WO2020149226A1 - 撮像装置組立体、3次元形状測定装置及び動き検出装置 - Google Patents

撮像装置組立体、3次元形状測定装置及び動き検出装置 Download PDF

Info

Publication number
WO2020149226A1
WO2020149226A1 PCT/JP2020/000628 JP2020000628W WO2020149226A1 WO 2020149226 A1 WO2020149226 A1 WO 2020149226A1 JP 2020000628 W JP2020000628 W JP 2020000628W WO 2020149226 A1 WO2020149226 A1 WO 2020149226A1
Authority
WO
WIPO (PCT)
Prior art keywords
subject
operation mode
image signal
distance
imaging device
Prior art date
Application number
PCT/JP2020/000628
Other languages
English (en)
French (fr)
Inventor
雄一 浜口
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2020566398A priority Critical patent/JP7362670B2/ja
Priority to US17/415,536 priority patent/US11895406B2/en
Publication of WO2020149226A1 publication Critical patent/WO2020149226A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2545Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with one projection direction and several detection directions, e.g. stereo
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/22Measuring arrangements characterised by the use of optical techniques for measuring depth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/521Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/593Depth or shape recovery from multiple images from stereo images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/246Calibration of cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/254Image signal generators using stereoscopic image cameras in combination with electromagnetic radiation sources for illuminating objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/257Colour aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/271Image signal generators wherein the generated image signals comprise depth maps or disparity maps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/296Synchronisation thereof; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/42Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by switching between different modes of operation using different resolutions or aspect ratios, e.g. switching between interlaced and non-interlaced mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/771Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising storage means other than floating diffusion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • G06T2207/10012Stereo images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10152Varying illumination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N2013/0074Stereoscopic image analysis
    • H04N2013/0081Depth or disparity estimation from stereoscopic image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N2013/0074Stereoscopic image analysis
    • H04N2013/0085Motion estimation from stereoscopic image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N2013/0074Stereoscopic image analysis
    • H04N2013/0092Image segmentation from stereoscopic image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/72Combination of two or more compensation controls

Definitions

  • the present disclosure relates to an imaging device assembly, a three-dimensional shape measuring device, and a motion detecting device.
  • a stereo method in which two imaging devices are arranged side by side and measurement is performed based on the principle of triangulation, or one light source and one imaging
  • a structured light method in which measurement is performed by juxtaposing a device is well known (see, for example, WO2016/098400A1).
  • a reference light pattern based on infrared rays is emitted from a light source composed of, for example, a laser device, and the object is irradiated with the reference light pattern.
  • the reference light pattern include a line-and-space pattern, a lattice pattern, and a dot pattern.
  • the subject illuminated by the reference light pattern is imaged by the imaging device.
  • the distance between the light source and the imaging device is L
  • the angle between the emitted light (light beam) illuminating the subject and the base line is ⁇
  • be the angle formed by the straight line connecting the part of the subject with which the emitted light collides with the imaging device and the base line
  • the light source is located at the origin (0, 0) of the coordinate system
  • the coordinates of the part of the subject with which the light beam collides are Assuming that (x, y), (x, y) is represented by the following expression (A).
  • the stereo method is a method in which two image pickup devices are used and the light source in the structured light method is replaced by one image pickup device.
  • the light source is separately arranged.
  • a method having (active stereo method) is also conceivable.
  • the reference light pattern illuminating the subject must be obtained as image data by the imaging device.
  • ambient light unsunlight, indoor lighting, etc.
  • the sensitivity of the image pickup device is increased, the sensitivity of the image pickup device with respect to ambient light is also increased, and thus it is not a drastic solution.
  • a method of removing light having the same wavelength as the wavelength of the light emitted from the light source from the ambient light by using a filter may be considered, but there is a limit to the band of the filter, and such light can be efficiently emitted from the ambient light. It is difficult to remove.
  • the method of increasing the brightness of the light source has a problem that the power consumption of the light source is increased and the reference light pattern is visually recognized in some cases.
  • an object of the present disclosure is to provide an image pickup apparatus assembly capable of surely obtaining image data without being influenced by ambient light, and an image pickup apparatus assembly having such a simple configuration and structure. It is to provide a three-dimensional shape measuring device and a motion detecting device using the.
  • An image pickup device assembly for achieving the above object includes: A light source that illuminates the subject, Imaging device, and A control device for controlling the light source and the imaging device, Is equipped with The image pickup device includes a plurality of image pickup elements, Each image sensor, Light receiving section, A first charge storage part, a second charge storage part, and Under the control of the control device, first charge transfer control means for controlling the transfer of the charge accumulated in the light receiving section to the first charge accumulating section, and the transfer of the charge accumulated in the light receiving section to the second charge accumulating section. Second charge transfer control means for controlling It consists of It is operated in the first operation mode.
  • the imaging element images the subject based on the high-intensity light emitted from the light source in the first period TP 1 , and the first image signal charges obtained in the light receiving unit are stored in the first charge storage unit.
  • the subject is imaged based on the low-luminance light, and the second image signal charge obtained in the light receiving unit is stored in the second charge storage unit.
  • the control device obtains (generates) an image signal based on the difference between the first image signal charge accumulated in the first charge accumulation unit and the second image signal charge accumulated in the second charge accumulation unit.
  • the three-dimensional shape measuring apparatus of the present disclosure for achieving the above object includes the imaging device assembly of the present disclosure.
  • the motion detection device of the present disclosure for achieving the above object includes the imaging device assembly of the present disclosure.
  • FIG. 1A and 1B are conceptual diagrams of the image pickup device for explaining the operation of the image pickup device that constitutes the image pickup device assembly of the first embodiment, and FIG. 1C configures the image pickup device assembly of the first embodiment. It is a figure for demonstrating the time-dependent operation
  • 2A is a conceptual diagram of the image pickup apparatus assembly of the first embodiment
  • FIG. 2B is a conceptual diagram of the image pickup apparatus assembly of the second embodiment.
  • FIG. 3A and FIG. 3B are diagrams schematically showing a state in which the first image signal charges are acquired and a state in which the second image signal charges are acquired in the image pickup apparatus assembly according to the first embodiment.
  • FIG. 4B are diagrams schematically showing a state in which the first image signal charges are acquired and a state in which the second image signal charges are acquired in the imaging device assembly according to the second embodiment.
  • FIG. 5 is a diagram for explaining the operation over time in the second operation mode of the image pickup element forming the image pickup apparatus assembly according to the fourth embodiment.
  • 6A, 6B, and 6C are diagrams schematically showing the imaging times T 1 and T 2 per one imaging frame.
  • 7A and 7B are diagrams schematically showing the image pickup times T 1 and T 2 per image pickup frame.
  • FIG. 8A and FIG. 8B are diagrams schematically showing imaging times T 1 and T 2 per imaging frame.
  • FIG. 10 is a diagram schematically illustrating a state in which a plurality of reflected lights are generated as a result of light being reflected by a wall, and discontinuity or abnormality occurs in the value of the measurement distance.
  • Example 1 Imaging Device Assembly of Present Disclosure, Three-Dimensional Shape Measuring Device of Present Disclosure, and Motion Detection Device of Present Disclosure
  • Example 2 Imaging device assembly of the present disclosure, three-dimensional shape measuring device of the present disclosure, and motion detection device of the present disclosure in general
  • Example 2 Modification of Example 1
  • Example 3 Modifications of Examples 1 and 2)
  • Example 4 Modifications of Examples 1 to 3) 6.
  • the image pickup apparatus assembly of the present disclosure or the three-dimensional shape measuring apparatus of the present disclosure, and the image pickup apparatus assembly of the present disclosure provided in the motion detection apparatus of the present disclosure are collectively referred to as “the image pickup apparatus set of the present disclosure.
  • the subject is imaged based on the low-luminance light, but the subject is imaged based on the low-luminance light emitted from the light source, and the light is not emitted from the light source, that is, the light source is not It includes a mode of being in an operating state and capturing an image of a subject based on external light (environmental light).
  • the state in which the subject is imaged based on the high-intensity light emitted from the light source in the first period TP 1 is called “high-intensity light irradiation state”, and the subject is imaged in the second period TP 2 based on the low-intensity light.
  • the state is referred to as a “low-luminance light irradiation state”.
  • the high brightness light emitted from the light source is a reference light pattern
  • the control device may be configured to obtain the distance to the subject, the outer shape of the subject, or the distance to the subject and the outer shape of the subject based on the obtained image signal. Then, in this case, the control device obtains the distance to the subject or obtains the outer shape of the subject from the obtained image signal based on triangulation (specifically, the structured light method or the active stereo method). Alternatively, the distance to the subject and the outer shape of the subject can be obtained.
  • the light source may be in a state of not emitting the reference light pattern or may be in a state of emitting the reference light pattern in the low-luminance light irradiation state.
  • the brightness of the reference light pattern emitted from the light source may be appropriately determined by conducting various tests.
  • the user may switch or change the brightness of the reference light pattern emitted from the light source (the amount of light emitted by the light source) by switching between the outdoor mode and the indoor mode, for example. ..
  • the first image By calculating the difference between the signal charge and the second image signal charge, the influence of ambient light can be removed from the image signal.
  • the image pickup apparatus assembly and the like of the present disclosure including the various preferable modes described above can be further operated in the second operation mode.
  • the imaging element images the subject based on the light emitted from the light source in the fifth period TP 5 that straddles the third period TP 3 and the fourth period TP 4 , and then the third period TP 3
  • the third image signal charge obtained in the light receiving section is accumulated in the first charge accumulation section, and in the fourth period TP 4 , the fourth image signal charge obtained in the light receiving section is changed to the second image signal charge.
  • Such a second operation mode is also called an indirect TOF (Time Of Flight) method. That is, in the second operation mode, the distance from the light that hits the subject and is reflected by the subject to the time when the light is incident on the imaging device is replaced with the exposure amount of the imaging device to measure the distance.
  • TOF Time Of Flight
  • the control device performs switching from the first operation mode to the second operation mode and from the second operation mode to the first operation mode. can do.
  • the first operation mode may be switched to the second operation mode
  • the second operation mode may be switched to the first operation mode based on a user's instruction.
  • the control device creates the first depth map based on the first operation mode, and based on the second operation mode.
  • the second depth map may be created, and the first depth map and the second depth map may be combined, whereby the accuracy of the depth map (depth information) can be improved.
  • the distance measurement based on the first operation mode is suitable for a short distance (for example, less than 1 m) distance measurement
  • the distance measurement based on the second operation mode is suitable for a long distance (for example, 1 m or more) distance measurement.
  • the first depth map is created based on the first operation mode
  • the second depth map is created based on the second operation mode. Create a depth map.
  • the control device operates the first operation mode in a desired region of the imaging device and the second operation mode in another desired region of the imaging device. It can be configured to operate the operation mode.
  • the second operation mode is applied to an area where pattern recognition is not performed due to insufficient brightness of the subject (pattern) in the first operation mode (that is, an area where distance information cannot be acquired in the first operation mode) can be mentioned.
  • the control device determines, based on the distance to the object determined based on the first operation mode, to the object determined based on the second operation mode.
  • the distance can be calibrated.
  • the user may switch the calibration mode. Specifically, when the calibration mode button is pressed, the distance information is acquired in the first operation mode in a predetermined number of frames after the image pickup apparatus is activated, and then the distance information is quickly acquired in the second operation mode.
  • the distance information in the first operation mode and the distance information in the second operation mode may be adjusted (calibrated).
  • the control device determines, based on the distance to the object determined based on the second operation mode, to the object determined based on the first operation mode.
  • the distance can be calibrated. Similar to the above, for example, the user may switch the calibration mode.
  • the control device may detect a discontinuous state in the distance to the subject determined based on the second operation mode, or When the distance to the subject obtained based on the second operation mode becomes an indefinite value, the configuration can be changed to the first operation mode to obtain the distance to the subject.
  • the control device sets the first operation mode when the distance to the subject determined based on the second operation mode is less than a predetermined value.
  • the configuration can be changed to obtain the distance to the subject. That is, during the operation in the second operation mode, when the obtained distance to the subject is less than the predetermined value, the control device may switch to the first operation mode to obtain the distance to the subject.
  • the predetermined value 1 m can be exemplified, but the value is not limited to such a value. The same applies to the following description.
  • the switching from the second operation mode to the first operation mode may be performed by the control device itself.
  • the control device sets the second operation mode when the distance to the subject obtained based on the first operation mode is a predetermined value or more.
  • the configuration can be changed to obtain the distance to the subject. That is, during the operation in the first operation mode, when the obtained distance to the subject is equal to or larger than a predetermined value, the control device may switch to the second operation mode to obtain the distance to the subject. The switching from the first operation mode to the second operation mode may be performed by the control device itself.
  • the image pickup apparatus assembly and the like of the present disclosure including the various preferable modes and configurations described above can be configured to include one image pickup apparatus, and the image pickup apparatus includes an active stereo image pickup apparatus. It can be in the form of being.
  • the distance from the image pickup device to the subject, the two-dimensional or three-dimensional shape of the subject, the movement of the subject, and the like are described above. The calculation may be performed based on the Wright method. Further, in the case where two image pickup devices are provided, the distance from the image pickup device to the subject, the two-dimensional or three-dimensional shape of the subject, the movement of the subject, and the like are calculated based on the active stereo method. You can
  • the arithmetic device may be configured to calculate the three-dimensional shape of the subject from the image signal.
  • the arithmetic device calculates a three-dimensional shape of the subject from the image signal, extracts feature points of the subject from the calculated three-dimensional shape, calculates the position of the feature point of the subject, and calculates the position of the feature point of the subject from the change of the calculated position of the subject. It is also possible to adopt a form in which the movement of is detected.
  • the time length of the first period TP 1 (imaging time) is T 1
  • the time length of the second period TP 2 is (imaging time).
  • T 1 the time length of the first period TP 1
  • T 2 the time length of the second period TP 2
  • T 1 >T 2 It is possible to reduce the amount of high-brightness light emitted from the light source.
  • the imaging times T 1 and T 2 may be determined based on the specifications of the imaging device, or the imaging times T 1 and T 2 may be variable based on an instruction from the user of the imaging device assembly. , T 1 /T 2 ratio can be made variable.
  • One imaging frame is divided into multiple periods, One of the periods is in the low brightness light irradiation state, The remaining period can be set to a high-luminance light irradiation state.
  • the imaging frame rate is 30 frames/second, One imaging frame can be divided into two or more periods (for example, 2 to 4).
  • 1 imaging frame means one imaging frame for generating an image signal from the difference between the first image signal charge and the second image signal charge. It does not mean the number of images per second for obtaining a moving image.
  • an imaging period for imaging a subject in a high brightness light irradiation state and an imaging period for imaging a subject in a low brightness light irradiation state are repeated.
  • the former imaging period (first period TP 1 ) may be longer than the latter imaging period (second period TP 2 ).
  • the image pickup device has image pickup elements arranged in a two-dimensional matrix in a first direction and a second direction
  • the imaging device may have a form having a rolling shutter mechanism or may have a form having a global shutter mechanism. Then, in the high brightness light irradiation state, all of the image pickup elements image the subject to obtain the first image signal charges, and in the low brightness light irradiation state, all of the image pickup elements image the subject to generate the second image signal.
  • the controller may be configured to control the light source and the imager so as to obtain the charge.
  • the light source is preferably a light source that emits infrared rays having a wavelength of 780 nm to 980 nm, but is not limited thereto. is not.
  • the light source may be composed of, for example, a semiconductor laser element, a semiconductor light emitting element such as a light emitting diode (LED) or a super luminescent diode (SLD).
  • the light source may be continuously driven or pulse-driven during irradiation, depending on the form of the light emitting element forming the light source. The duty ratio in the case of pulse driving may be appropriately determined.
  • the line-and-space pattern, the grid pattern, and the dot pattern can be exemplified as the reference light pattern, but the reference light pattern is not limited to these and can be essentially any pattern.
  • a grid pattern, or a dot pattern for example, a diffraction grating or the like may be arranged on the light emitting side of the light source, or the pattern may be generated by a MEMS mirror. it can.
  • a density gradient pattern, a checkerboard lattice pattern, a conical pattern, or the like can be used.
  • an imaging device a CCD (Charge Coupled Device) type imaging device, a CMOS (Complementary Metal Oxide Semiconductor:) type imaging device, a CMD
  • a known image pickup device including an image pickup device (image sensor) such as a (Charge Modulation Device) type signal amplification type image pickup device and a CIS (Contact Image Sensor) can be exemplified.
  • the imaging device itself may have a known configuration and structure.
  • the image pickup device may be a front-illuminated solid-state image pickup device or a back-illuminated solid-state image pickup device, and the image pickup device may be composed of, for example, a digital still camera, a video camera, or a camcorder.
  • the image pickup device may be provided with an image pickup element (specifically, for example, an image pickup element that receives infrared rays) that can convert light having the above wavelength into a signal.
  • the image pickup apparatus preferably includes not only an image pickup element suitable for picking up a reference light pattern, but also an image pickup element suitable for picking up an object, for example, an image pickup element for detecting infrared rays. , And an image pickup element that receives (detects) red light, an image pickup element that receives (detects) green light, and an image pickup element that receives (detects) blue light.
  • the image pickup device that receives infrared light may be further provided to improve the accuracy of measurement and detection.
  • the image pickup device may be equipped with a filter that passes light having the same wavelength as the wavelength of light emitted from the light source.
  • a filter that passes light having the same wavelength as the wavelength of light emitted from the light source.
  • the imaging device needs to capture at least a predetermined wavelength component. Is enough. Therefore, a wavelength selection filter having desired characteristics, for example, a bandpass filter that transmits only light having a wavelength near 850 nm may be arranged on the light incident side of the imaging device.
  • the influence of the wavelength components other than 850 nm in the ambient light can be eliminated as much as possible, and the imaging device assembly, the three-dimensional shape measuring device, and the motion detection device that are further unaffected by the ambient light can be provided.
  • the characteristics of the wavelength selection filter are not limited to bandpass filters, and may be appropriately determined according to the wavelength profile of ambient light and the frequency characteristics of the image pickup apparatus.
  • the subject is essentially arbitrary.
  • the imaging device assembly and the like of the present disclosure can be used outdoors or indoors.
  • the imaging device assembly and the like of the present disclosure include, for example, a motion sensor, a surveillance camera system, a depth sensor, a three-dimensional shape sensor, a two-dimensional shape sensor, a three-dimensional position sensor, a two-dimensional position sensor, a distance sensor, a range sensor, It can be applied to vehicle collision prevention sensors, quality control and quality inspection systems.
  • An imaging method is substantially an imaging method using the imaging device assembly according to the present disclosure,
  • the first period TP 1 the subject is imaged based on the high-intensity light emitted from the light source, the first image signal charges obtained in the light receiving unit are accumulated in the first charge accumulation unit, and in the second period TP 2 .
  • a subject is imaged based on the low-luminance light, and the second image signal charges obtained in the light receiving unit are stored in the second charge storage unit, An image signal is obtained (generated) based on the difference between the first image signal charge accumulated in the first charge accumulation unit and the second image signal charge accumulated in the second charge accumulation unit.
  • a three-dimensional shape measuring method is substantially a three-dimensional shape measuring method using the imaging device assembly according to the present disclosure,
  • the first period TP 1 the subject is imaged based on the high-intensity light emitted from the light source, the first image signal charges obtained in the light receiving unit are accumulated in the first charge accumulation unit, and in the second period TP 2 .
  • a subject is imaged based on the low-luminance light, and the second image signal charges obtained in the light receiving unit are stored in the second charge storage unit, An image signal is obtained (after being generated) based on a difference between the first image signal charge accumulated in the first charge accumulation unit and the second image signal charge accumulated in the second charge accumulation unit, and then the image signal is obtained.
  • the three-dimensional shape is calculated from
  • the motion detection method according to the present disclosure is substantially a motion detection method using the imaging device assembly according to the present disclosure
  • the first period TP 1 the subject is imaged based on the high-intensity light emitted from the light source, the first image signal charges obtained in the light receiving unit are accumulated in the first charge accumulation unit, and in the second period TP 2 .
  • a subject is imaged based on the low-luminance light, and the second image signal charges obtained in the light receiving unit are stored in the second charge storage unit, An image signal is obtained (after being generated) based on a difference between the first image signal charge accumulated in the first charge accumulation unit and the second image signal charge accumulated in the second charge accumulation unit, and then the image signal is obtained.
  • the operation to calculate the three-dimensional shape from The feature points of the subject are sequentially extracted from the calculated three-dimensional shape, the positions of the feature points of the subject are sequentially calculated, and the movement of the subject is detected from the change in the calculated position of the feature points.
  • Example 1 relates to the imaging device assembly of the present disclosure, the three-dimensional shape measuring device of the present disclosure, and the motion detection device of the present disclosure.
  • An image pickup apparatus assembly 100 1 according to the first embodiment whose conceptual diagram is illustrated in FIG. 2A includes a light source 110 that illuminates a subject 140, an image pickup apparatus 120, and a control apparatus 130 that controls the light source 110 and the image pickup apparatus 120.
  • the image pickup apparatus 120 is composed of a plurality of image pickup elements 10. Then, as shown in FIGS. 1A and 1B, each image sensor 10 stores light in the light receiving unit 21, the first charge storage unit 22, the second charge storage unit 24, and the light receiving unit 21 under the control of the control device 130.
  • the first charge transfer control means 23 for controlling the transfer of the generated charge (or the charge generated by the light receiving unit 21) to the first charge storage unit 22, and the charge stored in the light receiving unit 21 (or the light receiving unit).
  • the second charge transfer control unit 25 controls the transfer of the charge generated in 21) to the second charge storage unit 24, and is operated in the first operation mode.
  • Such an image pickup device 10 is also called a CAPD (Current Assisted Photonic Demodulator) type image pickup device or a gate transfer type image pickup device.
  • the area other than the light receiving portion 21 is covered with the light shielding layer 26.
  • the first charge transfer control means 23 and the second charge transfer control means 25 have the same configuration and structure as the gate electrode.
  • the imaging element 10 images the subject 140 based on the high-luminance light emitted from the light source 110 in the first period TP 1 (imaging time, time length T 1 ) (FIG. 3A).
  • the first image signal charge q 1 obtained in the light receiving section 21 is accumulated in the first charge accumulating section 22, and is converted into low-luminance light in the second period TP 2 (imaging time, time length T 2 ).
  • the subject 140 is imaged (see FIG. 3B) in a state where light is not emitted from the light source 110, and the second image signal charge q 2 obtained in the light receiving unit 21 is changed to the second value.
  • the control device 130 Accumulated in the charge accumulation section 24, The control device 130 generates an image signal based on the difference between the first image signal charge q 1 accumulated in the first charge accumulation unit 22 and the second image signal charge q 2 accumulated in the second charge accumulation unit 24. Get (generate).
  • T 1 T 2 .
  • the image capturing times T 1 and T 2 per image capturing frame are schematically shown in FIGS. 6A, 6B and 6C, but these figures are diagrams when a rolling shutter mechanism is adopted as the shutter mechanism.
  • FIGS. 6A, 6B, 6C, and FIGS. 7A, 7B, 8A, and 8B described later the high-brightness light irradiation state in the first period TP 1 and the low-brightness light irradiation state in the second period TP 2 are shown. Each is indicated by a solid rectangle.
  • FIGS. 6A, 6B, 6C, and FIGS. 7A, 7B, 8A, and 8B described later the high-brightness light irradiation state in the first period TP 1 and the low-brightness light irradiation state in the second period TP 2 are shown. Each is indicated by a solid rectangle.
  • the imaging time T 1 from time t 11 to t 12 is in the high-intensity light irradiation state, and from time t 21 to t 12.
  • the imaging time T 2 of 22 is set.
  • the light that illuminates the subject 140 in the high-brightness light irradiation state includes light from the light source 110 and external light (environmental light). That is, in the high-luminance light irradiation state, the light source 110 is in the operating state and emits the reference light pattern.
  • the light that illuminates the subject 140 in the low-luminance light irradiation state includes external light (environmental light), but may also include light from the light source.
  • the light source 110 is in the inoperative state (that is, the reference light pattern is not emitted) in the low-luminance light irradiation state.
  • the high-intensity light emitted from the light source 110 is a reference light pattern (indicated by a plurality of dotted lines extending in the horizontal direction in the drawing). Then, the control device 130 obtains the distance to the subject 140, the outer shape of the subject 140, or the distance to the subject 140 and the outer shape of the subject 140 based on the obtained image signal. Specifically, the control device 130 obtains the distance to the subject 140 from the obtained image signal based on triangulation (specifically, the structured light method or the active stereo method), or the outer shape of the subject 140. The shape is obtained, or the distance to the subject 140 and the outer shape of the subject 140 are obtained.
  • triangulation specifically, the structured light method or the active stereo method
  • the three-dimensional shape measuring device and the motion detecting device of the first embodiment are equipped with the imaging device assembly of the first embodiment.
  • the three-dimensional shape measuring apparatus of the present disclosure further includes an arithmetic device, and the arithmetic device calculates the three-dimensional shape of the subject 140 from the image signal.
  • the motion detection apparatus according to the first embodiment further includes an arithmetic device, which calculates the three-dimensional shape of the subject 140 from the image signal and extracts the characteristic points of the subject 140 from the calculated three-dimensional shape. Then, the position of the characteristic point of the subject 140 is calculated, and the movement of the subject 140 is detected from the change in the calculated position of the characteristic point.
  • the light sources 110 and 210 are, for example, light sources that emit infrared rays having a wavelength of 850 nm, and are composed of semiconductor laser elements.
  • a line-and-space pattern is used as the reference light pattern, but the pattern is not limited to this.
  • a diffraction grating (not shown) is arranged on the light emission side of the light sources 110 and 210, if necessary.
  • a well-known video camera in which M-type CMOS image sensors (CMOS image sensors) are arranged in a two-dimensional matrix form M pieces in the first direction (row direction) and N pieces in the second direction (column direction).
  • the image pickup device 120 is composed of a camcorder.
  • the image pickup apparatus 120 is a combination of an image pickup element that receives (detects) red light, an image pickup element that receives (detects) green light, an image pickup element that receives (detects) blue light, and an image pickup element that detects infrared light. It consists of However, the present invention is not limited to this, and the imaging device 120 may be configured only with an imaging element that detects infrared rays.
  • the image pickup apparatus assembly 100 1 includes one image pickup apparatus 120.
  • the shutter mechanism in the imaging device 120 may be either a global shutter mechanism or a rolling shutter mechanism.
  • the image pickup device 120 has image pickup elements arranged in a two-dimensional matrix in the first direction and the second direction.
  • the image pickup device 120 has a rolling shutter mechanism, and the control device 130 has All the image pickup devices image the reference light pattern and the subject 140 in the high brightness light irradiation state, and all the image pickup devices image at least the subject 140 in the low brightness light irradiation state.
  • the outline of the imaging method using the imaging device assembly of the first embodiment will be described below.
  • the distance from the imaging device to the subject 140, the two-dimensional or three-dimensional shape of the subject 140, the movement of the subject 140, the distance to the subject 140, etc. are calculated based on the structured light method. ..
  • the subject based on the well-known processing algorithm from the image data based on the image signal obtained by the image pickup method using the image pickup apparatus assembly of the first embodiment. 140 three-dimensional shapes are measured.
  • the motion detecting device of the first embodiment the motion of the subject 140 is detected from the image data based on the image signal obtained by the image pickup method using the image pickup device assembly of the first embodiment based on a well-known processing algorithm.
  • the imaging method of the first embodiment, the three-dimensional shape measuring method of the first embodiment, or the motion detection method of the first embodiment is the imaging method using the imaging device assembly of the first embodiment, the three-dimensional shape measuring method, Or a motion detection method
  • the first period TP 1 the subject 140 is imaged based on the high-intensity light emitted from the light source 110, and the first image signal charge q 1 obtained in the light receiving unit 21 is accumulated in the first charge accumulating unit 22.
  • the second period TP 2 the subject 140 is imaged based on the low-brightness light, and the second image signal charge q 2 obtained in the light receiving unit 21 is accumulated in the second charge accumulating unit 24.
  • An image signal is obtained (generated) based on the difference between the first image signal charge q 1 accumulated in the first charge accumulation unit 22 and the second image signal charge q 2 accumulated in the second charge accumulation unit 24. ..
  • the three-dimensional shape measuring method of the first embodiment the three-dimensional shape is calculated from the obtained image signal.
  • the operation of calculating the three-dimensional shape from the image signal is sequentially performed; the characteristic points of the subject 140 are sequentially extracted from the calculated three-dimensional shape.
  • the positions of the feature points of the subject 140 are sequentially calculated, and the movement of the subject 140 is detected from the change in the calculated position of the feature points.
  • the imaging device 120 captures the first image signal charge q 1 by capturing the reference light pattern and the subject 140 in the high-luminance light irradiation state, and captures at least the subject 140 in the low-luminance light irradiation state.
  • the second image signal charge q 2 is obtained by imaging the subject 140 in the low-luminance light irradiation state. That is, as shown in FIGS. 1A and 1C, under the control of the control device 130, the imaging element 10 is emitted from the light source 110 in the first period TP 1 (time length T 1 , time t 0 to t 1 ). The subject 140 is imaged based on the high-luminance light (see FIG.
  • the first image signal charge q 1 obtained in the light receiving unit 21 is stored in the first charge storage unit 22.
  • the first charge transfer control means 23 is brought into an operating state (on state), and the second charge transfer control means 25 is brought into an inactive state (off state).
  • the second period TP 2 time length T 2 , time t 1 to t 2
  • the light is emitted from the light source 110 based on the low-luminance light.
  • the subject 140 is imaged (without light) (see FIG. 3B), and the second image signal charge q 2 obtained in the light receiving unit 21 is stored in the second charge storage unit 24.
  • the first charge transfer control means 23 is set to the inactive state (OFF state), and the second charge transfer control means 25 is set to the active state (ON state).
  • electric charges for example, electrons
  • the first image signal charge q 1 accumulated in the first charge accumulation unit 22 and the second image signal charge q accumulated in the second charge accumulation unit 24. 2 is transferred to the control device 130, and the control device 130 causes the first image signal charge q 1 stored in the first charge storage unit 22 and the second image signal charge q 2 stored in the second charge storage unit 24.
  • An image signal is obtained (generated) based on the difference between and.
  • the control device 130 After one image pickup frame is completed, the control device 130 generates the voltages V 1 and V 2 based on the first image signal charge q 1 and the second image signal charge q 2 , and outputs the voltage V 1 And an image signal is generated from the difference between the voltage V 2 and the voltage V 2 . That is, the process of subtracting the voltage V 2 from the voltage V 1 is performed.
  • the control device 130 obtains the angles ⁇ and ⁇ shown in FIG. 9A, further obtains the coordinates (x, y) based on the equation (A), and also obtains the z coordinate.
  • the control device 130 can calculate, for example, the distance from the imaging device to the subject 140, the two-dimensional or three-dimensional shape of the subject 140, the movement of the subject 140, and the like based on the structured light method. Note that these processing algorithms can be known processing algorithms. The same applies to various embodiments described below.
  • the operation and various processes of the image pickup apparatus 120 for obtaining the image signal charge, and the operation and various processes related to the sending of the image signal charge to the control device 130 can be known operations and processes. The same applies to various embodiments described below.
  • the temporal order of obtaining the first image signal charge q 1 and the second image signal charge q 2 is essentially arbitrary, and the temporal order of the first period TP 1 and the second period TP 2 is reversed, and the second period
  • the first period TP 1 may be continued from TP 2 . Further, a period in which the image sensor is inoperative may be provided between the first period TP 1 and the second period TP 2 .
  • the number of image capturing frames per second is 15 (image capturing frame rate: 15 fps), and one image capturing frame period is divided into two periods (period-1 and period-2). Further, in the example shown in FIGS. 6B and 6C, the number of image capturing frames per second is 30 (image capturing frame rate: 30 fps), and in FIG. 6B, one image capturing frame period is two periods (period-1 6C, one imaging frame period is divided into four periods (period-1, period-2, period-3, and period-4) in FIG. 6C. The time lengths of the divided periods are the same.
  • the parallelogram shape schematically showing one image capturing frame changes. Specifically, the inclination angle of the hypotenuse extending from the upper left to the lower right increases as the number of image capturing frames per second increases and the number of divided periods of one image capturing frame period increases. That is, as the number of image capturing frames per second increases and the number of divided periods of one image capturing frame period increases, the exposure time when the rolling shutter mechanism is adopted increases. As a result of the above, it is possible to increase the length of time that the high-luminance light irradiation state can be maintained.
  • the time length of the imaging times T 1 and T 2 is about 10% of the time length of the period-1 and the period-2. Therefore, it is preferable that the number of image pickup frames per second is 15 (image pickup frame rate: 15 fps) or more and the number of divided periods in one image pickup frame is 2 or more. Then, as described above, as the number of image capturing frames per second (image capturing frame rate) increases and the number of divided periods of one image capturing frame increases, reference of the same light amount to all image capturing elements in one image capturing frame is performed.
  • the number of image capturing frames per second is 30 (image capturing frame rate: 30 fps or more) or more, and the number of divided periods in one image capturing frame is 2 or more, because the time that can be irradiated with the light pattern can be increased. It is even more preferable that the number of imaging frames per second is 30 or more (imaging frame rate: 30 fps or more), and the number of divided periods in one imaging frame is 3 or more.
  • the time lengths of the imaging times T 1 and T 2 are about 50% and 70% of the time lengths of the period-1 and the period-2.
  • the first image signal charge and the second image Since the image signal is generated from the difference from the signal charge, the influence of ambient light can be removed from the image signal. That is, the charge generated based on the ambient light is included in both the first image signal charge and the second image signal charge. Therefore, the influence of ambient light can be removed from the image signal by calculating the difference between the first image signal charge and the second image signal charge. Therefore, the reference light pattern based on the high brightness light can be captured by the imaging device without increasing the brightness of the high brightness light.
  • the reference light pattern becomes dark for a subject located far from the light source or a subject with a wide angle of view, but nevertheless, the reference light pattern can be reliably captured by the imaging device, Distance restrictions can be relaxed. Furthermore, since the light intensity of the light source can be reduced, high safety can be ensured even when the light source is composed of a semiconductor laser element, for example. The same applies to the following examples.
  • the control device obtains the image signal based on the difference between the first image signal charge accumulated in the first charge accumulating portion and the second image signal charge accumulated in the second charge accumulating portion. Need not be provided with a frame memory, and it is not necessary to calculate the difference between the first image signal charge and the second image signal charge by calculation based on software, and the configuration and structure of the control device can be simplified. ..
  • the second embodiment is a modification of the first embodiment.
  • the image pickup apparatus is composed of an active stereo image pickup apparatus.
  • the imaging device includes a first imaging device 120A and a second imaging device 120B. That is, the light source 110 in the image pickup apparatus assembly of the first embodiment is replaced with the first image pickup apparatus 120A, and the light source 210 is separately arranged.
  • the shutter mechanism in the imaging devices 120A and 120B may be either a global shutter mechanism or a rolling shutter mechanism.
  • the outline of the imaging method using the imaging device assembly of the second embodiment will be described.
  • this imaging method for example, the distance from the imaging device to the object, the two-dimensional or three-dimensional shape of the object, the movement of the object, etc. are calculated based on the active stereo method.
  • the light source 110 under the control of the control device 130, the light source 110 emits the reference light pattern toward the subject 140 in the high-luminance light irradiation state and emits the light in the low-luminance light irradiation state, as in the first embodiment. To do.
  • Each of the imaging devices 120A and 120B captures the first image signal charge by capturing the reference light pattern and the subject 140 in the high-luminance light irradiation state (see FIG. 4A), and captures at least the subject 140 in the low-luminance light irradiation state. Then (in the second embodiment, the subject 140 is imaged in the low-luminance light irradiation state) to obtain the second image signal charge (see FIG. 4B).
  • the first image signal charge obtained from the first image pickup device 120A is referred to as "first image signal charge-A”
  • the first image signal charge obtained from the second image pickup device 120B is referred to as "first image signal charge”.
  • the second image signal charge obtained from the first image pickup device 120A is referred to as "second image signal charge-A”
  • the second image signal charge obtained from the second image pickup device 120B is referred to as "second image signal charge".
  • the control device 130 controls the difference between the first image signal charge ⁇ A and the second image signal charge ⁇ A, and the first image signal charge ⁇ B and the second image signal.
  • An image signal (an image signal ⁇ A obtained from the first image pickup device 120A and an image signal ⁇ B obtained from the second image pickup device 120B) is generated from the difference from the charge ⁇ B. That is, the control device 130 performs subtraction processing between the obtained first image signal charge ⁇ A and first image signal charge ⁇ B and second image signal charge ⁇ A and second image signal charge ⁇ B.
  • the control device 130 From the image signal ⁇ A and the image signal ⁇ B thus obtained, the control device 130 obtains the angles ⁇ and ⁇ shown in FIG. 9B, and further obtains the coordinates (x, y) based on the equation (A), Further, the z coordinate is obtained, and as a result of the above, the control device 130 can calculate the distance from the imaging device to the subject, the two-dimensional or three-dimensional shape of the subject, the movement of the subject, etc. based on the active stereo method. it can. Note that these processing algorithms can be known processing algorithms. The same applies to various embodiments described below.
  • the second image signal charge ⁇ A and the second image signal charge ⁇ B are image signal charges obtained in the absence of the reference light pattern, and are the first image signal charge ⁇ A and the first image signal.
  • the signal charge ⁇ B is an image signal charge obtained in the presence of the reference light pattern. Therefore, by calculating the difference between the first image signal charge ⁇ A and the second image signal charge ⁇ A and the difference between the first image signal charge ⁇ B and the second image signal charge ⁇ B, the image signal ⁇ A and the image signal-B can be obtained.
  • the ambient light is included in each of the first image signal charge ⁇ A, the first image signal charge ⁇ B, the second image signal charge ⁇ A, and the second image signal charge ⁇ B. Therefore, the influence of ambient light can be removed from the image signal by calculating the difference between the first image signal charge and the second image signal charge.
  • the third embodiment is a modification of the first and second embodiments.
  • T 1 T 2 .
  • the shutter mechanism either a global shutter mechanism or a rolling shutter mechanism can be used.
  • FIG. 7A, FIG. 7B, FIG. 8A, and FIG. 8B schematically show imaging times T 1 and T 2 per imaging frame when a rolling shutter mechanism is used as the shutter mechanism.
  • the number of image capturing frames per second is 30 (image capturing frame rate: 30 fps), and one image capturing frame is specifically a period of 2 or more. Are evenly divided into four periods.
  • the value of T 1 /T 2 exceeds 3, part of period ⁇ 1 is in the low-brightness light irradiation state, part of period ⁇ 2, all of period ⁇ 3, and period ⁇ 4. A part of is under the high brightness light irradiation condition.
  • the value of T 1 /T 2 is 3, part of period-1 is in the low-brightness light irradiation state, part of period-2, part of period-3, part of period-4. Is in the high brightness light irradiation state.
  • FIG. 7A the value of T 1 /T 2 exceeds 3 part of period ⁇ 1 is in the low-brightness light irradiation state, part of period ⁇ 2, all of period ⁇ 3, and period ⁇ 4. A part of is under the high brightness light irradiation condition.
  • the value of T 1 /T 2 is 3, part of period-1 is in the low-brightness light irradiation state, part of period-2, part of period-3, part of period-4. Is in the
  • the value of T 1 /T 2 is 1, the entire period-2 is in the high-luminance light irradiation state, and the entire period-4 is in the low-luminance light irradiation state.
  • the value of T 1 /T 2 is greater than 1, and part of period-1, all of period-2, part of period-3, and all of period-4 are in the high-luminance light irradiation state. And the rest of period-1 and the rest of period-3 are in the low-luminance light irradiation state.
  • the imaging times T 1 and T 2 can be made variable, or the ratio of T 1 /T 2 can be made variable, based on an instruction from the user of the imaging apparatus assembly.
  • one imaging frame is divided into a plurality of periods, one period of which is in the low-luminance light irradiation state, and the remaining period is of high luminance.
  • the light is illuminated.
  • in the example shown in FIG. 7A, FIG. 7B, FIG. 8A, and FIG. 8B, and particularly in FIG. 8B in the high-luminance light irradiation state, in the imaging period during which the reference light pattern and the subject are imaged, and in the low-luminance light irradiation state. At least the imaging period for imaging the subject is repeated, and the former imaging period is longer than the latter imaging period.
  • An image signal can be obtained from the difference from the second image signal charge.
  • the second image signal charges obtained in the period-1 are accumulated in the second charge accumulation unit, and are obtained in a part of the period-1, all of the period-2, and part of the period3.
  • the influence of ambient light may be removed from the image signal based on the difference between the first image signal charge accumulated in the first charge accumulating portion and the second image signal charge.
  • the signal amount based on the first image signal charges is T 1 /T 2 times the signal amount based on the second image signal charges. Therefore, when calculating the difference between the first image signal charge and the second image signal charge, the signal amount based on the second image signal charge is multiplied by T 1 /T 2 or the signal amount based on the first image signal charge is calculated. May be multiplied by (T 2 /T 1 ) times.
  • the image pickup apparatus assembly or the image pickup method of the third embodiment can be the same as the image pickup apparatus assembly or the image pickup method of the first and second embodiments, and thus detailed description thereof will be omitted.
  • Example 4 is a modification of Examples 1 to 3. Further, in the fourth embodiment, each image pickup device is operated in the second operation mode. That is, the imaging device assembly of the fourth embodiment is the imaging device assembly of the present disclosure having the second operation mode.
  • FIG. 5 shows the operation over time in the second operation mode of the image pickup element that constitutes the image pickup apparatus assembly according to the fourth embodiment.
  • the imaging element is in the fifth period TP 5 (time length T 5 ) that straddles the third period TP 3 (time length T 3 ) and the fourth period TP 4 (time length T 4 ).
  • the subject is imaged based on the light emitted from the light source 110, and in the third period TP 3 , the third image signal charge obtained in the light receiving unit 21 is accumulated in the first charge accumulating unit 22, In the period TP 4 , the fourth image signal charge obtained in the light receiving unit 21 is accumulated in the second charge accumulating unit 24, The control device 130 determines the distance from the imaging device 120 to the subject based on the third image signal charge accumulated in the first charge accumulation unit 22 and the fourth image signal charge accumulated in the second charge accumulation unit 24. Ask.
  • the control device 130 switches the first operation mode to the second operation mode and the second operation mode to the first operation mode. That is, the control device 130 switches itself from the first operation mode to the second operation mode, and switches from the second operation mode to the first operation mode, based on various image signal charges from the imaging device 120. Or, based on an instruction from the user, switch from the first operation mode to the second operation mode, switch from the second operation mode to the first operation mode, or from the user. In addition to the above instruction, the control device 130 switches from the first operation mode to the second operation mode and switches from the second operation mode to the first operation mode based on various image signal charges from the imaging device 120. ..
  • the distance measurement based on the first operation mode is suitable for a short distance (for example, less than 1 m) distance measurement
  • the distance measurement based on the second operation mode is suitable for a long distance (for example, 1 m or more) distance measurement.
  • the control device 130 controls the subject determined based on the second operation mode when the distance to the subject determined based on the second operation mode is less than a predetermined value. If the distance of the measurement result is less than a predetermined value (for example, 1 m) while measuring the distance to, the second operation mode is switched to the first operation mode and the distance to the subject is obtained.
  • control device 130 measures the distance to the subject determined based on the first operation mode, if the distance of the measurement result is equal to or greater than a predetermined value (for example, 1 m), the first operation is performed. The mode is switched to the second operation mode, and the distance to the subject is obtained.
  • a predetermined value for example, 1 m
  • the time until light hits the subject and enters the imaging device is replaced with the exposure amount of the imaging device for measurement.
  • the subject is, for example, a corner of a room, as shown schematically in FIG. 10, as a result of the light being reflected by the wall, there is a discontinuous state in the distance to the subject determined based on the second operation mode. appear.
  • the distance to the subject obtained based on the second operation mode becomes an indefinite value.
  • the imaging device 120 is reflected at a certain point P 1 of the wall, the imaging device 120, directly, the light LB 1 is present that is incident is reflected at a certain point P 1 of the wall, to a point P 2
  • the distance from the point P 1 based on the light LB 1 to the imaging device 120 is L 1
  • the distance from the point P 1 based on the light LB 2 to the imaging device 120 is actually a virtual point P. the distance L 2 to the image pickup apparatus 120 from 3.
  • the distance from the point near the point P 1 to the imaging device 120 is a value close to L 1 when the reflected light at the point near the point P 1 directly enters the imaging device 120.
  • the distance from the point P 1 to the imaging apparatus 120 is L 2, and the discontinuity occurs in the distance to the object obtained based on the second operation mode.
  • the distance to the subject obtained based on the second operation mode becomes an indefinite value.
  • the control device 130 itself switches to the first operation mode to obtain the distance to the subject.
  • the first operation mode since the distance is obtained based on the shape of the subject, the disadvantage of distance measurement based on the second operation mode does not occur.
  • the outer shape of the subject is obtained in the first operation mode.
  • the control device 130 causes the imaging device 120 to obtain a desired area ( Specifically, the first operation mode is operated in the area where the corner of the room is shown, and another desired area of the imaging device 120 (specifically, an area other than the area where the corner of the room is shown).
  • the second operation mode is obtained in the second operation mode.
  • the distance to the subject is obtained in the second operation mode.
  • the control device 130 causes the image capturing device 120 to display a desired region (specifically, a region where a corner of the room is shown).
  • the first operation mode is operated, and the second operation mode is operated in another desired area of the imaging device 120 (specifically, an area other than the area where the corner of the room is shown).
  • the control device 130 calibrates the distance to the subject determined based on the second operation mode based on the distance to the subject determined based on the first operation mode. can do. Specifically, an error may occur in the distance measurement result obtained based on the second operation mode due to the temperature change of the image sensor. Even if the temperature of the image sensor changes, no error occurs in the distance measurement result obtained based on the first operation mode. Therefore, the distance to the subject located at a certain distance (for example, 1 m) is obtained based on the first operation mode and the second operation mode, and the distance measurement in the second operation mode is performed based on the distance obtained by the first operation mode. You can calibrate.
  • a certain distance for example, 1 m
  • the distance (base line length) L between the light source and the image pickup device or the distance between the two image pickup devices changes, it is obtained based on the first operation mode.
  • An error may occur in the distance measurement result. Even if such a change occurs, no error occurs in the distance measurement result obtained based on the second operation mode. Therefore, the distance to the subject located at a certain distance (for example, 1 m) is obtained based on the first operation mode and the second operation mode, and the distance measurement in the first operation mode is performed based on the distance obtained by the second operation mode.
  • You can calibrate. For example, whether to perform the calibration in the first operation mode or the calibration in the second operation mode may be determined based on an instruction from the user of the imaging device assembly.
  • control device 130 creates the first depth map based on the first operation mode by a known method, and the second depth map based on the second operation mode. It is possible to improve the accuracy of the depth map (depth information) by synthesizing the first depth map and the second depth map based on the above method.
  • the present disclosure has been described above based on the preferred embodiments, the present disclosure is not limited to these embodiments.
  • the configurations and structures of the imaging device assembly, the imaging device, the light source, and the control device described in the embodiments are examples, and can be changed as appropriate.
  • various values are shown in the embodiment, these values are also examples, and it is natural that the values will be changed if the specifications of the light source, the imaging device, and the control device to be used are changed. It goes without saying that the imaging device assembly described in the second to fourth embodiments can be applied to the three-dimensional shape measuring device and the motion detecting device.
  • Imaging device assembly >> A light source that illuminates the subject, Imaging device, and A control device for controlling the light source and the imaging device, Is equipped with The image pickup device includes a plurality of image pickup elements, Each image sensor, Light receiving section, A first charge storage part, a second charge storage part, and Under the control of the control device, first charge transfer control means for controlling the transfer of the charges accumulated in the light receiving section to the first charge accumulating section, and the transfer of the charges accumulated in the light receiving section to the second charge accumulating section. Second charge transfer control means for controlling It consists of An imaging device assembly that is operated in a first operation mode.
  • the imaging element images the subject based on the high-intensity light emitted from the light source in the first period, and accumulates the first image signal charge obtained in the light receiving section in the first charge accumulation section. Then, in the second period, the subject is imaged based on the low-luminance light, and the second image signal charge obtained in the light receiving unit is stored in the second charge storage unit, The control device obtains an image signal based on the difference between the first image signal charge accumulated in the first charge accumulation unit and the second image signal charge accumulated in the second charge accumulation unit.
  • the high-intensity light emitted from the light source is a reference light pattern
  • the control device obtains the distance to the subject or the outer shape of the subject based on the obtained image signal, or obtains the distance to the subject and the outer shape of the subject [A01].
  • the control device obtains the distance to the subject or the outer shape of the subject from the obtained image signal based on triangulation, or obtains the distance to the subject and the outer shape of the subject [A02].
  • the imaging device assembly as described in. [A04] The imaging device assembly according to any one of [A01] to [A03], which is further operated in the second operation mode.
  • the imaging element images the subject based on the light emitted from the light source in the fifth period spanning the third period and the fourth period, and in the light receiving unit in the third period.
  • the obtained third image signal charge is accumulated in the first charge accumulation unit
  • the fourth image signal charge obtained in the light receiving unit is accumulated in the second charge accumulation unit
  • the control device obtains the distance from the imaging device to the subject based on the third image signal charge accumulated in the first charge accumulation unit and the fourth image signal charge accumulated in the second charge accumulation unit.
  • the control device creates a first depth map based on the first operation mode, creates a second depth map based on the second operation mode, and creates the first depth map and the second depth map.
  • the imaging device assembly according to any one of [A04] to [A06] to be combined.
  • the control device operates the first operation mode in a desired area of the imaging device and operates the second operation mode in another desired area of the imaging device.
  • the imaging device assembly according to.
  • the control device calibrates the distance to the object determined based on the second operation mode based on the distance to the object determined based on the first operation mode.
  • the imaging device assembly according to.
  • the control device calibrates the distance to the object determined based on the first operation mode based on the distance to the object determined based on the second operation mode.
  • the imaging device assembly according to. [A11]
  • the control device switches to the first operation mode and obtains the distance to the subject [A04] to [A10] when a discontinuous state is recognized in the distance to the subject obtained based on the second operation mode.
  • the image pickup apparatus assembly according to any one of items 1 to 10.
  • the control device switches to the first operation mode to obtain the distance to the subject [A04] to [A11]. 2.
  • the image pickup device assembly according to item 1.
  • [A17] The image pickup device assembly according to [A16], in which the control device obtains the distance from the image pickup device to the subject based on the obtained image signal based on the active stereo method.
  • [A18] The image pickup device assembly according to any one of [A01] to [A17], in which the light source emits infrared rays.
  • [A19] The imaging device assembly according to any one of [A01] to [A18], in which the light source is in an operating state in the high-luminance light irradiation state and the light source is in a non-operating state in the low-luminance light irradiation state.
  • [A20] The image pickup device assembly according to any one of [A01] to [A19], in which the light source is a semiconductor light emitting element.
  • T 1 When the image pickup time when the reference light pattern and the subject are imaged in the high-luminance light irradiation state is T 1 , and the image pickup time when at least the subject is imaged in the low-luminance light irradiation state is T 2 , T 1 >T 2
  • T 1 The image pickup apparatus assembly according to any one of [A01] to [A20].
  • [A22] The imaging device according to [A21], in which the imaging times T 1 and T 2 are variable, or the ratio of T 1 /T 2 is variable, based on an instruction from the user of the imaging device assembly. Assembly.
  • One imaging frame is divided into a plurality of periods, One of the periods is in the low brightness light irradiation state, The imaging device assembly according to any one of [A01] to [A20], which is in a high-luminance light irradiation state for the remaining period.
  • the image capturing frame rate is 30 frames/second, The imaging device assembly according to [A23], in which one imaging frame is divided into two or more periods.
  • An imaging period for imaging the reference light pattern and the subject in the high-luminance light irradiation state and an imaging period for capturing at least the subject in the low-luminance light irradiation state are repeated, and the former imaging period is longer than the latter imaging period.
  • the imaging device assembly according to any one of [A01] to [A20].
  • the image pickup device has image pickup elements arranged in a two-dimensional matrix in the first direction and the second direction,
  • the imaging device has a rolling shutter mechanism, In the control device, all the imaging elements image the reference light pattern and the subject in the high-luminance light irradiation state and output the first image signal to the control device, and all the imaging elements image at least the subject in the low-luminance light irradiation state.
  • the imaging device assembly according to any one of [A01] to [A25], which controls the light source and the imaging device so as to output the second image signal to the control device.
  • [C02] is further equipped with an arithmetic unit,
  • the computing device calculates a three-dimensional shape of the subject from the image signal, extracts feature points of the subject from the calculated three-dimensional shape, calculates the position of the feature point of the subject, and calculates the position of the feature point of the subject based on the change in the calculated position of the feature point.
  • the motion detection device according to [C01], which detects the motion of the.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

撮像装置組立体は、光源、複数の撮像素子から構成た撮像装置、及び、制御装置を備えており、各撮像素子10は、受光部21、第1電荷蓄積部22及び第2電荷蓄積部24、並びに、第1電荷転送制御手段23及び第2電荷転送制御手段24から構成されており、制御装置の制御下、撮像素子10は、第1期間において高輝度光に基づき被写体を撮像して第1画像信号電荷を第1電荷蓄積部22に蓄積し、第2期間において低輝度光に基づき被写体を撮像して第2電荷蓄積部24に蓄積し、制御装置は、第1画像信号電荷と第2画像信号電荷との差分に基づき画像信号を得る。

Description

撮像装置組立体、3次元形状測定装置及び動き検出装置
 本開示は、撮像装置組立体、3次元形状測定装置及び動き検出装置に関する。
 被写体までの距離を計測したり、被写体の3次元形状を非接触で計測する方法として、2つの撮像装置を並置して三角測量の原理で計測を行うステレオ法や、1つの光源と1つの撮像装置とを並置して計測を行うストラクチャードライト法が周知である(例えば、WO2016/098400A1参照)。ストラクチャードライト法においては、具体的には、例えばレーザ装置から成る光源から赤外線に基づく参照光パターンを出射し、参照光パターンを被写体に照射する。参照光パターンとして、例えば、ライン・アンド・スペース状パターン、格子状パターン、ドット状パターンを挙げることができる。そして、参照光パターンで照射されている被写体を撮像装置で撮像する。ここで、図9Aに概念図を示すように、光源と撮像装置との間の距離(基線の長さ)をL、被写体を照射する出射光(光ビーム)と基線との成す角度をα、出射光が衝突する被写体の部分と撮像装置を結ぶ直線と基線との成す角度をβとし、光源が座標系の原点(0,0)に配置され、光ビームが衝突する被写体の部分の座標を(x,y)としたとき、(x,y)は以下の式(A)で表される。また、ステレオ法は、2つの撮像装置を使用し、ストラクチャードライト法における光源を一方の撮像装置で置き換えた方法であるが、図9Bに概念図を示すように、光源を、別途、配置した構成を有する方法(アクティブステレオ法)も考えられる。
x=L・tan(β)/{tan(α)+tan(β)}
y=L・tan(β)・tan(α)/{tan(α)+tan(β)}  (A)
WO2016/098400A1
 ところで、ストラクチャードライト法やアクティブステレオ法においては、被写体に照射されている参照光パターンを撮像装置によって画像データとして得なければならない。然るに、環境光(太陽光や屋内の照明等)の影響によって、被写体に照射されている参照光パターンの画像データを得難いといった問題が屡々発生する。撮像装置の感度を増加させても、環境光に対する撮像装置の感度も増加するため、抜本的な解決にはならない。フィルターを用いて、光源から出射される光の波長と同じ波長を有する光を環境光から除去する方法も考えられるが、フィルターの帯域に限界があり、このような光を環境光から高効率に除去することは困難である。光源の輝度を増加させる手法では、光源における消費電力の増加や、場合によっては、参照光パターンが視認されてしまうといった問題がある。
 従って、本開示の目的は、簡素な構成、構造であるにも拘わらず、環境光に左右されずに画像データを確実に得ることを可能とする撮像装置組立体、並びに、係る撮像装置組立体を用いた3次元形状測定装置及び動き検出装置を提供することにある。
 上記の目的を達成するための本開示の撮像装置組立体は、
 被写体を照射する光源、
 撮像装置、並びに、
 光源及び撮像装置を制御する制御装置、
を備えており、
 撮像装置は、複数の撮像素子から構成されており、
 各撮像素子は、
 受光部、
 第1電荷蓄積部及び第2電荷蓄積部、並びに、
 制御装置の制御下、受光部に蓄積された電荷の第1電荷蓄積部への転送を制御する第1電荷転送制御手段、及び、受光部に蓄積された電荷の第2電荷蓄積部への転送を制御する第2電荷転送制御手段、
から構成されており、
 第1動作モードで動作させられる。
 ここで、第1動作モードにあっては、
 制御装置の制御下、撮像素子は、第1期間TP1において、光源から出射された高輝度光に基づき被写体を撮像して、受光部において得られた第1画像信号電荷を第1電荷蓄積部に蓄積し、第2期間TP2において、低輝度光に基づき被写体を撮像して、受光部において得られた第2画像信号電荷を第2電荷蓄積部に蓄積し、
 制御装置は、第1電荷蓄積部に蓄積された第1画像信号電荷と、第2電荷蓄積部に蓄積された第2画像信号電荷との差分に基づき、画像信号を得る(生成する)。
 上記の目的を達成するための本開示の3次元形状測定装置は、本開示の撮像装置組立体を備えている。
 上記の目的を達成するための本開示の動き検出装置は、本開示の撮像装置組立体を備えている。
図1A及び図1Bは、実施例1の撮像装置組立体を構成する撮像素子の動作を説明するための撮像素子の概念図であり、図1Cは、実施例1の撮像装置組立体を構成する撮像素子の第1動作モードにおける経時的な動作を説明するための図である。 図2Aは、実施例1の撮像装置組立体の概念図であり、図2Bは、実施例2の撮像装置組立体の概念図である。 図3A及び図3Bは、それぞれ、実施例1の撮像装置組立体において、第1画像信号電荷を取得する状態及び第2画像信号電荷を取得する状態を模式的に示す図である。 図4A及び図4Bは、それぞれ、実施例2の撮像装置組立体において、第1画像信号電荷を取得する状態及び第2画像信号電荷を取得する状態を模式的に示す図である。 図5は、実施例4の撮像装置組立体を構成する撮像素子の第2動作モードにおける経時的な動作を説明するための図である。 図6A、図6B及び図6Cは、1撮像フレーム当たりの撮像時間T1,T2を模式的に示す図である。 図7A及び図7Bは、1撮像フレーム当たりの撮像時間T1,T2を模式的に示す図である。 図8A及び図8Bは、1撮像フレーム当たりの撮像時間T1,T2を模式的に示す図である。 図9A及び図9Bは、それぞれ、ストラクチャードライト法及びアクティブステレオ法を説明するための撮像装置等の配置を示す概念図である。 図10は、光が壁によって反射される結果、複数の反射光が発生し、測定距離の値に不連続あるいは異常が発生する状態を模式的に説明する図である。
 以下、図面を参照して、実施例に基づき本開示を説明するが、本開示は実施例に限定されるものではなく、実施例における種々の数値や材料は例示である。尚、説明は、以下の順序で行う。
1.本開示の撮像装置組立体、本開示の3次元形状測定装置、本開示の動き検出装置全般に関する説明
2.実施例1(本開示の撮像装置組立体、本開示の3次元形状測定装置、及び、本開示の動き検出装置全般)
3.実施例2(実施例1の変形)
4.実施例3(実施例1~実施例2の変形)
5.実施例4(実施例1~実施例3の変形)
6.その他
〈本開示の撮像装置組立体、本開示の3次元形状測定装置、本開示の動き検出装置全般に関する説明〉
 本開示の撮像装置組立体、あるいは又、本開示の3次元形状測定装置、本開示の動き検出装置に備えられた本開示の撮像装置組立体を、総称して、『本開示の撮像装置組立体等』と呼ぶ場合がある。第2期間TP2においては低輝度光に基づき被写体を撮像するが、光源から出射された低輝度光に基づき被写体を撮像する形態、及び、光源から出射された光ではなく、即ち、光源は不動作状態であり、外光(環境光)に基づき被写体を撮像する形態が包含される。第1期間TP1において光源から出射された高輝度光に基づき被写体を撮像する状態を、便宜上、『高輝度光照射状態』と呼び、第2期間TP2において低輝度光に基づき被写体を撮像するとき状態を、便宜上、『低輝度光照射状態』と呼ぶ。
 本開示の撮像装置組立体等において、
 光源から出射される高輝度光は参照光パターンであり、
 制御装置は、得られた画像信号に基づき、被写体までの距離を求め、又は、被写体の外形形状を求め、又は、被写体までの距離及び被写体の外形形状を求める形態とすることができる。そして、この場合、制御装置は、得られた画像信号から、三角測量(具体的には、ストラクチャードライト法あるいはアクティブステレオ法)に基づき、被写体までの距離を求め、又は、被写体の外形形状を求め、又は、被写体までの距離及び被写体の外形形状を求める形態とすることができる。尚、低輝度光照射状態において光源は参照光パターンを出射していない状態とされてもよいし、参照光パターンを出射している状態とされてもよい。
 光源から出射される参照光パターンの輝度(光源の発する光の光量)は、各種の試験を行い、適宜、決定すればよい。あるいは又、使用者が、例えば、屋外モード/屋内モードの切り替えを行うことで、光源から出射される参照光パターンの輝度(光源の発する光の光量)を、切り替え、あるいは、変化させてもよい。尚、低輝度光照射状態において、光源を動作状態(即ち、参照光パターンを出射している状態)としても、高輝度光照射状態/低輝度光照射状態を適切に選択すれば、第1画像信号電荷と第2画像信号電荷との差分を算出することで、画像信号から環境光の影響を除去することができる。
 以上に説明した各種の好ましい形態を含む本開示の撮像装置組立体等にあっては、更に、第2動作モードで動作させられる形態とすることができる。ここで、第2動作モードにあっては、
 制御装置の制御下、撮像素子は、第3期間TP3及び第4期間TP4に跨がる第5期間TP5において光源から出射された光に基づき被写体を撮像して、第3期間TP3にあっては、受光部において得られた第3画像信号電荷を第1電荷蓄積部に蓄積し、第4期間TP4にあっては、受光部において得られた第4画像信号電荷を第2電荷蓄積部に蓄積し、
 制御装置は、第1電荷蓄積部に蓄積された第3画像信号電荷と、第2電荷蓄積部に蓄積された第4画像信号電荷とに基づき、撮像装置から被写体までの距離を求める。そして、この場合、第3画像信号電荷をQ3、第4画像信号電荷をQ4、cを光速、TPを第3期間TP3及び第4期間TP4の時間としたとき、撮像装置から被写体までの距離Dは、
D=(c・TP/2)×Q4/(Q3+Q4
に基づき求められる構成とすることができる。尚、これらの好ましい構成を、便宜上、『第2動作モードを備えた本開示の撮像装置組立体等』と呼ぶ。このような第2動作モードは、インダイレクト・TOF(Time Of Flight)方式とも呼ばれる。即ち、第2動作モードにあっては、光が被写体に当たり、被写体によって反射されてから、撮像装置に入射するまでの時間を撮像装置の露光量に置き換えて距離の計測を行う。
 第2動作モードを備えた本開示の撮像装置組立体等において、制御装置は、第1動作モードから第2動作モードへの切り替え、第2動作モードから第1動作モードへの切り替えを行う構成とすることができる。例えば、使用者の指示に基づき、第1動作モードから第2動作モードへの切り替え、また、第2動作モードから第1動作モードへの切り替えを行えばよい。そして、この場合、あるいは又、第2動作モードを備えた本開示の撮像装置組立体等において、制御装置は、第1動作モードに基づき第1のデプスマップを作成し、第2動作モードに基づき第2のデプスマップを作成し、第1のデプスマップと第2のデプスマップとを合成する構成とすることができ、これによって、デプスマップ(奥行き情報)の精度の向上を図ることができる。一般に、第1動作モードに基づく距離測定は、近距離(例えば1m未満)の距離測定に適しており、第2動作モードに基づく距離測定は、遠距離(例えば1m以上)の距離測定に適している。従って、例えば、測定距離が1m未満の領域にあっては第1動作モードに基づき第1のデプスマップを作成し、測定距離が1m以上の領域にあっては第2動作モードに基づき第2のデプスマップを作成すればよい。
 あるいは又、第2動作モードを備えた本開示の撮像装置組立体等において、制御装置は、撮像装置の所望の領域において第1動作モードを動作させ、撮像装置の他の所望の領域において第2動作モードを動作させる構成とすることができる。このような構成例として、例えば、第1動作モードでは被写体(パターン)の輝度不足でパターン認識しない領域(即ち、第1動作モードでは距離情報が取得できない領域)に第2動作モードを適用する例を挙げることができる。
 あるいは又、第2動作モードを備えた本開示の撮像装置組立体等において、制御装置は、第1動作モードに基づき求められた被写体までの距離に基づき、第2動作モードに基づき求められる被写体までの距離を校正する構成とすることができる。例えば、使用者が、校正モードの切り替えを行えばよい。具体的には、校正モードボタンを押すと、撮像装置起動後の決められたフレーム数において第1動作モードで距離情報が取得され、その後、速やかに第2動作モードで距離情報が取得され、取得された第1動作モードでの距離情報と第2動作モードでの距離情報の摺り合わせ(校正する)を行えばよい。あるいは又、撮像装置起動後、毎回、数フレームは第1動作モードで距離を測り、第2動作モードの距離補正を撮像装置の毎起動後行う構成を採用することもできる。
 あるいは又、第2動作モードを備えた本開示の撮像装置組立体等において、制御装置は、第2動作モードに基づき求められた被写体までの距離に基づき、第1動作モードに基づき求められる被写体までの距離を校正する構成とすることができる。上述したと同様に、例えば、使用者が、校正モードの切り替えを行えばよい。
 あるいは又、第2動作モードを備えた本開示の撮像装置組立体等において、制御装置は、第2動作モードに基づき求められた被写体までの距離に不連続状態が認められたとき、あるいは又、第2動作モードに基づき求められた被写体までの距離が不定な値となってしまったとき、第1動作モードに切り替えて被写体までの距離を求める構成とすることができる。あるいは又、(第3期間TP3の時間長T3)/(第4期間TP4の時間長T4)の値を一定として、第3期間TP3の時間長T3及び第4期間TP4の時間長T4を変化させたとき、本来ならば、撮像装置から被写体までの距離Dは不変であるはずであるが、撮像装置から被写体までの距離Dに差異が生じた場合、第1動作モードに切り替えて被写体までの距離を求める構成とすることができる。
 あるいは又、第2動作モードを備えた本開示の撮像装置組立体等において、制御装置は、第2動作モードに基づき求められた被写体までの距離が所定の値未満のとき、第1動作モードに切り替えて被写体までの距離を求める構成とすることができる。即ち、第2動作モードでの動作中、求められた被写体までの距離が所定の値未満のとき、制御装置は第1動作モードに切り替えて被写体までの距離を求める構成とすることができる。所定の値として、1mを例示することができるが、このような値に限定するものではない。次の説明においても同様である。第2動作モードから第1動作モードへの切り替えは、制御装置、それ自体が行えばよい。
 あるいは又、第2動作モードを備えた本開示の撮像装置組立体等において、制御装置は、第1動作モードに基づき求められた被写体までの距離が所定の値以上のとき、第2動作モードに切り替えて被写体までの距離を求める構成とすることができる。即ち、第1動作モードでの動作中、求められた被写体までの距離が所定の値以上のとき、制御装置は第2動作モードに切り替えて被写体までの距離を求める構成とすることができる。第1動作モードから第2動作モードへの切り替えは、制御装置、それ自体が行えばよい。
 更には、以上に説明した各種の好ましい形態、構成を含む本開示の撮像装置組立体等において、撮像装置を1つ備えている形態とすることができるし、撮像装置はアクティブステレオ撮像装置から構成されている形態とすることができる。本開示の撮像装置組立体等において、1つの撮像装置が備えられている形態にあっては、撮像装置から被写体までの距離や被写体の2次元・3次元形状、被写体の動き等を前述したストラクチャードライト法に基づき算出する構成とすることができる。また、2つの撮像装置が備えられている形態にあっては、撮像装置から被写体までの距離や被写体の2次元・3次元形状、被写体の動き等をアクティブステレオ法に基づき算出する構成とすることができる。
 以上に説明した各種の好ましい形態、構成を含む本開示の撮像装置組立体を備えた本開示の3次元形状測定装置にあっては、
 演算装置を更に備えており、
 演算装置は、画像信号から被写体の3次元形状を算出する形態とすることができる。
 以上に説明した各種の好ましい形態、構成を含む本開示の撮像装置組立体を備えた本開示の動き検出装置にあっては、
 演算装置を更に備えており、
 演算装置は、画像信号から被写体の3次元形状を算出し、算出した3次元形状から被写体の特徴点を抽出して被写体の特徴点の位置を算出し、算出した特徴点の位置の変化から被写体の動きを検出する形態とすることができる。
 以上に説明した好ましい形態、構成を含む本開示の撮像装置組立体等にあっては、第1期間TP1の時間長(撮像時間)をT1、第2期間TP2の時間長(撮像時間)をT2としたとき、
1>T2
を満足する構成とすることができ、これによって、光源から出射される高輝度光の光量の低減を図ることができる。但し、これに限定するものではなく、例えば、
1/T2=1
とすることもできる。撮像時間T1,T2は、撮像装置の仕様等に基づき決定すればよいし、撮像装置組立体の使用者からの指示に基づき、撮像時間T1,T2を可変とすることもできるし、T1/T2の割合を可変とすることもできる。
 あるいは又、以上に説明した好ましい形態、構成を含む本開示の撮像装置組立体等において、
 1撮像フレームは複数の期間に分割されており、
 その内の1つの期間は低輝度光照射状態とされ、
 残りの期間は高輝度光照射状態とされる構成とすることができる。そして、この場合、限定するものではないが、
 撮像フレームレートは30フレーム/秒であり、
 1撮像フレームは、2以上の期間(例えば、2乃至4)に分割されている構成とすることができる。
 尚、本明細書において、『1撮像フレーム』とは、第1画像信号電荷と第2画像信号電荷との差分から画像信号を生成するための1つの撮像フレームを意味する。動画像を得るための1秒当たり画像の枚数を意味するものではない。
 あるいは又、上記の好ましい形態、構成を含む本開示の撮像装置組立体等において、高輝度光照射状態において被写体を撮像する撮像期間と、低輝度光照射状態において被写体を撮像する撮像期間が繰り返され、前者の撮像期間(第1期間TP1)が後者の撮像期間(第2期間TP2)よりも長い構成とすることができる。
 更には、以上に説明した各種の好ましい形態、構成を含む本開示の撮像装置組立体等において、
 撮像装置は、第1の方向及び第2の方向に2次元マトリクス状に配列された撮像素子を有し、
 撮像装置は、ローリングシャッター機構を有する形態とすることができるし、グローバルシャッター機構を有する形態とすることもできる。そして、高輝度光照射状態において全ての撮像素子が被写体を撮像して第1画像信号電荷を得るように、また、低輝度光照射状態において全ての撮像素子が被写体を撮像して第2画像信号電荷を得るように、制御装置は光源及び撮像装置を制御する形態とすることができる。
 以上に説明した各種の好ましい形態、構成を含む本開示の撮像装置組立体等において、光源は、例えば、波長780nm乃至980nmを有する赤外線を出射する光源であることが好ましいが、これに限定するものではない。光源は、例えば、半導体レーザ素子、発光ダイオード(LED)やスーパールミネッセントダイオード(SLD)等の半導体発光素子から構成することができる。光源は、光源を構成する発光素子の形態に依存して、照射中、連続駆動されてもよいし、パルス駆動されてもよい。パルス駆動される場合のデューティー比は、適宜、決定すればよい。
 参照光パターンとして、ライン・アンド・スペース状パターン、格子状パターン、ドット状パターンを例示することができるが、これらに限定するものではなく、本質的に任意のパターンとすることができる。ライン・アンド・スペース状パターン、格子状パターン、ドット状パターンを得るためには、例えば、光源の光出射側に回折格子等を配置すればよいし、また、MEMSミラーによってパターンを生成することもできる。あるいは又、濃度傾斜パターン、市松格子パターン、円錐形状パターン等を採用することもできる。
 本開示の撮像装置組立体等において、撮像装置として、CCD(Charge Coupled Device:電荷結合素子)型の撮像素子やCMOS(Complementary Metal Oxide Semiconductor::相補性金属酸化膜半導体)型の撮像素子、CMD(Charge Modulation Device)型の信号増幅型撮像素子、CIS(Contact Image Sensor)といった撮像素子(イメージセンサー)を備えた周知の撮像装置を例示することができる。撮像装置それ自体は周知の構成、構造とすることができる。また、撮像装置として、表面照射型の固体撮像装置あるいは裏面照射型の固体撮像装置を挙げることができるし、例えば、デジタルスチルカメラやビデオカメラ、カムコーダから撮像装置を構成することができる。撮像装置は、上記の波長を有する光を信号に換え得る撮像素子(具体的には、例えば、赤外線を受光する撮像素子)を備えていればよい。あるいは又、撮像装置は、例えば参照光パターンを撮像するために適した撮像素子だけでなく、被写体を撮像するために適した撮像素子を備えていることが好ましく、例えば、赤外線を検出する撮像素子、並びに、赤色光を受光(検出)する撮像素子、緑色光を受光(検出)する撮像素子及び青色光を受光(検出)する撮像素子の組合せから構成することができる。例えば参照光パターンを照射した被写体の3次元形状の測定や動きの検出には、最低限、参照光パターンの波長(例えば、赤外線)で撮像できればよい。但し、赤外線を受光する撮像素子以外に、赤色光を受光する撮像素子、緑色光を受光する撮像素子及び青色光を受光する撮像素子等を更に備えることで、より測定や検出の精度を上げることができるし、3次元形状測定や動き検出と同時に被写体の撮像(撮影)を行うことが可能となる。
 撮像装置には、光源から出射される光の波長と同じ波長を有する光を通過させるフィルターが備えられていてもよい。所定の波長(例えば約850nmの波長)の光を被写体に照射し、照射された被写体の3次元形状の測定や動きを検出する場合、撮像装置は、最低限、所定の波長成分だけを撮像できれば充分である。従って、撮像装置の光入射側に所望の特性を有する波長選択用のフィルター、例えば、850nm付近の波長の光のみを透過させるバンドパスフィルターを配置してもよい。このようにすることで、環境光の内、850nm以外の波長成分の影響を出来るだけ無くすことができ、環境光に一層影響を受けない撮像装置組立体や3次元形状測定装置、動き検出装置を実現することができる。尚、波長選択用のフィルターの特性は、バンドパスフィルターに限定されるものではなく、環境光の波長プロファイルや撮像装置の周波数特性に合せて、適宜、決定すればよい。
 被写体は本質的に任意である。本開示の撮像装置組立体等は、屋外あるいは屋内で使用することができる。本開示の撮像装置組立体等は、例えば、モーションセンサー、監視用カメラシステム、ディプスセンサー、3次元形状センサー、2次元形状センサー、3次元位置センサー、2次元位置センサー、距離センサー、測域センサー、車両の衝突防止センサー、品質管理や品質検査システムに適用することができる。
 本開示における撮像方法は、実質的に、本開示の撮像装置組立体を用いた撮像方法であって、
 第1期間TP1において、光源から出射された高輝度光に基づき被写体を撮像して、受光部において得られた第1画像信号電荷を第1電荷蓄積部に蓄積し、第2期間TP2において、低輝度光に基づき被写体を撮像して、受光部において得られた第2画像信号電荷を第2電荷蓄積部に蓄積し、
 第1電荷蓄積部に蓄積された第1画像信号電荷と、第2電荷蓄積部に蓄積された第2画像信号電荷との差分に基づき、画像信号を得る(生成する)。
 本開示における3次元形状測定方法は、実質的に、本開示の撮像装置組立体を用いた3次元形状測定方法であって、
 第1期間TP1において、光源から出射された高輝度光に基づき被写体を撮像して、受光部において得られた第1画像信号電荷を第1電荷蓄積部に蓄積し、第2期間TP2において、低輝度光に基づき被写体を撮像して、受光部において得られた第2画像信号電荷を第2電荷蓄積部に蓄積し、
 第1電荷蓄積部に蓄積された第1画像信号電荷と、第2電荷蓄積部に蓄積された第2画像信号電荷との差分に基づき、画像信号を得た後(生成した後)、画像信号から3次元形状を算出する。
 更には、本開示における動き検出方法は、実質的に、本開示の撮像装置組立体を用いた動き検出方法であって、
 第1期間TP1において、光源から出射された高輝度光に基づき被写体を撮像して、受光部において得られた第1画像信号電荷を第1電荷蓄積部に蓄積し、第2期間TP2において、低輝度光に基づき被写体を撮像して、受光部において得られた第2画像信号電荷を第2電荷蓄積部に蓄積し、
 第1電荷蓄積部に蓄積された第1画像信号電荷と、第2電荷蓄積部に蓄積された第2画像信号電荷との差分に基づき、画像信号を得た後(生成した後)、画像信号から3次元形状を算出する操作を、順次、行い、
 順次、算出した3次元形状から被写体の特徴点を、順次、抽出して被写体の特徴点の位置を、順次、算出し、算出した特徴点の位置の変化から被写体の動きを検出する。
 実施例1は、本開示の撮像装置組立体、本開示の3次元形状測定装置、及び、本開示の動き検出装置に関する。
 概念図を図2Aに示す実施例1の撮像装置組立体1001は、被写体140を照射する光源110、撮像装置120、並びに、光源110及び撮像装置120を制御する制御装置130を備えており、撮像装置120は、複数の撮像素子10から構成されている。そして、各撮像素子10は、図1A及び図1Bに示すように、受光部21、第1電荷蓄積部22及び第2電荷蓄積部24、並びに、制御装置130の制御下、受光部21に蓄積された電荷(あるいは、受光部21で生成した電荷)の第1電荷蓄積部22への転送を制御する第1電荷転送制御手段23、及び、受光部21に蓄積された電荷(あるいは、受光部21で生成した電荷)の第2電荷蓄積部24への転送を制御する第2電荷転送制御手段25から構成されており、第1動作モードで動作させられる。尚、このような撮像素子10は、CAPD(Current Assisted Photonic Demodulator)型の撮像素子、あるいは、ゲート・トランスファー型の撮像素子とも呼ばれる。受光部21以外の領域は遮光層26で覆われている。第1電荷転送制御手段23及び第2電荷転送制御手段25は、ゲート電極と同じ構成、構造を有する。
 ここで、第1動作モードにあっては、
 制御装置130の制御下、撮像素子10は、第1期間TP1(撮像時間であり、時間長T1)において、光源110から出射された高輝度光に基づき被写体140を撮像して(図3A参照)、受光部21において得られた第1画像信号電荷q1を第1電荷蓄積部22に蓄積し、第2期間TP2(撮像時間であり、時間長T2)において、低輝度光に基づき、具体的には、例えば、光源110からの光の出射がない状態で、被写体140を撮像して(図3B参照)、受光部21において得られた第2画像信号電荷q2を第2電荷蓄積部24に蓄積し、
 制御装置130は、第1電荷蓄積部22に蓄積された第1画像信号電荷q1と、第2電荷蓄積部24に蓄積された第2画像信号電荷q2との差分に基づき、画像信号を得る(生成する)。
 実施例1においては、T1=T2とした。1撮像フレーム当たりの撮像時間T1,T2を模式的に図6A、図6B及び図6Cに示すが、これらの図は、シャッター機構としてローリングシャッター機構を採用した場合の図である。尚、図6A、図6B、図6C、後述する図7A、図7B、図8A、図8Bにおいて、第1期間TP1における高輝度光照射状態及び第2期間TP2における低輝度光照射状態のそれぞれを、実線の矩形で示す。図6A、図6B、図6C、図7A、図7B、図8A、図8Bにおいて、時刻t11からt12の撮像時間T1にあっては高輝度光照射状態にあり、時刻t21からt22の撮像時間T2にあっては低輝度光照射状態にある。
 高輝度光照射状態において被写体140を照射する光は、光源110からの光及び外光(環境光)を含む。即ち、高輝度光照射状態において、光源110は動作状態とされ、参照光パターンを出射する。また、低輝度光照射状態において被写体140を照射する光は、外光(環境光)を含むが、場合によっては、光源からの光も含まれる。具体的には、実施例1~実施例4にあっては、例えば、低輝度光照射状態において、光源110は不動作状態(即ち、参照光パターンを出射していない状態)とされる。
 実施例1において、光源110から出射される高輝度光は参照光パターン(図面においては横方向に延びる複数の点線で示す)である。そして、制御装置130は、得られた画像信号に基づき、被写体140までの距離を求め、又は、被写体140の外形形状を求め、又は、被写体140までの距離及び被写体140の外形形状を求める。具体的には、制御装置130は、得られた画像信号から、三角測量(具体的には、ストラクチャードライト法あるいはアクティブステレオ法)に基づき、被写体140までの距離を求め、又は、被写体140の外形形状を求め、又は、被写体140までの距離及び被写体140の外形形状を求める。
 実施例1の3次元形状測定装置、動き検出装置は、実施例1の撮像装置組立体を備えている。ここで、本開示の3次元形状測定装置は、演算装置を更に備えており、演算装置は、画像信号から被写体140の3次元形状を算出する。また、実施例1の動き検出装置は、演算装置を更に備えており、演算装置は、画像信号から被写体140の3次元形状を算出し、算出した3次元形状から被写体140の特徴点を抽出して被写体140の特徴点の位置を算出し、算出した特徴点の位置の変化から被写体140の動きを検出する。
 光源110,210は、例えば、波長850nmを有する赤外線を出射する光源であり、半導体レーザ素子から構成されている。参照光パターンとして、ライン・アンド・スペース状パターンを用いたが、これに限定するものではない。ライン・アンド・スペース状パターンを得るために、必要に応じて、光源110,210の光出射側に回折格子(図示せず)が配置されている。CMOS型の撮像素子(CMOSイメージセンサー)が、第1の方向(行方向)にM個、第2の方向(列方向)にN個、2次元マトリクス状に配列されて成る、周知のビデオカメラあるいはカムコーダから撮像装置120は構成されている。また、撮像装置120は、赤色光を受光(検出)する撮像素子、緑色光を受光(検出)する撮像素子、青色光を受光(検出)する撮像素子、及び、赤外線を検出する撮像素子の組合せから構成されている。但し、これに限定するものではなく、撮像装置120は、赤外線を検出する撮像素子だけから構成されていてもよい。
 実施例1の撮像装置組立体1001は、撮像装置120を1つ備えている。撮像装置120におけるシャッター機構は、グローバルシャッター機構、ローリングシャッター機構のいずれであってもよい。撮像装置120は、第1の方向及び第2の方向に2次元マトリクス状に配列された撮像素子を有し、撮像装置120は、具体的には、ローリングシャッター機構を有し、制御装置130は、高輝度光照射状態において全ての撮像素子が参照光パターン及び被写体140を撮像し、また、低輝度光照射状態において全ての撮像素子が少なくとも被写体140を撮像する。
 以下、実施例1の撮像装置組立体を用いた撮像方法の概要を説明する。尚、この撮像方法にあっては、例えば、撮像装置から被写体140までの距離や被写体140の2次元・3次元形状、被写体140の動き、被写体140までの距離等をストラクチャードライト法に基づき算出する。また、実施例1の本開示の3次元形状測定装置においては、実施例1の撮像装置組立体を用いた撮像方法によって得られた画像信号に基づく画像データから、周知の処理アルゴリズムに基づき、被写体140の3次元形状を測定する。実施例1の動き検出装置においては、実施例1の撮像装置組立体を用いた撮像方法によって得られた画像信号に基づく画像データから、周知の処理アルゴリズムに基づき、被写体140の動きを検出する。
 即ち、実施例1の撮像方法、実施例1の3次元形状測定方法、あるいは、実施例1の動き検出方法は、実施例1の撮像装置組立体を用いた撮像方法、3次元形状測定方法、あるいは、動き検出方法であって、
 第1期間TP1において、光源110から出射された高輝度光に基づき被写体140を撮像して、受光部21において得られた第1画像信号電荷q1を第1電荷蓄積部22に蓄積し、第2期間TP2において、低輝度光に基づき被写体140を撮像して、受光部21において得られた第2画像信号電荷q2を第2電荷蓄積部24に蓄積し、
 第1電荷蓄積部22に蓄積された第1画像信号電荷q1と、第2電荷蓄積部24に蓄積された第2画像信号電荷q2との差分に基づき、画像信号を得る(生成する)。
 そして、実施例1の3次元形状測定方法にあっては、得られた画像信号から3次元形状を算出する。また、実施例1の動き検出方法にあっては、画像信号から3次元形状を算出する操作を、順次、行い;順次、算出した3次元形状から被写体140の特徴点を、順次、抽出して、被写体140の特徴点の位置を、順次、算出し、算出した特徴点の位置の変化から被写体140の動きを検出する。
 具体的には、撮像装置120は、高輝度光照射状態において参照光パターン及び被写体140を撮像して第1画像信号電荷q1を得るし、低輝度光照射状態において少なくとも被写体140を撮像して(実施例1にあっては、低輝度光照射状態において被写体140を撮像して)第2画像信号電荷q2を得る。即ち、図1A及び図1Cに示すように、制御装置130の制御下、撮像素子10は、第1期間TP1(時間長T1、時刻t0~t1)において、光源110から出射された高輝度光に基づき被写体140を撮像して(図3A参照)、受光部21において得られた第1画像信号電荷q1を第1電荷蓄積部22に蓄積する。このとき、第1電荷転送制御手段23を作動状態(オン状態)とし、第2電荷転送制御手段25を不作動状態(オフ状態)とする。次いで、図1B及び図1Dに示すように、第2期間TP2(時間長T2、時刻t1~t2)において、低輝度光に基づき(具体的には、光源110からの光の出射がない状態で)被写体140を撮像して(図3B参照)、受光部21において得られた第2画像信号電荷q2を第2電荷蓄積部24に蓄積する。このとき、第1電荷転送制御手段23を不作動状態(オフ状態)とし、第2電荷転送制御手段25を作動状態(オン状態)とする。尚、図1A及び図1Bにおいて、電荷(例えば、電子)を黒丸で示す。
 その後、例えば、1撮像フレームが終了した後、転送期間において、第1電荷蓄積部22に蓄積された第1画像信号電荷q1及び第2電荷蓄積部24に蓄積された第2画像信号電荷q2を制御装置130に転送し、制御装置130は、第1電荷蓄積部22に蓄積された第1画像信号電荷q1と、第2電荷蓄積部24に蓄積された第2画像信号電荷q2との差分に基づき、画像信号を得る(生成する)。具体的には、例えば、1撮像フレームが終了した後、制御装置130において、第1画像信号電荷q1及び第2画像信号電荷q2に基づき電圧V1,V2を生成し、電圧V1と電圧V2との差分から画像信号を生成する。即ち、電圧V1から電圧V2を減算する処理を行う。
 そして、こうして得られた画像信号から、制御装置130は、図9Aに示した角度α,βを求め、更に、式(A)に基づいて座標(x,y)を求め、また、z座標を求め、以上の結果として、制御装置130は、例えば、撮像装置から被写体140までの距離や被写体140の2次元・3次元形状、被写体140の動き等をストラクチャードライト法に基づき算出することができる。尚、これらの処理アルゴリズムは、周知の処理アルゴリズムとすることができる。以下に説明する各種の実施例においても同様である。
 画像信号電荷を得るための撮像装置120の動作や各種処理、制御装置130への画像信号電荷の送出に関連する動作や各種処理は、周知の動作、処理とすることができる。以下に説明する各種の実施例においても同様である。第1画像信号電荷q1及び第2画像信号電荷q2を得る時間的順序は本質的に任意であり、第1期間TP1と第2期間TP2の時間的順序を逆とし、第2期間TP2に引き続き第1期間TP1としてもよい。また、第1期間TP1と第2期間TP2との間に撮像素子が不作動の期間を設けてもよい。
 図6Aに示した例にあっては、1秒当たりの撮像フレーム数を15(撮像フレームレート:15fps)とし、1撮像フレーム期間を2つの期間(期間-1及び期間-2)に分割した。また、図6B及び図6Cに示した例にあっては、1秒当たりの撮像フレーム数を30(撮像フレームレート:30fps)とし、図6Bでは、1撮像フレーム期間を2つの期間(期間-1及び期間-2)に分割し、図6Cでは、1撮像フレーム期間を4つの期間(期間-1、期間-2、期間-3及び期間-4)に分割した。分割した期間の時間長さは同一である。1秒当たりの撮像フレーム数が多くなるほど、また、1撮像フレーム期間の分割期間数が多くなるほど、1撮像フレームを模式的に示す平行四辺形の形状が変化する。具体的には、左上から右下に延びる斜辺の傾斜角が、1秒当たりの撮像フレーム数が多くなるほど、また、1撮像フレーム期間の分割期間数が多くなるほど、大きくなる。即ち、1秒当たりの撮像フレーム数が多くなるほど、また、1撮像フレーム期間の分割期間数が多くなるほど、ローリングシャッター機構を採用した場合の感光時間が増大される。そして、以上の結果として、高輝度光照射状態とし得る時間長さを長くすることができる。
 1撮像フレーム内で全ての撮像素子に同じ光量の参照光パターンを照射できる時間が存在しないと、正確に環境光の影響を除去することが困難となる。図6Aに示す例にあっては、撮像時間T1,T2の時間長さは、期間-1、期間-2の時間長さの10%程度である。従って、1秒当たりの撮像フレーム数は15(撮像フレームレート:15fps)以上、1撮像フレームにおける分割期間数は2以上であることが好ましい。そして、上述したとおり、1秒当たりの撮像フレーム数(撮像フレームレート)が多くなるほど、また、1撮像フレーム期間の分割期間数が多くなるほど、1撮像フレーム内で全ての撮像素子に同じ光量の参照光パターンを照射できる時間を長くすることができるので、1秒当たりの撮像フレーム数は30(撮像フレームレート:30fps以上)以上、1撮像フレームにおける分割期間数は2以上であることが一層好ましく、1秒当たりの撮像フレーム数は30以上(撮像フレームレート:30fps以上)、1撮像フレームにおける分割期間数は3以上であることがより一層好ましい。尚、図6B、図6Cに示す例にあっては、撮像時間T1,T2の時間長さは、期間-1、期間-2の時間長さの50%、70%程度である。
 実施例1の撮像装置組立体、あるいは又、実施例1の撮像装置組立体を備えた実施例1の3次元形状測定装置、動き検出装置にあっては、第1画像信号電荷と第2画像信号電荷との差分から画像信号を生成するので、画像信号から環境光の影響を除去することができる。即ち、環境光に基づき生成する電荷は、第1画像信号電荷と第2画像信号電荷のいずれにも含まれる。従って、第1画像信号電荷と第2画像信号電荷との差分を算出することで、画像信号から環境光の影響を除去することができる。それ故、高輝度光の輝度を増加させること無く、高輝度光に基づく参照光パターンを撮像装置によって捉えることができる。また、光源における消費電力の増加といった問題や、場合によっては参照光パターンが視認されてしまうといった問題を解消することができる。しかも、より自由な環境(屋内や部屋の照度によらない、又は、屋外での使用)において、撮像装置から被写体までの距離や被写体の2次元・3次元形状、被写体の動き等の測定が可能となるし、光源から遠い所に位置する被写体や画角の広い被写体にあっては参照光パターンが暗くなるが、それにも拘わらず、参照光パターンを撮像装置によって確実に捉えることが可能となり、距離制限を緩和することができる。更には、光源の光強度を低減することが可能となるため、例えば、半導体レーザ素子から光源を構成する場合にも高い安全性を確保することができる。以下の実施例においても同様である。尚、制御装置は、第1電荷蓄積部に蓄積された第1画像信号電荷と、第2電荷蓄積部に蓄積された第2画像信号電荷との差分に基づき、画像信号を得るので、制御装置にフレームメモリを備える必要はないし、第1画像信号電荷と第2画像信号電荷との差分をソフトウエアに基づく計算によって算出する必要もなく、制御装置の構成、構造の簡素化を図ることができる。
 実施例2は、実施例1の変形である。概念図を図2Bに示す実施例2の撮像装置組立体1002において、撮像装置はアクティブステレオ撮像装置から構成されている。具体的には、撮像装置は、第1の撮像装置120A及び第2の撮像装置120Bから構成されている。即ち、実施例1の撮像装置組立体における光源110を第1の撮像装置120Aに置き換えて、光源210を、別途、配設する。撮像装置120A,120Bにおけるシャッター機構は、グローバルシャッター機構、ローリングシャッター機構のいずれであってもよい。
 以下、実施例2の撮像装置組立体を用いた撮像方法の概要を説明する。尚、この撮像方法にあっては、例えば、撮像装置から被写体までの距離や被写体の2次元・3次元形状、被写体の動き等をアクティブステレオ法に基づき算出する。ここで、制御装置130の制御下、光源110は、実施例1と同様に、参照光パターンを高輝度光照射状態で被写体140に向けて出射し、また、低輝度光照射状態で光を照射する。高輝度光照射状態において、光源110は動作状態(即ち、参照光パターンを出射している状態)とされ、低輝度光照射状態において、光源110は不動作状態(即ち、参照光パターンを出射していない状態)とされる。実施例2にあっても、実施例1と同様に、T1=T2、1秒当たりの撮像フレーム数を30(撮像フレームレート:30fps)とした。
 撮像装置120A,120Bのそれぞれは、高輝度光照射状態において参照光パターン及び被写体140を撮像して第1画像信号電荷を得るし(図4A参照)、低輝度光照射状態において少なくとも被写体140を撮像して(実施例2にあっては、低輝度光照射状態において被写体140を撮像して)第2画像信号電荷を得る(図4B参照)。第1の撮像装置120Aから得られた第1画像信号電荷を『第1画像信号電荷-A』と呼び、第2の撮像装置120Bから得られた第1画像信号電荷を『第1画像信号電荷-B』と呼ぶ。第1の撮像装置120Aから得られた第2画像信号電荷を『第2画像信号電荷-A』と呼び、第2の撮像装置120Bから得られた第2画像信号電荷を『第2画像信号電荷-B』と呼ぶ。
 そして、例えば、1撮像フレームが終了した後、制御装置130は、第1画像信号電荷-Aと第2画像信号電荷-Aとの差分、及び、第1画像信号電荷-Bと第2画像信号電荷-Bとの差分から画像信号(第1の撮像装置120Aから得られた画像信号-A、及び、第2の撮像装置120Bから得られた画像信号-B)を生成する。即ち、制御装置130は、得られた第1画像信号電荷-A及び第1画像信号電荷-Bと第2画像信号電荷-A及び第2画像信号電荷-Bとの間で減算処理を行う。
 こうして得られた画像信号-A及び画像信号-Bから、制御装置130は、図9Bに示した角度α,βを求め、更に、式(A)に基づいて座標(x,y)を求め、また、z座標を求め、以上の結果として、制御装置130は、例えば、撮像装置から被写体までの距離や被写体の2次元・3次元形状、被写体の動き等をアクティブステレオ法に基づき算出することができる。尚、これらの処理アルゴリズムは、周知の処理アルゴリズムとすることができる。以下に説明する各種の実施例においても同様である。
 実施例2において、第2画像信号電荷-A、第2画像信号電荷-Bは、参照光パターンが存在しない状態で得られた画像信号電荷であり、第1画像信号電荷-A、第1画像信号電荷-Bは、参照光パターンが存在する状態で得られた画像信号電荷である。従って、第1画像信号電荷-Aと第2画像信号電荷-Aとの差分、及び、第1画像信号電荷-Bと第2画像信号電荷-Bとの差分を算出することで、画像信号-A及び画像信号-Bを得ることができる。環境光は、第1画像信号電荷-A、第1画像信号電荷-B、第2画像信号電荷-A及び第2画像信号電荷-Bのいずれにも含まれる。従って、第1画像信号電荷と第2画像信号電荷との差分を算出することで、画像信号から環境光の影響を除去することができる。
 実施例3は、実施例1~実施例2の変形である。実施例1~実施例2にあっては、T1=T2とした。一方、実施例3にあっては、
1>T2
とした。シャッター機構として、グローバルシャッター機構、ローリングシャッター機構のいずれも用いることができる。図7A、図7B、図8A、図8Bに、シャッター機構としてローリングシャッター機構を用いた場合の、1撮像フレーム当たりの撮像時間T1,T2を模式的に示す。図7A、図7B、図8A、図8Bに示す例にあっては、1秒当たりの撮像フレーム数を30(撮像フレームレート:30fps)とし、1撮像フレームは、2以上の期間、具体的には、4つの期間に均等に分割されている。
 図7Aに示す例では、T1/T2の値は3を超えており、期間-1の一部分が低輝度光照射状態にあり、期間-2の一部分、期間-3の全部、期間-4の一部分が高輝度光照射状態にある。図7Bに示す例では、T1/T2の値は3であり、期間-1の一部分が低輝度光照射状態にあり、期間-2の一部分、期間-3の一部分、期間-4の一部分が高輝度光照射状態にある。図8Aに示す例では、T1/T2の値は1であり、期間-2の全部が高輝度光照射状態にあり、期間-4の全部が低輝度光照射状態にある。図8Bに示す例では、T1/T2の値は1を超えており、期間-1の一部分、期間-2の全部、期間-3の一部分、期間-4の全部が高輝度光照射状態にあり、期間-1の残りの部分、期間-3の残りの部分が低輝度光照射状態にある。尚、撮像装置組立体の使用者からの指示に基づき、撮像時間T1,T2を可変とすることもできるし、T1/T2の割合を可変とすることもできる。
 図7A、図7B、図8Aに示す例にあっては、1撮像フレームは複数の期間に分割されており、その内の1つの期間は低輝度光照射状態とされ、残りの期間は高輝度光照射状態とされる。あるいは又、図7A、図7B、図8A、図8B、特に図8Bに示す例にあっては、高輝度光照射状態において参照光パターン及び被写体を撮像する撮像期間と、低輝度光照射状態において少なくとも被写体を撮像する撮像期間が繰り返され、前者の撮像期間が後者の撮像期間よりも長い。
 例えば、図7Aに示す例にあっては、時刻t11から時刻t12の撮像時間T1において得られた第1画像信号電荷と、時刻t21から時刻t22の撮像時間T2において得られた第2画像信号電荷との差分から、画像信号を得ることができる。但し、画像信号を得るために、以下の補正を施す必要がある。図7Bに示す例でも同様である。
(第1画像信号電荷)-{2+(期間-3の時間長さ)/(T2の時間長さ)}×(第2画像信号電荷)
 図7Bに示す例では、例えば、期間-1において得られた第2画像信号電荷と、期間-2、期間-3及び期間-4において得られた画像信号電荷の合計との差分に基づき、画像信号から環境光の影響を除去すればよい。
 図8Aに示す例では、期間-1において得られた第2画像信号電荷と、期間-3において得られた画像信号電荷と期間-1において得られた画像信号電荷との差分に基づき、画像信号から環境光の影響を除去すればよい。
 図8Bに示す例では、期間-1において得られた第2画像信号電荷を第2電荷蓄積部に蓄積しておき、期間-1の一部分、期間-2の全部、期間3の一部分において得られ、第1電荷蓄積部に蓄積された第1画像信号電荷と、第2画像信号電荷との差分に基づき、画像信号から環境光の影響を除去すればよい。
 尚、画像信号が得難い場合には、T1/T2の値を大きくすることが好ましい。また、環境光が乏しい場合、T1/T2の値を変更して最適化を図ることが望ましい。例えば、環境光が殆ど存在しない場合、T1/T2の値を非常に大きな値、あるいは、T1/T2=∞としてもよい。
 また、実施例3において、場合によっては、第1画像信号電荷に基づく信号量は、第2画像信号電荷に基づく信号量のT1/T2倍となる。従って、第1画像信号電荷と第2画像信号電荷との差分を算出するとき、第2画像信号電荷に基づく信号量をT1/T2倍にするか、第1画像信号電荷に基づく信号量を(T2/T1)倍とすればよい。
 以上の点を除き、実施例3の撮像装置組立体あるいは撮像方法は、実施例1~実施例2の撮像装置組立体あるいは撮像方法と同様とすることができるので、詳細な説明は省略する。
 実施例4は、実施例1~実施例3の変形である。実施例4にあっては、更に、各撮像素子は、第2動作モードで動作させられる。即ち、実施例4の撮像装置組立体は、第2動作モードを備えた本開示の撮像装置組立体である。図5に、実施例4の撮像装置組立体を構成する撮像素子の第2動作モードにおける経時的な動作を示す。
 具体的には、第2動作モードにあっては、
 制御装置130の制御下、撮像素子は、第3期間TP3(時間長T3)及び第4期間TP4(時間長T4)に跨がる第5期間TP5(時間長T5)において光源110から出射された光に基づき被写体を撮像して、第3期間TP3にあっては、受光部21において得られた第3画像信号電荷を第1電荷蓄積部22に蓄積し、第4期間TP4にあっては、受光部21において得られた第4画像信号電荷を第2電荷蓄積部24に蓄積し、
 制御装置130は、第1電荷蓄積部22に蓄積された第3画像信号電荷と、第2電荷蓄積部24に蓄積された第4画像信号電荷とに基づき、撮像装置120から被写体までの距離を求める。そして、この場合、第3画像信号電荷をQ3、第4画像信号電荷をQ4、cを光速、TPを第3期間TP3及び第4期間TP4の時間としたとき、撮像装置120から被写体までの距離Dは、
D=(c・TP/2)×Q4/(Q3+Q4
に基づき求められる。即ち、実施例4にあっては、インダイレクト・TOF方式に基づき、被写体までの距離を求める。
 ここで、第3期間に引き続き第4期間が設けられており、T3+T4>T5の関係にある。具体的には、T3=T4=T5である。
 実施例4の撮像装置組立体において、制御装置130は、第1動作モードから第2動作モードへの切り替え、第2動作モードから第1動作モードへの切り替えを行う。即ち、制御装置130は、撮像装置120からの各種画像信号電荷に基づき、制御装置130、それ自体が、第1動作モードから第2動作モードへの切り替え、第2動作モードから第1動作モードへの切り替えを行い、あるいは又、使用者からの指示に基づき、第1動作モードから第2動作モードへの切り替え、第2動作モードから第1動作モードへの切り替えを行い、あるいは又、使用者からの指示に加えて、撮像装置120からの各種画像信号電荷に基づき、制御装置130は、第1動作モードから第2動作モードへの切り替え、第2動作モードから第1動作モードへの切り替えを行う。
 一般に、第1動作モードに基づく距離測定は、近距離(例えば1m未満)の距離測定に適しており、第2動作モードに基づく距離測定は、遠距離(例えば1m以上)の距離測定に適している。従って、実施例4の撮像装置組立体において、制御装置130は、第2動作モードに基づき求められた被写体までの距離が所定の値未満のとき、即ち、第2動作モードに基づき求められた被写体までの距離を測定しているとき、測定結果の距離が所定の値(例えば、1m)未満となったならば、第2動作モードから第1動作モードに切り替えて被写体までの距離を求める。また、制御装置130は、第1動作モードに基づき求められた被写体までの距離を測定しているとき、測定結果の距離が所定の値(例えば、1m)以上となったならば、第1動作モードから第2動作モードに切り替えて被写体までの距離を求める。
 前述したとおり、第2動作モードにあっては、光が被写体に当たり、撮像装置に入射するまでの時間を撮像装置の露光量に置き換えて計測する。ところで、被写体が、例えば、部屋の隅の場合、模式的に図10に示すように、光が壁によって反射される結果、第2動作モードに基づき求められた被写体までの距離に不連続状態が発生する。あるいは又、第2動作モードに基づき求められた被写体までの距離が不定な値となる。
 具体的には、例えば、壁の或る地点P1で反射され、撮像装置120に、直接、入射する光LB1が存在するが、壁の或る地点P1で反射され、地点P2に向かい、地点P2で反射され、撮像装置120に入射する光LB2も存在し得る。この場合、光LB1に基づく地点P1から撮像装置120までの距離はL1となるが、光LB2に基づく地点P1から撮像装置120までの距離は、実際には、仮想の地点P3から撮像装置120までの距離L2となる。従って、地点P1の近傍の地点から撮像装置120までの距離は、地点P1の近傍の地点での反射光が、直接、撮像装置120に入射する場合、L1に近い値となる一方、地点P1において光LB2が生成すると、地点P1から撮像装置120までの距離はL2となり、第2動作モードに基づき求められた被写体までの距離に不連続状態が発生する。あるいは又、第2動作モードに基づき求められた被写体までの距離が不定な値となってしまう。
 このような場合、制御装置130は、それ自体が、第1動作モードに切り替えて被写体までの距離を求める。第1動作モードにあっては、被写体の形状に基づき距離を求めるので、第2動作モードに基づく距離測定の不都合が生じることが無い。
 あるいは又、例えば、撮像装置全体として、先ず、第1動作モードで被写体の外形形状を求め、例えば、被写体の一部が部屋の隅の場合、制御装置130は、撮像装置120の所望の領域(具体的には、部屋の隅が写っている領域)において第1動作モードを動作させ、撮像装置120の他の所望の領域(具体的には、部屋の隅が写っている領域以外の領域)において第2動作モードを動作させる。あるいは又、例えば、撮像装置全体として、先ず、第2動作モードで被写体までの距離を求めるが、例えば、被写体の一部が部屋の隅の場合、被写体までの距離に不連続状態が発生し、あるいは又、被写体までの距離が不定な値となってしまうといった現象が生じた場合、制御装置130は、撮像装置120の所望の領域(具体的には、部屋の隅が写っている領域)において第1動作モードを動作させ、撮像装置120の他の所望の領域(具体的には、部屋の隅が写っている領域以外の領域)において第2動作モードを動作させる。
 また、実施例4の撮像装置組立体において、制御装置130は、第1動作モードに基づき求められた被写体までの距離に基づき、第2動作モードに基づき求められる被写体までの距離を校正する構成とすることができる。具体的には、撮像素子の温度変化によって第2動作モードに基づき得られる距離測定結果に誤差が生じる場合がある。撮像素子に温度変化が生じても、第1動作モードに基づき得られる距離測定結果に誤差は生じない。従って、或る距離(例えば、1m)に位置する被写体までの距離を第1動作モード及び第2動作モードに基づき求め、第1動作モードによって得られた距離に基づき、第2動作モードの距離測定の校正を行えばよい。一方、第1動作モードにあっては、光源と撮像装置との間の距離(基線の長さ)Lや2つの撮像装置の間の距離に変化が生じると、第1動作モードに基づき得られる距離測定結果に誤差が生じる場合がある。このような変化が生じても、第2動作モードに基づき得られる距離測定結果に誤差は生じない。従って、或る距離(例えば、1m)に位置する被写体までの距離を第1動作モード及び第2動作モードに基づき求め、第2動作モードによって得られた距離に基づき、第1動作モードの距離測定の校正を行えばよい。例えば、撮像装置組立体の使用者からの指示に基づき、第1動作モードの校正、第2動作モードの校正のどちらを行うかを決定すればよい。
 また、実施例4の撮像装置組立体において、制御装置130は、第1動作モードに基づき第1のデプスマップを周知の方法に基づき作成し、第2動作モードに基づき第2のデプスマップを周知の方法に基づき作成し、第1のデプスマップと第2のデプスマップとを合成することで、デプスマップ(奥行き情報)の精度の向上を図ることができる。
 以上、本開示を好ましい実施例に基づき説明したが、本開示はこれらの実施例に限定するものではない。実施例において説明した撮像装置組立体や撮像装置、光源、制御装置の構成、構造の構成は例示であり、適宜、変更することができる。また、実施例においては、種々の値を示したが、これらも例示であり、例えば、使用する光源、撮像装置、制御装置の仕様が変われば、変わることは当然である。実施例2~実施例4において説明した撮像装置組立体を3次元形状測定装置や動き検出装置に適用することができることは云うまでもない。
 尚、本開示は、以下のような構成を取ることもできる。
[A01]《撮像装置組立体》
 被写体を照射する光源、
 撮像装置、並びに、
 光源及び撮像装置を制御する制御装置、
を備えており、
 撮像装置は、複数の撮像素子から構成されており、
 各撮像素子は、
 受光部、
 第1電荷蓄積部及び第2電荷蓄積部、並びに、
 制御装置の制御下、受光部に蓄積された電荷の第1電荷蓄積部への転送を制御する第1電荷転送制御手段、及び、受光部に蓄積された電荷の第2電荷蓄積部への転送を制御する第2電荷転送制御手段、
から構成されており、
 第1動作モードで動作させられる撮像装置組立体。
 ここで、第1動作モードにあっては、
 制御装置の制御下、撮像素子は、第1期間において、光源から出射された高輝度光に基づき被写体を撮像して、受光部において得られた第1画像信号電荷を第1電荷蓄積部に蓄積し、第2期間において、低輝度光に基づき被写体を撮像して、受光部において得られた第2画像信号電荷を第2電荷蓄積部に蓄積し、
 制御装置は、第1電荷蓄積部に蓄積された第1画像信号電荷と、第2電荷蓄積部に蓄積された第2画像信号電荷との差分に基づき、画像信号を得る。
[A02]光源から出射される高輝度光は参照光パターンであり、
 制御装置は、得られた画像信号に基づき、被写体までの距離を求め、又は、被写体の外形形状を求め、又は、被写体までの距離及び被写体の外形形状を求める[A01]に記載の撮像装置組立体。
[A03]制御装置は、得られた画像信号から、三角測量に基づき、被写体までの距離を求め、又は、被写体の外形形状を求め、又は、被写体までの距離及び被写体の外形形状を求める[A02]に記載の撮像装置組立体。
[A04]更に、第2動作モードで動作させられる[A01]乃至[A03]のいずれか1項に記載の撮像装置組立体。
 ここで、第2動作モードにあっては、
 制御装置の制御下、撮像素子は、第3期間及び第4期間に跨がる第5期間において光源から出射された光に基づき被写体を撮像して、第3期間にあっては、受光部において得られた第3画像信号電荷を第1電荷蓄積部に蓄積し、第4期間にあっては、受光部において得られた第4画像信号電荷を第2電荷蓄積部に蓄積し、
 制御装置は、第1電荷蓄積部に蓄積された第3画像信号電荷と、第2電荷蓄積部に蓄積された第4画像信号電荷とに基づき、撮像装置から被写体までの距離を求める。
[A05]第3画像信号電荷をQ3、第4画像信号電荷をQ4、cを光速、TPを第3期間及び第4期間の時間としたとき、撮像装置から被写体までの距離Dは、
D=(c・TP/2)×Q4/(Q3+Q4
に基づき求められる[A04]に記載の撮像装置組立体。
[A06]制御装置は、第1動作モードから第2動作モードへの切り替え、第2動作モードから第1動作モードへの切り替えを行う[A04]又は[A05]に記載の撮像装置組立体。
[A07]制御装置は、第1動作モードに基づき第1のデプスマップを作成し、第2動作モードに基づき第2のデプスマップを作成し、第1のデプスマップと第2のデプスマップとを合成する[A04]乃至[A06]のいずれか1項に記載の撮像装置組立体。
[A08]制御装置は、撮像装置の所望の領域において第1動作モードを動作させ、撮像装置の他の所望の領域において第2動作モードを動作させる[A04]乃至[A07]のいずれか1項に記載の撮像装置組立体。
[A09]制御装置は、第1動作モードに基づき求められた被写体までの距離に基づき、第2動作モードに基づき求められる被写体までの距離を校正する[A04]乃至[A08]のいずれか1項に記載の撮像装置組立体。
[A10]制御装置は、第2動作モードに基づき求められた被写体までの距離に基づき、第1動作モードに基づき求められる被写体までの距離を校正する[A04]乃至[A08]のいずれか1項に記載の撮像装置組立体。
[A11]制御装置は、第2動作モードに基づき求められた被写体までの距離に不連続状態が認められたとき、第1動作モードに切り替えて被写体までの距離を求める[A04]乃至[A10]のいずれか1項に記載の撮像装置組立体。
[A12]制御装置は、第2動作モードに基づき求められた被写体までの距離が所定の値未満のとき、第1動作モードに切り替えて被写体までの距離を求める[A04]乃至[A11]のいずれか1項に記載の撮像装置組立体。
[A13]制御装置は、第1動作モードに基づき求められた被写体までの距離が所定の値以上のとき、第2動作モードに切り替えて被写体までの距離を求める[A04]乃至[A11]のいずれか1項に記載の撮像装置組立体。
[A14]撮像装置を1つ備えている[A01]乃至[A13]のいずれか1項に記載の撮像装置組立体。
[A15]制御装置は、得られた画像信号から、ストラクチャードライト法に基づき、撮像装置から被写体までの距離を求める[A14]に記載の撮像装置組立体。
[A16]撮像装置はアクティブステレオ撮像装置から構成されている[A01]乃至[A13]のいずれか1項に記載の撮像装置組立体。
[A17]制御装置は、得られた画像信号から、アクティブステレオ法に基づき、撮像装置から被写体までの距離を求める[A16]に記載の撮像装置組立体。
[A18]光源は赤外線を出射する[A01]乃至[A17]のいずれか1項に記載の撮像装置組立体。
[A19]高輝度光照射状態において光源は動作状態とされ、低輝度光照射状態において光源は不動作状態とされる[A01]乃至[A18]のいずれか1項に記載の撮像装置組立体。
[A20]光源は半導体発光素子から成る[A01]乃至[A19]のいずれか1項に記載の撮像装置組立体。
[A21]高輝度光照射状態において参照光パターン及び被写体を撮像するときの撮像時間をT1、低輝度光照射状態において少なくとも被写体を撮像するときの撮像時間をT2としたとき、
1>T2
を満足する[A01]乃至[A20]のいずれか1項に記載の撮像装置組立体。
[A22]撮像装置組立体の使用者からの指示に基づき、撮像時間T1,T2は可変とされ、又は、T1/T2の割合は可変とされる[A21]に記載の撮像装置組立体。
[A23]1撮像フレームは複数の期間に分割されており、
 その内の1つの期間は低輝度光照射状態とされ、
 残りの期間は高輝度光照射状態とされる[A01]乃至[A20]のいずれか1項に記載の撮像装置組立体。
[A24]撮像フレームレートは30フレーム/秒であり、
 1撮像フレームは、2以上の期間に分割されている[A23]に記載の撮像装置組立体。
[A25]高輝度光照射状態において参照光パターン及び被写体を撮像する撮像期間と、低輝度光照射状態において少なくとも被写体を撮像する撮像期間が繰り返され、前者の撮像期間が後者の撮像期間よりも長い[A01]乃至[A20]のいずれか1項に記載の撮像装置組立体。
[A26]撮像装置は、第1の方向及び第2の方向に2次元マトリクス状に配列された撮像素子を有し、
 撮像装置は、ローリングシャッター機構を有し、
 制御装置は、高輝度光照射状態において全ての撮像素子が参照光パターン及び被写体を撮像して第1画像信号を制御装置に出力し、低輝度光照射状態において全ての撮像素子が少なくとも被写体を撮像して第2画像信号を制御装置に出力するように、光源及び撮像装置を制御する[A01]乃至[A25]のいずれか1項に記載の撮像装置組立体。
[B01]《3次元形状測定装置》
 [A01]乃至[A26]のいずれか1項に記載の撮像装置組立体を備えた3次元形状測定装置。
[B02]演算装置を更に備えており、
 演算装置は、画像信号から被写体の3次元形状を算出する[B01]に記載の3次元形状測定装置。
[C01]《動き検出装置》
 [A01]乃至[A26]のいずれか1項に記載の撮像装置組立体を備えた動き検出装置。
[C02]演算装置を更に備えており、
 演算装置は、画像信号から被写体の3次元形状を算出し、算出した3次元形状から被写体の特徴点を抽出して被写体の特徴点の位置を算出し、算出した特徴点の位置の変化から被写体の動きを検出する[C01]に記載の動き検出装置。
1001,1002・・・撮像装置組立体、110,210・・・光源、120,120A,120B・・・撮像装置、130・・・制御装置、140・・・被写体、10・・・撮像素子、21・・・受光部、22・・・第1電荷蓄積部、24・・・第2電荷蓄積部、23・・・第1電荷転送制御手段、25・・・第2電荷転送制御手段、26・・・遮光層

Claims (19)

  1.  被写体を照射する光源、
     撮像装置、並びに、
     光源及び撮像装置を制御する制御装置、
    を備えており、
     撮像装置は、複数の撮像素子から構成されており、
     各撮像素子は、
     受光部、
     第1電荷蓄積部及び第2電荷蓄積部、並びに、
     制御装置の制御下、受光部に蓄積された電荷の第1電荷蓄積部への転送を制御する第1電荷転送制御手段、及び、受光部に蓄積された電荷の第2電荷蓄積部への転送を制御する第2電荷転送制御手段、
    から構成されており、
     第1動作モードで動作させられる撮像装置組立体。
     ここで、第1動作モードにあっては、
     制御装置の制御下、撮像素子は、第1期間において、光源から出射された高輝度光に基づき被写体を撮像して、受光部において得られた第1画像信号電荷を第1電荷蓄積部に蓄積し、第2期間において、低輝度光に基づき被写体を撮像して、受光部において得られた第2画像信号電荷を第2電荷蓄積部に蓄積し、
     制御装置は、第1電荷蓄積部に蓄積された第1画像信号電荷と、第2電荷蓄積部に蓄積された第2画像信号電荷との差分に基づき、画像信号を得る。
  2.  光源から出射される高輝度光は参照光パターンであり、
     制御装置は、得られた画像信号に基づき、被写体までの距離を求め、又は、被写体の外形形状を求め、又は、被写体までの距離及び被写体の外形形状を求める請求項1に記載の撮像装置組立体。
  3.  制御装置は、得られた画像信号から、三角測量に基づき、被写体までの距離を求め、又は、被写体の外形形状を求め、又は、被写体までの距離及び被写体の外形形状を求める請求項2に記載の撮像装置組立体。
  4.  更に、第2動作モードで動作させられる請求項1に記載の撮像装置組立体。
     ここで、第2動作モードにあっては、
     制御装置の制御下、撮像素子は、第3期間及び第4期間に跨がる第5期間において光源から出射された光に基づき被写体を撮像して、第3期間にあっては、受光部において得られた第3画像信号電荷を第1電荷蓄積部に蓄積し、第4期間にあっては、受光部において得られた第4画像信号電荷を第2電荷蓄積部に蓄積し、
     制御装置は、第1電荷蓄積部に蓄積された第3画像信号電荷と、第2電荷蓄積部に蓄積された第4画像信号電荷とに基づき、撮像装置から被写体までの距離を求める。
  5.  第3画像信号電荷をQ3、第4画像信号電荷をQ4、cを光速、TPを第3期間及び第4期間の時間としたとき、撮像装置から被写体までの距離Dは、
    D=(c・TP/2)×Q4/(Q3+Q4
    に基づき求められる請求項4に記載の撮像装置組立体。
  6.  制御装置は、第1動作モードから第2動作モードへの切り替え、第2動作モードから第1動作モードへの切り替えを行う請求項4に記載の撮像装置組立体。
  7.  制御装置は、第1動作モードに基づき第1のデプスマップを作成し、第2動作モードに基づき第2のデプスマップを作成し、第1のデプスマップと第2のデプスマップとを合成する請求項4に記載の撮像装置組立体。
  8.  制御装置は、撮像装置の所望の領域において第1動作モードを動作させ、撮像装置の他の所望の領域において第2動作モードを動作させる請求項4に記載の撮像装置組立体。
  9.  制御装置は、第1動作モードに基づき求められた被写体までの距離に基づき、第2動作モードに基づき求められる被写体までの距離を校正する請求項4に記載の撮像装置組立体。
  10.  制御装置は、第2動作モードに基づき求められた被写体までの距離に基づき、第1動作モードに基づき求められる被写体までの距離を校正する請求項4に記載の撮像装置組立体。
  11.  制御装置は、第2動作モードに基づき求められた被写体までの距離に不連続状態が認められたとき、第1動作モードに切り替えて被写体までの距離を求める請求項4に記載の撮像装置組立体。
  12.  制御装置は、第2動作モードに基づき求められた被写体までの距離が所定の値未満のとき、第1動作モードに切り替えて被写体までの距離を求める請求項4に記載の撮像装置組立体。
  13.  制御装置は、第1動作モードに基づき求められた被写体までの距離が所定の値以上のとき、第2動作モードに切り替えて被写体までの距離を求める請求項4に記載の撮像装置組立体。
  14.  撮像装置を1つ備えている請求項1に記載の撮像装置組立体。
  15.  撮像装置はアクティブステレオ撮像装置から構成されている請求項1に記載の撮像装置組立体。
  16.  請求項1乃至請求項15のいずれか1項に記載の撮像装置組立体を備えた3次元形状測定装置。
  17.  演算装置を更に備えており、
     演算装置は、画像信号から被写体の3次元形状を算出する請求項16に記載の3次元形状測定装置。
  18.  請求項1乃至請求項15のいずれか1項に記載の撮像装置組立体を備えた動き検出装置。
  19.  演算装置を更に備えており、
     演算装置は、画像信号から被写体の3次元形状を算出し、算出した3次元形状から被写体の特徴点を抽出して被写体の特徴点の位置を算出し、算出した特徴点の位置の変化から被写体の動きを検出する請求項18に記載の動き検出装置。
PCT/JP2020/000628 2019-01-16 2020-01-10 撮像装置組立体、3次元形状測定装置及び動き検出装置 WO2020149226A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020566398A JP7362670B2 (ja) 2019-01-16 2020-01-10 撮像装置組立体、3次元形状測定装置及び動き検出装置
US17/415,536 US11895406B2 (en) 2019-01-16 2020-01-10 Imaging device assembly, three-dimensional shape measuring device, and motion detecting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019004853 2019-01-16
JP2019-004853 2019-01-16

Publications (1)

Publication Number Publication Date
WO2020149226A1 true WO2020149226A1 (ja) 2020-07-23

Family

ID=71613348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000628 WO2020149226A1 (ja) 2019-01-16 2020-01-10 撮像装置組立体、3次元形状測定装置及び動き検出装置

Country Status (3)

Country Link
US (1) US11895406B2 (ja)
JP (1) JP7362670B2 (ja)
WO (1) WO2020149226A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164529A (ja) * 2000-11-28 2002-06-07 Sony Corp 固体撮像素子およびその製造方法
JP2013207321A (ja) * 2012-03-27 2013-10-07 Sony Corp 固体撮像装置、及び、電子機器
WO2016098400A1 (ja) * 2014-12-15 2016-06-23 ソニー株式会社 撮像装置組立体、3次元形状測定装置及び動き検出装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1155573A (ja) * 1997-07-30 1999-02-26 Sony Corp Ccd固体撮像素子及びその駆動方法
US10861888B2 (en) * 2015-08-04 2020-12-08 Artilux, Inc. Silicon germanium imager with photodiode in trench
EP3826062A4 (en) * 2018-07-18 2022-04-06 Sony Semiconductor Solutions Corporation LIGHT RECEIVING ELEMENT AND RANGEFINDER MODULE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164529A (ja) * 2000-11-28 2002-06-07 Sony Corp 固体撮像素子およびその製造方法
JP2013207321A (ja) * 2012-03-27 2013-10-07 Sony Corp 固体撮像装置、及び、電子機器
WO2016098400A1 (ja) * 2014-12-15 2016-06-23 ソニー株式会社 撮像装置組立体、3次元形状測定装置及び動き検出装置

Also Published As

Publication number Publication date
JPWO2020149226A1 (ja) 2021-11-25
US11895406B2 (en) 2024-02-06
US20220046159A1 (en) 2022-02-10
JP7362670B2 (ja) 2023-10-17

Similar Documents

Publication Publication Date Title
JP6881622B2 (ja) 3次元形状の測定方法
JP6977045B2 (ja) 物体までの距離を決定するためのシステム及び方法
US10921454B2 (en) System and method for determining a distance to an object
US8907282B2 (en) Thermal imaging camera with intermittent image capture
JP7028878B2 (ja) 物体までの距離を測定するためのシステム
US11022546B2 (en) Optical gas imaging systems and methods
JP6635382B2 (ja) 画像出力装置、画像出力方法及び画像出力システム
EP3519855B1 (en) System for determining a distance to an object
US9978148B2 (en) Motion sensor apparatus having a plurality of light sources
US11528424B2 (en) Imaging device, imaging system, vehicle running control system, and image processing device
US9699377B2 (en) Depth detecting apparatus and method, and gesture detecting apparatus and gesture detecting method
JP2012014668A (ja) 画像処理装置、画像処理方法、プログラム、および電子装置
US20150317516A1 (en) Method and system for remote controlling
US20210072396A1 (en) Method and system for pseudo 3D mapping in robotic applications
WO2020149226A1 (ja) 撮像装置組立体、3次元形状測定装置及び動き検出装置
JP6679289B2 (ja) 処理装置、処理システム、撮像装置、処理方法、処理プログラムおよび記録媒体
JP2011205623A (ja) 撮像装置および撮像方法
WO2024116745A1 (ja) 画像生成装置、画像生成方法および画像生成プログラム
WO2022181097A1 (ja) 測距装置およびその制御方法、並びに、測距システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20741284

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020566398

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20741284

Country of ref document: EP

Kind code of ref document: A1