a compound other than the nitrogen-containing compound described above (hereinafter also referred to as a nitrogen-free compound).
  • a nitrogen-free compound When the radically polymerizable compound contains a nitrogen-free compound as a monofunctional radically polymerizable compound, it becomes easier to improve adhesive strength and the like.
  • the nitrogen-free compound is not particularly limited as long as it is a compound having a radically polymerizable functional group, but monofunctional (meth)acrylic compounds are preferred, and (meth)acrylic acid ester compounds are more preferred.
  • Monofunctional (meth)acrylic acid ester compounds include alkyl (meth)acrylates, alicyclic structure-containing (meth)acrylates, and aromatic ring-containing (meth)acrylates. These may be used alone or in combination of two or more. Among them, one or both of alkyl (meth)acrylates and aromatic ring-containing (meth)acrylates may be used. is preferred.
  • the total content of the alkyl (meth)acrylate, the alicyclic structure-containing (meth)acrylate, and the aromatic ring-containing (meth)acrylate in the radically polymerizable compound is preferably 5 parts by mass with respect to 100 parts by mass of the radically polymerizable compound.
  • the above content is preferably 90 parts by mass or less, more preferably 70 parts by mass or less, even more preferably 60 parts by mass or less, and most preferably 40 parts by mass or less.
  • alkyl (meth)acrylates examples include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, t-butyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isononyl (meth)acrylate, isodecyl (meth)acrylate, lauryl (meth)acrylate, isomyristyl (meth)acrylate, stearyl (meth)acrylate ) and alkyl (meth)acrylates having 1 to 18 carbon atoms in the alkyl group, such as acrylates.
  • Alicyclic structure-containing (meth)acrylates include cyclohexyl (meth)acrylate, 4-tert-butylcyclohexyl (meth)acrylate, 3,3,5-trimethylcyclohexyl (meth)acrylate, isobornyl (meth)acrylate, dicyclopentenyl (Meth)acrylates having an alicyclic structure such as (meth)acrylates can be mentioned.
  • aromatic ring-containing (meth)acrylates include phenylalkyl (meth)acrylates such as benzyl (meth)acrylate and 2-phenylethyl (meth)acrylate, and phenoxyalkyl (meth)acrylates such as phenoxyethyl (meth)acrylate. is mentioned.
  • alkyl (meth) acrylates, alicyclic structure-containing (meth) acrylates, and aromatic ring-containing (meth) acrylates can also be used, for example, cyclic ether group-containing (meth) Acrylates can also be used.
  • Cyclic ether group-containing (meth)acrylates include (meth)acrylates having an epoxy ring, oxetane ring, tetrahydrofuran ring, dioxolane ring, dioxane ring, or the like.
  • Examples of epoxy ring-containing (meth)acrylates include glycidyl (meth)acrylate.
  • Oxetane ring-containing (meth)acrylates include (3-ethyloxetane-3-yl)methyl (meth)acrylate.
  • Tetrahydrofuran ring-containing (meth)acrylates include tetrahydrofurfuryl (meth)acrylate and tetrahydrofurfuryl alcohol (meth)acrylic acid polymeric esters.
  • Dioxolane ring-containing (meth)acrylates include (2-methyl-2-ethyl-1,3-dioxolan-4-yl)methyl (meth)acrylate, (2,2-cyclohexyl-1,3-dioxolane-4- yl)methyl (meth)acrylate and the like.
  • Examples of (meth)acrylates having a dioxane ring include cyclic trimethylolpropane formal (meth)acrylates.
  • As the cyclic ether group-containing (meth)acrylate it is preferable to use either an oxetane ring-containing (meth)acrylate or a tetrahydrofuran ring-containing (meth)acrylate, but it is also preferable to use these together.
  • the monofunctional (meth)acrylic acid ester compounds include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate.
  • Alkoxyalkyl (meth)acrylates such as hydroxyalkyl (meth)acrylate, 2-methoxyethyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate, 2-butoxyethyl (meth)acrylate, methoxyethylene glycol (meth)acrylate acrylates, alkoxyethylene glycol (meth)acrylates such as ethoxyethylene glycol (meth)acrylate, methoxydiethylene glycol (meth)acrylate, methoxytriethylene glycol (meth)acrylate, methoxypolyethylene glycol (meth)acrylate, ethyl carbitol (meth)acrylate , ethoxydiethylene glycol (meth)acrylate, ethoxytriethylene glycol (meth)acrylate, and polyoxyethylene-based (meth)acrylate such as ethoxypolyethylene glycol (meth)acrylate may also be used.
  • the monofunctional (meth)acrylic compound a
  • the light-moisture-curable resin composition of the present invention may contain a polyfunctional radically polymerizable compound as a radically polymerizable compound.
  • a polyfunctional radically polymerizable compound By containing a polyfunctional radically polymerizable compound, it becomes easy to make a gel fraction more than a certain level, and to give hardness more than a certain level. Therefore, the shape retention property becomes good after photocuring, and for example, even if the composition is applied to one adherend in a narrow width and photocured, and then the other adherend is crimped, the light and moisture-curable resin composition is crushed. It prevents this and makes it easier to maintain the narrow width.
  • polyfunctional radically polymerizable compounds examples include bifunctional (meth)acrylic acid ester compounds, trifunctional or higher (meth)acrylic acid ester compounds, and bifunctional or higher urethane (meth)acrylates.
  • bifunctional or trifunctional or higher (meth)acrylic acid ester compounds are preferred, and from the viewpoint of increasing the gel fraction, trifunctional or higher (meth)acrylic acid ester compounds are more preferred.
  • the content of the polyfunctional radically-polymerizable compound from the viewpoint of making it easier to improve the shape retention of the light-moisture-curable resin composition, radical polymerization.
  • 0.1 parts by mass or more is preferable, 0.3 parts by mass or more is more preferable, and 0.5 parts by mass or more is even more preferable with respect to 100 parts by mass of the chemical compound.
  • the upper limit of the content of the polyfunctional radically polymerizable compound is not particularly defined, but it imparts appropriate flexibility to the light and moisture-curable resin composition, making it easy to bond the adherends together. 30 parts by mass or less is preferable, and 20 parts by mass or less is more preferable.
  • bifunctional (meth)acrylic acid ester compounds include 1,3-butanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, and 1,6-hexanediol di(meth)acrylate.
  • tri- or more functional (meth)acrylic acid ester compounds include trimethylolpropane tri(meth)acrylate, ethylene oxide-added trimethylolpropane tri(meth)acrylate, propylene oxide-added trimethylolpropane tri(meth)acrylate, Caprolactone-modified trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, glycerin tri(meth)acrylate, propylene oxide-added glycerin tri(meth)acrylate, tris(meth)acryloyloxyethyl phosphate, ditrimethylolpropane tetra (Meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate and the like.
  • Difunctional or higher urethane (meth)acrylate can be used, for example, obtained by reacting an isocyanate compound with a (meth)acrylic acid derivative having a hydroxyl group.
  • (meth)acrylic acid derivatives having a hydroxyl group include dihydric alcohols such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and polyethylene glycol.
  • isocyanate compounds used to obtain urethane (meth)acrylates include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4, 4'-diisocyanate (MDI), hydrogenated MDI, polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris ( Polyisocyanate compounds such as isocyanatophenyl)thiophosphate, tetramethylxylylene diisocyanate, 1,6,11-undecane triisocyanate and the like can be mentioned.
  • MDI diisocyanate
  • isocyanate compound a chain-extended polyisocyanate compound obtained by reacting a polyol with an excess isocyanate compound can also be used.
  • polyols include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, and polycaprolactone diol.
  • Polyfunctional urethane (meth)acrylates can be obtained by using these polyisocyanate compounds.
  • moisture-curable resins used in the present invention include moisture-curable urethane resins, hydrolyzable silyl group-containing resins, and moisture-curable cyanoacrylate resins. silyl group-containing resins are preferred, and moisture-curable urethane resins are more preferred. These may be used individually by 1 type, and may use 2 or more types together.
  • a moisture-curable urethane resin can be obtained by reacting a polyol compound having two or more hydroxyl groups in one molecule with a polyisocyanate compound having two or more isocyanate groups in one molecule.
  • the moisture-curable urethane resin preferably has an isocyanate group in the molecule, and the isocyanate group in the molecule reacts with moisture in the air or in the adherend to cure.
  • the moisture-curable urethane resin may have only one isocyanate group in one molecule, or may have two or more isocyanate groups. It is preferable to have one or two.
  • the isocyanate group is not particularly limited, but is preferably provided at the end of the moisture-curable urethane resin.
  • known polyol compounds that are commonly used in the production of polyurethane can be used. is mentioned. These polyol compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the moisture-curable urethane resin is preferably at least one of moisture-curable urethane resins having a polycarbonate skeleton, a polyether skeleton, or a polyester skeleton, and at least one of moisture-curable urethane resins having a polycarbonate skeleton or a polyether skeleton is preferred.
  • Moisture-curable urethane resins having a polycarbonate skeleton are more preferred.
  • Moisture-curable urethane resins have a polycarbonate skeleton and thus have excellent adhesive strength. Furthermore, it is possible to provide a light and moisture-curable resin composition which is excellent in weather resistance, heat resistance, moisture resistance, etc. of the cured product.
  • a moisture-curable urethane resin having a polycarbonate skeleton is obtained by introducing a polycarbonate skeleton into a urethane resin by using a polycarbonate polyol as the polyol compound.
  • a moisture-curable urethane resin having a polycarbonate skeleton is obtained, for example, by reacting a polycarbonate polyol having two or more hydroxyl groups in one molecule with a polyisocyanate compound having two or more isocyanate groups in one molecule.
  • Polycarbonate diols are preferred as the polycarbonate polyols, and preferred specific examples of polycarbonate diols include compounds represented by the following formula (1).
  • R is a divalent hydrocarbon group having 4 to 16 carbon atoms, and n is an integer of 2 to 500.
  • R is preferably an aliphatic saturated hydrocarbon group.
  • R is an aliphatic saturated hydrocarbon group
  • the heat resistance tends to be good.
  • yellowing or the like due to heat deterioration or the like is less likely to occur, and weather resistance is improved.
  • R composed of an aliphatic saturated hydrocarbon group may have a chain structure or a cyclic structure, but preferably has a chain structure from the viewpoint of easily improving stress relaxation properties and flexibility.
  • R in the chain structure may be linear or branched.
  • n is preferably 5-200, more preferably 10-150, even more preferably 20-50.
  • R contained in the polycarbonate polyol constituting the moisture-curable urethane resin may be used singly or in combination of two or more. When two or more of them are used in combination, at least a part thereof is preferably a chain aliphatic saturated hydrocarbon group having 6 or more carbon atoms. By including a chain-like aliphatic saturated hydrocarbon group having 6 or more carbon atoms, it becomes easier to improve stress relaxation and flexibility.
  • the polycarbonate diol is a compound represented by the above formula (1), the ratio of chain aliphatic saturated hydrocarbon groups having 6 or more carbon atoms is 20 mol% or more with respect to R contained in the total polycarbonate diol.
  • the chain aliphatic saturated hydrocarbon group having 6 or more carbon atoms preferably has 6 or more and 12 or less carbon atoms, more preferably 6 or more and 10 or less carbon atoms.
  • R may be linear groups such as tetramethylene group, pentylene group, hexamethylene group, heptamethylene group, octamethylene group, nonamethylene group, and decamethylene group, and for example, 3-methylpentylene group. It may be branched such as a methylpentylene group such as a methylpentylene group or a methyloctamethylene group. Plural R's in one molecule may be the same or different. Therefore, one molecule may contain two or more types of R, and in that case, one molecule preferably contains two or three types of R.
  • the polycarbonate polyol may be a copolymer containing R having 6 or less carbon atoms and R having 7 or more carbon atoms in one molecule. It is preferable that it is a hydrogen group.
  • R may contain a linear saturated aliphatic hydrocarbon group, or may contain a branched saturated aliphatic hydrocarbon group.
  • branched and linear R may be used in combination, or linear R may be used alone.
  • polycarbonate polyol may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Aromatic polyisocyanate compounds and aliphatic polyisocyanate compounds are preferably used as polyisocyanate compounds that are raw materials for moisture-curable urethane resins.
  • aromatic polyisocyanate compounds include diphenylmethane diisocyanate, liquid modified diphenylmethane diisocyanate, polymeric MDI, tolylene diisocyanate, naphthalene-1,5-diisocyanate, and the like.
  • aliphatic polyisocyanate compounds include hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, norbornane diisocyanate, transcyclohexane-1,4-diisocyanate, isophorone diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate, and cyclohexane diisocyanate. , bis(isocyanatomethyl)cyclohexane, dicyclohexylmethane diisocyanate, and the like.
  • the polyisocyanate compound is preferably an aromatic polyisocyanate compound, more preferably diphenylmethane diisocyanate and a modified product thereof, from the viewpoint of increasing the adhesive strength after full curing.
  • Aliphatic polyisocyanate compounds are preferred from the viewpoint of easily imparting stress relaxation properties, flexibility, etc. to the cured product of the light and moisture-curable resin composition.
  • a polyisocyanate compound may be used independently and may be used in combination of 2 or more type.
  • a moisture-curable urethane resin having a polyester skeleton is obtained by introducing a polyester skeleton into a urethane resin by using a polyester polyol as the polyol compound.
  • a moisture-curable urethane resin having a polyester skeleton can be obtained by reacting a polyester polyol having two or more hydroxyl groups in one molecule with a polyisocyanate compound having two or more isocyanate groups in one molecule. can.
  • polyester polyols examples include polyester polyols obtained by reacting polyvalent carboxylic acids with polyols, poly- ⁇ -caprolactone polyols obtained by ring-opening polymerization of ⁇ -caprolactone, and the like.
  • polyvalent carboxylic acids that are raw materials for polyester polyols include phthalic acid, terephthalic acid, isophthalic acid, 1,5-naphthalic acid, 2,6-naphthalic acid, succinic acid, glutaric acid, adipic acid, and pimelic acid. , suberic acid, azelaic acid, sebacic acid, decamethylenedicarboxylic acid, dodecamethylenedicarboxylic acid, and the like.
  • polyester polyols examples include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, and 1,6-hexanediol. , diethylene glycol, cyclohexanediol, and the like. Among these, 1,6-hexanediol or 1,4-butanediol is preferable from the viewpoint of easily increasing adhesive strength at high temperatures.
  • polyester polyol may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a moisture-curable urethane resin having a polyether skeleton is obtained by introducing a polyether skeleton into a urethane resin by using a polyether polyol as the polyol compound.
  • a urethane resin having a polyether skeleton can be obtained by reacting a polyether polyol having two or more hydroxyl groups in one molecule with a polyisocyanate compound having two or more isocyanate groups in one molecule. .
  • Polyether polyols include, for example, polyethylene glycol, polypropylene glycol, ring-opening polymer of tetrahydrofuran, ring-opening polymer of 3-methyltetrahydrofuran, random copolymers or block copolymers of these or their derivatives, bisphenol type polyoxyalkylene modified products of and the like.
  • polypropylene glycol, a ring-opening polymer of tetrahydrofuran, or a ring-opening polymer of 3-methyltetrahydrofuran are preferable from the viewpoint of easily improving the applicability of the light and moisture-curable resin composition.
  • the bisphenol-type polyoxyalkylene modified product is a polyether polyol obtained by addition reaction of an alkylene oxide (e.g., ethylene oxide, propylene oxide, butylene oxide, isobutylene oxide, etc.) to the active hydrogen portion of the bisphenol-type molecular skeleton.
  • the polyether polyol may be a random copolymer or a block copolymer.
  • one or more alkylene oxides are preferably added to both ends of the bisphenol-type molecular skeleton.
  • the bisphenol type is not particularly limited, and includes A type, F type, S type and the like, preferably bisphenol A type.
  • the polyisocyanate compound mentioned above can be used as a polyisocyanate compound.
  • the moisture-curable urethane resin having a polyether skeleton preferably further includes one obtained using a polyol compound having a structure represented by the following formula (2).
  • a polyol compound having a structure represented by the following formula (2) it is possible to obtain a light and moisture-curable resin composition with excellent adhesiveness and a cured product that is flexible and has good elongation, and a radically polymerizable compound It becomes a thing excellent in compatibility with.
  • a polyether polyol composed of a ring-opening polymerization compound of polypropylene glycol, a tetrahydrofuran (THF) compound, or a ring-opening polymerization compound of a tetrahydrofuran compound having a substituent such as a methyl group, and polypropylene glycol and tetrahydrofuran.
  • a ring-opening polymerization compound of (THF) compound is more preferred.
  • the ring-opening polymerization compound of tetrahydrofuran (THF) compound is generally polytetramethylene ether glycol.
  • polyether polyol may be used individually by 1 type, and may be used in combination of 2 or more type.
  • R represents a hydrogen atom, a methyl group, or an ethyl group
  • l is an integer of 0-5
  • m is an integer of 1-500
  • n is an integer of 1-10.
  • l is preferably 0-4, m is preferably 50-200, and n is preferably 1-5.
  • the case where l is 0 means the case where the carbon bonded to R is directly bonded to oxygen.
  • the sum of n and l is more preferably 1 or more, more preferably 1 to 3.
  • R is more preferably a hydrogen atom or a methyl group, particularly preferably a methyl group.
  • the above-described moisture-curable urethane resin having a polycarbonate, polyester, or polyether skeleton may have two or more skeletons in the molecule, and may have, for example, a polycarbonate skeleton and a polyester skeleton. In that case, it is preferable to use polycarbonate polyol and polyester polyol as the polyol compound as the raw material. Similarly, a moisture-curable urethane resin having a polyester skeleton and a polyether skeleton may also be used.
  • the moisture-curable urethane resin preferably contains an isocyanate group as described above, but is not limited to one containing an isocyanate group, and may be a urethane resin containing a hydrolyzable silyl group.
  • a hydrolyzable silyl group is represented, for example, by the following formula (3).
  • each R 1 is independently an optionally substituted alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or , —OSiR 2 3 (each R 2 is independently a hydrocarbon group having 1 to 20 carbon atoms).
  • each X is independently a hydroxy group or a hydrolyzable group.
  • a is an integer of 1-3.
  • the hydrolyzable group is not particularly limited, and examples thereof include halogen atoms, alkoxy groups, alkenyloxy groups, aryloxy groups, acyloxy groups, ketoximate groups, amino groups, amide groups, acid amide groups, aminooxy groups, mercapto groups, and the like. are mentioned. Among them, a halogen atom, an alkoxy group, an alkenyloxy group, and an acyloxy group are preferable because of their high activity. Further, alkoxy groups such as methoxy and ethoxy groups are more preferred, and methoxy and ethoxy groups are even more preferred, since they are moderately hydrolyzable and easy to handle. From the viewpoint of safety, an ethoxy group and an isopropenoxy group, which are ethanol and acetone, respectively, are preferred.
  • the hydroxy group or the hydrolyzable group can be bonded to one silicon atom in the range of 1 to 3. When two or more hydroxy groups or hydrolyzable groups are bonded to one silicon atom, those groups may be the same or different.
  • a in the above formula (3) is preferably 2 or 3, and particularly preferably 3. From the viewpoint of storage stability, a is preferably 2.
  • R 1 in the above formula (3) include alkyl groups such as a methyl group and an ethyl group, cycloalkyl groups such as a cyclohexyl group, aryl groups such as a phenyl group, aralkyl groups such as a benzyl group, and trimethylsiloxy groups. , chloromethyl group, methoxymethyl group and the like. Among them, a methyl group is preferred.
  • hydrolyzable silyl group examples include methyldimethoxysilyl group, trimethoxysilyl group, triethoxysilyl group, tris(2-propenyloxy)silyl group, triacetoxysilyl group, (chloromethyl)dimethoxysilyl group, ( chloromethyl)diethoxysilyl group, (dichloromethyl)dimethoxysilyl group, (1-chloroethyl)dimethoxysilyl group, (1-chloropropyl)dimethoxysilyl group, (methoxymethyl)dimethoxysilyl group, (methoxymethyl)diethoxysilyl group, (ethoxymethyl)dimethoxysilyl group, (1-methoxyethyl)dimethoxysilyl group, (aminomethyl)dimethoxysilyl group, (N,N-dimethylaminomethyl)dimethoxysilyl group, (N,N-diethyla
  • hydrolyzable silyl group-containing polyurethane resin for example, when producing a polyurethane resin by reacting a polyol compound and a polyisocyanate compound, a silyl group-containing compound such as a silane coupling agent is further added.
  • a reaction method and the like can be mentioned. Specific examples thereof include a method for synthesizing a urethane oligomer having a hydrolyzable silyl group described in JP-A-2017-48345.
  • silane coupling agent examples include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris( ⁇ -methoxy-ethoxy)silane, ⁇ -(3,4-epoxycyclohexyl)-ethyltrimethoxysilane, ⁇ -glycidoxysilane.
  • ⁇ -mercaptopropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane, and 3-isocyanatopropyltriethoxysilane are preferred.
  • These silane coupling agents may be used alone or in combination of two or more.
  • the moisture-curable urethane resin may have both an isocyanate group and a hydrolyzable silyl group.
  • a moisture-curable urethane resin having both an isocyanate group and a hydrolyzable silyl group is obtained by first obtaining a moisture-curable urethane resin (raw material urethane resin) having an isocyanate group by the method described above, and further adding It is preferable to manufacture by reacting a silane coupling agent.
  • the details of the moisture-curable urethane resin having an isocyanate group are as described above.
  • the silane coupling agent to be reacted with the raw material urethane resin is not particularly limited, and may be appropriately selected from those listed above and used, but from the viewpoint of reactivity with the isocyanate group, it has an amino group or a mercapto group. It is preferred to use a silane cupping agent. Preferred specific examples are N-( ⁇ -aminoethyl)- ⁇ -aminopropyltrimethoxysilane, N-( ⁇ -aminoethyl)- ⁇ -aminopropyltrimethyldimethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane. silane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -aminopropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane and the like.
  • the moisture-curable resin may have a radically polymerizable functional group.
  • a group having an unsaturated double bond is preferable, and a (meth)acryloyl group is particularly preferable in terms of reactivity.
  • Moisture-curable resins having a radically polymerizable functional group are not included in the radically polymerizable compounds described above and are treated as moisture-curable resins.
  • the moisture-curable resin may be appropriately selected from the various resins described above and used alone, or two or more of them may be used in combination.
  • the weight average molecular weight of the moisture-curable resin is preferably 7500 or more and 30000 or less.
  • the inside/outside ratio a/b and the viscosity at 25° C. of the light and moisture-curable resin composition described later can be set within a predetermined range, and the adhesive strength can be easily increased.
  • the weight average molecular weight of the moisture-curable resin is more preferably 7800 or more, more preferably 10000 or more, still more preferably 11500 or more, more preferably 24000 or less, further preferably 20000 or less, and 16000 or less. Even more preferable.
  • the said weight average molecular weight in this specification is a value which measures by a gel permeation chromatography (GPC), and is calculated
  • the moisture-curable resin may be chain-extended to increase the weight-average molecular weight to a certain value or more as described above.
  • a urethane resin having an isocyanate group obtained by reacting a polyol compound with a polyisocyanate compound having two or more isocyanate groups in one molecule (hereinafter referred to as "raw material
  • a moisture-curable urethane resin may be obtained by further reacting a chain extender with a urethane resin.
  • the chain extender is preferably used in an appropriate amount so that the isocyanate groups remain in the moisture-curable urethane resin without reacting all of the isocyanate groups in the raw material urethane resin with the chain extender. Moreover, the raw material urethane resin may be further reacted with the chain extender reacted with the raw material urethane resin.
  • a polyol compound is preferable as the chain extender used in the moisture-curable urethane resin. Details of the polyol compound are as described above.
  • the polyol compound as the chain extender the same kind of polyol compound as the polyol compound used for synthesizing the raw material urethane resin may be used. Therefore, if the polyol compound used to synthesize the starting urethane resin is a polycarbonate polyol, the chain extender may also be a polycarbonate polyol.
  • the amount of the chain extender used is, for example, 5 parts by mass or more and 40 parts by mass or less, preferably 10 parts by mass or more and 35 parts by mass or less, more preferably when the total amount of the raw material urethane resin and the chain extender is 100 parts by mass. It is 15 mass parts or more and 30 mass parts or less.
  • the mass ratio of the moisture-curable resin to the radical polymerizable compound is preferably 30/70 or more and 90/10 or less, more preferably 40/60 or more and 80/20 or less, and 50/50 or more. 70/30 or less is more preferable.
  • the mass ratio is within these ranges, it is possible to provide the photo-moisture-curable resin composition with well-balanced photocurability and moisture-curability, and to easily adjust the adhesive force within a desired range.
  • the total content of the radical polymerizable compound and the moisture-curable resin in the light moisture-curable resin composition is not particularly limited, but is based on the total amount of the light moisture-curable resin composition, for example 50% by mass or more, preferably 60% by mass. Above, more preferably 70% by mass or more, still more preferably 80% by mass or more. By making the total amount of these not less than the above lower limit, it becomes easier to impart appropriate photocurability and moisture curability to the moisture-curable resin composition.
  • the total content may be less than 100% by mass, but is preferably 99% by mass or less, more preferably 98% by mass or less, in order to contain other components appropriately.
  • the light and moisture-curable resin composition may contain a resin component other than the radically polymerizable compound and the moisture-curable resin as a resin component within a range that does not impair the effects of the present invention. For example, it does not have curability.
  • a resin component such as a thermoplastic resin (for example, an acrylic resin, a urethane resin, etc.), a thermosetting resin, or the like may be contained.
  • the ratio of the resin components other than the radically polymerizable compound and the moisture-curable resin is, for example, 50 parts by mass or less, preferably 30 parts by mass or less, or more, with respect to 100 parts by mass of the total amount of the radically polymerizable compound and the moisture-curable resin. Preferably, it is 10 parts by mass or less.
  • the light-moisture-curable resin composition of the present invention contains a photoradical polymerization initiator.
  • the photo-moisture-curable resin composition contains a photoradical polymerization initiator, so that the photo-curing property is appropriately imparted.
  • photoradical polymerization initiators include benzophenone-based compounds, acetophenone-based compounds, alkylphenone-based photoradical polymerization initiators, acylphosphine oxide-based compounds, titanocene-based compounds, oxime ester-based compounds, benzoin ether-based compounds, thioxanthone, and the like. is mentioned.
  • photoradical polymerization initiators examples include IRGACURE184, IRGACURE369, IRGACURE379, IRGACURE379EG, IRGACURE651, IRGACURE784, IRGACURE819, IRGACURE907, IRGACURE2959, IRGACURE OXE01, IRGACURE TPO (all BASF), benzoin Methyl ether, benzoin ethyl ether, benzoin isopropyl ether (all manufactured by Tokyo Chemical Industry Co., Ltd.), Omnirad 819, and Omnirad TPO H (all manufactured by IGM Resins B.V.).
  • an acylphosphine oxide compound is preferable.
  • Acylphosphine oxide compounds include bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis(2,6-dimethoxybenzoyl)-2 ,4,4-trimethyl-pentylphosphine oxide and the like. Among these, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide is more preferable.
  • the content of the photo-radical polymerization initiator in the light moisture-curable resin composition is preferably 0.1 parts by mass or more and 10 parts by mass or less, more preferably 0.5 parts by mass with respect to 100 parts by mass of the radically polymerizable compound. It is more than 5 parts by mass or less.
  • the content of the radical photopolymerization initiator is within these ranges, the resulting photomoisture-curable resin composition has excellent photocurability and storage stability.
  • the photoradical polymerizable compound is appropriately cured, and the adhesive strength tends to be improved.
  • the light and moisture-curable resin composition of the present invention preferably contains a filler.
  • a filler By containing a filler, the light and moisture-curable resin composition of the present invention has suitable thixotropy, and can sufficiently retain its shape after application.
  • a particulate filler may be used as the filler.
  • Preferred fillers include inorganic fillers such as silica, talc, titanium oxide, zinc oxide, and calcium carbonate. Among these, silica is preferable because the obtained light and moisture-curable resin composition has excellent ultraviolet transmittance.
  • the filler may be subjected to hydrophobic surface treatment such as silylation treatment, alkylation treatment, and epoxidation treatment.
  • a filler may be used individually by 1 type, and 2 or more types may be used in combination.
  • the content of the filler is preferably 1 part by mass or more and 25 parts by mass or less, more preferably 2 parts by mass or more and 20 parts by mass or less, relative to 100 parts by mass of the total amount of the radical polymerizable compound and the moisture-curable resin It is preferably 3 parts by mass or more and 15 parts by mass or less.
  • the light and moisture-curable resin composition of the present invention contains a coloring agent other than zirconium nitride, a moisture curing acceleration catalyst, a coupling agent, and a wax as long as the effects of the present invention are not impaired.
  • a coloring agent other than zirconium nitride a moisture curing acceleration catalyst, a coupling agent, and a wax as long as the effects of the present invention are not impaired.
  • Other additives such as particles, ionic liquids, foamed particles, expanded particles, reactive diluents, etc. may be included.
  • Colorants other than zirconium nitride include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, and resin-coated carbon black.
  • Examples of coupling agents include silane coupling agents, titanate coupling agents, zirconate coupling agents, and the like.
  • the light and moisture-curable resin composition may be diluted with a solvent, if necessary.
  • the amount of the light and moisture-curable resin composition described above is based on the solid content, that is, the mass excluding the solvent.
  • a mixer is used to prepare a radically polymerizable compound, a moisture-curable resin, a photoradical polymerization initiator, and zirconium nitride, and if necessary, and a method of mixing other additives such as fillers, moisture curing acceleration catalysts, and colorants.
  • mixers include homodispers, homomixers, universal mixers, planetary mixers (planetary stirring devices), kneaders, and three rolls.
  • the moisture-curable urethane resin may be increased in molecular weight with a chain extender.
  • a raw material resin such as a raw material urethane resin is reacted in advance with a chain extender to obtain a moisture-curable urethane resin, and then mixed with other raw materials such as a radically polymerizable compound as described above. Good.
  • the raw material resin, chain extender, and radically polymerizable compound are mixed, and the mixture is heated as necessary to react the chain extender with the raw material resin, thereby synthesizing a moisture-curable resin. You may In this case, a mixture of a moisture-curable resin and a radically polymerizable compound is obtained.
  • a resin composition may be obtained.
  • the moisture-curable resin composition of the present invention preferably has an inside/outside ratio a/b of 0.5 or more and 0.95 or less.
  • the inside/outside ratio a/b is 0.5 or more, it becomes difficult to collapse immediately after photocuring, and even when the moisture-curable resin composition is blackened, the initial adhesive strength tends to be improved.
  • the inside/outside ratio a/b is 0.95 or less, it is not too crushed immediately after photocuring, and peeling from the adherend is less likely to occur, and even when the moisture-curable resin composition is blackened, the adhesive strength is low. A decrease can be prevented.
  • the inside/outside ratio a/b is preferably 0.54 or more, more preferably 0.58 or more, still more preferably 0.60 or more, preferably 0.92 or less, more preferably 0.89 or less, and 0.54 or more. 87 or less is more preferable.
  • the inside/outside ratio a/b is within the above range, it becomes easy to improve the initial adhesive strength.
  • the inside/outside ratio a/b is measured as follows. First, as shown in FIG. 1A, a moisture-curable resin composition 10 is applied to an aluminum substrate 11 with a line width of 1.0 mm. Here, the line width of 1.0 mm does not need to be exactly 1.0 mm, and may have an error of 1.0 ⁇ 0.1 mm. Next, as shown in FIG. 1(b), the moisture-curable resin composition 10 is irradiated with ultraviolet rays of 1500 mJ/cm 2 to cure the moisture-curable resin composition 10 . Immediately thereafter (within 10 seconds), as shown in FIG. Crimping is performed at 0.08 MPa for 120 seconds.
  • the width a1 of the bonded portion of the moisture-curable resin composition 10 to the glass plate 12 is measured.
  • the width a1 is measured at five points, and the average value thereof is taken as the average width a.
  • the width b1 of the adhesion portion of the moisture-curable resin composition 10 to the aluminum substrate 11 is measured.
  • the width b1 is measured at five points, the average value thereof is taken as the average width b, and the inside/outside ratio a/b is calculated from the average widths a and b.
  • the inside/outside ratio a/b can be adjusted within the above range by adjusting the type of the radically polymerizable compound. For example, when the photo-moisture-curable resin composition contains a large amount of a monofunctional radically polymerizable compound as a radically polymerizable compound, the ratio of the crosslinked structure formed after photocuring is reduced, so the inside/outside ratio a/b should be increased. can be done. Further, for example, even if the optical moisture-curable resin composition contains a large amount of a radically polymerizable compound having a low homopolymer glass transition point as a radically polymerizable compound, the cured product after photocuring becomes flexible, so that the internal/external ratio a /b can be increased. Furthermore, it can also be adjusted by the weight average molecular weight of the moisture-curable urethane resin.
  • the light and moisture-curable resin composition of the present invention has a viscosity measured at 25° C. and 5.0 rpm using a cone-plate viscometer (hereinafter also referred to as “25° C. viscosity”) of 40 Pa s to 600 Pa s. s or less. If the viscosity at 25° C. is 40 Pa s or more, the amount of low-molecular-weight components contained in the moisture-curable resin, etc., is reduced, so that the moisture-curable resin, etc. is prevented from exuding to the interface after light irradiation, and the light-moisture-curable type Even when the resin composition is blackened, it becomes easier to improve the initial adhesive strength.
  • the 25 ° C. viscosity of the light and moisture-curable resin composition is more preferably 45 Pa s or more, more preferably 90 Pa s or more, even more preferably 110 Pa s or more, and preferably 500 Pa s or less, and 350 Pa s. The following is more preferable, and 230 Pa ⁇ s or less is even more preferable.
  • the final adhesive strength means the adhesive strength of the photo-moisture-curable resin composition after photo-curing and moisture-curing.
  • the light and moisture-curable resin composition of the present invention preferably has both the inside/outside ratio a/b and the viscosity at 25°C within the above numerical ranges.
  • the light and moisture-curable resin composition of the present invention preferably has an initial shearing force of 0.2 MPa or more, more preferably 0.25 MPa or more, and even more preferably 0.3 MPa or more.
  • the initial shearing force is at least the above lower limit, excellent adhesive strength can be imparted even when the light and moisture-curable resin composition of the present invention is blackened.
  • the adherends can be temporarily adhered to each other with a relatively high adhesive strength, improving workability during temporary adhesion.
  • the upper limit of the initial shear force is not particularly limited, but from a practical viewpoint, it is, for example, 10.0 MPa or less.
  • the initial shear force means the shear force at 25° C. immediately after the photo-moisture-curable resin composition is photocured. The details of the method for measuring the initial shear force are as described in Examples below.
  • the initial creep force is obtained by applying the light moisture-curable resin composition to the polycarbonate substrate and photocuring it, and then applying the light moisture-curable resin composition to the glass plate. It can be expressed by the distance h by which the glass plate deviates from the polycarbonate substrate in one hour when the evaluation sample obtained by bonding is vertically set. The shorter the distance h, the higher the initial creep force. Specifically, the distance h is preferably 0.15 mm or less, more preferably 0.10 mm or less. By setting the initial creep force to the above upper limit or less, the initial adhesive strength increases.
  • the distance h is preferably as short as possible, and should be 0 mm or more.
  • the initial creep force means the creep force at 25° C. immediately after the photo-moisture-curable resin composition is photocured, and the details of the method for measuring the distance h are as described later in Examples.
  • the photo-moisture-curable resin composition of the present invention preferably has a gel fraction after photocuring of 10% or more, more preferably 12% or more. It is more preferably 15% or more.
  • the gel fraction is at least the above lower limit value, a certain degree of hardness is imparted to the light and moisture-curable resin composition. Therefore, the shape retainability after photocuring becomes good, and for example, even if the other adherend is crimped after being applied to one adherend in a narrow width and photocured, the light moisture-curable resin composition can be It is prevented from collapsing and maintained in a narrow state.
  • the upper limit of the gel fraction after photocuring is not particularly limited from the viewpoint of improving shape retention, it is preferably 60% or less, more preferably 50% or less, and 40% or less. is more preferable.
  • the gel fraction is equal to or less than the above upper limit, the light and moisture-curable resin composition is imparted with appropriate flexibility, and adherends are easily adhered to each other.
  • the photo-moisture-curable resin composition of the present invention preferably has a gel fraction after photocuring of less than 10%, more preferably 5% or less, from the viewpoint of increasing the initial adhesive strength. , 1% or less.
  • the adhesive area can be increased when another adherend is pressure-bonded after photocuring, so the initial adhesive strength can be increased.
  • the lower limit of the gel fraction after photocuring is not particularly limited, and may be 0% or more.
  • the gel fraction after photocuring can be calculated
  • About 1.0 g of the light and moisture-curable resin composition is sampled and weighed to obtain the sample weight (W1).
  • a sample for analysis is prepared by coating it on a glass plate to a thickness of 1.0 mm and irradiating it with ultraviolet rays of 1500 mJ/cm 2 for photocuring.
  • the analysis sample prepared above is immersed in THF at 25° C. for 48 hours.
  • the light and moisture-curable resin composition in a photocured state was taken out onto a 200-mesh wire mesh, washed with fresh THF five times, and then the swollen gel remaining on the wire mesh was removed at 100°C. for 2 hours to volatilize THF, the weight of the dried gel (W2) is weighed, and the gel fraction is measured by the following formula.
  • Gel fraction (%) W2/W1 x 100
  • the light and moisture-curable resin composition of the present invention is cured and used as a cured product.
  • the photo-moisture-curable resin composition of the present invention is first photo-cured by light irradiation to, for example, a B-stage state (semi-cured state), and then fully cured by curing with moisture. good.
  • the optical moisture-curable resin composition when the optical moisture-curable resin composition is placed between adherends and the adherends are to be joined together, it is applied to one of the adherends, and then photocured by light irradiation, For example, when the B-stage state is set, the other adherend is superimposed on the light moisture-curable resin composition in the photocured state, and the adherend is temporarily adhered with an appropriate adhesive strength (initial adhesive strength). good. After that, the optical moisture-curable resin composition in the B-stage state is completely cured by curing the moisture-curable urethane resin with moisture, and the adherends superimposed via the optical moisture-curable resin composition are separated from each other. They are permanently adhered and joined with sufficient adhesive strength (final adhesive strength).
  • the application of the light moisture-curable resin composition to the adherend is preferably carried out, for example, with a dispenser, but is not particularly limited.
  • the light for photocuring is not particularly limited as long as it cures the radically polymerizable compound, but ultraviolet light is preferred.
  • the light and moisture-curable resin composition of the present invention has a high OD value and high light-shielding properties, but has a relatively high transmittance to ultraviolet rays, so that it can be cured with high curability by using ultraviolet rays.
  • the photo-moisture-curable resin composition when the photo-moisture-curable resin composition is to be completely cured by moisture after being photocured, it may be left in the air for a predetermined period of time.
  • the application of the light moisture-curable resin composition to the adherend is not particularly limited, it is preferably carried out at around room temperature, specifically at a temperature of about 10 to 35°C.
  • the 25° C. viscosity of the light and moisture-curable resin composition of the present invention is within the above-described predetermined range, it can be applied more easily even when it is applied at around room temperature, and dripping occurs. neither does it.
  • the photo-moisture-curable resin composition of the present invention exhibits an initial adhesive strength of a certain value or more immediately after light irradiation, temporary adhesion can be performed immediately after light curing, resulting in good workability.
  • the light and moisture-curable resin composition of the present invention is preferably used as an adhesive for electronic parts. That is, the present invention also provides an adhesive for electronic parts comprising the above-mentioned light moisture-curable resin composition. Therefore, the adherends described above are preferably various electronic components constituting electronic devices. Examples of various electronic components constituting electronic devices include various electronic components provided in display elements, substrates to which electronic components are attached, semiconductor chips, and the like.
  • the material of the adherend may be metal, glass, plastic, or the like.
  • the shape of the adherend is not particularly limited, and examples thereof include film-like, sheet-like, plate-like, panel-like, tray-like, rod-like, box-like, and housing-like shapes. .
  • the light and moisture-curable resin composition of the present invention is preferably used for bonding electronic parts constituting electronic equipment. Moreover, the light and moisture-curable resin composition of the present invention is preferably used for bonding electronic parts to other parts. With these configurations, the electronic component has the cured body of the present invention. Moreover, the optical moisture-curable resin composition of the present invention is used in the inside of an electronic device, for example, to obtain an assembly part by bonding substrates together. The assembly part thus obtained has a first substrate, a second substrate, and the cured product of the present invention, wherein at least a portion of the first substrate is at least a portion of the second substrate. is joined through a hardened body. At least one electronic component is preferably attached to each of the first substrate and the second substrate.
  • the light-moisture-curable resin composition of the present invention is used for display devices. That is, the present invention also provides an adhesive for display elements comprising the above-described light and moisture-curable resin composition. Since the light-moisture-curable resin composition of the present invention has high light-shielding properties and can prevent light leakage, high contrast can be obtained by using the composition for display devices.
  • an adhesive is applied on a narrow rectangular frame-shaped (that is, narrow frame) base.
  • a display panel, a touch panel, or the like is assembled through the adhesive, and the photo-moisture-curable resin composition of the present invention is preferably used as the adhesive. Furthermore, the light moisture-curable resin composition of the present invention may be used for semiconductor chips. The light-moisture-curable resin composition of the present invention is used for semiconductor chips, for example, to bond semiconductor chips together.
  • the weight-average molecular weight of the moisture-curable resin in each example and comparative example was measured by gel permeation chromatography (GPC) and calculated by polystyrene conversion.
  • GPC measurement used Shodex KF-806L (manufactured by Showa Denko KK) as a column. Tetrahydrofuran (THF) was used as the solvent and mobile phase.
  • GPC measurement conditions were a flow rate of 1.0 ml/min and a measurement temperature of 40°C.
  • the weight average molecular weight was measured using a mixture of a radically polymerizable compound and a moisture-curable resin as a sample.
  • the peak of the radical polymerizable compound appears on the low molecular weight side
  • the peak of the moisture-curable resin appears on the high molecular weight side, so the weight average molecular weight of the moisture-curable resin can be determined from the peak on the high molecular weight side.
  • Each light-moisture-curable resin composition obtained in Examples and Comparative Examples was uniformly applied to a slide glass ("S1214", manufactured by Matsunami Glass Industry Co., Ltd.) so as to have a thickness of 1 mm, and a UV-LED irradiation device was applied. (manufactured by CCS Co., Ltd.), the photo-moisture-curable resin composition was photo-cured by irradiating 1500 mJ/cm 2 of ultraviolet rays having a wavelength of 365 nm to obtain a sample for light shielding evaluation. The OD value of the resulting light-shielding evaluation sample was measured using an optical densitometer (manufactured by X-rite, "Spectrometer").
  • the illuminance during photocuring was adjusted in the range of 500 to 3000 mW/cm 2 .
  • ⁇ Gel fraction> The gel fraction was measured by the method described in the specification.
  • the applied light moisture-curable resin composition was irradiated with 1500 mJ/cm 2 of ultraviolet rays having a wavelength of 365 nm using a UV-LED irradiator (manufactured by CCS Co., Ltd.). Immersion in THF was carried out using 100 ml of THF in a glass bottle with gentle stirring.
  • the aluminum substrate 21 was coated with a width of 1.0 ⁇ 0.1 mm, a length of 25 mm, and a thickness of 0.4 ⁇ 0.1 mm using the dispensing apparatus described above.
  • the light moisture-curable resin composition 20 was applied at room temperature (25° C.) such that Then, it was photo-cured by irradiating 1500 mJ/cm 2 of ultraviolet rays having a wavelength of 365 nm with a line-type LED irradiator (manufactured by HOYA).
  • a glass plate 22 is attached to an aluminum substrate 21 via a light-cured light-moisture-curable resin composition 20, and a weight is used to apply pressure to the coating area at 0.08 MPa for 120 seconds, followed by initial shearing.
  • a sample 23 for force evaluation was obtained.
  • a tension tester (“Tensile/compression tester SVZ-50NB” manufactured by Imada Seisakusho Co., Ltd.) was used to pull in the shearing direction S at a rate of 10 mm/min.
  • the initial shear force was determined by measuring the maximum stress when the film was peeled off.
  • the time from the end of photocuring to the start of the tensile test was within 150 seconds.
  • the initial shear force was evaluated according to the following evaluation criteria.
  • B 0.2 MPa or more and less than 0.3 MPa C: less than 0.2 MPa
  • a light moisture-curable resin composition 31 is applied to a polycarbonate substrate 30, and the four sides of the light moisture-curable resin composition 31 have dimensions of 9.5 cm ⁇ 9.5 cm, and It was applied at room temperature (25° C.) to a thickness of 0.4 ⁇ 0.1 mm. Then, it was photo-cured by irradiating 1500 mJ/cm 2 of ultraviolet rays having a wavelength of 365 nm with a line-type LED irradiator (manufactured by HOYA).
  • a 10 cm ⁇ 10 cm glass plate 32 (manufactured by Nippon Test Panel Co., Ltd.) with a thickness of 12 mm is attached to the polycarbonate substrate 30 via a photo-cured light moisture-curable resin composition 31, and a weight is used to determine the coating area. was pressed against for 120 seconds at 0.08 MPa to obtain a sample 33 for initial creep force evaluation. After that, the initial creep force evaluation sample 33 was set upright and left for 1 hour in an environment with a temperature of 25° C. and a humidity of 50% RH. The time from the end of photocuring to the start of the initial creep force test was within 300 seconds. Based on the distance h, the initial creep force was evaluated according to the following evaluation criteria. A shorter distance h means a higher initial creep force. A: Distance h is less than 0.10 mm B: Distance h is 0.10 mm or more and 0.15 mm or less C: Distance h is more than 0.15 mm
  • an aluminum alloy "A6063S” having a size of 2 mm ⁇ 25 mm ⁇ 60 mm, and a glass plate having a smooth surface after ultrasonic cleaning for 5 minutes were used as the aluminum substrate and the glass plate.
  • Application of the moisture-curable resin composition is performed at room temperature (25 ° C.) using a dispensing device “SHOTMASTER 300SX” manufactured by Musashi Engineering Co., Ltd., with a width of 1.0 ⁇ 0.1 mm, a length of 25 mm, and a thickness of It was applied linearly to the aluminum substrate so as to be 0.4 ⁇ 0.1 mm.
  • the applied light-moisture-curable resin composition was irradiated with 1500 mJ/cm 2 of ultraviolet light having a wavelength of 365 nm using a line-type LED irradiator (manufactured by HOYA Corporation).
  • the pressure bonding of the glass plate to the aluminum substrate was performed using a weight as a weight, and the widths a1 and b1 were measured 5 minutes after removing the weight.
  • the widths a1 and b1 after pressure bonding were measured by observing the pressure bonding surface from the glass plate side using a microscope.
  • the urethane resin raw material used in each example and comparative example was produced by the following method.
  • Synthesis Example 1 ⁇ raw material for PC urethane resin>
  • 100 parts by mass of polycarbonate diol compound represented by formula (1), 90 mol% of R is 3-methylpentylene group, 10 mol% is hexamethylene group, manufactured by Kuraray Co., Ltd., trade name "Kuraraypolyol C -1090”
  • 0.01 part by mass of dibutyltin dilaurate were placed in a 500 mL separable flask. The inside of the flask was stirred and mixed at 100° C. for 30 minutes under vacuum (20 mmHg or less).
  • diphenylmethane diisocyanate manufactured by Nisso Shoji Co., Ltd., trade name “Pure MDI”
  • Pure MDI diphenylmethane diisocyanate
  • a moisture-curable urethane resin (raw material for PC urethane resin) having an isocyanate group was obtained.
  • the weight average molecular weight of the obtained urethane resin raw material was 6,700.
  • Example 1 As shown in Table 4, to 40 parts by mass of acrylic B, 60 parts by mass of each raw material constituting moisture-curable resin a was added. Acrylic B was obtained by mixing each compound at the compounding ratio shown in Table 2. As a moisture-curable resin a, a PC urethane resin raw material and a PC polyol were sequentially added to the acrylic B at the mass ratio shown in Table 3 to obtain a mixture. As the PC polyol, the polycarbonate diol used in Synthesis Example 1 was used.
  • Examples 5-8, Comparative Examples 4-6 As shown in Table 5, light and moisture-curable resin compositions were obtained in the same manner as in Examples 1 to 4 and Comparative Examples 1 to 3, except that acrylic A was used instead of acrylic B. Weight average molecular weight, OD value, viscosity, internal/external ratio, initial shear force, and initial creep force were measured for the obtained light-moisture-curable resin composition, and the initial shear force and initial creep force were evaluated.
  • Acrylics A and B used in each example and comparative example are shown in Table 2.
  • the moisture-curable resin a used in each example and comparative example is as shown in Table 3 below.
  • the photo-moisture-curable resin compositions in Examples 1 to 4 used zirconium nitride even when the OD value was set to 2 or more and turned black, so the gel fraction after photocuring increased. , good photocurability could be expressed.
  • Comparative Examples 1 to 3 due to the use of titanium black instead of zirconium nitride, the gel fraction after photocuring was lowered, and good photocurability could not be exhibited.
  • the photo-moisture-curable resin composition in each example had excellent photocurability due to the use of zirconium nitride, even when the OD value was set to 2 or more and turned black. . Therefore, the initial shear force and the initial creep force were improved, and excellent initial adhesive strength could be exhibited. On the other hand, in Comparative Examples in which titanium black was used instead of zirconium nitride as a coloring agent, the photocurability was insufficient and the initial adhesive strength was not excellent.

Abstract

This photo/moisture curable resin composition contains a radical polymerizable compound, a moisture-curable resin, a photoradical polymerization initiator, and zirconium nitride, and the OD value of the cured product having a thickness of 1 mm after curing is at least 2.

Description

光湿気硬化型樹脂組成物、電子部品用接着剤及び表示素子用接着剤Light and moisture curable resin composition, adhesive for electronic parts and adhesive for display elements
 本発明は、光湿気硬化型樹脂組成物、電子部品用接着剤及び表示素子用接着剤に関する。 The present invention relates to a light moisture-curable resin composition, an adhesive for electronic parts, and an adhesive for display elements.
 近年、テレビやPC、スマートフォン等の電子機器には、高集積化、小型化が要求されていることから、表示素子(以下「ディスプレイ」ともいう)の額縁が狭隘化される傾向にある。こうした傾向を受け、電子部材と液晶セルを接着する手段としては、従来使用されてきた両面テープに代わって、接着剤の使用が主流になると考えられ、特に光湿気硬化型接着剤は、作業性や最終的な接着力の観点から注目されている。 In recent years, electronic devices such as televisions, PCs, and smartphones are required to be highly integrated and miniaturized, so the frame of display elements (hereinafter also referred to as "displays") tends to be narrower. In response to this trend, the use of adhesives is expected to replace the conventionally used double-sided tape as a means of adhering electronic components and liquid crystal cells. and the final adhesive strength.
 ところで、光湿気硬化型接着剤は、表示素子の周辺などで使用される場合、例えば光漏れによりコントラストが下がることを防止するために、遮光性が求められることがある。そのため、例えば、特許文献1では、遮光性及び接着性に優れる光湿気硬化型樹脂組成物が開示されており、当該開示の中では、遮光性を付与する手段として、遮光剤としてチタンブラックなどを使用することで、光湿気硬化型樹脂組成物を黒色化することが提案されている。 By the way, light-moisture-curable adhesives are sometimes required to have a light-shielding property when used around display elements, for example, in order to prevent a drop in contrast due to light leakage. Therefore, for example, Patent Document 1 discloses a light-moisture-curable resin composition having excellent light-shielding properties and adhesiveness. It is proposed to blacken the light and moisture-curable resin composition by using it.
 また、光湿気硬化型接着剤は、両面テープのように貼り合わせ直後に十分な接着力(初期接着力)が発現せず、部材同士を接着するのに時間が掛かるという欠点を有している。そこで、従来、光硬化直後に優れた初期接着力を発現させることができる光湿気硬化型樹脂組成物が検討されている。例えば特許文献2には、ポリカーボネート板に線状に塗布し、かつ光硬化直後の該組成物を介してガラス板を接着させた際に、各板における接着部分の幅の比(内外比)を一定の範囲内にしつつ、粘度も一定の範囲内にした光湿気硬化型樹脂組成物が開示されている。 In addition, unlike double-sided tape, the light-moisture-curable adhesive does not exhibit sufficient adhesive strength (initial adhesive strength) immediately after bonding, and has the disadvantage that it takes time to bond members together. . Therefore, conventionally, a light and moisture-curable resin composition capable of exhibiting excellent initial adhesive strength immediately after photocuring has been studied. For example, in Patent Document 2, when the composition is linearly applied to a polycarbonate plate and adhered to a glass plate via the composition immediately after photocuring, the ratio of the widths of the bonded portions (inside/outside ratio) of each plate is measured. A light and moisture-curable resin composition is disclosed in which the viscosity is kept within a certain range while keeping the viscosity within a certain range.
国際公開第2015/111570号WO2015/111570 国際公開第2021/230372号WO2021/230372
 しかしながら、従来の光湿気硬化型樹脂組成物は、黒色化して遮光性を付与した場合、光硬化性が不十分となったりすることで、例えば初期接着力を十分に向上させることが難しいという問題がある。
 そこで、本発明は、黒色化して遮光性を付与した場合においても、高い光硬化性を有する光湿気硬化型樹脂組成物を提供することを課題とする。
However, when a conventional light moisture-curable resin composition is blackened and imparted with a light-shielding property, the photocuring property becomes insufficient, for example, it is difficult to sufficiently improve the initial adhesive strength. There is
Accordingly, an object of the present invention is to provide a photo-moisture-curable resin composition having high photo-curability even when it is blackened to impart light-shielding properties.
 本発明者らは、鋭意検討の結果、ラジカル重合性化合物と、湿気硬化性樹脂と、光ラジカル重合開始剤と、窒化ジルコニウムとを含有し、光硬化後の1mm厚みの硬化物のOD値が2以上である、光湿気硬化型樹脂組成物により、上記課題の解決を見出し、本発明を完成させた。
 本発明は、以下の[1]~[19]を提供するものである。
As a result of extensive studies, the present inventors have found that the OD value of a 1 mm thick cured product containing a radically polymerizable compound, a moisture-curable resin, a photoradical polymerization initiator, and zirconium nitride after photocuring is 2 or more, the present invention was completed by finding a solution to the above-described problems with a light and moisture-curable resin composition.
The present invention provides the following [1] to [19].
[1]ラジカル重合性化合物と、湿気硬化性樹脂と、光ラジカル重合開始剤と、窒化ジルコニウムとを含有し、光硬化後の1mm厚みの硬化物のOD値が2以上である、光湿気硬化型樹脂組成物。
[2]前記窒化ジルコニウムの含有量が、ラジカル重合性化合物及び湿気硬化性樹脂の合計量100質量部に対し、0.1質量部以上1.5質量部以下である、[1]に記載の光湿気硬化型樹脂組成物。
[3]前記光湿気硬化型樹脂組成物における、湿気硬化性樹脂のラジカル重合性化合物に対する質量比が、30/70以上90/10以下である、[1]又は[2]に記載の光湿気硬化型樹脂組成物。
[4]前記光湿気硬化型樹脂組成物におけるラジカル重合性化合物と湿気硬化性樹脂の合計含有量が、光湿気硬化型樹脂組成物全量基準で50質量%以上である、[1]~[3]のいずれか1項に記載の光湿気硬化型樹脂組成物。
[5]前記光ラジカル重合開始剤の含有量が、前記ラジカル重合性化合物100質量部に対して、0.1質量部以上10質量部以下である、[1]~[4]のいずれか1項に記載の光湿気硬化型樹脂組成物。
[6]前記窒化ジルコニウムの平均一次粒子径が、1nm以上700nm以下である、[1]~[5]のいずれか1項に記載の光湿気硬化型樹脂組成物。
[7]ラジカル重合性化合物が単官能ラジカル重合性化合物を含む、[1]~[6]のいずれか1項に記載の光湿気硬化型樹脂組成物。
[8]前記単官能ラジカル重合性化合物が窒素含有化合物を含む、[7]に記載の光湿気硬化型樹脂組成物。
[9]前記単官能ラジカル重合性化合物が、前記窒素含有化合物以外の化合物として(メタ)アクリル酸エステル化合物を含む、[8]に記載の光湿気硬化型樹脂組成物。
[10]ラジカル重合性化合物が多官能ラジカル重合性化合物を含む、[1]~[9]のいずれか1項に記載の光湿気硬化型樹脂組成物。
[11]前記湿気硬化性樹脂が湿気硬化性ウレタン樹脂である[1]~[10]のいずれか1項に記載の光湿気硬化型樹脂組成物。
[12]アルミニウム基板に線幅1.0mmで塗布し、1500mJ/cmの紫外線を照射して光硬化した状態で、ガラス板を0.08MPaで120秒間圧着した場合において、ガラス板側の接着部分の平均幅をa、アルミニウム基板側の接着部分の平均幅をbとすると、a/bが0.5以上0.95以下である、[1]~[11]のいずれか1項に記載の光湿気硬化型樹脂組成物。
[13]コーンプレート型粘度計を用いて25℃、5.0rpmの条件で測定した粘度が40Pa・s以上600Pa・s以下である、[1]~[12]のいずれか1項に記載の光湿気硬化型樹脂組成物。
[14]さらに充填剤を含有する、[1]~[13]のいずれか1項に記載の光湿気硬化型樹脂組成物。
[15][1]~[14]のいずれか1項に記載の光湿気硬化型樹脂組成物からなる、電子部品用接着剤。
[16][1]~[14]のいずれか1項に記載の光湿気硬化型樹脂組成物からなる、表示素子用接着剤。
[17][1]~[14]のいずれか1項に記載の光湿気硬化型樹脂組成物の硬化体。
[18][1]~[14]のいずれか1項に記載の光湿気硬化型樹脂組成物の電子部品に対する使用。
[19][1]~[14]のいずれか1項に記載の光湿気硬化型樹脂組成物の表示素子に対する使用。
[1] Photo-moisture curing, which contains a radically polymerizable compound, a moisture-curable resin, a photoradical polymerization initiator, and zirconium nitride, and has an OD value of 2 or more in a 1 mm-thick cured product after photocuring. mold resin composition.
[2] The content of the zirconium nitride is 0.1 parts by mass or more and 1.5 parts by mass or less with respect to 100 parts by mass of the total amount of the radically polymerizable compound and the moisture-curable resin. A light and moisture-curable resin composition.
[3] Light moisture according to [1] or [2], wherein the mass ratio of the moisture-curable resin to the radically polymerizable compound in the light-moisture-curable resin composition is 30/70 or more and 90/10 or less. A curable resin composition.
[4] The total content of the radically polymerizable compound and the moisture-curable resin in the light and moisture-curable resin composition is 50% by mass or more based on the total amount of the light and moisture-curable resin composition, [1] to [3] ] The light and moisture-curable resin composition according to any one of .
[5] Any one of [1] to [4], wherein the content of the radical photopolymerization initiator is 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the radically polymerizable compound. Item 1. The light and moisture-curable resin composition according to Item 1.
[6] The light and moisture-curable resin composition according to any one of [1] to [5], wherein the zirconium nitride has an average primary particle size of 1 nm or more and 700 nm or less.
[7] The light and moisture-curable resin composition according to any one of [1] to [6], wherein the radically polymerizable compound contains a monofunctional radically polymerizable compound.
[8] The light and moisture-curable resin composition according to [7], wherein the monofunctional radically polymerizable compound contains a nitrogen-containing compound.
[9] The light and moisture-curable resin composition according to [8], wherein the monofunctional radically polymerizable compound contains a (meth)acrylic acid ester compound as a compound other than the nitrogen-containing compound.
[10] The light and moisture-curable resin composition according to any one of [1] to [9], wherein the radically polymerizable compound contains a polyfunctional radically polymerizable compound.
[11] The light moisture-curable resin composition according to any one of [1] to [10], wherein the moisture-curable resin is a moisture-curable urethane resin.
[12] Adhesion on the glass plate side when applied to an aluminum substrate with a line width of 1.0 mm, irradiated with ultraviolet rays of 1500 mJ/cm 2 and photocured, and then pressed against a glass plate at 0.08 MPa for 120 seconds. Where a is the average width of the portion and b is the average width of the bonded portion on the aluminum substrate side, a/b is 0.5 or more and 0.95 or less, according to any one of [1] to [11]. A light and moisture-curable resin composition.
[13] Any one of [1] to [12], which has a viscosity of 40 Pa s or more and 600 Pa s or less measured at 25° C. and 5.0 rpm using a cone-plate viscometer. A light and moisture-curable resin composition.
[14] The light and moisture-curable resin composition according to any one of [1] to [13], which further contains a filler.
[15] An adhesive for electronic parts, comprising the light moisture-curable resin composition according to any one of [1] to [14].
[16] An adhesive for display elements, comprising the light and moisture-curable resin composition according to any one of [1] to [14].
[17] A cured product of the light and moisture-curable resin composition according to any one of [1] to [14].
[18] Use of the light moisture-curable resin composition according to any one of [1] to [14] for electronic parts.
[19] Use of the light moisture-curable resin composition according to any one of [1] to [14] for a display element.
 本発明によれば、黒色化して遮光性を付与した場合においても、高い光硬化性を有する光湿気硬化型樹脂組成物を提供することができる。 According to the present invention, it is possible to provide a photo-moisture-curable resin composition having high photo-curability even when it is blackened to impart light-shielding properties.
内外比a/bの測定方法を示す概念図である。It is a conceptual diagram which shows the measuring method of inside-outside ratio a/b. 接着性試験方法を示す概略図であり、図2(a)が平面図、図2(b)が側面図である。It is the schematic which shows an adhesive test method, Fig.2 (a) is a top view, FIG.2(b) is a side view. 初期クリープ力の測定方法を示す概略図であり、図3(a)が圧着直後、図3(b)が圧着から1時間後である。It is the schematic which shows the measuring method of an initial creep force, Fig.3 (a) is immediately after crimping, FIG.3(b) is 1 hour after crimping.
 以下、本発明について実施形態を参照しつつ詳細に説明する。
[光湿気硬化型樹脂組成物]
 本発明の光湿気硬化型樹脂組成物は、ラジカル重合性化合物と、湿気硬化性樹脂と、光ラジカル重合開始剤と、窒化ジルコニウムとを含有する。
Hereinafter, the present invention will be described in detail with reference to embodiments.
[Light moisture-curable resin composition]
The light and moisture-curable resin composition of the present invention contains a radically polymerizable compound, a moisture-curable resin, a photoradical polymerization initiator, and zirconium nitride.
<窒化ジルコニウム>
 本発明の光湿気硬化型樹脂組成物は、窒化ジルコニウムを含有する。本発明において、光湿気硬化型樹脂組成物は、後述する通りОD値が一定以上となるように黒色化された場合においても、窒化ジルコニウムを含有することで光硬化性を高く維持することができる。その原理は定かではないが、光湿気硬化型樹脂組成物は、窒化ジルコニウムを含有することにより、可視光線の透過率が一定以下に抑えられつつ、紫外線などの低波長側の透過率が一定以上となり、光湿気硬化型樹脂組成物の内部にまで光硬化のための光を行き届かせることができるためと推定される。また、光硬化性を高くできると、初期接着力も良好にしやすくなる。
<Zirconium nitride>
The light and moisture-curable resin composition of the present invention contains zirconium nitride. In the present invention, the photo-moisture-curable resin composition contains zirconium nitride, so that even when it is blackened so that the OD value is above a certain level, as described later, it is possible to maintain high photocurability. . Although the principle is not clear, the light and moisture-curable resin composition contains zirconium nitride, so that the transmittance of visible light is suppressed to a certain level or less, while the transmittance of low wavelengths such as ultraviolet rays is kept above a certain level. Therefore, it is presumed that the light for photocuring can reach the inside of the light and moisture-curable resin composition. In addition, if the photocurability can be increased, the initial adhesive strength tends to be improved.
 本発明で使用する窒化ジルコニウムの平均一次粒子径は、特に限定されないが、好ましくは1nm以上700nm以下、より好ましくは5nm以上500nm以下、さらに好ましくは10nm以上100nm以下である。窒化ジルコニウムの平均一次粒子径が上記下限値以上であると、光湿気硬化型樹脂組成物のOD値を一定以上に調整しやすくなる。また、窒化ジルコニウムの粒径が上記上限値以下であると、光湿気硬化型樹脂組成物の取り扱い性が良好となる。
 なお、平均一次粒子径は、例えば走査型電子顕微鏡を用いて、50個以上の粒子を測定し、平均値を算出することで得ることができる。
 本発明において、窒化ジルコニウムは、例えば「UB-1」(三菱マテリアル電子化成社製)などの市販品を使用することができる。
The average primary particle size of the zirconium nitride used in the present invention is not particularly limited, but is preferably 1 nm or more and 700 nm or less, more preferably 5 nm or more and 500 nm or less, and still more preferably 10 nm or more and 100 nm or less. When the average primary particle size of zirconium nitride is at least the above lower limit, it becomes easier to adjust the OD value of the light and moisture-curable resin composition to a certain level or more. In addition, when the particle size of the zirconium nitride is equal to or less than the above upper limit value, the handleability of the light and moisture-curable resin composition is improved.
The average primary particle size can be obtained, for example, by measuring 50 or more particles using a scanning electron microscope and calculating the average value.
In the present invention, zirconium nitride can be a commercially available product such as "UB-1" (manufactured by Mitsubishi Materials Electronic Chemicals Co., Ltd.).
 本発明の光湿気硬化型樹脂組成物における窒化ジルコニウムの含有量は、ラジカル重合性化合物及び湿気硬化性樹脂の合計量100質量部に対し、好ましくは0.1質量部以上1.5質量部以下、より好ましくは0.2質量部以上1.2質量部以下、さらに好ましくは0.3質量部以上1.0質量部以下である。窒化ジルコニウムの含有量を上記下限値以上とすることで、後述のOD値を一定以上としやすくなる。他方、窒化ジルコニウムの含有量を上記上限値以下とすることで、後述の25℃粘度を所望の範囲に調整しやくなる。また、光硬化性や接着力なども向上しやすくなる。 The content of zirconium nitride in the light and moisture-curable resin composition of the present invention is preferably 0.1 parts by mass or more and 1.5 parts by mass or less with respect to 100 parts by mass of the total amount of the radically polymerizable compound and the moisture-curable resin. , more preferably 0.2 to 1.2 parts by mass, more preferably 0.3 to 1.0 parts by mass. By making the content of zirconium nitride equal to or higher than the lower limit, the OD value, which will be described later, can be easily made equal to or higher than a certain level. On the other hand, by making the content of zirconium nitride equal to or less than the above upper limit, it becomes easier to adjust the 25° C. viscosity, which will be described later, within a desired range. In addition, the photocurability and adhesive strength are easily improved.
<ОD値>
 本発明の光湿気硬化型樹脂組成物は、光硬化後の1mm厚みの硬化物の光学濃度(OD値)が2以上である。OD値が2未満であると、遮光性が不充分となり、表示素子などに用いた場合に光の漏れ出しが発生し、高いコントラストを得ることができないことがある。上記OD値は2.5以上が好ましく、3以上であることがより好ましい。
 上記OD値は、遮光性の観点からは高ければ高いほど良いが、窒化ジルコニウムやその他の着色剤の含有量を一定以下とし、光硬化性を良好にする観点、及び光湿気硬化型樹脂組成物を適切な粘度とする観点からは、好ましくは7以下、より好ましくは6以下、より好ましくは5.5以下である。
 なお、上記光湿気硬化型樹脂組成物の硬化後のOD値は、光学濃度計を用いて測定することができる。上記OD値は、光湿気硬化型樹脂組成物を光硬化することで得た厚み1mmのサンプルを用いるとよい。
<OD value>
The photo-moisture-curable resin composition of the present invention has an optical density (OD value) of 2 or more as a cured product having a thickness of 1 mm after photocuring. If the OD value is less than 2, the light-shielding property becomes insufficient, and when used in a display element or the like, light leakage may occur, and high contrast may not be obtained. The OD value is preferably 2.5 or more, more preferably 3 or more.
The above OD value is preferably as high as possible from the viewpoint of light-shielding properties, but the content of zirconium nitride and other coloring agents is set to a certain level or less, and the viewpoint of improving photocurability and the light and moisture-curable resin composition. is preferably 7 or less, more preferably 6 or less, and more preferably 5.5 or less, from the viewpoint of obtaining an appropriate viscosity.
The OD value after curing of the light moisture-curable resin composition can be measured using an optical densitometer. For the above OD value, it is preferable to use a sample having a thickness of 1 mm obtained by photocuring the light and moisture-curable resin composition.
[ラジカル重合性化合物]
 本発明の光湿気硬化型樹脂組成物は、ラジカル重合性化合物を含有する。光湿気硬化型樹脂組成物は、ラジカル重合性化合物を含有することで光硬化性が付与される。光湿気硬化型樹脂組成物は、光硬化性を有することで、光照射するだけで一定の接着力が付与できるので、適切な初期接着力を確保しやすくなる。また、光照射するだけで一定の硬度以上にでき、取扱性なども確保しやすくなる。
 ラジカル重合性化合物としては、分子中にラジカル重合性官能基を有すればよい。ラジカル重合性官能基としては不飽和二重結合を有する化合物が好適であり、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基などが挙げられる。
[Radical polymerizable compound]
The light and moisture-curable resin composition of the present invention contains a radically polymerizable compound. The photo-moisture-curable resin composition is imparted with photocurability by containing a radically polymerizable compound. Since the light-moisture-curable resin composition has photocurability, a certain amount of adhesive strength can be imparted only by irradiating with light, making it easier to secure an appropriate initial adhesive strength. In addition, the hardness can be increased to a certain level or higher only by irradiating with light, making it easy to secure handleability.
The radically polymerizable compound may have a radically polymerizable functional group in its molecule. A compound having an unsaturated double bond is preferable as the radically polymerizable functional group, and examples thereof include (meth)acryloyl group, vinyl group, styryl group, and allyl group.
 上記したものの中では、接着性の観点から、(メタ)アクリロイル基が好適であり、すなわち、ラジカル重合性化合物は、(メタ)アクリロイル基を有する化合物を含有することが好ましい。なお、(メタ)アクリロイル基を有する化合物は、以下、「(メタ)アクリル化合物」ともいう。また、本明細書において、「(メタ)アクリロイル基」は、アクリロイル基又は(メタ)アクリロイル基を意味し、「(メタ)アクリル」はアクリル又はメタクリルを意味し、他の類似する用語も同様である。 Among the above, a (meth)acryloyl group is preferable from the viewpoint of adhesiveness, that is, the radically polymerizable compound preferably contains a compound having a (meth)acryloyl group. In addition, the compound which has a (meth)acryloyl group is hereafter also called a "(meth)acrylic compound." In the present specification, "(meth)acryloyl group" means acryloyl group or (meth)acryloyl group, "(meth)acryl" means acryl or methacryl, and other similar terms are the same. be.
 ラジカル重合性化合物は、1分子中に1つのラジカル重合性官能基を有する単官能ラジカル重合性化合物、1分子中に2以上のラジカル重合性官能基を有する多官能ラジカル重合性化合物の一方又は両方を含んでもよいが、光湿気硬化型樹脂組成物の初期接着力を向上させる観点から、単官能ラジカル重合性化合物を含むことが好ましい。また、ラジカル重合性化合物は、単官能ラジカル重合性化合物として、少なくとも、(メタ)アクリル化合物である単官能の(メタ)アクリル化合物を含むことがより好ましい。なお、単官能ラジカル重合性化合物は、重合され、繰り返し単位を有するプレポリマーでもよいが、通常は繰り返し単位を有さない単官能モノマーを使用するとよい。 The radically polymerizable compound is one or both of a monofunctional radically polymerizable compound having one radically polymerizable functional group in one molecule and a multifunctional radically polymerizable compound having two or more radically polymerizable functional groups in one molecule. Although it may contain, from the viewpoint of improving the initial adhesive strength of the light moisture-curable resin composition, it is preferable to contain a monofunctional radically polymerizable compound. Moreover, the radically polymerizable compound more preferably contains at least a monofunctional (meth)acrylic compound, which is a (meth)acrylic compound, as the monofunctional radically polymerizable compound. The monofunctional radically polymerizable compound may be a polymerized prepolymer having repeating units, but it is usually preferable to use a monofunctional monomer having no repeating units.
 光湿気硬化型樹脂組成物は、光湿気硬化型樹脂組成物の初期接着力を向上させる観点からは、ラジカル重合性化合物として単官能ラジカル重合性化合物を多く含有することが好ましい。ラジカル重合性化合物として単官能ラジカル重合性化合物を多く含有する場合、光硬化後に他の被着体を圧着させたときの接着面積を大きくできるため、初期接着力を高めることができる。具体的には、初期接着力を向上させる観点からは、光湿気硬化型樹脂組成物における単官能ラジカル重合性化合物の含有量は、ラジカル重合性化合物100質量部に対して、70質量部以上であることが好ましく、80質量部以上であることがより好ましく、90質量部以上であることがさらに好ましく、95質量部以上であることが特に好ましい。また、初期接着力を向上させる観点からは、単官能ラジカル重合性化合物の上記含有量の上限は特に限定されず、100質量部以下であればよい。 From the viewpoint of improving the initial adhesive strength of the light and moisture-curable resin composition, the light and moisture-curable resin composition preferably contains a large amount of a monofunctional radically polymerizable compound as a radically polymerizable compound. When a large amount of a monofunctional radically polymerizable compound is contained as the radically polymerizable compound, it is possible to increase the initial adhesive strength because the adhesion area when another adherend is press-bonded after photocuring can be increased. Specifically, from the viewpoint of improving the initial adhesive strength, the content of the monofunctional radically polymerizable compound in the light and moisture-curable resin composition is 70 parts by mass or more with respect to 100 parts by mass of the radically polymerizable compound. It is preferably at least 80 parts by mass, more preferably at least 90 parts by mass, and particularly preferably at least 95 parts by mass. Moreover, from the viewpoint of improving the initial adhesive strength, the upper limit of the content of the monofunctional radically polymerizable compound is not particularly limited, and may be 100 parts by mass or less.
(単官能ラジカル重合性化合物)
 ラジカル重合性化合物は、単官能ラジカル重合性化合物として、窒素含有化合物を含むことが好ましい。窒素含有化合物を用いると、光湿気硬化型樹脂組成物の接着力が良好にしやすくなる。光湿気硬化型樹脂組成物は、被着体に塗布した後、紫外線などの活性エネルギー線を照射して光硬化されるが、その際、一般的には後述するように酸素存在下で光硬化されることが多い。ラジカル重合性化合物が窒素含有化合物を含有すると、酸素存在下でも適切に光硬化され、それにより、接着力が良好になると推定される。
(Monofunctional radically polymerizable compound)
The radically polymerizable compound preferably contains a nitrogen-containing compound as a monofunctional radically polymerizable compound. The use of a nitrogen-containing compound tends to improve the adhesive strength of the light and moisture-curable resin composition. The light-moisture-curable resin composition is applied to an adherend and then photocured by irradiating it with an active energy ray such as ultraviolet rays. It is often done. It is presumed that when the radically polymerizable compound contains a nitrogen-containing compound, it is appropriately photocured even in the presence of oxygen, thereby improving the adhesive strength.
 窒素含有化合物は、鎖状の窒素含有化合物及び環状構造を有する窒素含有化合物の一方又は両方を含有してもよいが、光湿気硬化型樹脂組成物の接着力を良好にする観点から、環状構造を有する窒素含有化合物を含むことが好ましく、鎖状の窒素含有化合物と、環状構造を有する窒素含有化合物を併用することがより好ましい。 The nitrogen-containing compound may contain one or both of a linear nitrogen-containing compound and a nitrogen-containing compound having a cyclic structure. It is more preferable to use a chain nitrogen-containing compound and a nitrogen-containing compound having a cyclic structure in combination.
 環状構造を有する窒素含有化合物としては、N-ビニルピロリドン、N-ビニル-ε-カプロラクタムなどのラクタム構造を有する窒素含有化合物、N-アクリロイルモルホリンなどのモルホリン骨格含有化合物、N-(メタ)アクリロイルオキシエチルヘキサヒドロフタルイミド等の環状イミド化合物などが挙げられる。これらの中では、具体的にはN-ビニル-ε-カプロラクタムなどのアミド基含有化合物がさらに好ましい。なお、本明細書では、環状構造を有する窒素含有化合物は、環状窒素含有化合物ともいい、窒素原子が環自体を構成する原子に含まれるラジカル重合性化合物を環状窒素含有化合物とし、その他の窒素含有化合物は、鎖状の窒素含有化合物とする。 Nitrogen-containing compounds having a cyclic structure include nitrogen-containing compounds having a lactam structure such as N-vinylpyrrolidone and N-vinyl-ε-caprolactam, morpholine skeleton-containing compounds such as N-acryloylmorpholine, N-(meth)acryloyloxy cyclic imide compounds such as ethylhexahydrophthalimide; Among these, specifically, amide group-containing compounds such as N-vinyl-ε-caprolactam are more preferable. In the present specification, a nitrogen-containing compound having a cyclic structure is also referred to as a cyclic nitrogen-containing compound, and a radically polymerizable compound in which a nitrogen atom is contained in the atoms constituting the ring itself is a cyclic nitrogen-containing compound, and other nitrogen-containing compounds. The compound is a chain nitrogen-containing compound.
 鎖状の窒素含有化合物としては、例えば、ジメチルアミノ(メタ)アクリレート、ジエチルアミノ(メタ)アクリレート、アミノメチル(メタ)アクリレート、アミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート等の鎖状のアミノ基含有(メタ)アクリレート、ジアセトンアクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、N-イソプロピルアクリルアミド、N-ヒドロキシエチルアクリルアミド、アクリルアミド、メタクリルアミド等の鎖状の(メタ)アクリルアミド化合物、N-ビニルアセトアミドなどが挙げられる。 Examples of chain nitrogen-containing compounds include chain nitrogen-containing compounds such as dimethylamino (meth) acrylate, diethylamino (meth) acrylate, aminomethyl (meth) acrylate, aminoethyl (meth) acrylate, and dimethylaminoethyl (meth) acrylate. Chain (meth)acrylamides such as amino group-containing (meth)acrylates, diacetoneacrylamide, N,N-dimethylacrylamide, N,N-diethylacrylamide, N-isopropylacrylamide, N-hydroxyethylacrylamide, acrylamide, and methacrylamide compound, N-vinylacetamide, and the like.
 また、鎖状の窒素含有化合物としては、単官能のウレタン(メタ)アクリレートであってもよい。単官能のウレタン(メタ)アクリレートを使用することで、湿気硬化性樹脂として、ウレタン樹脂、特にポリカーボネート骨格を有するウレタン樹脂を使用した場合に、湿気硬化性樹脂との相溶性が良好となり、接着力を向上させやすい。また、ウレタン(メタ)アクリレートは、比較的極性が高いので、特にガラスに対する接着力を上昇させやすくなる。 Also, the chain nitrogen-containing compound may be a monofunctional urethane (meth)acrylate. By using a monofunctional urethane (meth)acrylate, when using a urethane resin, especially a urethane resin having a polycarbonate skeleton, as a moisture-curable resin, compatibility with the moisture-curable resin is improved and adhesive strength is improved. Easy to improve. In addition, urethane (meth)acrylate has a relatively high polarity, so it is easy to increase the adhesive strength especially to glass.
 単官能のウレタン(メタ)アクリレートは、例えば、イソシアネート化合物に、水酸基を有する(メタ)アクリル酸誘導体を、反応させたものを使用することができる。
 上記水酸基を有する(メタ)アクリル酸誘導体としては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等の二価のアルコールのモノ(メタ)アクリレートや、トリメチロールエタン、トリメチロールプロパン、グリセリン等の三価のアルコールのモノ(メタ)アクリレート等が挙げられる。
A monofunctional urethane (meth)acrylate can be used, for example, obtained by reacting an isocyanate compound with a (meth)acrylic acid derivative having a hydroxyl group.
Examples of (meth)acrylic acid derivatives having a hydroxyl group include dihydric alcohols such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and polyethylene glycol. and mono(meth)acrylates of trihydric alcohols such as trimethylolethane, trimethylolpropane and glycerin.
 ウレタン(メタ)アクリレートを得るために使用するイソシアネート化合物としては、ブタンイソシアネート、ヘキサンイソシアネート、デカンイソシアネートなどのアルカンモノイソシアネート、シクロペンタンイソシアネート、シクロヘキサンイソシアネート、イソホロンモノイソシアネートなどの環状脂肪族モノイソシアネートなどの脂肪族モノイソシアネートが挙げられる。
 単官能のウレタン(メタ)アクリレートは、より具体的には、上記したモノイソシアネート化合物と、二価のアルコールのモノ(メタ)アクリレートとを反応して得られたウレタン(メタ)アクリレートが好ましく、その好適な具体例としては、1,2-エタンジオール1-アクリラート2-(N-ブチルカルバマート)が挙げられる。
 鎖状の窒素含有化合物は、上記のなかでは、単官能ウレタン(メタ)アクリレートを含むことが好ましく、また、単官能ウレタン(メタ)アクリレートと、(メタ)アクリルアミド化合物などの単官能ウレタン(メタ)アクリレート以外の化合物とを併用することも好ましい。
Isocyanate compounds used to obtain urethane (meth)acrylates include alkane monoisocyanates such as butane isocyanate, hexane isocyanate and decane isocyanate; group monoisocyanates.
More specifically, the monofunctional urethane (meth)acrylate is preferably a urethane (meth)acrylate obtained by reacting the monoisocyanate compound described above with a mono(meth)acrylate of a dihydric alcohol. A preferred specific example is 1,2-ethanediol 1-acrylate 2-(N-butylcarbamate).
Among the above, the chain nitrogen-containing compound preferably contains a monofunctional urethane (meth)acrylate, and a monofunctional urethane (meth)acrylate and a monofunctional urethane (meth)acrylate such as a (meth)acrylamide compound. It is also preferable to use compounds other than acrylate together.
 光湿気硬化型樹脂組成物における、ラジカル重合性化合物100質量部に対する、単官能ラジカル重合性化合物としての窒素含有化合物の含有量は、光湿気硬化型樹脂組成物の接着力を良好とする観点から、好ましくは10質量部以上、より好ましくは30質量部以上、更に好ましくは40質量部以上であり、最も好ましくは50質量部以上である。また、上記単官能ラジカル重合性化合物としての窒素含有化合物の上記含有量は、窒素含有化合物以外のラジカル重合性化合物を適切な量含有させるために、好ましくは95質量部以下、より好ましくは90質量部以下、さらに好ましくは85質量部以下ある。 The content of the nitrogen-containing compound as a monofunctional radically polymerizable compound with respect to 100 parts by mass of the radically polymerizable compound in the light and moisture-curable resin composition is from the viewpoint of improving the adhesive strength of the light and moisture-curable resin composition. , preferably 10 parts by mass or more, more preferably 30 parts by mass or more, still more preferably 40 parts by mass or more, and most preferably 50 parts by mass or more. In addition, the content of the nitrogen-containing compound as the monofunctional radically polymerizable compound is preferably 95 parts by mass or less, more preferably 90 parts by mass, in order to contain an appropriate amount of the radically polymerizable compound other than the nitrogen-containing compound. parts or less, more preferably 85 parts by mass or less.
 単官能ラジカル重合性化合物が、鎖状の窒素含有化合物と、環状構造を有する窒素含有化合物を有する場合、単官能ラジカル重合性化合物における、鎖状の窒素含有化合物に対する、環状構造を有する窒素含有化合物の質量比(環状/鎖状)は0.1以上2.0以下が好ましく、0.2以上1.5以下がより好ましく、0.4以上1.2以下がさらに好ましい。環状/鎖状の質量比を上記範囲内とすることで、光湿気硬化型樹脂組成物の接着力を良好にできる。 When the monofunctional radically polymerizable compound has a linear nitrogen-containing compound and a nitrogen-containing compound having a cyclic structure, the monofunctional radically polymerizable compound has a nitrogen-containing compound having a cyclic structure relative to the linear nitrogen-containing compound. (cyclic/chain) is preferably 0.1 or more and 2.0 or less, more preferably 0.2 or more and 1.5 or less, and still more preferably 0.4 or more and 1.2 or less. By setting the cyclic/chain mass ratio within the above range, the adhesive strength of the light and moisture-curable resin composition can be improved.
(窒素含有化合物以外の単官能ラジカル重合性化合物)
 ラジカル重合性化合物に含有される単官能ラジカル重合性化合物は、上記した窒素含有化合物以外の化合物(以下、窒素非含有化合物ともいう)を含むことが好ましい。ラジカル重合性化合物が、単官能ラジカル重合性化合物として窒素非含有化合物を含有することで、接着力などを向上させやすくなる。
(Monofunctional Radical Polymerizable Compound Other than Nitrogen-Containing Compound)
The monofunctional radically polymerizable compound contained in the radically polymerizable compound preferably contains a compound other than the nitrogen-containing compound described above (hereinafter also referred to as a nitrogen-free compound). When the radically polymerizable compound contains a nitrogen-free compound as a monofunctional radically polymerizable compound, it becomes easier to improve adhesive strength and the like.
 窒素非含有化合物としては、ラジカル重合性官能基を有する化合物であれば特に制限されないが、単官能の(メタ)アクリル化合物が好ましく、中でもより好ましくは(メタ)アクリル酸エステル化合物が挙げられる。 The nitrogen-free compound is not particularly limited as long as it is a compound having a radically polymerizable functional group, but monofunctional (meth)acrylic compounds are preferred, and (meth)acrylic acid ester compounds are more preferred.
 単官能の(メタ)アクリル酸エステル化合物としては、アルキル(メタ)アクリレート、脂環構造含有(メタ)アクリレート、芳香環含有(メタ)アクリレートなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上併用してもよいが、これらの中では、アルキル(メタ)アクリレート及び芳香環含有(メタ)アクリレートの一方又は両方を使用することが好ましい。
 ラジカル重合性化合物における、アルキル(メタ)アクリレート、脂環構造含有(メタ)アクリレート、及び芳香環含有(メタ)アクリレートの合計含有量は、ラジカル重合性化合物100質量部に対して、好ましくは5質量部以上、より好ましくは10質量部以上、更に好ましくは15質量部以上である。また、上記含有量は、好ましくは90質量部以下、より好ましくは70質量部以下、更に好ましくは60質量部以下、最も好ましくは40質量部以下である。
Monofunctional (meth)acrylic acid ester compounds include alkyl (meth)acrylates, alicyclic structure-containing (meth)acrylates, and aromatic ring-containing (meth)acrylates. These may be used alone or in combination of two or more. Among them, one or both of alkyl (meth)acrylates and aromatic ring-containing (meth)acrylates may be used. is preferred.
The total content of the alkyl (meth)acrylate, the alicyclic structure-containing (meth)acrylate, and the aromatic ring-containing (meth)acrylate in the radically polymerizable compound is preferably 5 parts by mass with respect to 100 parts by mass of the radically polymerizable compound. parts or more, more preferably 10 parts by mass or more, and still more preferably 15 parts by mass or more. The above content is preferably 90 parts by mass or less, more preferably 70 parts by mass or less, even more preferably 60 parts by mass or less, and most preferably 40 parts by mass or less.
 アルキル(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレートなど、アルキル基の炭素数が1~18のアルキル(メタ)アクリレートが挙げられる。
 脂環構造含有(メタ)アクリレートとしては、シクロヘキシル(メタ)アクリレート、4-tert-ブチルシクロヘキシル(メタ)アクリレート、3,3,5-トリメチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート等の脂環式構造を有する(メタ)アクリレートが挙げられる。
 芳香環含有(メタ)アクリレートとしては、例えば、ベンジル(メタ)アクリレート、2-フェニルエチル(メタ)アクリレート等のフェニルアルキル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等のフェノキシアルキル(メタ)アクリレートなどが挙げられる。
Examples of alkyl (meth)acrylates include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, t-butyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isononyl (meth)acrylate, isodecyl (meth)acrylate, lauryl (meth)acrylate, isomyristyl (meth)acrylate, stearyl (meth)acrylate ) and alkyl (meth)acrylates having 1 to 18 carbon atoms in the alkyl group, such as acrylates.
Alicyclic structure-containing (meth)acrylates include cyclohexyl (meth)acrylate, 4-tert-butylcyclohexyl (meth)acrylate, 3,3,5-trimethylcyclohexyl (meth)acrylate, isobornyl (meth)acrylate, dicyclopentenyl (Meth)acrylates having an alicyclic structure such as (meth)acrylates can be mentioned.
Examples of aromatic ring-containing (meth)acrylates include phenylalkyl (meth)acrylates such as benzyl (meth)acrylate and 2-phenylethyl (meth)acrylate, and phenoxyalkyl (meth)acrylates such as phenoxyethyl (meth)acrylate. is mentioned.
 単官能の(メタ)アクリル酸エステル化合物としては、アルキル(メタ)アクリレート、脂環構造含有(メタ)アクリレート、及び芳香環含有(メタ)アクリレート以外も使用でき、例えば、環状エーテル基含有(メタ)アクリレートも使用できる。
 環状エーテル基含有(メタ)アクリレートとしては、エポキシ環、オキセタン環、テトラヒドロフラン環、ジオキソラン環、ジオキサン環などを有する(メタ)アクリレートが挙げられる。
 エポキシ環含有(メタ)アクリレートとしては、例えば、グリシジル(メタ)アクリレートが挙げられる。オキセタン環含有(メタ)アクリレートとしては、(3-エチルオキセタン-3-イル)メチル(メタ)アクリレートが挙げられる。テトラヒドロフラン環含有(メタ)アクリレートとしては、テトラヒドロフルフリル(メタ)アクリレート、テトラヒドロフルフリルアルコールの(メタ)アクリル酸多量体エステルなどが挙げられる。ジオキソラン環含有(メタ)アクリレートとしては、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート、(2,2-シクロヘキシル-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレートなどが挙げられる。ジオキサン環を有する(メタ)アクリレートとしては、環状トリメチロールプロパンホルマール(メタ)アクリレートなどが挙げられる。
 環状エーテル基含有(メタ)アクリレートとしては、オキセタン環含有(メタ)アクリレート、又はテトラヒドロフラン環含有(メタ)アクリレートのいずれかを使用することが好ましいが、これらを併用することも好ましい。
As the monofunctional (meth) acrylic acid ester compound, alkyl (meth) acrylates, alicyclic structure-containing (meth) acrylates, and aromatic ring-containing (meth) acrylates can also be used, for example, cyclic ether group-containing (meth) Acrylates can also be used.
Cyclic ether group-containing (meth)acrylates include (meth)acrylates having an epoxy ring, oxetane ring, tetrahydrofuran ring, dioxolane ring, dioxane ring, or the like.
Examples of epoxy ring-containing (meth)acrylates include glycidyl (meth)acrylate. Oxetane ring-containing (meth)acrylates include (3-ethyloxetane-3-yl)methyl (meth)acrylate. Tetrahydrofuran ring-containing (meth)acrylates include tetrahydrofurfuryl (meth)acrylate and tetrahydrofurfuryl alcohol (meth)acrylic acid polymeric esters. Dioxolane ring-containing (meth)acrylates include (2-methyl-2-ethyl-1,3-dioxolan-4-yl)methyl (meth)acrylate, (2,2-cyclohexyl-1,3-dioxolane-4- yl)methyl (meth)acrylate and the like. Examples of (meth)acrylates having a dioxane ring include cyclic trimethylolpropane formal (meth)acrylates.
As the cyclic ether group-containing (meth)acrylate, it is preferable to use either an oxetane ring-containing (meth)acrylate or a tetrahydrofuran ring-containing (meth)acrylate, but it is also preferable to use these together.
 また、単官能の(メタ)アクリル酸エステル化合物としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレートなどのアルコキシアルキル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、エトキシエチレングリコール(メタ)アクリレートなどのアルコキシエチレングリコール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、エトキシトリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレートなどのポリオキシエチレン系(メタ)アクリレートなども使用してもよい。
 また、単官能の(メタ)アクリル化合物としては、アクリル酸、メタクリル酸などのカルボキシル含有(メタ)アクリル化合物などを使用してもよい。
In addition, the monofunctional (meth)acrylic acid ester compounds include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate. Alkoxyalkyl (meth)acrylates such as hydroxyalkyl (meth)acrylate, 2-methoxyethyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate, 2-butoxyethyl (meth)acrylate, methoxyethylene glycol (meth)acrylate acrylates, alkoxyethylene glycol (meth)acrylates such as ethoxyethylene glycol (meth)acrylate, methoxydiethylene glycol (meth)acrylate, methoxytriethylene glycol (meth)acrylate, methoxypolyethylene glycol (meth)acrylate, ethyl carbitol (meth)acrylate , ethoxydiethylene glycol (meth)acrylate, ethoxytriethylene glycol (meth)acrylate, and polyoxyethylene-based (meth)acrylate such as ethoxypolyethylene glycol (meth)acrylate may also be used.
As the monofunctional (meth)acrylic compound, a carboxyl-containing (meth)acrylic compound such as acrylic acid or methacrylic acid may be used.
(多官能ラジカル重合性化合物)
 本発明の光湿気硬化型樹脂組成物は、ラジカル重合性化合物として多官能ラジカル重合性化合物を含有してもよい。多官能ラジカル重合性化合物を含有することにより、ゲル分率を一定以上としやすくなり、一定以上の硬度を付与しやすくなる。そのため、光硬化後に形状保持性が良好となり、例えば一方の被着体に細幅に塗布して光硬化した後に、他の被着体を圧着させても、光湿気硬化性樹脂組成物が潰れることを防止して、細幅の状態に維持しやすくなる。
 多官能ラジカル重合性化合物としては、2官能の(メタ)アクリル酸エステル化合物、3官能以上の(メタ)アクリル酸エステル化合物、2官能以上のウレタン(メタ)アクリレートなどが挙げられる。これらの中では、2官能又は3官能以上の(メタ)アクリル酸エステル化合物が好ましく、ゲル分率を高くする観点から、3官能以上の(メタ)アクリル酸エステル化合物がより好ましい。
(Polyfunctional radically polymerizable compound)
The light-moisture-curable resin composition of the present invention may contain a polyfunctional radically polymerizable compound as a radically polymerizable compound. By containing a polyfunctional radically polymerizable compound, it becomes easy to make a gel fraction more than a certain level, and to give hardness more than a certain level. Therefore, the shape retention property becomes good after photocuring, and for example, even if the composition is applied to one adherend in a narrow width and photocured, and then the other adherend is crimped, the light and moisture-curable resin composition is crushed. It prevents this and makes it easier to maintain the narrow width.
Examples of polyfunctional radically polymerizable compounds include bifunctional (meth)acrylic acid ester compounds, trifunctional or higher (meth)acrylic acid ester compounds, and bifunctional or higher urethane (meth)acrylates. Among these, bifunctional or trifunctional or higher (meth)acrylic acid ester compounds are preferred, and from the viewpoint of increasing the gel fraction, trifunctional or higher (meth)acrylic acid ester compounds are more preferred.
 光湿気硬化型樹脂組成物が多官能ラジカル重合性化合物を含有する場合、多官能ラジカル重合性化合物の含有量は、光湿気硬化型樹脂組成物の形状保持性を高めやすくする観点から、ラジカル重合性化合物100質量部に対して、0.1質量部以上が好ましく、0.3質量部以上がより好ましく、0.5質量部以上がさらに好ましい。形状保持性を高める観点からは、多官能ラジカル重合性化合物の含有量の上限は特に規定されないが、光湿気硬化性樹脂組成物に適度な柔軟性を付与し、被着体同士を接着しやすくする観点からは、30質量部以下が好ましく、20質量部以下がより好ましい。 When the light-moisture-curable resin composition contains a polyfunctional radically polymerizable compound, the content of the polyfunctional radically-polymerizable compound, from the viewpoint of making it easier to improve the shape retention of the light-moisture-curable resin composition, radical polymerization. 0.1 parts by mass or more is preferable, 0.3 parts by mass or more is more preferable, and 0.5 parts by mass or more is even more preferable with respect to 100 parts by mass of the chemical compound. From the viewpoint of improving shape retention, the upper limit of the content of the polyfunctional radically polymerizable compound is not particularly defined, but it imparts appropriate flexibility to the light and moisture-curable resin composition, making it easy to bond the adherends together. 30 parts by mass or less is preferable, and 20 parts by mass or less is more preferable.
 2官能の(メタ)アクリル酸エステル化合物としては、例えば、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。 Examples of bifunctional (meth)acrylic acid ester compounds include 1,3-butanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, and 1,6-hexanediol di(meth)acrylate. , 1,9-nonanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di(meth)acrylate, ethylene glycol di(meth)acrylate (meth)acrylate, diethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate (Meth)acrylate, ethylene oxide-added bisphenol A di(meth)acrylate, propylene oxide-added bisphenol A di(meth)acrylate, ethylene oxide-added bisphenol F di(meth)acrylate, dimethyloldicyclopentadienyl di(meth)acrylate, neo Pentyl glycol di(meth)acrylate, 2-hydroxy-3-(meth)acryloyloxypropyl (meth)acrylate, carbonate diol di(meth)acrylate, polyether diol di(meth)acrylate, polyester diol di(meth)acrylate , polycaprolactone diol di(meth)acrylate, polybutadiene diol di(meth)acrylate, and the like.
 また、3官能以上の(メタ)アクリル酸エステル化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。 Examples of tri- or more functional (meth)acrylic acid ester compounds include trimethylolpropane tri(meth)acrylate, ethylene oxide-added trimethylolpropane tri(meth)acrylate, propylene oxide-added trimethylolpropane tri(meth)acrylate, Caprolactone-modified trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, glycerin tri(meth)acrylate, propylene oxide-added glycerin tri(meth)acrylate, tris(meth)acryloyloxyethyl phosphate, ditrimethylolpropane tetra (Meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate and the like.
 2官能以上のウレタン(メタ)アクリレートは、例えば、イソシアネート化合物に、水酸基を有する(メタ)アクリル酸誘導体を、反応させたものを使用することができる。
 上記水酸基を有する(メタ)アクリル酸誘導体としては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等の二価のアルコールのモノ(メタ)アクリレートや、トリメチロールエタン、トリメチロールプロパン、グリセリン等の三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレートや、ビスフェノールA型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート等が挙げられる。
Difunctional or higher urethane (meth)acrylate can be used, for example, obtained by reacting an isocyanate compound with a (meth)acrylic acid derivative having a hydroxyl group.
Examples of (meth)acrylic acid derivatives having a hydroxyl group include dihydric alcohols such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and polyethylene glycol. mono (meth) acrylate, trimethylol ethane, trimethylol propane, trihydric alcohol mono (meth) acrylate or di (meth) acrylate such as glycerin, epoxy (meth) acrylate such as bisphenol A type epoxy (meth) ) acrylates and the like.
 ウレタン(メタ)アクリレートを得るために使用するイソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシリレンジイソシアネート、1,6,11-ウンデカントリイソシアネート等のポリイソシアネート化合物が挙げられる。 Examples of isocyanate compounds used to obtain urethane (meth)acrylates include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, diphenylmethane-4, 4'-diisocyanate (MDI), hydrogenated MDI, polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris ( Polyisocyanate compounds such as isocyanatophenyl)thiophosphate, tetramethylxylylene diisocyanate, 1,6,11-undecane triisocyanate and the like can be mentioned.
 また、イソシアネート化合物としては、ポリオールと過剰のイソシアネート化合物との反応により得られる鎖延長されたポリイソシアネート化合物も使用することができる。ここで、ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等が挙げられる。
 これらポリイソシアネート化合物を使用することで、多官能のウレタン(メタ)アクリレートを得ることができる。
As the isocyanate compound, a chain-extended polyisocyanate compound obtained by reacting a polyol with an excess isocyanate compound can also be used. Examples of polyols include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, and polycaprolactone diol.
Polyfunctional urethane (meth)acrylates can be obtained by using these polyisocyanate compounds.
<湿気硬化性樹脂>
 本発明で使用する湿気硬化性樹脂としては、例えば、湿気硬化性ウレタン樹脂、加水分解性シリル基含有樹脂、湿気硬化性シアノアクリレート樹脂等が挙げられ、なかでも、湿気硬化性ウレタン樹脂及び加水分解性シリル基含有樹脂のいずれかが好ましく、湿気硬化性ウレタン樹脂がより好ましい。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
<Moisture curable resin>
Examples of moisture-curable resins used in the present invention include moisture-curable urethane resins, hydrolyzable silyl group-containing resins, and moisture-curable cyanoacrylate resins. silyl group-containing resins are preferred, and moisture-curable urethane resins are more preferred. These may be used individually by 1 type, and may use 2 or more types together.
(湿気硬化性ウレタン樹脂)
 湿気硬化性ウレタン樹脂は、1分子中に2個以上の水酸基を有するポリオール化合物と、1分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物とを反応させることにより得ることができる。湿気硬化性ウレタン樹脂は、分子内にイソシアネート基を有するとよく、分子内のイソシアネート基が空気中又は被着体中の水分と反応して硬化する。湿気硬化性ウレタン樹脂は、1分子中にイソシアネート基を1個のみ有していてもよいし、2個以上有していてもよいが、湿気硬化性ウレタン樹脂は、1分子中にイソシアネート基を1個又は2個有することが好ましい。また、イソシアネート基は、特に限定されないが、湿気硬化性ウレタン樹脂の末端に設けられるとよい。
(moisture-curing urethane resin)
A moisture-curable urethane resin can be obtained by reacting a polyol compound having two or more hydroxyl groups in one molecule with a polyisocyanate compound having two or more isocyanate groups in one molecule. The moisture-curable urethane resin preferably has an isocyanate group in the molecule, and the isocyanate group in the molecule reacts with moisture in the air or in the adherend to cure. The moisture-curable urethane resin may have only one isocyanate group in one molecule, or may have two or more isocyanate groups. It is preferable to have one or two. Also, the isocyanate group is not particularly limited, but is preferably provided at the end of the moisture-curable urethane resin.
 上記ポリオール化合物とポリイソシアネート化合物との反応は、通常、ポリオール化合物中の水酸基(OH)とポリイソシアネート化合物中のイソシアネート基(NCO)のモル比で[NCO]/[OH]=2.0~2.5の範囲で行われる。
 湿気硬化性ウレタン樹脂の原料となるポリオール化合物としては、ポリウレタンの製造に通常用いられている公知のポリオール化合物を使用することができ、例えば、ポリエステルポリオール、ポリエーテルポリオール、ポリアルキレンポリオール、ポリカーボネートポリオール等が挙げられる。これらのポリオール化合物は、1種単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。
In the reaction between the polyol compound and the polyisocyanate compound, the molar ratio of the hydroxyl group (OH) in the polyol compound to the isocyanate group (NCO) in the polyisocyanate compound is usually [NCO]/[OH]=2.0 to 2. .5 range.
As the polyol compound used as a raw material for the moisture-curable urethane resin, known polyol compounds that are commonly used in the production of polyurethane can be used. is mentioned. These polyol compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
 湿気硬化性ウレタン樹脂は、ポリカーボネート骨格、ポリエーテル骨格、又はポリエステル骨格を有する湿気硬化性ウレタン樹脂の少なくともいずれかが好ましく、ポリカーボネート骨格、又はポリエーテル骨格を有する湿気硬化性ウレタン樹脂の少なくともいずれかがより好ましく、ポリカーボネート骨格を有する湿気硬化性ウレタン樹脂がさらに好ましい。湿気硬化性ウレタン樹脂は、ポリカーボネート骨格を有することで、接着力が優れたものとなる。さらには、硬化物の耐候性、耐熱性、耐湿性などに優れた光湿気硬化性樹脂組成物も提供できる。 The moisture-curable urethane resin is preferably at least one of moisture-curable urethane resins having a polycarbonate skeleton, a polyether skeleton, or a polyester skeleton, and at least one of moisture-curable urethane resins having a polycarbonate skeleton or a polyether skeleton is preferred. Moisture-curable urethane resins having a polycarbonate skeleton are more preferred. Moisture-curable urethane resins have a polycarbonate skeleton and thus have excellent adhesive strength. Furthermore, it is possible to provide a light and moisture-curable resin composition which is excellent in weather resistance, heat resistance, moisture resistance, etc. of the cured product.
(ポリカーボネート骨格を有する湿気硬化性ウレタン樹脂)
 ポリカーボネート骨格を有する湿気硬化性ウレタン樹脂は、上記ポリオール化合物としてポリカーボネートポリオールを使用することで、ポリカーボネート骨格をウレタン樹脂に導入したものである。ポリカーボネート骨格を有する湿気硬化性ウレタン樹脂は、例えば、1分子中に2個以上の水酸基を有するポリカーボネートポリオールと、1分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物とを反応させることにより得ることができる。
 ポリカーボネートポリオールとしては、ポリカーボネートジオールが好ましく、ポリカーボネートジオールの好ましい具体例としては、以下の式(1)で表される化合物が挙げられる。
(Moisture-curable urethane resin having a polycarbonate skeleton)
A moisture-curable urethane resin having a polycarbonate skeleton is obtained by introducing a polycarbonate skeleton into a urethane resin by using a polycarbonate polyol as the polyol compound. A moisture-curable urethane resin having a polycarbonate skeleton is obtained, for example, by reacting a polycarbonate polyol having two or more hydroxyl groups in one molecule with a polyisocyanate compound having two or more isocyanate groups in one molecule. be able to.
Polycarbonate diols are preferred as the polycarbonate polyols, and preferred specific examples of polycarbonate diols include compounds represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001

 式(1)においてRは炭素数4~16の二価の炭価水素基、nは2~500の整数である。
Figure JPOXMLDOC01-appb-C000001

In formula (1), R is a divalent hydrocarbon group having 4 to 16 carbon atoms, and n is an integer of 2 to 500.
 式(1)において、Rは、好ましくは脂肪族飽和炭化水素基である。Rが脂肪族飽和炭化水素基であることで、耐熱性が良好になりやすくなる。また、熱劣化などにより黄変等も生じにくくなり耐候性も良好となる。脂肪族飽和炭化水素基からなるRは、鎖状構造又は環状構造を有していてもよいが、応力緩和性や柔軟性を良好にしやすい観点から、鎖状構造を有することが好ましい。また、鎖状構造のRは直鎖状又は分岐状のいずれでもよい。
 nは5~200であることが好ましく、10~150であることがより好ましく、20~50であることがさらに好ましい。
In formula (1), R is preferably an aliphatic saturated hydrocarbon group. When R is an aliphatic saturated hydrocarbon group, the heat resistance tends to be good. In addition, yellowing or the like due to heat deterioration or the like is less likely to occur, and weather resistance is improved. R composed of an aliphatic saturated hydrocarbon group may have a chain structure or a cyclic structure, but preferably has a chain structure from the viewpoint of easily improving stress relaxation properties and flexibility. In addition, R in the chain structure may be linear or branched.
n is preferably 5-200, more preferably 10-150, even more preferably 20-50.
 また、湿気硬化性ウレタン樹脂を構成するポリカーボネートポリオールに含まれるRは、1種単独で使用してよいし、2種以上を併用してもよい。2種以上併用する場合には、少なくとも一部が炭素数6以上の鎖状の脂肪族飽和炭化水素基であることが好ましい。
 炭素数6以上の鎖状の脂肪族飽和炭化水素基を含むことで、応力緩和性や柔軟性を良好にしやすくなる。ポリカーボネートジオールが上記式(1)で表される化合物である場合、炭素数6以上の鎖状の脂肪族飽和炭化水素基の割合は、全ポリカーボネートジオールに含まれるRに対して、20モル%以上100モル%以下が好ましく、30%以上100モル%以下がより好ましく、50%以上100モル%以下がさらに好ましい。
 炭素数6以上の鎖状の脂肪族飽和炭化水素基は、好ましくは炭素数6以上12以下であり、さらに好ましくは炭素数6以上10以下である。
Moreover, R contained in the polycarbonate polyol constituting the moisture-curable urethane resin may be used singly or in combination of two or more. When two or more of them are used in combination, at least a part thereof is preferably a chain aliphatic saturated hydrocarbon group having 6 or more carbon atoms.
By including a chain-like aliphatic saturated hydrocarbon group having 6 or more carbon atoms, it becomes easier to improve stress relaxation and flexibility. When the polycarbonate diol is a compound represented by the above formula (1), the ratio of chain aliphatic saturated hydrocarbon groups having 6 or more carbon atoms is 20 mol% or more with respect to R contained in the total polycarbonate diol. It is preferably 100 mol % or less, more preferably 30% or more and 100 mol % or less, and even more preferably 50% or more and 100 mol % or less.
The chain aliphatic saturated hydrocarbon group having 6 or more carbon atoms preferably has 6 or more and 12 or less carbon atoms, more preferably 6 or more and 10 or less carbon atoms.
 Rの具体例としては、テトラメチレン基、ペンチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基などの直鎖状であってもよいし、例えば3-メチルペンチレン基などのメチルペンチレン基、メチルオクタメチレン基などの分岐状であってもよい。1分子中における複数のRは、互いに同一であってもよいし、異なっていてもよい。したがって、一分子中に2種類以上のRを含んでもよく、その場合、好ましくは一分子中に2種又は3種のRを含む。例えば、ポリカーボネートポリオールは、1分子中に炭素数6以下のRと、炭素数7以上のRを含有する共重合体であってもよく、この場合、いずれのRも鎖状の脂肪族飽和炭化水素基であるとよい。
 また、Rは直鎖状の脂肪族飽和炭化水素基を含んでもよいし、分岐状の脂肪族飽和炭化水素基を含んでもよい。ポリカーボネートポリオールにおけるRは分岐状と直鎖状のRが併用されていてもよいし、直鎖状のRが単独で使用されていてもよい。
 なお、ポリカーボネートポリオールは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Specific examples of R may be linear groups such as tetramethylene group, pentylene group, hexamethylene group, heptamethylene group, octamethylene group, nonamethylene group, and decamethylene group, and for example, 3-methylpentylene group. It may be branched such as a methylpentylene group such as a methylpentylene group or a methyloctamethylene group. Plural R's in one molecule may be the same or different. Therefore, one molecule may contain two or more types of R, and in that case, one molecule preferably contains two or three types of R. For example, the polycarbonate polyol may be a copolymer containing R having 6 or less carbon atoms and R having 7 or more carbon atoms in one molecule. It is preferable that it is a hydrogen group.
In addition, R may contain a linear saturated aliphatic hydrocarbon group, or may contain a branched saturated aliphatic hydrocarbon group. As for R in the polycarbonate polyol, branched and linear R may be used in combination, or linear R may be used alone.
In addition, polycarbonate polyol may be used individually by 1 type, and may be used in combination of 2 or more type.
 湿気硬化性ウレタン樹脂の原料となるポリイソシアネート化合物としては、芳香族ポリイソシアネート化合物、脂肪族ポリイソシアネート化合物が好適に用いられる。
 芳香族ポリイソシアネート化合物としては、例えば、ジフェニルメタンジイソシアネート、ジフェニルメタンジイソシアネートの液状変性物、ポリメリックMDI、トリレンジイソシアネート、ナフタレン-1,5-ジイソシアネート等が挙げられる。
 脂肪族ポリイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、ノルボルナンジイソシアネート、トランスシクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート、水添キシリレンジイソシアネート、水添ジフェニルメタンジイソシアネート、シクロヘキサンジイソシアネート、ビス(イソシアネートメチル)シクロヘキサン、ジシクロヘキシルメタンジイソシアネート等が挙げられる。
 ポリイソシアネート化合物としては、なかでも、全硬化後の接着力を高くできる観点からは、芳香族ポリイソシアネート化合物が好ましく、中でもジフェニルメタンジイソシアネート及びその変性物がより好ましい。また、光湿気硬化性樹脂組成物の硬化物に、応力緩和性、柔軟性などを付与しやすくする観点からは、脂肪族ポリイソシアネート化合物が好ましい。
 ポリイソシアネート化合物は、単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。
Aromatic polyisocyanate compounds and aliphatic polyisocyanate compounds are preferably used as polyisocyanate compounds that are raw materials for moisture-curable urethane resins.
Examples of aromatic polyisocyanate compounds include diphenylmethane diisocyanate, liquid modified diphenylmethane diisocyanate, polymeric MDI, tolylene diisocyanate, naphthalene-1,5-diisocyanate, and the like.
Examples of aliphatic polyisocyanate compounds include hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, norbornane diisocyanate, transcyclohexane-1,4-diisocyanate, isophorone diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate, and cyclohexane diisocyanate. , bis(isocyanatomethyl)cyclohexane, dicyclohexylmethane diisocyanate, and the like.
Among them, the polyisocyanate compound is preferably an aromatic polyisocyanate compound, more preferably diphenylmethane diisocyanate and a modified product thereof, from the viewpoint of increasing the adhesive strength after full curing. Aliphatic polyisocyanate compounds are preferred from the viewpoint of easily imparting stress relaxation properties, flexibility, etc. to the cured product of the light and moisture-curable resin composition.
A polyisocyanate compound may be used independently and may be used in combination of 2 or more type.
(ポリエステル骨格を有する湿気硬化性ウレタン樹脂)
 ポリエステル骨格を有する湿気硬化性ウレタン樹脂は、上記ポリオール化合物としてポリエステルポリオールを使用することで、ポリエステル骨格をウレタン樹脂に導入したものである。ポリエステル骨格を有する湿気硬化性ウレタン樹脂は、1分子中に2個以上の水酸基を有するポリエステルポリオールと、1分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物とを反応させることにより得ることができる。
 上記ポリエステルポリオールとしては、例えば、多価カルボン酸とポリオールとの反応により得られるポリエステルポリオール、ε-カプロラクトンを開環重合して得られるポリ-ε-カプロラクトンポリオール等が挙げられる。
 ポリエステルポリオールの原料となる上記多価カルボン酸としては、例えば、フタル酸、テレフタル酸、イソフタル酸、1,5-ナフタル酸、2,6-ナフタル酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカメチレンジカルボン酸、ドデカメチレンジカルボン酸等が挙げられる。これらの中でも、高温での接着力をより高めやすい観点から、フタル酸、又はアジピン酸が好ましい。
 ポリエステルポリオールの原料となる上記ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、シクロヘキサンジオール等が挙げられる。これらの中でも、高温での接着力をより高めやすい観点から、1,6-ヘキサンジオール、又は1,4-ブタンジオールが好ましい。
 なお、ポリエステルポリオールは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(Moisture-curable urethane resin having a polyester skeleton)
A moisture-curable urethane resin having a polyester skeleton is obtained by introducing a polyester skeleton into a urethane resin by using a polyester polyol as the polyol compound. A moisture-curable urethane resin having a polyester skeleton can be obtained by reacting a polyester polyol having two or more hydroxyl groups in one molecule with a polyisocyanate compound having two or more isocyanate groups in one molecule. can.
Examples of the polyester polyols include polyester polyols obtained by reacting polyvalent carboxylic acids with polyols, poly-ε-caprolactone polyols obtained by ring-opening polymerization of ε-caprolactone, and the like.
Examples of the above-mentioned polyvalent carboxylic acids that are raw materials for polyester polyols include phthalic acid, terephthalic acid, isophthalic acid, 1,5-naphthalic acid, 2,6-naphthalic acid, succinic acid, glutaric acid, adipic acid, and pimelic acid. , suberic acid, azelaic acid, sebacic acid, decamethylenedicarboxylic acid, dodecamethylenedicarboxylic acid, and the like. Among these, phthalic acid or adipic acid is preferable from the viewpoint of easily increasing adhesive strength at high temperatures.
Examples of the polyols that are raw materials for polyester polyols include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, and 1,6-hexanediol. , diethylene glycol, cyclohexanediol, and the like. Among these, 1,6-hexanediol or 1,4-butanediol is preferable from the viewpoint of easily increasing adhesive strength at high temperatures.
In addition, polyester polyol may be used individually by 1 type, and may be used in combination of 2 or more type.
(ポリエーテル骨格を有する湿気硬化性ウレタン樹脂)
 ポリエーテル骨格を有する湿気硬化性ウレタン樹脂は、上記ポリオール化合物としてポリエーテルポリオールを使用することで、ポリエーテル骨格をウレタン樹脂に導入したものである。ポリエーテル骨格を有するウレタン樹脂は、1分子中に2個以上の水酸基を有するポリエーテルポリオールと、1分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物とを反応させることにより得ることができる。
(Moisture-curable urethane resin having a polyether skeleton)
A moisture-curable urethane resin having a polyether skeleton is obtained by introducing a polyether skeleton into a urethane resin by using a polyether polyol as the polyol compound. A urethane resin having a polyether skeleton can be obtained by reacting a polyether polyol having two or more hydroxyl groups in one molecule with a polyisocyanate compound having two or more isocyanate groups in one molecule. .
 ポリエーテルポリオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、テトラヒドロフランの開環重合物、3-メチルテトラヒドロフランの開環重合物、及び、これら若しくはその誘導体のランダム共重合体又はブロック共重合体、ビスフェノール型のポリオキシアルキレン変性体等が挙げられる。これらの中でも、光湿気硬化性樹脂組成物の塗布性を高めやすくなる観点から、ポリプロピレングリコール、テトラヒドロフランの開環重合物、又は3-メチルテトラヒドロフランの開環重合物が好ましい。
 ここで、ビスフェノール型のポリオキシアルキレン変性体は、ビスフェノール型分子骨格の活性水素部分にアルキレンオキシド(例えば、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、イソブチレンオキシド等)を付加反応させて得られるポリエーテルポリオールである。該ポリエーテルポリオールは、ランダム共重合体であってもよいし、ブロック共重合体であってもよい。上記ビスフェノール型のポリオキシアルキレン変性体は、ビスフェノール型分子骨格の両末端に、1種又は2種以上のアルキレンオキシドが付加されていることが好ましい。
 ビスフェノール型としては特に限定されず、A型、F型、S型等が挙げられ、好ましくはビスフェノールA型である。
 また、ポリイソシアネート化合物としては、上述したポリイソシアネート化合物を用いることができる。
Polyether polyols include, for example, polyethylene glycol, polypropylene glycol, ring-opening polymer of tetrahydrofuran, ring-opening polymer of 3-methyltetrahydrofuran, random copolymers or block copolymers of these or their derivatives, bisphenol type polyoxyalkylene modified products of and the like. Among these, polypropylene glycol, a ring-opening polymer of tetrahydrofuran, or a ring-opening polymer of 3-methyltetrahydrofuran are preferable from the viewpoint of easily improving the applicability of the light and moisture-curable resin composition.
Here, the bisphenol-type polyoxyalkylene modified product is a polyether polyol obtained by addition reaction of an alkylene oxide (e.g., ethylene oxide, propylene oxide, butylene oxide, isobutylene oxide, etc.) to the active hydrogen portion of the bisphenol-type molecular skeleton. be. The polyether polyol may be a random copolymer or a block copolymer. In the bisphenol-type polyoxyalkylene modified product, one or more alkylene oxides are preferably added to both ends of the bisphenol-type molecular skeleton.
The bisphenol type is not particularly limited, and includes A type, F type, S type and the like, preferably bisphenol A type.
Moreover, the polyisocyanate compound mentioned above can be used as a polyisocyanate compound.
 ポリエーテル骨格を有する湿気硬化性ウレタン樹脂は、下記式(2)で表される構造を有するポリオール化合物を用いて得られたものをさらに含むことが好ましい。下記式(2)で表される構造を有するポリオール化合物を用いることにより、接着性に優れる光湿気硬化性樹脂組成物、及び、柔軟で伸びがよい硬化物を得ることができ、ラジカル重合性化合物との相溶性に優れるものとなる。
 なかでも、ポリプロピレングリコール、テトラヒドロフラン(THF)化合物の開環重合化合物、又は、メチル基等の置換基を有するテトラヒドロフラン化合物の開環重合化合物からなるポリエーテルポリオールを用いたものが好ましく、ポリプロピレングリコール及びテトラヒドロフラン(THF)化合物の開環重合化合物がより好ましい。テトラヒドロフラン(THF)化合物の開環重合化合物は、一般的にはポリテトラメチレンエーテルグリコールである。
 なお、ポリエーテルポリオールは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
The moisture-curable urethane resin having a polyether skeleton preferably further includes one obtained using a polyol compound having a structure represented by the following formula (2). By using a polyol compound having a structure represented by the following formula (2), it is possible to obtain a light and moisture-curable resin composition with excellent adhesiveness and a cured product that is flexible and has good elongation, and a radically polymerizable compound It becomes a thing excellent in compatibility with.
Among them, it is preferable to use a polyether polyol composed of a ring-opening polymerization compound of polypropylene glycol, a tetrahydrofuran (THF) compound, or a ring-opening polymerization compound of a tetrahydrofuran compound having a substituent such as a methyl group, and polypropylene glycol and tetrahydrofuran. A ring-opening polymerization compound of (THF) compound is more preferred. The ring-opening polymerization compound of tetrahydrofuran (THF) compound is generally polytetramethylene ether glycol.
In addition, polyether polyol may be used individually by 1 type, and may be used in combination of 2 or more type.
Figure JPOXMLDOC01-appb-C000002

 式(2)中、Rは、水素原子、メチル基、又はエチル基を表し、lは、0~5の整数、mは、1~500の整数、nは、1~10の整数である。lは、0~4であることが好ましく、mは、50~200であることが好ましく、nは、1~5であることが好ましい。なお、lが0の場合とは、Rと結合した炭素が直接酸素と結合している場合を意味する。
 上記した中では、nとlの合計が1以上であることがより好ましく、1~3がさらに好ましい。また、Rは水素原子、メチル基であることがより好ましく、メチル基が特に好ましい。
Figure JPOXMLDOC01-appb-C000002

In formula (2), R represents a hydrogen atom, a methyl group, or an ethyl group, l is an integer of 0-5, m is an integer of 1-500, and n is an integer of 1-10. l is preferably 0-4, m is preferably 50-200, and n is preferably 1-5. The case where l is 0 means the case where the carbon bonded to R is directly bonded to oxygen.
Among the above, the sum of n and l is more preferably 1 or more, more preferably 1 to 3. Further, R is more preferably a hydrogen atom or a methyl group, particularly preferably a methyl group.
 上記したポリカーボネート、ポリエステル、又はポリエーテル骨格を有する湿気硬化性ウレタン樹脂は、分子内に2種以上の骨格を有してもよく、例えば、ポリカーボネート骨格とポリエステル骨格を有してもよい。その場合、原料となる上記ポリオール化合物としてポリカーボネートポリオールとポリエステルポリオールを使用するとよい。同様に、ポリエステル骨格とポリエーテル骨格を有する湿気硬化性ウレタン樹脂なども使用してもよい。
 また、湿気硬化性ウレタン樹脂は、上記の通りイソシアネート基を含有するものを使用するとよいが、イソシアネート基を有するものに限定されず、加水分解性シリル基含有ウレタン樹脂であってもよい。
The above-described moisture-curable urethane resin having a polycarbonate, polyester, or polyether skeleton may have two or more skeletons in the molecule, and may have, for example, a polycarbonate skeleton and a polyester skeleton. In that case, it is preferable to use polycarbonate polyol and polyester polyol as the polyol compound as the raw material. Similarly, a moisture-curable urethane resin having a polyester skeleton and a polyether skeleton may also be used.
The moisture-curable urethane resin preferably contains an isocyanate group as described above, but is not limited to one containing an isocyanate group, and may be a urethane resin containing a hydrolyzable silyl group.
 加水分解性シリル基は、例えば下記式(3)で表される。
Figure JPOXMLDOC01-appb-C000003

 式(3)中、Rは、それぞれ独立に、置換されていてもよい炭素数1以上20以下のアルキル基、炭素数6以上20以下アリール基、炭素数7以上20以下のアラルキル基、又は、-OSiR (Rは、それぞれ独立に、炭素数1以上20以下の炭化水素基である)で示されるトリオルガノシロキシ基である。また、式(3)中、Xは、それぞれ独立に、ヒドロキシ基又は加水分解性基である。さらに、式(3)中、aは、1~3の整数である。
A hydrolyzable silyl group is represented, for example, by the following formula (3).
Figure JPOXMLDOC01-appb-C000003

In formula (3), each R 1 is independently an optionally substituted alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or , —OSiR 2 3 (each R 2 is independently a hydrocarbon group having 1 to 20 carbon atoms). Moreover, in formula (3), each X is independently a hydroxy group or a hydrolyzable group. Furthermore, in formula (3), a is an integer of 1-3.
 上記加水分解性基は特に限定されず、例えば、ハロゲン原子、アルコキシ基、アルケニルオキシ基、アリールオキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基等が挙げられる。なかでも、活性が高いことから、ハロゲン原子、アルコキシ基、アルケニルオキシ基、アシルオキシ基が好ましい。また、加水分解性が穏やかで取扱いやすいことから、メトキシ基、エトキシ基等のアルコキシ基がより好ましく、メトキシ基、エトキシ基がさらに好ましい。また、安全性の観点からは、反応により脱離する化合物がそれぞれエタノール、アセトンである、エトキシ基、イソプロペノキシ基が好ましい。 The hydrolyzable group is not particularly limited, and examples thereof include halogen atoms, alkoxy groups, alkenyloxy groups, aryloxy groups, acyloxy groups, ketoximate groups, amino groups, amide groups, acid amide groups, aminooxy groups, mercapto groups, and the like. are mentioned. Among them, a halogen atom, an alkoxy group, an alkenyloxy group, and an acyloxy group are preferable because of their high activity. Further, alkoxy groups such as methoxy and ethoxy groups are more preferred, and methoxy and ethoxy groups are even more preferred, since they are moderately hydrolyzable and easy to handle. From the viewpoint of safety, an ethoxy group and an isopropenoxy group, which are ethanol and acetone, respectively, are preferred.
 上記ヒドロキシ基又は上記加水分解性基は、1個のケイ素原子に対して、1~3個の範囲で結合することができる。上記ヒドロキシ基又は上記加水分解性基が1個のケイ素原子に対して2個以上結合する場合には、それらの基は同一であってもよいし、異なっていてもよい。  The hydroxy group or the hydrolyzable group can be bonded to one silicon atom in the range of 1 to 3. When two or more hydroxy groups or hydrolyzable groups are bonded to one silicon atom, those groups may be the same or different.
 上記式(3)におけるaは、硬化性の観点から、2又は3であることが好ましく、3であることが特に好ましい。また、保存安定性の観点からは、aは、2であることが好ましい。
 また、上記式(3)におけるRとしては、例えば、メチル基、エチル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、フェニル基等のアリール基、ベンジル基等のアラルキル基、トリメチルシロキシ基、クロロメチル基、メトキシメチル基等があげられる。なかでも、メチル基が好ましい。
From the viewpoint of curability, a in the above formula (3) is preferably 2 or 3, and particularly preferably 3. From the viewpoint of storage stability, a is preferably 2.
Examples of R 1 in the above formula (3) include alkyl groups such as a methyl group and an ethyl group, cycloalkyl groups such as a cyclohexyl group, aryl groups such as a phenyl group, aralkyl groups such as a benzyl group, and trimethylsiloxy groups. , chloromethyl group, methoxymethyl group and the like. Among them, a methyl group is preferred.
 上記加水分解性シリル基としては、例えば、メチルジメトキシシリル基、トリメトキシシリル基、トリエトキシシリル基、トリス(2-プロペニルオキシ)シリル基、トリアセトキシシリル基、(クロロメチル)ジメトキシシリル基、(クロロメチル)ジエトキシシリル基、(ジクロロメチル)ジメトキシシリル基、(1-クロロエチル)ジメトキシシリル基、(1-クロロプロピル)ジメトキシシリル基、(メトキシメチル)ジメトキシシリル基、(メトキシメチル)ジエトキシシリル基、(エトキシメチル)ジメトキシシリル基、(1-メトキシエチル)ジメトキシシリル基、(アミノメチル)ジメトキシシリル基、(N,N-ジメチルアミノメチル)ジメトキシシリル基、(N,N-ジエチルアミノメチル)ジメトキシシリル基、(N,N-ジエチルアミノメチル)ジエトキシシリル基、(N-(2-アミノエチル)アミノメチル)ジメトキシシリル基、(アセトキシメチル)ジメトキシシリル基、(アセトキシメチル)ジエトキシシリル基等が挙げられる。 Examples of the hydrolyzable silyl group include methyldimethoxysilyl group, trimethoxysilyl group, triethoxysilyl group, tris(2-propenyloxy)silyl group, triacetoxysilyl group, (chloromethyl)dimethoxysilyl group, ( chloromethyl)diethoxysilyl group, (dichloromethyl)dimethoxysilyl group, (1-chloroethyl)dimethoxysilyl group, (1-chloropropyl)dimethoxysilyl group, (methoxymethyl)dimethoxysilyl group, (methoxymethyl)diethoxysilyl group, (ethoxymethyl)dimethoxysilyl group, (1-methoxyethyl)dimethoxysilyl group, (aminomethyl)dimethoxysilyl group, (N,N-dimethylaminomethyl)dimethoxysilyl group, (N,N-diethylaminomethyl)dimethoxy silyl group, (N,N-diethylaminomethyl)diethoxysilyl group, (N-(2-aminoethyl)aminomethyl)dimethoxysilyl group, (acetoxymethyl)dimethoxysilyl group, (acetoxymethyl)diethoxysilyl group, etc. mentioned.
 上記加水分解性シリル基含有ポリウレタン樹脂を製造する方法としては、例えば、ポリオール化合物とポリイソシアネート化合物とを反応させてポリウレタン樹脂を製造する際に、さらに、シランカップリング剤等のシリル基含有化合物を反応させる方法等が挙げられる。具体的には例えば、特開2017-48345号公報に記載されている加水分解性シリル基を有するウレタンオリゴマーの合成方法等が挙げられる。 As a method for producing the hydrolyzable silyl group-containing polyurethane resin, for example, when producing a polyurethane resin by reacting a polyol compound and a polyisocyanate compound, a silyl group-containing compound such as a silane coupling agent is further added. A reaction method and the like can be mentioned. Specific examples thereof include a method for synthesizing a urethane oligomer having a hydrolyzable silyl group described in JP-A-2017-48345.
 上記シランカップリング剤としては、例えば、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシ-エトキシ)シラン、β-(3,4-エポキシシクロヘキシル)-エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等が挙げられる。なかでも、γ-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシランが好ましい。これらのシランカップリング剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。 Examples of the silane coupling agent include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris(β-methoxy-ethoxy)silane, β-(3,4-epoxycyclohexyl)-ethyltrimethoxysilane, γ-glycidoxysilane. Propyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-methacryloxypropyltrimethoxysilane, N-(β-aminoethyl)-γ-aminopropyltrimethoxysilane, N-(β-aminoethyl) -γ-aminopropyltrimethyldimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, 3-isocyanatopropyltri methoxysilane, 3-isocyanatopropyltriethoxysilane, and the like. Among them, γ-mercaptopropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane, and 3-isocyanatopropyltriethoxysilane are preferred. These silane coupling agents may be used alone or in combination of two or more.
 また、湿気硬化性ウレタン樹脂は、イソシアネート基と加水分解性シリル基の両方を有していてもよい。イソシアネート基と加水分解性シリル基の両方を有する湿気硬化性ウレタン樹脂は、まず、上記した方法にてイソシアネート基を有する湿気硬化性ウレタン樹脂(原料ウレタン樹脂)を得て、さらに該原料ウレタン樹脂にシランカップリング剤を反応させることで製造することが好ましい。
 なお、イソシアネート基を有する湿気硬化性ウレタン樹脂の詳細は上記したとおりである。原料ウレタン樹脂に反応させるシランカップリング剤としては、特に限定されず、上記で列挙したものから適宜選択して使用すればよいが、イソシアネート基との反応性の観点からアミノ基又はメルカプト基を有するシランカップ剤を使用することが好ましい。好ましい具体的としては、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン等が挙げられる。
Also, the moisture-curable urethane resin may have both an isocyanate group and a hydrolyzable silyl group. A moisture-curable urethane resin having both an isocyanate group and a hydrolyzable silyl group is obtained by first obtaining a moisture-curable urethane resin (raw material urethane resin) having an isocyanate group by the method described above, and further adding It is preferable to manufacture by reacting a silane coupling agent.
The details of the moisture-curable urethane resin having an isocyanate group are as described above. The silane coupling agent to be reacted with the raw material urethane resin is not particularly limited, and may be appropriately selected from those listed above and used, but from the viewpoint of reactivity with the isocyanate group, it has an amino group or a mercapto group. It is preferred to use a silane cupping agent. Preferred specific examples are N-(β-aminoethyl)-γ-aminopropyltrimethoxysilane, N-(β-aminoethyl)-γ-aminopropyltrimethyldimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane. silane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane and the like.
 さらに、湿気硬化性樹脂は、ラジカル重合性官能基を有していてもよい。湿気硬化性ウレタン樹脂が有していてもよいラジカル重合性官能基としては、不飽和二重結合を有する基が好ましく、特に反応性の面から(メタ)アクリロイル基がより好ましい。なお、ラジカル重合性官能基を有する湿気硬化性樹脂は、上記したラジカル重合性化合物には含まず、湿気硬化性樹脂として扱う。
 湿気硬化性樹脂は、上記した各種の樹脂から適宜選択して1種単独で使用してもよいし、2種以上併用してもよい。
Furthermore, the moisture-curable resin may have a radically polymerizable functional group. As the radically polymerizable functional group which the moisture-curable urethane resin may have, a group having an unsaturated double bond is preferable, and a (meth)acryloyl group is particularly preferable in terms of reactivity. Moisture-curable resins having a radically polymerizable functional group are not included in the radically polymerizable compounds described above and are treated as moisture-curable resins.
The moisture-curable resin may be appropriately selected from the various resins described above and used alone, or two or more of them may be used in combination.
 湿気硬化性樹脂の重量平均分子量は、好ましくは7500以上30000以下である。重量平均分子量を上記範囲内とすることで、後述する光湿気硬化型樹脂組成物の内外比a/b及び25℃粘度を所定の範囲内にして、接着力を高くしやすくなる。また、上記上限値以下とすることで最終接着力も良好にしやすくなる。これら観点から、湿気硬化性樹脂の重量平均分子量は、7800以上がより好ましく、10000以上がさらに好ましく、11500以上がよりさらに好ましく、また、24000以下がより好ましく、20000以下がさらに好ましく、16000以下がよりさらに好ましい。
 なお、本明細書において上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリスチレン換算により求められる値である。
The weight average molecular weight of the moisture-curable resin is preferably 7500 or more and 30000 or less. By setting the weight average molecular weight within the above range, the inside/outside ratio a/b and the viscosity at 25° C. of the light and moisture-curable resin composition described later can be set within a predetermined range, and the adhesive strength can be easily increased. In addition, by making it equal to or less than the above upper limit, it becomes easy to improve the final adhesive strength. From these viewpoints, the weight average molecular weight of the moisture-curable resin is more preferably 7800 or more, more preferably 10000 or more, still more preferably 11500 or more, more preferably 24000 or less, further preferably 20000 or less, and 16000 or less. Even more preferable.
In addition, the said weight average molecular weight in this specification is a value which measures by a gel permeation chromatography (GPC), and is calculated|required by polystyrene conversion.
 湿気硬化性樹脂は、上記したように重量平均分子量を一定値以上とするために鎖延長をしてもよい。
 例えば、湿気硬化性ウレタン樹脂においては、ポリオール化合物と、1分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物とを反応することにより得られた、イソシアネート基を有するウレタン樹脂(以下、「原料ウレタン樹脂」ともいう)にさらに鎖延長剤を反応させて湿気硬化性ウレタン樹脂を得てもよい。この際、鎖延長剤は、原料ウレタン樹脂が有するイソシアネート基の全てに鎖延長剤を反応させずに、使用量を適宜調整し、湿気硬化性ウレタン樹脂にイソシアネート基を残存させるとよい。また、原料ウレタン樹脂に反応された鎖延長剤にさらに原料ウレタン樹脂を反応させてもよい。
The moisture-curable resin may be chain-extended to increase the weight-average molecular weight to a certain value or more as described above.
For example, in the moisture-curable urethane resin, a urethane resin having an isocyanate group obtained by reacting a polyol compound with a polyisocyanate compound having two or more isocyanate groups in one molecule (hereinafter referred to as "raw material A moisture-curable urethane resin may be obtained by further reacting a chain extender with a urethane resin. At this time, the chain extender is preferably used in an appropriate amount so that the isocyanate groups remain in the moisture-curable urethane resin without reacting all of the isocyanate groups in the raw material urethane resin with the chain extender. Moreover, the raw material urethane resin may be further reacted with the chain extender reacted with the raw material urethane resin.
 湿気硬化性ウレタン樹脂において使用される鎖延長剤は、ポリオール化合物が好ましい。ポリオール化合物の詳細は、上記の通りである。また、鎖延長剤としてのポリオール化合物は、原料ウレタン樹脂を合成するために使用したポリオール化合物と同種のポリオール化合物を使用すればよい。したがって、原料ウレタン樹脂を合成するために使用したポリオール化合物がポリカーボネートポリオールであれば、鎖延長剤もポリカーボネートポリオールを使用すればよい。
 鎖延長剤の使用量は、原料ウレタン樹脂と鎖延長剤の合計量を100質量部としたとき、例えば5質量部以上40質量部以下、好ましくは10質量部以上35質量部以下、より好ましくは15質量部以上30質量部以下である。
A polyol compound is preferable as the chain extender used in the moisture-curable urethane resin. Details of the polyol compound are as described above. As the polyol compound as the chain extender, the same kind of polyol compound as the polyol compound used for synthesizing the raw material urethane resin may be used. Therefore, if the polyol compound used to synthesize the starting urethane resin is a polycarbonate polyol, the chain extender may also be a polycarbonate polyol.
The amount of the chain extender used is, for example, 5 parts by mass or more and 40 parts by mass or less, preferably 10 parts by mass or more and 35 parts by mass or less, more preferably when the total amount of the raw material urethane resin and the chain extender is 100 parts by mass. It is 15 mass parts or more and 30 mass parts or less.
 光湿気硬化型樹脂組成物において、湿気硬化性樹脂のラジカル重合性化合物に対する質量比は、30/70以上90/10以下が好ましく、40/60以上80/20以下がより好ましく、50/50以上70/30以下がさらに好ましい。質量比がこれら範囲内となることで、光湿気硬化型樹脂組成物にバランスよく、光硬化性と湿気硬化性を付与でき、接着力を所望の範囲内に調整しやすくなる。 In the light moisture-curable resin composition, the mass ratio of the moisture-curable resin to the radical polymerizable compound is preferably 30/70 or more and 90/10 or less, more preferably 40/60 or more and 80/20 or less, and 50/50 or more. 70/30 or less is more preferable. When the mass ratio is within these ranges, it is possible to provide the photo-moisture-curable resin composition with well-balanced photocurability and moisture-curability, and to easily adjust the adhesive force within a desired range.
 光湿気硬化型樹脂組成物におけるラジカル重合性化合物と湿気硬化性樹脂の合計含有量は、特に限定されないが、光湿気硬化型樹脂組成物全量基準で、例えば50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上であり、さらに好ましくは80質量%以上である。これらの合計量を上記下限値以上とすることで、湿気硬化型樹脂組成物に適切な光硬化性及び湿気硬化性を付与しやすくなる。また、上記合計含有量は、100質量%未満であればよいが、他の成分を適度に含有させるために、99質量%以下が好ましく、98質量%以下がより好ましい。 The total content of the radical polymerizable compound and the moisture-curable resin in the light moisture-curable resin composition is not particularly limited, but is based on the total amount of the light moisture-curable resin composition, for example 50% by mass or more, preferably 60% by mass. Above, more preferably 70% by mass or more, still more preferably 80% by mass or more. By making the total amount of these not less than the above lower limit, it becomes easier to impart appropriate photocurability and moisture curability to the moisture-curable resin composition. In addition, the total content may be less than 100% by mass, but is preferably 99% by mass or less, more preferably 98% by mass or less, in order to contain other components appropriately.
 光湿気硬化型樹脂組成物は、本発明の効果を損なわない範囲内において、樹脂成分として、ラジカル重合性化合物及び湿気硬化性樹脂以外の樹脂成分を含有してもよく、例えば硬化性を有しない熱可塑性樹脂などの樹脂成分(例えば、アクリル樹脂、ウレタン樹脂など)、熱硬化性樹脂などを含有してもよい。
 ラジカル重合性化合物及び湿気硬化性樹脂以外の樹脂成分の割合は、ラジカル重合性化合物及び湿気硬化性樹脂の合計量100質量部に対して、例えば50質量部以下、好ましくは30質量部以下、より好ましくは10質量部以下である。
The light and moisture-curable resin composition may contain a resin component other than the radically polymerizable compound and the moisture-curable resin as a resin component within a range that does not impair the effects of the present invention. For example, it does not have curability. A resin component such as a thermoplastic resin (for example, an acrylic resin, a urethane resin, etc.), a thermosetting resin, or the like may be contained.
The ratio of the resin components other than the radically polymerizable compound and the moisture-curable resin is, for example, 50 parts by mass or less, preferably 30 parts by mass or less, or more, with respect to 100 parts by mass of the total amount of the radically polymerizable compound and the moisture-curable resin. Preferably, it is 10 parts by mass or less.
<光ラジカル重合開始剤>
 本発明の光湿気硬化型樹脂組成物は、光ラジカル重合開始剤を含有する。光湿気硬化型樹脂組成物は、光ラジカル重合開始剤を含有することで、光硬化性が適切に付与される。
 光ラジカル重合開始剤としては、例えば、ベンゾフェノン系化合物、アセトフェノン系化合物、アルキルフェノン系光ラジカル重合開始剤、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、チオキサントン等が挙げられる。
 上記光ラジカル重合開始剤のうち市販されているものとしては、例えば、IRGACURE184、IRGACURE369、IRGACURE379、IRGACURE379EG、IRGACURE651、IRGACURE784、IRGACURE819、IRGACURE907、IRGACURE2959、IRGACURE OXE01、IRGACURE TPO(いずれもBASF社製)、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル(いずれも東京化成工業社製)、Оmnirad 819、Оmnirad TPO H(いずれもIGM Resins B.V.社製)等が挙げられる。
 上記光ラジカル重合開始剤としては、アシルフォスフィンオキサイド系化合物が好ましい。アシルフォスフィンオキサイド系化合物としては、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド等が挙げられ、これらの中では、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドがより好ましい。
<Photoradical polymerization initiator>
The light-moisture-curable resin composition of the present invention contains a photoradical polymerization initiator. The photo-moisture-curable resin composition contains a photoradical polymerization initiator, so that the photo-curing property is appropriately imparted.
Examples of photoradical polymerization initiators include benzophenone-based compounds, acetophenone-based compounds, alkylphenone-based photoradical polymerization initiators, acylphosphine oxide-based compounds, titanocene-based compounds, oxime ester-based compounds, benzoin ether-based compounds, thioxanthone, and the like. is mentioned.
Examples of commercially available photoradical polymerization initiators include IRGACURE184, IRGACURE369, IRGACURE379, IRGACURE379EG, IRGACURE651, IRGACURE784, IRGACURE819, IRGACURE907, IRGACURE2959, IRGACURE OXE01, IRGACURE TPO (all BASF), benzoin Methyl ether, benzoin ethyl ether, benzoin isopropyl ether (all manufactured by Tokyo Chemical Industry Co., Ltd.), Omnirad 819, and Omnirad TPO H (all manufactured by IGM Resins B.V.).
As the radical photopolymerization initiator, an acylphosphine oxide compound is preferable. Acylphosphine oxide compounds include bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis(2,6-dimethoxybenzoyl)-2 ,4,4-trimethyl-pentylphosphine oxide and the like. Among these, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide is more preferable.
 光湿気硬化型樹脂組成物における光ラジカル重合開始剤の含有量は、ラジカル重合性化合物100質量部に対して、好ましくは0.1質量部以上10質量部以下、より好ましくは0.5質量部以上5質量部以下である。光ラジカル重合開始剤の含有量がこれら範囲内であることにより、得られる光湿気硬化型樹脂組成物が光硬化性及び保存安定性に優れたものとなる。また、上記範囲内とすることで、光ラジカル重合化合物が適切に硬化され、接着力を良好にしやすくなる。 The content of the photo-radical polymerization initiator in the light moisture-curable resin composition is preferably 0.1 parts by mass or more and 10 parts by mass or less, more preferably 0.5 parts by mass with respect to 100 parts by mass of the radically polymerizable compound. It is more than 5 parts by mass or less. When the content of the radical photopolymerization initiator is within these ranges, the resulting photomoisture-curable resin composition has excellent photocurability and storage stability. Moreover, by setting the content within the above range, the photoradical polymerizable compound is appropriately cured, and the adhesive strength tends to be improved.
<充填剤>
 本発明の光湿気硬化型樹脂組成物は、充填剤を含有することが好ましい。充填剤を含有することにより、本発明の光湿気硬化型樹脂組成物は、好適なチクソ性を有するものとなり、塗布後の形状を充分に保持することができる。充填剤としては、粒子状のものを使用すればよい。
 充填剤としては、無機充填剤が好ましく、例えば、シリカ、タルク、酸化チタン、酸化亜鉛、炭酸カルシウム等が挙げられる。なかでも、得られる光湿気硬化型樹脂組成物が紫外線透過性に優れるものとなることから、シリカが好ましい。また、充填剤は、シリル化処理、アルキル化処理、エポキシ化処理等の疎水性表面処理がなされていてもよい。
 充填剤は、1種単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
 充填剤の含有量は、ラジカル重合性化合物と湿気硬化性樹脂の合計量100質量部に対して、好ましくは1質量部以上25質量部以下、より好ましくは2質量部以上20質量部以下、さらに好ましくは3質量部以上15質量部以下である。
<Filler>
The light and moisture-curable resin composition of the present invention preferably contains a filler. By containing a filler, the light and moisture-curable resin composition of the present invention has suitable thixotropy, and can sufficiently retain its shape after application. A particulate filler may be used as the filler.
Preferred fillers include inorganic fillers such as silica, talc, titanium oxide, zinc oxide, and calcium carbonate. Among these, silica is preferable because the obtained light and moisture-curable resin composition has excellent ultraviolet transmittance. In addition, the filler may be subjected to hydrophobic surface treatment such as silylation treatment, alkylation treatment, and epoxidation treatment.
A filler may be used individually by 1 type, and 2 or more types may be used in combination.
The content of the filler is preferably 1 part by mass or more and 25 parts by mass or less, more preferably 2 parts by mass or more and 20 parts by mass or less, relative to 100 parts by mass of the total amount of the radical polymerizable compound and the moisture-curable resin It is preferably 3 parts by mass or more and 15 parts by mass or less.
 本発明の光湿気硬化型樹脂組成物は、上記で述べた成分以外にも、本発明の効果を阻害しない程度であれば、窒化ジルコニウム以外の着色剤、湿気硬化促進触媒、カップリング剤、ワックス粒子、イオン液体、発泡粒子、膨張粒子、反応性希釈剤などのその他の添加剤を含有していてもよい。なお、窒化ジルコニウム以外の着色剤としては、酸化鉄、チタンブラック、アニリンブラック、シアニンブラック、フラーレン、カーボンブラック、樹脂被覆型カーボンブラック等が挙げられる。また、カップリング剤としては、シランカップリング剤、チタネート系カップリング剤、ジルコネート系カップリング剤などが挙げられる。
 光湿気硬化型樹脂組成物は、必要に応じて、溶剤により希釈されていてもよい。光湿気硬化型樹脂組成物が溶剤により希釈される場合、上記で述べた光湿気硬化型樹脂組成物の量とは、固形分基準であり、すなわち、溶剤を除いた質量を意味する。
In addition to the components described above, the light and moisture-curable resin composition of the present invention contains a coloring agent other than zirconium nitride, a moisture curing acceleration catalyst, a coupling agent, and a wax as long as the effects of the present invention are not impaired. Other additives such as particles, ionic liquids, foamed particles, expanded particles, reactive diluents, etc. may be included. Colorants other than zirconium nitride include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, and resin-coated carbon black. Examples of coupling agents include silane coupling agents, titanate coupling agents, zirconate coupling agents, and the like.
The light and moisture-curable resin composition may be diluted with a solvent, if necessary. When the light and moisture-curable resin composition is diluted with a solvent, the amount of the light and moisture-curable resin composition described above is based on the solid content, that is, the mass excluding the solvent.
 本発明の光湿気硬化型樹脂組成物を製造する方法としては、混合機を用いて、ラジカル重合性化合物、湿気硬化性樹脂、光ラジカル重合開始剤、及び窒化ジルコニウム、さらに、必要に応じて配合される、充填剤、湿気硬化促進触媒、着色剤などのその他の添加剤を混合する方法等が挙げられる。混合機としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー(遊星式撹拌装置)、ニーダー、3本ロール等が挙げられる。 As a method for producing the light and moisture-curable resin composition of the present invention, a mixer is used to prepare a radically polymerizable compound, a moisture-curable resin, a photoradical polymerization initiator, and zirconium nitride, and if necessary, and a method of mixing other additives such as fillers, moisture curing acceleration catalysts, and colorants. Examples of mixers include homodispers, homomixers, universal mixers, planetary mixers (planetary stirring devices), kneaders, and three rolls.
 また、上記の通り、湿気硬化性ウレタン樹脂を鎖延長剤により分子量を大きくする場合がある。その場合、例えば、原料ウレタン樹脂などの原料樹脂と、鎖延長剤とを予め反応させて湿気硬化性ウレタン樹脂を得て、その後、上記の通り、ラジカル重合性化合物などの他の原料と混合させるとよい。
 また、原料樹脂と、鎖延長剤と、ラジカル重合性化合物とを混合して、その混合物を必要に応じて加熱などすることで、原料樹脂に鎖延長剤を反応させ、湿気硬化性樹脂を合成してもよい。この場合、湿気硬化性樹脂と、ラジカル重合性化合物の混合物が得られるので、その混合物に光ラジカル重合開始剤、さらに、必要に応じて配合されるその他の添加剤を加えて、光湿気硬化型樹脂組成物を得てもよい。
Moreover, as described above, the moisture-curable urethane resin may be increased in molecular weight with a chain extender. In that case, for example, a raw material resin such as a raw material urethane resin is reacted in advance with a chain extender to obtain a moisture-curable urethane resin, and then mixed with other raw materials such as a radically polymerizable compound as described above. Good.
In addition, the raw material resin, chain extender, and radically polymerizable compound are mixed, and the mixture is heated as necessary to react the chain extender with the raw material resin, thereby synthesizing a moisture-curable resin. You may In this case, a mixture of a moisture-curable resin and a radically polymerizable compound is obtained. A resin composition may be obtained.
<内外比a/b>
 本発明の湿気硬化型樹脂組成物は、内外比a/bが0.5以上0.95以下であることが好ましい。内外比a/bが0.5以上であると、光硬化直後において潰れにくくなり、湿気硬化型樹脂組成物を黒色化した場合でも初期接着力を良好にしやすくなる。また、内外比a/bが0.95以下であると、光硬化直後に潰れすぎず、被着体からの剥がれが生じにくくなり、湿気硬化型樹脂組成物を黒色化した場合でも接着力の低下を防止することができる。
 上記内外比a/bは、0.54以上が好ましく、0.58以上がより好ましく、0.60以上がさらに好ましく、また、0.92以下が好ましく、0.89以下がより好ましく、0.87以下がさらに好ましい。内外比a/bを上記範囲内とすると、初期接着力を良好にしやすくなる。
<Inside/outside ratio a/b>
The moisture-curable resin composition of the present invention preferably has an inside/outside ratio a/b of 0.5 or more and 0.95 or less. When the inside/outside ratio a/b is 0.5 or more, it becomes difficult to collapse immediately after photocuring, and even when the moisture-curable resin composition is blackened, the initial adhesive strength tends to be improved. In addition, when the inside/outside ratio a/b is 0.95 or less, it is not too crushed immediately after photocuring, and peeling from the adherend is less likely to occur, and even when the moisture-curable resin composition is blackened, the adhesive strength is low. A decrease can be prevented.
The inside/outside ratio a/b is preferably 0.54 or more, more preferably 0.58 or more, still more preferably 0.60 or more, preferably 0.92 or less, more preferably 0.89 or less, and 0.54 or more. 87 or less is more preferable. When the inside/outside ratio a/b is within the above range, it becomes easy to improve the initial adhesive strength.
 本発明においては、内外比a/bは、以下のように測定される。まず、図1(a)に示すように、アルミニウム基板11に線幅1.0mmで湿気硬化型樹脂組成物10を塗布する。ここで、線幅1.0mmとは、厳密に1.0mmとなる必要はなく、1.0±0.1mmの誤差があってもよい。次に、図1(b)に示すように、湿気硬化型樹脂組成物10に1500mJ/cmの紫外線を照射して湿気硬化型樹脂組成物10を硬化させる。その後直ちに(10秒以内)、図1(c)に示すように、ガラス板12を湿気硬化型樹脂組成物10の上に重ね合わせ、ガラス板12を湿気硬化型樹脂組成物10に対して、0.08MPaで120秒間圧着させる。圧着後に、湿気硬化型樹脂組成物10のガラス板12との接着部分の幅a1を測定する。幅a1は、5点測定して、その平均値を平均幅aとする。また、湿気硬化型樹脂組成物10のアルミニウム基板11との接着部分の幅b1を測定する。幅b1は、5点測定して、その平均値を平均幅bとし、平均幅a,bにより内外比a/bを算出する。 In the present invention, the inside/outside ratio a/b is measured as follows. First, as shown in FIG. 1A, a moisture-curable resin composition 10 is applied to an aluminum substrate 11 with a line width of 1.0 mm. Here, the line width of 1.0 mm does not need to be exactly 1.0 mm, and may have an error of 1.0±0.1 mm. Next, as shown in FIG. 1(b), the moisture-curable resin composition 10 is irradiated with ultraviolet rays of 1500 mJ/cm 2 to cure the moisture-curable resin composition 10 . Immediately thereafter (within 10 seconds), as shown in FIG. Crimping is performed at 0.08 MPa for 120 seconds. After pressure bonding, the width a1 of the bonded portion of the moisture-curable resin composition 10 to the glass plate 12 is measured. The width a1 is measured at five points, and the average value thereof is taken as the average width a. Also, the width b1 of the adhesion portion of the moisture-curable resin composition 10 to the aluminum substrate 11 is measured. The width b1 is measured at five points, the average value thereof is taken as the average width b, and the inside/outside ratio a/b is calculated from the average widths a and b.
 内外比a/bは、ラジカル重合性化合物の種類等を調整することによって、上記範囲内に調整することができる。例えば、光湿気硬化性樹脂組成物がラジカル重合性化合物として単官能ラジカル重合性化合物を多く含む場合、光硬化後に形成される架橋構造の割合が少なくなるため、内外比a/bを大きくすることができる。また、例えば、光湿気硬化性樹脂組成物がラジカル重合性化合物としてホモポリマーのガラス転移点が低いラジカル重合性化合物を多く含む場合でも、光硬化後の硬化物が柔軟になるため、内外比a/bを大きくすることができる。さらには、湿気硬化性ウレタン樹脂の重量平均分子量によっても調整できる。 The inside/outside ratio a/b can be adjusted within the above range by adjusting the type of the radically polymerizable compound. For example, when the photo-moisture-curable resin composition contains a large amount of a monofunctional radically polymerizable compound as a radically polymerizable compound, the ratio of the crosslinked structure formed after photocuring is reduced, so the inside/outside ratio a/b should be increased. can be done. Further, for example, even if the optical moisture-curable resin composition contains a large amount of a radically polymerizable compound having a low homopolymer glass transition point as a radically polymerizable compound, the cured product after photocuring becomes flexible, so that the internal/external ratio a /b can be increased. Furthermore, it can also be adjusted by the weight average molecular weight of the moisture-curable urethane resin.
<25℃粘度>
 本発明の光湿気硬化型樹脂組成物は、コーンプレート型粘度計を用いて25℃、5.0rpmの条件で測定した粘度(以下、「25℃粘度」ともいう)が40Pa・s以上600Pa・s以下となることが好ましい。25℃粘度が40Pa・s以上であると、湿気硬化性樹脂などに含まれる低分子量成分が少なくなるため、光照射後に湿気硬化性樹脂などが界面にしみ出すことが防止され、光湿気硬化型樹脂組成物を黒色化した場合でも初期接着力を向上させやすくなる。すなわち、光照射後に低分子量の湿気硬化性樹脂などが界面にしみ出すことが防止されることで、被着体との間で滑りが生じにくくなり、粘着力が発現しやすくなることによって、初期接着力を向上させやすくなる。また、上記25℃粘度が600Pa・s以下であると、湿気硬化性樹脂が本来有する粘着性などが発現しやすくなり、それにより、光湿気硬化型樹脂組成物を黒色化した場合でも初期接着力、最終接着力を向上させることができる。
<25°C Viscosity>
The light and moisture-curable resin composition of the present invention has a viscosity measured at 25° C. and 5.0 rpm using a cone-plate viscometer (hereinafter also referred to as “25° C. viscosity”) of 40 Pa s to 600 Pa s. s or less. If the viscosity at 25° C. is 40 Pa s or more, the amount of low-molecular-weight components contained in the moisture-curable resin, etc., is reduced, so that the moisture-curable resin, etc. is prevented from exuding to the interface after light irradiation, and the light-moisture-curable type Even when the resin composition is blackened, it becomes easier to improve the initial adhesive strength. In other words, by preventing low-molecular-weight moisture-curable resins from oozing out to the interface after light irradiation, it becomes difficult for slippage to occur between the adherend and the adhesive force. It becomes easier to improve the adhesive strength. In addition, when the 25° C. viscosity is 600 Pa s or less, the inherent tackiness of the moisture-curable resin is likely to be expressed, thereby resulting in initial adhesive strength even when the light moisture-curable resin composition is blackened. , can improve the final adhesion.
 光湿気硬化型樹脂組成物の25℃粘度は、45Pa・s以上がより好ましく、90Pa・s以上がさらに好ましく、110Pa・s以上がよりさらに好ましく、また、500Pa・s以下が好ましく、350Pa・s以下がより好ましく、230Pa・s以下がさらに好ましい。25℃粘度を上記範囲内とすると、作業性及び初期接着力を向上させやすくなる。また、上記上限値以下とすると、湿気硬化性ウレタン樹脂の分子量が過度に高くなることを防止できるので、湿気硬化によって接着力が十分に高くなり、最終接着力なども向上させやすくなる。なお、最終接着力とは、光硬化及び湿気硬化した後の光湿気硬化型樹脂組成物の接着力を意味する。 The 25 ° C. viscosity of the light and moisture-curable resin composition is more preferably 45 Pa s or more, more preferably 90 Pa s or more, even more preferably 110 Pa s or more, and preferably 500 Pa s or less, and 350 Pa s. The following is more preferable, and 230 Pa·s or less is even more preferable. When the 25° C. viscosity is within the above range, it becomes easier to improve workability and initial adhesive strength. Further, when the content is equal to or less than the above upper limit, it is possible to prevent the molecular weight of the moisture-curable urethane resin from becoming excessively high. The final adhesive strength means the adhesive strength of the photo-moisture-curable resin composition after photo-curing and moisture-curing.
 本発明の光湿気硬化型樹脂組成物は、良好な初期接着力を得る観点から、内外比a/b、及び25℃粘度のいずれもが、上記数値範囲内であることが好ましい。 From the viewpoint of obtaining good initial adhesive strength, the light and moisture-curable resin composition of the present invention preferably has both the inside/outside ratio a/b and the viscosity at 25°C within the above numerical ranges.
<初期せん断力>
 本発明の光湿気硬化型樹脂組成物は、初期せん断力が0.2MPa以上であることが好ましく、0.25MPa以上であることがより好ましく、0.3MPa以上であることがさらに好ましい。初期せん断力を上記下限値以上とすると、本発明の光湿気硬化型樹脂組成物を黒色化した場合でも、優れた接着力を付与することができる。また、光硬化した後直ちに被着体同士を比較的高い接着力で仮接着できるようになり、仮接着時の作業性が向上する。他方、初期せん断力の上限は、特に限定されないが、実用上の観点からは、例えば10.0MPa以下である。
 なお、初期せん断力とは、光湿気硬化型樹脂組成物を、光硬化した直後の25℃におけるせん断力を意味する。初期せん断力の測定方法の詳細は後述する実施例で記載するとおりである。
<Initial shear force>
The light and moisture-curable resin composition of the present invention preferably has an initial shearing force of 0.2 MPa or more, more preferably 0.25 MPa or more, and even more preferably 0.3 MPa or more. When the initial shearing force is at least the above lower limit, excellent adhesive strength can be imparted even when the light and moisture-curable resin composition of the present invention is blackened. In addition, immediately after photocuring, the adherends can be temporarily adhered to each other with a relatively high adhesive strength, improving workability during temporary adhesion. On the other hand, the upper limit of the initial shear force is not particularly limited, but from a practical viewpoint, it is, for example, 10.0 MPa or less.
In addition, the initial shear force means the shear force at 25° C. immediately after the photo-moisture-curable resin composition is photocured. The details of the method for measuring the initial shear force are as described in Examples below.
<初期クリープ力>
 本発明の光湿気硬化型樹脂組成物において、初期クリープ力は、ポリカーボネート基板に光湿気硬化型樹脂組成物を塗布して光硬化させた後、光湿気硬化型樹脂組成物を介してガラス板を貼り合わせて得た評価用サンプルを、垂直に立てかけた際に、1時間でガラス板がポリカーボネート基板からずれる距離hにより表すことができる。
 距離hは、短い方が初期クリープ力が高いことを意味し、具体的には0.15mm以下が好ましく、0.10mm以下がより好ましい。
 初期クリープ力が上記上限値以下とすることで、初期接着力が高くなり、例えば、比較的重量が大きいものを仮接着して立てかけて放置して湿気硬化する場合でも、被着体のずれが生じることを防止できる。距離hは、低ければ低いほどよく、0mm以上であればよい。
 なお、初期クリープ力とは、光湿気硬化型樹脂組成物を、光硬化した直後の25℃におけるクリープ力を意味し、距離hの測定方法の詳細は後述する実施例で記載するとおりである。
<Initial creep force>
In the light moisture-curable resin composition of the present invention, the initial creep force is obtained by applying the light moisture-curable resin composition to the polycarbonate substrate and photocuring it, and then applying the light moisture-curable resin composition to the glass plate. It can be expressed by the distance h by which the glass plate deviates from the polycarbonate substrate in one hour when the evaluation sample obtained by bonding is vertically set.
The shorter the distance h, the higher the initial creep force. Specifically, the distance h is preferably 0.15 mm or less, more preferably 0.10 mm or less.
By setting the initial creep force to the above upper limit or less, the initial adhesive strength increases. For example, even when a relatively heavy object is temporarily adhered and left standing upright for moisture curing, the adherend does not shift. can be prevented from occurring. The distance h is preferably as short as possible, and should be 0 mm or more.
The initial creep force means the creep force at 25° C. immediately after the photo-moisture-curable resin composition is photocured, and the details of the method for measuring the distance h are as described later in Examples.
<ゲル分率>
 本発明の光湿気硬化性樹脂組成物は、形状保持性を良好にする観点からは、光硬化後のゲル分率が10%以上であることが好ましく、12%以上であることがより好ましく、15%以上であることがさらに好ましい。ゲル分率が上記下限値以上であること、光湿気硬化性樹脂組成物に一定の硬さが付与される。したがって、光硬化後の形状保持性が良好となり、例えば一方の被着体に細幅に塗布して光硬化した後に、他の被着体を圧着させても、光湿気硬化性樹脂組成物が潰れることが防止されて、細幅の状態に維持される。形状保持性を良好にする観点からは、光硬化後の上記ゲル分率の上限値は特に限定されないが、60%以下であることが好ましく、50%以下であることがより好ましく、40%以下であることがさらに好ましい。ゲル分率が上記上限値以下であることにより、光湿気硬化性樹脂組成物に適度な柔軟性が付与され、被着体同士を接着しやすくなる。
 一方で、本発明の光湿気硬化性樹脂組成物は、初期接着力を高める観点からは、光硬化後のゲル分率が10%未満であることが好ましく、5%以下であることがより好ましく、1%以下であることがさらに好ましい。ゲル分率が上記上限値以下であると、光硬化後に他の被着体を圧着させたときに接着面積を大きくできるため、初期接着力を高めることができる。初期接着力を高める観点からは、光硬化後の上記ゲル分率の下限値は特に限定されず、0%以上であればよい。
<Gel fraction>
From the viewpoint of improving shape retention, the photo-moisture-curable resin composition of the present invention preferably has a gel fraction after photocuring of 10% or more, more preferably 12% or more. It is more preferably 15% or more. When the gel fraction is at least the above lower limit value, a certain degree of hardness is imparted to the light and moisture-curable resin composition. Therefore, the shape retainability after photocuring becomes good, and for example, even if the other adherend is crimped after being applied to one adherend in a narrow width and photocured, the light moisture-curable resin composition can be It is prevented from collapsing and maintained in a narrow state. Although the upper limit of the gel fraction after photocuring is not particularly limited from the viewpoint of improving shape retention, it is preferably 60% or less, more preferably 50% or less, and 40% or less. is more preferable. When the gel fraction is equal to or less than the above upper limit, the light and moisture-curable resin composition is imparted with appropriate flexibility, and adherends are easily adhered to each other.
On the other hand, the photo-moisture-curable resin composition of the present invention preferably has a gel fraction after photocuring of less than 10%, more preferably 5% or less, from the viewpoint of increasing the initial adhesive strength. , 1% or less. If the gel fraction is equal to or less than the above upper limit, the adhesive area can be increased when another adherend is pressure-bonded after photocuring, so the initial adhesive strength can be increased. From the viewpoint of increasing the initial adhesive strength, the lower limit of the gel fraction after photocuring is not particularly limited, and may be 0% or more.
 なお、光硬化後のゲル分率は、以下の手順で求めることができる。
(1)約1.0gの光湿気硬化型樹脂組成物を採取して秤量して、サンプル重量(W1)を得る。
(2)ガラス板上に厚さ1.0mmで塗布し、1500mJ/cmの紫外線を照射して光硬化させ、分析用サンプルを作製する。
(3)上記で作製した分析用サンプルを25℃でTHF中に48時間浸漬する。
(4)浸漬後の光硬化した状態の光湿気硬化型樹脂組成物を200メッシュの金網上に取り出し、新たなTHFで5回洗浄した後、前記金網上に残存した膨潤状態のゲルを100℃で2時間乾燥させてTHFを揮発させ、乾燥後のゲルの重量(W2)を秤量し、以下の式によりゲル分率を測定する。
     ゲル分率(%)=W2/W1×100
In addition, the gel fraction after photocuring can be calculated|required by the following procedures.
(1) About 1.0 g of the light and moisture-curable resin composition is sampled and weighed to obtain the sample weight (W1).
(2) A sample for analysis is prepared by coating it on a glass plate to a thickness of 1.0 mm and irradiating it with ultraviolet rays of 1500 mJ/cm 2 for photocuring.
(3) The analysis sample prepared above is immersed in THF at 25° C. for 48 hours.
(4) After the immersion, the light and moisture-curable resin composition in a photocured state was taken out onto a 200-mesh wire mesh, washed with fresh THF five times, and then the swollen gel remaining on the wire mesh was removed at 100°C. for 2 hours to volatilize THF, the weight of the dried gel (W2) is weighed, and the gel fraction is measured by the following formula.
Gel fraction (%) = W2/W1 x 100
<光湿気硬化性樹脂組成物の使用方法>
 本発明の光湿気硬化性樹脂組成物は、硬化され、硬化体として使用されるものである。本発明の光湿気硬化性樹脂組成物は、具体的には、まず、光照射により光硬化して、例えばBステージ状態(半硬化状態)にして、その後、湿気により硬化して全硬化させるとよい。
 ここで、光湿気硬化性樹脂組成物は、被着体間に配置させ、その被着体間を接合させる場合には、一方の被着体に塗布し、その後、光照射により光硬化させ、例えばBステージ状態にし、その光硬化した状態の光湿気硬化性樹脂組成物の上に他方の被着体を重ね合わせ、被着体間を適度な接着力(初期接着力)で仮接着させるとよい。その後、Bステージ状態の光湿気硬化性樹脂組成物は、湿気硬化性ウレタン樹脂を湿気により硬化させることで、全硬化させ、光湿気硬化性樹脂組成物を介して重ね合わせた被着体間が本接着され、十分な接着力(最終接着力)で接合される。
<How to use the light and moisture-curable resin composition>
The light and moisture-curable resin composition of the present invention is cured and used as a cured product. Specifically, the photo-moisture-curable resin composition of the present invention is first photo-cured by light irradiation to, for example, a B-stage state (semi-cured state), and then fully cured by curing with moisture. good.
Here, when the optical moisture-curable resin composition is placed between adherends and the adherends are to be joined together, it is applied to one of the adherends, and then photocured by light irradiation, For example, when the B-stage state is set, the other adherend is superimposed on the light moisture-curable resin composition in the photocured state, and the adherend is temporarily adhered with an appropriate adhesive strength (initial adhesive strength). good. After that, the optical moisture-curable resin composition in the B-stage state is completely cured by curing the moisture-curable urethane resin with moisture, and the adherends superimposed via the optical moisture-curable resin composition are separated from each other. They are permanently adhered and joined with sufficient adhesive strength (final adhesive strength).
 被着体への光湿気硬化型樹脂組成物の塗布は、例えばディスペンサーで行うとよいが、特に限定されない。光硬化時に照射する光は、ラジカル重合性化合物が硬化する光であれば特に限定されないが、紫外線が好ましい。本発明の光湿気硬化型樹脂組成物は、OD値が高く遮光性が高いが、紫外線に対する透過率は比較的高いので、紫外線を使用すると高い硬化性で硬化させることができる。また、光湿気硬化性樹脂組成物は、光硬化後に湿気により全硬化させるときには、大気中に所定時間放置すればよい。
 被着体への光湿気硬化型樹脂組成物の塗布は、特に限定されないが、常温付近で行うとよく、具体的には、10~35℃程度の温度で行うとよい。また、本発明の光湿気硬化型樹脂組成物は、25℃粘度を上記した所定の範囲とすると、常温付近で塗布を行っても、より容易に塗布を行うことができ、かつ液だれが発生したりすることもない。
 また、本発明の光湿気硬化型樹脂組成物は、光照射後直ちに一定値以上の初期接着力を発現するので、光硬化後に直ちに仮接着を行うことができ、作業性が良好となる。
The application of the light moisture-curable resin composition to the adherend is preferably carried out, for example, with a dispenser, but is not particularly limited. The light for photocuring is not particularly limited as long as it cures the radically polymerizable compound, but ultraviolet light is preferred. The light and moisture-curable resin composition of the present invention has a high OD value and high light-shielding properties, but has a relatively high transmittance to ultraviolet rays, so that it can be cured with high curability by using ultraviolet rays. Moreover, when the photo-moisture-curable resin composition is to be completely cured by moisture after being photocured, it may be left in the air for a predetermined period of time.
Although the application of the light moisture-curable resin composition to the adherend is not particularly limited, it is preferably carried out at around room temperature, specifically at a temperature of about 10 to 35°C. In addition, when the 25° C. viscosity of the light and moisture-curable resin composition of the present invention is within the above-described predetermined range, it can be applied more easily even when it is applied at around room temperature, and dripping occurs. neither does it.
In addition, since the photo-moisture-curable resin composition of the present invention exhibits an initial adhesive strength of a certain value or more immediately after light irradiation, temporary adhesion can be performed immediately after light curing, resulting in good workability.
 本発明の光湿気硬化性樹脂組成物は、好ましくは電子部品用接着剤として使用される。すなわち、本発明は、上記光湿気硬化性樹脂組成物からなる電子部品用接着剤も提供する。
 したがって、上記した被着体は、好ましくは、電子機器を構成する各種電子部品である。電子機器を構成する各種電子部品としては、例えば、表示素子に設けられる各種の電子部品、電子部品が取り付けられる基板、半導体チップなどが挙げられる。
 また、被着体の材質としては、金属、ガラス、プラスチック等のいずれでもよい。さらに、被着体の形状としては、特に限定されず、例えば、フィルム状、シート状、板状、パネル状、トレイ状、ロッド(棒状体)状、箱体状、筐体状等が挙げられる。
The light and moisture-curable resin composition of the present invention is preferably used as an adhesive for electronic parts. That is, the present invention also provides an adhesive for electronic parts comprising the above-mentioned light moisture-curable resin composition.
Therefore, the adherends described above are preferably various electronic components constituting electronic devices. Examples of various electronic components constituting electronic devices include various electronic components provided in display elements, substrates to which electronic components are attached, semiconductor chips, and the like.
The material of the adherend may be metal, glass, plastic, or the like. Furthermore, the shape of the adherend is not particularly limited, and examples thereof include film-like, sheet-like, plate-like, panel-like, tray-like, rod-like, box-like, and housing-like shapes. .
 上記のように、本発明の光湿気硬化性樹脂組成物は、好ましくは電子機器を構成する電子部品同士を接合するために使用される。また、本発明の光湿気硬化性樹脂組成物は、好ましくは電子部品を他の部品に接合するためにも使用される。これら構成により、電子部品は、本発明の硬化体を有することになる。
 また、本発明の光湿気硬化性樹脂組成物は、電子機器内部などにおいて、例えば基板と基板とを接着して組立部品を得るために使用される。このようにして得られた組立部品は、第1の基板と、第2の基板と、本発明の硬化体を有し、第1の基板の少なくとも一部が、第2の基板の少なくとも一部に硬化体を介して接合される。なお、第1の基板及び第2の基板は、好ましくは、それぞれ少なくとも1つの電子部品が取り付けられている。
As described above, the light and moisture-curable resin composition of the present invention is preferably used for bonding electronic parts constituting electronic equipment. Moreover, the light and moisture-curable resin composition of the present invention is preferably used for bonding electronic parts to other parts. With these configurations, the electronic component has the cured body of the present invention.
Moreover, the optical moisture-curable resin composition of the present invention is used in the inside of an electronic device, for example, to obtain an assembly part by bonding substrates together. The assembly part thus obtained has a first substrate, a second substrate, and the cured product of the present invention, wherein at least a portion of the first substrate is at least a portion of the second substrate. is joined through a hardened body. At least one electronic component is preferably attached to each of the first substrate and the second substrate.
 また、本発明の光湿気硬化型樹脂組成物は、表示素子用途で使用されることが好ましい。すなわち、本発明は、上記光湿気硬化性樹脂組成物からなる表示素子用接着剤も提供する。
 本発明の光湿気硬化型樹脂組成物は光遮光性が高く、光漏れを防止できるため、該組成物を表示素子用途で使用することにより、高いコントラストを得ることができる。本発明の光湿気硬化型樹脂組成物を表示素子用途で使用する場合においては、例えば、各種表示素子装置では、細幅の四角枠状(すなわち、狭額縁)のベースの上に、接着剤が塗布されて、その接着剤を介して表示パネル、タッチパネルなどが組み付けられるが、その接着剤として、本発明の光湿気硬化型樹脂組成物を使用するとよい。さらに、本発明の光湿気硬化型樹脂組成物は、半導体チップ用途で使用してもよい。本発明の光湿気硬化型樹脂組成物は、半導体チップの用途では、例えば、半導体チップ同士を接合するために使用される。
Moreover, it is preferable that the light-moisture-curable resin composition of the present invention is used for display devices. That is, the present invention also provides an adhesive for display elements comprising the above-described light and moisture-curable resin composition.
Since the light-moisture-curable resin composition of the present invention has high light-shielding properties and can prevent light leakage, high contrast can be obtained by using the composition for display devices. When the light moisture-curable resin composition of the present invention is used for display elements, for example, in various display element devices, an adhesive is applied on a narrow rectangular frame-shaped (that is, narrow frame) base. A display panel, a touch panel, or the like is assembled through the adhesive, and the photo-moisture-curable resin composition of the present invention is preferably used as the adhesive. Furthermore, the light moisture-curable resin composition of the present invention may be used for semiconductor chips. The light-moisture-curable resin composition of the present invention is used for semiconductor chips, for example, to bond semiconductor chips together.
 以下、実施例を用いて本発明を更に詳しく説明するが、本発明はこれら実施例に限定されるものではない。 The present invention will be described in more detail below using examples, but the present invention is not limited to these examples.
[物性]
 各実施例、比較例において、光湿気硬化型樹脂組成物の物性を以下のように評価した。
[Physical properties]
In each example and comparative example, the physical properties of the light and moisture-curable resin composition were evaluated as follows.
<重量平均分子量>
 各実施例、比較例における湿気硬化性樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリスチレン換算により求めた。GPC測定は、カラムとしてShodex KF-806L(昭和電工社製)を使用した。また、溶媒及び移動相としては、テトラヒドロフラン(THF)を使用した。さらに、GPCの測定条件としては流速1.0ml/min、測定温度40℃であった。
<Weight average molecular weight>
The weight-average molecular weight of the moisture-curable resin in each example and comparative example was measured by gel permeation chromatography (GPC) and calculated by polystyrene conversion. GPC measurement used Shodex KF-806L (manufactured by Showa Denko KK) as a column. Tetrahydrofuran (THF) was used as the solvent and mobile phase. Furthermore, the GPC measurement conditions were a flow rate of 1.0 ml/min and a measurement temperature of 40°C.
 なお、各実施例、比較例において、上記重量平均分子量は、ラジカル重合性化合物と湿気硬化性樹脂の混合物をサンプルとして測定した。該混合物では、低分子量側にラジカル重合性化合物のピーク、高分子量側に湿気硬化性樹脂のピークが現れるため、高分子量側のピークから湿気硬化性樹脂の重量平均分子量を求めることができる。 In each example and comparative example, the weight average molecular weight was measured using a mixture of a radically polymerizable compound and a moisture-curable resin as a sample. In the mixture, the peak of the radical polymerizable compound appears on the low molecular weight side, and the peak of the moisture-curable resin appears on the high molecular weight side, so the weight average molecular weight of the moisture-curable resin can be determined from the peak on the high molecular weight side.
<ОD値>
 実施例及び比較例で得られた各光湿気硬化型樹脂組成物を、スライドガラス(「S1214」、松浪硝子工業株式会社製)に1mm厚みとなるように均一に塗布し、UV-LED照射器(シーシーエス株式会社製)により、波長365nmの紫外線を1500mJ/cm照射することによって、光湿気硬化型樹脂組成物を光硬化させ、遮光性評価用サンプルを得た。
 得られた遮光性評価用サンプルについて、光学濃度計(X-rite社製、「スペクトロメーター」)を用いてOD値を測定した。
 なお、OD値の測定に際して光硬化する際は、光硬化時における照度を500~3000mW/cmの範囲で調整した。後述するゲル分率、初期せん断力、初期クリープ力、及び内外比[a/b]の測定においても同様である。
<OD value>
Each light-moisture-curable resin composition obtained in Examples and Comparative Examples was uniformly applied to a slide glass ("S1214", manufactured by Matsunami Glass Industry Co., Ltd.) so as to have a thickness of 1 mm, and a UV-LED irradiation device was applied. (manufactured by CCS Co., Ltd.), the photo-moisture-curable resin composition was photo-cured by irradiating 1500 mJ/cm 2 of ultraviolet rays having a wavelength of 365 nm to obtain a sample for light shielding evaluation.
The OD value of the resulting light-shielding evaluation sample was measured using an optical densitometer (manufactured by X-rite, "Spectrometer").
When photocuring was performed for the measurement of the OD value, the illuminance during photocuring was adjusted in the range of 500 to 3000 mW/cm 2 . The same applies to measurements of the gel fraction, initial shear force, initial creep force, and inside/outside ratio [a/b], which will be described later.
<25℃粘度>
 25℃粘度は、コーンプレート型粘度計(商品名TVE-35、東機産業社製)を用いて5.0rpm、25℃の条件で測定した。
<25°C Viscosity>
The 25° C. viscosity was measured at 5.0 rpm and 25° C. using a cone-plate viscometer (trade name TVE-35, manufactured by Toki Sangyo Co., Ltd.).
<ゲル分率>
 明細書記載の方法でゲル分率を測定した。なお、ガラス板(スライドガラス)としては、「S1214」(松浪硝子工業株式会社製)を用いた。塗布した光湿気硬化型樹脂組成物に対しては、UV-LED照射器(シーシーエス株式会社製)により、波長365nmの紫外線を1500mJ/cm照射した。THFへの浸漬は、ガラス瓶に入れた100mlのTHFを用いて、静かに撹拌しながら行った。200メッシュの金網としては、「真鍮200メッシュ(線径50μm目開き77μm)」(メッシュ株式会社製)を用いた。浸漬後の光硬化した状態の光湿気硬化型樹脂組成物の洗浄は、各回で新たな5mlのTHFを用いて5回行った。膨潤状態のゲルの乾燥は、100℃に設定した恒温器に2時間静置することによって行った。上記の操作において、THFは全て乾燥処理したTHFを用いた。
 以上のように測定したゲル分率に基づき、光湿気硬化型樹脂組成物の深部硬化性を評価した。深部硬化性の評価基準は以下の通りである。
   A:15%超
   B:10%以上15%以下
   C:10%未満
<Gel fraction>
The gel fraction was measured by the method described in the specification. As the glass plate (slide glass), "S1214" (manufactured by Matsunami Glass Industry Co., Ltd.) was used. The applied light moisture-curable resin composition was irradiated with 1500 mJ/cm 2 of ultraviolet rays having a wavelength of 365 nm using a UV-LED irradiator (manufactured by CCS Co., Ltd.). Immersion in THF was carried out using 100 ml of THF in a glass bottle with gentle stirring. As the wire mesh of 200 mesh, "brass 200 mesh (wire diameter 50 μm, opening 77 μm)" (manufactured by Mesh Co., Ltd.) was used. The photo-moisture-curable resin composition in a photo-cured state after immersion was washed five times with fresh 5 ml of THF each time. The swollen gel was dried by allowing it to stand in a thermostat set at 100° C. for 2 hours. In the above operations, dry THF was used for all THF.
Based on the gel fraction measured as described above, the deep-part curability of the light and moisture-curable resin composition was evaluated. The evaluation criteria for deep-part curability are as follows.
A: more than 15% B: 10% or more and 15% or less C: less than 10%
<初期せん断力>
 図2(a)、(b)に示すように、上記したディスペンス装置を用いて、アルミニウム基板21に幅1.0±0.1mm、長さ25mm、及び厚さが0.4±0.1mmとなるように光湿気硬化型樹脂組成物20を室温(25℃)で塗布した。そして、ライン型LED照射器(HOYA社製)で波長365nmの紫外線を1500mJ/cm照射することによって光硬化させた。その後、アルミニウム基板21に、光硬化した光湿気硬化型樹脂組成物20を介して、ガラス板22を貼り合わせて、分銅を使って塗布面積に対して0.08MPaで120秒間圧着し、初期せん断力評価用サンプル23を得た。
 その後、25℃の雰囲気下で引張り試験機(「引張圧縮試験装置 SVZ-50NB」、今田製作所社製)を用いて剪断方向Sに10mm/minの速度で引張り、アルミニウム基板21とガラス板22とが剥がれる際の最大応力を測定して、初期せん断力とした。なお、光硬化終了から引張試験開始までは150秒以内に行った。初期せん断力は、以下の評価基準で評価した。
   A:0.3MPa以上
   B:0.2MPa以上0.3MPa未満
   C:0.2MPa未満
<Initial shear force>
As shown in FIGS. 2(a) and 2(b), the aluminum substrate 21 was coated with a width of 1.0±0.1 mm, a length of 25 mm, and a thickness of 0.4±0.1 mm using the dispensing apparatus described above. The light moisture-curable resin composition 20 was applied at room temperature (25° C.) such that Then, it was photo-cured by irradiating 1500 mJ/cm 2 of ultraviolet rays having a wavelength of 365 nm with a line-type LED irradiator (manufactured by HOYA). After that, a glass plate 22 is attached to an aluminum substrate 21 via a light-cured light-moisture-curable resin composition 20, and a weight is used to apply pressure to the coating area at 0.08 MPa for 120 seconds, followed by initial shearing. A sample 23 for force evaluation was obtained.
After that, under an atmosphere of 25° C., a tension tester (“Tensile/compression tester SVZ-50NB” manufactured by Imada Seisakusho Co., Ltd.) was used to pull in the shearing direction S at a rate of 10 mm/min. The initial shear force was determined by measuring the maximum stress when the film was peeled off. The time from the end of photocuring to the start of the tensile test was within 150 seconds. The initial shear force was evaluated according to the following evaluation criteria.
A: 0.3 MPa or more B: 0.2 MPa or more and less than 0.3 MPa C: less than 0.2 MPa
<初期クリープ力>
 図3(a)、(b)に示すように、ポリカーボネート基板30に光湿気硬化型樹脂組成物31を、光湿気硬化型樹脂組成物31の四辺の寸法が9.5cm×9.5cm、かつ厚さ0.4±0.1mmとなるように、室温(25℃)で塗布した。そして、ライン型LED照射器(HOYA社製)で波長365nmの紫外線を1500mJ/cm照射することによって光硬化させた。その後、ポリカーボネート基板30に、光硬化した光湿気硬化型樹脂組成物31を介して、10cm×10cmで厚み12mmのガラス板(日本テストパネル社製)32を貼り合わせて、分銅を使って塗布面積に対して0.08MPaで120秒間圧着し、初期クリープ力評価用サンプル33を得た。
 その後、初期クリープ力評価用サンプル33を垂直に立て、その状態で温度25℃、湿度50%RH環境下に1時間放置し、当該放置後にガラス板32がずれた距離hを測定した。なお、光硬化終了から初期クリープ力試験開始までは300秒以内に行った。距離hに基づき、以下の評価基準で、初期クリープ力を評価した。なお、距離hが短い方が、初期クリープ力が高いことを意味する。
   A:距離hが0.10mm未満
   B:距離hが0.10mm以上0.15mm以下
   C:距離hが0.15mm超
<Initial creep force>
As shown in FIGS. 3A and 3B, a light moisture-curable resin composition 31 is applied to a polycarbonate substrate 30, and the four sides of the light moisture-curable resin composition 31 have dimensions of 9.5 cm×9.5 cm, and It was applied at room temperature (25° C.) to a thickness of 0.4±0.1 mm. Then, it was photo-cured by irradiating 1500 mJ/cm 2 of ultraviolet rays having a wavelength of 365 nm with a line-type LED irradiator (manufactured by HOYA). After that, a 10 cm × 10 cm glass plate 32 (manufactured by Nippon Test Panel Co., Ltd.) with a thickness of 12 mm is attached to the polycarbonate substrate 30 via a photo-cured light moisture-curable resin composition 31, and a weight is used to determine the coating area. was pressed against for 120 seconds at 0.08 MPa to obtain a sample 33 for initial creep force evaluation.
After that, the initial creep force evaluation sample 33 was set upright and left for 1 hour in an environment with a temperature of 25° C. and a humidity of 50% RH. The time from the end of photocuring to the start of the initial creep force test was within 300 seconds. Based on the distance h, the initial creep force was evaluated according to the following evaluation criteria. A shorter distance h means a higher initial creep force.
A: Distance h is less than 0.10 mm B: Distance h is 0.10 mm or more and 0.15 mm or less C: Distance h is more than 0.15 mm
<内外比a/b>
 明細書記載の方法で内外比a/bを測定した。なお、アルミニウム基板及びガラス板としては、それぞれサイズが2mm×25mm×60mmであるアルミニウム合金「A6063S」、5分間超音波洗浄した表面が平滑なガラス板を使用した。湿気硬化型樹脂組成物の塗布は、ディスペンス装置である武蔵エンジニアリング社製「SHOTMASTER300SX」を使用して室温(25℃)で行い、幅1.0±0.1mm、長さ25mm、及び厚さが0.4±0.1mmとなるように直線状にアルミニウム基板に塗布した。次に、塗布した光湿気硬化型樹脂組成物に対しては、ライン型LED照射器(HOYA株式会社製)により、波長365nmの紫外線を1500mJ/cm照射した。ガラス板のアルミニウム基板に対する圧着は、分銅をおもりとして用いて行い、おもりを外してから5分後に幅a1、b1を測定した。圧着後の幅a1、b1の測定は、顕微鏡を用いてガラス板側から圧着面を観察して行った。
<Inside/outside ratio a/b>
The inside/outside ratio a/b was measured by the method described in the specification. As the aluminum substrate and the glass plate, an aluminum alloy "A6063S" having a size of 2 mm×25 mm×60 mm, and a glass plate having a smooth surface after ultrasonic cleaning for 5 minutes were used. Application of the moisture-curable resin composition is performed at room temperature (25 ° C.) using a dispensing device “SHOTMASTER 300SX” manufactured by Musashi Engineering Co., Ltd., with a width of 1.0 ± 0.1 mm, a length of 25 mm, and a thickness of It was applied linearly to the aluminum substrate so as to be 0.4±0.1 mm. Next, the applied light-moisture-curable resin composition was irradiated with 1500 mJ/cm 2 of ultraviolet light having a wavelength of 365 nm using a line-type LED irradiator (manufactured by HOYA Corporation). The pressure bonding of the glass plate to the aluminum substrate was performed using a weight as a weight, and the widths a1 and b1 were measured 5 minutes after removing the weight. The widths a1 and b1 after pressure bonding were measured by observing the pressure bonding surface from the glass plate side using a microscope.
 各実施例、比較例で使用したウレタン樹脂原料は、以下の方法で作製した。
[合成例1]
<PCウレタン樹脂原料>
 ポリオール化合物として100質量部のポリカーボネートジオール(式(1)で表される化合物、Rの90モル%が3-メチルペンチレン基、10モル%がヘキサメチレン基、クラレ社製、商品名「Kuraraypolyol C-1090」)と、0.01質量部のジブチル錫ジラウレートとを500mL容量のセパラブルフラスコに入れた。フラスコ内を真空下(20mmHg以下)、100℃で30分間撹拌して混合した。その後常圧とし、ポリイソシアネート化合物としてジフェニルメタンジイソシアネート(日曹商事社製、商品名「Pure MDI」)50質量部を入れ、80℃で3時間撹拌して反応させ、ポリカーボネート骨格を有し、両末端にイソシアネート基を有する湿気硬化性ウレタン樹脂(PCウレタン樹脂原料)を得た。得られたウレタン樹脂原料の重量平均分子量は6700であった。
The urethane resin raw material used in each example and comparative example was produced by the following method.
[Synthesis Example 1]
<raw material for PC urethane resin>
As a polyol compound, 100 parts by mass of polycarbonate diol (compound represented by formula (1), 90 mol% of R is 3-methylpentylene group, 10 mol% is hexamethylene group, manufactured by Kuraray Co., Ltd., trade name "Kuraraypolyol C -1090") and 0.01 part by mass of dibutyltin dilaurate were placed in a 500 mL separable flask. The inside of the flask was stirred and mixed at 100° C. for 30 minutes under vacuum (20 mmHg or less). After that, the pressure is adjusted to normal pressure, 50 parts by mass of diphenylmethane diisocyanate (manufactured by Nisso Shoji Co., Ltd., trade name “Pure MDI”) is added as a polyisocyanate compound, stirred at 80 ° C. for 3 hours to react, and has a polycarbonate skeleton and both ends. A moisture-curable urethane resin (raw material for PC urethane resin) having an isocyanate group was obtained. The weight average molecular weight of the obtained urethane resin raw material was 6,700.
[実施例1]
 表4に記載の通りに40質量部のアクリルBに、60質量部の湿気硬化性樹脂aを構成する各原料を加えた。アクリルBは、表2に記載の配合比で各化合物を混合したものであった。湿気硬化性樹脂aとして、表3に記載の質量比で、PCウレタン樹脂原料、及びPCポリオールを順にアクリルBに加えて、混合物を得た。PCポリオールとしては、合成例1で使用したポリカーボネートジオールを使用した。
 得られた混合物を50℃で攪拌することで、ウレタン樹脂原料の一部にポリオールを反応させ、鎖延長され、かつイソシアネート基が残存する湿気硬化性ウレタン樹脂を合成し、アクリルB(ラジカル重合性化合物)と湿気硬化性ウレタン樹脂の混合物を得た。
 得られたアクリルBと湿気硬化性ウレタン樹脂の混合物に、表4の配合に従って、光ラジカル重合開始剤、充填剤、及び着色剤を加えてさらに混合して、光湿気硬化型樹脂組成物を得た。得られた光湿気硬化型樹脂組成物について、重量平均分子量、OD値、粘度、及びゲル分率を測定し、さらに深部硬化性を評価した。
[実施例2~4、比較例1~3]
 着色剤の種類、及び配合量を表4に記載の通りに変更した以外は、実施例1と同様に実施した。
[Example 1]
As shown in Table 4, to 40 parts by mass of acrylic B, 60 parts by mass of each raw material constituting moisture-curable resin a was added. Acrylic B was obtained by mixing each compound at the compounding ratio shown in Table 2. As a moisture-curable resin a, a PC urethane resin raw material and a PC polyol were sequentially added to the acrylic B at the mass ratio shown in Table 3 to obtain a mixture. As the PC polyol, the polycarbonate diol used in Synthesis Example 1 was used.
By stirring the obtained mixture at 50° C., a part of the urethane resin raw material is reacted with a polyol to synthesize a chain-extended moisture-curable urethane resin in which isocyanate groups remain, and acrylic B (radical polymerizable compound) and a moisture-curable urethane resin was obtained.
To the resulting mixture of acrylic B and moisture-curable urethane resin, a photoradical polymerization initiator, a filler, and a colorant were added according to the formulations shown in Table 4 and further mixed to obtain a moisture-curable resin composition. Ta. The weight-average molecular weight, OD value, viscosity, and gel fraction of the resulting photo-moisture-curable resin composition were measured, and deep-part curability was evaluated.
[Examples 2 to 4, Comparative Examples 1 to 3]
The procedure was carried out in the same manner as in Example 1, except that the type and amount of the coloring agent were changed as shown in Table 4.
[実施例5~8、比較例4~6]
 表5に示すとおり、アクリルBの代わりにアクリルAを使用した点を除いて、実施例1~4、比較例1~3それぞれと同様に実施して光湿気硬化型樹脂組成物を得た。得られた光湿気硬化型樹脂組成物について、重量平均分子量、OD値、粘度、内外比、初期せん断力、及び初期クリープ力を測定し、さらに、初期せん断力及び初期クリープ力を評価した。
[Examples 5-8, Comparative Examples 4-6]
As shown in Table 5, light and moisture-curable resin compositions were obtained in the same manner as in Examples 1 to 4 and Comparative Examples 1 to 3, except that acrylic A was used instead of acrylic B. Weight average molecular weight, OD value, viscosity, internal/external ratio, initial shear force, and initial creep force were measured for the obtained light-moisture-curable resin composition, and the initial shear force and initial creep force were evaluated.
 各実施例、比較例で使用した、湿気硬化性ウレタン樹脂以外の成分は、以下の表1に示すとおりである。 The components other than the moisture-curable urethane resin used in each example and comparative example are as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 各実施例、比較例で使用したアクリルA、Bは、表2のとおりである。
Figure JPOXMLDOC01-appb-T000005
Acrylics A and B used in each example and comparative example are shown in Table 2.
Figure JPOXMLDOC01-appb-T000005
 各実施例、比較例で使用した湿気硬化性樹脂aは、以下の表3に示すとおりである。
Figure JPOXMLDOC01-appb-T000006
The moisture-curable resin a used in each example and comparative example is as shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表4に示すとおり、実施例1~4における光湿気硬化型樹脂組成物は、OD値を2以上として黒色化した場合においても、窒化ジルコニウムを使用したため、光硬化後のゲル分率が高くなり、良好な光硬化性を発現することができた。
 それに対して、比較例1~3では、窒化ジルコニウムの代わりにチタンブラックを使用したことにより、光硬化後のゲル分率が低くなり、良好な光硬化性を発現することができなかった。
As shown in Table 4, the photo-moisture-curable resin compositions in Examples 1 to 4 used zirconium nitride even when the OD value was set to 2 or more and turned black, so the gel fraction after photocuring increased. , good photocurability could be expressed.
On the other hand, in Comparative Examples 1 to 3, due to the use of titanium black instead of zirconium nitride, the gel fraction after photocuring was lowered, and good photocurability could not be exhibited.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表5に示すとおり、各実施例における光湿気硬化型樹脂組成物は、OD値を2以上として黒色化した場合においても、窒化ジルコニウムを使用したことで、光硬化性が優れたものとなった。そのため、初期せん断力及び初期クリープ力が良好となり、優れた初期接着力を発現することができた。
 それに対し、窒化ジルコニウムの代わりにチタンブラックを着色剤として使用した比較例では、光硬化性が不十分となり、初期接着力を優れたものにできなかった。
As shown in Table 5, the photo-moisture-curable resin composition in each example had excellent photocurability due to the use of zirconium nitride, even when the OD value was set to 2 or more and turned black. . Therefore, the initial shear force and the initial creep force were improved, and excellent initial adhesive strength could be exhibited.
On the other hand, in Comparative Examples in which titanium black was used instead of zirconium nitride as a coloring agent, the photocurability was insufficient and the initial adhesive strength was not excellent.

Claims (8)

  1.  ラジカル重合性化合物と、湿気硬化性樹脂と、光ラジカル重合開始剤と、窒化ジルコニウムとを含有し、
     光硬化後の1mm厚みの硬化物のOD値が2以上である、光湿気硬化型樹脂組成物。
    containing a radically polymerizable compound, a moisture-curable resin, a photoradical polymerization initiator, and zirconium nitride;
    A photo-moisture-curable resin composition having an OD value of 2 or more in a 1-mm-thick cured product after photocuring.
  2.  ラジカル重合性化合物が多官能ラジカル重合性化合物を含む、請求項1に記載の光湿気硬化型樹脂組成物。 The light and moisture-curable resin composition according to claim 1, wherein the radically polymerizable compound contains a polyfunctional radically polymerizable compound.
  3.  アルミニウム基板に線幅1.0mmで塗布し、1500mJ/cmの紫外線を照射して光硬化した状態で、ガラス板を0.08MPaで120秒間圧着した場合において、ガラス板側の接着部分の平均幅をa、アルミニウム基板側の接着部分の平均幅をbとすると、a/bが0.5以上0.95以下である、請求項1又は2に記載の光湿気硬化型樹脂組成物。 An aluminum substrate was coated with a line width of 1.0 mm, irradiated with ultraviolet rays of 1500 mJ/cm 2 and photocured, and then the glass plate was pressed at 0.08 MPa for 120 seconds. 3. The light and moisture-curable resin composition according to claim 1 or 2, wherein a is the width and b is the average width of the adhesive portion on the aluminum substrate side, wherein a/b is 0.5 or more and 0.95 or less.
  4.  コーンプレート型粘度計を用いて25℃、5.0rpmの条件で測定した粘度が40Pa・s以上600Pa・s以下である、請求項1~3のいずれかに記載の光湿気硬化型樹脂組成物。 The light and moisture-curable resin composition according to any one of claims 1 to 3, which has a viscosity of 40 Pa s or more and 600 Pa s or less measured at 25°C and 5.0 rpm using a cone-plate viscometer. .
  5.  さらに充填剤を含有する、請求項1~4のいずれかに記載の光湿気硬化型樹脂組成物。 The light and moisture-curable resin composition according to any one of claims 1 to 4, which further contains a filler.
  6.  請求項1~5のいずれかに記載の光湿気硬化型樹脂組成物からなる、電子部品用接着剤。 An adhesive for electronic parts, comprising the light and moisture-curable resin composition according to any one of claims 1 to 5.
  7.  請求項1~5のいずれかに記載の光湿気硬化型樹脂組成物からなる、表示素子用接着剤。 An adhesive for display elements, comprising the light and moisture-curable resin composition according to any one of claims 1 to 5.
  8.  請求項1~5のいずれかに記載の光湿気硬化型樹脂組成物の硬化体。 A cured body of the light and moisture-curable resin composition according to any one of claims 1 to 5.
PCT/JP2023/004815 2022-02-14 2023-02-13 Photo/moisture-curable resin composition, adhesive for electronic component, and adhesive for display element WO2023153514A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022020779 2022-02-14
JP2022-020779 2022-02-14

Publications (1)

Publication Number Publication Date
WO2023153514A1 true WO2023153514A1 (en) 2023-08-17

Family

ID=87564571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004815 WO2023153514A1 (en) 2022-02-14 2023-02-13 Photo/moisture-curable resin composition, adhesive for electronic component, and adhesive for display element

Country Status (2)

Country Link
TW (1) TW202344523A (en)
WO (1) WO2023153514A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015111570A1 (en) * 2014-01-21 2015-07-30 積水化学工業株式会社 Light/moisture-curable resin composition, adhesive for electronic components, and adhesive for display elements
JP2020076794A (en) * 2018-11-05 2020-05-21 協立化学産業株式会社 Sealant composition for liquid crystal display
WO2021230372A1 (en) * 2020-05-15 2021-11-18 積水化学工業株式会社 Photo/moisture curable resin composition, adhesive for electronic components, cured body and electronic component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015111570A1 (en) * 2014-01-21 2015-07-30 積水化学工業株式会社 Light/moisture-curable resin composition, adhesive for electronic components, and adhesive for display elements
JP2020076794A (en) * 2018-11-05 2020-05-21 協立化学産業株式会社 Sealant composition for liquid crystal display
WO2021230372A1 (en) * 2020-05-15 2021-11-18 積水化学工業株式会社 Photo/moisture curable resin composition, adhesive for electronic components, cured body and electronic component

Also Published As

Publication number Publication date
TW202344523A (en) 2023-11-16

Similar Documents

Publication Publication Date Title
WO2015174371A1 (en) Photo- and moisture-curing resin composition, adhesive for electronic parts, and adhesive for display element
JP6641255B2 (en) Adhesives for electronic components and adhesives for display elements
WO2021230373A1 (en) Photo/moisture-curable resin composition, adhesive for electronic component, cured body and electronic component
JP7470054B2 (en) Photo-curable moisture-curable resin composition and cured product
JP2016074783A (en) Photo- and moisture-curable resin composition
JP2024026609A (en) Curable resin composition and cured product
WO2023153514A1 (en) Photo/moisture-curable resin composition, adhesive for electronic component, and adhesive for display element
WO2022004416A1 (en) Photo/moisture curable resin composition and cured body
WO2020241803A1 (en) Curable resin composition, cured object, and electronic component
WO2022260053A1 (en) Photo/moisture-curable resin composition, adhesive for electronic components, cured body, and electronic component
WO2023176795A1 (en) Light-moisture curable resin composition, adhesive agent for electronic component, and adhesive agent for display element
WO2022114186A1 (en) Moisture-curable resin composition and adhesive for electronic appliance
JP2020045403A (en) Curable resin composition, cured product, electronic component, and assembly component
CN115151578B (en) Photo-moisture curable resin composition, adhesive for electronic component, cured body, and electronic component
WO2024009957A1 (en) Light/moisture curable resin composition, cured product, use of light/moisture curable resin composition, and end face protection method
WO2019203277A1 (en) Curable resin composition, cured body, electronic part and assembly part
WO2019124494A1 (en) Curable resin composition, cured article, electronic components and assembly components
TW202411369A (en) Light- and moisture-curable resin compositions, cured products, uses of light- and moisture-curable resin compositions, and end-face protection methods
TW202336202A (en) Adhesive composition, adhesive for electronic components, and adhesive for portable electronic devices
TW202235574A (en) Adhesive composition, adhesive for electronic components, and adhesive for portable electronic devices

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023522422

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752976

Country of ref document: EP

Kind code of ref document: A1