WO2020149206A1 - Method for producing acrylic resin film - Google Patents

Method for producing acrylic resin film Download PDF

Info

Publication number
WO2020149206A1
WO2020149206A1 PCT/JP2020/000439 JP2020000439W WO2020149206A1 WO 2020149206 A1 WO2020149206 A1 WO 2020149206A1 JP 2020000439 W JP2020000439 W JP 2020000439W WO 2020149206 A1 WO2020149206 A1 WO 2020149206A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
acrylic resin
dope
preferable
casting
Prior art date
Application number
PCT/JP2020/000439
Other languages
French (fr)
Japanese (ja)
Inventor
笠原 健三
一浩 青木
俊平 一色
昌弘 大和田
友輝 川野
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2020566390A priority Critical patent/JP7371641B2/en
Priority to KR1020217021760A priority patent/KR20210102384A/en
Publication of WO2020149206A1 publication Critical patent/WO2020149206A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers

Definitions

  • the present invention relates to a method for producing an acrylic resin film, and particularly to a method for producing a highly durable and tough homogenous acrylic resin film that does not cause optical disturbance on the surface and inside.
  • optical films such as polarizing plate protective films and retardation films for liquid crystal display devices and organic electroluminescence display devices, which are display devices, and substrate films such as touch panel substrate films and gas barrier substrate films
  • substrate films such as touch panel substrate films and gas barrier substrate films
  • a flexible resin film that realizes high transparency, high functionality and weight reduction, such as a substrate film for a nanoimprint substrate film or a substrate film for a flexible electronic circuit.
  • acrylic resin is preferably used as an optical film because it exhibits excellent transparency and dimensional stability in addition to low hygroscopicity.
  • acrylic resins are required to have a high glass transition temperature and a high molecular weight.
  • the volatilization amount of the volatile component is controlled by temperature, the heat resistance is excellent, and a technique of suppressing streaks and step unevenness is disclosed (for example, Patent Document 1).
  • the acrylic resin film contains rubber particles dispersedly contained in order to absorb impact and improve strength.
  • the distribution also has an effect on the interaction with the acrylic resin, which causes the dope to have a high viscosity and a local viscosity distribution.
  • a minute fluidity distribution in solution casting, a leveling distribution, and a hardness distribution of a dry film occur, forming minute irregularities on the film surface, and image clarity (for example, The linearity of the fluorescent light reflected image on the film surface) deteriorates.
  • the rubber particles have a primary particle diameter that is considered not to cause sufficient light scattering, but if there is coarse soft aggregation or coarse/fine distribution, it becomes apparently coarse particles, and In order to exert the effect, not only the unevenness of the surface but also the distribution inside the film causes an optical disorder.
  • optical films are being applied to electronic circuit boards such as touch panels and window films for flexible displays, and in addition to the applications of polarizing plate protective films and retardation films, whose main issues were transparency and adhesiveness. Since the demand for wet/dry coating and nano-fine processing have been added, a surface structure without fine irregularities is required.
  • the present invention has been made in view of the above problems and circumstances, and a problem to be solved is to provide a method for producing a homogeneous acrylic resin film that is highly durable, tough, and does not cause optical disturbance on the surface and inside. is there.
  • the present inventors set the addition conditions of the rubber particles having a core/shell structure, the filtration accuracy of the dope, and the transmission mappability within a certain range in the process of examining the causes of the above problems.
  • a method for producing a homogeneous acrylic resin film which is highly durable, tough, and does not cause optical disturbance on the surface and inside, and has reached the present invention. That is, the above-mentioned subject concerning the present invention is solved by the following means.
  • Acrylic resin a method for producing an acrylic resin film containing rubber particles, A step of preparing a dope containing an acrylic resin having a glass transition temperature (Tg) in the range of 120 to 180° C. and a weight average molecular weight of 300,000 to 4,000,000 and rubber particles having a core-shell structure; , Preparing a dope by filtering the dope with a filter having a filtration accuracy within the range of 5 to 100 ⁇ m; A step of casting the dope after filtration on a support and peeling the web, And a step of drying the web, and An acrylic resin having a transmission image clarity C value within a range of 80 to 100% when measured under the condition that a parallel light ray is incident on the acrylic resin film at an angle of 75 degrees and an optical comb width is 0.125 mm. Film manufacturing method.
  • Tg glass transition temperature
  • the mechanism of action or mechanism of action of the present invention has not been clarified, but is presumed as follows.
  • the glass transition temperature (Tg) of the acrylic resin, the weight average molecular weight, the addition conditions of the rubber particles having a core/shell structure, and the filtration accuracy of the dope are controlled within a predetermined range, and the transmission image clarity is improved.
  • Tg glass transition temperature
  • the viscosity of the dope is controlled to an appropriate state, and the local viscosity distribution at the location in the dope is reduced and homogenized, so the minute fluidity distribution and leveling distribution in solution casting are obtained. Therefore, the hardness distribution of the dry coating is reduced, and it is presumed that the problem of the present invention has been solved.
  • the schematic diagram of the manufacturing apparatus used for the manufacturing method of the acrylic resin film of this invention Schematic diagram of a solution casting film-forming apparatus for carrying out the method for producing an acrylic resin film of the present invention Schematic diagram of forming an intervening film between the casting film and the endless support
  • Schematic diagram of a tenter clip used in the present invention Schematic diagram for explaining oblique stretching used in the method for producing an acrylic resin film of the present invention
  • Schematic view of a stretching apparatus according to an embodiment of the present invention Side view showing the outline of the winding device The top view which shows the outline of a winding device.
  • FIG. 4 is a plan view showing how the film tip is attached to the winding core in another embodiment in which the inclination angle of the film tip is changed.
  • Schematic diagram for explaining a method for manufacturing a winding core by a filament winding method Schematic diagram for explaining a method of manufacturing a winding core by a sheet winding method The figure which shows the film roll which wound the tape on both ends of the film and wound it up.
  • FIG. 1 Diagram showing the surface and cross section of the tape that has been embossed or slitted
  • FIG. 1 is a schematic schematic view of an example of an embossed region that the acrylic resin film of the present invention may have
  • (B) is a perspective view of a vertical cross section of the film of (A) in the width direction
  • (C) is Schematic schematic diagram for explaining the embossed region in the film of (A)
  • (A) is a schematic schematic view of an example of an embossed region that the acrylic resin film of the present invention may have
  • (B) is a perspective view of a vertical cross section of the film of (A) in the width direction
  • (C) is Schematic schematic diagram for explaining the embossed region in the film of (A)
  • (A) is a schematic schematic view of an example of an embossed region that the acrylic resin film of the present invention may have
  • (B) is a perspective view of a vertical cross section of the film of (A) in the width direction
  • (C) is Schematic
  • the method for producing an acrylic resin film of the present invention is a method for producing an acrylic resin film containing an acrylic resin and rubber particles, wherein the glass transition temperature (Tg) is in the range of 120 to 180° C., and the weight average is
  • Tg glass transition temperature
  • the weight average is A step of preparing a dope containing an acrylic resin having a molecular weight of 300,000 to 4,000,000 and rubber particles having a core-shell structure, and filtering the dope with a filter having a filtration accuracy of 5 to 100 ⁇ m.
  • the transmission image clarity C value is in the range of 80 to 100% when measured under the condition that a parallel light beam is incident at an angle of, and the optical comb width is 0.125 mm.
  • the content of the rubber particles having the core-shell structure is preferably 5 to 20% by mass or less based on the acrylic resin film from the viewpoint of manifesting the effects of the present invention.
  • the method for producing an acrylic resin film of the present invention is a method for producing an acrylic resin film containing an acrylic resin and rubber particles, wherein the glass transition temperature (Tg) is in the range of 120 to 180° C., and the weight average is A step of preparing a dope containing an acrylic resin having a molecular weight of 300,000 to 4,000,000 and rubber particles having a core-shell structure, and filtering the dope with a filter having a filtration accuracy of 5 to 100 ⁇ m.
  • the glass transition temperature (Tg) of the acrylic resin, the weight average molecular weight, the addition conditions of the rubber particles having a core/shell structure, the filtration accuracy of the dope, and the transmission image clarity are set within the above-mentioned ranges.
  • the viscosity of the solution is controlled to an appropriate state, and the local viscosity distribution at the location in the dope can be reduced and homogenized, resulting in a fine fluidity distribution during solution casting, a leveling distribution, and a dry film hardness. It is possible to provide a method for producing a uniform acrylic resin film with reduced distribution, high durability, toughness, and no optical disorder on the surface and inside.
  • the acrylic resin film according to the present invention contains rubber particles as an essential component among the fine particles.
  • fine particles other than rubber particles can be suitably used.
  • a matting agent used as an anti-blocking agent for the film is particularly preferred.
  • Fine particles used as a matting agent include inorganic fine particles and organic fine particles.
  • Acrylic-based materials are preferably used as the organic fine particles, and some of them are difficult to distinguish from the rubber particles of the present invention. Therefore, the rubber particles of the present invention have a glass transition temperature of room temperature, that is, 25° C. or less. .. When the glass transition temperature is higher than 25°C, it is not suitable as the rubber particle of the present invention.
  • the transmission image clarity according to the present invention is measured using an image clarity measuring instrument (for example, image clarity measuring instrument ICM-1T manufactured by Suga Test Instruments Co., Ltd.). It is assumed that parallel light rays are incident on the test piece of the acrylic resin film at an angle of 75 degrees, and the measurement is performed under the condition that the optical comb width is 0.125 mm.
  • image clarity measuring instrument for example, image clarity measuring instrument ICM-1T manufactured by Suga Test Instruments Co., Ltd.
  • the ratio (C value (%)) of the difference (M ⁇ m) between the two and the sum (M+m) is a measure of the image definition.
  • the C value is preferably 80% or more, and particularly preferably 90% or more.
  • the acrylic resin film manufacturing apparatus is not particularly limited, and a general solution casting method film forming apparatus can be used.
  • FIG. 1 is a schematic diagram of an apparatus used in a method for producing an acrylic resin film which is preferable for the present invention.
  • the acrylic resin is dissolved in an appropriate amount of organic solvent in the charging pot 41, and is sent to the filter 44 to remove large aggregates, and then sent to the stock tank 42. Then, various additive liquids (for example, a plasticizer, a matting agent, an ultraviolet absorber, etc.) are added from the stock tank 42 to the main dope dissolving pot 1 to prepare the main dope.
  • various additive liquids for example, a plasticizer, a matting agent, an ultraviolet absorber, etc.
  • a plasticizer, a matting agent, an ultraviolet absorber, etc. are appropriately added to the charging pot 41 after being stirred and diluted with a solvent in an additive charging pot to make an additive liquid.
  • the main dope is cast from the die 30 onto the endless support 31, peeled at the peeling position 33 to form a web, conveyed by a large number of rollers, and then stretched by the tenter device 34.
  • the stretched web is transported while being dried by a number of transport rollers 36 in a roller drying device 35, and wound by a winding device 37.
  • a slit device for adjusting the film width during the process and an embossing device for giving unevenness to the film end portion to improve the sticking failure of the film.
  • the techniques for forming a cellulose acylate film described in JP-A-2-276607, JP-A-55-014201, JP-A-2-111511, and JP-A-2-208650 are used. It can be applied to the invention.
  • the method for producing an acrylic resin film of the present invention comprises an acrylic resin having a glass transition temperature (Tg) in the range of 120 to 180° C. and a weight average molecular weight of 300,000 to 4,000,000, and a rubber having a core-shell structure.
  • Tg glass transition temperature
  • the “acrylic resin film” may be simply referred to as a “film”.
  • the raw material is stored in a packaging form in which it is distributed/supplied, a step of unpacking and storing in a silo or a tank, It is preferable to further include a step of transferring to another silo or tank.
  • the packaging form at the time of distribution and supply of the raw materials is not particularly limited, such as a paper bag, a flexible container bag, a container, and a tank truck, but a packaging form that shields temperature, humidity, ultraviolet rays, and oxygen during storage is particularly preferable.
  • Acrylic resin has a relatively low glass transition temperature as compared with other resins, and thus tends to cause blocking.
  • the storage temperature is low, the humidity is low, and the load is low. Therefore, it is not preferable to use a silo having a larger capacity than necessary.
  • a silo having a larger capacity than necessary.
  • the acrylic resin as a raw material has a variation in the weight average molecular weight due to a lot variation during manufacturing (synthesis).
  • the raw material of the acrylic resin film according to the present invention includes self-returning material. It is preferable that the returned material should be in the same storage condition as other raw materials. Recycled material is usually flaky film fragments, and blocking is likely to occur, so caution is required.
  • the method for transferring the raw materials is not particularly limited, such as transfer by free fall, pneumatic transfer in a pipe by air, transfer by a screw feeder or a vibration feeder.
  • a screw feeder capable of forced discharge is preferable.
  • the weighing at the time of transfer may be managed by rotation of the feeder, but a load cell method for measuring the weight of the receiving container is preferable.
  • Dope preparation process In an organic solvent mainly composed of a good solvent for an acrylic resin, the acrylic resin in a dissolution pot, and in some cases, a plasticizer or various function expressing agents (for example, an antioxidant, a light stabilizer, an ultraviolet absorber, a retardation adjusting agent). , A peeling accelerator, an infrared absorbing agent, a matting agent, etc.) while stirring to form a dope, or by mixing the acrylic resin solution with a solution of the plasticizer and various function expressing agents.
  • This is a step of preparing a dope which is a solution.
  • a dope containing an acrylic resin having a glass transition temperature (Tg) of 120 to 180° C. and a weight average molecular weight of 300,000 to 4,000,000 and rubber particles having a core-shell structure. Is prepared.
  • the organic solvent useful for preparing the dope can be used without limitation as long as it can dissolve the acrylic resin and other compounds at the same time.
  • the chlorine-based organic solvent is dichloromethane
  • the non-chlorine-based organic solvent is methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2 ,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2 -Methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane and the like can be mentioned.
  • dichloromethane, methyl acetate, ethyl acetate, acetone can be preferably used as the
  • the dope preferably contains a linear or branched aliphatic alcohol having 1 to 4 carbon atoms in the range of 1 to 40% by mass.
  • the web is gelled, which facilitates peeling from the metal endless support.
  • the proportion of alcohol is low, cyclic polyolefin and other polyolefins in a non-chlorine organic solvent system are used. It also has the role of promoting dissolution of the compound.
  • the film is formed using a dope having an alcohol concentration in the range of 0.5 to 15.0% by mass. The method can be applied.
  • a dope composition obtained by dissolving an acrylic resin and other compounds in a total amount of 15 to 45% by mass in a solvent containing dichloromethane and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. Is preferred.
  • linear or branched aliphatic alcohol having 1 to 4 carbon atoms examples include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol and tert-butanol. Of these, methanol and ethanol are preferable because the dope is stable, the boiling point is relatively low, and the drying property is good.
  • the mixing device is a liquid supply pipe for supplying a liquid to a mixing tank for mixing a liquid and a solid substance, and one or more branch pipes into which the liquid is injected, and a branch pipe connected to the branch pipe.
  • the liquid moving direction in the branch pipe is the main pipe radial direction from the communicating position with the branch pipe in the main pipe axial direction.
  • the branch pipes are arranged so as to have an inclination angle therebetween. Introducing from a solid material introducing pipe having such a branch pipe is preferable from the viewpoint of reducing foreign matters.
  • a solution of additives such as a plasticizer, an ultraviolet absorber, a matting agent, and an antioxidant is independently added, preferably from the solid material introducing pipe 5 shown in FIG. Is dissolved or dispersed in the dope to form a dope.
  • the type of pressure vessel used to dissolve the acrylic resin is not particularly limited as long as it can withstand a predetermined pressure and can be heated and stirred under pressure.
  • other instruments such as a pressure gauge and a thermometer are appropriately arranged.
  • Pressurization may be carried out by a method of injecting an inert gas such as nitrogen gas or by increasing the vapor pressure of the solvent by heating. Heating is preferably performed from the outside.
  • a jacket type is preferable because temperature control is easy.
  • the heating temperature with the addition of the solvent is not less than the boiling point of the solvent used, and in the case of a mixed solvent of two or more kinds, the heating temperature is not lower than the boiling point of the solvent having the lower boiling point and the solvent does not boil. Is preferred. If the heating temperature is too high, the required pressure will increase and the productivity will deteriorate.
  • the preferable heating temperature range is 20 to 120° C., more preferably 30 to 100° C., and further preferably 40 to 80° C.
  • the pressure is adjusted so that the solvent does not boil at the set temperature.
  • the order of transferring the raw materials to the melting pot and adding them is preferably such that the powder raw materials, especially the acrylic resin, are added while a certain amount of the organic solvent is in the melting pot.
  • the raw materials having a low specific gravity gather near the liquid surface to generate sprouts, and the melting time becomes long. It is preferable to adjust the charging rate to be 1 to 10%/min.
  • the powder When the powder is added to the charging port, the powder may adhere to each other to form a lump by contact with the vapor of the organic solvent. For this reason, it is preferable to vent during the addition so that the vapor of the organic solvent is guided to another place.
  • Teflon registered trademark
  • the acrylic resin tends not to reach the lower part of the pot due to the difference in specific gravity from the resin, and the organic solvent tends to become rich.
  • the shape of the melting pot is designed so that there is no dead portion, or that the stirring is designed so that convection also flows into the dead portion.
  • the apparatus has a storage tank, a heat exchanger and a circulation path, and the storage tank and the heat exchanger are connected via the circulation path. ..
  • a circulation path means that there is a circulation path between the storage tank and the heat exchanger, and that there is a circulation path between the heat exchanger and the storage tank.
  • the circulation path may be capable of heat exchange, and in some cases, the circulation path also serves as a heat exchanger.
  • the dope may be returned from the dope outlet of the storage tank to the storage tank via the heat exchanger, or may be returned to the storage tank via the heat exchanger from a port other than the dope outlet of the storage tank.
  • two or more dope preparation devices having a circulation path may be connected.
  • additional solvent may be added to the second storage tank.
  • the circulation path has the function of effectively shortening the dissolution time, and also has the ability of complete dissolution.
  • a dissolution container provided with a circulator it takes too much time to attain a dissolved state because it is simply circulated.
  • gel is likely to be generated in the dope, and the time is too short for complete dissolution.
  • the storage tank used in the present invention is preferably a pressure vessel having a jacket inside or outside the tank and having an agitator having a shearing force as described below, in order to make the dope more uniform. Further, a dry film formed by drying the dope is likely to occur on the gas-liquid interface of the dope and the wall surface of the storage tank, and a film failure due to the outflow of the dope is often a problem. In order to prevent this, it is preferable to control the vapor pressure of the organic solvent in the storage tank to bring it into a saturated vapor pressure state. Specifically, it is preferable to introduce a device for spraying the organic solvent in the form of mist into the storage tank and control it so that it operates sufficiently and sufficiently against the saturated vapor pressure.
  • a shearing force of 9.8 to 9.8 ⁇ 10 5 N In the process of mixing and dissolving the acrylic resin and the solvent, it is preferable to apply a shearing force of 9.8 to 9.8 ⁇ 10 5 N and stir. Stirring within the range of the shearing force described above allows powder agglomerates to be formed shortly, and even if it is formed, the powder agglomerates can be crushed and dissolved.
  • the shearing force is less than 9.8 N, the stirring force is weak and the dispersion efficiency is poor, and the dispersion exceeding 9.8 ⁇ 10 5 N becomes too fine, clogging occurs in the subsequent filtration step, and the filtration efficiency is significantly reduced. I will let you.
  • the shearing force can be controlled by the rotation speed of the drive motor M.
  • the acrylic resin After the acrylic resin is melted, it is taken out from the container while cooling, or it is taken out from the container with a pump and cooled with a heat exchanger and the obtained polymer dope is used for film formation. May be cooled to room temperature.
  • the concentration of acrylic resin in the dope is preferably in the range of 10-40% by mass.
  • the water content is 2.0 to 5.0 mass% at the start-up from the production start to the steady operation, and the water content is 0.1 to 2.0 mass% at the steady operation. It is preferable to adjust as described above from the viewpoint of the stability of the dope and the transparency of the film.
  • the water content in the dope is calculated from the total of the water content in the resin and the water content in the alcohol.
  • the ratio is calculated, and the shortage is mixed with a solvent and then mixed as a dope.
  • the line speed is slow at the start-up, if the water content is less than 2.0 mass% with respect to the total amount of the dope, the web is likely to peel off from the endless support before peeling. If the film peels off, it will have to be restarted, and productivity will deteriorate. On the other hand, when the water content is more than 5.0% by mass, the solubility of the acrylic resin in the solvent is deteriorated and the endless support is apt to be soiled.
  • the water content in the dope is calculated from the sum of the water content in the resin and the water content in the alcohol, and the adjusted low water content dope is gradually lowered by flowing it through the line.
  • the dope used in the present invention tends to have a high viscosity of 100,000 Pa ⁇ s as the acrylic has a higher molecular weight.
  • the diameter of the liquid feed pipe is 100 mm or more and the pressure resistance is 20 kg or more.
  • the dissolution and mixing be performed at a temperature of not less than the boiling point of the main solvent and not more than the same boiling point +50°C. In this way, by defining the temperature of the fine particles to be dissolved and mixed in the acrylic resin dissolving step at a temperature not higher than the boiling point of the main solvent +50° C., the foreign matter generation rate can be reliably suppressed in the dope dissolving and mixing step.
  • the fine particles are dissolved and mixed in the acrylic resin dissolving step for a time in the range of 30 to 300 minutes.
  • the time for dissolving and mixing the fine particles in the acrylic resin dissolving step the variation coefficient (distribution) of the fine particles in the acrylic resin film does not deteriorate, and it is preferable from the viewpoint of production suitability such as foreign matter failure.
  • the fine particles to be added in the acrylic resin dissolution step during the addition of the acrylic resin to the dissolution tank or after the addition of the particles before the acrylic resin is completely dissolved in the dissolution tank.
  • the timing of addition of fine particles in the acrylic resin dissolution step the foreign matter generation rate due to the addition of fine particles contained in the acrylic resin solution (dope) can be ensured in the dope dissolution and mixing step. It can be suppressed, the load on the filter in the subsequent filtration step is significantly reduced, no foreign matter is generated, and the productivity is excellent.
  • a fine particle dispersion is prepared in advance, and this fine particle dispersion is added in the step of dissolving the acrylic resin in the main solvent, and after the addition, at a temperature not lower than the boiling point of the main solvent. It is preferable to dissolve and mix.
  • the organic solvent used for forming the acrylic resin film can be used.
  • Alcohols are particularly preferable, and examples thereof include those having 1 to 8 carbon atoms such as methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol and tert-butanol.
  • the concentration of the fine particles is preferably 5 to 30% by mass, more preferably 8 to 25% by mass, and most preferably 10 to 15% by mass.
  • concentration of fine particles in the fine particle dispersion the more the liquid turbidity tends to be low with respect to the added amount, and the haze and the aggregates are improved, which is preferable.
  • the concentration of the fine particles is preferably 0.5 to 20% by mass, more preferably 1 to 5% by mass, and most preferably 1 to 3% by mass.
  • the concentration of the resin is preferably 2 to 10% by mass, more preferably 3 to 7% by mass, and most preferably 4 to 6% by mass. This range is preferable because the dispersibility of fine particles is excellent. Note that the smaller the content of the fine particles, the lower the viscosity and the easier handling, and the larger the content of the fine particles, the smaller the addition amount and the easier the addition to the main dope. Therefore, the above range is preferable.
  • a normal disperser can be used as the disperser for dispersing the fine particles.
  • Dispersers are roughly classified into media dispersers and medialess dispersers.
  • a medialess disperser is preferable because of low haze.
  • the media disperser examples include a ball mill, a sand mill and a dyno mill.
  • the medialess disperser there are an ultrasonic type, a centrifugal type, a high pressure type, and the like.
  • a high pressure dispersing device is preferable.
  • the high-pressure dispersing device is a device that creates special conditions such as high shear and high-pressure state by passing a composition obtained by mixing fine particles and a solvent at high speed through a thin tube. It is preferable that the maximum pressure condition inside the apparatus is 9.8 ⁇ 10 2 N or more in a thin tube having a tube diameter of 1 to 2000 ⁇ m by processing with a high-pressure dispersion apparatus. More preferably, it is 1.96 ⁇ 10 3 N or more. At that time, it is preferable that the maximum reaching speed is 100 m/sec or more and the heat transfer speed is 100 kcal/hr or more.
  • the high-pressure disperser as described above includes an ultrahigh-pressure homogenizer manufactured by Microfluidics Corporation (2 brand name: Microfluidizer) or Nanomizer manufactured by Nanomizer, or Ultra Turrax. Examples include Food Machinery homogenizer, Sanwa Machinery Co., Ltd., product number UHN-01. It is also preferable to dispose a dispersion blade that gives high shear in the dissolution bath and disperse the dispersion in the dope dissolution bath so as to further control the dispersion state of the added dispersion liquid.
  • the content of silica (Si) in the fine particles contained in the acrylic resin film is determined by subjecting the absolutely dried acrylic resin film to pretreatment with a micro digest wet decomposition apparatus (sulfuric acid/nitric acid decomposition) and alkali melting, and then ICP-AES (Inductively coupled plasma optical emission spectroscopy analyzer) can be used for analysis.
  • a micro digest wet decomposition apparatus sulfuric acid/nitric acid decomposition
  • alkali melting alkali melting
  • ICP-AES Inductively coupled plasma optical emission spectroscopy analyzer
  • the same resin as the acrylic resin is dissolved and mixed in the fine particle dispersion added in the acrylic resin dissolving step, and the solid content ratio of the fine particle dispersion is dissolved in the dissolving step. It is preferably 0.1 to 0.5 times the solid content ratio of the acrylic resin solution (dope).
  • the fine particle dispersion liquid contains the acrylic resin in addition to the fine particles, since the viscosity of the dispersion liquid is adjusted and the stagnation stability is excellent.
  • the raw material dope 11 is fed by the liquid feeding pumps P3, P4, P5 through the three dope channels 33, 34, 35 for the intermediate layer, the support surface, and the air surface. .. Then, in the intermediate layer dope channel 33, after the additive liquid 13 stored in the stock tank 36 is added by the liquid feed pump P6, the raw material dope 11 and the additive liquid 13 are added by the in-line mixer 39 and the shear mixer 43. 13 and 13 are mixed with each other to form the intermediate layer dope 16.
  • the raw material dope 11 and the additive liquid 14 are mixed by the in-line mixer 40 and the shear mixer 44 to generate the support surface dope 17, and the air surface dope flow path.
  • the raw material dope 11 and the additive liquid 15 are mixed by the in-line mixer 41 and the shear mixer 45 to generate the air surface dope 18.
  • a diluent for adjusting the TAC concentration of the dope may be added to the dope channels 34 and 35 for the support surface and the air surface.
  • the dope is prepared by filtering the dope with a filter having a filtration accuracy in the range of 5 to 100 ⁇ m.
  • the filtration of the acrylic resin solution (dope) is preferable because the gel-like foreign matter in the dope can be removed by filtering the dope at a temperature equal to or higher than the boiling point of the main solvent at 1 atm.
  • the preferred temperature range is 40 to 120° C., more preferably 45 to 70° C., and even more preferably 45 to 60° C.
  • the method for producing an optical film described in JP 2012-56103 A is also preferably used.
  • the dope is filtered, for example, with a filter medium having a 90% trapped particle size of 10 to 100 times the average particle size of the fine particles.
  • FIG. 2 shows an example of the flow of filtration.
  • a solution (dope) in which an acrylic resin is dissolved is temporarily stored in a stationary tank (stock tank) 103 from a melting pot (not shown).
  • a pump 105 and an opening/closing valve 113 are provided on the way of the dope flow pipe 104 from the stationary tank 103 to the main filtration device 100, and a solvent injection pipe from the dilution solvent tank 106 is provided downstream of the opening/closing valve 113. 107 is connected.
  • An opening/closing valve 115 is interposed in the dope flow pipe 104 on the outlet side of the main filtration device 100.
  • the opening/closing valve 113 on the way of the dope flow pipe 104 is opened, and the opening/closing valve 115 on the outlet side of the main filtration device 100 on the way of the dope flow pipe 104 is closed.
  • the opening/closing valve 114 of the solvent injection pipe 107 is opened to dilute.
  • the solvent is injected from the solvent tank 106 for use in casting, and the dope having a predetermined high viscosity for casting is diluted with the solvent to reduce the viscosity to, for example, 1 to 9 Pa ⁇ s.
  • the dope having a reduced viscosity is injected into the main filtration device 100 as described above, the low-viscosity dope is easily permeated into the filter medium and can spread to every corner of the filter medium to expel air bubbles inside the filter medium.
  • the opening/closing valve 114 of the solvent injection pipe 107 is closed.
  • the main filtration device 100 including the filter medium in which the initial filling is completed and the bubbles are expelled is used, and the stationary tank is used.
  • the dope having a predetermined high viscosity for casting which is sent from the 103 through the pump 105 by the operation of the pump 105, is passed through the main filtration device 100 and then supplied from the sending pipe 104 to the casting die 110.
  • the dope is cast from the feed pipe 104 onto the endless support 111 to perform casting film formation.
  • the filter medium of the main filtration device 100 is preferably filter paper.
  • this filter paper By using this filter paper, only aggregates such as fine particles that cause foreign matter can be removed and the high-viscosity main dope can be continuously filtered. The film can be formed and the productivity is improved.
  • the filter of the present invention used in the main filtration device 100 needs to have a filtration accuracy in the range of 5 to 100 ⁇ m. Since the acrylic resin according to the present invention has a high molecular weight of 300,000 to 4,000,000, the dope has a high viscosity. If high-precision filtration of less than 5 ⁇ m is attempted for a high-viscosity dope, the filtration pressure rises, and local coagulation or high-viscosity components are forced to pass through, making filtration impossible. If the dope is cast in the state of coagulation or a locally high-viscosity component, non-uniformity of the cast film based on the local viscosity distribution is brought about, which is not preferable.
  • the filtration accuracy in the present invention refers to the value of the minimum particle size that can collect 99.9% or more of the particle size distribution of particles.
  • a filtration accuracy of 5 ⁇ m means that 99.9% of monodisperse particles of 5 ⁇ m are collected and less than 99.9% of monodisperse particles of less than 5 ⁇ m are collected, and monodisperse particles of more than 5 ⁇ m are collected.
  • the collection rate is higher than 99.9%.
  • it is a value having a certain width practically, and a filter of 4.5 ⁇ m in actual measurement of filtration accuracy is also nominally called 5 ⁇ m.
  • a value rounded to the nearest 1 ⁇ m is adopted.
  • the filter of the present invention preferably has a multi-stage structure. In that case, the filter that obtains the effect of the present invention refers to the filter with the highest precision (the lowest numerical value of filtration precision).
  • the drainage time of the filter medium of the main filtration device 100 is preferably 10 to 25 sec/100 ml, more preferably 10 to 20 sec/100 ml, and most preferably 12 to 17 sec/100 ml.
  • the strength of the filter medium such as the filter paper is weak, and the filter paper opens due to the pressure, increasing foreign matter failure.
  • the drainage time of the filter medium becomes longer than 25 sec/100 ml, the initial pressure becomes high, the filtration resistance becomes too high, and high flow rate filtration cannot be continuously carried out. Therefore, the filter life becomes short. Therefore, it is not preferable.
  • the filtration time is measured according to JIS P 3801, and a Hertzberg filtration rate tester is used, and 20 ml of distilled water at 20° C. and a pressure of 0.98 kPa are applied on a filtration surface of 10 cm 2. It means the time for filtering.
  • the particle size of the filter paper and the drainage time of the filter paper of the main filtration device 100 are selected by the fiber thickness of the filter paper, the selection of the fiber material such as the material (cotton linter, wood pulp, rayon, polyester fiber, etc.) and the beating machine.
  • the beating degree, the addition of filler, and the like can be arbitrarily adjusted by the method for producing the filter paper.
  • a single filter paper of the main filtration device 100 is effective, but it is more preferable to use two to seven filter papers in piles because the filtration efficiency becomes high.
  • the same filter paper may be combined, or a filter paper having a small retained particle size may be combined inside.
  • a guard filter paper for removing large dust on the outside.
  • the guard filter paper has a large collection particle size of 20 ⁇ m or more, and a filter paper such as soft cotton can remove large dust without affecting the filtration pressure, and can prevent liquid leakage of the main filtration device 100, which is preferable.
  • Two-stage filtration in which the main dope that has been filtered once is filtered again is also preferable because it has a large effect of removing aggregates.
  • an acrylic resin film with less foam failure can be obtained by filtering with a filter paper having a drainage time of 10 to 25 sec/100 ml. Is preferably filtered at 16 kg/cm 2 or less to form a film.
  • the filtration pressure is more preferably 12 kg/cm 2 or less, and further preferably the filtration pressure is 10 kg/cm 2 or less.
  • the filtration pressure can be controlled by appropriately selecting the filtration flow rate and filtration area.
  • the filtration filters used in the filtration process can be broadly classified into two types, surface type and depth type, depending on the media structure.
  • the surface type is a type in which the media passing through the substance to be filtered has a short distance, and the size of particles that can be removed is determined by the opening of the surface.
  • the surface-type filter is used for a long time, gel-like aggregates contact each other on the surface, grow into larger aggregates, and pass through the filter due to a pressure increase, so the aggregates cannot be removed and increase. I have a concern that
  • Examples of the surface type include filter paper pleated cartridge filter TC type manufactured by Advantech Toyo Co., Ltd. and metal mesh used for sieving.
  • the depth type filter is also called deep layer filtration or volumetric filtration, and has a certain amount of media thickness.
  • This type of filter has a lower possibility of agglomerates contacting each other in the filter part than the surface type, it is difficult to generate large gel-like agglomerates, pressure rise is small even when used for a long time, and gel It is preferable because the granular aggregate can be removed.
  • depth type for example, Advantech Toyo Co., Ltd. wind cartridge filter TCW type, depth cartridge filter TCPD type, Nippon Seisen Co., Ltd. fine pore NF series, etc. can be mentioned.
  • the additive liquids added in-line are filtered with at least two types of depth filters having different pore diameters because it is possible to effectively filter various aggregates having different sizes. Less preferred.
  • These filters are filters having a particle collection rate of 5 to 10 ⁇ m of 20 to 60% when 8 kinds of 0.5 ppm aqueous dispersions of the test powder 1 specified in JIS Z 8901 are filtered.
  • the additive liquid is added in-line after being filtered with these filters.
  • the particle collection rate is more preferably 30 to 50%. It is preferable that the particle collection rate is small so that the aggregation does not grow, and that the particle collection rate is large is preferable in that the aggregation is removed.
  • As the particle collection rate of 20 to 60% for example, Advantech Toyo Co., Ltd. wind cartridge filters TCW-1N, 3N, 5N, 10N, 25N, 50N, pleated cartridge filter TCPE-10, 30 etc. Are listed.
  • Examples of the particle collection rate of 30 to 50% include Wind Cartridge Filters TCW-3N, 5N, 10N and 25N manufactured by Advantech Toyo Co., Ltd.
  • Further filtering with a filter having a large particle collection rate removes the aggregation without causing the aggregation to grow. Is most preferable.
  • the particle collection rate is defined as follows.
  • Particle collection rate (%) (number in stock solution ⁇ number in filtrate)/(number in stock solution) ⁇ 100
  • the depth type filter is preferable for the above reason.
  • the filter is divided into a membrane type and a bobbin type depending on the filter material structure.
  • the membrane type is a type that has many holes with a certain size and distribution in the filter medium, and when several filter media with holes with the same size and distribution are stacked, it becomes a membrane type surface type filter, and the outside From the core to the core, a filter of the membrane type and depth type can be obtained by making several filter media in which the size of the holes of the filter media is gradually reduced to a certain thickness (10 to 20 mm).
  • the membrane type for example, a membrane cartridge filter TCF type manufactured by Advantech Toyo Co., Ltd., a pleated cartridge filter TCPE type and the like can be mentioned.
  • the wound type uses endless fibers with a certain gap in the filter medium without twisting long fibers such as polypropylene, and winds it around the core at a constant density. If it is wound without winding, it becomes a surface type, and if it is made finer in the core direction such as changing the voids of the filter medium or giving a density gradient, it becomes a depth type filter.
  • the thread winding type include a wind cartridge filter TCW type manufactured by Advantech Toyo Co., Ltd. (a core is a hollow core around which a filter material thread or a membrane is wound).
  • the main dope may be cast as it is, but various additives may be added in-line to the main dope and mixed and cast depending on the purpose. Since the coagulation contained in the in-line additive liquid is a gel form of secondary and tertiary coagulation, the coagulation (material) is likely to come off in the membrane type filter medium, and the wound type has a better cohesive force of the coagulation (material). preferable.
  • the depth type filter is preferable for the above reason.
  • the filter material of the filter is polypropylene from the viewpoint of solvent resistance.
  • the core material of the filter is preferably polypropylene or stainless steel, and more preferably stainless steel. Stainless steel is preferred because the core does not easily swell with the solvent even after long-term use and aggregates do not come out from the tightening part.
  • the additive is added inline to the main dope. It is preferable.
  • the effect of removing the agglomerates is improved by providing the filter with a certain number of times. However, if the amount is too large, the effect is reduced relative to the number of steps, so the number of times of filtration is preferably 3 to 10 times.
  • the method for producing an acrylic resin film of the present invention it is preferable to filter with a metal filter having an absolute filtration accuracy of 30 to 60 ⁇ m immediately before mixing the additive liquid with the main dope with the in-line mixer (in the step immediately before).
  • a metal filter having an absolute filtration accuracy of 30 to 60 ⁇ m immediately before mixing the additive liquid with the main dope with the in-line mixer (in the step immediately before).
  • Immediately before means, in terms of process, that there is a filtration step immediately before, and from the flow, immediately after filtration, there is no stagnation of the added liquid, for example, a stock tank or liquid feed pump. It means that it is sent to the in-line mixer without going through it and mixed with the main dope. As a result, it is preferable that the liquid does not become stagnant and a new agglomerate is not generated by the liquid feed pump.
  • filters are placed immediately before the in-line mixer, and for example, large aggregates generated from the route due to filter replacement etc. are reliably filtered from the additive liquid being fed, and relatively large foreign substances can be reliably removed by one filtration.
  • a metal filter having solvent resistance and capable of being used for a long period of time and having the above-mentioned absolute filtration accuracy is preferable.
  • the metal is preferably stainless steel from the viewpoint of durability.
  • the filter provided immediately before in-line addition is preferably a metal filter with an absolute filtration accuracy of 30 to 60 ⁇ m, more preferably 40 to 50 ⁇ m. It is preferable that the absolute filtration accuracy is small because the ability to remove agglomerates is excellent, and the larger absolute filtration accuracy is that the increase in differential pressure is small even after long-term use, the frequency of filter replacement can be reduced, and productivity is excellent.
  • a liquid feed pump for example, a pressurization type quantitative gear pump
  • it is a step of casting the dope from a pressure die slit at a casting position on an endless support such as a stainless belt or a rotating metal drum.
  • the dope is preferably fed to the die at 50 to 2000 L/hr in order to suppress the occurrence of film thickness deviation due to flow rate fluctuation.
  • a method for casting a solution a method in which the prepared dope is uniformly extruded from a pressure die onto a metal endless support, and a dope once cast onto a metal endless support is used to form a film thickness with a blade.
  • a method using a doctor blade for adjustment or a method using a reverse roll coater for adjusting with a counter-rotating roll a method using a pressure die is preferable.
  • the pressure die includes a coat hanger type, a T-die type and the like, and any of them can be preferably used.
  • the endless metal endless support used for manufacturing the acrylic resin film according to the present invention includes a drum whose surface is mirror-finished by chrome plating and a stainless belt (band which is mirror-finished by surface polishing). Can be said) is used.
  • the metallic endless support has a surface energy of the surface of the endless support which is in contact with both widthwise end portions of the dope casting film, and the surface of the endless support which is in contact with the widthwise central portion of the dope casting film. It is preferable to perform activation treatment on the surface of the endless support so that the surface energy is higher than the surface energy of the ear from the viewpoint of suppressing fluttering of the ears.
  • the activation treatment is preferably performed by atmospheric pressure plasma irradiation or excimer UV irradiation, and after the activation treatment, the surface energy of the surface of the endless support in contact with both widthwise ends of the casting film.
  • ⁇ se the surface energy of the surface of the endless support in contact with the center of the casting film in the width direction
  • the width is preferably in the range of 0.05 to 0.25 Wr, where Wr is the width of the casting film.
  • the surface energy of the endless support can be calculated by measuring the contact angle with water, nitromethane and methylene iodide and using the Young Forks equation from these values. Specifically, it can be measured using a contact angle meter manufactured by Kyowa Interface Science Co., Ltd.
  • the endless support in which a hydrophobizing layer having a water contact angle of 90° or more is formed in the casting film forming area on the endless support is used, and the casting film is formed on the hydrophobizing layer. It is preferably formed.
  • the hydrophobized layer is made of a hydrophobic substance
  • the endless support is made of a cooling drum, and the casting film is peeled off by self-supporting property by cooling gelation.
  • the hydrophobic substance is preferably PTFE or PP.
  • the surface of the metal endless support is coated with iron.
  • the anchor effect prevents the releasability (peelability) of the web from significantly deteriorating.
  • the corrosion resistance is not so different from that of the untreated one, and the difference in the treatment is partly large. It is not preferable because it becomes uneven as the corrosion progresses. Further, when the (Fe 2 O 3 +FeO)/Fe ratio exceeds 50, when something touches the surface and scratches the surface, it becomes difficult to perform polishing to restore a smooth surface. Therefore, it is not preferable.
  • a liquid containing at least one organic compound contained in the dope is supplied between the endless support and the casting film to form a casting film. It is also preferable to form an intervening film with the endless support.
  • an intervening film forming device 140 is provided in the vicinity of the casting die 130, and is interposed on the surface of the casting bead 161 which is the flow of the ribbon-shaped dope 160 from the casting die 130 on the endless support side.
  • the film forming liquid 162 is supplied.
  • the intervening film forming apparatus 140 has a tank (not shown) that stores the intervening film forming liquid 162, a flow path 140a for this liquid, and a supply port 140b. At the time of casting the dope 160, an appropriate amount of intervening film forming liquid 162 is supplied from the supply port 140b so as to extend along the entire width region of the casting bead 161 on the endless support surface side. Thereby, even if the film forming speed is increased, the occurrence of the air entrainment phenomenon in the casting bead 161 can be further prevented.
  • the casting beads 161 and the intervening film forming liquid 162 reach the casting drum 150, the casting film 170 is formed on the casting drum 150 via the interposition film 163. Thus, the presence of the intervening film 163 between the casting drum 150 and the casting film 170 can prevent the occurrence of the air entrainment phenomenon.
  • the intervening film forming liquid 162 is a liquid containing at least one organic compound (solvent) contained in the dope 160, and is a mixture of the above raw material solvent and a poor solvent which is not compatible with the polymer contained in the dope 160. It is preferable to prepare it.
  • the intervening film 163 formed between the casting drum 150 and the casting film 170 by such an intervening film forming liquid 162 diffuses toward the casting film 170 over time. Accordingly, the adhesion between the casting drum 150 and the casting film 170 does not become too high, so that the casting film 170 can be easily peeled from the casting drum even with a small peeling stress.
  • the ratio of the solvent contained in the intervening film forming liquid 162 is w (%) and the film thickness of the intervening film 163 is t ( ⁇ m) regardless of the good solvent or the poor solvent, w and t are t It is preferable to satisfy ⁇ -0.05w+15. This makes it possible to form the intervening film 163 that acts so as to easily peel off the casting film 170 from the casting drum 150. However, if the intervening film 163 is too thick, the casting film 170 and the intervening film 163 are less likely to diffuse, and the intervening film 163 may remain on the casting drum 150. If the intervening film 163 remains on the casting drum 150 in this way, it also adversely affects the subsequent casting and is not suitable because only a film having a poor surface condition can be produced.
  • the installation location of the intervening film forming apparatus 140 is not limited to the form shown in FIG.
  • the dope In order to increase the production rate of the film, it eliminates foaming caused by entrainment of entrained air, reduces film thickness unevenness due to vibration of the casting liquid film from the casting die due to decompression chamber suction air, and dissolves the scale that is dripped.
  • the dope In order to obtain a film with excellent flatness without transfer failure due to droplet scattering of the excess liquid of the liquid, the dope is cast on a metal endless support, and a casting film (web) is applied on the endless support. ) Is formed, a downward pressure chamber is provided as a means for reducing the pressure from the casting upstream side so that the web is formed in close contact with the endless support, and when the dope is flowed down from the casting die.
  • a scale dissolution liquid is dropped under the scale dissolution droplet.
  • Means are preferably provided outside the left and right side walls and the rear wall of the decompression chamber having the main decompression chamber, and outside the left and right side parts and the rear part of the decompression chamber, there are provided outer walls at predetermined intervals.
  • a sub decompression chamber that opens downward is formed in advance so that the decompression force of the sub decompression chamber is larger than the decompression force of the main decompression chamber in the range of ⁇ 30 to ⁇ 300 Pa.
  • the gaps between the left and right side walls and the rear wall of the decompression chamber having the main decompression chamber and the left and right outer side walls and the rear outer wall of the sub decompression chamber facing these are 10 to 300 mm.
  • the wall surface other than the surface of the decompression chamber other than the surface in contact with the casting die is doubled to form a sub decompression chamber, and the decompression force of the sub decompression chamber outside the decompression chamber is made larger than the decompression force of the main decompression chamber inside the decompression chamber. Then, by strongly sucking, the flow of suction air from the side surface to the casting liquid film in the discharge direction of the casting liquid film is blocked, and even if the production speed of the film is increased, the entrainment air is In addition to being able to eliminate foaming due to entrainment, the stability of the casting liquid film is improved even when the pressure drop rate is increased due to the increase in the dope discharge speed that accompanies the high-speed film formation. It is possible to reduce unevenness in film thickness in the film transport direction due to vibration of the film, and it is possible to produce a film having good smoothness.
  • the excess solution of the scale solution dropped from the scale solution droplet lowering means to the widthwise both ends of the web at the casting die edge during film formation can be sucked and recovered toward the sub decompression chamber.
  • the decompression chamber is a so-called decompression chamber.
  • the inside and outside are doubled and the entrained air is relatively strongly sucked from the auxiliary decompression chamber with a predetermined gap on the outside of the decompression chamber by a decompression force larger than the decompression force of the main decompression chamber on the inside of the decompression chamber, so that the casting is performed.
  • the suction air from the side surface to the liquid film edge can be reduced, stable casting is realized, and the excess solution of the scale solution blown off from the casting die edge (left and right ends) is supported. There is an effect that it can be collected in the sub decompression chamber having a strong suction force (decompression force) from the outside, and a high-quality film can be stably produced at a high production rate for a long period of time.
  • the gas concentration near the casting dope of the decompression chamber is 80% or less.
  • the concentration of gas mainly volatile organic solvent vaporized
  • the gas component reaches the desired concentration
  • the concentration of gas mainly volatile organic solvent vaporized
  • the gas component may liquefy, and the liquefied solvent is cast. It may adhere to the beads and make the casting film defective.
  • the pressure is reduced on the endless support contact surface (hereinafter referred to as the casting bead back surface) side of the casting bead
  • the formation of the casting bead is stable, but in this case, the gas is easily liquefied.
  • the liquefied solvent may adhere to the casting film, or may adhere to the decompression chamber to cause non-uniform decompression.
  • lateral unevenness a surface defect of the manufactured film causes optical unevenness or unevenness in the width direction of the film
  • the gas concentration is set to 80% or less, it is possible to prevent the gas component from liquefying and prevent the gas component from liquefying and causing a failure to adhere to the casting bead.
  • the film obtained by the above method the occurrence of optical unevenness and horizontal unevenness is suppressed.
  • the degree of pressure reduction in the pressure reducing chamber be within a range of -1500 to -200 Pa with respect to atmospheric pressure.
  • the discharge speed of the dope is preferably in the range of 7 to 40 m/min.
  • the proportion of vapor contained in the solvent gas component is preferably in the range of 5 to 65% by volume, and the solvent is preferably dichloromethane. Further, the solvent is a mixture containing a compound containing the largest amount of dichloromethane and dissolving or dispersing the polymer, and the proportion of dichloromethane gas contained in the vapor is preferably 80% by volume or more.
  • the mechanism for spraying the solvent gas the one described in JP2013-156488A is preferably used.
  • a decompression chamber having a plurality of decompression chambers as the decompression chamber from the viewpoint that the entrained air is prevented from being applied to the casting bead and the uneven thickness of the film can be suppressed.
  • a decompression chamber having a plurality of decompression chambers for decompressing the contact surface side of the endless support of the casting bead is used, and the gap between the decompression chamber and the endless support is set to a range of 0.05 mm or more and 3 mm or less, Among the plurality of decompression chambers capable of independently adjusting the decompression degree, the decompression chamber on the upstream side in the moving direction of the endless support can have a decompression degree lower than that on the downstream side. preferable.
  • the gap between the vacuum chamber and the endless support is more preferably in the range of 0.05 to 0.7 mm, and most preferably in the range of 0.05 to 0.5 mm.
  • the pressure of each decompression chamber should be in the range of 0.9 x Pn (Pa) or more and 1 x Pn (Pa) or less. Is more preferable, and it is more preferable to adjust to a range of 0.98 ⁇ Pn (Pa) or more and 1 ⁇ Pn (Pa) or less.
  • the number of the decompression chambers is preferably 2 or more and 10 or less, and each decompression chamber is preferably provided with an exhaust port.
  • a solvent gas onto the upper part of the casting die and send the solvent gas to the slit outlet while following the surface of the casting die.
  • the lower part of the blower unit is provided with a nozzle having a slit-like blower port formed long in the width direction of the casting bead.
  • the blower unit is installed downstream of the casting die in the running direction of the endless support and above the endless support.
  • the lower part of the blower unit is provided with a nozzle having a slit-shaped blower port formed long in the width direction of the casting bead, from the blower port to the slit outlet, and in the entire widthwise region of the casting bead.
  • the solvent gas containing the vapor of the solvent used for the preparation of the dope is sent toward the slit, and the solvent gas is maintained at a high concentration in the vicinity of the slit outlet so as not to liquefy the solvent gas.
  • dichloromethane is used as the solvent for preparing the dope, the solvent gas containing the vaporized dichloromethane is sent to the vicinity of the slit outlet.
  • the solvent gas shall contain vapor in the range of 5 to 65% by volume. It is more preferably in the range of 20 to 65% by volume, and particularly preferably in the range of 40 to 65% by volume.
  • the solvent gas concentration in the vicinity of the casting bead is maintained high in this way, the drying of the casting bead is prevented. Therefore, the dope is solidified in the vicinity of the exit of the slit to become a foreign substance and is prevented from adhering to the film. Therefore, it is possible to manufacture a film excellent in surface condition without streak failure or the like.
  • the solvent when casting a dope on a metal endless support in a method for producing a film by a solution casting method by a casting die, the solvent is allowed to flow down to both ends of the slit of the casting die, and the solvent is
  • the inner diameter of the tip of the nozzle on both sides of the casting die is 4 mm or less and 0.5 mm or more, and the solvation parameter (- ⁇ HD-BF3) of the solvent is 15 [kJ/mol] or more and 100 [kJ/mol]. ]
  • the following is preferable.
  • the solvation parameter is P. C. Maria, J.M. F. Gal, J Phys. Chem. 89, 1296 (1985), and P. C. Maria, J.M. F. Gal, J.; de Franceschi, E. Fargin, J.; Am. Chem. Soc. , 109, 483 (1987), the standard molar enthalpy [kJ/mol] (- ⁇ HD-BF3) in the 1:1 complex formation between a gaseous BF3 and a donor molecule in a dichloromethane solvent.
  • methyl acetate as the solvent flowing down the nozzles on both sides of the casting die. That is, according to the method for producing an acrylic resin film of the present invention, when a solvent having a large solvation parameter is used, the solubility in the acrylic resin is reduced, but the occurrence of Kawaburari can be suppressed. Although this factor is not clear, it can be presumed that such a phenomenon may occur because the swelling and dissolution states of the acrylic resin differ depending on the value of the solvation parameter.
  • the metal endless support surface on a metal endless support, before casting the dope or the resin melt, the metal endless support surface, atmospheric pressure plasma irradiation or excimer UV irradiation
  • the surface treatment is preferably carried out by
  • the integrated time of the atmospheric pressure plasma irradiation processing or the excimer ultraviolet irradiation processing is 0.1 to 3000 seconds, preferably 0.5 to 500 seconds.
  • the integrated time of the atmospheric pressure plasma irradiation treatment or the excimer ultraviolet irradiation treatment is less than 0.1 sec, the surface is not sufficiently modified and the corrosion resistance of the surface is not improved, which is not preferable. Further, if the integrated time of the atmospheric pressure plasma irradiation treatment or the excimer ultraviolet irradiation treatment exceeds 3000 sec, the surface is roughened and roughened, which is not preferable.
  • a high-energy surface treatment is performed by a high-energy irradiation device (A) consisting of an atmospheric pressure plasma device and an excimer ultraviolet device, and the surface of an endless support made of metal rather than a surface oxide film naturally formed in the atmosphere.
  • A high-energy irradiation device
  • the pressure die used in the method for producing an acrylic resin film of the present invention may be one unit or two or more units installed above a metal endless support. It is preferably one or two. When two or more units are installed, the amount of dope to be cast may be divided into various proportions in each die, or the dope may be fed to the dies from a plurality of precision metering gear pumps in respective proportions.
  • the temperature of the acrylic resin solution used for casting is preferably -10 to 55°C, more preferably 25 to 50°C. In that case, all of the steps may be the same or may be different at different points in the step. If different, the temperature may be a desired temperature immediately before casting.
  • the cast width can be in the range of 1 to 4 m, preferably in the range of 1.5 to 3 m, and more preferably in the range of 2 to 2.8 m.
  • the surface temperature of the metal endless support in the casting step is set in the range of -50°C to a temperature at which the solvent does not boil and foam, more preferably -30 to 100°C. A higher temperature is preferable because the drying speed of the web can be increased, but if the temperature is too high, the web may foam or the flatness may deteriorate.
  • the preferable temperature of the endless support is appropriately determined in the range of 0 to 100° C., more preferably in the range of 5 to 30° C.
  • the web is gelated by cooling and peeled from the drum in a state of containing a large amount of residual solvent.
  • the method of controlling the temperature of the metal endless support is not particularly limited, but there are a method of blowing hot air or cold air and a method of bringing hot water into contact with the back side of the metal endless support. It is preferable to use warm water because the heat can be efficiently transferred, so that the time until the temperature of the metal endless support becomes constant is short.
  • hot air in consideration of the temperature decrease of the web due to the latent heat of evaporation of the solvent, while using hot air above the boiling point of the solvent, while preventing foaming, there may be a case where the air temperature is higher than the target temperature. ..
  • the casting die is preferably a pressure die that can adjust the slit shape of the die base and makes the film thickness uniform.
  • the pressure die includes a coat hanger die, a T-die, and the like. Even if two or more pressure dies are provided on a metal endless support in order to increase the film formation speed, the dope amount may be divided and laminated. Good.
  • Edge failure called kawabari may occur during solution casting, but the cause of this failure is due to minute defects at the tip of the die.
  • the die defects include minute scratches and dents that are associated with die manufacturing and maintenance, and scratches that occur during grinding with a grindstone.
  • the hardness represented by Hv is a value obtained by using a diamond pyramid having an apex angle of 136° as an indenter, reading the length of the diagonal line of the generated indentation, and dividing the load by the surface area of the depression. ..
  • the surface irregularity of the lip tip and the corners between the slot surface and the flat end surface that intersects the slot surface are formed into a curved surface with a substantially arcuate shape, and the curvature is It was found that the radius of curvature of the surface was small and the solvent wettability was required to be good, and it was possible to prevent the burrs at the tip of the lip and improve the streak defect.
  • the corner between the slot surface and the flat end surface intersecting the slot surface is formed into a curved surface with a substantially arcuate cross section, and the radius of curvature R of this curved surface is 5 to 50 ⁇ m. It is preferable to set it as the range.
  • the parallelism between the boundary line between the curved surface, the slot surface and the flat end surface and the line connecting the centers of curvature of the curved surfaces is within the range of 1.5 to 15 ⁇ m per 1 m in the longitudinal direction of the slot.
  • the parallelism between the boundary line between the curved surface, the slot surface and the flat end surface of the tip and the line connecting the centers of curvature of the curved surfaces is 0 m of the radius of curvature R per 1 m in the longitudinal direction of the slot. It is preferably not more than 3 times.
  • the parallelism between the boundary line between the curved surface, the slot surface and the flat end surface of the tip and the line connecting the centers of curvature of the curved surfaces is within the range of 0.5 to 5 ⁇ m per 1 mm in the longitudinal direction of the slot. Is preferred. Furthermore, the parallelism between the boundary line between the curved surface, the slot surface, and the flat end surface of the tip, and the line connecting the centers of curvature of the curved surfaces is 0 mm of the radius of curvature R per 1 mm in the longitudinal direction of the slot. It is preferably less than 1 time.
  • the surface roughness of the die tip is Ra
  • the surface roughness Ra in the longitudinal direction of the slot and the direction orthogonal to the longitudinal direction is preferably in the range of 0.01 to 3 ⁇ m.
  • the rotating roller of the metal endless support from the first rotating roller whose surface temperature is -30°C to 6°C, The casting film directed to the second rotating roller is dried by dry air, the casting film is conveyed from the second rotating roller to the first rotating roller, and then peeled off at a peeling position where the dew point is 0° C. or lower.
  • the first rotating roller and the cooling means provided upstream of the peeling position cool the casting film on the belt toward the first rotating roller, and the cooling section to the peeling position is adjusted at the position of the cooling means.
  • the temperature of the cast film to be stripped off is preferably lower than 6° C., and the cooling roller as the cooling means is brought into contact with the belt surface opposite to the belt surface on which the cast film is formed.
  • the cooling roller as the cooling means is brought into contact with the belt surface opposite to the belt surface on which the cast film is formed.
  • the dew point at the peeling position is 0° C. or lower by adjusting the temperature inside the casting chamber accommodating the first rotating roller and the second rotating roller.
  • the solvent content on the dry basis at the peeling position of the casting film is in the range of 10 to 200% by mass. That is, since the dew point of the casting film in the vicinity of the peeling position is 0° C. or less, dew condensation is prevented and water is prevented from adhering to the casting film. This will prevent fogging on the surface of the produced film.
  • both the roughening zones overlap the casting width of the dope from the die by 5 to 30 mm, and the average roughness Rz of the roughening zones is in the range of 0.5 to 2 ⁇ m.
  • the width is a width from 5 to 30 mm inside the dope film to both ends of the endless support so that the casting position may be slightly shifted in the width direction. If the average roughness Rz of the roughened zone is smaller than 0.5 ⁇ m, there is no roughening effect, and the adhesion is too strong and peeling is difficult. Adhesion is easy and peeling is difficult.
  • the preferable range of Rz is 0.8 to 1.5 ⁇ m.
  • the wind shield member may be provided in parallel with the side edge of the casting membrane in the range of 20 to 100 mm, more preferably 20 to 80 mm, from the side edge to the center side.
  • the gap between the wind shielding member and the casting film is preferably in the range of 5 to 30 mm, more preferably 5 to 15 mm.
  • the cool air is blown by a blower duct, and the blower port of the blower duct is provided parallel to the side edge of the casting membrane in the range of 20 to 100 mm from the side edge to the center side, It is advisable to set the gap between the casting film and the casting film to be in the range of 5 to 30 mm and to blow the cold air so that the cold air has an intersecting angle of 45 to 90°, more preferably 60 to 80°.
  • the cold air has a dew point of ⁇ 2° C. or lower and a temperature in the range of 15 to 60° C., and the cool air is preferably blown at a wind speed of 1 to 10 m/sec.
  • the initial drying in which the surface of the casting film immediately after being formed on the endless support is dried using a drying device.
  • the initial drying can effectively promote the evaporation of the solvent from the casting film.
  • the drying temperature exceeds the boiling point of the solvent contained in the casting film on the endless support, the solvent causes foaming inside the casting film.
  • the drying air adjusted to a predetermined temperature is sent out for drying, the drying air causes oblique unevenness and unevenness of the film thickness (unevenness) on the surface of the casting film.
  • uneven unevenness oblique unevenness or thickness unevenness (generally referred to as uneven unevenness) or foaming as described above occurs on the surface of the casting film
  • uneven unevenness oblique unevenness or thickness unevenness (generally referred to as uneven unevenness) or foaming as described above occurs on the surface of the casting film
  • uneven unevenness thickness unevenness
  • foaming as described above the flatness of the casting film is significantly reduced. Therefore, only a film having poor flatness can be produced from such a casting film.
  • the temperature (° C.) is within the range of 30 to 160° C. from the first air blower provided so as to face the metal endless support and having the width direction of the metal endless support as the longitudinal direction.
  • a partition member is provided inside the first blower port to divide the endless support into at least three areas in a direction parallel to the traveling direction.
  • An air volume control member is provided in a section located above both ends of the casting membrane in the first air outlet section to adjust the air volume of the dry air to be sent in the width direction of the endless support. Is preferred.
  • the first drying treatment while the residual solvent amount of the casting film is up to 250% by mass, and the temperature (°C) from the second blowing port is substantially constant within the range of 30 to 160°C.
  • the dry air adjusted so that the wind speed (m/sec) is substantially constant within the range of 5 to 20 m/sec can be sent out in parallel with the running direction of the endless support. preferable.
  • the air layer side surface of the casting film is rapidly cooled by the latent heat of vaporization, and a temperature gradient is applied in the layer direction of the casting film between the temperature-controlled belt side contact surface, So-called Benard convection occurs depending on the environment. For this reason, the uniformity of the film thickness may be impaired due to the difference in the drying speed in the regular pattern on the film surface.
  • a cooling body in a specific temperature range is provided on the surface opposite to the dope film separation side of the moving endless support that is in contact during separation.
  • the peelability is improved, and good peeling from the endless support is possible. That is, the residual solvent amount when stripping the casting film is controlled to 100% by mass or less, and in the region where the casting film is stripped from the endless support, the casting film peeling side of the endless support is It is preferable to bring a cooling body having a surface temperature of 10° C. or less into contact with the opposite surface.
  • the amount of residual solvent is preferably controlled to 55% or less, and the surface temperature of the cooling body is preferably ⁇ 5° C. or less.
  • the cooling body also serves as a roller that can rotate the moving endless support.
  • the surface temperature by cooling with a brilliantler using an antifreeze is 10° C. or lower (upper limit is preferably 5° C. or lower, more preferably 0° C. or lower, particularly It is preferably ⁇ 5° C. or lower).
  • the surface temperature of the cooling body is preferably ⁇ 25 to 5° C., more preferably ⁇ 25 to 0° C., and particularly preferably ⁇ 20 to 0° C.
  • the temperature of the entire metallic endless support is ⁇ 50 to 10° C., and the cooling rate from the time when the acrylic resin resin solution is cast onto the metallic endless support to the time when it is peeled off. Is expressed as (temperature difference/hour), it is preferably 3 to 5 (° C./sec).
  • the poor solvent ratio in the dope is adjusted to a range of 2 to 20% by mass.
  • a plurality of acrylic resin dope supply ports are provided at the upper end of the casting die, and the dope is supplied into the manifold of the casting die from the plurality of supply ports.
  • the lip clearance of the casting die is narrowed to increase the shear at the discharge part, and the locally high concentration (high viscosity) part of the dope that causes stick-slip is mixed. It is possible to suppress the occurrence of circular deformation.
  • the stick-slip itself becomes weaker by reducing the viscosity of the dope forming the outer layer (surface layer, air surface layer and/or back surface layer, endless support surface layer) Deformation will not occur. Furthermore, there is a predetermined correlation between the lip clearance and the dope viscosity for forming the outer layer.
  • the multilayer film at a temperature T1 (° C.) at the time of casting the dope
  • T1 temperature at the time of casting the dope
  • the relationship between the dope viscosity V (Pa ⁇ s) forming the front surface or the back surface and the average value C1 (mm) of the lip clearance of the casting die is V ⁇ 146 ⁇ C1+219, more preferably V ⁇ 135 ⁇ C1+200, More preferably, V ⁇ 118 ⁇ C1+175.
  • the dope viscosity V (Pa ⁇ s) forming the front surface or the back surface of the multilayer film at the temperature T1 (° C.) when casting the dope is preferably in the range of 5 to 60 Pa ⁇ s, and more preferably It is in the range of 5 to 55 Pa ⁇ s, and most preferably in the range of 7 to 40 Pa ⁇ s.
  • the average value C1 (mm) of the lip clearance is preferably in the range of 0.9 to 1.5 mm, more preferably 0.9 to 1.2 mm, and most preferably 0. The range is 9 to 1.1 mm.
  • the temperature T1 (° C.) of the dope when casting the dope is preferably in the range of 20 to 38° C.
  • the base layer dope, the endless support surface layer dope, and the air surface layer dope have different viscosities, and the thickness t1 ( ⁇ m) of the base layer forming the casting film and the endless support surface layer It is preferable that the relationship between the thickness t2 ( ⁇ m) and the thickness t3 ( ⁇ m) of the air surface layer is t2 ⁇ t3 ⁇ t1. Further, it is preferable that the ratio of t3 to the thickness of the casting film is 3% or more and 40% or less.
  • the relationship between the viscosity ⁇ 1 (Pa ⁇ s) of the base layer dope, the viscosity ⁇ 2 (Pa ⁇ s) of the endless support surface layer dope, and the viscosity ⁇ 3 (Pa ⁇ s) of the air surface layer dope is ⁇ 3 ⁇ 2. It is preferable that ⁇ 1.
  • the mass A of the air surface layer dope and the mass B of the organic solvent contained in this dope preferably satisfy 16 ⁇ (AB)/A ⁇ 100 ⁇ 21.
  • the raw material dope is preferably stirred and mixed with an in-line mixer after adding the additive, and the in-line mixer is provided so as to extend in the diameter direction of the pipe through which the raw material dope flows, and has a slit-shaped addition serving as an input port for the additive. It is preferred to have a mouth.
  • the length L of the addition port which is parallel to the radial direction of the pipe, is preferably 20% or more and 80% or less of the inner diameter of the pipe.
  • the gap between the slits is preferably 0.1 mm or more and 1/10 mm or less of the inner diameter of the pipe, and the distance D from the addition port to the in-line mixer is preferably 1 mm or more and 250 mm or less. Furthermore, it is preferable that the flow rate V1 of the additive flowing in the pipe and the flow rate V2 of the raw material dope satisfy 1 ⁇ V1/V2 ⁇ 5.
  • Drying of the dope on the endless support for producing an acrylic resin film is generally performed on the surface side of a metal endless support (for example, a drum or a band), that is, the surface of a web on the metal endless support.
  • a metal endless support for example, a drum or a band
  • the temperature-controlled liquid from the back side of the drum or band, to heat the drum or band by heat transfer.
  • the back surface liquid heat transfer method is preferable.
  • the IR heater described below is also preferably used.
  • the surface temperature of the metallic endless support before casting may be any number as long as it is equal to or lower than the boiling point of the solvent used for the dope.
  • the temperature is 1 to 10° C. lower than the boiling point of the solvent having the lowest boiling point. It is preferable to set. This is not the case when the cast dope is cooled and peeled off without drying.
  • the temperature at the peeling position on the metal endless support is preferably in the range of 10 to 40°C, more preferably 10 to 30°C.
  • the amount of residual solvent at the time of peeling of the web on the metal endless support at the time of peeling is in the range of 10 to 130% by mass depending on the strength of the drying conditions, the length of the metal endless support, and the like. It is preferable to peel in the range of 10 to 100% by mass, but when peeling at a time when the amount of residual solvent is larger, if the web is too soft, the flatness is deteriorated during peeling, and cracks or vertical streaks due to peeling tension occur. Since it is easy to do, the amount of residual solvent at the time of peeling is determined by the balance between economic speed and quality.
  • the amount of residual solvent in the web is defined by the following formula (Z).
  • Formula (Z) Amount of residual solvent (%) (mass before heat treatment of web ⁇ mass after heat treatment of web)/(mass after heat treatment of web) ⁇ 100 Note that the heat treatment for measuring the amount of residual solvent means performing heat treatment at 115° C. for 1 hour.
  • the peeling tension when peeling the metal endless support and the film is usually in the range of 50 to 245 N/m, but if wrinkles easily occur during peeling, peeling is performed with a tension of 190 N/m or less. Preferably.
  • the temperature at the peeling position on the metallic endless support is preferably in the range of ⁇ 50 to 40° C., more preferably in the range of 5 to 40° C., and in the range of 5 to 30° C. Most preferred is
  • peeling a raw dry film from a metal endless support if the peeling resistance (peeling load) is large, the film is stretched randomly in the film forming direction, causing optical anisotropic unevenness.
  • peeling load when the peeling load is large, a stepwise stretched portion and a non-stretched portion are alternately generated in the film forming direction, and the retardation is distributed.
  • the peeling load of the film is 2.5 N or less per 1 cm of the peeling width of the film.
  • the peeling load is more preferably 2 N/cm or less, still more preferably 1.8 N or less, and particularly preferably 1.5 N or less.
  • the peeling load is 2.5 N/cm or less, unevenness due to peeling is not observed at all even in a liquid crystal display device in which unevenness is likely to occur, which is particularly preferable.
  • As a method for reducing the peeling load there are a method of adding a peeling agent as described above and a method of selecting a solvent composition to be used.
  • the peeling load is measured as follows.
  • the dope is dropped on a metal plate of the same material and surface roughness as the metal endless support of the film forming apparatus, spread using a doctor blade to a uniform thickness and dried.
  • the film is cut into a uniform width with a cutter knife, the tip of the film is peeled off by hand, and the film is sandwiched by a clip connected to a strain gauge, and the load change is measured while pulling up the strain gauge in a direction at an angle of 45 degrees.
  • the volatile content in the peeled film is also measured.
  • the same measurement is performed several times while changing the drying time, and the peeling load at the same time as the peeling residual volatile content in the actual film forming process is determined.
  • the peeling load tends to increase, and it is preferable to measure the peeling speed close to the actual peeling speed.
  • a peeling accelerator described later can also be preferably used.
  • the preferred residual volatile matter concentration during stripping is 5 to 60% by mass.
  • the film strength is poor and the film loses its peeling force and is cut or stretched. Further, the self-holding force after peeling is poor, and deformation, wrinkles, and knicks are likely to occur. It also causes a distribution in retardation.
  • peeling with a high volatile content has an advantage that the drying speed can be increased and the productivity is improved, which is preferable. Therefore, the more preferable residual volatile content concentration at the time of peeling is 10 to 55 mass %. It is particularly preferable that the amount of release agent used is 15 to 50% by mass, which gives a relatively small release resistance even if the amount of release agent is reduced.
  • the stripping speed is 10 m/min or more, and the variation of the stripping position at 2 Hz or more is less than 20 mm.
  • the distance L between the peeling position and the contact position of the peeling roller with the film is 0.1 mm to 100 mm. It is preferably within the range. It is preferable to adjust the temperature of the endless support in the range of 10 to 40°C.
  • the peeling temperature is preferably in the range of 5 to 50°C.
  • the surface energy of the peeling roller is preferably in the range of 10 to 35 mN/m, more preferably 18 to 26 mN/m.
  • treatments such as Hypercoat, Chloamol, Tungsten Carbide, and Amucoat are conceivable, but Ultrachrome II treatment is particularly preferable.
  • the film immediately after being peeled off from the endless support is a thin soft film, and the film is made thin by a roller transfer process or a tenter transfer process in which both ends of the film (hereinafter, referred to as edge ends) are transferred.
  • edge ends both ends of the film
  • the so-called thinning causes a problem that stable conveyance becomes difficult. Further, if the thickness of the edge portion of the film is excessively increased, there are cases where bald residue or the like occurs in high-speed film formation.
  • the thickness of only the film edge end by a method other than the lip clearance adjustment, separately from the flow path of the die body.
  • a dope channel for thickness correction of each edge is provided, and the flow rate of the dope passing therethrough is controlled by an adjustment mechanism other than the clearance adjustment at the tip of the die lip to adjust the thickness of the dope for both ears.
  • a method in which the film is supplied to the edges and the thickness is independently controlled only at both edges of the film is preferable.
  • the film is formed in the die separately from the dope channel. It is possible to independently control the thickness of both ends of the film, by providing both end thickness correction channels. It is preferable that the apparatus is equipped with an adjusting mechanism for adjusting the flow rate of the correction dope passing through the correction channel, and can independently control the thickness of both ends of the film. It is preferable that the correction flow path has an air vent.
  • the correction flow path has a heat retention mechanism that can be controlled independently of the die body, and the correction flow path outlet is formed from a flow path having a casting width of the die main body to a die lip. It is preferable that it is provided up to the tip.
  • both end portions of the casting film are thickened, the strength of the film is increased as the casting film as a whole, and when the thin casting film is peeled from the endless support, the unpeeled residue, etc. It is possible to suppress the occurrence of abnormalities.
  • the method of thickening only the both ends of the casting film in this manner in addition to the dope channel provided in the body of the die, the die is provided with the film both ends thickness correction channel, The correction dope is supplied from the correction flow path, and the thickness of both ends of the film is independently controlled, so that the present invention can be carried out only by making a slight improvement to conventional equipment. Therefore, the cost can be reduced. Further, by controlling the flow rate of the correction dope that passes through the correction flow path by using an adjustment mechanism different from the clearance adjustment of the die lip tip, it is possible to more accurately control the film thickness. It can be carried out.
  • the oxygen concentration in the casting step is preferably at least less than 10 vol%, more preferably less than 8 vol%. Further, when the drying step following the casting step is arranged in the same casing as the casting step, the oxygen concentration will be less than 10 vol% in the drying step as well. If there is no air permeability between the two, the oxygen concentration may be less than 10 vol% only in the casting process.
  • the oxygen concentration By setting the oxygen concentration to less than 10 vol% in this way, it is possible to prevent the explosion of the organic solvent gas, and it is particularly effective when the concentration of the organic solvent gas in the casting process is high. That is, it is particularly effective when the concentration of the organic solvent gas is 25% or more of the lower limit of explosion.
  • an inert gas such as nitrogen gas or carbon dioxide, or a mixture of an inert gas and air, in which the oxygen concentration is less than 10 vol%, is used. It can be done by supplying. It is preferable to measure the oxygen concentration in the casting step with an oxygen concentration meter and control the supply amount of the inert gas or the like according to the measured value.
  • Drying/Stretching Step (4-1. Drying Step)
  • the drying step can be performed separately in a preliminary drying step and a main drying step.
  • the web may be dried while being conveyed by a large number of rollers arranged vertically, or both end portions of the web like a tenter dryer. May be fixed with a clip and dried while being transported.
  • the means for drying the web is not particularly limited, and generally, hot air, infrared rays, heating rollers, microwaves, etc. can be used, but hot air is preferable in terms of simplicity.
  • An IR heater is mentioned as a suitable drying method using infrared rays.
  • the IR heater will be described below.
  • the drying means in the present invention is most preferably hot air drying, but it is also preferable to supplementarily use an infrared heater (IR heater).
  • IR heater infrared heater
  • a wet film containing a solvent is irradiated with infrared rays from an IR heater, the movement of solvent molecules that have absorbed the infrared rays is activated, and movement of the solvent molecules in the film can be promoted.
  • Mid-infrared to far-infrared rays which correspond to the stretching motion of solvent molecules, are particularly preferable.
  • the resin other than the solvent has no absorption in this irradiation wavelength band.
  • IR heaters are provided by NGK Insulators, Ltd., Hibeck Co., Ltd., Kashima Co., Ltd., etc.
  • the irradiation method can be appropriately selected from line focusing, parallel irradiation and the like.
  • the high temperature part of the IR heater and the volatile solvent are preferably isolated. That is, it is preferable that the filament portion of the IR heater, which has a locally high temperature, be protected by a transparent cooling system. For this reason, it is preferable to cover with a double tube made of quartz glass and to cool the glass by flowing water in the glass gap. This makes it possible to block the heat without blocking the infrared rays emitted from the filament.
  • the present inventors have discovered that curling of an optical film obtained by irradiation with an IR heater is suppressed.
  • the drying temperature in the web drying step is preferably lower than the glass transition temperature of the film, and it is effective to perform heat treatment within a range of 10 to 60 minutes at a temperature of 100° C. or higher.
  • the drying temperature is 100 to 200° C., more preferably 110 to 160° C.
  • the acrylic resin film according to the present invention can be stretched to control the orientation of the molecules in the film, improve the flatness, and obtain toughness. Also, the phase difference can be adjusted to a desired value.
  • the stretching operation may be performed in multiple stages.
  • simultaneous biaxial stretching may be carried out or may be carried out stepwise.
  • stepwise means that, for example, stretching in different stretching directions can be sequentially performed, or stretching in the same direction can be divided into multiple stages, and stretching in different directions can be added to any of the stages. Is also possible.
  • stretching steps are possible: ⁇ Stretching in casting direction ⁇ stretching in width direction ⁇ stretching in casting direction ⁇ stretching in casting direction ⁇ stretching in casting direction ⁇ Stretching in width direction ⁇ stretching in width direction ⁇ stretching in casting direction ⁇ stretching in casting direction Simultaneous biaxial stretching also includes stretching in one direction and contracting the other by relaxing the tension.
  • the amount of residual solvent at the start of stretching is preferably in the range of 2 to 10% by mass.
  • the amount of the residual solvent is 2% by mass or more, the film thickness deviation is small, and it is preferable from the viewpoint of flatness.
  • the web (film) drying process is generally performed by a roll drying method (a method in which a large number of rolls arranged above and below are alternately passed through the web to dry) or a tenter method. The method of drying while transporting is carried out, and finally it is dried until the residual solvent amount becomes 0.5% by mass or less.
  • the amount of residual solvent contained in the web may be a little higher in order to obtain a desired retardation value, and in order to impart a high retardation value, it is 15 to 100% by mass, preferably 20 to You may have in the range of 50 mass %.
  • One of the methods for producing an acrylic resin film according to the present invention comprises a stretching step of stretching in a direction (TD direction) orthogonal to the transport direction of the film, and comprises a heat treatment step downstream of the stretching step,
  • the film temperature is set to a glass transition temperature (Tg) of -50° C. or higher and Tg+40° C. or lower
  • the roll span of the guide roll in the heat treatment step is set to 50 to 300 mm
  • the transport tension of the film is set to 15 to 100 N/m.
  • Heat treatment is performed within the range.
  • the glass transition temperature (Tg) refers to the glass transition temperature temperature of the completed film.
  • the glass transition temperature (Tg) of the film is reduced in another step downstream of the stretching step while suppressing shrinkage in the width direction of the film.
  • the shrinkage of the film in the MD direction (the transport direction of the film), which cannot be achieved by the conventional cellulose ester resin produced by the solution film-forming method, is promoted, and the retardation in the thickness direction ( Not only the decrease in Rt) but also the uniformity of the retardation value in the width direction can be ensured, and the haze value of the film can be reduced.
  • the stretching ratio in stretching in the film transport direction is preferably 1 to 25%, more preferably 3 to 20%.
  • Stretching ratio (%) 100 ⁇ (length after stretching) ⁇ (length before stretching)/length before stretching
  • a method for stretching the web in the film conveying direction For example, a method in which the peripheral speed difference is applied to multiple rolls and the roll peripheral speed difference between them is used to stretch in the longitudinal direction, both ends of the web are fixed with clips or pins, and the spacing between the clips or pins is widened in the traveling direction. And a method of stretching in the longitudinal direction, or a method of simultaneously stretching in the longitudinal and lateral directions and stretching in both the longitudinal and lateral directions. Of course, these methods may be used in combination.
  • the clip portion it is preferable to drive the clip portion by a linear drive method because smooth stretching can be performed and the risk of breakage can be reduced.
  • the stretching in the machine direction uses an apparatus having two nip rolls, and the rotational speed of the nip roll on the outlet side is made faster than the rotational speed of the nip roll on the inlet side, so that the cyclic polyolefin film in the transport direction (longitudinal direction) Is preferably stretched. By performing such stretching, the expression of retardation can also be adjusted.
  • the method for producing an acrylic resin film of the present invention includes a stretching step of stretching in a direction (TD direction) orthogonal to the transport direction of the film, a heat treatment step on the upstream side of the stretching step, and the film is formed in the heat treatment step.
  • the glass transition temperature (Tg) is not less than ⁇ 50° C. and not more than Tg+20° C.
  • the roll span of the guide roll in the heat treatment step is in the range of 50 to 300 mm
  • the film transport tension is in the range of 15 to 100 N/m. It is preferable that the film is subjected to heat treatment as described above, the film is once cooled to a temperature not higher than the glass transition temperature (Tg) on the downstream side of this heat treatment step, and then stretched.
  • the temperature is raised to a temperature near the glass transition temperature (Tg) in the process upstream of the stretching step, and then the cooling step is performed again.
  • Tg glass transition temperature
  • Ro in-plane retardation
  • Rt thickness direction retardation
  • the acrylic resin film according to the present invention When used as a retardation film for a VA type liquid crystal display device, the acrylic resin film according to the present invention has an in-plane retardation (Ro) in the range of 45 to 65 nm and a thickness direction retardation (Rt). It is preferably in the range of 105 to 140 nm, and the ratio of the thickness direction retardation (Rt) to the in-plane retardation (Ro): Rt/Ro is preferably 1.6 to 2.6.
  • an acrylic resin film of the present invention not only the decrease in retardation (Rt) in the thickness direction but also the uniformity in the width direction of the retardation value can be ensured, and the in-plane retardation can be ensured.
  • An appropriate combination of (Ro) and retardation in the thickness direction (Rt) can be realized, and the haze value of the film can be reduced, which in turn can improve the front contrast of the liquid crystal display panel.
  • FIG. 4 schematically shows an example of a tenter stretching device 201 that is preferably used in manufacturing the acrylic resin film according to the present invention.
  • the tenter stretching device 201 is schematically illustrated, but normally, a large number of clips provided in a single row state of a pair of left and right rotary drive devices (ring-shaped chains) 201a and 201b, which are endless chains.
  • the left and right chains 201a, 202b, 202b of the chain forward side straight line transition portion that grips and pulls both left and right ends of the film (F) are gradually separated in the width direction of the film (F).
  • the track 201b is installed so that the film F is stretched in the width direction.
  • step A the web (film) F separated from the endless support (not shown) and conveyed is gripped by the left and right gripping means (clips) 202a and 202b.
  • step B The web is stretched in the width direction (direction orthogonal to the traveling direction of the web) at a stretching angle as shown in the same drawing, and in step C, the stretching is completed, and the web is gripped and conveyed.
  • step D is a step of relaxing the web in the width direction.
  • a slitter for cutting off the edge in the web width direction after the web is peeled from the endless support but before the step B is started and/or immediately after the step C.
  • a slitter for cutting off the web end just before starting the step A.
  • tenter process it is also preferable to intentionally create compartments with different temperatures in order to improve the orientation angle distribution. It is also preferable to provide a neutral zone between different temperature zones so that the respective zones do not interfere with each other.
  • the stretching operation may be performed in multiple stages, and it is preferable to perform biaxial stretching in the casting direction and the width direction.
  • biaxial stretching when biaxial stretching is performed, simultaneous biaxial stretching may be performed or stepwise implementation may be performed.
  • stepwise means that, for example, stretching in different stretching directions can be sequentially performed, or stretching in the same direction can be divided into multiple stages, and stretching in different directions can be added to any of the stages. Is also possible.
  • the web peeled from the metal endless support is conveyed while being dried, and further stretched in the width direction by a tenter method in which both ends of the web are gripped by pins or clips, whereby a predetermined phase difference is obtained. Can be granted.
  • stretching may be performed only in the width direction, or simultaneous biaxial stretching is also preferable.
  • the preferred draw ratio is 1.05 to 2 times, preferably 1.15 to 1.5 times.
  • simultaneous biaxial stretching it may be contracted in the machine direction, or may be contracted so as to be 0.8 to 0.99, preferably 0.9 to 0.99.
  • the area is 1.12 to 1.6 times, and preferably 1.15 to 1.5 times due to the transverse stretching and the longitudinal stretching or contraction. This can be obtained by multiplying the draw ratio in the longitudinal direction by the draw ratio in the transverse direction.
  • the "stretching direction" in the present invention is usually used to mean a direction in which a stretching stress is directly applied when a stretching operation is performed, but when biaxially stretching in multiple stages, the final In some cases, it is used in the sense of the one having a larger draw ratio (that is, the direction normally serving as the slow axis).
  • the preheating time in step A is preferably a long time or a higher temperature. From the viewpoint of film temperature uniformity in the width direction and retardation controllability, 130 to 200° C. is preferable, and 3 to 60 seconds is preferable.
  • the web heating rate in step B is preferably in the range of 0.5 to 10° C./sec in order to improve the orientation angle distribution.
  • the stretching time in step B is preferably short.
  • the minimum required stretching time range is specified. Specifically, the range of 1 to 10 seconds is preferable, and the range of 4 to 10 seconds is more preferable.
  • the heat transfer coefficient may be constant or may be changed.
  • the heat transfer coefficient preferably has a heat transfer coefficient in the range of 41.9 to 419 ⁇ 10 3 J/m 2 hr. More preferably, it is in the range of 41.9 to 209.5 ⁇ 10 3 J/m 2 hr, and most preferably in the range of 41.9 to 126 ⁇ 10 3 J/m 2 hr.
  • the stretching speed in the width direction in the above step B may be constant or may be changed.
  • the stretching speed is preferably 50 to 2000%/min, more preferably 100 to 1000%/min, and most preferably 150 to 800%/min.
  • step B it is preferable to control the stress in the first 10 cm in order to obtain the effect of the present invention, and it is preferable to control the stress in the range of 100 to 200 N/mm.
  • the temperature distribution in the width direction of the atmosphere is small from the viewpoint of improving the uniformity of the web, and the temperature distribution in the width direction in the tenter process is preferably within ⁇ 5°C, and within ⁇ 2°C. Is more preferable, and within ⁇ 1°C is most preferable. By reducing the temperature distribution, it can be expected that the temperature distribution across the width of the web will also be reduced.
  • step D it is preferable to relax in the width direction. Specifically, it is preferable to adjust the web width so that it is in the range of 95 to 99.5% with respect to the final web width after stretching in the previous step.
  • a tenter capable of independently controlling the gripping length (distance from gripping start to gripping end) of the web by the left and right gripping means of the tenter.
  • FIG. 5 schematically shows an example of a tenter stretching device 201 that is preferably used in manufacturing a retardation film.
  • the installation positions of the clip starters 203a and 203b at the grip start positions of the left and right gripping means (clips) 202a and 202b of the tenter stretching device 201 are the same on the left and right, and the installation positions of the left and right clip closers 204a and 204b are changed on the left and right.
  • the left and right gripping lengths (Xa) and (Xb) of the film F are changed, whereby a force that twists the film F is generated in the tenter stretching device 201, and the positional deviation due to conveyance other than the tenter stretching device 201 is corrected. It is possible to effectively prevent the web from meandering, fraying and wrinkling even if the conveying distance from the peeling to the tenter is long.
  • a device for preventing meandering of the long film in order to correct wrinkles, cracks, distortions, etc. more accurately, it is preferable to add a device for preventing meandering of the long film, and the edge position controller (JP-A-6-8663) (A meandering correction device such as an EPC) or a center position controller (also sometimes referred to as CPC) is preferably used.
  • EPC edge position controller
  • CPC center position controller
  • one or two guide rolls or a flat expander roll with a drive is moved left and right (or up and down) with respect to the line direction to correct the meandering or the film.
  • a pair of small pinch rolls on the left and right one on each side of the film, one on the front and one on the back of the film), and sandwiched the film with this to correct the meandering.
  • Yes crossing guider method.
  • the principle of the meandering correction of these devices is such that when the film is running, for example, when trying to go to the left, the former method tilts the roll so that the film goes to the right, and the latter method uses the right side A pair of pinch rolls are nipped and pulled to the right. It is preferable to install at least one of these meandering prevention devices between the film peeling point and the tenter stretching device.
  • a more preferable range of the temperature of the gripping tool is a temperature 10°C or higher higher than the boiling point of the organic solvent used and a temperature 10°C or lower lower than the stretching temperature.
  • the method of adjusting the temperature of the gripping tool within a predetermined temperature range is not particularly limited, but it is preferable to provide heating/cooling means on the return side of the gripping part.
  • a method in which the transverse stretching is performed in two stages and the second stage stretching is performed at a temperature 1 to 50° C. higher than the first stage stretching temperature is also preferably used.
  • the method of raising the stretching temperature There is no particular limitation on the method of raising the stretching temperature.
  • a method of performing the first stage stretching and the second stage stretching by changing the number of heaters and the capacity is preferably used.
  • the stretching of the first stage and the second stage may be performed continuously, or after passing through a cooling process, a width holding process, a longitudinal direction or a relaxation process in the width direction after the stretching of the first stage, A second stage stretching may be performed. It is preferable to use a tenter method in which the temperature in the oven is set to be higher stepwise as it goes downstream so that the equipment can be made more compact.
  • the means for drying the web in this step is not particularly limited, and generally, hot air, infrared rays, heating rolls, microwaves or the like can be used, but hot air is preferable in terms of simplicity.
  • the temperature of the web is not too high.
  • the drying temperature temperature of the web during drying
  • a low temperature range of 10 to 50° C. is preferable with respect to Tg when the web is completely dried.
  • the drying temperature should be raised stepwise, such as 30-50°C lower than Tg in the initial stage of drying, 20-40°C lower than Tg in the middle stage of drying, and 10-20°C lower than Tg in the final stage of drying. Is preferably carried out.
  • the tension is preferably 20 to 200 N per 1 m of the film width, and more preferably 10 to 50 N.
  • the oblique stretching is a step of stretching the formed long film in a direction oblique to the width direction.
  • the film can be produced in any desired length by continuously producing the film.
  • the method for producing a long stretched film may be such that after the long film is formed, it is wound around a winding core once to form a wound body (also referred to as a raw material) and then supplied to the oblique stretching step.
  • the film after the film formation may be continuously supplied to the oblique stretching process from the film forming process without being wound up. It is preferable to continuously perform the film forming step and the oblique stretching step because the film forming conditions can be changed by feeding back the results of the film thickness after stretching and the optical value, and a desired long stretched film can be obtained.
  • a long stretched film having a slow axis at an angle of more than 0° and less than 90° with respect to the width direction of the film is produced.
  • the angle with respect to the width direction of the film is an angle in the film plane. Since the slow axis in the plane of the film is usually expressed in the stretching direction or in the direction perpendicular to the stretching direction, by stretching at an angle of more than 0° and less than 90° with respect to the stretching direction of the film, A long stretched film having a slow axis can be produced.
  • the angle formed by the width direction of the long stretched film and the slow axis that is, the orientation angle can be arbitrarily set to a desired angle in the range of more than 0° and less than 90°.
  • An oblique stretching device is used to impart diagonal orientation to the long film.
  • the oblique stretching device used in the present embodiment can freely set the orientation angle of the film by changing the path pattern of the gripping tool traveling support tool, and further, the orientation axis of the film can be set across the film width direction. It is preferable that the film stretching device be capable of uniformly orienting right and left with high accuracy and controlling the film thickness and retardation with high accuracy.
  • FIG. 7 is a schematic diagram for explaining oblique stretching used in the method for producing a long stretched film of this embodiment.
  • this is an example and the present invention is not limited to this.
  • the running direction (running direction before stretching) D1 of the long film when rolled into the stretching device is different from the running direction (running direction after stretching) D2 of the long stretched film when unrolled from the stretching device, It forms the payout angle ⁇ i.
  • the feeding angle ⁇ i can be arbitrarily set to a desired angle in the range of more than 0° and less than 90°.
  • the gripping tool is a gripping start point for gripping the long film, and a straight line connecting the gripping start points is indicated by a reference symbol A
  • both ends of the long film are held by a pair of left and right gripping tools (a pair of gripping tools). It is gripped by a gripping tool pair) and travels as the gripping tool travels.
  • the pair of gripping tools is composed of left and right gripping tools Ci and Co that are opposed to each other at the entrance of the oblique stretching device in a direction substantially perpendicular to the running direction (running direction before stretching) D1 of the long film.
  • the left and right gripping tools Ci and Co travel on a left-right asymmetrical path, respectively, and are at positions at the end of stretching (the gripping tool is a gripping release point at which the gripping is released, and a straight line connecting the gripping release points is referred to as a reference numeral).
  • the elongated stretched film grasped in (B) is released.
  • the left and right gripping tools Ci and gripping tools Co which were facing each other at the entrance of the oblique stretching device (position A in the figure), travel on the inner gripping tool running support tool Ri and the outer gripping tool running support tool Ro, respectively.
  • the gripping tool Ci traveling on the inner gripping tool travel support tool Ri has a positional relationship of advancing with respect to the gripping tool Co traveling on the outer gripping tool travel support tool Ro.
  • the gripping tool Ci and the gripping tool Co which were opposed to each other in the direction substantially perpendicular to the running direction D1 of the long film at the entrance of the oblique stretching device, are in the position B, and the gripping tool Ci and the gripping tool Co are in the state.
  • the straight line connecting the lines is inclined by an angle ⁇ L with respect to the direction substantially perpendicular to the running direction (running direction after stretching) D2 of the long stretched film.
  • the long film will be stretched in the direction of ⁇ L.
  • substantially vertical means that the angle is in the range of 90 ⁇ 1°.
  • the oblique stretching device is a device that heats a long film to an arbitrary temperature at which it can be stretched and obliquely stretches it.
  • This stretching device includes a heating zone (heating furnace), a plurality of gripping tools paired on both sides for gripping and traveling on both sides of a long film, and gripping tool travel for supporting the traveling of the gripping tools. And a support.
  • Both ends of the long film that is sequentially supplied to the inlet of the stretching device (holding start point) are gripped by gripping tools, the long film is introduced into the heating furnace, and the outlet of the stretching device (holding release point) is gripped. Release the long stretched film from the tool.
  • the long stretched film released from the gripping tool is wound around the winding core.
  • the gripping tool running support provided with the gripping tool has an endless continuous track, and the gripping tool that has released the grip of the long stretched film at the exit of the stretching device is sequentially returned to the gripping start point by the gripping tool running support. It is supposed to be.
  • the gripping tool travel support may be, for example, a form in which an endless chain whose path is regulated by a guide rail or a gear includes the gripping tool, or an endless guide rail includes the gripping tool. It may be. That is, in the present invention, the gripping tool travel support may be, for example, an endless guide rail having an endless chain, or an endless guide rail having an endless chain. Alternatively, an endless guide rail without a chain may be used.
  • the gripper travels along the path of the gripper travel support itself when the gripper travel support does not include a chain, and when the gripper travel support includes the chain, the gripper travels along the path of the gripper travel support. To run.
  • the gripping tool travels along the path of the gripping tool travel support tool will be described. You may drive.
  • the number of gripping tools provided on each gripping tool travel support is not particularly limited, but the same number is preferable.
  • the gripping tool travel support of the stretching device has a left-right asymmetrical shape, and the pattern of the path of the gripping tool travel support depends on the orientation angle, the draw ratio, etc. given to the long stretched film to be produced. It can be adjusted manually or automatically.
  • the path of each gripping tool travel support tool can be freely set and the pattern of the path of the gripping tool travel support tool can be arbitrarily changed.
  • the length (total length) of the gripping tool travel support is not particularly limited, and is usually about 10 to 100 m. Further, the total lengths of the gripper traveling supports on both sides may be the same or different.
  • the traveling speed of the grasping tool of the stretching device can be appropriately selected, but 15 to 150 m/min is preferable among them.
  • the traveling speed of the gripping tool of the stretching device is higher than 150 m/min, the local stress applied to the edge of the film becomes large at the bent portion, and wrinkles and deviations occur at the edge of the film, and after the stretching is completed.
  • the effective width obtained as a good product tends to be narrow.
  • the traveling speeds of the two gripping tools forming the gripping tool pair may be the same or different. If there is a difference in running speed between the left and right of the long stretched film at the exit of the stretching step, wrinkles at the exit of the stretching step and deviation may occur, so the speed difference between the left and right gripping tools forming the gripping tool pair is substantially It is preferable that the speed is constant.
  • the gripping tool travels at a constant distance from the front and rear gripping tools.
  • the difference between the traveling speeds of the respective grasping tools is preferably 1% or less, more preferably 0.5% or less, and further preferably Is 0.1% or less.
  • speed irregularity that occurs on the order of seconds or less depending on the tooth cycle of the sprocket (gear) that drives the chain, the frequency of the drive motor, etc. Does not correspond to the speed difference described in this embodiment.
  • a large bending rate is often required for the gripping tool travel support that regulates the trajectory of the gripping tool, especially at the location where the long film is conveyed obliquely.
  • the trajectory of the gripping tool is curved so as to draw an arc in the bent portion.
  • the long film is sequentially gripped at both ends by the left and right grippers (a pair of grippers), and is run as the gripper travels.
  • a pair of gripping tools facing each other in a direction substantially perpendicular to the running direction D1 of the long film travels in a left-right asymmetric path and has a preheating zone, a stretching zone, and a heat fixing zone. Go through the furnace.
  • the preheating zone refers to the section at the entrance of the heating furnace where the gripper holding both ends keeps running at a constant interval.
  • Extending zone refers to the section until the gap between the gripping tools that grips both ends begins to reach a predetermined gap. In the present embodiment, it can be stretched obliquely in the stretching zone, but is not limited to stretching in the diagonal direction, it may be diagonally stretched after transverse stretching in the stretching zone, or further after diagonal stretching. It may be stretched in the width direction.
  • the heat setting zone refers to the section in which the grippers at both ends travel while maintaining parallel to each other in the period after the stretching zone where the gap between the grippers becomes constant again. After passing through the heat setting zone, it may pass through a section (cooling zone) in which the temperature in the zone is set to the glass transition temperature Tg° C. or lower of the acrylic resin forming the long film. At this time, in consideration of shrinkage of the long stretched film due to cooling, a path pattern may be set such that the interval between the gripping tools facing each other is narrowed in advance.
  • transverse stretching and longitudinal stretching may be performed as necessary in the process before and after introducing the long film into the oblique stretching device.
  • the temperature of each zone is the glass transition temperature Tg of the acrylic resin
  • the temperature of the preheating zone is Tg-10 to Tg+30°C
  • the temperature of the stretching zone is Tg-10 to Tg+30°C
  • the temperature of the cooling zone is Tg. It is preferably set in the range of -30 to Tg+10°C.
  • a temperature difference may be applied in the width direction in the stretching zone.
  • a method of adjusting the opening degree of a nozzle that sends hot air into the temperature-controlled room so as to make a difference in the width direction, or a method of controlling heating by arranging heaters in the width direction is known. Can be used.
  • the lengths of the preheating zone, the stretching zone and the heat setting zone can be appropriately selected.
  • the length of the preheating zone is usually 100 to 150% of the length of the stretching zone, and the length of the heat setting zone is usually 50 to 50%. It is in the range of 100%.
  • the stretching ratio R (W/W0) in the stretching step is preferably in the range of 1.3 to 3.0, more preferably 1.3 to 2.5. When the stretching ratio is within this range, thickness unevenness in the width direction is reduced, which is preferable. Further, if necessary, if the stretching temperature is set so that the stretching temperature is made different in the width direction in the stretching zone, it becomes possible to further suppress the thickness unevenness in the width direction.
  • W0 represents the width of the long stretched film before stretching
  • W represents the width of the long stretched film after stretching.
  • FIG. 8 is a schematic view of a stretching device used in the manufacturing method of the present embodiment.
  • the oblique stretching device 401 has, on both sides of the long film F, gripping tool travel support tools 402 on which gripping tools (not shown) for gripping the long film F travel.
  • the gripping tool travel support 402 is arranged so that a part thereof passes through the heating furnace 403.
  • the heating furnace 403 is divided into a plurality of zones in the furnace as described above.
  • FIG. 8 exemplifies a case where it is divided into three zones of a preheating zone, a stretching zone 404 and a heat fixing zone.
  • the gripping tool travel support 402 has a side wall 406 at least in the stretching zone 404.
  • the side wall 406 is provided along the gripping tool travel support 402 on both sides in the stretching zone 404.
  • the side wall 406 can block the convection of the air generated by the running long film, and can prevent the movement of heat from the long film F to the extra space. Therefore, the long film F is stretched in the stretching zone in a state where there is no temperature unevenness and heat is applied sufficiently and uniformly. As a result, there is little variation in the orientation angle of the obtained long film in the width direction, and a long stretched film with stable quality can be obtained.
  • the method of installing the side wall 406 is not particularly limited, and the side wall 406 can be installed in the vicinity of the grip tool travel support tool 402 or can be provided integrally with the grip tool travel support tool 402.
  • the side wall 406 is installed in the vicinity of the gripping tool travel support tool 402
  • the side wall 406 is preferably provided integrally with the grip tool travel support tool 402 from the viewpoint of moving following the movement of the grip tool travel support tool 402.
  • the side wall 406 moves following the movement of the gripping tool travel support tool 402.
  • the shape, position, and orientation of the side wall 406 may change according to the shape of the gripping tool travel support tool 402 before and after the change (hereinafter, these may be collectively referred to as the shape, etc.). Is preferred.
  • the side wall 406 moves following the movement of the gripper travel support tool 402, whereby the shape of the side wall 406 is adjusted according to the path pattern of the gripper travel support tool after the movement. Therefore, regardless of the stretching angle, it is possible to reduce the variation in the widthwise direction of the orientation angle of the obtained long stretched film, it is possible to produce a long stretched film can be obtained stable quality long stretched film it can.
  • the method of causing the side wall 406 to follow the movement of the gripper travel support 402 is not particularly limited.
  • a tenter clip 300 as shown in FIG. 6 may be used.
  • a temperature difference due to the temperature of the tenter clip 300 may occur between the film center part (non-grip part) and both end parts (grip part). Since this temperature difference may cause film thickness unevenness and the like, it is preferable to heat or cool the tenter clip 300 with the blower 311a.
  • heating or cooling may be performed so that the temperature of the grip portion 300a is positively different from that of the non-grip portion.
  • the heating/cooling may be performed while the tenter clip 300 is not gripping the film 301.
  • the side wall 406 is provided integrally with the grip tool travel support tool 402 so that the side wall 406 can move following the movement of the grip tool travel support tool 402.
  • the shape of the support tool 402 is changed at the same time. As a result, sufficient and uniform heat was continuously applied to the continuous film F regardless of the stretching angle, and as a result, a continuous stretched film of stable quality with little variation in the orientation angle in the width direction was obtained. sell.
  • the material forming the side wall 406 is not particularly limited, and the side wall 406 made of resin or metal can be adopted. Further, the side wall 406 does not need to be formed of a single member, and may be formed by connecting a plurality of members with a hinge or the like.
  • the surface of the side wall 406 is preferably made of a material having a heat insulating property or coated so as to prevent heat from moving from the long film F to the extra space.
  • the height of the side wall 406 is not particularly limited, and may be a height that can prevent heat from entering and exiting between the long film F and the extra space in consideration of the internal shape of the heating furnace 403 and the like. ..
  • the height of the side wall 406 is preferably such that it does not come into contact with the inside of the heating furnace 403 so that the side wall 406 can move following the movement of the gripper traveling support 402 when the stretching angle is changed. ..
  • the thickness of the side wall 406 is not particularly limited as long as it can prevent heat from entering and exiting between the long film F and the extra space.
  • the thickness of the side wall 406 is such that when the side wall 406 moves following the movement of the gripping tool travel support 402 when the extension angle is changed, it does not hinder the bending and rotation of the side wall 406. Is preferred.
  • the side wall 406 is provided along at least the gripping tool travel support tool 402 that passes through the stretching zone 404. Therefore, even when the stretching angle of the long film F is changed, the long film F to be stretched does not have temperature unevenness and heat is sufficiently and uniformly irrespective of changes in the volume and position of the extra space. Granted. As a result, in the obtained long stretched film, the variation in the orientation angle of the long film F in the width direction is suppressed regardless of the stretching angle.
  • the heat from the long film F can move to the extra space in the zone where the side wall 406 is not provided.
  • the long film F is only preheated in the preheating zone before the stretching zone and is heat-set so as not to shrink in the heat-setting zone after the stretching zone. Therefore, even if temperature unevenness occurs in the long film F in these zones, the influence on the variation of the orientation angle of the obtained long stretched film in the width direction is small.
  • the manufacturing method of the present embodiment since the sidewall 406 is provided at least in the stretching zone, it is possible to sufficiently reduce the variation in the orientation angle of the obtained long stretched film in the width direction.
  • the side wall 406 can be provided along the entire grip tool traveling support 402 installed in the heating furnace 403.
  • the long film F traveling in the heating furnace 403 can be more reliably shielded from the heat flow between the long film F and the extra space. It is possible to apply heat sufficiently and uniformly over the entire area. Further, even when the stretching angle is changed, sufficient and uniform heat is applied to the running long film F regardless of changes in the volume and position of the extra space. As a result, it is possible to more reliably suppress the temperature unevenness of the obtained long stretched film, and to reduce the variation of the orientation angle of the long stretched film in the width direction regardless of the stretching angle.
  • FIG. 8 shows only a section of the gripper travel support tool 402 in which the gripper gripping the long film F travels (hereinafter, this section may be referred to as a forward section).
  • a section that runs after the long film F is released from gripping (hereinafter, this section may be referred to as a return section) is omitted.
  • the gripping tool travel support tool 402 in the return path section may be arranged inside the heating furnace 403 or may be provided outside the heating furnace 403.
  • the side wall 406 is The gripping tool travel support tool 402 in the forward path section may be provided, the gripping tool travel support tool 402 in the return path section, or the gripping tool travel support tool 402 in both sections. That is, the side wall 406 may be arranged at a position where the heat transfer from the long film F to the extra space can be blocked.
  • the acrylic resin film according to the present invention may be wet-stretched on an unstretched film. By such wet stretching, a polymer oriented film in which polymer chains are oriented can be obtained.
  • Wet stretching is a general term for stretching methods in which water is used as a means for softening a film immediately before stretching, and in this case, water serves as a substantial plasticizer for the main polymer material of the film. ing. It is well known that, in order to plasticize a resin film, the film generally softens depending on the amount of the plasticizer, and the wet stretching used in the present invention is basically based on this idea.
  • the film of the present invention it is important how much the film is softened (plasticized) by water during stretching, and how much water is contained in the film, that is, the water content is known. This is very important.
  • the water content in the polymer material of the acrylic resin film of the present invention is about 0.01% at room temperature.
  • such an acrylic resin film (raw fabric) is stretched by raising the temperature to a glass transition temperature (Tg) so that it can be stretched.
  • Tg glass transition temperature
  • the water content further decreases to 0.001 mass %.
  • such a cyclic polyolefin film (raw fabric) is hydrated before stretching so that the water content of the acrylic resin film is in the range of 0.001 to 1% by mass, more preferably 0.001 to 0.5% by mass. %, and more preferably 0.005 to 0.3% by mass.
  • Tg glass transition temperature
  • the Tg of the acrylic resin film having a water content of 5.5 mass% was measured by immersing the acrylic resin film in a silver sealed pan (70 ⁇ l) and immersing the acrylic resin film in a temperature modulation type DSC (DSC2910 manufactured by TA Instruments). It is measured by using.
  • the film may be immersed in water before stretching, or may be conditioned under constant temperature and high humidity, or these two may be used in combination. May be.
  • the temperature of water is preferably in the range of 50 to 100°C, more preferably in the range of 60 to 95°C, particularly preferably in the range of 70 to 90°C.
  • the immersion time is preferably 5 seconds to 10 minutes, more preferably 10 seconds to 8 minutes, and particularly preferably 20 seconds to 6 minutes.
  • the humidity is controlled with constant temperature and high humidity, the temperature is preferably in the range of 50 to 150°C, more preferably in the range of 60 to 140°C, particularly preferably in the range of 70 to 120°C.
  • the relative humidity is preferably within the range of 60 to 100%.
  • the water used for these immersion and steam aeration should be substantially water.
  • substantially water means that water is 60% by mass or more, and in addition to water, the following organic solvent, plasticizer, and surfactant may be included.
  • preferable organic solvents include water-soluble organic solvents having 1 to 10 carbon atoms. However, more preferably 90% by mass or more is water, further preferably 95% by mass or more is water, and most preferably pure water is used.
  • the water used in the following description may be substantially water.
  • the atmosphere during stretching may be air, water vapor, or water.
  • the stretching temperature is preferably in the range of 50 to 150°C, more preferably in the range of 60 to 130°C, and particularly preferably in the range of 65 to 110°C.
  • the fact that the atmosphere during stretching is in water vapor means that the temperature and humidity are constant or that water vapor is applied to the film.
  • the stretching temperature is preferably 50 to 150°C, more preferably 60 to 140°C, and particularly preferably 70 to 130°C.
  • the relative humidity is preferably in the range of 60 to 100%.
  • the water content in the film of the present invention is maintained in the range of 2.0 to 20.0 mass %.
  • the elongation at break is small at the time of stretching, the film is easily broken, and the desired retardation may not be reached.
  • the atmosphere during stretching means that the film is stretched while being immersed in a water tank.
  • the temperature of water is preferably in the range of 50 to 100°C, more preferably in the range of 60 to 98°C, particularly preferably in the range of 65 to 95°C.
  • the immersion time is preferably 0.5 seconds to 10 minutes, more preferably 1 second to 8 minutes, and particularly preferably 1 second to 7 minutes.
  • the aspect ratio of the film shape during stretching is 0.1 to 10 Is more preferable, the range of 0.1-8.0 is more preferable, and the range of 0.1-6.0 is particularly preferable.
  • the term "during stretching" as used herein means the aspect ratio of the film before stretching.
  • Maintaining the water content immediately after stretching within the range of 0.001 to 1 mass% is essential for the film to be stretched uniformly. Since the water content of the film is controlled within the range of 0.001 to 1% by mass in the zone immediately before stretching, the breaking elongation becomes small when the water content is 1.0% by mass or less, and the film has a desired thickness in front. Retardation cannot be extended to the ⁇ /4 region.
  • the water content immediately after stretching refers to the water content of the film immediately after the stretching step. Further, after passing through the stretching step, water adhering to the film may be removed before reaching the winding portion. Known methods such as an air knife method and a blade method can be used.
  • FIGS. 9 and 10 An example of the winding device used in the present invention is shown in FIGS. 9 and 10.
  • the winding device 519 preferably includes a winding unit 551 and further includes a tension control unit 552.
  • the winding unit 551 includes a rotating shaft 555, a winding core holder 556, a turret 557, a motor 558, a shift mechanism 561, and controllers 562 and 563.
  • the rotary shaft 555 is arranged so that the longitudinal direction is the B direction. One end in the longitudinal direction of the rotating shaft 555 is rotatably attached to and supported by the turret 557.
  • a motor 558 is connected to the rotating shaft 555, and the rotating shaft 555 is rotated in the circumferential direction by the motor 558.
  • the controller 562 is connected to the motor 558. When a signal of the target rotation speed of the rotation shaft 555 is input, the controller 562 controls the motor 558 based on this input signal. As a result, the rotary shaft 555 rotates at the target rotation speed.
  • a pair of recesses extending in the longitudinal direction is formed on the outer circumference of the rotating shaft 555.
  • a pair of convex portions extending in the longitudinal direction of the winding core 566 are formed on the inner circumference of the cylindrical winding core 566 around which the film 527 is wound.
  • the convex portion of the winding core 566 engages by entering the concave portion of the rotating shaft 555, and the winding core 566 is set on the rotating shaft 555. As a result, the winding core 566 rotates integrally with the rotating shaft 555.
  • a pair of core holders 556 that hold the core 566 from both ends in the longitudinal direction are provided at both ends in the longitudinal direction of the rotating shaft 555.
  • the core holder 556 is slidable in the longitudinal direction of the rotating shaft 555, and the core 566 is displaced in the B direction by sliding.
  • a shift mechanism 561 is connected to the core holder 556, and this shift mechanism 561 displaces the core holder 556 along the longitudinal direction of the rotating shaft 555. Due to this displacement, the winding core 566 is displaced in the B direction.
  • a controller 563 is connected to the shift mechanism 561.
  • the controller 563 receives signals of target values of the direction in which the core holder 556 should be moved in the longitudinal direction of the rotary shaft 555, the moving speed, and the amount of displacement, the core 563 is based on the input signals. Control the holder 556. As a result, the core holder 556 is displaced on the rotating rotation shaft 555 at a target timing and speed with a target displacement amount.
  • the tension control unit 552 preferably includes guide rollers 571 and 572, a dancer roller 573, a shift mechanism 576, and a controller 577.
  • the guide rollers 571 and 572 form a film conveying path for the film 527 from the second slitter 518 to the winding unit 551, and support the film so as to guide the film 527 to the winding unit 551.
  • the guide rollers 571 and 572 may be drive rollers having drive means, or may be so-called free rollers that rotate by contacting the film 527 being conveyed.
  • the dancer roller 573 is arranged between the guide roller 571 and the guide roller 572 which are arranged in the transport direction of the film 527.
  • the film 527 is wound around the dancer roller 573 such that the film surface on the side opposite to the film surface in contact with the guide roller 571 and the guide roller 572 contacts the dancer roller 573.
  • the shift mechanism 576 is connected to the dancer roller 573 and displaces the step roller 573 in the direction intersecting the film surface. This displacement changes the tension in the longitudinal direction of the film 527.
  • the shift mechanism 576 displaces the dancer roller 573 by a target shift amount based on the input signal.
  • the controller 577 is connected to the shift mechanism 576, and when a signal corresponding to the target value of the tension in the longitudinal direction of the film 527 is input, the displacement amount of the dancer roller 573 is calculated based on this input signal and the calculated displacement is calculated. The quantity signal is output to the shift mechanism 576.
  • the guide roller 572 on the downstream side is provided with a tension sensor (not shown) that detects tension in the longitudinal direction of the film 527.
  • a tension sensor (not shown) that detects tension in the longitudinal direction of the film 527.
  • the calculation unit 578 connected to the controller 577 and the tension sensor of the guide roller 572.
  • the calculation unit 578 obtains the difference between the tension corresponding to the detection signal and the target value of the tension, and when the difference is not 0 (zero), it corresponds to the target value of the tension.
  • the signal is output and sent to the controller 577.
  • the winding tip of the film 527 in the longitudinal direction is wound around the winding core 566 set in the winding unit 551, and the motor 558 is driven.
  • the guided film 527 is wound up by driving a motor 558. While winding the guided film 527, the core holder 556 is displaced by the shift mechanism 561 in the B direction, whereby the core 566 is reciprocated in the B direction. Due to this reciprocal movement, the guided film 527 is wound around the winding core 566 while forming a roll in which the welded portion forming region 527w is displaced in the B direction.
  • the welded portion forming region 527w of the film 527 is a region corresponding to the welded portion upper region of the casting film 539 formed on the welded portion 533w of the band 533.
  • the details of the welded area formation region 527w will be described later with reference to another drawing.
  • the shift mechanism 561 displaces the core holder 556 with a constant amplitude in the B direction, and the reciprocating motion of the core 566 in the B direction also has a constant amplitude.
  • the film 527 is wound around the winding core 566 while the welding portion formation region 527w of the film 527 is displaced with a constant amplitude in the longitudinal direction of the winding core 566.
  • the welded portion forming region 527w was wound while being displaced with a constant amplitude in the width direction of the film 527, and there was no black streak due to the overlap of the welded portion forming region 527w.
  • the welded area formation region 527w will be described with reference to FIG.
  • the casting film 539 is formed in the range extending from one side portion 533s of the band 533 to the other side portion, and therefore is also formed on the welded portion 533w.
  • the welded portion 533w has a substantially constant width.
  • the width of the welded portion 533w is about 10 mm even when the band 533 is manufactured with extremely high accuracy.
  • the width of the welded portion 533w may be uneven in the longitudinal direction or may be larger than 10 mm.
  • the welded portion 533w is a region formed as a weld bead when the narrow sheet for the side portion 533s and the wide sheet for the central portion 533c, which are raw materials for manufacturing the band 533, are welded.
  • the welded portion 533w can be visually recognized even after post-processing such as polishing after welding.
  • a region of the casting film 539 formed on the weld 533w is referred to as a weld upper region 539w. Since the weld 533w can be visually identified as described above, the weld upper region 539w is identified as a region on the weld 533w.
  • the casting film 539 is peeled off at the peeling position PP, then transported, and subjected to various treatments by the first slitter, the first tenter, the second tenter, the second slitter, and the like. By these treatments, tension is applied to the film 527 in the A direction and the B direction, and the side end portion in the B direction is cut off. As a result, the film 527 is stretched in the longitudinal direction, dried and contracted in the width direction, or stretched in the width direction and widened after being peeled at the peeling position PP and wound by the winding device. Or narrowed by excision.
  • the width of the casting film and the film 527 are usually different. Further, the position or width W539 of the welded portion upper region 539w in the width direction of the casting film and the position or width W527 of the welded portion corresponding region 527w in the width direction of the film 527 are usually different from each other.
  • the welded part corresponding region 527w at the time of winding may be specified by the following method.
  • the film 527 at the time of winding corresponds to the film 527 at the winding position PW in the present embodiment.
  • the film upstream of the winding position PW may be regarded as the film 527 at the time of winding.
  • the winding position PW is a position where the film 527 wound around the winding core 566 comes into contact with the outer peripheral surface of the film 527 already wound around the winding core 566.
  • the welded area 539w of the casting film at the peeling position PP is marked.
  • this mark will be referred to as a casting film mark, and is denoted by reference sign M539 in FIG.
  • the marking may be performed with ink having resistance to a solvent.
  • the area where the casting film mark M539 is located is specified as the welded portion corresponding area 527w.
  • the mark attached to the identified welded portion corresponding region 527w is referred to as a film mark in the following description, and is denoted by reference numeral M527 in FIG.
  • FIG. 11 shows the case where the film mark M527 is larger than the casting film mark M539
  • the film mark M527 may be smaller or may have substantially the same size depending on the conditions of the steps after stripping.
  • the ratio between the width and the length in the longitudinal direction (hereinafter simply referred to as the “width-to-length ratio”) may change.
  • the width of the film mark M527 is the width W527 of the welded portion corresponding region 527w.
  • the widths of the welded portion 533w, the welded upper region 539w, and the welded upper formation region 527w are exaggerated with respect to the widths of the band 533, the casting film 539, and the film 527. It is drawn large.
  • the welded portion corresponding region 527w is specified, and the film 527 is wound around the winding core 566 while forming a roll in which the welded portion corresponding region 527w is displaced in the B direction by the winding device 519. The generation of black streaks on the film roll due to this is prevented.
  • the cycle of displacement of the winding core 566 having the amplitude in the B direction is preferably set to the time for the traveling band 533 to make one round.
  • the time required for the band 533 to make one round is the time required for any part of the traveling band 533 to return from the specified position of the traveling path of the band 533 to the specified position, and for example, the casting position. It is the time until the part of the band 533 on the PC returns to the casting position PC again. This time can be obtained, for example, by marking an arbitrary portion of the band 533 and measuring the time from the time when the mark passes the casting position PC to the time when the mark next passes.
  • the position of the welded portion formation region 527w of the film 527 has a length obtained by the time for the band 533 to make one round.
  • a film roll having a displacement amount oscillating in the width direction can be obtained.
  • the generation of black stripes on the film roll is more reliably prevented.
  • the displacement cycle of the winding core 566 does not have to be exactly the time for the band 533 to make one round, but a certain effect can be obtained if it is approximately equal to the time for one round.
  • the cycle of displacement of the core 566 can be controlled by the cycle of displacement of the core holder 556. Therefore, when the displacement cycle of the winding core 566 is set, the controller 563 may be configured to control the shift mechanism 561 based on this input signal when the time for one revolution of the band 533 is input.
  • the amplitude of displacement of the welded portion corresponding area 527w in the B direction may be changed according to the width W527 of the welded portion corresponding area 527w. Specifically, the larger the width W527 of the welded portion corresponding region 527w, the larger the amplitude of the displacement of the welded portion corresponding region 527w in the B direction. This is particularly effective when the welded portion 533w is a substantially straight line extending in the longitudinal direction of the band 533.
  • the welded portion 533w being a substantially straight line extending in the longitudinal direction of the band 533 means that the amplitude of the welded portion 533w in the B direction is within about 2 mm.
  • the amplitude corresponds to half the displacement amount in the B direction.
  • the welded portion corresponding region 527w also corresponds to the longitudinal direction as a signature. Meander to draw a curve.
  • the film 527 is made to synchronize with the sine curve of the welded portion corresponding region 527w in the direction in which the film 527 has the same phase, the amplitude of displacement of the welded portion corresponding region 527w in the B direction can be further suppressed. Is preferable.
  • the size of the film to be wound by the winding device 519 is not particularly limited, but for example, it is preferable that the total winding length is in the range of 2000 to 10000 m and the width is in the range of 500 to 2500 mm. ..
  • FIG. 12 is a schematic view of the present invention from the drying process to the winding process, and static eliminators (blower type static eliminators) 620, 621, 622 are provided between the cooling chamber 607 and the winding chamber 610. Further, the pass rollers 623 and 624 are grounded, and the surface potential meters 625 and 626 are provided close to the pass rollers 623 and 624, respectively.
  • static eliminators blow type static eliminators
  • FIG. 13 is a schematic view of the static elimination process of the film 601 performed in the cooling chamber 607 by the blow-type static eliminator 620. As shown in FIG.
  • the blow-type static eliminator 620 generates ions by the ion generator 620b housed in the blow head 620a, sends the air from the blower 620c through the ventilation duct 620e, and outputs the ion wind from the slit 620d. It is emitted toward the film 601.
  • the pass roller 623 is grounded, and the surface electrometer 625 is used for the film 601 in contact with the pass roller 623. It is preferable to measure the surface potential. In this case, when the charge has not been eliminated to a predetermined charging potential based on the measured surface potential, the amount of ionic wind generated is controlled so that the surface potential is within an appropriate range, for example, -10 to +10V. ..
  • the film 601 coming out of the cooling chamber 607 is destaticized by using the destaticizing device 621. Further, knurling is applied to both ends of the film 601 by embossing using a knurling roller 609.
  • the static eliminator 621 is illustrated in FIG. 13 as an example provided on the upstream side of the knurling roller, but is not limited to that position.
  • the pass roller 624 is grounded, a surface electrometer is installed on the film 601 in contact with the pass roller 624, and the surface potential of the film 601 is measured. Then, the generated amount of ionic wind is controlled based on the measured surface potential so that the surface potential is within an appropriate range, for example, in the range of ⁇ 5 to +5 V, and static elimination is performed using the static elimination device 622 immediately before winding. Then, it is wound by the touch roller 612 and the winding roller 611.
  • static eliminators 621 to 623 perform erasing by blowing ionic wind, but static eliminators may be eliminated by various known static eliminators.
  • a controller (not shown) is used to control each static eliminator based on the value of the surface potential measured by the surface electrometers 625 and 626 to perform more uniform static elimination. May be omitted, and static elimination may be performed simply by various static elimination devices.
  • the acrylic resin film according to the present invention is preferably laminated with a protective film at the time of winding.
  • the protective film is a film that can be attached to and removed from the acrylic resin film. By sticking the protective film to the acrylic resin film, it is possible to prevent the surface of the acrylic resin film from being damaged or to improve the handling property.
  • the arithmetic mean roughness Ra of the surface of the protective film opposite to the surface to be bonded to the acrylic resin film is usually 0.2 ⁇ m or more, preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more, and usually 1. It is 4 ⁇ m or less, preferably 1.0 ⁇ m or less, and more preferably 0.8 ⁇ m or less.
  • the surface of the protective film that is attached to the acrylic resin film is an adhesive surface. Therefore, usually, the arithmetic average roughness Ra of the surface of the protective film, which is not the adhesive surface, falls within the above range.
  • the arithmetic mean roughness Ra of the surface of the protective film opposite to the acrylic resin film is significantly related to the generation of wrinkles and gauge bands of the acrylic resin film roll. Conceivable.
  • the multi-layer film is wound as an acrylic resin film roll, the multi-layer film is overlapped, so that the surface of the multi-layer film on the acrylic resin film side and the surface of the multi-layer film on the protective film side are in contact with each other.
  • the surface roughness of the surface of the multilayer film on the protective film side is the amount of air entrapped and discharged between the multilayer films.
  • the surface of the surface of the multilayer film opposite to the acrylic resin film is rough, the amount of air entrained between the multilayer films at the time of winding becomes large, causing deformation and wrinkling. It will be easier. Furthermore, if the surface roughness of the surface of the multilayer film opposite to the acrylic resin film is rough, the air passage becomes large and the trapped air is easily released. Then, when the thickness of the air layer changes due to the escape of air from between the multi-layer films, the multi-layer film deforms following the change in the thickness, causing wrinkles on the acrylic resin film roll. Cheap. Therefore, in the present embodiment, wrinkles are prevented by setting the arithmetic average roughness Ra of the surface of the protective film opposite to the acrylic resin film to be equal to or less than the upper limit value of the above range.
  • the gauge band is prevented by setting the arithmetic average roughness Ra of the surface of the protective film on the side opposite to the acrylic resin film to be equal to or more than the lower limit value of the above range.
  • the composition and layer structure of the protective film are arbitrary as long as the effects of the present invention are not significantly impaired.
  • the protective film may be a film having a single-layer structure having only one layer or a film having a multi-layer structure having two or more layers.
  • the thickness of the protective film is arbitrary and may be usually 10 ⁇ m or more, preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more, and usually 80 ⁇ m or less, preferably 60 ⁇ m or less, more preferably 40 ⁇ m or less.
  • the protective film preferably contains a polyolefin-based polymer.
  • the layer contains a polyolefin polymer.
  • the protective film is a film having a multilayer structure, it is preferable that at least one layer contains a polyolefin-based polymer.
  • Protective film is usually a multi-layered film having two or more layers.
  • the protective film include a film including an adhesive layer and a back layer; a film including an adhesive layer, an intermediate layer and a back layer in this order; and the like.
  • the surface of the adhesive layer forms the adhesive surface of the protective film.
  • the adhesive layer is a layer that is located on the surface of the protective film on the acrylic resin film side and can adhere to the acrylic resin film.
  • the adhesive layer is formed by including an adhesive, and the protective film can be fixed to the acrylic resin film by the adhesive force of the adhesive.
  • the adhesive examples include rubber-based adhesives, acrylic-based adhesives, polyvinyl ether-based adhesives, urethane-based adhesives, silicone-based adhesives, and the like.
  • the pressure-sensitive adhesive may be used alone or in combination of two or more at an arbitrary ratio.
  • the block copolymers represented by the general formula ABA or the general formula AB (wherein A represents a styrene polymer block and B represents a butadiene polymer) Block, an isoprene polymer block, and a polymer block selected from the group consisting of olefin polymer blocks obtained by hydrogenating these).
  • a rubber-based pressure-sensitive adhesive; an acrylic pressure-sensitive adhesive is preferable.
  • the styrene-based polymer block A has a weight average molecular weight of 12,000 or more and 100000 or less and a glass transition temperature of 20° C. or more.
  • the polymer block B selected from the group consisting of a butadiene polymer block, an isoprene polymer block, and an olefin polymer block obtained by hydrogenating these has a weight average molecular weight of 10,000 or more and 300,000 or less, and a glass transition temperature. Is preferably ⁇ 20° C. or lower.
  • the mass ratio of the A component and the B component is preferably 5/95 or more, more preferably 10/90 or more, preferably 50/50 or less, more preferably 30/70. It is as follows.
  • Examples of the block copolymer represented by the above general formula ABA include styrene-ethylene/propylene-styrene copolymer, styrene-ethylene/butylene-styrene copolymer, and hydrogenated products thereof.
  • Examples of the block copolymer represented by the general formula AB include styrene-ethylene/propylene copolymer, styrene-ethylene/butylene copolymer, and hydrogenated products thereof. it can.
  • acrylic adhesives examples include methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isobutyl (meth)acrylate, hexyl (meth)acrylate, octyl.
  • Alkyl (meth)acrylates such as (meth)acrylate, lauryl (meth)acrylate and stearyl (meth)acrylate; alkoxyalkyl (meth)acrylates such as methoxyethyl (meth)acrylate and butoxyethyl (meth)acrylate; cyclohexyl ( (Meth)acrylates such as (meth)acrylate, phenyl (meth)acrylate, benzyl (meth)acrylate, vinyl acetate, (meth)acrylamide, N-methylol (meth)acrylamide; Can be mentioned.
  • (meth)acrylate means acrylate and methacrylate
  • (meth)acryl means acryl and methacryl.
  • an acrylic monomer having a functional group is preferably copolymerized and used.
  • the acrylic monomer having a functional group include unsaturated acids such as maleic acid, fumaric acid and (meth)acrylic acid; 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2 Examples thereof include hydroxyhexyl (meth)acrylate, dimethylaminoethyl methacrylate, (meth)acrylamide, N-methylol (meth)acrylamide, glycidyl (meth)acrylate, and maleic anhydride.
  • the acrylic monomer having a functional group may be used alone or in combination of two or more at an arbitrary ratio.
  • the acrylic pressure-sensitive adhesive may contain a cross-linking agent if necessary.
  • the above-mentioned cross-linking agent is a compound that undergoes a thermal cross-linking reaction with a functional group present in the copolymer to finally form an adhesive layer having a three-dimensional network structure.
  • a cross-linking agent it is possible to improve the adhesion to other layers (intermediate layer, back layer, etc.) in contact with the adhesive layer in the protective film, the toughness of the protective film, the solvent resistance, the water resistance and the like. ..
  • cross-linking agent for example, an isocyanate compound, a melamine compound, a urea compound, an epoxy compound, an amino compound, an amide compound, an aziridine compound, an oxazoline compound, a silane coupling agent, and the like, and modified products thereof. You may use it suitably.
  • the cross-linking agents may be used alone or in combination of two or more at an arbitrary ratio.
  • the isocyanate compound is a compound having two or more isocyanate groups in one molecule and is roughly classified into an aromatic compound and an aliphatic compound.
  • aromatic isocyanate compound include tolylene diisocyanate, diphenylmethane diisocyanate, polymethylene polyphenyl polyisocyanate, naphthalene diisocyanate, tolidine diisocyanate, and paraphenylene diisocyanate.
  • Examples of aliphatic isocyanate compounds include hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, hydrogenated xylylene diisocyanate, lysine diisocyanate, tetramethylxylene diisocyanate, xylylene diisocyanate, and the like.
  • examples of modified products of these isocyanate compounds include uret products of isocyanurate compounds, isocyanurate products, and trimethylolpropane adduct products.
  • a cross-linking catalyst such as dibutyl tin laurate may be included in the pressure-sensitive adhesive to accelerate the cross-linking reaction.
  • the adhesive layer may contain a tackifying polymer.
  • the tackifying polymer include aromatic hydrocarbon polymers, aliphatic hydrocarbon polymers, terpene polymers, terpene phenol polymers, aromatic hydrocarbon-modified terpene polymers, chroman-indene polymers, and styrene-based polymers. Examples thereof include polymers, rosin-based polymers, phenol-based polymers, xylene polymers, etc. Among them, aliphatic hydrocarbon polymers such as low density polyethylene are preferable.
  • the specific type of tackifying polymer is appropriately selected from the viewpoints of compatibility with other polymers, melting point of the resin, and adhesive strength of the adhesive layer. Further, the tackifying polymer may be used alone or in combination of two or more kinds at an arbitrary ratio.
  • the amount of the tackifying polymer is, for example, preferably 5 parts by mass or more, preferably 200 parts by mass or less, and more preferably 100 parts by mass or less with respect to 100 parts by mass of the block copolymer. ..
  • the amount of the tackifying polymer is, for example, preferably 5 parts by mass or more, preferably 200 parts by mass or less, and more preferably 100 parts by mass or less with respect to 100 parts by mass of the block copolymer. ..
  • the adhesive layer may contain additives such as a softening agent, an antioxidant, a filler, and a coloring agent (dye or pigment), if necessary.
  • additives such as a softening agent, an antioxidant, a filler, and a coloring agent (dye or pigment), if necessary.
  • the additives may be used alone or in combination of two or more at an arbitrary ratio.
  • softening agent examples include process oil, liquid rubber, plasticizer and the like.
  • filler examples include barium sulfate, talc, calcium carbonate, mica, silica, titanium oxide and the like.
  • the adhesive force of the adhesive layer is preferably 0.4 N/cm or more, more preferably 0.6 N/cm or more, and 6 N/cm with respect to other layers (intermediate layer, back layer, etc.) in contact with the adhesive layer in the protective film. cm or less is preferable, and 4 N/cm or less is more preferable.
  • the thickness of the adhesive layer is usually 1.0 ⁇ m or more, preferably 2.0 ⁇ m or more, and usually 50 ⁇ m or less, preferably 30 ⁇ m or less.
  • the back layer is a layer located on the side opposite to the acrylic resin film with respect to the adhesive layer, and usually on the surface of the protective film opposite the acrylic resin film. This back layer usually does not adhere to the acrylic resin film.
  • the arithmetic average roughness Ra of the exposed surface of the back layer is usually the arithmetic average roughness Ra of the surface opposite to the adhesive surface of the protective film.
  • the back layer is made of resin.
  • the polymer contained in the resin forming the back surface layer may be a homopolymer or a copolymer. If a suitable example is given, a polyolefin polymer will be mentioned.
  • the polyolefin polymer is a homopolymer or copolymer of a chain olefin, or a copolymer of a chain olefin and a monomer copolymerizable with the chain olefin.
  • examples thereof include polyethylene, polypropylene, ethylene-propylene copolymer, propylene- ⁇ -olefin copolymer, ethylene- ⁇ -olefin copolymer, ethylene-ethyl (meth)acrylate copolymer, ethylene-methyl (meth ) Acrylate copolymers, ethylene-n-butyl(meth)acrylate copolymers, ethylene-vinyl acetate copolymers and the like.
  • examples of polyethylene include low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear low-density polyethylene.
  • examples of the ethylene-propylene copolymer include random copolymers and block copolymers.
  • examples of the ⁇ -olefin include butene-1, hexene-1, 4-methylpentene-1, octene-1, pentene-1, heptene-1 and the like.
  • polystyrene-based polymers a polymer selected from the group consisting of polyethylene, polypropylene, ethylene-propylene copolymer and propylene- ⁇ -olefin copolymer is preferable, and ethylene-propylene copolymer and propylene- ⁇ -olefin copolymer are preferable.
  • a polymer (hereinafter, these may be collectively referred to as “propylene-based copolymer”) is more preferable, and an ethylene-propylene copolymer is particularly preferable.
  • the above-mentioned polymers may be used alone or in combination of two or more kinds at an arbitrary ratio.
  • a low density polyethylene in combination with a propylene-based copolymer such as an ethylene-propylene copolymer.
  • a propylene-based copolymer such as an ethylene-propylene copolymer.
  • the ethylene content as a comonomer is preferably in the range of 3 to 7 mol %.
  • the ethylene content may be reduced and the heat resistance may be appropriately selected so as to obtain desired heat resistance.
  • the melt flow rate of the propylene-based copolymer at 230° C. (hereinafter sometimes referred to as “MFR” as appropriate) is preferably in the range of 5 g/10 minutes to 40 g/10 minutes. Particularly, those having an MFR in the range of 20 g/10 min to 40 g/10 min are more preferable because they can be extruded at a low temperature and the surface of the back layer is easily roughened by combining with low density polyethylene.
  • the low-density polyethylene constituting the back layer has an MFR at 190° C. of 0.5 g/10 minutes to 5 g/10 minutes.
  • the low-density polyethylene preferably has a density of 0.910 g/cm 3 to 0.929 g/cm 3 .
  • the density of the low-density polyethylene is equal to or higher than the lower limit value of this range, it is easy to adjust the surface roughness of the surface of the back layer to an appropriate range.
  • the content is set to the upper limit or less, it is possible to prevent the resin from being detached from the protective film due to rubbing with a roll used for conveyance (for example, a metal roll, a rubber roll, etc.), and suppress generation of white powder.
  • the polymer contained in the back layer may be different from the polymer contained in the adhesive layer, but it is preferable to use the same polymer.
  • the resin forming the back layer unless significantly impairing the effects of the present invention, for example, talc, stearic acid amide, fillers such as calcium stearate, lubricants, antioxidants, ultraviolet absorbers, pigments, antistatic agents, Additives such as nucleating agents may be included.
  • the additives may be used alone or in combination of two or more at an arbitrary ratio.
  • the thickness of the back layer is a ratio (adhesive layer/back layer) to the thickness of the adhesive layer, which is usually 1/40 or more, preferably 1/20 or more, and usually 1/1 or less, preferably 1/2 or less. Is.
  • an intermediate layer may be provided between the adhesive layer and the back layer.
  • the intermediate layer is usually formed of a resin, but it is preferable that the intermediate layer be formed of a resin containing a polyolefin-based polymer.
  • Examples of the polyolefin-based polymer contained in the intermediate layer include low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear low-density polyethylene, ethylene- ⁇ -olefin copolymer, polypropylene, ethylene-propylene copolymer. (Random copolymer and/or block copolymer), ⁇ -olefin-propylene copolymer, ethylene-ethyl(meth)acrylate copolymer, ethylene-methyl(meth)acrylate copolymer, ethylene-n-butyl Examples thereof include (meth)acrylate copolymers and ethylene-vinyl acetate copolymers.
  • the polyolefin-based polymers may be used alone or in combination of two or more at an arbitrary ratio.
  • the polyolefin-based polymer contained in the intermediate layer is preferably a different type of polyolefin-based polymer from the polymers contained in the adhesive layer and the back layer.
  • the intermediate layer may include a material forming the adhesive layer and a material forming the back layer, if necessary.
  • a portion where the film thickness at the end is not uniform is slit by a slitting process or the like and discarded.
  • the portion thus removed as a raw material for the intermediate layer the amount of raw material used can be reduced.
  • the intermediate layer may be, for example, a filler such as talc, stearic acid amide, calcium stearate, a lubricant, an antioxidant, an ultraviolet absorber, a pigment, an antistatic agent, a nucleating agent, etc., unless the effect of the present invention is significantly impaired.
  • the additive may be included.
  • the additives may be used alone or in combination of two or more at an arbitrary ratio.
  • the thickness of the intermediate layer is usually in the range of 13 to 70 ⁇ m.
  • the protective film may be manufactured, for example, by the following manufacturing methods (i) to (iii).
  • the adhesive layer and the back layer or the intermediate layer are firmly adhered to each other, and the adhesive residue on the acrylic resin film is hard to occur, and the manufacturing process Is particularly preferable because it has advantages such as low cost because it is simplified.
  • adhesive residue refers to a phenomenon in which the adhesive remains on the acrylic resin film after the protective film is peeled off.
  • a polyolefin polymer such as branched low-density polyethylene or polypropylene is often used as the back layer.
  • the adhesive layer for example, vinyl acetate, linear low-density polyethylene, metallocene linear low-density polyethylene, etc. are usually used. Of these, from the viewpoint of avoiding adhesive residue and increase in adhesive strength over time, linear low-density polyethylene-based pressure-sensitive adhesives are often used rather than vinyl acetate-based adhesives.
  • polyethylene terephthalate and a polyolefin polymer are usually used as the back layer in many cases, and the adhesive layer has a rubber-based adhesive and an acrylic adhesive. Is often used. Above all, it is preferable to use polyethylene terephthalate for the back layer rather than a polyolefin polymer when foreign matters in the protective film are concerned.
  • polyethylene terephthalate for the back layer rather than a polyolefin polymer when foreign matters in the protective film are concerned.
  • the production method (ii) when the production is performed in a clean room, a high quality protective film free from foreign matter can be obtained.
  • the surface of the back layer is deformed to have a predetermined arithmetic mean roughness Ra.
  • Concavities and convexities may be formed.
  • a shaping roll having irregularities a nip molding method in which the protective film immediately after extrusion obtained in the coextrusion molding method is pressed to transfer the irregularities to the surface of the back layer;
  • the step of deforming the surface of the back layer may be performed before or after the back layer and the adhesive layer are bonded together.
  • irregularities may be formed on the surface of the back layer by adjusting the composition of the back layer.
  • a method of forming fine particles having a predetermined particle size in the back layer to form unevenness in the back layer a method of forming unevenness in the back layer by adjusting the compounding ratio of materials such as resin forming the back layer, etc. are listed.
  • a nip forming method using a shaping roll having unevenness is preferable, and a protective film using a mirror-shaped roll and a shaping roll having unevenness. Is particularly preferable.
  • each mirror roll and shaping roll may be, for example, metal, rubber, resin, or the like. These are selected so that the desired uneven shape can be transferred to the surface of the back layer of the protective film.
  • the hardness of the shaping roll is preferably equal to or higher than that of the mirror-finished roll.
  • the protective film may have a surface property equivalent to that of a mirror-finished roll, and the pressure of the protective film may be narrowed via a resin film softer than the shaping roll.
  • the mirror surface roll and the shaping roll can control the temperature independently.
  • the temperature of the mirror roll is preferably in the range of 40 to 160° C.
  • the temperature of the shaping roll is preferably in the range of 60 to 200° C.
  • the temperature of the mirror roll is more preferably in the range of 60 to 130°C, and the temperature of the shaping roll is more preferably in the range of 80 to 180°C.
  • the above-mentioned arithmetic mean roughness Ra of the surface of the protective film opposite to the acrylic resin is the pressure of the protective film, the mirror surface roll and the shaping roll at the time of pressing, the roll speed, and the pressing of the protective film.
  • the pressure at that time and the materials of the surfaces of the mirror-finished roll and the shaping roll can be adjusted by appropriately selecting them according to the characteristics of the material forming the protective film.
  • the mirror roll and shaping roll temperatures are preferably (Tg-60) to (Tg+20)° C. with respect to the glass transition temperature (Tg) of the resin forming the back layer.
  • the surface of the protective film may be subjected to a surface modification treatment, if necessary.
  • a surface modification treatment include energy ray irradiation treatment and chemical treatment.
  • the surface of the protective film may be printed if necessary.
  • the multi-layer film produced in this way comprises an acrylic resin film and a protective film. Further, in the multilayer film, the acrylic resin film is usually exposed on one surface and the protective film is exposed on the other surface. At this time, an optional layer may be further provided between the acrylic resin film and the protective film.
  • the arbitrary layer may be one layer or two or more layers. Further, when there are two or more arbitrary layers, these layers may be the same or different.
  • the width of the multilayer film is preferably 1500 mm or more, more preferably 1800 mm or more.
  • a film roll formed by winding a wide film is likely to have wrinkles or gauge bands.
  • the multilayer film according to the present embodiment has such a wide width and can realize a good winding appearance when wound.
  • the upper limit of the width of the multilayer film is usually 2500 mm or less.
  • the multilayer film is wound into a roll to obtain an acrylic resin film roll.
  • a winding device including a winding roll and a pressure roller is used.
  • the acrylic resin film roll is obtained by rolling the multi-layer film around the winding roll while pressing it with a pressure roller to apply the surface pressure to the multi-layer film.
  • the pressure P (N/m) of the contact roller is expressed by the following formula (4-1). It is preferable to satisfy.
  • the pressure P of the contact roller is set according to the surface roughness of the surface of the protective film opposite to the acrylic resin film.
  • the pressure P of the contact roller is increased to entrain the air. Is preferably suppressed. Furthermore, if the surface roughness of the surface of the protective film opposite to the acrylic resin film is rough, the amount of air entrained at the time of winding increases, so that the amount of air entrained due to the change in the pressure P of the contact pressure roller The changes will also increase. Therefore, in the case where the surface roughness of the surface of the protective film opposite to the acrylic resin film is rough, compared with the case where the surface roughness of the surface of the protective film opposite to the acrylic resin film is smooth.
  • the suitable range of the pressure P of the contact roller is narrowed. Therefore, the pressure P of the contact roller is within the range of the arithmetic mean roughness Ra of the surface of the protective film on the side opposite to the acrylic resin film, in the range corresponding to Ra as in the above formula (4-1). It is preferable to have.
  • the winding speed of the multilayer film is usually 5 m/min or more, preferably 10 m/min or more, usually 50 m/min or less, preferably 45 m/min or less, more preferably 40 m/min or less.
  • the manufacturing efficiency can be increased, and when the winding speed is equal to or lower than the upper limit value, the amount of air entrained can be suppressed.
  • the number of windings of the acrylic resin film roll is not limited, but it is usually 40 times or more, preferably 60 times or more, and usually 27,000 times or less, preferably 13,000 times or less.
  • the outer diameter of the acrylic resin film roll is not limited, but is usually 160 mm or more, preferably 190 mm or more, and usually 2300 mm or less, preferably 1200 mm or less.
  • FIG. 14 is a perspective view showing a roll-shaped film and a packaging material
  • FIG. 15 is a perspective view showing a package body in which the roll-shaped film is wrapped with the packaging material.
  • the roll-shaped film 712 has a cylindrical core 716, and the long film 714 is wound around the core 716 in a roll shape.
  • the width dimension of the winding core 716 is formed larger than the width dimension of the film 714, and the film 714 is wound around the winding core 716 at a substantially central position in the width direction. Therefore, in the roll-shaped film 712, both ends of the winding core 716 are projected from the film 714.
  • the film 714 has at least one photocurable resin layer on its surface, as described later.
  • the film 714 has minute unevenness also called embossing or knurling at both end positions in the width direction, and for example, for the purpose of preventing end face deviation and winding looseness when the film is wound into a roll, the film is high.
  • the thickness is 5 to 50 ⁇ m or the film thickness is 0.05 to 0.3.
  • the packaging material 718 is formed in a cylindrical shape, and its width dimension is formed larger than the width dimension of the film 714.
  • the inner diameter of the packaging material 718 is formed larger than the outer diameter of the roll-shaped film 712, so that the roll-shaped film 712 can be covered with the packaging material 718.
  • the packaging material 718 may be a rectangular sheet, and in this case, the roll-shaped film 712 is wrapped with the packaging material 718 into a cylindrical shape, and then the edges of the packaging material 718 are attached with an adhesive tape or the like. It is good to stick and fix with.
  • the packaging material 718 an outer surface having a solar reflectance of 70% or more (JIS-R-3106 compliant) is used.
  • a packaging material 718 in which aluminum is vapor-deposited on the outer surface of polyethylene (PET) is used.
  • the packaging material 718 may have a solar radiation reflectance of 70% or more, and may be a metal vapor-deposited metal other than aluminum or a metal foil such as an aluminum foil.
  • the solar radiation reflectance of the packaging material 718 is more preferably 80% or more, further preferably 90% or more.
  • the packaging material 718 it is preferable to use one having a moisture vapor transmission rate of 5.4 g/m 2 ⁇ day or less under an environment of 40° C. and 90% RH.
  • the rate of humidity change inside the package 710 can be suppressed to 4%/min or less.
  • the packaging material 718 configured as described above is covered with the roll-shaped film 712, and the rubber bands 720 are externally fitted to both ends thereof. Both ends of the packaging material 718 are fixed to the outer peripheral surface of the winding core 716 by the rubber band 720 in a state of being in close contact with each other. As a result, the packaging body 710 in which the roll-shaped film 712 is wrapped with the packaging material 718 is formed.
  • the method of fixing the packaging material 718 is not limited to the rubber band 720, and the packing material 718 may be fixed by being attached to the core 716 with an adhesive tape or the like.
  • 16(A) and 16(B) are schematic diagrams illustrating a failure of the roll-shaped film 712 in a conventional package (that is, a package packaged with a packaging material having a solar radiation reflectance of less than 70%). ..
  • the "beco failure” means that the end of the film 714 in the width direction is tightly wound by the knurling (embossing) 714A, while the center is deformed because the winding is loose. It is a phenomenon, and it tends to occur as the tension at the time of winding is increased. For this reason, conventionally, it is not possible to increase the winding tension in the former processing device, and it is impossible to cope with the lengthening of the film 714 and the increase of the transport speed.
  • the packaging body of the present embodiment is packaged by the packaging material 718 having a solar reflectance of 70% or more. Therefore, even when the sunlight hits the packaging body 710, most of the sunlight is reflected by the packaging material 718 and is not absorbed by the packaging body 710. Therefore, a temperature difference and a humidity difference may occur inside the packaging body 710. It can be prevented. As a result, it is possible to prevent the film 714 from deforming and to cause a bead failure, and it is possible to prevent a defect in the package 710 even in the case of the roll-shaped film 714 having a high winding tension. Therefore, according to the present embodiment, since the winding tension can be increased in the processing line before packaging, it is possible to lengthen the film 714 and increase the transport speed.
  • double-sided tape is for fixing the leading end of the film to the winding core.
  • the double-sided tape 831 has, for example, one surface (rear surface) of the strip-shaped support 831a made of PET (polyethylene terephthalate) and the first adhesive layer 831b on the winding core side on the other surface (front surface).
  • a second adhesive layer 831c on the film side is formed.
  • the thickness t02 of the double-sided tape 831 is in the range of 10 to 60 ⁇ m, preferably 10 to 30 ⁇ m, and more preferably 10 to 15 ⁇ m.
  • Nitto Denko model: 5601, 5603, 5605, 5606
  • the width W02 of the double-sided tape 831 is in the range of 25 to 150 mm, preferably in the range of 40 to 90 mm, and more preferably in the range of 40 to 60 mm. If it is less than 25 mm, the attachment will be poor, and if it exceeds 150 mm, wrinkles are likely to occur on the tape, both of which are not preferable.
  • the adhesive layers 831b and 831c of the double-sided tape 831 are formed on the entire surface of the support 831a.
  • the adhesive layers 831b and 831c have the same composition and the same thickness, but may have different compositions and different thicknesses.
  • a peeling tape is attached to the formation surface of the second adhesive layer 831c. The peeling tape is peeled off after winding the film 815 after the double-sided tape 831 is attached to the winding core 823 by the first adhesive layer 831b.
  • the cushioning material 832 is made of, for example, polyester or non-woven fabric, and is formed thinner than the thickness of the film 815 to be wound. Further, one having elasticity more than the double-sided tape 831 is used.
  • the cushioning material 832 may not have an adhesive layer itself, and in this case, it is attached to the winding core 823 via the double-sided tape 831.
  • the width W03 of the cushioning material 832 is in the range of 5 to 30 mm, preferably in the range of 8 to 18 mm, and more preferably in the range of 8 to 12 mm. If it is less than 5 mm, the sticking to the winding core may be poor, and if it exceeds 30 mm, the cut image cannot be improved, which is not preferable.
  • the width W03 of the cushioning material 832 is determined based on the circumference length of the winding core, it is preferably 2% or less of the circumference length of the winding core.
  • the thickness t03 of the cushioning material 832 varies depending on the number of cushioning materials used. For example, as shown in FIGS. 18 to 21 and FIG. 23 to be described later, when the number of the cushioning materials 832 and 833 is one, the thickness of the film 815 is in the range of 10 to 90%, preferably 25 to 75%. The range is more preferably 35 to 65%. If the thickness of the cushioning material 832 is less than 10% or more than 90% of the thickness of the film 815, the effect of improving the cut-out appearance decreases. When there are a plurality of cushioning materials 841 to 844, the thickness may be gradually reduced from the cushioning materials 841 to 844 near the film front end 815a. In this case, it is desirable that the difference in thickness between the cushioning materials 841 to 844 is suppressed to 5% or more and 30% or less of the thickness of the film 815.
  • the double-sided tape 831 is not used, and the cushioning material 833 is directly attached to the winding core 823. Pasted on.
  • the same constituent members are denoted by the same reference numerals, and duplicate description is omitted.
  • 21 and 22 show the third embodiment, in which two kinds of cushioning materials 841 and 842 having different thicknesses are arranged side by side in the winding direction of the film 815.
  • the thicknesses t12 and t22 of both the first cushioning material 841 near the tip 815a of the film 815 and the second cushioning material 842 far from the tip 815a are not more than the thickness t01 of the polymer film 15 and t12>t22.
  • the widths W12 and W22 of the first buffer material 841 and the second buffer material 842 are in the range of 0.5 to 6.0% of the circumferential length of the winding core.
  • the bending deformation of the step mark is performed in two steps as compared with the first embodiment. Can be made smaller, and the generation length of the step mark becomes shorter than that of the single cushioning material 832 of the first embodiment.
  • a cushioning material 843 having adhesive layers 843b and 844b on at least one surface of the cushioning material bodies 843a and 844a. , 844 are used.
  • the cushioning materials 843 and 844 are directly attached to the winding core 823 without using the double-sided tape 831.
  • the elastic modulus (Young's modulus) of each of the cushioning materials 841 to 844 may be changed, or the elastic modulus (Young's modulus) of each cushioning material 841 to 844 may be changed.
  • the compression deformation amount of the second cushioning materials 842 and 844 moving away from the film front end 815a may be made larger than the compression deformation amount of the first cushioning materials 841 and 843. In this case, the two cushioning materials can suppress the occurrence of a step due to the influence of the leading edge of the film, and can further suppress the cut image.
  • the relationship between the elastic modulus and the thickness of the cushioning materials 832, 833, 841 to 844 is preferably changed according to the elastic modulus of the film 815 to be wound.
  • the elastic modulus of the film 815 is Ep and the elastic modulus of the cushioning material is Eb
  • the film thickness is tp
  • the cushioning material thickness is tb, (tp /2) ⁇ tb ⁇ tp.
  • Ep>Eb tp ⁇ tb ⁇ 2 ⁇ tp.
  • the gap G01 from the film front end 815a to the cushioning material 832 is in the range of 0.1 to 20 mm, preferably 0.1 to 10 mm, and more preferably 0.1.
  • the range is up to 8 mm. If it is less than 0.1 mm, the film 815 easily overlaps with the cushioning material 832. If it exceeds 20 mm, a step is formed between the film front end 815a and the cushioning material 832, which may cause a cut end image, which is not preferable.
  • the cushioning material 832 reduces the influence of the step of the film 815 wound next. This prevents the film 815 from being extremely bent.
  • the next film is wound up in the same manner, but in any case, extreme bending deformation does not occur due to the influence of the cushioning material 832, and the occurrence of cut edges is suppressed.
  • the sticking of the double-sided tape 831 and the adhesion of the front end of the film with the double-sided tape 831 may be performed manually or using a film cutting device.
  • a film reservoir (not shown) is provided immediately before the winding device 813. This film reservoir temporarily stores the film 815 for the time required for cutting the film 815 and fixing it to the winding core 823, and cutting the film 815 and winding the film 815 around the winding core 823 during the storage. ..
  • a film cutting device is used to cut the film 815 and fix it to the winding core 823.
  • the position of the double-sided tape 831 on the winding core 823 is automatically detected, the film 815 is cut based on this detection timing, and the cut film front end 815a becomes a predetermined gap G01 with respect to the cushioning material 832. As described above, the leading end of the film is bonded to the second adhesive layer 831c.
  • the double-sided tape 831 and the cushioning materials 832, 833, 841 to 844 were attached to the winding core 823 in advance, the double-sided tape 831, the cushioning materials 832, 833, 841 to the film cutting drum on the film cutting device side. 844 is attached, and when the film 815 is cut by the film cutting drum, the double-sided tape 831 and the cushioning materials 832, 833, 841 to 844 are attached to the winding core 823 to wind the film 815. Good.
  • the first end on the side closer to the film front end 815a with respect to one cushioning material is omitted.
  • the thickness may be gradually reduced from the edge to the second end farther from the edge. Also in this case, the film wound next by the cushioning material does not undergo extreme bending deformation, and the occurrence of cut edges is suppressed.
  • the inclination angle ⁇ 1 of the film front end 815a with respect to the film width direction reference line BL1 is preferably in the range of ⁇ 30° ⁇ 1 ⁇ 30°, more preferably ⁇ 20° ⁇ 1 ⁇ 20°. , And more preferably ⁇ 10° ⁇ 1 ⁇ 10°.
  • the double-sided tape 831 and the cushioning materials 832, 833, 841 to 844 have the same inclination angle according to the inclination angle ⁇ 1 of the film tip 815a.
  • the tape is attached to the winding core 823 at ⁇ 1.
  • the width of the film 815 is not particularly limited, but it is preferably 600 mm or more, more preferably 1100 to 2500 mm. It is also effective when the width of the film 815 is larger than 2500 mm.
  • the thickness of the film 815 is preferably in the range of 10 to 200 ⁇ m, more preferably in the range of 10 to 150 ⁇ m, and further preferably in the range of 15 to 100 ⁇ m.
  • the length of the film 815 is preferably 2000 m or more, more preferably 2500 to 10000 m.
  • the winding radius of the film roll is preferably 450 mm or more, more preferably 650 to 920 mm.
  • the winding core used for winding the acrylic resin film according to the present invention preferably satisfies the following formula (1).
  • the winding core used in the winding step of winding the film around the winding core in a roll shape has an elastic modulus capable of suppressing flexure according to the width and winding length of the winding film. Is. Therefore, it is possible to obtain a film roll that can suppress the occurrence of back deformation of the horse even if left for a long time. Therefore, the obtained film roll can be used as a film in which the sticking of the films due to the back deformation of the horse is suppressed.
  • the acrylic resin film according to the present invention it is possible to obtain a film roll which can be fed out and supplied with a film having a uniform thickness and in which sticking of the resin films due to back deformation of the horse is suppressed.
  • the present inventor presumed that the back deformation of the horse in the film roll having the film wound on the winding core is caused by the winding core or the winding core bending due to the load of the winding film or the winding core. ..
  • the deflection ⁇ of the winding core is generally expressed by the following equation (2), since the winding core is held while being supported by both ends of the winding core.
  • 5 ⁇ a 4 /384EI (2) ( ⁇ : deflection of winding core [mm], ⁇ : load per unit length of winding core [N/mm], a: width of resin film [mm], E: elastic modulus of winding core [MPa] ], I: second moment of area [mm 4 ] of the winding core)
  • the load ⁇ per unit length of the winding core is generally expressed by the following formula (3) because the load applied to the winding core is a distributed load.
  • the load P of the winding core is a value that is correlated with the total mass A of the winding core and the resin film in the state where the resin film is wound. Replaced with. Then, as a result of diligent examination of the conditions capable of sufficiently suppressing the occurrence of back deformation of the horse, the relationship of the above formula (1) was found.
  • the elastic modulus of the winding core is an elastic modulus capable of suppressing the flexure according to the width and winding length of the resin film to be wound. Therefore, even if the resin film is wound into a roll and left for a long period of time, the back deformation of the horse can be suppressed.
  • the elastic modulus of the winding core is defined by the total mass A of the winding core and the resin film, the width a of the resin film, and the second moment of inertia I of the winding core, as described above. Therefore, it mainly depends on the width and winding length of the resin film to be wound. Therefore, the elastic modulus of the winding core can be set based on the width and the winding length of the resin film to be wound so as to sufficiently suppress the occurrence of back deformation of the horse. Therefore, it is possible to sufficiently suppress the occurrence of back deformation of the horse without increasing the manufacturing cost of the winding core more than necessary, which is preferable.
  • the secondary moment of area of the winding core is generally a value represented by the following formula (5).
  • the second moment of area is a value that depends on the shape of the winding core, as can be seen from the following formula (5).
  • the winding core is not particularly limited in material as long as it has an elastic modulus within the above range.
  • it may be made of resin or metal.
  • FRP fiber reinforced resin
  • the fiber-reinforced resin layer is a resin layer reinforced with fibers, the elastic modulus can be easily adjusted by the strength and content of the fibers contained. Therefore, the elastic modulus of the winding core can be easily adjusted within the above range.
  • the winding core 11 including such a fiber-reinforced resin layer may be, for example, one fiber-reinforced resin layer only, or two different fiber-reinforced resin layers laminated together. It may be present, or may be a laminate of three or more different fiber reinforced resin layers. Further, it may be a laminate of a fiber-reinforced resin layer and a resin layer containing no fiber.
  • the shape of the winding core is preferably cylindrical. If the elastic modulus of the winding core is within the above range, it is preferable that the hollow core has a hollow shape because the weight can be reduced. It is also preferable in that the winding core can be easily attached to the rotating device.
  • the thickness of the winding core is preferably, for example, in the range of 5 to 15 mm, although it varies depending on the elastic modulus of the winding core.
  • the method for manufacturing the winding core is not particularly limited, but the winding core can be manufactured by, for example, a filament winding method, a sheet winding method, or the like.
  • the filament winding method is a method of forming a cylindrical fiber-reinforced resin layer by winding filamentous fibers impregnated with a liquid resin around a predetermined mold, drying or curing the resin, and then demolding. ..
  • the sheet winding method is to wind a sheet-shaped fiber (prepreg) impregnated with a liquid resin around a predetermined mold, dry or cure the resin, and then demold to form a cylindrical fiber-reinforced resin layer. Is a method of forming. More specifically, the following method is used.
  • FIG. 25 is a schematic diagram for explaining a method of manufacturing a winding core by the filament winding method.
  • the mandrel 931 to be a mold is attached to the filament winder 932, and the resin that is the raw material of the fiber reinforced resin layer is charged into the resin tank 933.
  • the resin here is a resin solution or a liquid resin before curing.
  • the fibers that are the raw material of the fiber reinforced resin layer are sequentially supplied from the roller 934 around which the fibers are wound by rotating the mandrel 931 by the filament winder 932. Then, the fiber is wound around the mandrel 931 by determining the winding position by the guide 935.
  • the fibers pass through the resin tank 933 and are impregnated with the resin before being wound around the mandrel 931.
  • the resin impregnated fibers are wrapped around the surface of the mandrel.
  • the fiber-reinforced resin layer is formed on the mandrel by drying or curing the resin. Then, the mandrel is pulled out from the fiber reinforced resin layer to obtain the target molded body.
  • FIG. 26 is a schematic diagram for explaining a method of manufacturing a winding core by the sheet winding method.
  • the mandrel 941 which is a mold is placed on the support rollers 944 and 945.
  • the mandrel 941 is rotated by rotationally driving the support rollers 944 and 945.
  • the touch roller 943 presses the surface of the mandrel 941 and is rotated by the rotation of the mandrel 941.
  • the film roll (prepreg) 942 is wound around the mandrel 941 while being pressed against the mandrel 941 by the touch roller 943 as shown in FIG.
  • the fiber-reinforced resin layer is formed on the mandrel by drying or curing the resin.
  • the mandrel is pulled out from the fiber reinforced resin layer to obtain the target molded body.
  • any form of fiber material such as yarn, roving, woven fabric, non-woven fabric, knitted fabric, braid and cloth can be used.
  • any fiber generally contained in the fiber reinforced resin can be used without any particular limitation. Examples thereof include glass fiber, carbon fiber, aramid fiber, and ceramic fiber. Among these, glass fibers and carbon fibers are preferable, and carbon fibers are more preferable, from the viewpoint of obtaining one having a high elastic modulus.
  • any resin generally contained in fiber reinforced resins can be used without particular limitation.
  • polyester resin, unsaturated polyester resin, epoxy resin and the like can be mentioned.
  • curable resins such as unsaturated polyester resins and epoxy resins are preferable from the viewpoint of obtaining a winding core that is stable against heat.
  • two or more fiber reinforced layers are laminated, for example, when two different fiber reinforced resin layers are laminated, different fibers and resins may be used for each layer, or the same fibers and resins may be used. May be. Further, two or more fiber-impregnated fibers may be wound and then dried or cured at the same time to form two or more fiber-reinforced layers, or resin-impregnated fibers may be wound and dried or cured. After that, two or more fiber-reinforced layers may be formed by separately winding fibers impregnated with resin and drying or curing the fibers.
  • the method of adjusting the elastic modulus of the winding core is not particularly limited, but it can be adjusted by changing the material of the winding core. Further, in the case of a winding core having a fiber reinforced layer, as the fibers to be used, using high-strength fibers such as carbon fibers and aramid fibers, by increasing the winding amount, or by increasing the fiber content, The elastic modulus can be increased. Further, the elastic modulus can be adjusted also by the resin. Furthermore, in the case where a resin layer containing no fiber is laminated on the surface of the fiber reinforced resin layer, the elastic modulus can be adjusted also by the resin of the surface resin layer. Therefore, by appropriately adjusting the composition of the fiber-reinforced resin layer or the surface resin layer, the elastic modulus of the winding core can be adjusted within the above elastic modulus range.
  • the film slitting device includes a disc-shaped rotating upper blade and a roll-shaped rotating lower blade.
  • the disk-shaped rotary upper blade of the slitting device has a diameter range of 30 to 300 mm and a thickness of the cut portion of 0.3 to 3 mm, and the rotary upper blade is made of super steel It is either steel granules, SKD (alloy tool steel), or SKH (high speed tool steel). Further, it is preferable that the toe-in angle of the upper blade is in the range of 30 to 90 degrees.
  • the roll-shaped rotating lower blade has a roll diameter in the range of 75 to 200 mm, and the roll material of the rotating lower blade is one of super steel, super steel fine particles, SKD, and SKH.
  • the film slitting device may be composed of only a disc-shaped rotating upper blade.
  • the disk-shaped rotary upper blade of the slitting device has a diameter range of 30 to 300 mm and a thickness of the cut portion of 0.3 to 3 mm, and the rotary upper blade is made of super steel, It is either steel granules, SKD, or SKH.
  • the temperature around the slitter is in the range of 20 to 50° C. and the humidity is in the range of 50 to 70% RH.
  • the suction device in which the periphery of the upper blade is boxed and suction is performed in a wind velocity range of 0.8 to 10 m/sec.
  • the suction position of the end film is on the downstream side in the base transport direction from the slitting point.
  • a mechanism for conveying the slit end film (film fragment) to the next cutting step for example, a mechanism for nipping and/or sucking the slit end film.
  • a mechanism for nipping and/or winding the slit end film are preferred.
  • the draw ratio that is, the value of the speed of the nip and/or the film to be wound is divided by the speed of the slit end film to be in the range of 0.8 to 1.5.
  • suction pressure in the range of ⁇ 1000 to ⁇ 100 Pa.
  • nip pressure within a range of 0.1 to 17 MPa.
  • the width of the slit end film is in the range of 20 to 150 mm and the thickness is in the range of 30 to 150 ⁇ m.
  • the material of the masking base is not particularly limited as long as it can protect the film, and examples thereof include polyethylene terephthalate (PET) film, polyethylene (PE) film and polypropylene (PP) film.
  • PET polyethylene terephthalate
  • PE polyethylene
  • PP polypropylene
  • the charge amount of the slit end film in the range of 0 to ⁇ 10 kV. Therefore, it is preferable to provide a static eliminator around the upper blade.
  • the static eliminator for example, any one of a static eliminator bar, a static eliminator, and a static eliminator is used.
  • Edge slit film (film fragments) is preferably treated with an edge cleaner.
  • the product film after slitting be treated with a web cleaner to remove the cutting chips.
  • the film thickness formed at both ends in the width direction is measured.
  • the film thickness at both ends in the width direction is increased in this manner because a force pulling the resin in the width center direction acts on the resin when the resin is pushed out from the slit of the T-die, which is a so-called neck-in phenomenon. It is due to.
  • the control unit calculates the average film thickness t in the range of 10% of the total width from both ends in the width direction of the film based on the measurement result of the film thickness. It is preferable that the heat gun is set so as to heat at least a part of the film portion H having the film thickness of. At the same time, the output of the heat gun is adjusted so that the temperature T of at least a part of the film portion H to be heated is 80 ⁇ T ⁇ Tg+50[° C.] (Tg: glass transition temperature [° C.] of resin).
  • This heating is to relieve the stress generated at both ends of the film by thermal deformation.
  • the force pulling the film in the width center direction acts to generate stress.
  • the above heating is for relieving this stress.
  • this heating it is preferable to perform this heating before the stretching step in addition to the slit step, because the above-mentioned longitudinal wrinkles and distortion can be effectively suppressed. This is because longitudinal wrinkles and distortion are emphasized by stretching the film in the longitudinal direction in the stretching step. Further, it is desirable that this heating be performed immediately after the resin is cooled and solidified by the cooling roller.
  • the temperature T of the film due to this heating is less than 80° C., the thermal deformation of the film F is small and the effect of relaxing the stress is insufficient, and if it is higher than Tg+50° C., the heated portion of the film F is The film may melt and adhere to the roller or break in the transport direction. Therefore, by setting the temperature T to 80 ⁇ T ⁇ Tg+50 [° C.], it is possible to sufficiently heat-deform the film while preventing melting at the heated portion.
  • the temperature T is more preferably 80 ⁇ T ⁇ Tg+30 [° C.], and further preferably 100 ⁇ T ⁇ Tg+10 [° C.].
  • the portion from the heated portion of the film portion H to the end of the film is removed by cutting in the longitudinal direction of the film with a rotary cutter in the heating portion.
  • the formed and heated film is stretched in the longitudinal direction by a longitudinal stretching machine (stretching step).
  • the film is conveyed by a plurality of rollers that are sequentially driven so that the peripheral speed gradually increases, so that the film is stretched in the longitudinal direction (conveying direction). To do. At this time, the rollers are driven so that the difference in peripheral speed between the rollers where the film is heated by the IR heater is the largest.
  • the film before being stretched in the longitudinal direction is heated at least a part within a predetermined range from both ends in the width direction of the film, longitudinal wrinkles and strain in the longitudinal direction are stretched.
  • the outermost end portion of the film F formed to be the thickest and having the strongest conveyance tension acts. Do not heat. As a result, it is possible to prevent breakage of the film F due to the film F being partially stretched by heating the outermost end.
  • a tenter may be provided downstream of the longitudinal stretching machine and the film may be stretched in the width direction by the tenter.
  • the in-line film thickness meter may be of a contact type or a non-contact type, but is a non-contact type using a laser or X-ray because it is easy to measure in a line. Preferably.
  • the heat gun does not have to heat the film with hot air, but may heat the film while contacting it with a heat roller or the like, or heat it by irradiating it with an IR heater or the like.
  • the rotary cutter does not have to be a rotary type, but may be a fixed type such as a single-edged cutter.
  • a laser processing step (a step of irradiating a laser beam to process the film, hereinafter sometimes simply referred to as laser processing) is adopted.
  • laser processing a step of irradiating a laser beam to process the film
  • there is little damage to the film such as melting of the cut portion and defective appearance of the cut portion, and the shape of the cut portion is not disturbed even if the laser intensity changes to some extent.
  • the step of forming unevenness on both ends in the width direction of the film may be a step of processing by laser irradiation instead of the step of processing with the embossing roller on which the conventional unevenness is formed. Can be formed.
  • the productivity of the film is excellent.
  • the laser processing step is not limited to the cutting processing and the embossing processing as described above, but may be any laser processing performed during the film manufacturing process. Laser processing such as processing for roughening the surface or processing for providing grooves or irregularities may be used.
  • the compound contained in the film is a compound that absorbs light in the wavelength region of 4 to 25 ⁇ m.
  • the wavelength of the laser light is 9.3 to 10.6 ⁇ m, so compounds that absorb wavelengths in this range are preferable.
  • the compound contained in the film or coated on the film surface has a wavelength range of 0.2 to 0.4 ⁇ m. It is a compound that absorbs light.
  • UV lasers there are KrF excimer laser (wavelength 0.248 ⁇ m), YAG-FHG laser (wavelength 0.266 ⁇ m), YAG-THG laser (wavelength 0.355 ⁇ m), etc. Compounds that absorb are preferred.
  • the method of inclusion includes coating, spraying, etc., but other methods may be used, and the means for inclusion is not particularly limited.
  • the amount of the compound used can be reduced by, for example, coating the laser-irradiated portion with the compound, and the influence of the compound on the physical properties (color change, transparency, etc.) of the film region other than the laser-irradiated portion.
  • the method of applying the compound to the surface of the film is not particularly limited as long as a layer containing the compound having a required film thickness can be formed, and an inkjet method, a roller application method or the like can be used.
  • laser light means “amplification of light by stimulated emission” (Light Amplification by Stimulated Emission of Radiation), and is classified into the CO 2 laser light and the UV laser light according to the oscillation wavelength.
  • the tape 982 having embossed or slit-processed tape wound around both ends of the film.
  • FIG. 27(A) is a front view of a film roll 942 in which the tape 982 having embossed or slit-shaped finishes is wound around both ends of the film and wound up.
  • 27B is an enlarged view of a cross section of a circled portion A in FIG. 27A.
  • FIG. 28 is an enlarged view of the tape 982.
  • FIG. 28A shows the tape 982 sandwiched between the film Bo and the surface of the embossed tape.
  • FIG. 28B shows a cross section of the tape having slits and a cross section when the tape 982 is sandwiched between the film Bo and the film Bo. It is a thing.
  • the thickness X of the tape 982 is preferably 50 ⁇ m or more, and the depth x of embossing or slitting is preferably in the range of 20 to 50% of the thickness of the tape.
  • the embossing or slit processing of the tape 982 will be crushed by the winding pressure.
  • the depth x of embossing or slitting is less than 20% of the thickness X of the tape, the embossing or slitting of the tape is crushed by the winding pressure, and the film is wound as a film roll 942. Air cannot flow in and out of the central part of Bo. If the depth x of embossing or slitting is greater than 50% of the thickness X of the tape, the strength of the embossed or slitted portion is weak and the processed shape is crushed by the winding pressure.
  • the film slitting device used in the present invention preferably comprises a disk-shaped rotating upper blade and a roll-shaped rotating lower blade.
  • the disk-shaped rotary upper blade of the slitting device has a diameter of 30 to 300 mm and a thickness of the cut portion of 0.3 to 3 mm, and the rotary upper blade is made of super steel, super steel fine particles, SKD. It is preferably either (alloy tool steel) or SKH (high speed tool steel). Further, it is preferable to set the toe-in angle of the upper blade to 30 to 90 degrees.
  • the roll-shaped rotary lower blade has a roll diameter of 75 to 200 mm, and that the material of the roll of the rotary lower blade is one of super steel, super steel fine particles, SKD, and SKH.
  • the film slitting device used in the present invention may be composed of only a disc-shaped rotating upper blade.
  • the disk-shaped rotary upper blade of the slitting device has a diameter of 30 to 300 mm and the thickness of the cut portion is 0.3 to 3 mm, and the rotary upper blade is made of super steel, super steel fine particles, SKD. , Or SKH.
  • the temperature around the slitter is 20 to 50° C. and the humidity is 50 to 70% RH.
  • the suction device in which the periphery of the upper blade is boxed and suction is performed in a wind velocity range of 0.8 to 10 m/sec.
  • the suction position of the end film is on the downstream side in the base transport direction from the slitting point.
  • a mechanism for conveying the slit end film (film fragment) to the next cutting step for example, a mechanism for nipping and/or sucking the slit end film.
  • a mechanism for nipping and/or sucking the slit end film are preferred.
  • the draw ratio that is, the value obtained by dividing the speed of the nip and/or winding film by the speed of the slit end film is 0.8 to 1.5.
  • the suction pressure is preferably 0.1 to 17 MPa.
  • the acrylic resin film according to the present invention preferably has embossed regions at both ends in the width direction of the film.
  • the embossing has one or more convex rows substantially parallel to the transport direction.
  • the convex row is an area in which convex areas are formed intermittently or continuously in the transport direction.
  • a convex row in which a convex region is intermittently formed in the transport direction is referred to as an intermittent convex row
  • a convex row in which a convex region is continuously formed in the transport direction is referred to as a continuous convex row.
  • each convex area that intermittently configures the convex row is referred to as a convex area unit.
  • the embossed areas at both ends in the width direction of the acrylic resin film according to the present invention each independently satisfy the requirement (I) or (II) shown below. That is, the embossed regions at both ends may commonly satisfy the requirement (I), may satisfy the requirement (II), or the embossed regions at one end may satisfy the requirement (I), and The edge embossed region may meet the requirement of (II).
  • the embossed regions at both ends commonly satisfy the requirement (I) or satisfy the requirement (II)
  • the embossed regions at both ends may have symmetry with respect to the center line in the width direction, Alternatively, they may be different from each other within a predetermined range.
  • the embossed regions at both ends preferably satisfy the requirement (I) or the requirement (II) in common and have symmetry with respect to the center line in the width direction.
  • the requirements (I) and (II) will be described in detail, but the description of these requirements is directed to the embossed region at one end.
  • the pattern shape of the convex area of the embossed area when viewed in the direction perpendicular to the film surface may be referred to as an embossed pattern.
  • the convex area units of each intermittent convex row are arranged so as to prevent the trapped air from being released. Control is performed between two convex area units and between any two adjacent convex rows in the width direction.
  • the embossed area preferably has intermittent convex rows in 2 to 7 rows, more preferably 3 to 5 rows.
  • the film has three intermittent convex rows A1 parallel to the transport direction (MD direction) in the embossed area A10 at one end in the width direction.
  • each convex area forming the intermittent convex row is referred to as a convex area unit, and is indicated by A2 in FIG. 29A.
  • All the convex area units A2 in all the intermittent convex rows A1 usually have the same size and are repeatedly formed at regular intervals in the transport direction.
  • the placement of the convex area units is controlled between any two convex area units that are adjacent in the transport direction.
  • the conveyance direction distance x (mm) between any two convex area units A2 adjacent in the conveyance direction in each intermittent convex row A1 is defined as the conveyance direction length of the convex area unit A2.
  • the thickness y (mm) it is 0.4 or less, particularly 0.01 to 0.4, and preferably 0.01 to 0.25. If the ratio is too large, the air taken up by the film roll is not effectively retained over time, so that sticking of the films, loosening of the film, wrinkles and folds cannot be sufficiently suppressed, and misalignment of the film cannot be sufficiently suppressed.
  • the transport direction distance x (mm) between the convex area units A2 is not particularly limited as long as the above ratio is achieved, and is usually in the range of 0.5 to 3 mm, preferably in the range of 1 to 2 mm.
  • the length y (mm) in the transport direction of the convex area unit A2 is not particularly limited as long as the object of the present invention is achieved, and is usually in the range of 3 to 20 mm, preferably in the range of 5 to 10 mm.
  • Requirement (I) further controls the placement of the convex area units between any two adjacent convex rows in the width direction. Specifically, for any two convex rows that are adjacent in the width direction, any one convex area unit in one convex row is in the conveyance direction in the other convex row on the perspective view perpendicular to the width direction. It is arranged so as to overlap two adjacent convex area units.
  • one arbitrary convex area unit A2a has two convex area units that are adjacent to each other in the conveying direction in the adjacent convex rows on the upstream side and the downstream side in the conveying direction. It is arranged so as to overlap with A2b and A2c.
  • FIG. 29B is a convex area unit A2c and a second convex area unit A2c that are closest to the convex area unit A2a in the adjacent intermittent convex rows A1 when paying attention to one convex area unit A2a in the film of FIG.
  • FIG. 8 is a perspective view of a vertical cross section in the width direction showing the relationship with the convex area unit A2b close to.
  • the overlapping portion of the convex area unit A2a with the convex area unit A2b on the upstream side in the conveying direction overlaps with the conveying direction length Z1 (mm) and the convex area unit A2c on the downstream side in the conveying direction.
  • the smaller length of the transport direction length Z2 (mm) of the portion is 0.3 or more, particularly 0.3 to 0.5, with respect to the transport direction length y (mm) of the convex region unit. If the ratio is too small, the air taken up by the film roll cannot be effectively retained over time, so that sticking of the films, loosening of the film, wrinkles and folds cannot be sufficiently suppressed, and misalignment of the films cannot be sufficiently suppressed.
  • the convex area unit A2 forming the intermittent convex array A1 is lifted up at a predetermined height from the area where no convex area is formed.
  • the convex area unit A2 (A2a, A2b, A2c) is lifted at a predetermined height h from the surface A3 of the area where the convex area is not formed.
  • the height h is not particularly limited as long as the object of the present invention is achieved, and is usually 1.5 to 30 ⁇ m on average, and preferably 2 to 20 ⁇ m.
  • the area ratio of the convex area is in the range of 20 to 80%. If the area ratio of the convex region is too small, the air taken up by the film roll cannot be effectively retained, and the effect of suppressing loosening and sticking cannot be obtained. If the area ratio of the convex region is too large, the amount of air taken up by the film roll will be too large, and the looseness of winding will be deteriorated.
  • the area ratio of the convex area is the ratio of the total area of the convex area unit A2 to the total area of the embossed area A10.
  • the embossed area A10 is a minimum area divided by a straight line parallel to the transport direction so as to include all the convex areas at one end in the width direction of the film, and is an area indicated by diagonal lines in FIG. 29C, for example. is there.
  • the distance c (see FIG. 29C) is not particularly limited as long as the object of the present invention is achieved.
  • the distance a is usually 10 mm or less, preferably 5 mm or less.
  • the length b is usually in the range of 5 to 30 mm, preferably 10 to 20 mm.
  • the distance c between the convex rows is not particularly limited as long as the area ratio of the convex regions is achieved, and is usually in the range of 0.1 to 5 mm, preferably 0.5 to 2 mm.
  • the length in the width direction, the length in the transport direction, and the film thickness in the non-embossed area A5 at the center in the width direction are not particularly limited.
  • the length in the width direction is usually in the range of 500 to 4000 mm, preferably in the range of 1000 to 3000 mm, and more preferably in the range of 1300 to 3000 mm.
  • the longer the length is the more difficult the air that is trapped is to escape, but since the air escapes over time, problems such as loose winding, wrinkles, and folds are likely to occur, but in the present invention, such This is because even if the length is long, those problems can be effectively suppressed.
  • the length in the carrying direction is usually in the range of 500 to 10000 m, preferably in the range of 2000 to 9000 m, and more preferably in the range of 3000 to 8000 m.
  • the longer the length the larger the amount of air to be entrapped, but since the air escapes with the passage of time, problems such as loose winding, wrinkles, and folds are likely to occur. This is because even if the length is long, those problems can be effectively suppressed.
  • the film thickness in the non-embossed area A5 is usually in the range of 10 to 200 ⁇ m, preferably 20 to 80 ⁇ m. As the thickness is smaller, the acrylic resin film is more likely to be deformed, and therefore problems such as looseness of winding, wrinkles and folds are more likely to occur, but even such a thickness is effective in the present invention with respect to those problems. It is because it can be suppressed to.
  • the convex area unit A2 has a rectangular shape, but is not particularly limited as long as the object of the present invention is achieved, and for example, a rhombic shape, a W-shape (M-shape). ), a hexagonal shape, a cross shape and the like.
  • FIGS. 30(A) to 30(C) Specific examples of emboss patterns when the convex area unit A2 has a rhombus shape are shown in FIGS. 30(A) to 30(C).
  • FIGS. 30A to 30C are the same as FIG. 29A to FIG. 29C except that the convex area unit A2 has a rhombus shape, and therefore description thereof will be omitted.
  • 29A to 29C in FIGS. 30A to 30C have the same reference numerals as FIGS. 29A to 29C except that the shape of the convex area unit A2 is different. Shall have the same meaning as.
  • the shaded area in FIG. 30(C) is the embossed area A10.
  • the embossed area may or may not have intermittent convex rows. That is, all the convex rows in the embossed region may consist of only one or more, preferably 2 to 7 rows of continuous convex examples, or 1 or more, preferably 1 to 7 continuous convex rows. It may consist of rows and one or more rows, preferably 1 to 7 rows of intermittent convex rows.
  • the emboss patterns shown in FIGS. 31A to 31C can be exemplified.
  • the emboss patterns shown in FIGS. 31A to 31C can be exemplified.
  • FIGS. 31(A) to 31(C) are the same as FIGS. 29(A) to 29(C) except that all the convex columns are continuous convex columns, and therefore the description thereof is omitted.
  • 29(A) to 29(C) in FIGS. 31(A) to 31(C) are the same as those in FIGS. 29(A) to 29(C) except that the convex rows are continuous. They have the same meaning.
  • 32(A) to 32(C) except that the embossed region has one continuous convex row and one intermittent convex row, respectively. Since they are similar, the description thereof will be omitted.
  • 32(A) to 32(C) that are the same as those in FIGS. 30(A) to 30(C) are different in the number of convex rows and that one convex row is a continuous convex row. , And have the same meaning as in FIGS. 30(A) to 30(C).
  • the area ratio of the convex region in the embossed region A10 is in the range of 20 to 80%, preferably in the range of 30 to 60%. If the area ratio of the convex region is too small, the air that is wound into the film roll cannot be effectively retained, and the effect of suppressing loosening and sticking cannot be obtained. If the area ratio of the convex region is too large, the amount of air taken up by the film roll will be too large, and the looseness of winding will be deteriorated.
  • the area ratio of the convex area is the ratio of the total area of the convex area unit A2 to the total area of the embossed area A10.
  • the embossed area A10 is a minimum area divided by a straight line parallel to the transport direction so as to include all the convex areas at one end in the width direction of the film, and is a diagonal line in FIG. 30C and FIG. 32C, for example. This is the area indicated by.
  • the intermittent convex row that the embossed region may have is not particularly limited, and may be the same intermittent convex row as in the requirement (I), or the intermittent convex row. It may be an intermittent convex array other than the above.
  • the acrylic resin film according to the present invention has an embossed pattern other than the intermittent convex rows and/or the continuous convex rows formed substantially parallel to the transport direction. It does not prevent that the embossed areas have the formed protruding areas or the randomly (irregularly) formed protruding areas.
  • the processing temperature of the knurling process is T (°C)
  • the glass transition temperature of the base film is Tg (°C)
  • the time during which the base film is in contact with the embossing ring is s (seconds).
  • the time s (second) during which the base film is in contact with the embossing ring can be changed by changing the film transport speed, the nip width, in other words, the pressing pressure.
  • the nip width and the pressing pressure can be changed by adjusting the hardness of the rubber on the surface of the back roll made of a rubber roll or by changing the diameters of the embossing ring and the embossing back roll.
  • applying a cold air of 10 to 20° C. to the film discharge side of the embossing marking roller is to cool and solidify the resin portion melted by heat by cooling the film and the ring portion immediately after the embossing. Therefore, the generation of thread-like foreign matter (whisker-like foreign matter) can be suppressed, and a sufficiently high embossing height can be obtained.
  • the acrylic resin film according to the present invention preferably has an effective knall defined by the following formula of the roll-shaped film of 0.5 to 7.0 ⁇ m.
  • Effective knurl (Embossed roll cross-sectional area-Core cross-sectional area)/Coil length-Average film thickness
  • the effective knurl is 0.5 ⁇ m or more, sticking failure between the films does not occur and the convex shape The occurrence of local deformation is suppressed, and the flatness of the film is improved.
  • the effective knurl is 7.0 ⁇ m or less, the flatness of the film is improved without causing the center of the winding to be recessed into a shape like the back of a horse.
  • the number of beard-like foreign matters attached around the embossed portion of the roll-shaped film is preferably 0 to 50 pieces/cm 2 , and 0 to 20 pieces/cm 2 . It is more preferable that the amount is 0 to 10 pieces/cm 2 .
  • the number of the mustache-like foreign matters attached to the periphery of the embossed portion of the film is as small as possible. If the number of the mustache-like foreign matters exceeds 50/cm 2 , it is also removed by a cleaning device when processing as a polarizing plate. This is not preferable, because it becomes impossible to fill the gap and enters as a foreign substance between the polarizer and the film to cause an image defect when incorporated in a liquid crystal display device. The same applies to the case where coating processing such as antireflection treatment or antiglare treatment is applied to the surface.
  • the height h ( ⁇ m) of the embossed portion is set in the range of 0.05 to 0.3 times the film thickness H, and the width W is set in the range of 0.005 to 0.02 times the film width L.
  • the embossed portions may be formed on both sides of the film.
  • the height h1+h2 ( ⁇ m) of the embossed portion is set to a range of 0.05 to 0.3 times the film thickness H, and the width W is set to a range of 0.005 to 0.02 times the film width L. ..
  • the height h1+h2 ( ⁇ m) of the embossed portion is preferably set in the range of 2 to 12 ⁇ m, and the embossed portion width is preferably set in the range of 5 to 30 mm.
  • the lower limit of the height of the embossed part is based on the height required to prevent uneven adhesion between the films.On the other hand, the upper limit is higher than this, and the embossed part is too high. This is because it deforms into a polygonal shape and induces a failure.
  • the width of the embossed part it is desirable to reduce it because it will eventually become a loss part. This is the required embossed part width.
  • embossed part height the embossed part width that clears all convex, pyramid-shaped, horse back, polygonal, and winding misalignment failures.
  • the film after embossing is preferably wound by the following winding method.
  • the winding method is a straight winding step of winding the film around a winding core so that the side edges of the film are aligned, and after the straight winding step, the side edges are cyclic in a certain range with respect to the width direction of the film. It is preferable to have an oscillate winding step in which the film or the winding core is periodically vibrated in the width direction of the film so that the film is wound around the winding core.
  • the straight winding step is switched to the oscillating winding step. Is preferred.
  • the film winding device includes a film winding unit that rotates a winding core to wind a film around the winding core, and an oscillator in which the film is periodically displaced on the winding core within a certain range in a width direction of the film.
  • the oscillating portion that vibrates the film or the core in the width direction of the film by interlocking with the winding of the film so that the film is wound, and the winding length of the film reaches a predetermined switching winding length.
  • the film manufacturing line B10 includes a film manufacturing device B11 and a winding device B12.
  • the film manufacturing apparatus B11 manufactures the film B13 by a solution casting method.
  • a dope is prepared using raw materials.
  • the prepared dope is cast on an endless support to form a casting film.
  • the casting film becomes self-supporting, the casting film is peeled off from the endless support.
  • the film B13 is formed by drying the peeled casting film with hot air or the like.
  • the formed film B13 is sent to the winding device B12 via the knurling roller B15.
  • the knurling roller B15 forms minute irregularities on both side edges (ears) in the width direction of the film B13 by embossing or the like.
  • the height of the irregularities formed by the knurling roller is preferably in the range of 0.5 to 20 ⁇ m.
  • the winding device B12 includes a winding shaft B19, a winding core holder B20, a winding core B21, a turret B22, guide rollers B23, B24, a dancer roller B25, an encoder B27, and an oscillating portion B29.
  • a winding motor B30, a controller B31, and a dancer section B32 are provided.
  • the size of the film to be wound by the winding device B12 is not particularly limited, but it is preferable that the film has a total winding length in the range of 2000 to 10000 m and a width in the range of 500 to 2500 mm.
  • the winding shaft B19 is attached to the turret B22 by a cantilever support mechanism.
  • the cantilever support mechanism is a mechanism that supports only one end of the winding shaft B19.
  • a winding core B21 is attached to the winding shaft B19. Both ends of the winding core B21 are held by the winding core holder B20 of the winding shaft B19.
  • the winding core holder B20 is mounted slidably in the axial direction (Y direction) of the winding shaft B19 and non-rotatably attached to the winding shaft B19.
  • a winding motor B30 is connected to one end of the winding shaft B19, and is configured to rotate the winding shaft B19. By this rotation, the winding core B21 also rotates and the film B13 can be wound around the winding core B21. By winding the film B13, a film roll B38 in which the film B13 is wound into a roll is obtained.
  • the turret B22 has a shift mechanism B28 attached to the attachment end of the winding shaft B19.
  • the shift mechanism B28 reciprocates the core holder B20 in the axial direction on the winding shaft B19.
  • the shift mechanism B28, the winding shaft B19, and the core holder B20 constitute an oscillating portion B29.
  • the oscillating portion B29 By operating the oscillating portion B29 and causing the shift mechanism B28 to reciprocate the core holder B20 in the Y direction on the winding shaft B19, the position of the side edge B13a is within the range of the amplitude Wo each time the film B13 is laminated. It enables oscillate winding in which the film B13 is wound while being displaced inside.
  • the oscillating portion B29 is not operated, straight winding in which both side edges of the film B13 are aligned is possible. Switching between the straight winding and the oscillating winding is performed by the controller B31.
  • the oscillating width Wo which is the swing width
  • the amplitude Wo is preferably within the range of 10 to 30 mm.
  • the amplitude Wo is constant. The value may be fixed, or may be gradually increased, decreased, or decreased after the increase.
  • the guide rollers B23, B24 and the dancer roller B25 guide the film B13 from the film manufacturing apparatus B11 in the transport direction (X direction). Further, the dancer roller B25 adjusts the winding tension of the film B13 by moving the film B13 in the vertical direction (Z direction) by the shift mechanism B26.
  • the shifter B26 and the dancer roller B25 form a dancer section B32.
  • the encoder B27 sends an encoder pulse signal to the controller B31 every time the guide roller B24 rotates at a constant rotation angle.
  • the guide roller B24 may be provided with a tension sensor that measures the winding tension of the film B13.
  • the controller B31 controls driving of the oscillating unit B29, the winding motor B30, and the dancer unit B32.
  • the controller B31 includes a winding information input unit B39, a LUT memory B40, a switching time winding length specifying unit B41, a winding length measuring unit B42, and a switching determination unit B43.
  • the winding information such as the total winding length, thickness, width of the film B13, the outer diameter of the winding core B21, and the winding tension is input to the winding information input section B39.
  • the LUT memory B40 stores the winding length of the film B13 when switching from straight winding to oscillating winding (rolling length at switching) for each winding information.
  • the roll length at the time of switching is preferably preset in the range of 10 to 30% with respect to the total roll length of the film B13, and more preferably in the range of 15 to 25% with respect to the total length of the film B13. There is.
  • a graph B50 represents the relationship between the stress generated in the film B13 in the circumferential direction of the winding core B21 and the winding length.
  • the stress in the circumferential direction of the film B13 is obtained based on the rotation torque of the winding core B21 and the tension of the dancer portion B32.
  • the rotation torque of the winding core B21 becomes larger than the tension by the dancer portion B32
  • the stress in the circumferential direction of the film B13 becomes positive
  • the rotation torque of the winding core B21 becomes smaller than the tension by the dancer portion B32. Will be negative.
  • the graph B50 in FIG. 35 is obtained in advance from a well-known stress calculation formula based on the tension at the start of winding the film B13 and the tension at the end of winding.
  • the distribution pattern of the stress in the circumferential direction of the film B13 has various values and negative values depending on the parameters such as the thickness, width, winding length, and outer diameter of the winding core of each film and the changing situation of the winding tension pattern. It is known from the results of film winding so far that the distribution pattern is approximately the same as that of FIG. 35.
  • the stress in the circumferential direction of the film B13 is positive (+) in the portion of the film roll B38 where the winding length on the winding core B21 side is small.
  • reference numeral L1 is attached to the winding length where the stress decreases from the winding length of 0 to become negative ( ⁇ ).
  • the stress in the circumferential direction sharply decreases as the winding length increases.
  • the stress in the circumferential direction further decreases and enters the negative ( ⁇ ) region.
  • the winding length corresponding to the completion of winding is denoted by LE.
  • the stress in the circumferential direction shows the minimum value Smin.
  • the winding length for which the stress in the circumferential direction has the minimum value Smin is denoted by Lmin.
  • Lmin the winding length for which the stress in the circumferential direction has the minimum value Smin.
  • a coil length L2 is attached to the winding length that increases and becomes positive after the stress in the circumferential direction shows the minimum value Smin.
  • the stress in the circumferential direction of the film B13 is in the negative region, the rotational torque of the winding core B21 becomes larger than the tension of the dancer portion B32, and the film B13 is loosened.
  • the surface pressure (surface pressure) is reduced.
  • FIG. 37 shows a change in the surface pressure at both end portions of the film B13 when the film is wound by straight winding
  • a graph B52 in FIG. 38 is a graph B52 when the film is wound by oscillating winding.
  • the change in the surface pressure at the left end of the film B13 is shown, and the graph B53 shows the change in the surface pressure at the right end.
  • the decrease in the surface pressure when the film is wound in the straight winding is relatively smaller than the decrease in the surface pressure when the film is wound in the oscillate winding.
  • the left side end of the film B13 is the left side end in the X direction
  • the right side end is the right side end in the X direction.
  • the decrease in the surface pressure at the beginning of winding the film B13 causes loosening or misalignment of the film roll B38 after winding. Therefore, as described above, straight winding is performed while the surface pressure decreases at the beginning of winding the film B13, that is, while the stress in the circumferential direction of the film B13 is in the negative region, and then the winding length is the total winding length. When it is within the range of 10 to 30%, switching to oscillate winding. As a result, at the beginning of winding the film B13, the reduction of the surface pressure is suppressed by winding in a straight winding, and the film is wound in an oscillating winding when the stress in the circumferential direction of the film B13 leaves the negative region.
  • the winding length at the time of switching which is obtained in advance as the timing for switching from straight winding to oscillating winding, may be obtained based on the relationship between the stress in the circumferential direction and the winding length as shown in the graph B50 as in the present embodiment.
  • the controller B31 switches from straight winding to oscillating winding.
  • the timing of switching from straight winding to oscillating winding is more preferably when the winding length is in the range of 15 to 25% with respect to the total winding length.
  • the surface pressure sharply decreases at the beginning of winding the film B13 as compared with the case where the winding length is less than 10%. To prevent more surely. Therefore, it is possible to more reliably prevent the film roll B38 from being loosened or misaligned. Further, when the winding length exceeds 30% with respect to the total winding length and is switched, the film is wound in a straight winding even after the film B13 has passed through the region where the stress in the circumferential direction is negative. Ear rolls are more likely to occur on the film roll B38 than when switching at this time.
  • the switching winding length identifying unit B41 collates the winding information stored in the LUT memory B40 with the winding information input to the winding information input unit B39, and performs switching corresponding to the input winding information. Specify the time length.
  • the winding length measuring unit B42 measures the winding length of the film B13 wound around the winding core B21 based on the encoder pulse signal from the encoder B27.
  • the switching determination unit B43 determines whether the winding length measured by the winding length measuring unit B42 exceeds the switching winding length specified by the switching winding length specifying unit B41. When it is determined that the winding length exceeds the switching winding length, an oscillating winding start signal is transmitted to the oscillating unit B29. When the oscillating section B29 receives the oscillating winding start signal, the film B13 is moved while shifting the position of the side edge B13a within the range of the amplitude Wo from the straight winding that winds the film B13 so that the side edges B13a of the film are aligned. The winding of the film B13 is changed to the oscillating winding.
  • the winding information of the film B13 to be wound is input to the winding information input section B39.
  • the switching-time winding length identifying unit B41 compares the winding information input to the winding information input unit B39 with the winding information stored in the LUT memory B40, and switches the winding information corresponding to the input winding information. Specify the time length.
  • the winding of the film B13 is started by the straight winding.
  • an encoder pulse signal is transmitted from the encoder B27 to the controller B31 at regular intervals every time the guide roller B24 rotates at a constant rotation angle.
  • the winding length of the film B13 is measured by the winding length measuring unit B42 based on the encoder pulse signal.
  • the switching determination unit B43 sequentially determines whether the winding length measured by the winding length measuring unit B42 exceeds the winding length at the time of switching. When it is determined that the winding length exceeds the switching winding length, an oscillating winding start signal is transmitted from the controller B31 to the oscillating unit B29.
  • the oscillating portion B29 that has received the oscillating winding start signal vibrates the winding core B21 at a constant amplitude Wo along the axial direction (Y direction). As a result, the winding of the film B13 is changed from the straight winding to the oscillating winding.
  • the film roll B38 When the winding of the film B13 is completed, the film roll B38 is removed from the winding shaft B19.
  • the film roll B38 is transported to various factories by transportation means such as a truck. At that time, since the inner side of the core of the film roll B38 is straightly wound, there is no looseness, and the film roll B38 is not misaligned even if there is vibration during transportation. In addition, since the outside of the core of the film roll B38 is oscillated, the occurrence of edge extension is suppressed.
  • the film B13 is wound by vibrating the winding core B21 in the width direction of the film B13.
  • the method of oscillating winding is not limited to this method, and a known method may be used.
  • the film B13 itself may be vibrated in the width direction without moving the winding core B21.
  • the return material recovery is a step of recovering a portion where the widthwise end portion of the film is cut while the film is conveyed in the slit step (6). For example, the end portion where the trace remains due to being gripped by the tenter in the stretching step is removed. The cutting and recovery of the end portion are usually performed at both end portions in the width direction of the film. An appropriate amount of the recovered recycled material is brought into the dissolution step, dissolved in a solvent, and provided for dope preparation.
  • the trimming process has an edge cutting step of cutting the edge in the film width direction and an edge collecting step of collecting the cut edge.
  • the edge of the film is cut by a cutting means such as a fixed cutter, and the film body is provided to the next step such as the winding step.
  • the length (width) x of the end to be cut in the width direction is not particularly limited, and specifically, such x is preferably in the range of, for example, 30 to 300 mm, particularly preferably in the range of 50 to 130 mm. ..
  • the suction port usually has a cylindrical shape, particularly a cylindrical shape, and suction is performed by the suction device in the suction direction.
  • the suction speed is not particularly limited as long as the object of the present invention is achieved.
  • the conveying air is supplied from the upstream side and the downstream side in the film conveying direction toward the opening of the suction port to convey the film end portion b. ⁇ Assist the collection.
  • the feeding speed V1 of the conveying air from the upstream side and the feeding speed V2 of the conveying air from the downstream side are each independently 100 to 6000% of the film conveying speed, preferably 500 to 5500%.
  • their ratio V1/V2 is less than 1, especially in the range 0.1 to 0.9, preferably in the range 0.3 to 0.9.
  • the temperature T1 of the carrier air from the upstream side and the temperature T2 of the carrier air from the downstream side are not particularly limited, and are usually each independently a temperature higher by 0 to 50° C. than the ambient temperature.
  • the temperatures T1 and T2 independently higher than the ambient temperature by a range of 0 to 50° C., particularly a range of 0 to 45° C.
  • the difference in shrinkage between the support surface side and the non-support surface side at the film end portion 80b is set. Can be reduced.
  • the ambient temperature is the temperature of the ambient atmosphere in which this step is performed, and the temperature of the central portion in the width direction on the support surface of the film in the edge cutting step is used and can be measured by a non-contact thermometer.
  • the temperature T1 of the carrier air is usually in the range of 30 to 170°C, and particularly preferably in the range of 30 to 150°C.
  • the temperature T2 of the carrier air is usually in the range of 30 to 170°C, and particularly preferably in the range of 30 to 150°C.
  • the ambient temperature is usually in the range of 30 to 120°C, particularly preferably in the range of 30 to 100°C.
  • the transport air from the upstream side is supplied from the upstream supply device, and the transport air from the downstream side is supplied from the downstream supply device.
  • the heating means for example, a hot air heater, a temperature control roll, an IR (infrared) heater, or the like is used.
  • the distance L1 between the supply port of the upstream side supply device and the opening of the suction port and the distance L2 between the supply port of the downstream side supply device and the opening of the suction port are more sufficient to prevent flapping or meandering at the cut end. From the viewpoint of suppressing the above, it is preferable that each of them is independently in the range of 20 to 200 mm, particularly in the range of 30 to 180 mm.
  • the angle ⁇ 1 between the supply direction of the transport air from the upstream side and the suction direction (the transport direction of the film end portion in the suction port) and the angle between the supply direction of the transport air from the downstream side and the suction direction are the same as those of the present invention. It is not particularly limited as long as the purpose is achieved, and from the viewpoint of more sufficiently suppressing flapping and meandering of the cut end, each is independently in the range of 10 to 90°, particularly in the range of 30 to 85°. It is preferable.
  • the upstream supply device and the downstream supply device those having a circular supply port are usually used. It is preferable that the trimmed end film is quickly crushed and conveyed as a strip, and stored in a storage container for returning material recovery. Since a cutter for crushing the returned material generally generates heat, the temperature thereof becomes high, and the acrylic resin having a low Tg is apt to be fused to the cutter blade to hinder the crushing.
  • the cutter is preferably provided with a cooling mechanism.
  • a cooling medium such as dry ice may be blown together with the film.
  • the residual solvent amount of the film used in this step, particularly in the edge cutting step, is preferably in the range of 0 to 50% by mass, particularly preferably in the range of 0 to 20% by mass. This is because it is possible to more effectively reduce the contraction difference between the support surface side and the non-support surface side at the film end while easily cutting the film end.
  • FIG. 40 is a schematic view showing an example of the film forming line used in the present invention. As shown in FIG. 40, the film forming line 309 is divided into a charging zone 310, a band zone 311, and a drying zone 312.
  • the preparation zone 310 includes a preparation tank 314, a pump 315, and a filter 316.
  • the dope 313 is uniformly prepared in the charging tank 314 by the stirring blade 317.
  • the prepared dope 313 is sent to the casting die 320 in the band zone 311 via the pump 315 and the filter 316.
  • the band zone 311 is provided with a casting band 323 which is stretched around rollers 321 and 322, and the casting band 323 is rotated by a driving device (not shown).
  • a casting die 320 is provided on the casting band 323.
  • the dope 313 is sent from the preparation tank 314 by the pump 315, and after the impurities are removed by the filter 316, it is sent to the casting die 320.
  • the dope 313 is cast from the casting die 320 onto the casting band 323.
  • the dope 313 has a self-supporting property by being gradually dried while being conveyed by the casting band 323, and is stripped from the casting band 323 by the stripping roller 324 to form a film 325. Further, the film 325 is stretched to a predetermined width by the tenter 326 and dried while being conveyed. Note that, as is well known, the inside of the band zone 311 is divided into a plurality of chambers by partition walls as necessary, and gas is discharged and a drying gas is delivered to these chambers.
  • the film 325 sent from the tenter 326 to the drying zone 312 is dried while being wound around a plurality of rollers 327 and conveyed in the drying zone 312.
  • the dried film 325 is wound up by a winding machine 328.
  • a gas (hereinafter, also referred to as hot air gas) 350 that is a hot air containing a solvent that has been volatilized in the drying zone 312 is processed using a solvent recovery line 331.
  • the blower 352 sends the air to the open chamber 353.
  • the pressure (negative pressure) on the downstream side of the open chamber 353 (the blower 355 side) can be made lower than the atmospheric pressure.
  • the form of the open chamber used in the present invention is not limited to that shown in the drawing, and any known open chamber may be used.
  • the device for bringing a part of the solvent recovery line 331 into a negative pressure state is not limited to the open chamber, and it is also possible to use a blower fan having a function of making a part of the line into a negative pressure.
  • a cooler 356 for cooling the gas 350, a pretreatment activated carbon 357 for the gas drying process, and a dehumidifier 358 are attached, but these are appropriately used. It may be omitted.
  • the gas 350 is selectively sent by a blower 355 to one of the adsorbers 359, 360, 361 by a switching valve (not shown), and the vaporized solvent contained in the gas 350 is adsorbed by the adsorbers 359, 360. , 361.
  • the gas after the adsorption treatment is adjusted to a predetermined temperature by the temperature controller 362, and then sent to the heat exchanger 351 by the blower 363. Then, after being exchanged with the hot air gas 350 and heated, it is further heated to a predetermined temperature by the heater 364, fed again into the drying zone 12, and reused as a dry air.
  • the volatile solvent components adsorbed by the adsorbers 359, 360, 361 are desorbed by the desorption gas 370 (usually steam) and sent to the condenser 371.
  • the desorption gas 370 is condensed and liquefied in the condenser 371, and the liquid is sent to the decanter 372 as a recovery solvent. Further, the gas component which is not liquefied is again sent to the blower 355, sent to the adsorbers 359, 360 and 361, and adsorbed and recovered.
  • the recovered solvent (organic solvent) introduced into the decanter 372 is separated into a crude hydrophilic solvent (including water) and a crude hydrophobic solvent and sent to the crude hydrophilic solvent tank 381 and the crude hydrophobic solvent tank 382.
  • the crude hydrophilic solvent is separated into water and hydrophilic solvent in the distillation column 383, and the water is drained or recycled.
  • the hydrophilic solvent is stored in the hydrophilic solvent tank 384 for reuse.
  • the crude hydrophobic solvent has residual monomer components present in the acrylic resin and rubber particles, and it is preferable to provide a distillation column 385 to separate the residual monomer components.
  • the hydrophobic solvent separated in the distillation column 385 is stored in a hydrophobic solvent tank 386 for reuse.
  • the solvent stored in the hydrophilic solvent tank 384 and the hydrophobic solvent tank 386 is adjusted to an appropriate mixing ratio and sent to the purified solvent tank 376.
  • the refined solvent in the refined solvent tank 376 is sent to the preparation device 378, stirred, and then sent to the preparation tank 314 to be reused as a dope preparation solvent.
  • Particularly preferred organic solvents used in the present invention are dichloromethane and lower alcohols. Further, methyl methacrylate is a typical one of the residual monomers of the acrylic resin. Therefore, the heat exchanger needs to control the dry gas to a temperature at which dichloromethane, lower alcohol, and methyl methacrylate do not condense.
  • the upper layer mainly contains water and lower alcohol
  • the lower layer mainly contains dichloromethane and methyl methacrylate.
  • Each distillation column is designed optimally for separating water and lower alcohol, and dichloromethane and methyl methacrylate.
  • the decanter 372 and the distillation columns 383 and 385 may be provided in multiple stages, or a pipe may be provided to appropriately return unripened components to the upstream process.
  • the method for producing an acrylic resin film of the present invention is characterized by dissolving an acrylic resin using an organic solvent and adding an additive to dope.
  • the material that can be used in the present invention is not limited to the following, and known materials can be appropriately used as the constituent elements.
  • Acrylic resin (constituent monomer species)
  • any appropriate (meth)acrylic resin is adopted as long as it has a glass transition temperature (Tg) in the range of 120 to 180° C. and a weight average molecular weight of 300,000 to 4,000,000. obtain.
  • poly(meth)acrylic acid ester such as polymethylmethacrylate, methyl methacrylate-(meth)acrylic acid copolymer, methyl methacrylate-(meth)acrylic acid ester copolymer, methyl methacrylate-acrylic acid ester -(Meth)acrylic acid copolymer, methyl (meth)acrylate-styrene copolymer (MS resin, etc.), alicyclic hydrocarbon group-containing polymer (for example, methyl methacrylate-cyclohexyl methacrylate copolymer) , Methyl methacrylate-(meth)acrylic acid norbornyl copolymer and the like).
  • poly(meth)acrylic acid ester such as polymethylmethacrylate, methyl methacrylate-(meth)acrylic acid copolymer, methyl methacrylate-(meth)acrylic acid ester copolymer, methyl methacrylate-acrylic acid ester -(Met
  • resins that have undergone post-reaction such as separation reaction, those having 50% or more by weight ratio of (meth)acrylic acid ester.
  • Examples of the monomer include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, i-propyl (meth)acrylate, n-butyl (meth)acrylate, (meth) ) S-butyl acrylate, t-butyl (meth)acrylate, n-amyl (meth)acrylate, s-amyl (meth)acrylate, t-amyl (meth)acrylate, n-(meth)acrylate Hexyl, 2-ethylhexyl (meth)acrylate, isodecyl (meth)acrylate, tridecyl (meth)acrylate, cyclohexyl (meth)acrylate, cyclohexylmethyl (meth)acrylate, octyl (meth)acrylate, (meth) Lauryl acrylate, stearyl (meth)acrylate, benzy
  • T-Butyl methacrylate 1,1-dimethylpropyl methacrylate, 1-ethyl-1-methylpropyl methacrylate, 1,1-diethylpropyl methacrylate, 1,1-dimethylbutyl methacrylate, 1-ethyl methacrylate- 1-methylbutyl, 1,1-diethylbutyl methacrylate, 1-methyl-1-propylbutyl methacrylate, 1-ethyl-1-propylbutyl methacrylate, 1,1-dipropylbutyl methacrylate, 1,1 methacrylate ,2-trimethylpropyl, 1-ethyl-1,2-dimethylpropyl methacrylate, 1,1-diethyl-2-methylpropyl methacrylate, 1-isopropyl-1-methylbutyl methacrylate, 1-ethyl-1-methacrylate Isopropylbutyl, 1-isopropyl-1-propylbutyl meth
  • copolymerizable monomer examples include (meth)acrylamides such as N,N-dimethyl(meth)acrylamide and N-methylol(meth)acrylamide; (meth)acrylic acid, crotonic acid, cinnamic acid, vinylbenzoic acid, etc.
  • Unsaturated monocarboxylic acids maleic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid and other unsaturated polycarboxylic acids; succinic acid mono(2-acryloyloxyethyl), succinic acid mono(2-methacryloyloxyethyl) Unsaturated monocarboxylic acids having a chain extension between an unsaturated group such as) and a carboxy group; unsaturated acid anhydrides such as maleic anhydride and itaconic anhydride; styrene, ⁇ -methylstyrene, ⁇ -chlorostyrene , Pt-butylstyrene, p-methylstyrene, p-chlorostyrene, o-chlorostyrene, 2,5-dichlorostyrene, 3,4-dichlorostyrene, vinyltoluene, methoxystyrene and other aromatic vinyls; methyl N
  • Vinyl esters such as vinyl benzoate; methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, 2-ethylhexyl vinyl ether, n-nonyl vinyl ether, lauryl vinyl ether, cyclohexyl vinyl ether, methoxyethyl vinyl ether, ethoxyethyl vinyl ether, methoxyethoxyethyl vinyl ether.
  • Vinyl ethers such as methoxy polyethylene glycol vinyl ether, 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether; N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylimidazole, N-vinylmorpholine, N-vinylacetamide, etc. -Vinyl compounds; unsaturated isocyanates such as isocyanatoethyl (meth)acrylate and allyl isocyanate; vinyl cyanides such as acrylonitrile and methacrylonitrile; and the like.
  • An acrylic resin represented by the following general formula (E) and having an average molecular weight (Mw) in the range of 1,000 to 30,000 has high compatibility with the acrylic resin according to the present invention and is used in combination from the viewpoint of improving heat resistance.
  • Mw average molecular weight
  • the compound represented by the general formula (E) is preferably a polymer obtained by copolymerizing one of the following ethylenically unsaturated monomers Xa and one of the following ethylenically unsaturated monomers Xb.
  • Examples of the ethylenically unsaturated monomer Xa include methyl acrylate, ethyl acrylate, propyl acrylate (i-, n-), butyl acrylate (n-, i-, s-, t-), and pentyl acrylate ( n-, i-, s-), hexyl acrylate (n-, i-), heptyl acrylate (n-, i-), octyl acrylate (n-, i-), nonyl acrylate (n-, i-), myristyl acrylate (n-, i-), acrylic acid (2-ethylhexyl), acrylic acid ( ⁇ -caprolactone), acrylic acid (2-ethoxyethyl), or the like, or the above-mentioned acrylic ester as a methacrylic ester.
  • methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, and propyl methacrylate are preferable.
  • the ethylenically unsaturated monomer Xb is preferably acrylic acid or methacrylic acid ester, and examples thereof include acrylic acid (2-hydroxyethyl), acrylic acid (2-hydroxypropyl), acrylic acid (3-hydroxypropyl), acrylic acid (4 -Hydroxybutyl), acrylic acid (2-hydroxybutyl), or those obtained by replacing these acrylic acids with methacrylic acid, preferably acrylic acid (2-hydroxyethyl) and methacrylic acid (2-hydroxyethyl). ), acrylic acid (2-hydroxypropyl), and acrylic acid (3-hydroxypropyl).
  • the molar composition ratio m:n of Xa and Xb is preferably 99:1 to 65:35, more preferably 95:5 to 75:25.
  • the compatibility with the cyclic polyolefin resin improves, but the heat resistance of the film decreases. If the molar composition ratio of Xb is large, the compatibility becomes poor. Further, if the molar composition ratio of Xb exceeds the above range, haze tends to occur during film formation, and it is preferable to optimize these and determine the molar composition ratio of Xa and Xb.
  • the weight average molecular weight of the compound represented by formula (E) is in the range of 1,000 to 30,000, and more preferably 8,000 to 25,000.
  • the weight average molecular weight is 1,000 or more and 30,000 or less, compatibility with the resin is further improved without evaporation or volatilization, which is preferable.
  • the weight average molecular weight can be measured by the following method.
  • Weight average molecular weight measurement method The weight average molecular weight Mw was measured using gel permeation chromatography. The measurement conditions are as follows.
  • the polymerization method include a method using a peroxide polymerization initiator such as cumene peroxide and t-butyl hydroperoxide, a method using a larger amount of the polymerization initiator than usual polymerization, and a mercapto compound in addition to the polymerization initiator.
  • a peroxide polymerization initiator such as cumene peroxide and t-butyl hydroperoxide
  • a method using a larger amount of the polymerization initiator than usual polymerization and a mercapto compound in addition to the polymerization initiator.
  • a method of using a chain transfer agent such as carbon tetrachloride a method of using a polymerization terminator such as benzoquinone or dinitrobenzene in addition to the polymerization initiator, and further, JP-A-2000-128911 or 2000-344823.
  • the compound having one thiol group and a secondary hydroxy group as described in 1 or a method of bulk polymerization using a polymerization catalyst in which the compound and an organometallic compound are used in combination can be mentioned.
  • a polymerization method using a compound having a thiol group and a secondary hydroxy group in the molecule as a chain transfer agent is preferable.
  • the terminal of the compound represented by the general formula (E) has a hydroxy group and a thioether derived from the polymerization catalyst and the chain transfer agent. With this terminal residue, the compatibility between the compound represented by the general formula (E) and the polymer resin having an alicyclic structure can be adjusted.
  • the polymerization temperature is usually room temperature to 130° C., preferably 50 to 100° C.
  • the molecular weight can be controlled by adjusting this temperature or the polymerization reaction time.
  • the hydroxy group value of the compound represented by the general formula (E) is preferably 30 to 150 [mgKOH/g].
  • hydroxy number is defined as the number of mg of potassium hydroxide required to neutralize acetic acid bound to hydroxy groups when 1 g of sample is acetylated.
  • a sample Xg (about 1 g) is precisely weighed in a flask, and 20 ml of an acetylating reagent (prepared by adding pyridine to 20 ml of acetic anhydride to make 400 ml) is accurately added thereto.
  • the flask is equipped with an air cooling tube and heated in a glycerin bath at 95 to 100°C.
  • the hydroxy value is calculated by the following formula.
  • Hydroxyl value ⁇ (BC) ⁇ f ⁇ 28.05/X ⁇ +D
  • B is the amount of the 0.5 mol/L potassium hydroxide ethanol solution used in the blank test (ml)
  • C is the amount of the 0.5 mol/L potassium hydroxide ethanol solution used in the titration (ml).
  • F is a factor of 0.5 mol/L potassium hydroxide ethanol solution
  • D is an acid value
  • 28.05 is 1/2 of 1 mol amount of potassium hydroxide of 56.11.
  • the compound represented by the general formula (E) must be contained in the cyclic polyolefin resin in an amount of 0.1 to 30% by mass, preferably 1 to 25% by mass, more preferably 3 to 20% by mass, It is particularly preferably 5 to 15% by mass.
  • Method for producing acrylic resin for example, a commonly used polymerization method such as cast polymerization, bulk polymerization, suspension polymerization, solution polymerization, emulsion polymerization, anion polymerization and the like can be used. Among them, bulk polymerization or solution polymerization without using a suspending agent or an emulsifier is preferable because it is possible to reduce the inclusion of minute foreign matter, which is inconvenient for optical applications.
  • ⁇ Solution polymerization When carrying out solution polymerization, a solution prepared by dissolving a mixture of monomers in a solvent of aromatic hydrocarbon such as toluene or ethylbenzene can be used. When the polymerization is carried out by bulk polymerization, the polymerization can be initiated by irradiation of free radicals generated by heating or ionizing radiation, as is usually done.
  • any initiator used in radical polymerization can be used.
  • azo compounds such as azobisisobutylnitrile; benzoyl peroxide, lauroyl peroxide, t-butyl peroxy.
  • An organic peroxide such as -2-ethylhexanoate can be used.
  • solution polymerization is generally used, so that the 10-hour half-life temperature is 80° C. or higher and a peroxide or azobis which is soluble in the organic solvent used.
  • An initiator and the like are preferable. Specifically, 1,1-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane, cyclohexane peroxide, 2,5-dimethyl-2,5-di(benzoylperoxy)hexane, 1 , 1-azobis(1-cyclohexanecarbonitrile), 2-(carbamoylazo)isobutyronitrile and the like.
  • These initiators are preferably used, for example, in the range of 0.005 to 5% by mass based on 100% by mass of the total monomers.
  • any of those generally used in radical polymerization can be used, and examples thereof include mercaptan compounds such as butyl mercaptan, octyl mercaptan, dodecyl mercaptan, and 2-ethylhexyl thioglycolate.
  • mercaptan compounds such as butyl mercaptan, octyl mercaptan, dodecyl mercaptan, and 2-ethylhexyl thioglycolate.
  • These molecular weight regulators are added in a concentration range such that the molecular weight of the acrylic resin is controlled within the above preferable range.
  • the polymerization initiator used for polymerizing the monomer component is not particularly limited, and examples thereof include azo compounds such as azobisisobutyronitrile, 1,1-di(tert-butylperoxy)cyclohexane. , Benzoyl peroxide, p-chlorobenzoyl peroxide, diisopropyl peroxycarbonate, di-2-ethylhexyl peroxycarbonate, t-butylperoxypivalate, t-butylperoxy(2-ethylhexanoate), etc.
  • Known radical polymerization initiators such as oxides can be used.
  • the polymerization initiator only one kind may be used, or two or more kinds may be used in combination. Also, the amount used is usually 0.01 to 5 mass% with respect to the total amount of the mixture.
  • the heating temperature in the thermal polymerization is usually 40 to 200° C., and the heating time is usually 30 minutes to 8 hours.
  • a chain transfer agent When polymerizing the monomer component, a chain transfer agent can be used if necessary.
  • the chain transfer agent is not particularly limited, but preferable examples include mercaptans such as n-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, and 2-ethylhexyl thioglycolate.
  • mercaptans such as n-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, and 2-ethylhexyl thioglycolate.
  • the chain transfer agent only one kind may be used, or two or more kinds may be used in combination.
  • suspension polymerization those used in ordinary suspension polymerization can be used, and examples thereof include organic peroxides and azo compounds.
  • suspension stabilizer a commonly used known one can be used, and examples thereof include an organic colloidal polymer substance, an inorganic colloidal polymer substance, inorganic fine particles, and a combination of these with a surfactant. it can.
  • aqueous medium for polymerizing the monomer mixture examples include water, or a mixed medium of water and a water-soluble solvent such as alcohol (eg, methanol, ethanol).
  • the amount of the aqueous medium used is usually 100 to 1000 parts by mass with respect to 100 parts by mass of the monomer mixture in order to stabilize the crosslinked resin particles.
  • a water-soluble polymerization inhibitor such as nitrites, sulfites, hydroquinones, ascorbic acids, water-soluble vitamin Bs, citric acid and polyphenols may be used. Good.
  • suspension stabilizers may be added if necessary.
  • calcium phosphate, magnesium phosphate, aluminum phosphate, zinc phosphate, and other phosphates calcium pyrophosphate, magnesium pyrophosphate, aluminum pyrophosphate, zinc pyrophosphate, and other pyrophosphates, calcium carbonate, magnesium carbonate, calcium hydroxide.
  • a poorly water-soluble inorganic compound such as magnesium hydroxide, aluminum hydroxide, calcium metasilicate, calcium sulfate, and barium sulfate, and a dispersion stabilizer of polyvinyl alcohol.
  • a surfactant such as an anionic surfactant, a cationic surfactant, a zwitterionic surfactant, or a nonionic surfactant.
  • anionic surfactant examples include fatty acid oils such as sodium oleate and potassium castor oil, alkyl sulfate ester salts such as sodium lauryl sulfate and ammonium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, and alkylsulfonates.
  • alkyl naphthalene sulfonate alkane sulfonate, succinate, dialkyl sulfosuccinate, alkyl phosphate ester salt, naphthalene sulfonate formalin condensate, polyoxyethylene alkyl phenyl ether sulfate ester salt, polyoxyethylene alkyl Examples thereof include sulfate ester salts.
  • nonionic surfactant examples include polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxysorbitan fatty acid ester, polyoxyethylene alkylamine, glycerin fatty acid ester, and oxy.
  • examples thereof include ethylene-oxypropylene block polymers.
  • cationic surfactant examples include alkylamine salts such as laurylamine acetate and stearylamine acetate, and quaternary ammonium salts such as lauryltrimethylammonium chloride.
  • zwitterionic surfactants include lauryl dimethylamine oxide, and phosphoric acid ester-based or phosphorous acid ester-based surfactants. ..
  • suspension stabilizers and surfactants may be used alone or in combination of two or more, but in consideration of the diameter of particles to be obtained and the dispersion stability at the time of polymerization, selection of the suspension stabilizer or The amount used is adjusted appropriately before use.
  • the amount of the suspension stabilizer added is 0.5 to 15 parts by mass with respect to 100 parts by mass of the monomer mixture, and the amount of the surfactant added is 0.1% with respect to 100 parts by mass of the aqueous medium. 001 to 10 parts by mass.
  • a method for dispersing the monomer mixture for example, a method in which the monomer mixture is directly added to the aqueous medium and dispersed in the aqueous medium as monomer droplets by the stirring force of a propeller blade or the like, high shear composed of a rotor and a stator Examples thereof include a homomixer, which is a disperser that utilizes force, or a method of dispersing using an ultrasonic disperser or the like. Then, the aqueous suspension in which the monomer mixture is dispersed as spherical drops is heated to initiate polymerization. During the polymerization reaction, it is preferable to stir the aqueous suspension, and the stirring may be performed, for example, gently enough to prevent the floating of spherical droplets and the sedimentation of particles after polymerization.
  • the polymerization temperature is preferably about 30 to 100°C, more preferably about 40 to 80°C.
  • the time for maintaining this polymerization temperature is preferably about 0.1 to 20 hours.
  • the particles can be separated as a water-containing cake by a method such as suction filtration, centrifugal dehydration, centrifugal separation, or pressure dehydration, and the obtained water-containing cake can be washed with water and dried to obtain the target particles.
  • a method such as suction filtration, centrifugal dehydration, centrifugal separation, or pressure dehydration
  • the obtained water-containing cake can be washed with water and dried to obtain the target particles.
  • the average particle size of the particles is adjusted by adjusting the mixing conditions of the monomer mixture and water, the addition amount of the suspension stabilizer, the surfactant and the like, the stirring conditions of the stirrer, and the dispersion conditions. It is possible.
  • additives in acrylic resin may be contained in the acrylic resin which is a raw material of the acrylic resin film according to the present invention. It is preferable that various additives described below are usually contained for the purpose of storability of monomers, control of polymerization reaction, and storability of resins.
  • polymerization initiator As the polymerization initiator, as described in the solution polymerization, bulk polymerization and suspension polymerization described above, those which are usually used can be used, and examples thereof include a peroxide type polymerization initiator and an azo type polymerization initiator. Specifically, benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, benzoyl orthochloroperoxide, benzoyl orthomethoxyperoxide, methyl ethyl ketone peroxide, diisopropyl peroxydicarbonate, cumene hydroperoxide, cyclohexanone peroxide, t-butyl.
  • Peroxide polymerization initiators such as hydroperoxide and diisopropylbenzene hydroperoxide, asobisvaleronitrile, 2,2′-azobisisobutyronitrile, 2,2′-azobis(2,4-dimethylvaleronitrile) ), 2,2'-azobis(2,3-dimethylbutyronitrile), 2,2'-azobis(2-methylbutyronitrile), 2,2'-azobis(2,3,3-trimethylbutyro) Nitrile), 2,2'-azobis(2-isopropylbutyronitrile), 1,1'-azobis(cyclohexane-1-carbonitrile), 2,2'-azobis(4-methoxy-2,4-dimethylvalero) Examples thereof include azo initiators such as nitrile, (2-carbamoylazo)isobutyronitrile, 4,4′-azobis(4-cyanovaleric acid), and dimethyl-2,2′-azobisisobutyrate.
  • the polymerization initiator is preferably used in an amount of 0.01 to 10 parts by mass, more preferably 0.01 to 5 parts by mass, based on 100 parts by mass of the monomer mixture.
  • the amount of the polymerization initiator is less than 0.01 parts by mass, it is difficult to fulfill the function of initiating the polymerization, and when it is used in excess of 10 parts by mass, it is uneconomical in terms of cost, which is not preferable.
  • Chain transfer agent examples include n-octyl mercaptan, n-dodecyl mercaptan, tert-dodecyl mercaptan, 1,4-butanedithiol, 1,6-hexanedithiol, ethylene glycol bisthiopropionate, butanediol bisthioglycolate.
  • Alkyl mercaptans such as butanediol bisthiopropionate, hexanediol bisthioglycolate, hexanediol bisthiopropionate, trimethylolpropane tris-( ⁇ -thiopropionate), pentaerythritol tetrakisthiopropionate Etc.
  • monofunctional alkyl mercaptans such as n-octyl mercaptan and n-dodecyl mercaptan are preferred.
  • These chain transfer agents may be used alone or in combination of two or more.
  • the chain transfer agent is used in an amount of preferably 0.1 to 1 part by mass, more preferably 0.15 to 0.8 part by mass, based on 100 parts by mass of the monomer mixture.
  • the range is more preferably 0.2 to 0.6 parts by mass, and particularly preferably 0.2 to 0.5 parts by mass.
  • the amount of chain transfer agent used is preferably in the range of 2500 to 7000 parts by mass, more preferably 3500 to 4500 parts by mass, and further preferably 3800 to 100 parts by mass of the polymerization initiator.
  • the range is 4300 parts by mass.
  • the acrylic resin according to the present invention has a weight average molecular weight in the range of 300,000 to 4,000,000.
  • the weight average molecular weight can be determined as follows.
  • the weight average molecular weight (Mw) of the acrylic resin according to the present invention is calculated by polystyrene conversion using gel permeation chromatography (GPC) according to the following measurement conditions.
  • Measuring system "GPC system HLC-8220" manufactured by Tosoh Corporation Developing solvent: Chloroform (Wako Pure Chemical Industries; special grade) Solvent flow rate: 0.6 mL/min Standard sample: TSK standard polystyrene ("PS-Oligomer Kit” manufactured by Tosoh Corporation) Measurement side column configuration: Tosoh “TSK-GEL super HZM-M 6.0x150" 2 in series connection, Tosoh “TSK-GEL super HZ-L 4.6x35" 1 reference side column configuration: Tosoh "TSK-GEL SuperH-RC 6.0x150" Two serially connected column temperature: 40°C
  • the weight average molecular weight of the acrylic resin can be adjusted mainly by adjusting the amount of a chain transfer agent described later. It can also be adjusted by adjusting the polymerization temperature and the polymerization reaction time. Similarly, the molecular weight distribution can be adjusted by the amount of the chain transfer agent, the polymerization temperature and the polymerization reaction time. Living radical polymerization (illustrated in Japanese Patent Nos. 3845109 and 4107996) is known as a method for extremely narrowing the molecular weight distribution. As a method of broadening the molecular weight distribution, it is convenient to blend resins having different molecular weights.
  • the weight average molecular weight (Mw) and the molecular weight distribution (Mw/Mn) can be measured using gel permeation chromatography (GPC).
  • residual monomer In the acrylic resin synthesis stage, unreacted monomer components are contained in the acrylic resin as residual monomers. As a method of reducing the amount of residual monomer, it is basically necessary to increase the reaction efficiency to reduce unreacted monomer, but there is also a method of removing the residual monomer later. In general, venting is used for devolatilization during extrusion with a high-temperature extruder, but this is not the only option, but a method of heating in an oven, and selecting an appropriate solvent to wash the acrylic resin ⁇ Methods such as drying are possible.
  • the amount of residual monomer in the acrylic resin is preferably in the range of 0.01 to 1% by mass, more preferably 0.01 to 0.1% by mass.
  • the acrylic resin according to the present invention is characterized by having a Tg (glass transition temperature) in the range of 120 to 180°C. Due to the recent demand for high durability of optical films, durability at a temperature exceeding 100° C. (for example, 105° C.) has been tested. Therefore, the Tg of the acrylic resin according to the present invention is 120° C. or more. It is necessary to be.
  • the Tg of poly(methyl methacrylate), which is a typical acrylic resin, is 105 to 115° C., which is not suitable for the present invention.
  • the lactone ring unit used for the copolymerization with the acrylic resin in the present invention is not particularly limited, but is disclosed in JP2007-297615A, JP2007-63541A, JP2007-70607A, and JP2007-100044A. No. 2007-254726, No. 2007-254727, No. 2007-261265, No. 2007-293272, No. 2007-297619, No. 2007-316366, No. 2008-9378. , JP-A-2008-76764 and the like. These do not limit the present invention, and these may be used alone or in combination of two or more.
  • the structure of the lactone ring unit in the main chain is preferably a 4- to 8-membered ring, more preferably a 5- to 6-membered ring, and particularly preferably a 6-membered ring in view of structural stability.
  • the structure represented by the following general formula (2) and the structure represented by JP-A-2004-168882 may be mentioned.
  • R 11 to R 13 each independently represent a hydrogen atom or an organic residue having 1 to 20 carbon atoms.
  • the organic residue is not particularly limited as long as it has 1 to 20 carbon atoms, and examples thereof include a linear or branched alkyl group, a linear or branched alkylene group, an aryl group, and an —OAc group. , --CN group and the like. Moreover, the organic residue may contain an oxygen atom.
  • the carbon number of R 11 to R 13 is preferably 1 to 10, and more preferably 1 to 5.
  • the method for producing the lactone ring unit-containing acrylic resin is not particularly limited, but preferably, after the polymer having a hydroxy group and an ester group in the molecular chain is obtained by the polymerization step, the obtained polymer is heated.
  • a lactone ring-containing polymer can be obtained by performing a lactone cyclization condensation step of introducing a lactone ring structure into the polymer by treatment.
  • ⁇ Maleic anhydride type> By forming the maleic anhydride structure in the molecular chain of the polymer (in the main skeleton of the polymer), high heat resistance is imparted to the acrylic resin as the copolymer, and the glass transition temperature (Tg) is also increased. It is preferable because it becomes high.
  • the maleic anhydride unit used for the copolymerization with the acrylic resin is not particularly limited, but is disclosed in JP-A-2007-113109, JP-A-2003-292714, JP-A-6-279546, and JP-A-2007-51233. JP-A-2001-270905, JP-A-2002-167694, JP-A-2000-302988, JP-A-2007-113110 and JP-A-2007-11565, and maleic acid-modified resins. Can be mentioned. However, these do not limit the present invention.
  • the resins described in JP-A 2007-113109 and maleic acid-modified MAS resins can be preferably used. .. These do not limit the present invention, and these may be used alone or in combination of two or more.
  • the method for producing an acrylic resin containing a maleic anhydride unit is not particularly limited, and a known method can be used.
  • the maleic acid-modified resin is not limited as long as the obtained polymer contains maleic anhydride units, and examples thereof include (anhydrous) maleic acid-modified MS resin and (anhydrous) maleic acid-modified MAS resin (methacrylic acid).
  • (Methyl-acrylonitrile-styrene copolymer) (anhydrous) maleic acid modified MBS resin, (anhydrous) maleic acid modified AS resin, (anhydrous) maleic acid modified AA resin, (anhydrous) maleic acid modified ABS resin, ethylene-maleic anhydride
  • Examples thereof include acid copolymers, ethylene-(meth)acrylic acid-maleic anhydride copolymers, and maleic anhydride graft polypropylene.
  • the maleic anhydride unit has a structure represented by the following general formula (3).
  • R 21 and R 22 each independently represent a hydrogen atom or an organic residue having 1 to 20 carbon atoms.
  • the organic residue is not particularly limited as long as it has 1 to 20 carbon atoms, and examples thereof include a linear or branched alkyl group, a linear or branched alkylene group, an aryl group, and an —OAc group. , --CN group and the like.
  • the organic residue may contain an oxygen atom.
  • the carbon number of R 21 and R 22 is preferably 1-10, more preferably 1-5.
  • R 21 and R 22 each represent a hydrogen atom
  • a ternary or higher heat-resistant acrylic resin for example, a methyl methacrylate-maleic anhydride-styrene copolymer can be preferably used.
  • Glutaric anhydride type> By forming a glutaric anhydride structure in the polymer molecular chain (in the main skeleton of the polymer), high heat resistance is imparted to the acrylic resin that is a copolymer, and the glass transition temperature (Tg) Is also high, which is preferable.
  • the maleic anhydride unit used for copolymerization with the acrylic resin in the present invention is not particularly limited, but is disclosed in JP-A-2006-241263, JP-A-2004-70290, JP-A-2004-70296, and JP-A-2004.
  • JP-A-2007-197703, JP-A-2008-74918, WO2005/105918 and the like can be used. Among these, more preferable is that described in JP-A-2008-74918. These do not limit the present invention, and these may be used alone or in combination of two or more.
  • the glutaric anhydride unit has a structure represented by the following general formula (4).
  • R 31 and R 32 represent the same or different hydrogen atoms or alkyl groups having 1 to 5 carbon atoms.
  • the carbon number of R 31 and R 32 is preferably 1-10, and more preferably 1-5.
  • Such an acrylic resin containing a glutaric anhydride unit is prepared by forming an unsaturated carboxylic acid monomer giving a glutaric anhydride unit and an unsaturated carboxylic acid alkyl ester monomer into a copolymer, It can be produced by heating the combined product in the presence or absence of a suitable catalyst to carry out an intramolecular cyclization reaction by dealcoholation and/or dehydration.
  • the acrylic resin having glutarimide as a ring structure is a resin containing a glutarimide unit represented by the following general formula (1a).
  • R 1 and R 2 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms
  • R 3 is an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or a carbon atom.
  • the method for producing the acrylic resin having glutarimide is not particularly limited, and known methods can be applied. Specifically, using a polymethylmethacrylate or a methylmethacrylate-styrene copolymer as a raw material, an imidation step of treating with an imidizing agent, and an esterification step of treating with an esterifying agent as necessary Then, an acrylic resin having glutarimide can be manufactured.
  • the imidizing agent is not particularly limited as long as it can form the glutarimide represented by the general formula (1a), and examples thereof include the compounds described in WO2005/054311.
  • these imidizing agents methylamine, ammonia, cyclohexylamine, and aniline are preferably used from the viewpoints of cost and physical properties, and methylamine is particularly preferably used.
  • Methylamine which is gaseous at room temperature, may be dissolved in alcohols such as methanol before use.
  • the proportion of the glutarimide unit and the (meth)acrylic acid ester unit in the resulting acrylic resin can be adjusted by adjusting the addition ratio of the imidizing agent.
  • imidization process examples include known methods such as those described in JP 2008-273140 A and JP 2008-274187 A.
  • a monomer represented by the following general formula (2a) is preferably used as the maleimide-based structural unit.
  • R 3 in the general formula (2a) is selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, and an aryl group having 6 to 12 carbon atoms. And may have a substituent on the carbon atom.
  • the monomer for forming the maleimide-based structural unit is not particularly limited, and examples thereof include maleimide, N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide; N-phenylmaleimide, N- Methylphenylmaleimide, N-ethylphenylmaleimide, N-butylphenylmaleimide, N-dimethylphenylmaleimide, N-hydroxyphenylmaleimide, N-methoxyphenylmaleimide, N-(o-chlorophenyl)maleimide, N-(m-chlorophenyl) Examples thereof include N-aryl group-substituted maleimides such as maleimide and N-(p-chlorophenyl)maleimide.
  • N-cyclohexylmaleimide preferably N-cyclohexylmaleimide, N-phenylmaleimide, N-methylphenylmaleimide, N-(o-chlorophenyl)maleimide, N-(m-chlorophenyl)maleimide, N-( p-chlorophenyl)maleimi is preferred, and N-cyclohexylmaleimide and N-phenylmaleimide are more preferred, and N-phenylmaleimide is more preferred, from the viewpoints of easy availability and heat resistance.
  • ⁇ Styrene copolymer hydride>> By forming the hydride of the styrene copolymer in the molecular chain of the polymer (in the main skeleton of the polymer), high heat resistance is imparted to the acrylic resin and the glass transition temperature (Tg) is also high. Therefore, it is preferable.
  • the hydride of the styrene copolymer according to the present invention is obtained by polymerizing a (meth)acrylic acid ester monomer and an aromatic vinyl monomer to obtain a thermoplastic resin (B0), and then the aromatic resin in the thermoplastic resin (B0). It is obtained by hydrogenating 70% or more of aromatic double bonds in the constitutional unit derived from a vinyl monomer.
  • Examples of the solvent used in the hydrogenation reaction include hydrocarbon solvents such as cyclohexane and methylcyclohexane, ester solvents such as ethyl acetate and methyl isobutyrate, ketone solvents such as acetone and methyl ethyl ketone, and ethers such as tetrahydrofuran and dioxane.
  • Examples include system solvents, alcohol solvents such as methanol and isopropanol, and the like.
  • the method of hydrogenation is not particularly limited, and a known method can be used.
  • the hydrogen pressure may be 3 to 30 MPa
  • the reaction temperature may be 60 to 250° C.
  • the batch type or continuous flow type may be used.
  • the temperature is 60° C. or higher, the reaction time does not take too long, and when the temperature is 250° C. or lower, the molecular chain is not cleaved and the ester moiety is less hydrogenated.
  • Examples of the catalyst used in the hydrogenation reaction include metals such as nickel, palladium, platinum, cobalt, ruthenium, and rhodium, or oxides or salts or complex compounds of these metals, carbon, alumina, silica, silica-alumina, and diatomaceous earth. And the like, such as a solid catalyst supported on a porous carrier.
  • the styrene copolymer hydride is obtained by hydrogenating 70% or more of the aromatic double bonds in the structural unit derived from the aromatic vinyl monomer in the thermoplastic resin (B0). That is, the proportion of aromatic double bonds remaining in the constitutional unit derived from the aromatic vinyl monomer is 30% or less, preferably less than 10%, more preferably less than 5%.
  • any stereoregularity of the acrylic resin according to the present invention can be selected.
  • meso those having the same configuration
  • racemo those having the opposite ones
  • m and r the ratio of the two chains (triples, diad) of the chain of three consecutive structural units (triples, triad) being both racemo (denoted as rr) is syndiotactic in triplets.
  • rr a city (hereinafter, simply referred to as “syndiotacticity (rr)”).
  • an acrylic resin having a triplet syndiotacticity (rr) of 53 to 57%, preferably 54 to 56% may be selected.
  • a method for producing a polymer of an unsaturated carboxylic acid or a derivative thereof disclosed in JP-A-2002-145914 by radical polymerization, which is an inexpensive method capable of effectively controlling the stereoregularity of the obtained polymer is also preferable. Can be implemented.
  • a block copolymer disclosed in JP-A-2018-24794 is also preferably selected.
  • a block structure a block having a relatively high Tg for improving heat resistance and a block having a relatively low Tg for improving flexibility are preferable.
  • the block copolymer may form not only the entire acrylic resin according to the present invention but a resin-blended part thereof.
  • the method for producing the block copolymer is not particularly limited, and a method according to a known method can be adopted.
  • a method of subjecting the monomers constituting each block to living polymerization is generally used.
  • a living polymerization technique for example, a method of anionic polymerization using an organic alkali metal compound as a polymerization initiator in the presence of a mineral acid salt such as an alkali metal or alkaline earth metal salt (Japanese Patent Publication No. 7-25859).
  • a method of anionic polymerization using an organic alkali metal compound as a polymerization initiator in the presence of an organic aluminum compound see JP-A No.
  • a polymer having a branched structure can be selected as the acrylic resin according to the present invention.
  • the branched structure has a repeating structural unit in a side chain in addition to the polymer main chain.
  • a polymer having a branched structure is preferably selected for improving the physical properties because the entanglement of polymer chains increases.
  • As a means for introducing a branched structure into a polymer it is general to use a macromonomer corresponding to a side chain structure.
  • the macromonomer examples include a compound in which a methacryloyloxy group is added to the end of a methyl methacrylate polymer.
  • a macromonomer can be prepared by, for example, a method of bonding a polymerizable functional group to the end of the prepolymer (see JP-A-60-133007). Further, as the macromonomer, a commercially available product can also be used.
  • a crosslinked structure may be introduced into the acrylic resin according to the present invention.
  • One of the cross-linking methods is to use a polyfunctional monomer during the polymerization of the acrylic resin.
  • Another method is to incorporate a reactive group into the polymer side chain of an acrylic resin and crosslink the reactive groups with a crosslinking agent or by self-crosslinking. By introducing a crosslinked structure, it is possible to improve the heat resistance and mechanical properties of the acrylic resin.
  • crosslinkable monomer examples include polyfunctional acrylic monomers, polyfunctional allyl monomers, and mixed monomers thereof. More specific examples include, as the polyfunctional acrylic-based monomer, ethylene oxide-modified bisphenol A di(meth)acrylate, 1,4-butanediol di(meth)acrylate, diethylene glycol di(meth)acrylate, dipentaerythritol hexa Acrylate, dipentaerythritol monohydroxypentaacrylate, caprolactone modified dipentaerythritol hexaacrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, polyethylene glycol di(meth)acrylate, trimethylolpropane triacrylate, EO modified Trimethylolpropane tri(meth)acrylate, PO-modified trimethylolpropane tri(meth)acrylate, tris(acryloxyethyl)iso
  • polyfunctional allyl monomer examples include, for example, triallyl cyanurate, triallyl isocyanurate, diallyl phthalate, diallyl benzene phosphonate, and mixtures thereof. Among them, triallyl cyanurate, triallyl isocyanurate and these Mixtures are preferably used.
  • the acrylic resin film according to the present invention has a low absolute value in both photoelastic coefficient and orientation birefringence (inherent birefringence).
  • the in-plane retardation value obtained by multiplying the orientation birefringence and the film thickness is preferably in the range of -20 nm to +20 nm, or -5 nm to +5 nm.
  • the value of the photoelastic coefficient is preferably in the range of ⁇ 20 ⁇ 10 ⁇ 12 to +20 ⁇ 10 ⁇ 12 Pa ⁇ 1 , or ⁇ 5 ⁇ 10 ⁇ 12 to +5 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
  • the “photoelastic coefficient” in the present application is a coefficient representing the easiness of change in birefringence due to an external force, and is defined by the following equation.
  • CR[Pa] ⁇ n/ ⁇ R
  • ⁇ R is a tensile stress [Pa]
  • ⁇ n is a birefringence when a stress is applied
  • ⁇ n is defined by the following equation.
  • ⁇ n n1-n2
  • n1 is a refractive index in a direction parallel to the stretching direction
  • n2 is a refractive index in a direction perpendicular to the stretching direction.
  • the monomer having a positive (negative) photoelastic coefficient means a monomer having a positive (negative) photoelastic coefficient of a homopolymer of the monomer.
  • the “inherent birefringence” in the present application is a value representing the magnitude of birefringence depending on the orientation, and is defined by the following formula.
  • Intrinsic birefringence npr-nvt
  • npr is the refractive index in the direction parallel to the orientation direction of the polymer oriented with uniaxial order
  • nvt is the refractive index in the direction perpendicular to the orientation direction.
  • the monomer having a negative intrinsic birefringence means that when light is incident on a layer formed by orienting a homopolymer of the monomer with uniaxial order, the orientation direction is Is a monomer whose refractive index of light is smaller than the refractive index of light in the direction orthogonal to the alignment direction.
  • the acrylic resin film according to the present invention has a negative photoelastic coefficient and a unit (a) of 5% by mass or more and less than 85% by mass derived from a monomer having a positive photoelastic coefficient and a negative intrinsic birefringence.
  • a unit (b) derived from a monomer having a negative intrinsic birefringence is included in an amount of 5% by mass or more and less than 85% by mass and a unit (c) having a 5- or 6-membered ring structure in an amount of more than 10% by mass and 50% by mass or less. It is preferable to include the copolymer (1).
  • the unit (a) may be any unit as long as it is a unit derived from a monomer that satisfies the conditions that the photoelastic coefficient is positive and the intrinsic birefringence is negative.
  • the monomer having a positive photoelastic coefficient and a negative intrinsic birefringence include aromatic vinyl compound units.
  • the aromatic vinyl compound means a compound having a styrene skeleton in its structure.
  • aromatic vinyl compound examples include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, 2,5-dimethylstyrene, 3,4-dimethylstyrene, Nuclear alkyl-substituted styrenes such as 3,5-dimethylstyrene, p-ethylstyrene, m-ethylstyrene, o-ethylstyrene, p-tert-butylstyrene; 1,1-diphenylethylene, etc.
  • the thing is styrene.
  • aromatic vinyl compounds may be used alone or in combination of two or more.
  • the unit (b) may be any unit as long as it is derived from a monomer that satisfies the conditions that the photoelastic coefficient is negative and the intrinsic birefringence is negative.
  • Examples of the monomer having a negative photoelastic coefficient and a negative intrinsic birefringence include (meth)acrylic monomers.
  • the (meth)acrylic monomer means methacrylic acid, acrylic acid, and derivatives thereof, preferably methacrylic acid ester and acrylic acid ester.
  • the methacrylic acid ester include butyl methacrylate, ethyl methacrylate, methyl methacrylate, propyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, 2-ethylhexyl methacrylate, t-butylcyclohexyl methacrylate, benzyl methacrylate, Examples thereof include 2,2,2-trifluoroethyl methacrylate, and a typical one is methyl methacrylate.
  • acrylate ester examples include methyl acrylate, ethyl acrylate, butyl acrylate, isopropyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, and phenyl acrylate.
  • the copolymer containing an alkyl acrylate unit is excellent in thermal decomposition resistance and enhances fluidity during molding. Therefore, in order to improve the thermal decomposition resistance and molding processability, it is preferable to use an acrylic acid alkyl ester as the (meth)acrylic monomer.
  • the amount of the acrylic acid alkyl ester unit used is preferably 0.1% by mass or more from the viewpoint of thermal decomposition resistance, and is preferably 15% by mass or less from the viewpoint of heat resistance. It is more preferably in the range of 0.2 to 14% by mass, and particularly preferably in the range of 1 to 12% by mass.
  • acrylic acid alkyl ester monomers particularly, methyl acrylate and ethyl acrylate are remarkably preferable for the above-mentioned improving effect even if a small amount of them is copolymerized.
  • methyl acrylate and ethyl acrylate are remarkably preferable for the above-mentioned improving effect even if a small amount of them is copolymerized.
  • the above (meth)acrylic monomers can be used alone or in combination of two or more.
  • the unit (c) may be any unit as long as it has a 5- or 6-membered ring in its structure.
  • Examples of the unit (c) include unsaturated dicarboxylic acid anhydride monomer units which are anhydrides such as maleic anhydride and glutaric acid; unsaturated carboxylic acid units such as lactone ring structures; N-phenylmaleimide, N- Examples thereof include maleimide units such as cyclohexylmaleimide.
  • the content of the unit (a), the unit (b), and the unit (c) is 5% by mass or more and less than 85% by mass, 5% by mass or more and less than 85% by mass, and 10% by mass or more and 50% by mass or less, respectively. Is preferred.
  • the acrylic resin film according to the present invention becomes difficult to have in-plane retardation (Re), and the value of in-plane retardation. It becomes possible to control strictly.
  • the ratio of each unit constituting the copolymer (1) satisfies a specific relationship, that is, when the value of K represented by the following formula is ⁇ 3.1 or more and 3.1 or less,
  • the absolute value of the photoelastic coefficient of the polymer (1) is particularly small.
  • the value of K is more preferably -3.1 to 0, and even more preferably -3.1 to -1.0.
  • A, B and C represent the proportions (% by mass) of the respective units (a), (b) and (c) in the copolymer (1).
  • the acrylic resin according to the present invention may be blended with a resin other than acrylic.
  • the blending ratio is preferably in the range of 1 to 45 mass% with respect to the entire acrylic resin.
  • preferable resins for blending include cellulose ester resins, polyvinyl acetal resins, and styrene resins.
  • the cellulose ester resin may be substituted with either an aliphatic acyl group or an aromatic acyl group, but it is preferably substituted with an acetyl group.
  • the aliphatic acyl group has 2 to 20 carbon atoms, specifically acetyl, propionyl, butyryl, isobutyryl, valeryl, pivaloyl, hexanoyl, octanoyl, Examples include lauroyl and stearoyl.
  • the above-mentioned aliphatic acyl group is meant to include those having a substituent, and the substituent is a substituent of the benzene ring when the aromatic ring is a benzene ring in the above-mentioned aromatic acyl group. Examples of the above are listed.
  • the number of substituents on the aromatic ring is 0 or 1 to 5, preferably 1 to 3, and particularly preferably 1 Or two. Furthermore, when the number of substituents on the aromatic ring is 2 or more, they may be the same or different from each other, but they may also be linked to each other to form a condensed polycyclic compound (for example, naphthalene, indene, indane, phenanthrene, quinoline). , Isoquinoline, chromene, chroman, phthalazine, acridine, indole, indoline, etc.).
  • a structure having at least one selected from a substituted or unsubstituted aliphatic acyl group and a substituted or unsubstituted aromatic acyl group is used as the structure used in the cellulose resin according to the present invention.
  • These may be a single acid ester or a mixed acid ester of cellulose.
  • the total degree of substitution (T) of the acyl group is 2.00 to 3.00, the acetyl group is not always necessary, and the degree of acetyl group substitution (ac) is 0 to 1.89.
  • the substitution degree (r) of the acyl group other than the acetyl group is 2.00 to 2.89.
  • the acyl group other than the acetyl group preferably has 3 to 7 carbon atoms.
  • the cellulose ester resin having an acyl group having 2 to 7 carbon atoms as a substituent that is, cellulose acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate benzoate, And at least one selected from cellulose benzoate.
  • particularly preferred cellulose ester resins include cellulose acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate and cellulose acetate butyrate.
  • the mixed fatty acid is more preferably a lower fatty acid ester of cellulose acetate propionate or cellulose acetate butyrate, which has an acyl group having 2 to 4 carbon atoms as a substituent.
  • the moiety not substituted with an acyl group is usually present as a hydroxy group. These can be synthesized by a known method. The degree of substitution of the acetyl group and the degree of substitution of other acyl groups are determined by the method specified in ASTM-D817-96.
  • the object of the present invention can be achieved even if the weight average molecular weight (Mw) is about 1,000,000. Those of 100,000 to 240,000 are more preferable.
  • This weight average molecular weight can be measured by the GPC method.
  • Cellulose ester resins are commercially available from Daicel Corporation and Eastman Chemical Company.
  • a particularly preferred cellulose ester resin is Eastman TM Cellulose Acetate Propionate (CAP-482-20).
  • the polyvinyl acetal resin used in the present invention can be obtained by acetalizing a polyvinyl alcohol resin with an aldehyde.
  • the polyvinyl alcohol resin used for producing the polyvinyl acetal resin has a viscosity average degree of polymerization of 200 to 4000, preferably 300 to 3000, and more preferably 500 to 2000.
  • the viscosity average degree of polymerization of the polyvinyl alcohol resin is less than 200, the mechanical properties of the obtained polyvinyl acetal resin are insufficient, and the mechanical properties of the acrylic resin film of the present invention, especially the toughness, tend to be insufficient. It tends to be bad.
  • aldehyde having 3 or less carbon atoms used in the production of the polyvinyl acetal resin examples include formaldehyde (including paraformaldehyde), acetaldehyde (including paraacetaldehyde), propionaldehyde and the like. These aldehydes having 3 or less carbon atoms can be used alone or in combination of two or more. Among these aldehydes having 3 or less carbon atoms, those mainly containing acetaldehyde (including paraacetaldehyde) and formaldehyde (including paraformaldehyde) are preferable, and acetaldehyde is particularly preferable, from the viewpoint of ease of production.
  • aldehyde having 4 or more carbon atoms used for producing the polyvinyl acetal resin examples include butyraldehyde, n-octylaldehyde, amylaldehyde, hexylaldehyde, heptylaldehyde, 2-ethylhexylaldehyde, cyclohexylaldehyde, furfural, glyoxal, glutaraldehyde, benzaldehyde.
  • aldehydes having 4 or more carbon atoms may be used alone or in combination of two or more.
  • aldehydes those mainly containing butyraldehyde are preferable from the viewpoint of easy production, and butyraldehyde is particularly preferable.
  • the styrene resin means a polymer containing at least a styrene monomer as a monomer component.
  • the styrene-based monomer means a monomer having a styrene skeleton in its structure.
  • the styrene-based monomer is not particularly limited as long as it has a styrene skeleton in its structure, and examples thereof include styrene; o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4 -Nuclear alkyl-substituted styrenes such as dimethylstyrene, ethylstyrene and p-tert-butylstyrene; aromatic vinyl compound monomers such as ⁇ -alkylsubstituted styrenes such as ⁇ -methylstyrene and ⁇ -methyl-p-methylstyrene. Among them, styrene is preferable.
  • Styrene resin may be a homopolymer of styrene monomer or a copolymer of styrene monomer and other monomer components.
  • the monomer component copolymerizable with the styrene-based monomer include alkyl methacrylate monomers such as methyl methacrylate, cyclohexyl methacrylate, methylphenyl methacrylate, and isopropyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate.
  • Unsaturated carboxylic acid alkyl ester monomers such as alkyl acrylate monomers such as cyclohexyl acrylate; unsaturated carboxylic acid monomers such as methacrylic acid, acrylic acid, itaconic acid, maleic acid, fumaric acid, cinnamic acid; anhydrous Unsaturated dicarboxylic acid anhydride monomers which are anhydrides such as maleic acid, itaconic acid, ethyl maleic acid, methyl itaconic acid and chloromaleic acid; unsaturated nitrile monomers such as acrylonitrile and methacrylonitrile; 1,3 -Conjugated diene monomers such as butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and 1,3-hexadiene.
  • alkyl acrylate monomers such as cyclohexyl
  • two or more of these may be copolymerized.
  • the copolymerization ratio of such other monomer component is preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 30% by mass or less based on the styrene-based monomer.
  • the styrene resin As the styrene resin, a styrene-acrylonitrile copolymer, a styrene-methacrylic acid copolymer, and a styrene-maleic anhydride copolymer are particularly excellent in properties required for optical materials such as heat resistance and transparency. Therefore, it is preferable.
  • the copolymerization ratio of acrylonitrile in the copolymer is preferably 1 to 40% by mass, more preferably 1 to 30% by mass, and further preferably 1 to 25% by mass. Is. When the copolymerization ratio of acrylonitrile in the copolymer is in the range of 1 to 40% by mass, a copolymer having excellent transparency tends to be obtained, which is preferable.
  • the copolymerization ratio of methacrylic acid in the copolymer is preferably 0.1 to 50% by mass, more preferably 0.1 to 40% by mass, and further preferably Is 0.1 to 30% by mass.
  • the copolymerization ratio of methacrylic acid in the copolymer is 0.1% by mass or more, a copolymer having excellent heat resistance tends to be obtained, and when it is 50% by mass or less, the copolymer having excellent transparency is obtained. It is preferable because a coalescence tends to be obtained.
  • the copolymerization ratio of maleic anhydride in the copolymer is preferably 0.1 to 50% by mass, more preferably 0.1 to 40% by mass, More preferably, it is 0.1 to 30 mass %.
  • the copolymerization ratio of maleic anhydride in the copolymer is 0.1% by mass or more, a copolymer having excellent heat resistance tends to be obtained, and when 50% by mass or less, the copolymer having excellent transparency is obtained. It is preferable because a polymer tends to be obtained.
  • Rubber Particles There are various intentions of using fine particles in a film, and there are so-called matting agents that enhance the slipperiness by giving unevenness to the surface of the film, fine particles for retardation using birefringence of crystalline fine particles, and the like. ..
  • matting agents that enhance the slipperiness by giving unevenness to the surface of the film, fine particles for retardation using birefringence of crystalline fine particles, and the like. ..
  • rubber particles also called elastic fine particles are used to impart supple flexibility to the acrylic resin film which is brittle and easily cracked.
  • the acrylic resin film according to the present invention is characterized by containing rubber particles having a core/shell structure (multilayer structure).
  • the shell layer is the outermost layer.
  • toughness can be imparted by adding rubber particles, which are elastic bodies, to a brittle acrylic resin film.
  • the content of rubber particles in the acrylic resin film is preferably 1 to 45% by mass, more preferably 5 to 35% by mass, and most preferably 5 to 20% by mass.
  • the rubber particles are a multi-layer composed of a core part and a shell part obtained by further polymerizing a (meth)acrylic acid ester as a shell part to a particulate polymer forming the core part having an average particle diameter of 0.01 to 1 ⁇ m.
  • the rubber particles have a structure derived from a polyfunctional compound only in the central portion (core), and the portion (shell) surrounding the central portion has high compatibility with the acrylic resin constituting the acrylic resin film. It is preferable to have a structure. As a result, the rubber particles can be more uniformly dispersed in the acrylic resin, and the by-product of foreign matter caused by aggregation of the rubber particles can be further suppressed.
  • the shell part and the core part of the core-shell structure will be described.
  • the shell portion is not particularly limited as long as it has a structure having high compatibility with the acrylic resin forming the acrylic resin film.
  • the core portion is not particularly limited as long as it has a structure capable of improving the flexibility of the acrylic resin forming the acrylic resin film, and examples thereof include a structure having a crosslink.
  • the crosslinked structure is preferably a crosslinked rubber structure.
  • the crosslinked rubber structure is a rubber in which a polymer having a glass transition point in the range of ⁇ 100° C. to 25° C. is used as a main chain, and the main chains are crosslinked with a polyfunctional compound to give elasticity. Means the structure of.
  • Examples of the crosslinked rubber structure include acrylic rubber, polybutadiene rubber, and olefin rubber structures (repeating structural units). Among these, acrylic rubber is preferable because it is easy to control the average particle diameter to 0.3 ⁇ m or less and the optical properties such as transparency of the film are good when uniformly dispersed in the resin.
  • Examples of the structure having a crosslink include the structures derived from the above-mentioned polyfunctional compounds.
  • the polyfunctional compounds 1,4-butanediol dimethacrylate, diethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, divinylbenzene, allyl methacrylate, allyl acrylate, and dicyclopentenyl methacrylate are more preferable.
  • the amount of the polyfunctional monomer used during the production of the core part is preferably 0.01 to 15% by mass of the monomer composition used, and 0.1 to 10% by mass. It is more preferable that When the polyfunctional monomer is used within the above range, the resulting film exhibits good bending resistance.
  • Examples of the material of the rubber particles include a butadiene-based crosslinked polymer, a (meth)acrylic crosslinked polymer, and an organosiloxane crosslinked polymer.
  • a (meth)acrylic crosslinked polymer in terms of weather resistance (light resistance) and transparency of the film, a (meth)acrylic crosslinked polymer (in the specification of the present application, a rubber portion made of a (meth)acrylic copolymer is also referred to as acrylic rubber particles). Is particularly preferable.
  • acrylic rubber particles examples include ABS resin rubber particles, ASA resin rubber particles, and acrylate ester rubber particles.
  • multilayer structure particles multilayer structure particles obtained by forming a shell layer on the surface of these acrylic rubber particles by graft polymerization using a desired monomer are preferable. From the viewpoint of transparency of the obtained film, the multilayer structure particles are preferably acrylic graft copolymer particles obtained by performing graft polymerization on the surface of the particles of the acrylic ester rubber polymer shown below. ..
  • Acrylic graft copolymer particles can be obtained by polymerizing a monomer mixture containing methacrylic acid ester as a main component in the presence of particles of an acrylic acid ester rubbery polymer.
  • the acrylic acid ester-based rubber-like polymer which is the material of the rubber portion, is a rubber-like polymer containing acrylic acid ester as a main component. Specifically, a monomer mixture (100% by mass) consisting of 50 to 100% by mass of an acrylic ester and 50 to 0% by mass of another copolymerizable vinyl-based monomer, and two or more monomers per molecule are used. Those obtained by polymerizing a polyfunctional monomer having a non-conjugated reactive double bond are preferable. The polyfunctional monomer is used in a desired amount so that the degree of crosslinking of the rubber portion is within the range of 2.3 to 4.0% by mass. The monomers may be mixed and used, or the monomer composition may be changed and used in two or more stages.
  • the acrylate ester it is preferable to use one having an alkyl group having 1 to 12 carbon atoms from the viewpoint of polymerizability and cost.
  • Examples include octyl, phenyl acrylate, and 2-phenoxyethyl acrylate. Two or more kinds of these acrylic acid esters may be used in combination.
  • the amount of acrylic acid ester is preferably 50 to 100% by mass, more preferably 60 to 99% by mass, further preferably 70 to 99% by mass, and most preferably 80 to 99% by mass in 100% by mass of the monomer mixture. .. If it is less than 50% by mass, the impact resistance tends to be low, the elongation at tensile rupture tends to be low, and cracking tends to occur when the film is cut.
  • Methacrylic acid esters are particularly preferable as the other vinyl-based monomer copolymerizable with the acrylic acid ester from the viewpoint of weather resistance and transparency.
  • the methacrylic acid esters include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, sec-butyl methacrylate, isobutyl methacrylate, benzyl methacrylate, cyclohexyl methacrylate, 2-methacrylic acid.
  • examples thereof include phenoxyethyl, 2-ethylhexyl methacrylate, phenyl methacrylate, and n-octyl methacrylate.
  • aromatic vinyls and their derivatives, and vinyl cyanides are preferable.
  • these vinyl monomers include styrene, methylstyrene, acrylonitrile and methacrylonitrile.
  • Other examples include unsubstituted and/or substituted maleic anhydrides, (meth)acrylamides, vinyl esters, vinylidene halides, (meth)acrylic acid and salts thereof, (hydroxyalkyl)acrylic acid esters and the like.
  • the multi-layer structure polymer may further have another polymer layer on the inner side (center side) of the rubber part.
  • a monomer mixture comprising 40 to 100% by mass of an alkyl methacrylate and 60 to 0% by mass of another monomer having a double bond copolymerizable therewith, and It is preferable to have a methacrylic cross-linked polymer layer obtained by polymerizing 0.01 to 10 parts by mass of a polyfunctional monomer with respect to 100 parts by mass of the monomer mixture.
  • the monomer having a copolymerizable double bond the above-mentioned other copolymerizable vinyl monomers, acrylic acid ester and the like are similarly exemplified.
  • the acrylic graft copolymer comprising a rubber part and a shell layer formed on the surface of the rubber part by graft polymerization is an acrylic ester rubber-like polymer particle of 5 to 90 parts by mass (more preferably 5 parts by mass). It is preferably obtained by polymerizing 95 to 25 parts by mass of a monomer mixture containing a methacrylic acid ester as a main component in at least one step in the presence of (about 75 to 75 parts by mass).
  • the methacrylic acid ester in the graft copolymer composition is preferably 50% by mass or more. If it is less than 50% by mass, the hardness and rigidity of the obtained film tend to be lowered.
  • the monomer used for the graft copolymerization the above-mentioned methacrylic acid ester, acrylic acid ester, and vinyl-based monomers capable of copolymerizing these can be similarly used, and methacrylic acid ester and acrylic acid ester are preferably used. To be done. Methyl methacrylate is preferred from the viewpoint of compatibility with acrylic resins, and methyl acrylate, ethyl acrylate, and n-butyl acrylate are preferred from the viewpoint of suppressing zipper depolymerization.
  • the rubber particles having a crosslinked structure can be obtained, for example, by polymerizing a monomer composition containing a polyfunctional compound having two or more non-conjugated double bonds per molecule.
  • a polyfunctional compound having two or more non-conjugated double bonds per molecule examples include divinylbenzene, allyl methacrylate, allyl acrylate, dicyclopentenyl methacrylate, dicyclopentenyl acrylate, 1,4-butanediol dimethacrylate, ethylene glycol dimethacrylate, triallyl sialic acid.
  • Nuret, triallyl isocyanurate, diallyl phthalate, diallyl maleate, divinyl adipate, divinylbenzene ethylene glycol dimethacrylate, divinylbenzene ethylene glycol diacrylate, diethylene glycol dimethacrylate, diethylene glycol diacrylate -, triethylene glycol dimethacrylate, triethylene glycol diacrylate, trimethylol propane trimethacrylate, trimethylol propane triacrylate, tetramethyl methane tetramethacrylate, tetramethylol -Methane acrylate, dipropylene glycol dimethacrylate, dipropylene glycol diacrylate, etc. may be used, and these may be used alone or in combination of two or more.
  • any suitable method capable of producing the core/shell type rubber particles can be adopted.
  • a polymerizable monomer forming a rubber-like polymer forming the core layer is suspended or emulsion-polymerized to produce a suspension or emulsion dispersion containing rubber-like polymer particles, and then the suspension is prepared.
  • the polymerizable monomer that forms the rubber-like polymer and the polymerizable monomer that forms the glass-like polymer may be polymerized in one step or may be polymerized in two or more steps by changing the composition ratio. Good.
  • a preferred structure of the core-shell type elastic body includes, for example, (a) a soft, rubber-like core layer and a hard, glass-like shell layer, wherein the core layer is a (meth)acrylic crosslinked elastic polymer. Those having a united layer, (b) those having a multilayer structure in which the rubber-like core layer has one or more glass-like layers inside thereof, and further having a glass-like shell layer outside the core layer, and the like. Can be mentioned.
  • the soft, rubbery layer preferably has a polymer glass transition temperature of less than 20° C., preferably less than 0° C.
  • the hard, glassy layer has a polymer glass transition temperature of 0° C. or more, preferably Is preferably 20° C. or higher.
  • the shell layer of the core-shell type rubber particles preferably contains alkyl acrylate in an amount of 3% by mass or more, more preferably 10% by mass or more, More preferably, it is a non-crosslinked methacrylic resin containing 15% by mass or more, and (ii) the shell layer of the core-shell type rubber particles is composed of two or more multi-layers having different alkyl acrylate contents, and a total of alkyl acrylate.
  • a glassy polymer layer obtained by polymerizing a mixture of other monomers as appropriate, a multi-layer structure is formed in which a rubbery polymer layer obtained by polymerizing a mixture of acrylic acrylate, a polyfunctional monomer, an alkyl mercaptan, and other appropriate monomers is formed.
  • the core layer of the core-shell type rubber particles in the presence of a glassy polymer layer polymerized by using an organic peroxide as a redox type polymerization initiator, a peracid (persulfate, Examples thereof include those having a multi-layer structure in which a rubbery polymer layer formed by polymerizing (using a superphosphate or the like) as a thermal decomposition type initiator is formed.
  • the total amount of the alkyl acrylate used in the shell layer is preferably 60% by mass or less, more preferably 50% by mass or less, still more preferably 40% by mass or less.
  • 60% by mass the dispersibility of the core/shell type rubber particles in the matrix tends to be poor, the mechanical strength and the transparency are likely to be poor, and further, foreign matter such as fish eyes is likely to occur.
  • productivity of the core/shell type rubber particles it is easy to cause troubles such as the product tends to be coarse particles.
  • the structural design element of such preferable core-shell type rubber particles may have only one, or two or more design elements may be used in combination.
  • the core/shell type rubber particles are easily dispersed in the acrylic resin according to the present invention easily, and there are few defects due to undispersion and aggregation when a film is formed, and strength, It is possible to obtain a film having excellent toughness, heat resistance, transparency and appearance, and suppressing whitening due to temperature change and stress, and having excellent quality.
  • polymerization initiators are potassium persulfate, ammonium persulfate, persulfates such as ammonium persulfate, perphosphates such as sodium perphosphate, organic azo compounds such as azobisisobutyronitrile, cumene hydroperoxide.
  • Tertiary butyl hydroperoxide hydroperoxide compounds such as 1,1 dimethyl-2hydroxyethyl hydroperoxide, tertiary butyl isopropyloxy carbonate, peresters such as tertiary butyl peroxybutyrate, benzoyl peroxide
  • organic peroxide compounds such as dibutyl peroxide and lauryl peroxide.
  • a catalyst such as ferrous sulfate and a water-soluble reducing agent such as ascorbic acid and sodium formaldehyde sulfoxylate. It may be selected appropriately depending on the monomer composition to be polymerized, the layer structure, the polymerization temperature conditions and the like.
  • the core/shell type rubber particles in the present invention are produced by emulsion polymerization, they can be produced by ordinary emulsion polymerization using a known emulsifier.
  • Known emulsifiers include, for example, sodium alkyl sulfonate, sodium alkylbenzene sulfonate, sodium dioctyl sulfosuccinate, sodium lauryl sulfate, sodium fatty acid, anionic salts such as sodium phosphate ester of polyoxyethylene lauryl ether phosphate.
  • Surfactants and nonionic surfactants such as alkylphenols, reaction products of aliphatic alcohols with propylene oxide and ethylene oxide are shown.
  • a cationic surfactant such as an alkylamine salt may be used.
  • a phosphate ester salt alkali metal or alkaline earth metal
  • sodium polyoxyethylene lauryl ether phosphate is particularly used. It is preferable to polymerize.
  • the core-shell type rubber particle latex obtained by emulsion polymerization is spray-dried, or, as is generally known, coagulates a polymer component by adding an electrolyte or an organic solvent as a coagulant to the latex, and heats appropriately.
  • the polymer content is dried by carrying out operations such as washing and separation of the aqueous phase to obtain lump or powder core/shell type rubber particles.
  • the coagulant known ones such as a water-soluble electrolyte and an organic solvent can be used, but from the viewpoint of improving the thermal stability during molding of the obtained copolymer and from the viewpoint of productivity, magnesium chloride or sulfuric acid is used. It is preferable to use a magnesium salt such as magnesium or a calcium salt such as calcium acetate or calcium chloride.
  • the difference in refractive index between the rubber particles and the acrylic resin (also referred to as matrix resin) constituting the film is preferably 0.015 or less, more preferably 0.012 or less, and further preferably 0.01 or less. ..
  • a film having excellent transparency can be obtained.
  • a method for satisfying the above refractive index condition a method of adjusting a unit composition ratio of each monomer of the matrix resin, and/or a composition of a polymer and/or a monomer used for each layer of rubber particles Examples include a method of adjusting the ratio.
  • the difference in refractive index between the matrix resin and the rubber particles can be measured as follows. First, regarding rubber particles, the rubber particles are press-molded, the average refractive index of the molded body is measured by a laser refractometer, and the value is taken as the refractive index of the rubber particles. Similarly, for the matrix resin, a material (resin or resin composition) forming the matrix resin is molded, the average refractive index of the molded body is measured by a laser refractometer, and the value is defined as the refractive index of the matrix resin. To do. The refractive index difference can be obtained by calculating the difference in the refractive index values of the matrix resin and the rubber particles measured as described above. In addition, in the present embodiment, the refractive index means a refractive index with respect to light having a wavelength of 550 nm at 23° C.
  • the difference in the refractive index between the matrix resin and the rubber particles is preferably as low as possible in the range of 0 to 50°C.
  • the matrix resin and the rubber particles have the same refractive index temperature dependence.
  • the acrylic resin film according to the present invention may be in a polymer orientation state by stretching, and may be stressed during use. Even in such a case, it is preferable that the film does not exhibit birefringence, and for that purpose, it is preferable that the rubber particles do not exhibit birefringence due to orientation or stress.
  • a graft copolymer described in WO2014/162370 having an orientation birefringence of ⁇ 15 ⁇ 10 ⁇ 4 to 15 ⁇ 10 ⁇ 4 and a photoelastic constant of ⁇ 10 ⁇ 10 ⁇ 12 to 10 ⁇ 10 ⁇ 12 Pa ⁇ 1. Polymers are also preferably used as the rubber particles according to the present invention.
  • the monomer species suitable for reducing the photoelastic birefringence of the homopolymer itself of the monomer constituting the rubber particles may be used in combination.
  • the orientation birefringence of a copolymer polymer has an additivity with the intrinsic birefringence of each homopolymer corresponding to the monomer species used for the copolymerization.
  • monomer species suitable for reducing the orientation birefringence of the homopolymer itself of the monomer constituting the rubber particles monomer species having different orientation birefringence may be used in combination.
  • Polymers showing positive intrinsic birefringence Polybenzyl methacrylate [+0.002] Polyphenylene oxide [+0.210] Bisphenol A Polycarbonate [+0.106] Polyvinyl chloride [+0.027] Polyethylene terephthalate [+0.105] Polyethylene [+0.044] Polymers with negative intrinsic birefringence: Polymethylmethacrylate [-0.0043] Polystyrene [ ⁇ 0.100]
  • the data on the photoelastic constant and orientation birefringence of some polymers have been described above. However, depending on the polymer, the orientation birefringence is "positive" and the photoelastic constant is "negative". Not necessarily. Table I below shows examples of the signs of orientation birefringence and photoelastic birefringence (constant) of some homopolymers.
  • poly(MMA/3FMA/BzMA 55) described in Japanese Patent No. 4624845. 0.5/38.0/6.5).
  • this polymer composition is composed only of methacrylic acid ester-based monomers, in high temperature molding, zipper depolymerization occurs and the molecular weight decreases, which causes problems such as reduction in mechanical strength, coloring, and foaming. ..
  • copolymerization of a small amount of acrylic acid ester can be mentioned, and it becomes possible to suppress excessive decomposition due to zipper depolymerization during high temperature molding.
  • composition of the homopolymer of the monomers constituting the rubber particles there is no particular limitation on the composition of the homopolymer of the monomers constituting the rubber particles.
  • monomers that can be particularly preferably used include, for example, methyl methacrylate, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, glycidyl methacrylate, epoxycyclohexyl methacrylate.
  • vinyl monomers can be used alone or in combination of two or more kinds. Particularly, from the viewpoint of controlling birefringence, it is preferable to use a polyfunctional monomer to such an extent that the polymer chains can be oriented with respect to stress, but it is particularly preferable not to use a polyfunctional monomer.
  • a vinyl-based monomer having a ring structure such as an alicyclic structure, a heterocyclic structure or an aromatic group in the molecular structure is preferable, and among them, It is more preferable to contain a vinyl-based monomer having an alicyclic structure, a heterocyclic structure or an aromatic group.
  • the monomer having an alicyclic structure include dicyclopentanyl (meth)acrylate and dicyclopentenyloxyethyl (meth)acrylate.
  • Examples of the monomer having an aromatic group include vinyl arenes such as styrene, ⁇ -methylstyrene, monochlorostyrene and dichlorostyrene, or benzyl (meth)acrylate, phenyl (meth)acrylate, (meth)acrylic. Examples thereof include phenoxyethyl acid.
  • Examples of the monomer having a heterocyclic structure include pentamethylpiperidinyl (meth)acrylate, tetramethylpiperidinyl (meth)acrylate, and tetrahydrofurfuryl (meth)acrylate.
  • the vinyl-based monomer having an alicyclic structure its ring structure is preferably a polycyclic structure, more preferably a condensed ring structure.
  • the vinyl-based monomer having an alicyclic structure, a heterocyclic structure or an aromatic group is preferably a monomer represented by the following formula (4c).
  • R 9 represents a hydrogen atom or a substituted or unsubstituted linear or branched alkyl group having 1 to 12 carbon atoms.
  • R 10 is a substituted or unsubstituted aromatic group having 1 to 24 carbon atoms, or a substituted or unsubstituted alicyclic group having 1 to 24 carbon atoms, and has a monocyclic structure or a heterocyclic structure.
  • substituents which R 9 and R 10 may have include halogen, hydroxy group, carboxy group, alkoxy group, carbonyl group (ketone structure), amino group, amide group, epoxy group, carbon-carbon group.
  • At least one selected from the group consisting of a double bond, an ester group (a derivative of a carboxy group), a mercapto group, a sulfonyl group, a sulfone group, and a nitro group at least one selected from the group consisting of halogen, hydroxy group, carboxy group, alkoxy group, and nitro group is preferable.
  • l represents an integer of 1 to 4, preferably 0 or 1.
  • m represents an integer of 0 to 1.
  • n represents an integer of 0 to 10, preferably an integer of 0 to 2, and more preferably 0 or 1.
  • the vinyl-based monomer having an alicyclic structure, a heterocyclic structure or an aromatic group is preferably a (meth)acrylic monomer having an alicyclic structure, a heterocyclic structure or an aromatic group.
  • R 9 is a (meth)acrylate-based monomer in which R 9 is a hydrogen atom or a substituted or unsubstituted linear or branched C 1 alkyl group.
  • R 10 is preferably a substituted or unsubstituted aromatic group having 1 to 24 carbon atoms, or a substituted or unsubstituted alicyclic group having 1 to 24 carbon atoms, A (meth)acrylate-based monomer having a cyclic structure is more preferable.
  • l is an integer of 1 to 2
  • n is an integer of 0 to 2
  • benzyl (meth)acrylate, dicyclopentanyl (meth)acrylate, and phenoxyethyl (meth)acrylate are preferable.
  • the monomer represented by the above formula (4c) is preferably contained in an amount of 1 to 99% by mass, more preferably 1 to 70% by mass, based on 100% by mass of the homopolymer of the monomer constituting the rubber particles. %, and even more preferably 1 to 50% by mass.
  • the homopolymers of the monomers constituting the rubber particles may be mixed and polymerized in one stage. If the birefringence of the molded product composed of the polymer obtained by polymerizing the homopolymer of the monomer constituting the rubber particles alone has sufficient non-birefringence to satisfy the present invention, the monomer The composition may be changed and polymerization may be carried out in two or more stages.
  • Measuring method In order to measure the birefringence of the rubber particles, only the rubber particles are separately molded in the same manner as in the measurement of the refractive index to prepare a plate-shaped or film-shaped sample. Ordinary birefringence measurement may be performed using this sample.
  • the core/shell type rubber particles preferably have a particle diameter of the soft core layer of 1 to 500 nm, more preferably 10 to 400 nm, and further preferably 50 to 300 nm. , 70 to 300 nm is particularly preferable. If the particle diameter of the core layer of the core-shell type rubber particles is less than 1 nm, the mechanical strength of the (meth)acrylic resin is not sufficiently improved, and if it is more than 500 nm, the (meth)acrylic resin Heat resistance and transparency may be impaired.
  • the particle size is obtained by, for example, a dynamic light scattering method using MICROTRAC UPA150 (manufactured by Nikkiso Co., Ltd.), or by a turbidity method in which the permeation rate of the polymerization solution per unit weight is measured using a turbidimeter. You can ask.
  • a film obtained by molding a compound obtained by blending core/shell crosslinked rubber particles and polymethylmethacrylate (for example, Sumipex EX manufactured by Sumitomo Chemical Co., Ltd.) in a weight ratio of 20:80 was used as a transmission electron microscope (manufactured by JEOL Ltd.). (JEM-1200EX), it is also possible to take an image with an acceleration voltage of 80 kV by a RuO4 stained ultrathin section method, randomly select 100 rubber particle images from the obtained photographs, and obtain the average value of those particle diameters. ..
  • Rubber Particle Dispersion Liquid/Disperser As a method of incorporating the rubber particles according to the present invention into an acrylic resin film, first, a dispersion liquid of rubber particles is prepared, and the dispersion liquid is uniformly added to a dope containing an acrylic resin. It is preferable that the dope be solution-cast to obtain an acrylic resin film containing rubber particles.
  • the rubber particle dispersion contains rubber particle powder as a raw material and an organic solvent as main components.
  • the organic solvent that can be used is not particularly limited as long as the rubber particles are dispersed and a dispersion can be prepared.
  • the organic solvent used in the present invention is, for example, a chlorine-based solvent such as dichloromethane or chloroform, a solvent selected from chain hydrocarbons having 3 to 12 carbon atoms, cyclic hydrocarbons, aromatic hydrocarbons, esters, ketones and ethers. Is preferred.
  • the ester, ketone and ether may have a cyclic structure. Examples of chain hydrocarbons having 3 to 12 carbon atoms include hexane, octane, isooctane, decane and the like.
  • Examples of cyclic hydrocarbons having 3 to 12 carbon atoms include cyclopentane, cyclohexane, decalin and derivatives thereof.
  • Examples of the aromatic hydrocarbon having 3 to 12 carbon atoms include benzene, toluene and xylene.
  • Examples of the ester having 3 to 12 carbon atoms include ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate and pentyl acetate.
  • ketones having 3 to 12 carbon atoms include acetone, methyl ethyl ketone, diethyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone and methylcyclohexanone.
  • ethers having 3 to 12 carbon atoms include diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane, tetrahydrofuran, anisole and phenetole.
  • Examples of the organic solvent having two or more kinds of functional groups include 2-ethoxyethyl acetate, 2-methoxyethanol and 2-butoxyethanol.
  • the organic solvent used in the method for preparing a rubber particle dispersion according to the present invention one kind of organic solvent may be used alone, or two or more kinds of organic solvents may be mixed and used at an arbitrary ratio.
  • Examples of the organic solvent preferably used in the present invention include dichloromethane, lower alcohols, and mixtures thereof from the viewpoint of miscibility with the dope. From the viewpoint of dispersibility of rubber particles, hydrophilic organic solvents such as methanol and ethanol are preferably used.
  • dispersant due to the dispersibility of rubber particles, various conventional anionic, cationic and nonionic surfactants and polymers for obtaining a steric repulsion effect are preferably added as dispersants as conventionally known particle dispersion stabilizing techniques.
  • the dispersant used at the time of synthesizing the rubber particles may be used as it is, a dispersant of the same kind may be newly added, or a dispersant of another kind may be further added.
  • an acrylic resin as the dispersant and further disperse the fine particles in the presence of the dispersant.
  • the acrylic resin at this time is preferably a relatively low molecular weight one having a molecular weight of 1,000 to 100,000.
  • the content of rubber particles in the rubber particle dispersion is preferably 1 to 50%.
  • the content is low, the amount of the organic solvent is large with respect to the amount of the necessary rubber particles, and the degree of dilution of the dope after the addition is high, which is not preferable.
  • a high content is not preferable because the dispersion stability of the rubber particle dispersion becomes low.
  • a more preferable content is 5 to 20%.
  • the dispersion treatment is performed within 0.1 second to 1 minute after the raw material powder of the rubber particles and the organic solvent are mixed.
  • the dispersion treatment is preferably an inline treatment rather than a batch treatment, and the dispersion liquid dispersed by the inline treatment is preferably added to the dope as it is without stagnation.
  • the first mixing state is not a mixture of a large amount of rubber particle powder and a large amount of an organic solvent, but a small amount of each other. That is, it is preferable to use in-line mixing in which the rubber particle powder and the organic solvent are weighed and provided online, first mixed in a small space of about 0.1 to 10 L, and then sequentially fed to the disperser.
  • the in-line mixing device include a flow jet mixer continuous injection mixer manufactured by Koken Powtex Co., Ltd., and an in-line circulation type solid-liquid mixing/dispersing device CMX manufactured by IKA.
  • a normal disperser can be used as the disperser for dispersing the rubber particles.
  • Dispersers are roughly classified into media dispersers and medialess dispersers.
  • Examples of the media disperser include a ball mill, a sand mill and a dyno mill.
  • the medialess disperser there are an ultrasonic type, a centrifugal type, a high pressure type, and the like. In the present invention, a high pressure dispersing device is preferable.
  • the high-pressure dispersing device is a device that creates special conditions such as high shear and high-pressure state by passing a composition obtained by mixing fine particles and a solvent at high speed through a thin tube. It is preferable that the maximum pressure condition inside the apparatus is 9.8 ⁇ 10 2 N or more in a thin tube having a tube diameter of 1 to 2000 ⁇ m by processing with a high-pressure dispersion apparatus. More preferably, it is 1.96 ⁇ 10 3 N or more. At that time, it is preferable that the maximum reaching speed is 100 m/sec or more and the heat transfer speed is 100 kcal/hr or more.
  • the high-pressure disperser as described above includes an ultrahigh-pressure homogenizer manufactured by Microfluidics Corporation (2 brand name: Microfluidizer) or Nanomizer manufactured by Nanomizer, or Ultra Turrax. Examples include Food Machinery homogenizer, Sanwa Machinery Co., Ltd., product number UHN-01. It is also preferable to connect a plurality of these dispersers in series or in parallel for in-line processing. For example, before introducing the admixture treated with a flow jet mixer into a Manton-Gorlin type high-pressure disperser, some dispersion treatment should be performed in advance with an emulsifying disperser (eg, Milder made by Matsubo Co., Ltd.). Is also preferably performed. The obtained dispersion may contain coarse aggregated particles, which are preferably removed by a strainer or a filter. The preferable filtration accuracy at this time is 5 ⁇ m to 500 ⁇ m.
  • an ultrahigh-pressure homogenizer manufactured by Microfluidics Corporation (2 brand name: Micro
  • the state of rubber particles in the acrylic resin film according to the present invention is most preferably a state in which primary particles are uniformly and monodispersed. On the contrary, moderate aggregation or uneven distribution may occur within the range not deviating from the gist of the present invention.
  • a mode in which the concentration of rubber particles is large near the surface layer of the film, or conversely, a mode in which the concentration is large near the center layer of the film can be selected according to the purpose.
  • the particle shape of each rubber particle can be arbitrarily selected such as a spherical shape, a flat shape, or a rod shape. A flat shape is preferable because the surface unevenness of the film is less affected, and it is preferable that the flat surface is parallel to the film surface.
  • cellulose acylate it is preferable to use a small amount of cellulose acylate in combination, from the viewpoint of improving the coating property when coating the functional layer on the surface of the film and reducing cissing and coating unevenness. Further, by containing the cellulose acylate resin, the adhesion to the hard coat substrate is increased, and the hardness of the hard coat film can be increased.
  • Particularly preferred cellulose acylates include those having an acyl group substitution degree in the range of 2.50 to 2.98, and the acyl group is at least one selected from an acetyl group, a propionyl group and a butyryl group. .. Specifically, cellulose triacetate, cellulose acetate propionate, cellulose acetate butyrate, cellulose propionate, cellulose butyrate, cellulose acetate propionate butyrate and the like can be mentioned, in the present invention, cellulose triacetate, cellulose Acetate propionate and cellulose acetate butyrate are preferred.
  • the substitution degree of the acetyl group is preferably 1.40 or more.
  • Cellulose as a raw material of cellulose acylate is not particularly limited, and cotton linter, wood pulp, kenaf and the like can be used. You may mix and use these.
  • the ratio of cellulose acylate synthesized from cotton linter is preferably 60% by mass or more, more preferably 85% by mass or more, and most preferably 100% by mass.
  • the method for synthesizing cellulose acylate is not particularly limited, but it can be synthesized, for example, by the method described in JP-A-10-45804.
  • the acyl group substitution degree can be measured by ASTM-D817-96.
  • the number average molecular weight of cellulose acylate is preferably in the range of 70,000 to 300,000, and more preferably in the range of 80,000 to 200,000 in order to obtain a mechanical strength preferable as a protective film for a polarizing plate.
  • the casting method using an organic solvent as in the present invention is very advantageous from the viewpoint of productivity, but on the other hand, it is not easy to keep the solvent drying constant immediately after casting, and uneven surface is likely to occur.
  • planar unevenness as used herein means streaks caused by poor leveling after casting, uneven drying caused by a difference in solvent drying rate, and uneven thickness caused by dry air.
  • a method of increasing the viscosity of the coating liquid to prevent flow can be considered. It is known to add a thickener such as a polymer in order to increase the viscosity of the dope, but simply increasing the viscosity of the dope deteriorates the leveling property and causes streaks during casting. Connect As a means for preventing unevenness during drying and streaking during casting, a method of adding thixotropy to the dope by adding an additive having a thixotropy (hereinafter, thixotropic agent) is preferable.
  • thixotropic agent an additive having a thixotropy
  • an organic solvent-based thickener composed of a compound represented by the following general formula (1b), which satisfies the following condition (a):
  • General formula (1b) (R)t-Z-(B)s In the formula, R represents an alkyl group having 4 or more carbon atoms and substituted with at least 8 fluorine atoms, Z represents a (t+s)-valent linking group, and B represents a substituted or unsubstituted alkyl group or aryl group. Or represents a heterocyclic group.
  • t is an integer of 1 to 6
  • s is an integer of 1 to 6.
  • R represents an alkyl group having 4 or more carbon atoms and substituted with at least 8 fluorine atoms
  • R may be substituted with at least 8 fluorine atoms, and may be linear, branched or cyclic. Any structure of Further, it may be further substituted with a substituent other than a fluorine atom, or may be substituted only with a fluorine atom.
  • Examples of the substituent other than the fluorine atom of R include an alkenyl group, an aryl group, an alkoxyl group, a halogen atom other than fluorine, a hydroxy group, an aryloxycarbonyl group, an alkoxycarbonyl group, an acyloxy group, an acylamino group, a carbamoyl group and the like. ..
  • Z represents a (t+s)-valent linking group and is not particularly limited as long as it connects R and B.
  • t is an integer from 1 to 6 and s is an integer from 1 to 6, but preferably t is an integer from 2 to 4, more preferably t is 2 or 3 and most preferably Preferably t is 2.
  • s is preferably an integer of 1 to 4, and more preferably s is an integer of 1 to 3.
  • an amino acid derivative is preferably used.
  • the asymmetric carbon of the amino acid in the amino acid derivative may be optically active or racemic.
  • An optically active substance is preferably used.
  • B represents a substituted or unsubstituted alkyl group, aryl group, or heterocyclic group.
  • the solvent that can be used here is not particularly limited as long as the desired effect can be obtained, but toluene, hexane, isopropanol, ethanol, methanol, chloroform, methyl ethyl ketone, 2-methylpentanone, and cyclohexanone are preferable.
  • toluene More preferred are toluene, methyl ethyl ketone, 2-methylpentanone and cyclohexanone, and most preferred are methyl ethyl ketone, 2-methylpentanone and cyclohexanone.
  • R 1 and R 2 each independently represent a hydrogen atom or an alkyl group, but at least one of R 1 and R 2 represents an alkyl group substituted with at least 8 or more fluorine atoms.
  • R 3 , R 4 and R 5 each independently represent a hydrogen atom or a substituent, T 1 , T 2 and L 1 each independently represent a divalent linking group or a single bond, and k is 0 or 1.
  • .. B represents a substituted or unsubstituted alkyl group, aryl group, or heterocyclic group.
  • organic solvent-based thickening agent according to any one of [1] to [3], wherein the compound represented by the general formula (1b) is represented by the following general formula (3b). It is preferably an agent or a thixotropic agent.
  • R 1 and R 2 each independently represent an alkyl group having 4 or more carbon atoms and substituted with at least 8 fluorine atoms.
  • B represents a substituted or unsubstituted alkyl group, aryl group, or heterocyclic group.
  • T 3 and T 4 each independently represent —O—, —S— or —NR 23 —.
  • R 23 represents a hydrogen atom or a substituent
  • L 1 represents a divalent linking group or a single bond
  • k is 0 or 1.
  • a 1 and A 2 each independently represent a fluorine atom or a hydrogen atom.
  • n 11 and n 21 each independently represent an integer of 0 to 6
  • n 12 and n 22 each independently represent an integer of 3 to 12.
  • T 3 and T 4 each independently represent —O—, —S— or —NR 23 —.
  • R 23 represents a hydrogen atom or a substituent
  • L 1 represents a divalent linking group or a single bond.
  • B represents a substituted or unsubstituted alkyl group, aryl group, or heterocyclic group, and k is 0 or 1.
  • Specific examples of the compounds represented by the general formulas (1b) to (4b) are preferably selected from the compounds described in paragraphs [0083] to [0089] of JP-A-2005-314636.
  • the content of the above-mentioned fluorine-containing compound is not particularly limited, but is usually 0.01 to 10% by mass (% by mass based on the total mass of the dope) in the dope, preferably 0.01 to 5% by mass, and more preferably 0. It can be contained in an amount of 0.01 to 2.5% by mass. Further, the fluorine-containing compound may be contained in only one kind or in plural kinds.
  • Matting agent which is one of the fine particles used in the film of the present invention, is usually used as an additive to the film, and in order to improve the slipperiness of the film surface, unevenness is imparted to the film surface. It is effective to add fine particles of an organic or inorganic substance to increase the roughness of the film surface and form a so-called matte, which is used to reduce the adhesiveness.
  • the fine particles of the matting agent used in the present invention have an average particle size of 1 to 1000 nm, preferably 1 to 100 nm, and more preferably 3 to 50 nm.
  • the content thereof in the film is 0.03 to 1% by mass with respect to 100% by mass of the film, regardless of whether the particles are spherical or amorphous particles. %, preferably in the range of 0.03 to 0.60% by mass, and more preferably in the range of 0.03 to 0.5% by mass.
  • the preferable haze range of the acrylic resin film containing the matting agent in the present invention is 2.0% or less, 1.2% or less is more preferable, and 0.5% or less is particularly preferable.
  • the preferred static friction coefficient of the acrylic resin film containing the matting agent is 1.5 or less, and 1.0 or less is particularly preferred. When the coefficient of static friction is 1.5 or less, the acrylic resin film does not cause cracks or winding wrinkles during winding during film formation and processing, and therefore the winding shape is impaired by the cracks or winding wrinkles, or cracks or wrinkles do not occur. No uniform tension is applied to the acrylic resin film, and there is no problem that unintended nonuniform optical properties are developed on the film surface.
  • Statistic friction coefficient is measured between the same materials, and is specifically measured according to the method described in the examples.
  • the matting agent used is not particularly limited as long as it is usually used for a film, and two or more kinds of these matting agents can be mixed and used.
  • the matting agent include inorganic compounds and polymer compounds.
  • the inorganic compound include fine powders of inorganic substances such as barium sulfate, manganese colloid, titanium dioxide, strontium barium sulfate, and silicon dioxide, and further, for example, synthetic silica obtained by a wet method or gelation of silicic acid. Titanium dioxide (rutile type or anatase type) produced by silicon dioxide or titanium slag and sulfuric acid can be used.
  • the inorganic fine particles can also be obtained by crushing from an inorganic material having a relatively large particle size, for example, 20 ⁇ m or more, and then classifying (vibrating filtration, air classification, etc.). It is preferable that the inorganic fine particles contain silicon because the turbidity is low and the haze of the film can be reduced. Most of the fine particles such as silicon dioxide are surface-treated with an organic substance, but such fine particles are preferable because they can reduce the surface haze of the film. Preferred organic substances for the surface treatment include halosilanes, alkoxysilanes, silazanes, siloxanes and the like.
  • polymer compound there are polytetrafluoroethylene, cellulose acetate, polystyrene, polymethyl methacrylate, polypropyl methacrylate, polymethyl acrylate, polyethylene carbonate, starch and the like, and pulverized and classified products thereof are also included.
  • a polymer compound synthesized by a suspension polymerization method, a polymer compound spherically formed by a spray drying method or a dispersion method, or an inorganic compound can be used.
  • a polymer compound which is a polymer of one or more of the following monomer compounds may be formed into particles by various means.
  • Specific examples of the monomer compound of the polymer compound include acrylic acid ester, methacrylic acid ester, itaconic acid diester, crotonic acid ester, maleic acid diester, and phthalic acid diester.
  • Examples of vinyl esters include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl caproate, vinyl chloroacetate, vinyl methoxyacetate, vinyl phenyl acetate, vinyl benzoate, vinyl salicylate and the like.
  • Examples of olefins include dicyclopentadiene, ethylene, propylene, 1-butene, 1-pentene, vinyl chloride, vinylidene chloride, isoprene, chloroprene, butadiene and 2,3-dimethylbutadiene.
  • styrenes examples include styrene, methylstyrene, dimethylstyrene, trimethylstyrene, ethylstyrene, isopropylstyrene, chloromethylstyrene, methoxystyrene, acetoxystyrene, chlorostyrene, dichlorostyrene, bromostyrene, trifluoromethylstyrene, vinyl.
  • examples thereof include benzoic acid methyl ester.
  • acrylamides include acrylamide, methyl acrylamide, ethyl acrylamide, propyl acrylamide, butyl acrylamide, tert-butyl acrylamide, phenyl acrylamide and dimethyl acrylamide; methacrylamides such as methacrylamide, methyl methacrylamide, ethyl methacrylamide, propyl methacryl Amides, tert-butyl methacrylamide, etc.; allyl compounds such as allyl acetate, allyl caproate, allyl laurate, allyl benzoate, etc.; vinyl ethers such as methyl vinyl ether, butyl vinyl ether, hexyl vinyl ether, methoxyethyl vinyl ether, dimethyl.
  • Aminoethyl vinyl ether and the like vinyl ketones such as methyl vinyl ketone, phenyl vinyl ketone, methoxyethyl vinyl ketone and the like; vinyl heterocyclic compounds such as vinyl pyridine, N-vinyl imidazole, N-vinyl oxazolidone, N-vinyl triazole, N-vinylpyrrolidone and the like; unsaturated nitriles such as acrylonitrile, methacrylonitrile and the like; polyfunctional monomers such as divinylbenzene, methylenebisacrylamide, ethylene glycol dimethacrylate and the like.
  • vinyl ketones such as methyl vinyl ketone, phenyl vinyl ketone, methoxyethyl vinyl ketone and the like
  • vinyl heterocyclic compounds such as vinyl pyridine, N-vinyl imidazole, N-vinyl oxazolidone, N-vinyl triazole, N-vinylpyrrol
  • acids are alkali. It may be a salt of a metal (for example, Na, K, etc.) or an ammonium ion, and as other monomer compounds, U.S. Patent Nos. 3,459,790, 3,438,708, 3,554,987, and 4,215,195 may be used. No. 4,247,673 and JP-A No. 57-205735, etc. can be used, which is preferable, and specific examples of such a cross-linkable monomer include N-(2- Examples thereof include acetoacetoxyethyl)acrylamide and N-(2-(2-acetoacetoxyethoxy)ethyl)acrylamide.
  • These monomer compounds may be used as particles of a polymer polymerized alone, or may be used as particles of a copolymer polymerized by combining a plurality of monomers.
  • acrylic acid esters, methacrylic acid esters, vinyl esters, styrenes and olefins are preferably used.
  • particles having a fluorine atom or a silicone atom as described in JP-A Nos. 62-14647, 62-17744, and 62-17743 may be used in the present invention.
  • the matting agent particles of these polymers or copolymers preferably have a glass transition temperature higher than 25°C.
  • the matting agent used in the present invention particles having a reactive (particularly gelatin) group described in JP-A No. 64-77052 and European Patent No. 307855 can be used. Further, a large amount of groups that can be dissolved in alkaline or acid can be contained.
  • the matting agent contains an inorganic compound or a polymer compound, and its average primary particle size is preferably in the range of 10 ⁇ 3 to 10 ⁇ m.
  • the average primary particle size is more preferably in the range of 10 ⁇ 3 to 10 ⁇ m, further preferably in the range of 0.005 to 5 ⁇ m, and particularly preferably in the range of 0.01 to 3 ⁇ m.
  • the matting agent is preferably silicon dioxide fine particles.
  • Organic solvent used for fine particle dispersion of matting agent is not particularly limited as long as the fine particles of the matting agent are dispersed and the dispersion can be prepared.
  • the organic solvent used in the present invention is, for example, a chlorine-based solvent such as dichloromethane or chloroform, a solvent selected from chain hydrocarbons having 3 to 12 carbon atoms, cyclic hydrocarbons, aromatic hydrocarbons, esters, ketones and ethers. Is preferred.
  • the ester, ketone and ether may have a cyclic structure.
  • Examples of chain hydrocarbons having 3 to 12 carbon atoms include hexane, octane, isooctane, decane and the like.
  • Examples of cyclic hydrocarbons having 3 to 12 carbon atoms include cyclopentane, cyclohexane, decalin and derivatives thereof.
  • Examples of the aromatic hydrocarbon having 3 to 12 carbon atoms include benzene, toluene and xylene.
  • Examples of the ester having 3 to 12 carbon atoms include ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate and pentyl acetate.
  • ketones having 3 to 12 carbon atoms include acetone, methyl ethyl ketone, diethyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone and methylcyclohexanone.
  • ethers having 3 to 12 carbon atoms include diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane, tetrahydrofuran, anisole and phenetole.
  • the organic solvent having two or more kinds of functional groups include 2-ethoxyethyl acetate, 2-methoxyethanol and 2-butoxyethanol.
  • the organic solvent used in the method for preparing a matting agent particle dispersion according to the present invention one kind of organic solvent may be used alone, or two or more kinds of organic solvents may be mixed and used at an arbitrary ratio. ..
  • the amount of the organic solvent used is preferably in the range of 1,000 to 100,000 parts by mass, more preferably in the range of 1,500 to 40,000 parts by mass, and further preferably in the range of 2,000 to 20,000, based on 100 parts by mass of the fine particles of the matting agent.
  • the range of parts by mass is particularly preferable.
  • the viscosity of the dope and the dispersion liquid are the same, but in consideration of the dispersibility of the matting agent as a fine particle dispersion and the ease of handling, the viscosity of the matting agent fine particle dispersion is 0.7 mPa ⁇ S or more is preferable, and 1 mPa ⁇ s or more is more preferable. Further, if the weight average molecular weight of the dispersant is too large in order to increase the viscosity, poor solubility of the dispersant and deterioration of filterability are caused.
  • the weight average molecular weight of the dispersant is preferably in the range of 10,000 to 500,000, more preferably 10,000 to 300,000, and more preferably 30,000 to The range of 200,000 is more preferable.
  • an acrylic resin as a dispersant and further disperse the fine particles in the presence of the dispersant. This is preferable from the viewpoint that the compatibility of the fine particle dispersion and the dope is improved when the dope is prepared, the stability of the dispersed fine particles is improved when the dope is cast, and the dope having no agglomerates can be formed. ..
  • the acrylic resin film according to the present invention preferably contains the following nitrogen-containing heterocyclic compound in order to control the optical performance such as retardation.
  • the nitrogen-containing heterocyclic compound is a nitrogen-containing heterocyclic compound having a molecular weight in the range of 100 to 800, and is preferably a compound having a structure represented by the following general formula (A1).
  • A1 a compound having a structure represented by the following general formula (A1) together with an acrylic resin, for example, when a polarizing plate is used in a liquid crystal display device, it is possible to suppress fluctuations in phase difference due to humidity fluctuations in the environment and to reduce contrast. It is possible to suppress the deterioration and the occurrence of color unevenness. Further, it can also function as a phase difference increasing agent.
  • a molecular weight in the range of 250 to 450 is a preferable range from the viewpoint of the effect of suppressing the fluctuation of the phase difference due to humidity fluctuation and the generation of scattered matter.
  • a 1 , A 2 and B are each independently an alkyl group (methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group, 2- Etc.), a cycloalkyl group (cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.), an aromatic hydrocarbon ring or an aromatic heterocycle.
  • an aromatic hydrocarbon ring or an aromatic heterocycle is preferable, and a 5-membered or 6-membered aromatic hydrocarbon ring or an aromatic heterocycle is particularly preferable.
  • the structure of the 5- or 6-membered aromatic hydrocarbon ring or aromatic heterocycle is not limited, but examples thereof include a benzene ring, a pyrrole ring, a pyrazole ring, an imidazole ring, a 1,2,3-triazole ring, and a 1,2 ring. , 4-triazole ring, tetrazole ring, furan ring, oxazole ring, isoxazole ring, oxadiazole ring, isoxadiazole ring, thiophene ring, thiazole ring, isothiazole ring, thiadiazole ring, isothiadiazole ring and the like. ..
  • the 5- or 6-membered aromatic hydrocarbon ring or aromatic heterocycle represented by A 1 , A 2 and B may have a substituent, and as the substituent, for example, a halogen atom ( Fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), alkyl group (methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group, 2-ethylhexyl group, etc.), cycloalkyl Group (cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.), alkenyl group (vinyl group, allyl group, etc.), cycloalkenyl group (2-cyclopenten-1-yl, 2-cyclohexen-1-yl group, etc.) ), alkynyl groups (ethynyl group, proparg
  • acyloxy group (formyloxy group, acetyloxy group, pivaloyloxy group, stearoyloxy group, benzoyloxy group, p-methoxyphenylcarbonyloxy group, etc.), amino group (amino group, methylamino group, dimethylamino group) Group, anilino group, N-methyl-anilino group, diphenylamino group, etc.), acylamino group (formylamino group, acetylamino group, pivaloylamino group, lauroylamino group, benzoylamino group, etc.), alkyl and arylsulfon
  • a 1 , A 2 and B each represent a benzene ring, a pyrrole ring, a pyrazole ring, an imidazole ring, a 1,2,3-triazole ring or a 1,2,4-triazole ring. It is preferable because an acrylic resin film excellent in the effect of changing optical characteristics and excellent in durability can be obtained.
  • T 1 and T 2 each independently represent a pyrrole ring, a pyrazole ring, an imidazole ring, a 1,2,3-triazole ring or a 1,2,4-triazole ring. ..
  • a pyrazole ring, a triazole ring or an imidazole ring is particularly preferable because it is excellent in the effect of suppressing the fluctuation of the phase difference with respect to humidity fluctuation, and a resin composition having excellent durability can be obtained.
  • the pyrazole ring, 1,2,3-triazole ring, 1,2,4-triazole ring or imidazole ring represented by T 1 and T 2 may be tautomers. Specific structures of the pyrrole ring, the pyrazole ring, the imidazole ring, the 1,2,3-triazole ring and the 1,2,4-triazole ring are shown below.
  • R 5 represents a hydrogen atom or a non-aromatic substituent.
  • the non-aromatic substituent represented by R 5 include the same groups as the non-aromatic substituents among the substituents that A 1 in the general formula (A1) may have.
  • the substituent represented by R 5 is a substituent having an aromatic group, A 1 and T 1 or B and T 1 are likely to be twisted, and A 1 , B and T 1 form an interaction with an acrylic resin. Since it becomes impossible, it is difficult to suppress the fluctuation of the optical characteristics.
  • R 5 is preferably a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an acyl group having 1 to 5 carbon atoms, and particularly preferably a hydrogen atom. ..
  • T 1 and T 2 may have a substituent, and the substituent may be a substituent which A 1 and A 2 in the general formula (A1) may have. Similar groups may be mentioned.
  • L 1 , L 2 , L 3 and L 4 each independently represent a single bond or a divalent linking group, and a 5-membered or 6-membered group with 2 or less atoms interposed therebetween. Membered aromatic hydrocarbon rings or aromatic heterocycles are linked. Through 2 or less atoms means the minimum number of atoms existing between the substituents to be linked among the atoms constituting the linking group.
  • R represents a hydrogen atom or a substituent.
  • Examples of the substituent represented by R include an alkyl group (methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group, 2-ethylhexyl group, etc.), cycloalkyl group ( Cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc., aromatic hydrocarbon ring group (phenyl group, p-tolyl group, naphthyl group, etc.), aromatic heterocyclic group (2-furyl group, 2-thienyl group) Group, 2-pyrimidinyl group, 2-benzothiazolyl group, 2-pyridyl group), cyano group and the like.
  • alkyl group methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group, 2-e
  • the divalent linking group represented by L 1 , L 2 , L 3 and L 4 may have a substituent, and the substituent is not particularly limited.
  • a 1 and A 2 may be the same groups as the substituents which A 2 may have.
  • L 1 , L 2 , L 3 and L 4 are a resin that adsorbs water by increasing the planarity of the compound having the structure represented by the general formula (A1).
  • a resin that adsorbs water by increasing the planarity of the compound having the structure represented by the general formula (A1).
  • n represents an integer of 0-5.
  • the plurality of A 2 , T 2 , L 3 and L 4 in the general formula (A1) may be the same or different.
  • the compound having a structure represented by general formula (A1) is preferably a compound having a structure represented by general formula (A2).
  • a 1 , A 2 , T 1 , T 2 , L 1 , L 2 , L 3 and L 4 are respectively A 1 , A 2 , T 1 , T 2 and L in the general formula (A1).
  • 1 , L 2 , L 3 and L 4 have the same meanings
  • a 3 and T 3 respectively represent the same groups as A 1 and T 1 in the general formula (A1)
  • L 5 and L 6 represent the above-mentioned general groups. It represents the same group as L 1 in formula (A1)
  • m represents an integer of 0 to 4.
  • the compound having a structure represented by general formula (A1) is preferably a triazole compound having a structure represented by the following general formula (A1.1).
  • the triazole compound having a structure represented by the general formula (A1.1) is preferably a triazole compound having a structure represented by the following general formula (A1.2).
  • Z represents the structure of the following general formula (A1.2a).
  • q represents an integer of 2 to 3.
  • At least two Zs are at least one Z substituted on the benzene ring. Attaches to the ortho or meta position.).
  • R 10 represents a hydrogen atom, an alkyl group or an alkoxy group.
  • p represents an integer of 1 to 5.
  • * represents a bonding position with the benzene ring.
  • T 1 represents a 1,2,4-triazole ring.
  • the compound having a structure represented by the general formula (A1), (A2), (A1.1) or (A1.2) may form a hydrate, a solvate or a salt.
  • the hydrate may include an organic solvent
  • the solvate may include water. That is, the "hydrate” and “solvate” include a mixed solvate containing both water and an organic solvent.
  • Salts include acid addition salts formed with inorganic or organic acids.
  • inorganic acids include, but are not limited to, hydrohalic acids (such as hydrochloric acid, hydrobromic acid), sulfuric acid, phosphoric acid, and the like.
  • organic acids include acetic acid, trifluoroacetic acid, propionic acid, butyric acid, oxalic acid, citric acid, benzoic acid, alkylsulfonic acid (methanesulfonic acid, etc.), allylsulfonic acid (benzenesulfonic acid, 4-toluene). Sulfonic acid, 1,5-naphthalenedisulfonic acid, etc.) and the like, but are not limited thereto. Of these, preferred are hydrochlorides, acetates, propionates and butyrates.
  • salts include acidic moieties present on the parent compound which are metal ions (eg alkali metal salts, eg sodium or potassium salts, alkaline earth metal salts, eg calcium or magnesium salts, ammonium salts alkali metal ions, alkaline earth salts).
  • metal ions eg alkali metal salts, eg sodium or potassium salts, alkaline earth metal salts, eg calcium or magnesium salts, ammonium salts alkali metal ions, alkaline earth salts.
  • Metal ions, or aluminum ions, etc. or salts formed when adjusted with organic bases (ethanolamine, diethanolamine, triethanolamine, morpholine, piperidine, etc.), and also these Not limited.
  • sodium salts and potassium salts are preferable.
  • Examples of the solvent included in the solvate include any of common organic solvents. Specifically, alcohol (eg, methanol, ethanol, 2-propanol, 1-butanol, 1-methoxy-2-propanol, t-butanol), ester (eg, ethyl acetate), hydrocarbon (eg, toluene, hexane) , Heptane), ether (eg, tetrahydrofuran), nitrile (eg, acetonitrile), ketone (acetone) and the like.
  • alcohol eg, methanol, ethanol, 2-propanol, 1-butanol, 1-methoxy-2-propanol, t-butanol
  • ester eg, ethyl acetate
  • hydrocarbon eg, toluene, hexane
  • Heptane Heptane
  • ether eg, tetrahydrofuran
  • solvates of alcohols eg, methanol, ethanol, 2-propanol, 1-butanol, 1-methoxy-2-propanol, t-butanol.
  • solvents may be a reaction solvent used in the synthesis of the compound, a solvent used in the crystallization purification after the synthesis, or a mixture thereof.
  • it may contain two or more kinds of solvents at the same time, or may contain water and a solvent (eg, water and alcohol (eg, methanol, ethanol, t-butanol, etc.)).
  • a solvent eg, water and alcohol (eg, methanol, ethanol, t-butanol, etc.)
  • the molecular weight of the compound having the structure represented by the general formula (A1), (A2), (A1.1) or (A1.2) is not particularly limited, but the smaller the compound, the better the compatibility with the resin and the larger the molecular weight. Since the effect of suppressing fluctuations in optical value with respect to changes in environmental humidity is higher, it is preferably 150 to 2000, more preferably 200 to 1500, and even more preferably 300 to 1000.
  • the nitrogen-containing heterocyclic compound according to the present invention is more preferably a compound having a structure represented by the following general formula (A3).
  • A represents a pyrazole ring
  • Ar 1 and Ar 2 each represent an aromatic hydrocarbon ring or an aromatic heterocycle, and may have a substituent.
  • R 1 represents a hydrogen atom, an alkyl group, or an acyl group.
  • q represents an integer of 1 to 2
  • n and m represent an integer of 1 to 3.
  • the aromatic hydrocarbon ring or aromatic heterocycle represented by Ar 1 and Ar 2 is the 5-membered or 6-membered aromatic hydrocarbon ring or aromatic heterocycle mentioned in the general formula (A1), respectively. preferable.
  • examples of the substituent of Ar 1 and Ar 2 include the same substituents as those shown for the compound having the structure represented by the general formula (A1).

Abstract

This method for producing an acrylic resin film produces an acrylic resin film that contains an acrylic resin and rubber particles, and comprises: a step for preparing a dope that contains an acrylic resin which has a glass transition temperature (Tg) within the range of from 120°C to 180°C and a weight average molecular weight of from 300,000 to 4,000,000 and rubber particles which have a core-shell structure; a step for preparing a dope by filtering the above-described dope with use of a filter that has a filtration accuracy within the range of from 5 μm to 100 μm; a step for casting the dope after filtration onto a supporting body and separating a web therefrom; and a step for drying the web. This method for producing an acrylic resin film is also configured such that if parallel light rays are incident on the acrylic resin film at an angle of 75 degrees and a measurement is performed with an optical comb width of 0.125 mm, the C value of transmitted images is within the range of from 80% to 100%.

Description

アクリル樹脂フィルムの製造方法Method for producing acrylic resin film
 本発明は、アクリル樹脂フィルムの製造方法に関し、特に、高耐久で強靭かつ表面及び内部において光学的乱れを起こさない均質なアクリル樹脂フィルムの製造方法に関する。 The present invention relates to a method for producing an acrylic resin film, and particularly to a method for producing a highly durable and tough homogenous acrylic resin film that does not cause optical disturbance on the surface and inside.
 近年、表示デバイスである液晶表示装置や有機エレクトロルミネッセンス表示装置用の偏光板保護フィルムや位相差フィルム等の光学フィルムや、タッチパネル用基材フィルムやガスバリアー性基材フィルム等の基材フィルムのみならず、ナノインプリント用基板フィルムやフレキシブル電子回路用基板フィルム等の基板フィルムなど、高透明性、高機能性及び軽量化を実現した可撓性を有する樹脂フィルムへの要望は大きい。 In recent years, optical films such as polarizing plate protective films and retardation films for liquid crystal display devices and organic electroluminescence display devices, which are display devices, and substrate films such as touch panel substrate films and gas barrier substrate films However, there is a great demand for a flexible resin film that realizes high transparency, high functionality and weight reduction, such as a substrate film for a nanoimprint substrate film or a substrate film for a flexible electronic circuit.
 中でも、低吸湿性に加え、優れた透明性や寸法安定性を示すことから、光学フィルムとしてアクリル樹脂が好適に用いられている。
 特に、より強靭で高耐久なフィルムの要求が高まっていることから、アクリル樹脂について、ガラス転移温度が高く、かつ、高分子量が求められるようになっている。
 アクリル樹脂のメチルメタクリレート比率を高め、高分子量とすることで、揮発成分の揮発量を温度で制御し、耐熱性に優れ、スジや段ムラを抑制した技術が開示されている(例えば、特許文献1参照)。
Among them, acrylic resin is preferably used as an optical film because it exhibits excellent transparency and dimensional stability in addition to low hygroscopicity.
In particular, since there is an increasing demand for tougher and more durable films, acrylic resins are required to have a high glass transition temperature and a high molecular weight.
By increasing the methyl methacrylate ratio of the acrylic resin to have a high molecular weight, the volatilization amount of the volatile component is controlled by temperature, the heat resistance is excellent, and a technique of suppressing streaks and step unevenness is disclosed (for example, Patent Document 1).
 また、アクリル樹脂フィルムにおいて、衝撃を吸収し強度を向上させるためにゴム粒子を分散含有することが知られているが、アクリル樹脂が高分子量で分子量分布を持つこと、ゴム粒子の分散・凝集状態に伴うアクリル樹脂との相互作用にも分布を持つことが影響し、ドープが高粘度になり、かつ、局所粘度分布を持つ。このように局所粘度分布を持つことによって、溶液流延での微小な流動性分布、レベリング分布、乾燥被膜の硬さ分布が起こり、フィルム表面に微小な凹凸を形成して、写像性(例えば、フィルム表面に映る蛍光灯反射像の直線性)が劣化する。また、前記ゴム粒子は、十分に光散乱を起こさないよう考慮された一次粒径になっているが、粗大な軟凝集又は粗密分布があると、見かけ上の粗大粒子となり、光学的なレンズの効果を発現するため、表面の凹凸に限らずフィルム内部の分布が光学的な乱れを引き起こす。
 一方で、光学フィルムは、タッチパネルなどの電子回路基板やフレキシブルディスプレイのウィンドウフィルムなどに展開されており、透明性や接着性を主な課題としていた偏光板保護フィルムや位相差フィルムの用途に加えて、ウェット/ドライ塗工やナノ微細加工の適性を加えて求められるようになったので、微細な凹凸のない表面構造が必要になる。
In addition, it is known that the acrylic resin film contains rubber particles dispersedly contained in order to absorb impact and improve strength. The distribution also has an effect on the interaction with the acrylic resin, which causes the dope to have a high viscosity and a local viscosity distribution. By having such a local viscosity distribution, a minute fluidity distribution in solution casting, a leveling distribution, and a hardness distribution of a dry film occur, forming minute irregularities on the film surface, and image clarity (for example, The linearity of the fluorescent light reflected image on the film surface) deteriorates. Further, the rubber particles have a primary particle diameter that is considered not to cause sufficient light scattering, but if there is coarse soft aggregation or coarse/fine distribution, it becomes apparently coarse particles, and In order to exert the effect, not only the unevenness of the surface but also the distribution inside the film causes an optical disorder.
On the other hand, optical films are being applied to electronic circuit boards such as touch panels and window films for flexible displays, and in addition to the applications of polarizing plate protective films and retardation films, whose main issues were transparency and adhesiveness. Since the demand for wet/dry coating and nano-fine processing have been added, a surface structure without fine irregularities is required.
国際公開第2015/064732号International Publication No. 2015/063472
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、高耐久で強靭かつ表面及び内部において光学的乱れを起こさない均質なアクリル樹脂フィルムの製造方法を提供することである。 The present invention has been made in view of the above problems and circumstances, and a problem to be solved is to provide a method for producing a homogeneous acrylic resin film that is highly durable, tough, and does not cause optical disturbance on the surface and inside. is there.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、コア・シェル構造を有するゴム粒子の添加条件、ドープの濾過精度及び透過写像性を一定範囲内とすることにより、高耐久で強靭かつ表面及び内部において光学的乱れを起こさない均質なアクリル樹脂フィルムの製造方法を提供することができることを見いだし本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
In order to solve the above problems, the present inventors set the addition conditions of the rubber particles having a core/shell structure, the filtration accuracy of the dope, and the transmission mappability within a certain range in the process of examining the causes of the above problems. As a result, it has been found that it is possible to provide a method for producing a homogeneous acrylic resin film which is highly durable, tough, and does not cause optical disturbance on the surface and inside, and has reached the present invention.
That is, the above-mentioned subject concerning the present invention is solved by the following means.
 1.アクリル樹脂と、ゴム粒子を含有するアクリル樹脂フィルムの製造方法であって、
 ガラス転移温度(Tg)が120~180℃の範囲内で、かつ、重量平均分子量が30万~400万のアクリル樹脂と、コア・シェル構造を有するゴム粒子とを含有するドープを調製する工程と、
 前記ドープを濾過精度が5~100μmの範囲内であるフィルターを用いて濾過してドープを調製する工程と、
 前記濾過後のドープを支持体上に流延しウェブを剥離する工程と、
 前記ウェブを乾燥する工程とを有し、かつ、
 前記アクリル樹脂フィルムに対し75度の角度で平行光線を入射し、光学くし幅を0.125mmとした条件下で測定したとき、透過写像性C値を80~100%の範囲内とするアクリル樹脂フィルムの製造方法。
1. Acrylic resin, a method for producing an acrylic resin film containing rubber particles,
A step of preparing a dope containing an acrylic resin having a glass transition temperature (Tg) in the range of 120 to 180° C. and a weight average molecular weight of 300,000 to 4,000,000 and rubber particles having a core-shell structure; ,
Preparing a dope by filtering the dope with a filter having a filtration accuracy within the range of 5 to 100 μm;
A step of casting the dope after filtration on a support and peeling the web,
And a step of drying the web, and
An acrylic resin having a transmission image clarity C value within a range of 80 to 100% when measured under the condition that a parallel light ray is incident on the acrylic resin film at an angle of 75 degrees and an optical comb width is 0.125 mm. Film manufacturing method.
 2.前記コア・シェル構造を有するゴム粒子の含有量が、アクリル樹脂フィルムに対して、5~20質量%以内である第1項に記載のアクリル樹脂フィルムの製造方法。 2. 2. The method for producing an acrylic resin film according to item 1, wherein the content of the rubber particles having the core/shell structure is within the range of 5 to 20 mass% with respect to the acrylic resin film.
 本発明の上記手段により、高耐久で強靭かつ表面及び内部において光学的乱れを起こさない均質なアクリル樹脂フィルムの製造方法を提供することができる。 By the above means of the present invention, it is possible to provide a method for producing a highly durable, tough and homogeneous acrylic resin film that does not cause optical disturbance on the surface and inside.
 本発明の効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。
 本発明においては、アクリル樹脂のガラス転移温度(Tg)、重量平均分子量、コア・シェル構造を有するゴム粒子の添加条件、及びドープの濾過精度を所定の範囲内に制御し、なおかつ透過写像性を所定の範囲内とすることにより、ドープの粘度が適切な状態に制御され、ドープ内の場所における、局所粘度分布が減少し、均質化したため、溶液流延での微小な流動性分布、レベリング分布、乾燥被膜の硬さ分布が減少し、本発明の課題が解決したものと推察される。
The mechanism of action or mechanism of action of the present invention has not been clarified, but is presumed as follows.
In the present invention, the glass transition temperature (Tg) of the acrylic resin, the weight average molecular weight, the addition conditions of the rubber particles having a core/shell structure, and the filtration accuracy of the dope are controlled within a predetermined range, and the transmission image clarity is improved. By controlling the viscosity within the specified range, the viscosity of the dope is controlled to an appropriate state, and the local viscosity distribution at the location in the dope is reduced and homogenized, so the minute fluidity distribution and leveling distribution in solution casting are obtained. Therefore, the hardness distribution of the dry coating is reduced, and it is presumed that the problem of the present invention has been solved.
本発明のアクリル樹脂フィルムの製造方法に用いられる製造装置の模式図The schematic diagram of the manufacturing apparatus used for the manufacturing method of the acrylic resin film of this invention. 本発明のアクリル樹脂フィルムの製造方法を実施する溶液流延製膜装置の概略図Schematic diagram of a solution casting film-forming apparatus for carrying out the method for producing an acrylic resin film of the present invention 流延膜と無端支持体との間に介在膜を形成する模式図Schematic diagram of forming an intervening film between the casting film and the endless support 本発明のアクリル樹脂フィルムの製造方法において使用されるテンター延伸装置の一例を模式的に示す概略平面図Schematic plan view schematically showing an example of a tenter stretching device used in the method for producing an acrylic resin film of the present invention 同テンター延伸装置の別の例を模式的に示す概略平面図Schematic plan view schematically showing another example of the tenter stretching device. 本発明に用いられるテンタークリップの概略図Schematic diagram of a tenter clip used in the present invention 本発明のアクリル樹脂フィルムの製造方法に用いられる斜め延伸を説明するための概略図Schematic diagram for explaining oblique stretching used in the method for producing an acrylic resin film of the present invention 本発明の一実施形態の延伸装置の概略図Schematic view of a stretching apparatus according to an embodiment of the present invention 巻取装置の概略を示す側面図Side view showing the outline of the winding device 巻取装置の概略を示す平面図The top view which shows the outline of a winding device. バンドの溶接部とフィルムの溶接部上形成領域との関係を示す説明図(A)はバンドの溶接部と流延膜との関係を示す平面図、(B)はフィルムの平面図Explanatory drawing which shows the relationship between the welded part of a band, and the formation area on the welded part of a film, (A) is a top view which shows the relationship between the welded part of a band, and a casting film, (B) is a top view of a film. 乾燥工程から巻取り工程までの概略図Schematic diagram from the drying process to the winding process 送風式除電装置を用いた除電方法を表す説明図Explanatory drawing showing the static elimination method using a ventilation type static eliminator アクリル樹脂フィルムと包材を示す斜視図Perspective view showing acrylic resin film and packaging material 包装体の実施形態を示す斜視図Perspective view showing an embodiment of a package 本実施形態の作用の説明図Explanatory drawing of the operation of this embodiment 巻き芯へのフィルム先端の取り付け状態を示す斜視図Perspective view showing how the film tip is attached to the winding core 巻き芯へのフィルム先端の取り付け状態を示す平面図The top view which shows the attachment state of the film front end to a winding core. フィルム先端部にフィルムが3回巻かれた状態の断面図Sectional view of film wound 3 times around the end of film 第2実施形態の断面図Sectional drawing of 2nd Embodiment 第3実施形態の断面図Sectional drawing of 3rd Embodiment 同実施形態のフィルム巻取り状態の断面図Sectional drawing of the film winding state of the embodiment 第4実施形態の断面図Sectional drawing of 4th Embodiment フィルム先端の傾斜角度を変えた別の実施形態における巻き芯へのフィルム先端の取り付け状態を示す平面図FIG. 4 is a plan view showing how the film tip is attached to the winding core in another embodiment in which the inclination angle of the film tip is changed. フィラメントワインディング法による巻取コアを製造する方法を説明するための概略図Schematic diagram for explaining a method for manufacturing a winding core by a filament winding method シートワインディング法による巻取コアを製造する方法を説明するための概略図Schematic diagram for explaining a method of manufacturing a winding core by a sheet winding method フィルムの両端部にテープを巻き付けて巻き取ったフィルムロールを示す図The figure which shows the film roll which wound the tape on both ends of the film and wound it up. エンボス加工又はスリット目加工が施されたテープの表面と断面とを示す図Diagram showing the surface and cross section of the tape that has been embossed or slitted (A)は本発明のアクリル樹脂フィルムが有し得るエンボス領域の一例の概略模式図であり、(B)は(A)のフィルムの幅手方向に対する垂直断面透視図であり、(C)は(A)のフィルムにおけるエンボス領域を説明するための概略模式図(A) is a schematic schematic view of an example of an embossed region that the acrylic resin film of the present invention may have, (B) is a perspective view of a vertical cross section of the film of (A) in the width direction, and (C) is Schematic schematic diagram for explaining the embossed region in the film of (A) (A)は本発明のアクリル樹脂フィルムが有し得るエンボス領域の一例の概略模式図であり、(B)は(A)のフィルムの幅手方向に対する垂直断面透視図であり、(C)は(A)のフィルムにおけるエンボス領域を説明するための概略模式図(A) is a schematic schematic view of an example of an embossed region that the acrylic resin film of the present invention may have, (B) is a perspective view of a vertical cross section of the film of (A) in the width direction, and (C) is Schematic schematic diagram for explaining the embossed region in the film of (A) (A)は本発明のアクリル樹脂フィルムが有し得るエンボス領域の一例の概略模式図であり、(B)は(A)のフィルムの幅手方向に対する垂直断面透視図であり、(C)は(A)のフィルムにおけるエンボス領域を説明するための概略模式図(A) is a schematic schematic view of an example of an embossed region that the acrylic resin film of the present invention may have, (B) is a perspective view of a vertical cross section of the film of (A) in the width direction, and (C) is Schematic schematic diagram for explaining the embossed region in the film of (A) (A)は本発明のアクリル樹脂フィルムが有し得るエンボス領域の一例の概略模式図であり、(B)は(A)のフィルムの幅手方向に対する垂直断面透視図であり、(C)は(A)のフィルムにおけるエンボス領域を説明するための概略模式図(A) is a schematic schematic view of an example of an embossed region that the acrylic resin film of the present invention may have, (B) is a perspective view of a vertical cross section of the film of (A) in the width direction, and (C) is Schematic schematic diagram for explaining the embossed region in the film of (A) フィルム製造ラインの概略図Schematic of film production line 巻取装置の平面図Top view of winding device 巻芯の円周方向に対するフィルムの応力と巻長との関係を示すグラフA graph showing the relationship between the film stress and the winding length in the circumferential direction of the winding core. 巻芯の円周方向に対するフィルムの応力の説明図Explanatory drawing of the stress of the film in the circumferential direction of the winding core ストレート巻きで巻き取ったときの面圧と巻長との関係を示すグラフGraph showing the relationship between surface pressure and winding length when wound by straight winding オシレート巻きで巻き取ったときの面圧と巻長との関係を示すグラフGraph showing the relationship between surface pressure and winding length when wound with oscillate winding 巻取装置の作用を示すフローチャートFlow chart showing the operation of the winding device フィルム製膜ラインの一例を示した概略図Schematic diagram showing an example of film production line 無機ガスバリアー層の形成に用いられるプラズマCVD装置の一例を示す模式図Schematic diagram showing an example of a plasma CVD apparatus used for forming an inorganic gas barrier layer 偽造防止媒体Aの作製時のパターン露光を示す図The figure which shows the pattern exposure at the time of manufacture of the forgery prevention medium A 偽造防止媒体Aに偏光板を介して観察されるパターンの拡大図Enlarged view of pattern observed on anti-counterfeit medium A through a polarizing plate 偽造防止媒体Bの作製時のパターン露光で用いたフォトマスクを示す図The figure which shows the photomask used by the pattern exposure at the time of manufacture of the forgery prevention medium B. 偽造防止媒体Bの遅相軸のパターンを示す図The figure which shows the pattern of the slow axis of the forgery prevention medium B.
 本発明のアクリル樹脂フィルムの製造方法は、アクリル樹脂と、ゴム粒子を含有するアクリル樹脂フィルムの製造方法であって、ガラス転移温度(Tg)が120~180℃の範囲内で、かつ、重量平均分子量が30万~400万のアクリル樹脂と、コア・シェル構造を有するゴム粒子とを含有するドープを調製する工程と、前記ドープを濾過精度が5~100μmの範囲内であるフィルターを用いて濾過してドープを調製する工程と、前記濾過後のドープを支持体上に流延しウェブを剥離する工程と、前記ウェブを乾燥する工程とを有し、かつ、前記アクリル樹脂フィルムに対し75度の角度で平行光線を入射し、光学くし幅を0.125mmとした条件下で測定したとき、透過写像性C値を80~100%の範囲内とすることを特徴とする。
 この特徴は、下記各実施形態に共通する技術的特徴である。
The method for producing an acrylic resin film of the present invention is a method for producing an acrylic resin film containing an acrylic resin and rubber particles, wherein the glass transition temperature (Tg) is in the range of 120 to 180° C., and the weight average is A step of preparing a dope containing an acrylic resin having a molecular weight of 300,000 to 4,000,000 and rubber particles having a core-shell structure, and filtering the dope with a filter having a filtration accuracy of 5 to 100 μm. A step of preparing a dope, a step of casting the filtered dope on a support to peel off the web, and a step of drying the web, and 75° with respect to the acrylic resin film. It is characterized in that the transmission image clarity C value is in the range of 80 to 100% when measured under the condition that a parallel light beam is incident at an angle of, and the optical comb width is 0.125 mm.
This feature is a technical feature common to each of the following embodiments.
 本発明の実施態様としては、本発明の効果発現の観点から前記コア・シェル構造を有するゴム粒子の含有量が、アクリル樹脂フィルムに対して、5~20質量%以内であることが好ましい。 In an embodiment of the present invention, the content of the rubber particles having the core-shell structure is preferably 5 to 20% by mass or less based on the acrylic resin film from the viewpoint of manifesting the effects of the present invention.
 以下、本発明とその構成要素及び本発明を実施するための形態・態様について説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its constituent elements, and modes and modes for carrying out the present invention will be described. In the present application, “to” is used to mean that the numerical values described before and after it are included as the lower limit value and the upper limit value.
[本発明のアクリル樹脂フィルムの製造方法の概要]
 本発明のアクリル樹脂フィルムの製造方法は、アクリル樹脂と、ゴム粒子を含有するアクリル樹脂フィルムの製造方法であって、ガラス転移温度(Tg)が120~180℃の範囲内で、かつ、重量平均分子量が30万~400万のアクリル樹脂と、コア・シェル構造を有するゴム粒子とを含有するドープを調製する工程と、前記ドープを濾過精度が5~100μmの範囲内であるフィルターを用いて濾過してドープを調製する工程と、前記濾過後のドープを支持体上に流延しウェブを剥離する工程と、前記ウェブを乾燥する工程とを有し、かつ、前記アクリル樹脂フィルムに対し75度の角度で平行光線を入射し、光学くし幅を0.125mmとした条件下で測定したとき、透過写像性C値を80~100%の範囲内とすることを特徴とする。
[Outline of the method for producing an acrylic resin film of the present invention]
The method for producing an acrylic resin film of the present invention is a method for producing an acrylic resin film containing an acrylic resin and rubber particles, wherein the glass transition temperature (Tg) is in the range of 120 to 180° C., and the weight average is A step of preparing a dope containing an acrylic resin having a molecular weight of 300,000 to 4,000,000 and rubber particles having a core-shell structure, and filtering the dope with a filter having a filtration accuracy of 5 to 100 μm. A step of preparing a dope, a step of casting the filtered dope on a support to peel off the web, and a step of drying the web, and 75° with respect to the acrylic resin film. It is characterized in that the transmission image clarity C value is in the range of 80 to 100% when measured under the condition that a parallel light beam is incident at an angle of, and the optical comb width is 0.125 mm.
 本発明においては、アクリル樹脂のガラス転移温度(Tg)、重量平均分子量、コア・シェル構造を有するゴム粒子の添加条件、ドープの濾過精度及び透過写像性を上記の範囲内とすることにより、ドープの粘度が適切な状態に制御され、ドープ内の場所における、局所粘度分布が減少し、均質化することができるため、溶液流延での微小な流動性分布、レベリング分布、乾燥被膜の硬さ分布が減少し、高耐久で強靭かつ表面及び内部において光学的乱れを起こさない均質なアクリル樹脂フィルムの製造方法を提供することができる。 In the present invention, the glass transition temperature (Tg) of the acrylic resin, the weight average molecular weight, the addition conditions of the rubber particles having a core/shell structure, the filtration accuracy of the dope, and the transmission image clarity are set within the above-mentioned ranges. The viscosity of the solution is controlled to an appropriate state, and the local viscosity distribution at the location in the dope can be reduced and homogenized, resulting in a fine fluidity distribution during solution casting, a leveling distribution, and a dry film hardness. It is possible to provide a method for producing a uniform acrylic resin film with reduced distribution, high durability, toughness, and no optical disorder on the surface and inside.
<微粒子及びゴム粒子>
 本発明に係るアクリル樹脂フィルムは微粒子のうちゴム粒子を必須成分とする。ただしゴム粒子以外の微粒子も適宜好ましく使用できる。特に好ましいのはフィルムのアンチブロッキング剤として使用されるマット剤である。マット剤として用いられる微粒子には無機微粒子と有機微粒子がある。有機微粒子に好ましく用いられる材質としてはアクリル系のものがあり、本発明のゴム粒子と区別のつきにくいものもあるため、本発明のゴム粒子はガラス転移温度が室温すなわち25℃以下のものと定める。ガラス転移温度が25℃より高い場合は、本発明のゴム粒子として適当ではない。
<Fine particles and rubber particles>
The acrylic resin film according to the present invention contains rubber particles as an essential component among the fine particles. However, fine particles other than rubber particles can be suitably used. Particularly preferred is a matting agent used as an anti-blocking agent for the film. Fine particles used as a matting agent include inorganic fine particles and organic fine particles. Acrylic-based materials are preferably used as the organic fine particles, and some of them are difficult to distinguish from the rubber particles of the present invention. Therefore, the rubber particles of the present invention have a glass transition temperature of room temperature, that is, 25° C. or less. .. When the glass transition temperature is higher than 25°C, it is not suitable as the rubber particle of the present invention.
<透過写像性>
 本発明に係る透過写像性は写像性測定器(例えば、スガ試験機(株)製の写像性測定器 ICM-1T)を用いて測定する。アクリル樹脂フィルムの試験片に対し75度の角度で平行光線を入射し、光学くし幅を0.125mmとした条件下で測定することとする。なお、試験片の透過光の光学軸に直交する光学くしを移動させて、光学軸上にくしの透過部分があるときの光量(M)とくしの遮光部分があるときの光量(m)を求め、両者の差(M-m)と和(M+m)との比率(C値(%))が、像鮮明度の尺度となる。
 C値が、80%以上であることが好ましく、90%以上であることが特に好ましい。
<Transparency>
The transmission image clarity according to the present invention is measured using an image clarity measuring instrument (for example, image clarity measuring instrument ICM-1T manufactured by Suga Test Instruments Co., Ltd.). It is assumed that parallel light rays are incident on the test piece of the acrylic resin film at an angle of 75 degrees, and the measurement is performed under the condition that the optical comb width is 0.125 mm. In addition, by moving the optical comb orthogonal to the optical axis of the transmitted light of the test piece, the light amount (M) when the comb transmitting portion is on the optical axis and the light amount (m) when the comb light shielding portion is present on the optical axis are obtained. The ratio (C value (%)) of the difference (M−m) between the two and the sum (M+m) is a measure of the image definition.
The C value is preferably 80% or more, and particularly preferably 90% or more.
[アクリル樹脂フィルムの製造装置及び製造方法]
 本発明に係るアクリル樹脂フィルムの製造に用いることのできる製造装置について説明する。
 アクリル樹脂フィルムの製造装置は特に限定されるものではなく、一般的な溶液流延法による製膜装置を用いることができる。
[Acrylic resin film manufacturing apparatus and manufacturing method]
A manufacturing apparatus that can be used for manufacturing the acrylic resin film according to the present invention will be described.
The acrylic resin film manufacturing apparatus is not particularly limited, and a general solution casting method film forming apparatus can be used.
 図1は、本発明に好ましいアクリル樹脂フィルムの製造方法に用いられる装置の模式図である。 FIG. 1 is a schematic diagram of an apparatus used in a method for producing an acrylic resin film which is preferable for the present invention.
 アクリル樹脂は、仕込釜41にて適当量の有機溶媒にて溶解され、濾過器44へ送液されて大きな凝集物を除去し、ストックタンク42へ送液する。その後、ストックタンク42より主ドープ溶解釜1へ各種添加液(例えば可塑剤やマット剤や紫外線吸収剤等)を添加して主ドープを調製する。 The acrylic resin is dissolved in an appropriate amount of organic solvent in the charging pot 41, and is sent to the filter 44 to remove large aggregates, and then sent to the stock tank 42. Then, various additive liquids (for example, a plasticizer, a matting agent, an ultraviolet absorber, etc.) are added from the stock tank 42 to the main dope dissolving pot 1 to prepare the main dope.
 添加剤として、可塑剤やマット剤や紫外線吸収剤等は、添加剤仕込み釜にて溶媒で撹拌、希釈して添加液とした後、仕込釜41へと適宜添加される。 As an additive, a plasticizer, a matting agent, an ultraviolet absorber, etc. are appropriately added to the charging pot 41 after being stirred and diluted with a solvent in an additive charging pot to make an additive liquid.
 主ドープは、ダイ30より無端支持体31上へ流延され、剥離位置33で剥離されてウェブと形成し、多数のローラーにて搬送された後、テンター装置34にて延伸される。延伸されたウェブはローラー乾燥装置35にて多数の搬送ローラー36により乾燥されながら搬送され、巻取り装置37で巻き取られる。 The main dope is cast from the die 30 onto the endless support 31, peeled at the peeling position 33 to form a web, conveyed by a large number of rollers, and then stretched by the tenter device 34. The stretched web is transported while being dried by a number of transport rollers 36 in a roller drying device 35, and wound by a winding device 37.
 不図示だが、工程中にはフィルム幅を調整するためのスリット装置、フィルム端部に凹凸を付与してフィルムの貼り付き故障を改善するためのエンボス装置を適宜設けることが好ましい。 Although not shown, it is preferable to appropriately provide a slit device for adjusting the film width during the process and an embossing device for giving unevenness to the film end portion to improve the sticking failure of the film.
 また、特開2000-301555号公報、特開2000-301558号公報、特開平7-032391号公報、特開平3-193316号公報、特開平5-086212号公報、特開昭62-037113号公報、特開平2-276607号公報、特開昭55-014201号公報、特開平2-111511号公報、及び特開平2-208650号公報等の各公報に記載のセルロースアシレートフィルム製膜技術を本発明に応用できる。 Further, JP-A-2000-301555, JP-A-2000-301558, JP-A-7-032391, JP-A-3-193316, JP-A-5-086122, and JP-A-62-037113. The techniques for forming a cellulose acylate film described in JP-A-2-276607, JP-A-55-014201, JP-A-2-111511, and JP-A-2-208650 are used. It can be applied to the invention.
 本発明のアクリル樹脂フィルムの製造方法は、ガラス転移温度(Tg)が120~180℃の範囲内で、かつ、重量平均分子量が30万~400万のアクリル樹脂と、コア・シェル構造を有するゴム粒子とを含有するドープを作製する工程と、前記ドープを濾過精度5~100μmのフィルターを用いて濾過したドープを作製する工程と、前記濾過後のドープを支持体上に流延しウェブを剥離する工程と、前記ウェブを乾燥する工程と、を有する。 The method for producing an acrylic resin film of the present invention comprises an acrylic resin having a glass transition temperature (Tg) in the range of 120 to 180° C. and a weight average molecular weight of 300,000 to 4,000,000, and a rubber having a core-shell structure. A step of producing a dope containing particles, a step of producing a dope obtained by filtering the dope with a filter having a filtration accuracy of 5 to 100 μm, and the dope after the filtration is cast on a support to peel the web. And a step of drying the web.
 各工程について詳細に説明する。以下、「アクリル樹脂フィルム」は、単に「フィルム」という場合がある。 Detailed description of each process. Hereinafter, the “acrylic resin film” may be simply referred to as a “film”.
 (0)原材料貯蔵・供給工程
 本発明に係るアクリル樹脂フィルムの製造工程には、その原材料について、流通・供給される包装形態で貯蔵する工程、包装を解いてサイロやタンク等に貯蔵する工程、さらに別のサイロやタンク等に移送する工程等を備えることが好ましい。
 原材料の流通・供給時の包装形態としては、紙袋、フレコンバッグ、コンテナ、タンクローリー等特に制限されないが、保存中の温度・湿度・紫外線・酸素を遮断する包装形態が特に好ましい。
 アクリル樹脂は他の樹脂に比べ比較的ガラス転移温度が低いためブロッキングを起こしやすい。貯蔵環境条件については、低温、低湿かつ低荷重であることが好ましい。このため必要以上に大容量のサイロを用いることは好ましくない。なお、低湿環境下では粉塵爆発の懸念もあり、貯蔵容器・移送管の接地や場合によって不活性ガスによる置換なども好ましく行われる。
 原料のアクリル樹脂は製造(合成)時のロットバラツキによる重量平均分子量の変動がある。ロット切り替え時にドープの粘度が変動することを避けるため、多数ロットを別々の貯蔵容器に貯蔵し、重量平均分子量が平準化するようにロットどうしをブレンドして用いることが好ましい。少なくともサイロ2基にそれぞれ別ロットを貯蔵し、一方と他方とのロットブレンド量がグラデーションを持つ形で次工程に供給することで、ドープ粘度が急激に変化することを避けることが可能である。
 本発明に係るアクリル樹脂フィルムの原材料としては、自己返材も含まれる。返材も他の原材料と同様な保管状態を取ることが好ましい。返材は通常、フレーク状のフィルム砕片であり、さらにブロッキングを起こしやすいため注意が必要である。
 原材料の移送方法については、自由落下による移送、エアによる配管内空送、スクリューフィーダーや振動フィーダーによる移送など、特に制限されない。粉塵爆発の懸念を避けるため、摩擦帯電低減のため除電・接地したり、酸素濃度を低減するため原材料の配管内充填率を上げたり不活性ガスで置換したりすることが好ましい。特に返材は流動性が良好ではないため、強制排出のできるスクリューフィーダーが好ましい。
 移送時の計量は、フィーダー回転による管理でもよいが、受け容器の重量を計測するロードセル方式が好ましい。
(0) Raw Material Storage/Supply Step In the manufacturing process of the acrylic resin film according to the present invention, the raw material is stored in a packaging form in which it is distributed/supplied, a step of unpacking and storing in a silo or a tank, It is preferable to further include a step of transferring to another silo or tank.
The packaging form at the time of distribution and supply of the raw materials is not particularly limited, such as a paper bag, a flexible container bag, a container, and a tank truck, but a packaging form that shields temperature, humidity, ultraviolet rays, and oxygen during storage is particularly preferable.
Acrylic resin has a relatively low glass transition temperature as compared with other resins, and thus tends to cause blocking. Regarding storage environmental conditions, it is preferable that the storage temperature is low, the humidity is low, and the load is low. Therefore, it is not preferable to use a silo having a larger capacity than necessary. In a low-humidity environment, there is a risk of dust explosion, and grounding of the storage container/transfer pipe and, if necessary, replacement with an inert gas are also preferably performed.
The acrylic resin as a raw material has a variation in the weight average molecular weight due to a lot variation during manufacturing (synthesis). In order to prevent the viscosity of the dope from changing when the lots are switched, it is preferable to store a large number of lots in separate storage containers and blend the lots so that the weight average molecular weights are leveled. By storing different lots in at least two silos and supplying the lot blend amounts of one and the other to the next step with gradation, it is possible to avoid a rapid change in the dope viscosity.
The raw material of the acrylic resin film according to the present invention includes self-returning material. It is preferable that the returned material should be in the same storage condition as other raw materials. Recycled material is usually flaky film fragments, and blocking is likely to occur, so caution is required.
The method for transferring the raw materials is not particularly limited, such as transfer by free fall, pneumatic transfer in a pipe by air, transfer by a screw feeder or a vibration feeder. In order to avoid the concern of dust explosion, it is preferable to perform static elimination/grounding to reduce triboelectrification, or to increase the filling rate of raw materials in the pipe or replace with an inert gas to reduce oxygen concentration. In particular, since the returned material does not have good fluidity, a screw feeder capable of forced discharge is preferable.
The weighing at the time of transfer may be managed by rotation of the feeder, but a load cell method for measuring the weight of the receiving container is preferable.
 (1)ドープ調製工程(溶解工程)
 アクリル樹脂に対する良溶媒を主とする有機溶媒に、溶解釜中で当該アクリル樹脂、場合によって、可塑剤や各種機能発現剤(例えば、酸化防止剤、光安定剤、紫外線吸収剤、リターデーション調整剤、剥離促進剤、赤外吸収剤、マット剤など)を撹拌しながら溶解しドープを形成する工程、又は当該アクリル樹脂溶液に、前記可塑剤や各種機能発現剤を溶液した溶液を混合して主溶解液であるドープを調製する工程である。
 本発明においては、ガラス転移温度(Tg)が120~180℃の範囲内で、かつ、重量平均分子量が30万~400万のアクリル樹脂と、コア・シェル構造を有するゴム粒子とを含有するドープを調製することを特徴とする。
(1) Dope preparation process (dissolution process)
In an organic solvent mainly composed of a good solvent for an acrylic resin, the acrylic resin in a dissolution pot, and in some cases, a plasticizer or various function expressing agents (for example, an antioxidant, a light stabilizer, an ultraviolet absorber, a retardation adjusting agent). , A peeling accelerator, an infrared absorbing agent, a matting agent, etc.) while stirring to form a dope, or by mixing the acrylic resin solution with a solution of the plasticizer and various function expressing agents. This is a step of preparing a dope which is a solution.
In the present invention, a dope containing an acrylic resin having a glass transition temperature (Tg) of 120 to 180° C. and a weight average molecular weight of 300,000 to 4,000,000 and rubber particles having a core-shell structure. Is prepared.
 本発明に係るアクリル樹脂フィルムを溶液流延法で製造する場合、ドープを調製するのに有用な有機溶媒は、アクリル樹脂及びその他の化合物を同時に溶解するものであれば制限なく用いることができる。 When the acrylic resin film according to the present invention is produced by the solution casting method, the organic solvent useful for preparing the dope can be used without limitation as long as it can dissolve the acrylic resin and other compounds at the same time.
 例えば、塩素系有機溶媒としては、ジクロロメタン、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン等を挙げることができ、例えば主たる溶媒として、ジクロロメタン、酢酸メチル、酢酸エチル、アセトンを好ましく使用することができ、ジクロロメタン又は酢酸エチルであることが特に好ましい。 For example, the chlorine-based organic solvent is dichloromethane, and the non-chlorine-based organic solvent is methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2 ,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2 -Methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane and the like can be mentioned. For example, dichloromethane, methyl acetate, ethyl acetate, acetone can be preferably used as the main solvent, and dichloromethane or ethyl acetate is particularly preferable.
 ドープには、上記有機溶媒の他に、1~40質量%の範囲の炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールを含有させることが好ましい。ドープ中のアルコールの比率が高くなるとウェブがゲル化し、金属製の無端支持体からの剥離が容易になり、また、アルコールの割合が少ないときは非塩素系有機溶媒系での環状ポリオレフィン及びその他の化合物の溶解を促進する役割もある。本発明に係るアクリル樹脂フィルムの製膜においては、得られるアクリル樹脂フィルムの平面性を高める点から、アルコール濃度が0.5~15.0質量%の範囲内にあるドープを用いて製膜する方法を適用することができる。 In addition to the above organic solvent, the dope preferably contains a linear or branched aliphatic alcohol having 1 to 4 carbon atoms in the range of 1 to 40% by mass. When the proportion of alcohol in the dope is high, the web is gelled, which facilitates peeling from the metal endless support.When the proportion of alcohol is low, cyclic polyolefin and other polyolefins in a non-chlorine organic solvent system are used. It also has the role of promoting dissolution of the compound. In the film formation of the acrylic resin film according to the present invention, from the viewpoint of enhancing the flatness of the resulting acrylic resin film, the film is formed using a dope having an alcohol concentration in the range of 0.5 to 15.0% by mass. The method can be applied.
 特に、ジクロロメタン、及び炭素数1~4の直鎖又は分岐鎖状の脂肪族アルコールを含有する溶媒に、アクリル樹脂及びその他の化合物を、計15~45質量%の範囲で溶解させたドープ組成物であることが好ましい。 In particular, a dope composition obtained by dissolving an acrylic resin and other compounds in a total amount of 15 to 45% by mass in a solvent containing dichloromethane and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. Is preferred.
 炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。これらの内ドープの安定性、沸点も比較的低く、乾燥性もよいこと等からメタノール及びエタノールが好ましい。 Examples of the linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol and tert-butanol. Of these, methanol and ethanol are preferable because the dope is stable, the boiling point is relatively low, and the drying property is good.
 アクリル樹脂や可塑剤や機能発現剤の溶解には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法、特開平9-95544号公報、特開平9-95557号公報、又は特開平9-95538号公報に記載の如き冷却溶解法で行う方法、特開平11-21379号公報に記載されている高圧で行う方法等種々の溶解方法を用いることができるが、特に主溶媒の沸点以上で加圧して行う方法が好ましい。 In order to dissolve the acrylic resin, the plasticizer, and the function expressing agent, a method under normal pressure, a method under the boiling point of the main solvent, a method under pressurization over the boiling point of the main solvent, JP-A-9-95544, Use of various melting methods such as the method of cooling and melting as described in Kaihei 9-95557 or Japanese Patent Laid-Open No. 9-95538, and the method of high pressure described in Japanese Patent Laid-Open No. 11-21379. However, it is particularly preferable to apply pressure at a temperature not lower than the boiling point of the main solvent.
 また、アクリル樹脂や添加剤は、特開2011-143360号公報の図5に示す混合装置を用いることが好ましい。当該混合装置は、液体及び固形物を混合する混合槽に液体を供給するための液体供給管であって、液体が注入される一つ以上の枝管、及び該枝管に連通され、枝管に注入された液体を混合槽に供給する一つの主管を有し、主管軸方向からの投影図において、枝管内の液体移動方向が、主管における枝管との連通位置からの主管半径方向との間で傾斜角を有するように、枝管が配置されている。このような枝管を有する固形物導入管より導入されることが、異物を低減する観点から好ましい。 Further, it is preferable to use the mixing device shown in FIG. 5 of JP 2011-143360 A for acrylic resin and additives. The mixing device is a liquid supply pipe for supplying a liquid to a mixing tank for mixing a liquid and a solid substance, and one or more branch pipes into which the liquid is injected, and a branch pipe connected to the branch pipe. In the projection view from the main pipe axial direction, the liquid moving direction in the branch pipe is the main pipe radial direction from the communicating position with the branch pipe in the main pipe axial direction. The branch pipes are arranged so as to have an inclination angle therebetween. Introducing from a solid material introducing pipe having such a branch pipe is preferable from the viewpoint of reducing foreign matters.
 具体的には、可塑剤、紫外線吸収剤、マット剤、酸化防止剤などの添加剤の溶液はそれぞれ独立して、好ましくは前記公報の図5に示す固形物導入管5より添加され、主溶媒に溶解又は分散されてドープを構成する。 Specifically, a solution of additives such as a plasticizer, an ultraviolet absorber, a matting agent, and an antioxidant is independently added, preferably from the solid material introducing pipe 5 shown in FIG. Is dissolved or dispersed in the dope to form a dope.
 アクリル樹脂の溶解に用いる加圧容器の種類は、特に問うところではなく、所定の圧力に耐えることができ、加圧下で加熱、撹拌ができればよい。加圧容器には、その他、圧力計、温度計などの計器類を適宜配設する。加圧は窒素ガスなどの不活性気体を圧入する方法や、加熱による溶媒の蒸気圧の上昇によって行ってもよい。加熱は外部から行うことが好ましく、例えばジャケットタイプのものは温度コントロールが容易で好ましい。 The type of pressure vessel used to dissolve the acrylic resin is not particularly limited as long as it can withstand a predetermined pressure and can be heated and stirred under pressure. In addition to the pressure vessel, other instruments such as a pressure gauge and a thermometer are appropriately arranged. Pressurization may be carried out by a method of injecting an inert gas such as nitrogen gas or by increasing the vapor pressure of the solvent by heating. Heating is preferably performed from the outside. For example, a jacket type is preferable because temperature control is easy.
 溶媒を添加しての加熱温度は、使用する溶媒の沸点以上で、2種類以上の混合溶媒の場合は、沸点が低い方の溶媒の沸点以上の温度に加温しかつ該溶媒が沸騰しない範囲の温度が好ましい。加熱温度が高すぎると、必要とされる圧力が大きくなり、生産性が悪くなる。好ましい加熱温度の範囲は20~120℃であり、30~100℃が、より好ましく、40~80℃の範囲がさらに好ましい。また圧力は、設定温度で、溶媒が沸騰しないように調整される。
 原材料を溶解釜に移送し添加する順序としては、ある程度の有機溶媒が溶解釜にある状態で、粉体の原材料、特にアクリル樹脂を添加することが好ましい。また、原材料の全量を一気に投入すると比重の軽い原材料が液面付近に集結して継子が発生し、溶解時間が長くなるため、一つの釜に投入する原材料を100%としたときに、0.1~10%/分となる投入速度に調整することが好ましい。
 粉体を添加する投入口は、有機溶媒の蒸気との接触で粉体どうしが溶着し塊になることがある。このため添加中は有機溶媒の蒸気が別の場所へ誘導されるようベントすることが好ましい。また投入口に固化物が付着しないよう、内面テフロン(登録商標)加工することも好ましい。
 また、比重の大きな有機溶媒(例えば、メチレンクロライドなど)を使用する場合、樹脂との比重差から、釜の下部にはアクリル樹脂が行き届かず有機溶媒リッチとなる傾向がある。ドープの均一性を確保するため溶解釜の形状としてはデッド部が無いように設計すること、もしくはデッド部にも対流がまわるように撹拌を設計することが好ましい。
The heating temperature with the addition of the solvent is not less than the boiling point of the solvent used, and in the case of a mixed solvent of two or more kinds, the heating temperature is not lower than the boiling point of the solvent having the lower boiling point and the solvent does not boil. Is preferred. If the heating temperature is too high, the required pressure will increase and the productivity will deteriorate. The preferable heating temperature range is 20 to 120° C., more preferably 30 to 100° C., and further preferably 40 to 80° C. The pressure is adjusted so that the solvent does not boil at the set temperature.
The order of transferring the raw materials to the melting pot and adding them is preferably such that the powder raw materials, especially the acrylic resin, are added while a certain amount of the organic solvent is in the melting pot. Further, if all the raw materials are charged all at once, the raw materials having a low specific gravity gather near the liquid surface to generate sprouts, and the melting time becomes long. It is preferable to adjust the charging rate to be 1 to 10%/min.
When the powder is added to the charging port, the powder may adhere to each other to form a lump by contact with the vapor of the organic solvent. For this reason, it is preferable to vent during the addition so that the vapor of the organic solvent is guided to another place. In addition, it is also preferable to perform Teflon (registered trademark) inner surface processing so that the solidified product does not adhere to the charging port.
When an organic solvent having a large specific gravity (for example, methylene chloride, etc.) is used, the acrylic resin tends not to reach the lower part of the pot due to the difference in specific gravity from the resin, and the organic solvent tends to become rich. In order to ensure the uniformity of the dope, it is preferable that the shape of the melting pot is designed so that there is no dead portion, or that the stirring is designed so that convection also flows into the dead portion.
 本発明に係るアクリル樹脂ドープの調製装置は、該装置が貯蔵槽、熱交換器及び循環路を有し、該貯蔵槽と該熱交換器が該循環路を介して連結していることが好ましい。循環路を介して連結しているとは、貯蔵槽と熱交換器との間に循環路があり、また熱交換器と貯蔵槽との間に循環路があるということである。循環路は熱交換可能になっていていてもよく、循環路が熱交換器を兼ねる場合もある。ドープは貯蔵槽のドープ排出口から熱交換器を経て貯蔵槽に戻ってもよいし、貯蔵槽のドープ排出口以外の口から熱交換器を経て貯蔵槽に戻ってもよい。又は循環路を備えたドープ調製装置を二つ以上つなげてもよい。この場合、二つ目の貯蔵槽ではさらに溶媒を追加してもよい。循環路は効率的に溶解時間を短縮する機能を有しており、完全溶解の能力も有している。一般に、循環器を設けた溶解容器では、単に循環しているだけで、溶解状態にするには時間がかかり過ぎる。一方、溶液に熱を短時間加える熱交換器では、ドープにゲルが発生しやすく完全溶解するには時間が短過ぎる。 In the apparatus for preparing an acrylic resin dope according to the present invention, it is preferable that the apparatus has a storage tank, a heat exchanger and a circulation path, and the storage tank and the heat exchanger are connected via the circulation path. .. To be connected via a circulation path means that there is a circulation path between the storage tank and the heat exchanger, and that there is a circulation path between the heat exchanger and the storage tank. The circulation path may be capable of heat exchange, and in some cases, the circulation path also serves as a heat exchanger. The dope may be returned from the dope outlet of the storage tank to the storage tank via the heat exchanger, or may be returned to the storage tank via the heat exchanger from a port other than the dope outlet of the storage tank. Alternatively, two or more dope preparation devices having a circulation path may be connected. In this case, additional solvent may be added to the second storage tank. The circulation path has the function of effectively shortening the dissolution time, and also has the ability of complete dissolution. Generally, in a dissolution container provided with a circulator, it takes too much time to attain a dissolved state because it is simply circulated. On the other hand, in a heat exchanger in which heat is applied to the solution for a short time, gel is likely to be generated in the dope, and the time is too short for complete dissolution.
 本発明に用いられる貯蔵槽は、ジャケットを該槽の内部又は外部に装備し、下記のようなせん断力を有する撹拌機を有する耐圧容器であることが、ドープをより均一化するのに好ましい。
 さらに、ドープの気液界面や貯蔵槽の壁面には、ドープが乾燥して形成された乾燥皮膜が発生しやすく、これが流出することによるフィルム故障がしばしば問題となる。これを防止するために、貯蔵槽内の有機溶媒の蒸気圧を制御し、飽和蒸気圧状態にすることが好ましい。具体的には、有機溶媒をミスト状に噴霧する装置を貯蔵槽内に導入し、飽和蒸気圧に対して必要十分に作動するよう制御することが好ましい。
The storage tank used in the present invention is preferably a pressure vessel having a jacket inside or outside the tank and having an agitator having a shearing force as described below, in order to make the dope more uniform.
Further, a dry film formed by drying the dope is likely to occur on the gas-liquid interface of the dope and the wall surface of the storage tank, and a film failure due to the outflow of the dope is often a problem. In order to prevent this, it is preferable to control the vapor pressure of the organic solvent in the storage tank to bring it into a saturated vapor pressure state. Specifically, it is preferable to introduce a device for spraying the organic solvent in the form of mist into the storage tank and control it so that it operates sufficiently and sufficiently against the saturated vapor pressure.
 アクリル樹脂と溶媒とを混合し溶解する過程で、9.8~9.8×10Nのせん断力をかけて撹拌することが好ましい。上記せん断力の範囲で撹拌することは、粉体凝集物ができる間もなく、またできたとしても粉体凝集物を粉砕して溶解することができる。9.8N未満のせん断力では撹拌力が弱く分散効率が悪く、また、9.8×10Nを超える分散物が細かくなり過ぎ、後の濾過工程で目詰まりが生じ、濾過効率を著しく低下させてしまう。せん断力は駆動モーターMの回転数で制御することができる。 In the process of mixing and dissolving the acrylic resin and the solvent, it is preferable to apply a shearing force of 9.8 to 9.8×10 5 N and stir. Stirring within the range of the shearing force described above allows powder agglomerates to be formed shortly, and even if it is formed, the powder agglomerates can be crushed and dissolved. When the shearing force is less than 9.8 N, the stirring force is weak and the dispersion efficiency is poor, and the dispersion exceeding 9.8×10 5 N becomes too fine, clogging occurs in the subsequent filtration step, and the filtration efficiency is significantly reduced. I will let you. The shearing force can be controlled by the rotation speed of the drive motor M.
 アクリル樹脂の溶解後は、冷却しながら容器から取り出すか、又は容器からポンプ等で抜き出して、熱交換器などで冷却し、得られたポリマーのドープを製膜に供するが、このときの冷却温度は、常温まで冷却してもよい。 After the acrylic resin is melted, it is taken out from the container while cooling, or it is taken out from the container with a pump and cooled with a heat exchanger and the obtained polymer dope is used for film formation. May be cooled to room temperature.
 ドープ中のアクリル樹脂の濃度は、10~40質量%の範囲であることが好ましい。溶解中又は後のドープに化合物を加えて溶解及び分散した後、濾材で濾過し、脱泡して送液ポンプで次工程に送る。 The concentration of acrylic resin in the dope is preferably in the range of 10-40% by mass. After the compound is added to the dope during or after dissolution to dissolve and disperse it, the dope is filtered with a filter medium, defoamed, and sent to the next step by a liquid sending pump.
 (含水率)
 また、ドープ調製工程では、製造開始時から定常運転までの立ち上げ時は含水率が2.0~5.0質量%、定常運転時は含水率が0.1~2.0質量%となるように調整することが、ドープの安定性やフィルムの透明性の観点から、好ましい。
(Moisture content)
Further, in the dope preparation step, the water content is 2.0 to 5.0 mass% at the start-up from the production start to the steady operation, and the water content is 0.1 to 2.0 mass% at the steady operation. It is preferable to adjust as described above from the viewpoint of the stability of the dope and the transparency of the film.
 前記立ち上げ時の含水率をドープ全量に対して0.6~2.0質量%の範囲内にする方法としては、樹脂中の含水率とアルコール中の含水率の合計から、ドープ中の含水率を算出し、不足分は溶媒に混合したのちドープとして調合する方法がある。 As a method of setting the water content at the time of start-up within the range of 0.6 to 2.0 mass% with respect to the total amount of the dope, the water content in the dope is calculated from the total of the water content in the resin and the water content in the alcohol. There is a method in which the ratio is calculated, and the shortage is mixed with a solvent and then mixed as a dope.
 前記立ち上げ時はそのラインスピードが遅いことから、含水率がドープ全量に対して2.0質量%より小さいと、剥離する前にウェブが無端支持体から剥がれやすくなる。フィルムが剥がれてしまうと、再び立ち上げを行わなければならず、生産性が悪化してしまう。また、前記含水率が5.0質量%より大きいと、アクリル樹脂の溶媒に対する溶解性が悪くなり無端支持体汚れが生じやすくなる。 Since the line speed is slow at the start-up, if the water content is less than 2.0 mass% with respect to the total amount of the dope, the web is likely to peel off from the endless support before peeling. If the film peels off, it will have to be restarted, and productivity will deteriorate. On the other hand, when the water content is more than 5.0% by mass, the solubility of the acrylic resin in the solvent is deteriorated and the endless support is apt to be soiled.
 前記立ち上げ時から定常運転時においてドープの含水率を0.6~2.0質量%の範囲内に下げる手段としては、前記所定のアクリル樹脂、その他の添加剤をインライン添加することで調整すること、樹脂中の含水率とアルコール中の含水率の合計から、ドープ中の含水率を算出し、調整した低含水率のドープを、ラインに流していくことで含水率を徐々に下げること等が挙げられる。 As a means for lowering the water content of the dope within the range of 0.6 to 2.0 mass% from the start-up to the steady operation, it is adjusted by in-line addition of the predetermined acrylic resin and other additives. That is, the water content in the dope is calculated from the sum of the water content in the resin and the water content in the alcohol, and the adjusted low water content dope is gradually lowered by flowing it through the line. Are listed.
 本発明で用いるドープは、アクリルの高分子量化に伴い、100,000Pa・sといった高粘度になりやすい。高粘度ドープを高流量で送液するため、送液管の管径は直径100mm以上、耐圧は20kg以上とすることが好ましい。また、送液ポンプも上記の高粘度ドープに対応した能力のものを選定することが好ましい。さらに、送液中の微粒子の凝集やドープのゲル化を防止するため、送液管の途中にスタチックミキサを設置することも好ましい。 The dope used in the present invention tends to have a high viscosity of 100,000 Pa·s as the acrylic has a higher molecular weight. In order to feed the high-viscosity dope at a high flow rate, it is preferable that the diameter of the liquid feed pipe is 100 mm or more and the pressure resistance is 20 kg or more. Further, it is preferable to select a liquid feed pump having a capability corresponding to the above high viscosity dope. Further, in order to prevent aggregation of fine particles during the liquid feeding and gelation of the dope, it is also preferable to install a static mixer in the middle of the liquid feeding pipe.
 また、アクリル樹脂溶解工程に微粒子を添加する場合の溶解混合は、主溶媒の沸点以上、同沸点+50℃以下の温度で行うのが、好ましい。このように、アクリル樹脂溶解工程における微粒子の溶解混合の温度を、主溶媒の沸点+50℃以下の温度に規定することにより、異物発生率を、ドープの溶解混合工程において確実に抑えることができる。 Also, when fine particles are added to the acrylic resin dissolution step, it is preferable that the dissolution and mixing be performed at a temperature of not less than the boiling point of the main solvent and not more than the same boiling point +50°C. In this way, by defining the temperature of the fine particles to be dissolved and mixed in the acrylic resin dissolving step at a temperature not higher than the boiling point of the main solvent +50° C., the foreign matter generation rate can be reliably suppressed in the dope dissolving and mixing step.
 また、アクリル樹脂溶解工程における微粒子の溶解混合を、30~300分の範囲の時間行うのが、好ましい。このように、アクリル樹脂溶解工程における微粒子の溶解混合の時間を規定することにより、アクリル樹脂フィルムにおける微粒子の変動係数(分布)の劣化がなく、また異物故障等生産適性上の観点からも好ましい。 Also, it is preferable that the fine particles are dissolved and mixed in the acrylic resin dissolving step for a time in the range of 30 to 300 minutes. By thus defining the time for dissolving and mixing the fine particles in the acrylic resin dissolving step, the variation coefficient (distribution) of the fine particles in the acrylic resin film does not deteriorate, and it is preferable from the viewpoint of production suitability such as foreign matter failure.
 さらに、アクリル樹脂の溶解工程で添加する微粒子を、アクリル樹脂の溶解釜への添加中か、又は添加後、アクリル樹脂が溶解釜で完全溶解される前までに添加するのが、好ましい。このように、アクリル樹脂の溶解工程での微粒子の添加のタイミングを規定することにより、アクリル樹脂溶液(ドープ)に含有される微粒子の添加起因による異物発生率を、ドープの溶解混合工程において確実に抑えることができて、その後の濾過工程でのフィルターへの負担を大幅に軽減し、異物の発生がなく、生産性にも優れている。 Further, it is preferable to add the fine particles to be added in the acrylic resin dissolution step during the addition of the acrylic resin to the dissolution tank or after the addition of the particles before the acrylic resin is completely dissolved in the dissolution tank. In this way, by defining the timing of addition of fine particles in the acrylic resin dissolution step, the foreign matter generation rate due to the addition of fine particles contained in the acrylic resin solution (dope) can be ensured in the dope dissolution and mixing step. It can be suppressed, the load on the filter in the subsequent filtration step is significantly reduced, no foreign matter is generated, and the productivity is excellent.
 本発明のアクリル樹脂フィルムの製造方法においては微粒子の分散液をあらかじめ調製し、この微粒子分散液を、アクリル樹脂を主溶媒に溶解させる工程で添加し、添加後、主溶媒の沸点以上の温度で溶解混合することが好ましい。 In the method for producing an acrylic resin film of the present invention, a fine particle dispersion is prepared in advance, and this fine particle dispersion is added in the step of dissolving the acrylic resin in the main solvent, and after the addition, at a temperature not lower than the boiling point of the main solvent. It is preferable to dissolve and mix.
 微粒子を分散するときに使用する溶媒は、アクリル樹脂の製膜時に用いられる有機溶媒を用いることができる。特にアルコールが好ましく、例えば、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノール等の炭素原子数1~8の等が挙げられる。 As the solvent used for dispersing the fine particles, the organic solvent used for forming the acrylic resin film can be used. Alcohols are particularly preferable, and examples thereof include those having 1 to 8 carbon atoms such as methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol and tert-butanol.
 微粒子を溶媒と混合して分散するときの微粒子の濃度は、5~30質量%が好ましく、8~25質量%がさらに好ましく、10~15質量%が最も好ましい。微粒子分散液中の微粒子濃度は、高い方が、添加量に対する液濁度は低くなる傾向があり、ヘイズ、凝集物が良化するため好ましい。 When the fine particles are mixed with a solvent and dispersed, the concentration of the fine particles is preferably 5 to 30% by mass, more preferably 8 to 25% by mass, and most preferably 10 to 15% by mass. The higher the concentration of fine particles in the fine particle dispersion, the more the liquid turbidity tends to be low with respect to the added amount, and the haze and the aggregates are improved, which is preferable.
 微粒子を溶媒と少量の樹脂とを混合して分散するときの微粒子の濃度は、0.5~20質量%が好ましく、1~5質量%がさらに好ましく、1~3質量%が最も好ましい。樹脂の濃度は、2~10質量%が好ましく、3~7質量%がさらに好ましく、4~6質量%が最も好ましい。この範囲が微粒子の分散性に優れるため好ましい。なお、微粒子の含有量の少ない方が、低粘度で取り扱いやすく、微粒子の含有量の多い方が、添加量が少なく、主ドープへの添加が容易になるため、上記の範囲が好ましい。 When the fine particles are mixed and dispersed with a solvent and a small amount of resin, the concentration of the fine particles is preferably 0.5 to 20% by mass, more preferably 1 to 5% by mass, and most preferably 1 to 3% by mass. The concentration of the resin is preferably 2 to 10% by mass, more preferably 3 to 7% by mass, and most preferably 4 to 6% by mass. This range is preferable because the dispersibility of fine particles is excellent. Note that the smaller the content of the fine particles, the lower the viscosity and the easier handling, and the larger the content of the fine particles, the smaller the addition amount and the easier the addition to the main dope. Therefore, the above range is preferable.
 微粒子を分散する分散機は、通常の分散機が使用できる。分散機は、大きく分けてメディア分散機とメディアレス分散機に分けられる。微粒子の分散には、メディアレス分散機がヘイズが低く好ましい。 A normal disperser can be used as the disperser for dispersing the fine particles. Dispersers are roughly classified into media dispersers and medialess dispersers. For dispersing fine particles, a medialess disperser is preferable because of low haze.
 メディア分散機としては、ボールミル、サンドミル、ダイノミルなどが挙げられる。メディアレス分散機としては、超音波型、遠心型、高圧型などがあるが、本発明においては、高圧分散装置が好ましい。高圧分散装置は、微粒子と溶媒を混合した組成物を、細管中に高速通過させることで、高剪断や高圧状態など特殊な条件を作りだす装置である。高圧分散装置で処理することにより、例えば、管径1~2000μmの細管中で装置内部の最大圧力条件が9.8×10N以上であることが好ましい。さらに好ましくは1.96×10N以上である。またその際、最高到達速度が100m/sec以上に達するもの、伝熱速度が100kcal/hr以上に達するものが好ましい。 Examples of the media disperser include a ball mill, a sand mill and a dyno mill. As the medialess disperser, there are an ultrasonic type, a centrifugal type, a high pressure type, and the like. In the present invention, a high pressure dispersing device is preferable. The high-pressure dispersing device is a device that creates special conditions such as high shear and high-pressure state by passing a composition obtained by mixing fine particles and a solvent at high speed through a thin tube. It is preferable that the maximum pressure condition inside the apparatus is 9.8×10 2 N or more in a thin tube having a tube diameter of 1 to 2000 μm by processing with a high-pressure dispersion apparatus. More preferably, it is 1.96×10 3 N or more. At that time, it is preferable that the maximum reaching speed is 100 m/sec or more and the heat transfer speed is 100 kcal/hr or more.
 上記のような高圧分散装置には、MicrofluidicsCorporation社製の超高圧ホモジナイザー(2商品名マイクロフルイダイザー)又はナノマイザー社製ナノマイザー、又はウルトラタラックスがあり、他にもマントンゴーリン型高圧分散装置、例えばイズミフードマシナリ製ホモゲナイザー、三和機械株式会社製、品番UHN-01等が挙げられる。
 溶解釜の中に高剪断を与える分散羽根を設置し、添加した分散液の分散状態をさらに制御するようドープ溶解釜中で分散することも好ましく行われる。
The high-pressure disperser as described above includes an ultrahigh-pressure homogenizer manufactured by Microfluidics Corporation (2 brand name: Microfluidizer) or Nanomizer manufactured by Nanomizer, or Ultra Turrax. Examples include Food Machinery homogenizer, Sanwa Machinery Co., Ltd., product number UHN-01.
It is also preferable to dispose a dispersion blade that gives high shear in the dissolution bath and disperse the dispersion in the dope dissolution bath so as to further control the dispersion state of the added dispersion liquid.
 アクリル樹脂フィルムに含まれる微粒子中の、例えばシリカ(Si)分含量は、絶乾したアクリル樹脂フィルムをマイクロダイジェスト湿式分解装置(硫硝酸分解)、アルカリ溶融で前処理を行った後、ICP-AES(誘導結合プラズマ発光分光分析装置)を用いて分析を行うことによって求めることができる。 For example, the content of silica (Si) in the fine particles contained in the acrylic resin film is determined by subjecting the absolutely dried acrylic resin film to pretreatment with a micro digest wet decomposition apparatus (sulfuric acid/nitric acid decomposition) and alkali melting, and then ICP-AES (Inductively coupled plasma optical emission spectroscopy analyzer) can be used for analysis.
 本発明のアクリル樹脂フィルムの製造方法では、アクリル樹脂の溶解工程で添加する微粒子分散液に、アクリル樹脂と同じ樹脂が溶解混合されており、微粒子分散液の固形物比率が、溶解工程で溶解するアクリル樹脂溶液(ドープ)の固形物比率の0.1~0.5倍であることが好ましい。 In the method for producing an acrylic resin film of the present invention, the same resin as the acrylic resin is dissolved and mixed in the fine particle dispersion added in the acrylic resin dissolving step, and the solid content ratio of the fine particle dispersion is dissolved in the dissolving step. It is preferably 0.1 to 0.5 times the solid content ratio of the acrylic resin solution (dope).
 このように、微粒子分散液に、微粒子の他にアクリル樹脂が含まれていることにより、分散液の粘度が調整され、停滞安定性に優れる点で好ましい。 In this way, it is preferable that the fine particle dispersion liquid contains the acrylic resin in addition to the fine particles, since the viscosity of the dispersion liquid is adjusted and the stagnation stability is excellent.
 さらに、共流延を行うために、特開2009-072963号公報の図2に示すように、ドープ調製を複数種類同時に調製できる装置を用いることも好ましい。当該公報の図2においては、原料ドープ11は、送液ポンプP3、P4、P5により、中間層用、支持体面用、エアー面用の三つのドープ流路33、34、35を送液される。そして、中間層用ドープ流路33においては、送液ポンプP6によりストックタンク36に貯留された添加剤液13が添加された後、インラインミキサー39、剪断混合器43により原料ドープ11と添加剤液13とが混合されて中間層用ドープ16が生成される。同様に、支持体面用ドープ流路34においては、原料ドープ11と添加剤液14とがインラインミキサー40、剪断混合器44により混合されて支持体面用ドープ17が生成され、エアー面用ドープ流路35においては、原料ドープ11と添加剤液15とがインラインミキサー41、剪断混合器45により混合されてエアー面用ドープ18が生成される。なお、必要に応じ、支持体面用、エアー面用のドープ流路34、35において、ドープのTAC濃度を調節するための希釈液を添加してもよい。 Further, in order to carry out co-casting, it is also preferable to use an apparatus capable of simultaneously preparing a plurality of types of dope as shown in FIG. 2 of JP-A-2009-072963. In FIG. 2 of the publication, the raw material dope 11 is fed by the liquid feeding pumps P3, P4, P5 through the three dope channels 33, 34, 35 for the intermediate layer, the support surface, and the air surface. .. Then, in the intermediate layer dope channel 33, after the additive liquid 13 stored in the stock tank 36 is added by the liquid feed pump P6, the raw material dope 11 and the additive liquid 13 are added by the in-line mixer 39 and the shear mixer 43. 13 and 13 are mixed with each other to form the intermediate layer dope 16. Similarly, in the support surface dope flow path 34, the raw material dope 11 and the additive liquid 14 are mixed by the in-line mixer 40 and the shear mixer 44 to generate the support surface dope 17, and the air surface dope flow path. In 35, the raw material dope 11 and the additive liquid 15 are mixed by the in-line mixer 41 and the shear mixer 45 to generate the air surface dope 18. If necessary, a diluent for adjusting the TAC concentration of the dope may be added to the dope channels 34 and 35 for the support surface and the air surface.
 以上の方法により、上記公報の図2で示すように、例えばアクリル樹脂濃度が5~40質量%の3種類のドープ16、17、18を製造することができる。そして、生成された3種類のドープ16、17、18は、濾過器を通して流延部へ送られる。 By the above method, as shown in FIG. 2 of the above publication, for example, three kinds of dopes 16, 17, and 18 having an acrylic resin concentration of 5 to 40 mass% can be manufactured. Then, the generated three kinds of dopes 16, 17, and 18 are sent to the casting portion through the filter.
 (2)濾過工程
 本発明のアクリル樹脂フィルムの製造方法において、光学的均一性を確保しなおかつ異物故障を低減する観点から、ドープの濾過は重要な工程である。
 本発明においては、前記ドープを濾過精度が5~100μmの範囲内であるフィルターを用いて濾過してドープを調製することを特徴とする。
(2) Filtration step In the method for producing an acrylic resin film of the present invention, filtration of the dope is an important step from the viewpoint of ensuring optical uniformity and reducing foreign matter failure.
In the present invention, the dope is prepared by filtering the dope with a filter having a filtration accuracy in the range of 5 to 100 μm.
 本発明において、アクリル樹脂溶液(ドープ)の濾過は、ドープを、前記主たる溶媒の1気圧における沸点以上の温度で濾過することにより、ドープ中のゲル状異物を取り除くことができるため好ましい。好ましい温度範囲は40~120℃であり、45~70℃が、より好ましく、45~60℃の範囲であることがさらに好ましい。ドープのろ過の観点では、特開2012-56103号公報の光学フィルムの製造方法も好ましく用いられる。 In the present invention, the filtration of the acrylic resin solution (dope) is preferable because the gel-like foreign matter in the dope can be removed by filtering the dope at a temperature equal to or higher than the boiling point of the main solvent at 1 atm. The preferred temperature range is 40 to 120° C., more preferably 45 to 70° C., and even more preferably 45 to 60° C. From the viewpoint of filtration of the dope, the method for producing an optical film described in JP 2012-56103 A is also preferably used.
 濾過器では、ドープを、例えば90%捕集粒子径が微粒子の平均粒子径の10~100倍の濾材で、濾過する。 In the filter, the dope is filtered, for example, with a filter medium having a 90% trapped particle size of 10 to 100 times the average particle size of the fine particles.
 濾過の方法にはいくつかの手段があるが、アクリル樹脂のドープの濾過は、フィルタープレスやディスクフィルターが適しており、特に濾過面積を広くとれる点で、フィルタープレス方式の濾過が、生産性の観点から適している。
 図2に濾過のフローの一例を示す。
 図2に示すように、アクリル樹脂を溶解した溶液(ドープ)は、溶解釜(図示略)から静置タンク(ストックタンク)103に一旦貯えられる。静置タンク103から主濾過装置100に至るドープ流送管104の途上には、ポンプ105と開閉バルブ113が介在されるとともに、開閉バルブ113の下流側に希釈用溶媒タンク106からの溶媒注入管107が接続されている。また、主濾過装置100の出口側のドープ流送管104には、開閉バルブ115が介在されている。
Although there are several methods for filtering, a filter press or a disc filter is suitable for filtering the acrylic resin dope, and in particular, the filter pressing method has a high productivity because the filtering area can be wide. Suitable from a point of view.
FIG. 2 shows an example of the flow of filtration.
As shown in FIG. 2, a solution (dope) in which an acrylic resin is dissolved is temporarily stored in a stationary tank (stock tank) 103 from a melting pot (not shown). A pump 105 and an opening/closing valve 113 are provided on the way of the dope flow pipe 104 from the stationary tank 103 to the main filtration device 100, and a solvent injection pipe from the dilution solvent tank 106 is provided downstream of the opening/closing valve 113. 107 is connected. An opening/closing valve 115 is interposed in the dope flow pipe 104 on the outlet side of the main filtration device 100.
 主濾過装置100内にドープを初期充填させる際には、ドープ流送管104途上の開閉バルブ113を開け、主濾過装置100出口側のドープ流送管104途上の開閉バルブ115を閉じておく。静置タンク103からポンプ105の作動により流送管104内を送られてきた例えば10~50Pa・sの粘度を有するアクリル樹脂のドープに対し、溶媒注入管107の開閉バルブ114を開けて、希釈用溶媒タンク106から溶媒を注入し、所定の流延用高粘度を有するドープを溶媒で希釈して、例えば1~9Pa・sの粘度に低粘度化させ、この低粘度化ドープを主濾過装置100に注入して初期充填することにより、主濾過装置100内の空気及び濾材図示略)内部の気泡を追い出すものである。このように、低粘度化させたドープを主濾過装置100に注入すると、低粘度ドープは濾材に浸透されやすく、濾材の隅々にまで行き渡り、濾材内部の気泡を追い出すことができる。 When initially filling the main filtration device 100 with the dope, the opening/closing valve 113 on the way of the dope flow pipe 104 is opened, and the opening/closing valve 115 on the outlet side of the main filtration device 100 on the way of the dope flow pipe 104 is closed. For the dope of acrylic resin having a viscosity of, for example, 10 to 50 Pa·s sent from the stationary tank 103 by the operation of the pump 105, the opening/closing valve 114 of the solvent injection pipe 107 is opened to dilute. The solvent is injected from the solvent tank 106 for use in casting, and the dope having a predetermined high viscosity for casting is diluted with the solvent to reduce the viscosity to, for example, 1 to 9 Pa·s. By injecting into 100 and performing initial filling, air in the main filtration device 100 and bubbles inside the filter medium (not shown) are expelled. When the dope having a reduced viscosity is injected into the main filtration device 100 as described above, the low-viscosity dope is easily permeated into the filter medium and can spread to every corner of the filter medium to expel air bubbles inside the filter medium.
 主濾過装置100の充填初期においては、溶媒注入管107の開閉バルブ114を開けておき、希釈用溶媒タンク106から溶媒を連続して注入するのが、好ましい。そして、主濾過装置100内の空気及び濾材(図示略)内部の気泡が完全に追い出された時点で、溶媒注入管107の開閉バルブ114を閉じる。 At the initial stage of filling the main filtration device 100, it is preferable to open the opening/closing valve 114 of the solvent injection pipe 107 and continuously inject the solvent from the dilution solvent tank 106. Then, when the air inside the main filtration device 100 and the bubbles inside the filter medium (not shown) are completely expelled, the opening/closing valve 114 of the solvent injection pipe 107 is closed.
 その後、主濾過装置100出口側のドープ流送管104途上の開閉バルブ115を開けることにより、初期充填が完了して気泡が追い出された濾材を具備する主濾過装置100を使用し、静置タンク103からポンプ105の作動により流送管104内を送られてくる所定の流延用高粘度を有するドープを、該主濾過装置100の通過後、流送管104から流延ダイ110に供給し、該ドープを流送管104から無端支持体111上に流延して、流延製膜を行うものである。 After that, by opening and closing the on-off valve 115 on the way of the dope flow pipe 104 on the outlet side of the main filtration device 100, the main filtration device 100 including the filter medium in which the initial filling is completed and the bubbles are expelled is used, and the stationary tank is used. The dope having a predetermined high viscosity for casting, which is sent from the 103 through the pump 105 by the operation of the pump 105, is passed through the main filtration device 100 and then supplied from the sending pipe 104 to the casting die 110. The dope is cast from the feed pipe 104 onto the endless support 111 to perform casting film formation.
 本発明においては、主濾過装置100の濾材は濾紙であることが好ましい。この濾紙を使用することで、異物の原因となる微粒子などの凝集物だけを除去し、高粘度の主ドープを連続的に濾過できるため、異物故障がなく、原反保存性にも優れ、高速製膜が可能となり、生産性が向上するものである。 In the present invention, the filter medium of the main filtration device 100 is preferably filter paper. By using this filter paper, only aggregates such as fine particles that cause foreign matter can be removed and the high-viscosity main dope can be continuously filtered. The film can be formed and the productivity is improved.
 主濾過装置100に用いる本発明のフィルターは、ろ過精度が5~100μmの範囲であることが必要である。本発明に係るアクリル樹脂は分子量が30万~400万と高いため、ドープが高粘度となる。高粘度ドープに対し5μm未満の高精度ろ過をしようとすると、ろ過圧が上昇し局所の凝集又は高粘度成分も無理に通過してしまい満足にろ過しきれない。ドープ中に凝集又は局所高粘度成分がある状態のまま流延すると、局所粘度分布に基づく流延膜の不均一性がもたらされ好ましくない。もちろん、100μmより大きい低精度のろ過では粗大な異物を除去することができないため、これも好ましくない。適切な範囲のろ過精度とすることで、ドープ中の凝集又は高粘度成分が、適度に分割・分散され、局所粘度分布が解消され、ひいては微細に均一なフィルムが得られるものと推定している。
 本発明におけるろ過精度とは、粒子の粒径分布のうち、99.9%以上捕集できる最小粒子径の値をさす。すなわち理論的にろ過精度5μmとは、5μmの単分散粒子を99.9%捕集し、5μm未満の単分散粒子に対しては99.9%未満の捕集率、5μmより大きい単分散粒子に対しては99.9%より大きい捕集率となる。ただし実用的には多少の幅を持つ値であり、ろ過精度の実測で4.5μmのフィルターも公称では5μmと呼ばれる。本発明では1μm単位で四捨五入された値を採用する。
 本発明におけるフィルターは多段構成であることが好ましい。その場合、本発明の効果を得るフィルターは最も高精度である(ろ過精度の数値としては最も低い)フィルターのことを指す。
The filter of the present invention used in the main filtration device 100 needs to have a filtration accuracy in the range of 5 to 100 μm. Since the acrylic resin according to the present invention has a high molecular weight of 300,000 to 4,000,000, the dope has a high viscosity. If high-precision filtration of less than 5 μm is attempted for a high-viscosity dope, the filtration pressure rises, and local coagulation or high-viscosity components are forced to pass through, making filtration impossible. If the dope is cast in the state of coagulation or a locally high-viscosity component, non-uniformity of the cast film based on the local viscosity distribution is brought about, which is not preferable. Of course, since coarse foreign matters cannot be removed by low-precision filtration larger than 100 μm, this is also not preferable. It is presumed that the coagulation or high-viscosity component in the dope is appropriately divided and dispersed by setting the filtration accuracy in an appropriate range, the local viscosity distribution is eliminated, and eventually a finely uniform film can be obtained. ..
The filtration accuracy in the present invention refers to the value of the minimum particle size that can collect 99.9% or more of the particle size distribution of particles. That is, theoretically, a filtration accuracy of 5 μm means that 99.9% of monodisperse particles of 5 μm are collected and less than 99.9% of monodisperse particles of less than 5 μm are collected, and monodisperse particles of more than 5 μm are collected. However, the collection rate is higher than 99.9%. However, it is a value having a certain width practically, and a filter of 4.5 μm in actual measurement of filtration accuracy is also nominally called 5 μm. In the present invention, a value rounded to the nearest 1 μm is adopted.
The filter of the present invention preferably has a multi-stage structure. In that case, the filter that obtains the effect of the present invention refers to the filter with the highest precision (the lowest numerical value of filtration precision).
 本発明において、主濾過装置100の濾材の濾水時間は、10~25sec/100mlであることが好ましく、10~20sec/100mlがより好ましく、12~17sec/100mlが最も好ましい。ここで、濾材の濾水時間が10sec/100ml未満で短いと、濾紙等の濾材の強度が弱いため、圧力によって濾紙が目開きし、異物故障が増大する。また濾材の濾水時間が25sec/100mlを超えて長くなると、初期圧力が高く、濾過抵抗が高くなりすぎ、高流量濾過を連続的に行うことができず、またそのために、フィルターライフが短くなるので、好ましくない。濾水時間とは、JIS P 3801に準拠して測定されるものであって、ヘルツベルヒ濾過速度試験器を使用し、10cmの濾過面において、20℃、100mlの蒸留水を0.98kPaの圧力により濾過する時間をいうものである。 In the present invention, the drainage time of the filter medium of the main filtration device 100 is preferably 10 to 25 sec/100 ml, more preferably 10 to 20 sec/100 ml, and most preferably 12 to 17 sec/100 ml. Here, if the drainage time of the filter medium is short at less than 10 sec/100 ml, the strength of the filter medium such as the filter paper is weak, and the filter paper opens due to the pressure, increasing foreign matter failure. Further, when the drainage time of the filter medium becomes longer than 25 sec/100 ml, the initial pressure becomes high, the filtration resistance becomes too high, and high flow rate filtration cannot be continuously carried out. Therefore, the filter life becomes short. Therefore, it is not preferable. The filtration time is measured according to JIS P 3801, and a Hertzberg filtration rate tester is used, and 20 ml of distilled water at 20° C. and a pressure of 0.98 kPa are applied on a filtration surface of 10 cm 2. It means the time for filtering.
 主濾過装置100の濾紙の捕集粒子径や濾水時間は濾紙の繊維の太さ、材質(綿花リンター、木材パルプ、レーヨン、ポリエステル繊維など)などの繊維材の選定、繊維材を叩解機での叩解度合い、填料の添加など、濾紙の製造方法によって、任意に調整できるものである。 The particle size of the filter paper and the drainage time of the filter paper of the main filtration device 100 are selected by the fiber thickness of the filter paper, the selection of the fiber material such as the material (cotton linter, wood pulp, rayon, polyester fiber, etc.) and the beating machine. The beating degree, the addition of filler, and the like can be arbitrarily adjusted by the method for producing the filter paper.
 本発明において、主濾過装置100の濾紙は1枚でも効果を発揮するが、濾紙は2~7枚程度重ね合わせて使用すると、濾過効率が高くなるためさらに好ましい。同じ濾紙を組み合わせても構わないし、内側に保留粒子径の小さい濾紙を組み合わせても良い。また、外側に大きなゴミを除去するためのガード濾紙を使用することが好ましい。ガード濾紙は捕集粒子径が20μm以上と大きく、柔らかい綿のような濾紙が濾過圧力に影響せず大きなゴミの除去ができ、また主濾過装置100の液漏れ防止もできるため好ましい。また、1回濾過した主ドープをもう1回濾過する2段濾過も凝集物除去効果が大きく好ましい。 In the present invention, even a single filter paper of the main filtration device 100 is effective, but it is more preferable to use two to seven filter papers in piles because the filtration efficiency becomes high. The same filter paper may be combined, or a filter paper having a small retained particle size may be combined inside. Further, it is preferable to use a guard filter paper for removing large dust on the outside. The guard filter paper has a large collection particle size of 20 μm or more, and a filter paper such as soft cotton can remove large dust without affecting the filtration pressure, and can prevent liquid leakage of the main filtration device 100, which is preferable. Two-stage filtration in which the main dope that has been filtered once is filtered again is also preferable because it has a large effect of removing aggregates.
 主濾過装置100において、泡故障(異物)の少ないアクリル樹脂フィルムを得るには、特に、濾水時間が10~25sec/100mlの濾紙を用いて濾過することで達成できるが、この場合、濾過圧力を16kg/cm以下で濾過して製膜することが好ましい。より好ましくは、濾過圧力を12kg/cm以下、さらに好ましくは、濾過圧力を10kg/cm以下で濾過することである。なお、濾過圧力は、濾過流量と濾過面積を適宜選択することで、コントロールできる。 In the main filtration device 100, an acrylic resin film with less foam failure (foreign matter) can be obtained by filtering with a filter paper having a drainage time of 10 to 25 sec/100 ml. Is preferably filtered at 16 kg/cm 2 or less to form a film. The filtration pressure is more preferably 12 kg/cm 2 or less, and further preferably the filtration pressure is 10 kg/cm 2 or less. The filtration pressure can be controlled by appropriately selecting the filtration flow rate and filtration area.
 濾過工程に用いられる濾過フィルターは、そのメディア構造からサーフェイスタイプとデプスタイプの二つに大きく分類することができる。サーフェイスタイプは被濾過物の通過するメディアの距離が短く、表面の目開きで除去できる粒子の大きさが決まるタイプをいう。本発明においてはサーフェイスタイプのフィルターは長時間使用すると表面でゲル状凝集物同士が接触し、さらに大きな凝集物に成長し、圧力上昇によってフィルターを通過してしまうため、凝集物を除去できず増加させてしまう懸念がある。 The filtration filters used in the filtration process can be broadly classified into two types, surface type and depth type, depending on the media structure. The surface type is a type in which the media passing through the substance to be filtered has a short distance, and the size of particles that can be removed is determined by the opening of the surface. In the present invention, the surface-type filter is used for a long time, gel-like aggregates contact each other on the surface, grow into larger aggregates, and pass through the filter due to a pressure increase, so the aggregates cannot be removed and increase. I have a concern that
 サーフェイスタイプとしては、例えばアドバンテック東洋(株)製濾紙プリーツカートリッジフィルターTCタイプやふるいに使用されている金属メッシュなどが挙げられる。 Examples of the surface type include filter paper pleated cartridge filter TC type manufactured by Advantech Toyo Co., Ltd. and metal mesh used for sieving.
 他方デプスタイプのフィルターは深層濾過又は体積濾過とも言い、メディアの厚さをある程度持たせたものである。このタイプのフィルターはフィルター部分での凝集物同士が接触する可能性が、サーフェイスタイプに比べて低く、大きなゲル状凝集物を生成しにくく、長時間使用しても圧力上昇も少なく、また、ゲル状凝集物を除去することができるため好ましい。 On the other hand, the depth type filter is also called deep layer filtration or volumetric filtration, and has a certain amount of media thickness. This type of filter has a lower possibility of agglomerates contacting each other in the filter part than the surface type, it is difficult to generate large gel-like agglomerates, pressure rise is small even when used for a long time, and gel It is preferable because the granular aggregate can be removed.
 デプスタイプとしては、例えばアドバンテック東洋(株)製ワインドカートリッジフィルターTCWタイプ、デプスカートリッジフィルターTCPDタイプや日本精線(株)製ファインポアNFシリーズなどが挙げられる。 As the depth type, for example, Advantech Toyo Co., Ltd. wind cartridge filter TCW type, depth cartridge filter TCPD type, Nippon Seisen Co., Ltd. fine pore NF series, etc. can be mentioned.
 これらインライン添加される添加液は少なくとも孔径の異なった2種類以上のデプスフィルターで濾過されることがサイズの異なった種々の凝集物に対し有効に濾過を行うことができるので好ましく、また、劣化が少なく好ましい。 It is preferable that the additive liquids added in-line are filtered with at least two types of depth filters having different pore diameters because it is possible to effectively filter various aggregates having different sizes. Less preferred.
 これらフィルターは、JIS Z 8901に規定される試験用粉体1の8種の0.5ppm水分散液を濾過したときの5~10μmの粒子捕集率が20~60%のフィルターであることが好ましく、添加液はこれらのフィルターで濾過された後、インライン添加されていることが好ましい。粒子捕集率としては30~50%がさらに好ましい。粒子捕集率が少ない方が凝集を成長させることがない点が好ましく、粒子捕集率が多い方が凝集を除去する点で好ましい。粒子捕集率20~60%としては、例えばアドバンテック東洋(株)製ワインドカートリッジフィルターTCW-1N、同3N、同5N、同10N、同25N、同50N、プリーツカートリッジフィルターTCPE-10、同30などが挙げられる。粒子捕集率30~50%としては、例えばアドバンテック東洋(株)製ワインドカートリッジフィルターTCW-3N、同5N、同10N、同25Nなどが挙げられる。また、粒子捕集率20~60%のフィルターを粒子捕集率の少ないフィルターで濾過した後、粒子捕集率の多いフィルターでさらに濾過することが凝集を成長させることなく、凝集を除去する点で最も好ましい。粒子捕集率は以下のように定義する。 These filters are filters having a particle collection rate of 5 to 10 μm of 20 to 60% when 8 kinds of 0.5 ppm aqueous dispersions of the test powder 1 specified in JIS Z 8901 are filtered. Preferably, the additive liquid is added in-line after being filtered with these filters. The particle collection rate is more preferably 30 to 50%. It is preferable that the particle collection rate is small so that the aggregation does not grow, and that the particle collection rate is large is preferable in that the aggregation is removed. As the particle collection rate of 20 to 60%, for example, Advantech Toyo Co., Ltd. wind cartridge filters TCW-1N, 3N, 5N, 10N, 25N, 50N, pleated cartridge filter TCPE-10, 30 etc. Are listed. Examples of the particle collection rate of 30 to 50% include Wind Cartridge Filters TCW-3N, 5N, 10N and 25N manufactured by Advantech Toyo Co., Ltd. In addition, after filtering a filter having a particle collection rate of 20 to 60% with a filter having a small particle collection rate, further filtering with a filter having a large particle collection rate removes the aggregation without causing the aggregation to grow. Is most preferable. The particle collection rate is defined as follows.
 (粒子捕集率)
 JIS Z8901に規定される試験用粉体1の8種(使用材料 関東ローム)の0.5ppm水分散液を10リットル/minで濾過し、自動粒子カウンターにて原液及び濾液の粒子数を計測し、5~10μmの粒子捕集率を求めた。この時使用したフィルターはサイズ250mm×φ60のものを1本用い濾過を行った。濾過回数は1回であった。
粒子捕集率(%)=(原液中の個数-濾液中の個数)/(原液中の個数)×100
 本発明に係るアクリル樹脂フィルムを得るには、溶液流延法によってこれを製造する工程で、主ドープにインライン添加される添加液を濾過するフィルターとして、上記に定義されるフィルター用い、その後、インライン添加することが好ましい。
(Particle collection rate)
A 0.5 ppm aqueous dispersion of 8 kinds of test powder 1 (material used: Kanto Loam) specified in JIS Z8901 was filtered at 10 liters/min, and the number of particles in the stock solution and the filtrate was measured by an automatic particle counter. A particle collection rate of 5 to 10 μm was determined. The filter used at this time was filtered using one having a size of 250 mm×φ60. The number of filtrations was once.
Particle collection rate (%)=(number in stock solution−number in filtrate)/(number in stock solution)×100
To obtain the acrylic resin film according to the present invention, in the step of producing it by a solution casting method, as a filter for filtering the additive liquid added inline to the main dope, the filter defined above is used, and then inline It is preferable to add.
 このフィルターにおいてもデプスタイプのフィルターが前記の理由により好ましい。 Also in this filter, the depth type filter is preferable for the above reason.
 フィルターは濾材構造によってメンブランタイプと糸巻きタイプに分けられる。メンブランタイプは濾材にある一定の大きさと分布を持った穴が多くあいているタイプで、同じ大きさと分布を持った穴があいた濾材を何枚か重ねるとメンブランタイプでサーフェイスタイプのフィルターとなり、外側からコアに向かって濾材の穴の大きさを徐々に小さくした濾材を何枚かある程度の厚さ(10~20mm)になるように重ねて作るとメンブランタイプでデプスタイプのフィルターができる。  The filter is divided into a membrane type and a bobbin type depending on the filter material structure. The membrane type is a type that has many holes with a certain size and distribution in the filter medium, and when several filter media with holes with the same size and distribution are stacked, it becomes a membrane type surface type filter, and the outside From the core to the core, a filter of the membrane type and depth type can be obtained by making several filter media in which the size of the holes of the filter media is gradually reduced to a certain thickness (10 to 20 mm).
 メンブランタイプとしては、例えばアドバンテック東洋(株)製メンブランカートリッジフィルターTCFタイプ、プリーツカートリッジフィルターTCPEタイプなどが挙げられる。 As the membrane type, for example, a membrane cartridge filter TCF type manufactured by Advantech Toyo Co., Ltd., a pleated cartridge filter TCPE type and the like can be mentioned.
 糸巻きタイプは濾材に一定の空隙を持ったエンドレスの例えばポリプロピレンの様な長繊維を撚糸せずに使用し、コアに一定の密度で巻きつけたもので、芯となるコアから密度勾配を持たせずに巻きつければ、サーフェイスタイプとなり、濾材の空隙を変化させたり、密度勾配を持たせる等、コア方向に細かくしていけば、デプスタイプのフィルターとなる。糸巻きタイプとしては、例えばアドバンテック東洋(株)製ワインドカートリッジフィルターTCWタイプなどがある(コアとは濾材の糸やメンブランを巻き付ける中空の芯のことである。)。 The wound type uses endless fibers with a certain gap in the filter medium without twisting long fibers such as polypropylene, and winds it around the core at a constant density. If it is wound without winding, it becomes a surface type, and if it is made finer in the core direction such as changing the voids of the filter medium or giving a density gradient, it becomes a depth type filter. Examples of the thread winding type include a wind cartridge filter TCW type manufactured by Advantech Toyo Co., Ltd. (a core is a hollow core around which a filter material thread or a membrane is wound).
 本発明のアクリル樹脂フィルムの製造の際には、主ドープをそのまま流延してもよいが、目的により種々添加剤を主ドープに対しインラインで添加、混合して流延してもよい。インライン添加液に含まれる凝集は2次、3次凝集のゲル状であるため、メンブランタイプの濾材では凝集(物)が抜けやすく、糸巻きタイプの方が凝集(物)の捕捉力に優れていて好ましい。 When the acrylic resin film of the present invention is produced, the main dope may be cast as it is, but various additives may be added in-line to the main dope and mixed and cast depending on the purpose. Since the coagulation contained in the in-line additive liquid is a gel form of secondary and tertiary coagulation, the coagulation (material) is likely to come off in the membrane type filter medium, and the wound type has a better cohesive force of the coagulation (material). preferable.
 このタイプのフィルターにおいてもデプスタイプのフィルターが前記の理由により好ま
しい。
Also in this type of filter, the depth type filter is preferable for the above reason.
 また、フィルターの、濾材としてはポリプロピレンであることが、耐溶媒性の観点で好ましい。また、フィルターのコア材料としてはポリプロピレン又はステンレス鋼が好ましく、中でもステンレス鋼がより好ましい。ステンレス鋼は長時間使用しても溶媒でコアが膨潤しにくく、締め付け部から凝集物が抜けることがないため好ましく、これらのフィルターを用いて、添加液を濾過した後、主ドープにインライン添加することが好ましい。これらのフィルターによる濾過はある回数を設けた方が凝集物の除去の効果が向上する。しかしながら、多すぎても工数の割に効果が少なくなるので濾過する回数としては3~10回が好ましい。 Further, it is preferable that the filter material of the filter is polypropylene from the viewpoint of solvent resistance. The core material of the filter is preferably polypropylene or stainless steel, and more preferably stainless steel. Stainless steel is preferred because the core does not easily swell with the solvent even after long-term use and aggregates do not come out from the tightening part. After filtering the additive solution using these filters, the additive is added inline to the main dope. It is preferable. The effect of removing the agglomerates is improved by providing the filter with a certain number of times. However, if the amount is too large, the effect is reduced relative to the number of steps, so the number of times of filtration is preferably 3 to 10 times.
 本発明のアクリル樹脂フィルムの製造方法においては、主ドープに添加液をインラインミキサーで混合する直前に(直前の工程において)、絶対濾過精度30~60μmの金属製フィルターで濾過することが好ましい。直前とは、工程的にいえば、直前に濾過工程があることであり、フローからいえば、濾過の直後、連続的に、添加液が停滞することなく、例えばストックタンクや送液ポンプ等を介さないでインラインミキサーに送られ主ドープと混合されるということである。それにより液の停滞や、送液ポンプにより新たに凝集物が発生しないことが好ましい。これらのフィルターはインラインミキサーの直前に配設されており、例えばフィルター交換等に伴い経路から発生する大きな凝集物を送液中の添加液から、一度の濾過で、比較的大きな異物を確実にとるためのフィルターで、前記の絶対濾過精度を有する長期にわたり使用が可能な耐溶剤性を有する金属製のフィルターが好ましい。金属としては耐久性の観点からステンレス鋼が好ましい。また、これらのフィルターは前記のデプスタイプのフィルターと異なり、設置後は余り頻繁に交換しないことが好ましく、したがって目詰まりの観点からε=60~80%の空孔率を有していることが好ましい。 In the method for producing an acrylic resin film of the present invention, it is preferable to filter with a metal filter having an absolute filtration accuracy of 30 to 60 μm immediately before mixing the additive liquid with the main dope with the in-line mixer (in the step immediately before). Immediately before means, in terms of process, that there is a filtration step immediately before, and from the flow, immediately after filtration, there is no stagnation of the added liquid, for example, a stock tank or liquid feed pump. It means that it is sent to the in-line mixer without going through it and mixed with the main dope. As a result, it is preferable that the liquid does not become stagnant and a new agglomerate is not generated by the liquid feed pump. These filters are placed immediately before the in-line mixer, and for example, large aggregates generated from the route due to filter replacement etc. are reliably filtered from the additive liquid being fed, and relatively large foreign substances can be reliably removed by one filtration. Among these filters, a metal filter having solvent resistance and capable of being used for a long period of time and having the above-mentioned absolute filtration accuracy is preferable. The metal is preferably stainless steel from the viewpoint of durability. Also, unlike the depth type filters described above, it is preferable that these filters are not replaced very often after installation, and therefore, they have a porosity of ε=60 to 80% from the viewpoint of clogging. preferable.
 したがって、インライン添加液に対して最も好ましくは、絶対濾過精度30~60μmであって、かつ空孔率ε=60~80%の金属製フィルターで濾過することであり、これにより、長期にわたり、確実に粗大な異物を確実に除くことができ好ましい。絶対濾過精度30~60μmでかつ空孔率ε=60~80%の金属製フィルターとしては、例えば、日本精線(株)製ファインポアNFシリーズのNF-10、同NF-12、同NF-13などが挙げられる。 Therefore, it is most preferable for the in-line additive liquid to be filtered with a metal filter having an absolute filtration accuracy of 30 to 60 μm and a porosity ε=60 to 80%, which ensures long-term reliability. It is preferable because coarse foreign substances can be surely removed. Examples of a metal filter having an absolute filtration accuracy of 30 to 60 μm and a porosity ε=60 to 80% include, for example, Finepore NF series NF-10, NF-12, and NF- of Nippon Seisen Co., Ltd. 13 and the like.
 インライン添加される直前に設けられたフィルターは絶対濾過精度30~60μmの金属フィルターで濾過されることが好ましく、40~50μmがさらに好ましい。絶対濾過精度が小さい方が凝集を取り除く能力に優れるため好ましく、大きい方が長時間使用しても差圧の上昇が少なく、フィルター交換頻度が少なくでき、生産性に優れる点で好ましい。 The filter provided immediately before in-line addition is preferably a metal filter with an absolute filtration accuracy of 30 to 60 μm, more preferably 40 to 50 μm. It is preferable that the absolute filtration accuracy is small because the ability to remove agglomerates is excellent, and the larger absolute filtration accuracy is that the increase in differential pressure is small even after long-term use, the frequency of filter replacement can be reduced, and productivity is excellent.
 (3)流延工程
 前記ドープを、図1で示すように、送液ポンプ(例えば、加圧型定量ギヤポンプ)を通して加圧ダイ30に送液し、無限に移送する金属製の無端支持体31、例えば、ステンレスベルト、又は回転する金属ドラム等の無端支持体上の流延位置に、加圧ダイスリットからドープを流延する工程である。
(3) Casting Step As shown in FIG. 1, a metal endless support 31 for sending the dope to a pressure die 30 through a liquid feed pump (for example, a pressurization type quantitative gear pump) and transferring it indefinitely. For example, it is a step of casting the dope from a pressure die slit at a casting position on an endless support such as a stainless belt or a rotating metal drum.
 前記ドープは、流量変動による膜厚偏差の発生を抑制するために、50~2000L/hrでダイに送液することが好ましい。 The dope is preferably fed to the die at 50 to 2000 L/hr in order to suppress the occurrence of film thickness deviation due to flow rate fluctuation.
 (流延)
 溶液の流延方法としては、調製されたドープを加圧ダイから金属製の無端支持体上に均一に押し出す方法、一旦金属製の無端支持体上に流延されたドープをブレードで膜厚を調節するドクターブレードによる方法、又は逆回転するロールで調節するリバースロールコーターによる方法等があるが、加圧ダイによる方法が好ましい。加圧ダイにはコートハンガータイプやTダイタイプ等があるがいずれも好ましく用いることができる。また、ここで挙げた方法以外にも従来知られているセルローストリアセテート系樹脂の流延製膜を行う種々の方法で実施でき、用いる溶媒の沸点等の違いを考慮して各条件を設定することによりそれぞれの公報に記載の内容と同様の効果が得られる。本発明に係るアクリル樹脂フィルムを製造するのに使用されるエンドレスに走行する金属製の無端支持体としては、表面がクロムメッキによって鏡面仕上げされたドラムや表面研磨によって鏡面仕上げされたステンレスベルト(バンドといってもよい)が用いられる。
(Casting)
As a method for casting a solution, a method in which the prepared dope is uniformly extruded from a pressure die onto a metal endless support, and a dope once cast onto a metal endless support is used to form a film thickness with a blade. Although there is a method using a doctor blade for adjustment or a method using a reverse roll coater for adjusting with a counter-rotating roll, a method using a pressure die is preferable. The pressure die includes a coat hanger type, a T-die type and the like, and any of them can be preferably used. Further, in addition to the method mentioned here, it can be carried out by various methods of casting film formation of conventionally known cellulose triacetate resin, and each condition should be set in consideration of the difference in boiling point of the solvent used. As a result, the same effects as those described in the respective publications can be obtained. The endless metal endless support used for manufacturing the acrylic resin film according to the present invention includes a drum whose surface is mirror-finished by chrome plating and a stainless belt (band which is mirror-finished by surface polishing). Can be said) is used.
 金属製の無端支持体は、ドープの流延膜の幅方向両端部と接する前記無端支持体の表面の表面エネルギーが、前記ドープの流延膜の幅方向中央部と接する前記無端支持体の表面の表面エネルギーよりも高くなるように前記無端支持体の表面に活性化処理を施すことが、耳部のばたつきを抑制する観点から好ましい。 The metallic endless support has a surface energy of the surface of the endless support which is in contact with both widthwise end portions of the dope casting film, and the surface of the endless support which is in contact with the widthwise central portion of the dope casting film. It is preferable to perform activation treatment on the surface of the endless support so that the surface energy is higher than the surface energy of the ear from the viewpoint of suppressing fluttering of the ears.
 前記活性化処理は、大気圧プラズマ照射又はエキシマUV照射によって行うことが好ましく、前記活性化処理を施した後の、前記流延膜の幅方向両端部と接する前記無端支持体の表面の表面エネルギーをγseとし、前記流延膜の幅方向中央部と接する前記無端支持体の表面の表面エネルギーをγscとしたとき、その差Δγ(=γse-γsc)が、0.1~60mN/mの範囲にあることが好ましい。前記ドープの流延膜の幅方向中央部と接する前記無端支持体の表面の表面エネルギーよりも高い表面エネルギーを有する前記無端支持体の表面と接する前記流延膜の幅方向両端部からのそれぞれの幅が、前記流延膜の幅をWrとして、0.05~0.25Wrの範囲であることが好ましい。 The activation treatment is preferably performed by atmospheric pressure plasma irradiation or excimer UV irradiation, and after the activation treatment, the surface energy of the surface of the endless support in contact with both widthwise ends of the casting film. Is defined as γse, and the surface energy of the surface of the endless support in contact with the center of the casting film in the width direction is defined as γsc, the difference Δγ (=γse-γsc) is in the range of 0.1 to 60 mN/m. It is preferable that Each from the widthwise both ends of the casting film in contact with the surface of the endless support having a surface energy higher than the surface energy of the surface of the endless support in contact with the widthwise central part of the casting film of the dope. The width is preferably in the range of 0.05 to 0.25 Wr, where Wr is the width of the casting film.
 無端支持体の表面エネルギーの測定は、水、ニトロメタン及びヨウ化メチレンとの接触角を測定し、これらの値からヤング・フォークズの式を用いて算出することができる。具体的には、協和界面科学株式会社製の接触角計等を用いて測定することができる。 The surface energy of the endless support can be calculated by measuring the contact angle with water, nitromethane and methylene iodide and using the Young Forks equation from these values. Specifically, it can be measured using a contact angle meter manufactured by Kyowa Interface Science Co., Ltd.
 また、前記無端支持体上の前記流延膜形成エリアに、水接触角が90°以上の疎水化層が形成されている前記無端支持体を用い、前記疎水化層上に前記流延膜を形成することが好ましい。前記疎水化層は疎水性物質から構成され、前記無端支持体は冷却ドラムから構成され、前記流延膜は冷却ゲル化により自己支持性を有して剥ぎ取られる。また、前記疎水性物質は、PTFE又はPPであることが好ましい。 Further, the endless support in which a hydrophobizing layer having a water contact angle of 90° or more is formed in the casting film forming area on the endless support is used, and the casting film is formed on the hydrophobizing layer. It is preferably formed. The hydrophobized layer is made of a hydrophobic substance, the endless support is made of a cooling drum, and the casting film is peeled off by self-supporting property by cooling gelation. Further, the hydrophobic substance is preferably PTFE or PP.
 また、金属製の無端支持体からのフィルムの離型性(剥離性)を向上し、透明性、平面性に優れたアクリル樹脂フィルムを製造するために、金属製の無端支持体表面に、鉄(Fe)及び/又はクロム(Cr)の元素を含有するとともに、金属製の無端支持体表面の成分元素組成比が、下記(i)及び/又は(ii)の関係を満たす金属製の無端支持体を用いることが好ましい。 Further, in order to improve the releasability (peelability) of the film from the metal endless support, and to produce an acrylic resin film having excellent transparency and flatness, the surface of the metal endless support is coated with iron. A metal endless support containing an element of (Fe) and/or chromium (Cr) and having a component element composition ratio on the surface of the metal endless support satisfying the following relationship (i) and/or (ii): It is preferable to use the body.
 (i) (Fe+FeO)/Fe=5~50
 (ii) (CrO+CrO)/Cr=10~50
 これは、非常に平滑な表面状態を維持しつつ、通常の金属表面の酸化物状態よりも酸素結合比率を高めた金属酸化物皮膜層をつくることで、フィルムの連続生産の際にも、金属製の無端支持体からのフィルムの離型性(剥離性)が向上し、非常に滑らかな剥離性が得られ、透明性、平面性に優れた光学特性を有するアクリル樹脂フィルムを製造することができる。さらに、金属製の無端支持体の表面の腐食を防止することができて、その腐食模様がフィルムに転写して発現するむらなどの品質の故障が無くなるとともに、腐食で表面が荒れてくると、アンカー効果でウェブの離型性(剥離性)が著しく悪化するのを防止する。
(I) (Fe 2 O 3 +FeO)/Fe=5 to 50
(Ii) (CrO 2 +CrO 3 )/Cr=10 to 50
This is because a metal oxide film layer with a higher oxygen bond ratio than the oxide state of a normal metal surface is created while maintaining a very smooth surface state, and even during continuous production of the film, the metal It is possible to manufacture an acrylic resin film having improved optical releasability (peelability) from an endless support made of glass, excellent releasability, and excellent optical properties with excellent transparency and flatness. it can. Furthermore, it is possible to prevent the corrosion of the surface of the metal endless support, eliminate the quality failure such as unevenness that the corrosion pattern is transferred to the film, and when the surface becomes rough due to corrosion, The anchor effect prevents the releasability (peelability) of the web from significantly deteriorating.
 (i)の(Fe+FeO)/Fe比が、5未満であれば、耐食性は未処理のものと比較して余り変わらず、また、部分的に処理の差が大きく、これが表面の腐食進行でむらになるので、好ましくない。また、(Fe+FeO)/Fe比が、50を超えると、表面に何かが接触して傷をつくってしまったときに、研磨をして平滑な表面に修復する作業が困難になるので、好ましくない。 If the (Fe 2 O 3 +FeO)/Fe ratio of (i) is less than 5, the corrosion resistance is not so different from that of the untreated one, and the difference in the treatment is partly large. It is not preferable because it becomes uneven as the corrosion progresses. Further, when the (Fe 2 O 3 +FeO)/Fe ratio exceeds 50, when something touches the surface and scratches the surface, it becomes difficult to perform polishing to restore a smooth surface. Therefore, it is not preferable.
 また、(ii)の(CrO+CrO)/Cr比が、10未満であれば、耐食性は未処理のものと比較して余り変わらず、また、部分的に処理の差が大きく、これが表面の腐食進行でむらになるので、好ましくない。また、(CrO+CrO)/Cr比が、50を超えると、表面に何かが接触して傷をつくってしまったときに、研磨をして平滑な表面に修復する作業が困難になるので、好ましくない。 When the (CrO 2 +CrO 3 )/Cr ratio of (ii) is less than 10, the corrosion resistance is not so different from that of the untreated one, and the difference in the treatment is partly large. It is not preferable because it becomes uneven as the corrosion progresses. Further, if the (CrO 2 +CrO 3 )/Cr ratio exceeds 50, it becomes difficult to polish and restore a smooth surface when something touches the surface and scratches it. Therefore, it is not preferable.
 さらに、製膜速度を高速化してもエアー巻き込み現象の発生を防止し、かつ流延膜と無端支持体との間の密着性を好適に調整し、無端支持体からの流延膜の剥離性を向上するために、無端支持体上にドープを流延するとき、ドープに含まれる有機化合物を少なくとも一つ含む液を無端支持体と流延膜との間に供給して、流延膜と無端支持体との間に介在膜を形成することも好ましい。 Further, even if the film forming speed is increased, the occurrence of the air entrainment phenomenon is prevented, and the adhesion between the cast film and the endless support is adjusted appropriately, so that the cast film can be separated from the endless support. In order to improve the, when casting the dope on the endless support, a liquid containing at least one organic compound contained in the dope is supplied between the endless support and the casting film to form a casting film. It is also preferable to form an intervening film with the endless support.
 図3に示すように、流延ダイ130の近傍に介在膜形成装置140を設けて、流延ダイ130からリボン状のドープ160の流れである流延ビード161の無端支持体側となる面に介在膜形成液162を供給する。 As shown in FIG. 3, an intervening film forming device 140 is provided in the vicinity of the casting die 130, and is interposed on the surface of the casting bead 161 which is the flow of the ribbon-shaped dope 160 from the casting die 130 on the endless support side. The film forming liquid 162 is supplied.
 介在膜形成装置140は、介在膜形成液162を貯留するタンク(図示しない)と、この液の流路140aと供給口140bとを有している。ドープ160の流延時には、供給口140bから適量の介在膜形成液162を流延ビード161の無端支持体面側の全幅域に沿わせるように供給する。これにより、製膜速度を高速化しても、流延ビード161におけるエアー巻き込み現象の発生をより防止することができる。そして、流延ドラム150の上に流延ビード161と介在膜形成液162が到達すると、流延ドラム150の上には介在膜163を介して流延膜170が形成される。このように、流延ドラム150と流延膜170との間に介在膜163が存在すると、エアー巻き込み現象の発生を防止することができる。 The intervening film forming apparatus 140 has a tank (not shown) that stores the intervening film forming liquid 162, a flow path 140a for this liquid, and a supply port 140b. At the time of casting the dope 160, an appropriate amount of intervening film forming liquid 162 is supplied from the supply port 140b so as to extend along the entire width region of the casting bead 161 on the endless support surface side. Thereby, even if the film forming speed is increased, the occurrence of the air entrainment phenomenon in the casting bead 161 can be further prevented. When the casting beads 161 and the intervening film forming liquid 162 reach the casting drum 150, the casting film 170 is formed on the casting drum 150 via the interposition film 163. Thus, the presence of the intervening film 163 between the casting drum 150 and the casting film 170 can prevent the occurrence of the air entrainment phenomenon.
 介在膜形成液162は、ドープ160に含まれる有機化合物(溶媒)を少なくとも一つ含む液であり、上記の原料溶媒とドープ160に含まれるポリマーに対して相溶性を示さない貧溶媒とを混合して調製することが好ましい。このような介在膜形成液162により流延ドラム150と流延膜170との間に形成される介在膜163は、時間の経過とともに、流延膜170に向かって拡散する。これにより、流延ドラム150と流延膜170との密着性が高くなりすぎることがないので、小さい剥取応力でも容易に流延膜170を流延ドラムから剥ぎ取ることができる。 The intervening film forming liquid 162 is a liquid containing at least one organic compound (solvent) contained in the dope 160, and is a mixture of the above raw material solvent and a poor solvent which is not compatible with the polymer contained in the dope 160. It is preferable to prepare it. The intervening film 163 formed between the casting drum 150 and the casting film 170 by such an intervening film forming liquid 162 diffuses toward the casting film 170 over time. Accordingly, the adhesion between the casting drum 150 and the casting film 170 does not become too high, so that the casting film 170 can be easily peeled from the casting drum even with a small peeling stress.
 また、良溶媒や貧溶媒に係わらず介在膜形成液162に含まれる溶媒の割合をw(%)とし、介在膜163の膜厚をt(μm)とするとき、wとtとが、t<-0.05w+15を満たすようにすることが好ましい。これにより、流延ドラム150から流延膜170を容易に剥ぎ取ることが可能とするように作用する介在膜163を形成することができる。ただし、介在膜163が厚すぎると、流延膜170と介在膜163との拡散が起こりにくく、流延ドラム150上に介在膜163が残存するおそれがある。このように流延ドラム150の上に介在膜163が残存すると、その後の流延にも悪影響を及ぼし、面状が劣るフィルムしか製造することができないので不適である。 Further, when the ratio of the solvent contained in the intervening film forming liquid 162 is w (%) and the film thickness of the intervening film 163 is t (μm) regardless of the good solvent or the poor solvent, w and t are t It is preferable to satisfy <-0.05w+15. This makes it possible to form the intervening film 163 that acts so as to easily peel off the casting film 170 from the casting drum 150. However, if the intervening film 163 is too thick, the casting film 170 and the intervening film 163 are less likely to diffuse, and the intervening film 163 may remain on the casting drum 150. If the intervening film 163 remains on the casting drum 150 in this way, it also adversely affects the subsequent casting and is not suitable because only a film having a poor surface condition can be produced.
 なお、介在膜形成装置140の設置箇所は、図3に示す形態に限定されるものではない。 The installation location of the intervening film forming apparatus 140 is not limited to the form shown in FIG.
 フィルムの生産速度を上昇させるために、同伴エアーの巻き込みによる発泡を無くすとともに、減圧チヤンバ吸引風による流延ダイからの流延液膜の振動による膜厚むらを低減したり、滴下されたスケール溶解液の余剰液分の液滴飛散による転写故障がなく、平面性の優れたフィルムを得るために、金属製の無端支持体上にドープを流延し、無端支持体上に流延膜(ウェブ)を形成する際、ウェブが無端支持体上に密着して形成されるように流延上流側から減圧する手段としての下方に開口した減圧チャンバーを備えるとともに、流延ダイよりドープを流下する時、流延ダイのフィルム幅手方向両端部に対応する左右両端部(流延ダイエッジ)に、ヒゲ状皮膜(スケール)が発生するのを防止するために、スケール溶解液を滴下するスケール溶解液滴下手段を備えることが好ましい。主減圧室を有する減圧チャンバーの左右両側壁と後壁の外側に、これらの壁との間に所定間隔をおいてそれぞれ外側壁を設けて、減圧チャンバーの左右両側部と後部の外側に位置しかつ下方に開口した副減圧室を形成しておき、主減圧室の減圧力よりも副減圧室の減圧力を、-30~-300Paの範囲で大きくすることが好ましい態様である。 In order to increase the production rate of the film, it eliminates foaming caused by entrainment of entrained air, reduces film thickness unevenness due to vibration of the casting liquid film from the casting die due to decompression chamber suction air, and dissolves the scale that is dripped. In order to obtain a film with excellent flatness without transfer failure due to droplet scattering of the excess liquid of the liquid, the dope is cast on a metal endless support, and a casting film (web) is applied on the endless support. ) Is formed, a downward pressure chamber is provided as a means for reducing the pressure from the casting upstream side so that the web is formed in close contact with the endless support, and when the dope is flowed down from the casting die. In order to prevent the formation of a whisker-like film (scale) on both left and right ends (casting die edge) corresponding to both ends of the casting die in the film width direction, a scale dissolution liquid is dropped under the scale dissolution droplet. Means are preferably provided. Outside the left and right side walls and the rear wall of the decompression chamber having the main decompression chamber, and outside the left and right side parts and the rear part of the decompression chamber, there are provided outer walls at predetermined intervals. In addition, it is a preferred embodiment that a sub decompression chamber that opens downward is formed in advance so that the decompression force of the sub decompression chamber is larger than the decompression force of the main decompression chamber in the range of −30 to −300 Pa.
 また、主減圧室を有する減圧チャンバーの左右両側壁及び後壁と、これらに対向する副減圧室の左右両外側壁及び後部外側壁との間の間隙を、10~300mmとすることが好ましい。 Also, it is preferable that the gaps between the left and right side walls and the rear wall of the decompression chamber having the main decompression chamber and the left and right outer side walls and the rear outer wall of the sub decompression chamber facing these are 10 to 300 mm.
 減圧チヤンバの流延ダイに接する面以外の壁面を二重化して、副減圧室を形成し、減圧チヤンバ外側部の副減圧室の減圧力を、同内側部の主減圧室の減圧力よりも大きくして、強く吸引することにより、流延液膜の吐出方向に対して側面部からの流延液膜への吸引風の流れを遮断し、フィルムの生産速度を上昇させても、同伴エアーの巻き込みによる発泡を無くすことができるとともに、高速製膜に伴うドープ吐出速度の上昇による減圧度アップに対しても、流延液膜の安定性を向上させ、高速製膜領域においても、流延液膜の振動に起因するフィルム搬送方向の膜厚むらを低減することができ、平滑性の良いフィルムを生産することができる。 The wall surface other than the surface of the decompression chamber other than the surface in contact with the casting die is doubled to form a sub decompression chamber, and the decompression force of the sub decompression chamber outside the decompression chamber is made larger than the decompression force of the main decompression chamber inside the decompression chamber. Then, by strongly sucking, the flow of suction air from the side surface to the casting liquid film in the discharge direction of the casting liquid film is blocked, and even if the production speed of the film is increased, the entrainment air is In addition to being able to eliminate foaming due to entrainment, the stability of the casting liquid film is improved even when the pressure drop rate is increased due to the increase in the dope discharge speed that accompanies the high-speed film formation. It is possible to reduce unevenness in film thickness in the film transport direction due to vibration of the film, and it is possible to produce a film having good smoothness.
 また、製膜中に流延ダイエッジにおいてスケール溶解液滴下手段からウェブの幅手方向両端部に滴下されたスケール溶解液の余剰液分を、副減圧室の方に吸引回収することができ、これによって滴下されたスケール溶解液の余剰液分の飛散液滴による転写故障がなく、平面性の優れたフィルムが得られるとともに、スケール溶解液の余剰液分の飛散液滴による無端支持体汚れの蓄積がなく、生産効率の高い、しかも品質にも優れていて、高速製膜可能な、薄膜かつ広幅のフィルムを製造することができるという効果を奏する。 Further, the excess solution of the scale solution dropped from the scale solution droplet lowering means to the widthwise both ends of the web at the casting die edge during film formation can be sucked and recovered toward the sub decompression chamber. There is no transfer failure due to the scattering droplets of the excess solution of the scale dissolving solution dropped, and a film with excellent flatness is obtained, and the accumulation of dirt on the endless support due to the scattering droplets of the excess solution of the scale dissolving solution. It is possible to manufacture a thin film having a wide width and a high production efficiency, excellent quality and capable of high-speed film formation.
 主減圧室を有する減圧チャンバーの左右両側壁及び後壁と、これらに対向する副減圧室の左右両外側壁及び後部外側壁との間の間隙を、10~300mmとすれば、減圧チヤンバをいわゆる内外二重化し、減圧チヤンバ外側部の所定の間隙を有する副減圧室から、減圧チヤンバ内側部の主減圧室の減圧力よりも大きい減圧力で同伴空気を相対的に強く吸引することにより、流延液膜端部に対する側面部からの吸引風を低減することができて、安定流延を実現し、また流延ダイエッジ(左右両端部)から吹き飛ばされたスケール溶解液の余剰液分を、支持体外部の強い吸引力(減圧力)を有する副減圧室の方に回収することができて、高品質のフィルムを高生産速度で、長期間安定して生産することができるという効果を奏する。 If the gaps between the left and right side walls and the rear wall of the decompression chamber having the main decompression chamber and the left and right outer side walls and the rear outer wall of the sub decompression chamber facing them are 10 to 300 mm, the decompression chamber is a so-called decompression chamber. The inside and outside are doubled and the entrained air is relatively strongly sucked from the auxiliary decompression chamber with a predetermined gap on the outside of the decompression chamber by a decompression force larger than the decompression force of the main decompression chamber on the inside of the decompression chamber, so that the casting is performed. The suction air from the side surface to the liquid film edge can be reduced, stable casting is realized, and the excess solution of the scale solution blown off from the casting die edge (left and right ends) is supported. There is an effect that it can be collected in the sub decompression chamber having a strong suction force (decompression force) from the outside, and a high-quality film can be stably produced at a high production rate for a long period of time.
 また、前記減圧チャンバーの流延ドープ近傍のガス濃度を80%以下にすることが好ましい。 Also, it is preferable that the gas concentration near the casting dope of the decompression chamber is 80% or less.
 これは、流延ビード近傍の空気のガス(主に揮発性有機溶媒が気化したもの)濃度が上昇し、ガス成分が所望の濃度に到達すると、液化する場合があり、液化した溶媒が流延ビードに付着して流延膜を不良品とするおそれがある。また、流延ビードの無端支持体接触面(以下、流延ビード背面と称する)側を減圧にしている場合には、流延ビードの形成は安定するが、この場合にはガスの液化が容易に起こりやすくなり、液化溶媒が流延膜に付着したり、減圧チャンバーに付着して減圧の不均一化を招いたりする問題が生じる場合がある。このような場合には製造されるフィルムの面状に不良が生じて光学むらが発生したり、フィルムの幅方向にむら(以下、横段むらと称する)が生じたりする問題があるが、前述のようにガス濃度を80%以下にすることで改善される。 This is because when the concentration of gas (mainly volatile organic solvent vaporized) in the air near the casting bead rises and the gas component reaches the desired concentration, it may liquefy, and the liquefied solvent is cast. It may adhere to the beads and make the casting film defective. Further, when the pressure is reduced on the endless support contact surface (hereinafter referred to as the casting bead back surface) side of the casting bead, the formation of the casting bead is stable, but in this case, the gas is easily liquefied. In some cases, the liquefied solvent may adhere to the casting film, or may adhere to the decompression chamber to cause non-uniform decompression. In such a case, there is a problem in that a surface defect of the manufactured film causes optical unevenness or unevenness in the width direction of the film (hereinafter referred to as lateral unevenness). It is improved by setting the gas concentration to 80% or less.
 すなわち、ガス濃度を80%以下にすることで、ガス成分の液化を防止でき、前記ガス成分が液化して前記流延ビードに付着する故障を引き起こすことを防止できる。前記方法により得られるフィルムは光学むら及び横段むらの発生が抑制されている。 That is, by setting the gas concentration to 80% or less, it is possible to prevent the gas component from liquefying and prevent the gas component from liquefying and causing a failure to adhere to the casting bead. In the film obtained by the above method, the occurrence of optical unevenness and horizontal unevenness is suppressed.
 前記減圧チャンバーの減圧度が大気圧に対して-1500~-200Paの範囲とすることが好ましい。前記ドープの吐出速度が、7~40m/分の範囲であることが好ましい。 It is preferable that the degree of pressure reduction in the pressure reducing chamber be within a range of -1500 to -200 Pa with respect to atmospheric pressure. The discharge speed of the dope is preferably in the range of 7 to 40 m/min.
 また液化を防止する観点から、溶剤ガスを流延ビード付近に吹き付けることも好ましい。溶剤ガス成分中に含まれる蒸気の割合は、5~65体積%の範囲であることが好ましく、当該溶媒はジクロロメタンであることが好ましい。また、溶媒は、ジクロロメタンを最も多く含み、ポリマーを溶解又は分散させる化合物と混合した混合物であり、蒸気中に含まれるジクロロメタンガスの割合が80体積%以上であることが好ましい。
 溶剤ガスを吹き付けるための仕組みとしては、特開2013-156488に記載のものが好ましく用いられる。
From the viewpoint of preventing liquefaction, it is also preferable to spray a solvent gas near the casting beads. The proportion of vapor contained in the solvent gas component is preferably in the range of 5 to 65% by volume, and the solvent is preferably dichloromethane. Further, the solvent is a mixture containing a compound containing the largest amount of dichloromethane and dissolving or dispersing the polymer, and the proportion of dichloromethane gas contained in the vapor is preferably 80% by volume or more.
As the mechanism for spraying the solvent gas, the one described in JP2013-156488A is preferably used.
 また、減圧チャンバーとして、複数の減圧室を有する減圧チャンバーを用いることも、流延ビードに同伴風があたることが抑制され、フィルムに厚さむらが生じることを抑制できる観点から、好ましい。 Further, it is also preferable to use a decompression chamber having a plurality of decompression chambers as the decompression chamber from the viewpoint that the entrained air is prevented from being applied to the casting bead and the uneven thickness of the film can be suppressed.
 例えば、前記流延ビードの無端支持体接触面側を減圧する複数の減圧室を有する減圧チャンバーを用い、前記減圧チャンバーと前記無端支持体との隙間を0.05mm以上3mm以下の範囲とし、個々に独立して減圧度を調整することが可能な前記複数の減圧室のうち前記無端支持体の移動方向における上流側の前記減圧室を下流側の前記減圧室よりも低い減圧度にすることが好ましい。前記減圧チャンバーと前記無端支持体との隙間は、より好ましくは0.05~0.7mmの範囲であり、最も好ましくは0.05~0.5mmの範囲である。 For example, a decompression chamber having a plurality of decompression chambers for decompressing the contact surface side of the endless support of the casting bead is used, and the gap between the decompression chamber and the endless support is set to a range of 0.05 mm or more and 3 mm or less, Among the plurality of decompression chambers capable of independently adjusting the decompression degree, the decompression chamber on the upstream side in the moving direction of the endless support can have a decompression degree lower than that on the downstream side. preferable. The gap between the vacuum chamber and the endless support is more preferably in the range of 0.05 to 0.7 mm, and most preferably in the range of 0.05 to 0.5 mm.
 また、前記各減圧室の絶対圧力の最大値をPn(Pa)とした場合に、前記各減圧室の圧力を0.9×Pn(Pa)以上1×Pn(Pa)以下の範囲にすることが好ましく、より好ましくは0.98×Pn(Pa)以上1×Pn(Pa)以下の範囲に調整することが好ましい。前記減圧室の数は、2以上10以下であることが好ましく、前記各減圧室には、排気口が設けられていることが好ましい。 When the maximum absolute pressure of each decompression chamber is Pn (Pa), the pressure of each decompression chamber should be in the range of 0.9 x Pn (Pa) or more and 1 x Pn (Pa) or less. Is more preferable, and it is more preferable to adjust to a range of 0.98×Pn (Pa) or more and 1×Pn (Pa) or less. The number of the decompression chambers is preferably 2 or more and 10 or less, and each decompression chamber is preferably provided with an exhaust port.
 また、流延ダイの上部に溶剤ガスを吹き付けて、流延ダイの表面を沿わせながら溶剤ガスをスリット出口に送ることが好ましい。 Also, it is preferable to spray a solvent gas onto the upper part of the casting die and send the solvent gas to the slit outlet while following the surface of the casting die.
 送風ユニットの下部には、流延ビードの幅方向に長く形成されたスリット状の送風口を有するノズルが備えられていることが好ましい。 It is preferable that the lower part of the blower unit is provided with a nozzle having a slit-like blower port formed long in the width direction of the casting bead.
 送風ユニットは、流延ダイに対して無端支持体の走行方向の下流であり、かつ無端支持体の上方に設置されている。送風ユニットの下部には、流延ビードの幅方向に長く形成されたスリット状の送風口を有するノズルが備えられており、送風口からスリット出口であり、かつ流延ビードの幅方向全領域に向けてドープの調製に用いた溶媒の蒸気を含む溶剤ガスを送り、スリット出口付近で溶剤ガスを液化させない範囲で高濃度に維持する。本実施形態では、ドープの調製用溶媒としてジクロロメタンを使用したので、ジクロロメタンを気化させた蒸気を含む溶剤ガスをスリット出口付近に送る。 -The blower unit is installed downstream of the casting die in the running direction of the endless support and above the endless support. The lower part of the blower unit is provided with a nozzle having a slit-shaped blower port formed long in the width direction of the casting bead, from the blower port to the slit outlet, and in the entire widthwise region of the casting bead. The solvent gas containing the vapor of the solvent used for the preparation of the dope is sent toward the slit, and the solvent gas is maintained at a high concentration in the vicinity of the slit outlet so as not to liquefy the solvent gas. In this embodiment, since dichloromethane is used as the solvent for preparing the dope, the solvent gas containing the vaporized dichloromethane is sent to the vicinity of the slit outlet.
 溶剤ガスは、その中に5~65体積%の範囲の割合で蒸気を含むものとする。より好ましくは、20~65体積%の範囲であり、特に好ましくは40~65体積%の範囲である。このように流延ビード付近の溶剤ガス濃度が高く維持された空気中では、流延ビードの乾燥が防止される。このため、スリット出口付近においてドープが固化して異物となり、付着することが抑制されるので、スジ故障等のない面状に優れるフィルムを製造することができる。 The solvent gas shall contain vapor in the range of 5 to 65% by volume. It is more preferably in the range of 20 to 65% by volume, and particularly preferably in the range of 40 to 65% by volume. In the air in which the solvent gas concentration in the vicinity of the casting bead is maintained high in this way, the drying of the casting bead is prevented. Therefore, the dope is solidified in the vicinity of the exit of the slit to become a foreign substance and is prevented from adhering to the film. Therefore, it is possible to manufacture a film excellent in surface condition without streak failure or the like.
 溶液流延法では、溶液の流量を精密にコントロールしないと、流下するドープの端部が乱れたり、スリット端部にカワバリ(端部余剰皮膜)が発生する場合があり、製膜速度や膜厚の広い範囲での長期的に安定な状態での適用は、困難であるという問題がある。 In the solution casting method, if the flow rate of the solution is not precisely controlled, the end of the dope flowing down may be disturbed or Kawaburari (excessive end film) may occur at the slit end. There is a problem that it is difficult to apply a stable state in a wide range over a long term.
 本発明では、溶液流延法によりフィルムを製造する方法において金属製の無端支持体上にドープを流延ダイによって流延する際に、流延ダイのスリット両端部に溶剤を流下させ、溶剤を流下させる流延ダイ両側のノズルの先端部の内径を4mm以下0.5mm以上とし、かつ流下する溶剤の溶媒和パラメーター(-△HD-BF3)を15[kJ/mol]以上100[kJ/mol]以下とすることが好ましい。 In the present invention, when casting a dope on a metal endless support in a method for producing a film by a solution casting method by a casting die, the solvent is allowed to flow down to both ends of the slit of the casting die, and the solvent is The inner diameter of the tip of the nozzle on both sides of the casting die is 4 mm or less and 0.5 mm or more, and the solvation parameter (-ΔHD-BF3) of the solvent is 15 [kJ/mol] or more and 100 [kJ/mol]. ] The following is preferable.
 ここで、溶媒和パラメーターは、P.C.Maria, J.F.Gal、J Phys.Chem.、89,1296(1985)、及びP.C.Maria, J.F.Gal、J.de Franceschi、E.Fargin、J.Am.Chem. Soc.,109,483(1987)に記載されたジクロロメタン溶媒中で気体状のBF3とドナー性分子の1:1錯形成における標準モルエンタルピー[kJ/mol](-△HD-BF3)とする。 Here, the solvation parameter is P. C. Maria, J.M. F. Gal, J Phys. Chem. 89, 1296 (1985), and P. C. Maria, J.M. F. Gal, J.; de Franceschi, E. Fargin, J.; Am. Chem. Soc. , 109, 483 (1987), the standard molar enthalpy [kJ/mol] (-ΔHD-BF3) in the 1:1 complex formation between a gaseous BF3 and a donor molecule in a dichloromethane solvent.
 流延ダイ両側のノズル内を流下させる溶剤を、例えば酢酸メチルとすることが好ましい。すなわち、本発明のアクリル樹脂フィルムの製造方法によれば、溶媒和パラメーターの大きい溶剤を使用すると、アクリル樹脂に対する溶解度は小さくなるものの、カワバリの発生は抑えることができる。この要因は明確ではないが、溶媒和パラメーターの値によってアクリル樹脂の膨潤、溶解状態が異なるため、このような現象が発生するのではないかと推測することができる。 It is preferable to use, for example, methyl acetate as the solvent flowing down the nozzles on both sides of the casting die. That is, according to the method for producing an acrylic resin film of the present invention, when a solvent having a large solvation parameter is used, the solubility in the acrylic resin is reduced, but the occurrence of Kawaburari can be suppressed. Although this factor is not clear, it can be presumed that such a phenomenon may occur because the swelling and dissolution states of the acrylic resin differ depending on the value of the solvation parameter.
 また、本発明のアクリル樹脂フィルムの製造方法において、金属製の無端支持体上に、ドープ又は樹脂溶融液を流延する前に、金属の無端支持体表面を、常圧プラズマ照射又はエキシマ紫外線照射により表面処理することが好ましい。 Further, in the method for producing an acrylic resin film of the present invention, on a metal endless support, before casting the dope or the resin melt, the metal endless support surface, atmospheric pressure plasma irradiation or excimer UV irradiation The surface treatment is preferably carried out by
 この場合、常圧プラズマ照射処理又はエキシマ紫外線照射処理の積算時間が、0.1~3000sec、好ましくは0.5~500secであることが好ましい。 In this case, it is preferable that the integrated time of the atmospheric pressure plasma irradiation processing or the excimer ultraviolet irradiation processing is 0.1 to 3000 seconds, preferably 0.5 to 500 seconds.
 ここで、常圧プラズマ照射処理又はエキシマ紫外線照射処理の積算時間が、0.1sec未満であれば、十分な表面の改質が行われず、表面の耐食性が上がらないので、好ましくない。また、常圧プラズマ照射処理又はエキシマ紫外線照射処理の積算時間が、3000secを超えると、表面があれて荒れてくるので、好ましくない。 Here, if the integrated time of the atmospheric pressure plasma irradiation treatment or the excimer ultraviolet irradiation treatment is less than 0.1 sec, the surface is not sufficiently modified and the corrosion resistance of the surface is not improved, which is not preferable. Further, if the integrated time of the atmospheric pressure plasma irradiation treatment or the excimer ultraviolet irradiation treatment exceeds 3000 sec, the surface is roughened and roughened, which is not preferable.
 本発明によれば、常圧プラズマ装置、エキシマ紫外線装置よりなる高エネルギー照射装置(A)により高エネルギー表面処理を施し、大気中で自然に形成される表面酸化皮膜よりも金属の無端支持体表面に、上記の酸素結合比率を高めた金属酸化物皮膜層を形成させることが好ましい。 According to the present invention, a high-energy surface treatment is performed by a high-energy irradiation device (A) consisting of an atmospheric pressure plasma device and an excimer ultraviolet device, and the surface of an endless support made of metal rather than a surface oxide film naturally formed in the atmosphere. In addition, it is preferable to form a metal oxide film layer having an increased oxygen bond ratio.
 本発明のアクリル樹脂フィルムの製造方法に用いられる加圧ダイは、金属の無端支持体の上方に1基又は2基以上の設置でもよい。好ましくは1基又は2基である。2基以上設置する場合には流延するドープ量をそれぞれのダイに種々な割合に分けてもよく、複数の精密定量ギヤアポンプからそれぞれの割合でダイにドープを送液してもよい。流延に用いられるアクリル樹脂溶液の温度は、-10~55℃が好ましくより好ましくは25~50℃である。その場合、工程の全てが同一でもよく、又は工程の各所で異なっていてもよい。異なる場合は、流延直前で所望の温度であればよい。 The pressure die used in the method for producing an acrylic resin film of the present invention may be one unit or two or more units installed above a metal endless support. It is preferably one or two. When two or more units are installed, the amount of dope to be cast may be divided into various proportions in each die, or the dope may be fed to the dies from a plurality of precision metering gear pumps in respective proportions. The temperature of the acrylic resin solution used for casting is preferably -10 to 55°C, more preferably 25 to 50°C. In that case, all of the steps may be the same or may be different at different points in the step. If different, the temperature may be a desired temperature immediately before casting.
 キャストの幅は1~4mの範囲、好ましくは1.5~3mの範囲、さらに好ましくは2~2.8mの範囲とすることができる。流延工程の金属製の無端支持体の表面温度は-50℃~溶媒が沸騰して発泡しない温度以下、さらに好ましくは-30~100℃の範囲に設定される。温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高すぎるとウェブが発泡したり、平面性が劣化する場合がある。好ましい無端支持体温度としては0~100℃で適宜決定され、5~30℃の範囲がさらに好ましい。又は、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。金属製の無端支持体の温度を制御する方法は特に制限されないが、温風又は冷風を吹きかける方法や、温水を金属製の無端支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属製の無端支持体の温度が一定になるまでの時間が短く好ましい。温風を用いる場合は溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。特に、流延から剥離するまでの間で無端支持体の温度及び乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。 The cast width can be in the range of 1 to 4 m, preferably in the range of 1.5 to 3 m, and more preferably in the range of 2 to 2.8 m. The surface temperature of the metal endless support in the casting step is set in the range of -50°C to a temperature at which the solvent does not boil and foam, more preferably -30 to 100°C. A higher temperature is preferable because the drying speed of the web can be increased, but if the temperature is too high, the web may foam or the flatness may deteriorate. The preferable temperature of the endless support is appropriately determined in the range of 0 to 100° C., more preferably in the range of 5 to 30° C. Alternatively, it is also a preferable method that the web is gelated by cooling and peeled from the drum in a state of containing a large amount of residual solvent. The method of controlling the temperature of the metal endless support is not particularly limited, but there are a method of blowing hot air or cold air and a method of bringing hot water into contact with the back side of the metal endless support. It is preferable to use warm water because the heat can be efficiently transferred, so that the time until the temperature of the metal endless support becomes constant is short. When using hot air, in consideration of the temperature decrease of the web due to the latent heat of evaporation of the solvent, while using hot air above the boiling point of the solvent, while preventing foaming, there may be a case where the air temperature is higher than the target temperature. .. In particular, it is preferable to change the temperature of the endless support and the temperature of the drying air between the casting and the peeling to efficiently perform the drying.
 流延ダイは、ダイの口金部分のスリット形状を調整でき、膜厚を均一にしやすい加圧ダイが好ましい。加圧ダイには、コートハンガーダイやTダイ等があり、製膜速度を上げるために加圧ダイを金属製の無端支持体上に2基以上設け、ドープ量を分割して積層してもよい。  The casting die is preferably a pressure die that can adjust the slit shape of the die base and makes the film thickness uniform. The pressure die includes a coat hanger die, a T-die, and the like. Even if two or more pressure dies are provided on a metal endless support in order to increase the film formation speed, the dope amount may be divided and laminated. Good.
 溶液流延時にカワバリと呼ばれる端部故障が発生することがあるが、この発生原因はダイ先端の微小な欠陥に起因している。このダイ欠陥は、ダイ製作時や保全時についてしまう微小なキズや打痕、砥石による研削時に発生するスクラッチなどである。 Edge failure called kawabari may occur during solution casting, but the cause of this failure is due to minute defects at the tip of the die. The die defects include minute scratches and dents that are associated with die manufacturing and maintenance, and scratches that occur during grinding with a grindstone.
 そこで、このダイ先端の微小な欠陥に基づくカワバリ発生を防止する手段を開発するべくさらに検討を進めたところ、流延ダイリップのドープが接液する先端部分をWCコーティング加工する方法により、樹脂を溶媒に溶解した溶液ダイのスロットから流延してアクリル樹脂フィルムを製造する方法において、前記ダイの先端の硬さHvを400以上にすると、ダイ製作時、保全時、設置時についてしまう微小なキズ、打痕を抑え流延方向のスジ欠陥が、確認が困難となるまで良化することが判明した。このHvで表される硬度(ビッカース硬さ)は、136°の頂角を有するダイヤモンド角錐を圧子として用い、生じた圧痕の対角線の長さを読み取り、荷重を凹みの表面積で割った値である。 Therefore, further studies were conducted to develop a method for preventing the occurrence of Kawaburari due to minute defects at the tip of the die. As a result, WC coating was applied to the tip portion of the casting die lip where the dope came in contact with the liquid to remove the solvent from the solvent. In the method of producing an acrylic resin film by casting from a solution die slot melted in, when the hardness Hv of the die tip is 400 or more, minute scratches caused during die production, maintenance, and installation, It was found that dents were suppressed and streak defects in the casting direction improved until it became difficult to confirm. The hardness represented by Hv (Vickers hardness) is a value obtained by using a diamond pyramid having an apex angle of 136° as an indenter, reading the length of the diagonal line of the generated indentation, and dividing the load by the surface area of the depression. ..
 また、樹脂を溶媒に溶解した溶液をダイのスロットから流延してアクリル樹脂フィルムを製造する方法において、前記ダイの先端の表面張力を380μN/cm以上にすることにより、カワバリの発生を防ぎ、さらにスジ欠陥が良化することが判明した。表面張力はJIS K6768にのっとり、和光純薬工業(株)製、ぬれ指数標準液、No.32からNo.54を用いて測定した値である。 Further, in a method for producing an acrylic resin film by casting a solution of a resin in a solvent through a slot of a die, by setting the surface tension of the tip of the die to 380 μN/cm or more, the occurrence of Kawaburari is prevented, It was further found that the streak defects were improved. The surface tension is based on JIS K6768, manufactured by Wako Pure Chemical Industries, Ltd., standard index of wetting index, No. 32 to No. It is the value measured using 54.
 さらに、カワバリの発生を防止するためにはリップ先端部の表面の凹凸及び、スロット面とこのスロット面に交差する先端平端面との角部を断面略円弧形状に形成し湾曲面とし、その湾曲面の曲率半径が小さく、溶媒濡れ性の良いことが必要となることを見いだし、リップ先端部におけるカワバリを防止することができ、スジ欠陥を改良することができた。 Furthermore, in order to prevent the occurrence of Kawaburari, the surface irregularity of the lip tip and the corners between the slot surface and the flat end surface that intersects the slot surface are formed into a curved surface with a substantially arcuate shape, and the curvature is It was found that the radius of curvature of the surface was small and the solvent wettability was required to be good, and it was possible to prevent the burrs at the tip of the lip and improve the streak defect.
 前記スロットのリップ先端部であって、スロット面とこのスロット面に交差する先端平端面との角部を断面略円弧形状に形成して湾曲面とし、この湾曲面の曲率半径Rを5~50μmの範囲とすることが好ましい。 At the lip tip of the slot, the corner between the slot surface and the flat end surface intersecting the slot surface is formed into a curved surface with a substantially arcuate cross section, and the radius of curvature R of this curved surface is 5 to 50 μm. It is preferable to set it as the range.
 前記湾曲面と前記スロット面及び前記先端平端面との境界線と、前記湾曲面の曲率中心を結ぶ線との平行度を、前記スロットの長手方向1m当りで、1.5~15μmの範囲にすることが好ましい。また、前記湾曲面と前記スロット面及び前記先端平端面との境界線と、前記湾曲面の曲率中心を結ぶ線との平行度を、前記スロットの長手方向1mあたりで、前記曲率半径Rの0.3倍以下にすることが好ましい。さらに、前記湾曲面と前記スロット面及び前記先端平端面との境界線と、前記湾曲面の曲率中心を結ぶ線との平行度を、スロットの長手方向1mm当りで、0.5~5μmの範囲にすることが好ましい。さらには、前記湾曲面と前記スロット面及び前記先端平端面との境界線と、前記湾曲面の曲率中心を結ぶ線との平行度を、スロットの長手方向1mm当りで、前記曲率半径Rの0.1倍以下にすることが好ましい。 The parallelism between the boundary line between the curved surface, the slot surface and the flat end surface and the line connecting the centers of curvature of the curved surfaces is within the range of 1.5 to 15 μm per 1 m in the longitudinal direction of the slot. Preferably. Further, the parallelism between the boundary line between the curved surface, the slot surface and the flat end surface of the tip and the line connecting the centers of curvature of the curved surfaces is 0 m of the radius of curvature R per 1 m in the longitudinal direction of the slot. It is preferably not more than 3 times. Furthermore, the parallelism between the boundary line between the curved surface, the slot surface and the flat end surface of the tip and the line connecting the centers of curvature of the curved surfaces is within the range of 0.5 to 5 μm per 1 mm in the longitudinal direction of the slot. Is preferred. Furthermore, the parallelism between the boundary line between the curved surface, the slot surface, and the flat end surface of the tip, and the line connecting the centers of curvature of the curved surfaces is 0 mm of the radius of curvature R per 1 mm in the longitudinal direction of the slot. It is preferably less than 1 time.
 前記ダイ先端の表面粗さをRaとしたときに、前記スロットの長手方向及びその長手方向に直交する方向における表面粗さRaを、0.01~3μmの範囲にすることが好ましい。 When the surface roughness of the die tip is Ra, the surface roughness Ra in the longitudinal direction of the slot and the direction orthogonal to the longitudinal direction is preferably in the range of 0.01 to 3 μm.
 前記ダイから金属製の無端支持体上にドープを流延した後、回転ローラーの表面温度が高いと、流延膜のゲル化促進の効果が十分に得られない。また、剥取部での露点が高いため剥取部で流延膜表面に結露が生じることがあり、この結露した水分が後の工程で乾燥揮発されても、フィルム面上に曇りを生じるという問題がある。 If the surface temperature of the rotating roller is high after casting the dope on the metal endless support from the die, the effect of promoting gelation of the casting film cannot be sufficiently obtained. Further, since the dew point at the stripping section is high, dew condensation may occur on the surface of the casting film at the stripping section, and even if the condensed water is dried and volatilized in a later step, it is said that clouding occurs on the film surface. There's a problem.
 この問題を改善するのに、本発明に用いられる溶液流延法において、金属製の無端支持体の回転ローラーにおいて、表面温度を-30℃以上6℃以下にした第1の回転ローラーから、第2の回転ローラーへ向かう流延膜を乾燥風により乾燥し、この流延膜を第2の回転ローラーから第1の回転ローラー上に搬送してから露点を0℃以下にした剥離位置で剥ぎ取り、第1の回転ローラーと剥離位置の上流に設けた冷却手段とにより第1の回転ローラーに向かうベルト上の流延膜を冷却し、剥離位置までの冷却区画を前記冷却手段の位置で調整することにより、剥ぎ取る流延膜の温度を6℃未満にすることが好ましい、前記冷却手段としての冷却ローラーを、流延膜が形成されているベルト面とは反対側のベルト面に接触させることにより、第2の回転ローラーから第1の回転ローラーへ向かうベルト上の流延膜を冷却することが好ましい。 In order to improve this problem, in the solution casting method used in the present invention, in the rotating roller of the metal endless support, from the first rotating roller whose surface temperature is -30°C to 6°C, The casting film directed to the second rotating roller is dried by dry air, the casting film is conveyed from the second rotating roller to the first rotating roller, and then peeled off at a peeling position where the dew point is 0° C. or lower. , The first rotating roller and the cooling means provided upstream of the peeling position cool the casting film on the belt toward the first rotating roller, and the cooling section to the peeling position is adjusted at the position of the cooling means. Therefore, the temperature of the cast film to be stripped off is preferably lower than 6° C., and the cooling roller as the cooling means is brought into contact with the belt surface opposite to the belt surface on which the cast film is formed. Thus, it is preferable to cool the casting film on the belt from the second rotating roller toward the first rotating roller.
 また、前記第1の回転ローラー及び第2の回転ローラーを収容する流延室の内部の温度を調整して、剥離位置の露点を0℃以下にすることが好ましい。その場合、前記流延膜の剥離位置での乾量基準における溶媒含有量を10~200質量%の範囲とすることが好ましい。すなわち、前記流延膜の剥離位置近傍の露点を0℃以下とするから、結露が防止されて前記流延膜に水分が付着することが抑制される。これにより製造されるフィルムの面上に曇りが生じなくなる。 Further, it is preferable that the dew point at the peeling position is 0° C. or lower by adjusting the temperature inside the casting chamber accommodating the first rotating roller and the second rotating roller. In that case, it is preferable that the solvent content on the dry basis at the peeling position of the casting film is in the range of 10 to 200% by mass. That is, since the dew point of the casting film in the vicinity of the peeling position is 0° C. or less, dew condensation is prevented and water is prevented from adhering to the casting film. This will prevent fogging on the surface of the produced film.
 また、金属製の無端支持体表面の両端に粗面化帯を設けることも、剥離しやすい観点から好ましい。当該粗面化帯がともにダイからのドープの流延幅と5~30mm重なっているようにし、粗面化帯の平均粗さRzが0.5~2μmの範囲であることが好ましい。 Further, it is also preferable to provide roughened bands on both ends of the surface of the metal endless support from the viewpoint of easy peeling. It is preferable that both the roughening zones overlap the casting width of the dope from the die by 5 to 30 mm, and the average roughness Rz of the roughening zones is in the range of 0.5 to 2 μm.
 一般に全く平滑な面の無端支持体の場合には、ウェブを剥離する際、両端が破れやすく、裂けやすいことなどから破断事故で生産をしばしば中断される。これに対して粗面化帯を設けることによって剥離性がすこぶるよくなり、皮膜の発生もなく、泡の発生もなく、非常に効果的である。幅は多少流延の位置が幅方向にずれてもよいようにドープ膜の内側5~30mmから外側へ無端支持体の両端までの幅となっている。その粗面化帯の平均粗さRzは0.5μmよりRzが小さい場合には粗面化の効果がなく、接着が強すぎ剥離がし難く、また2μmよりも大きいと逆に粗面化によって接着しやすくなり剥離し難くなる。好ましいRzの範囲は0.8~1.5μmである。 In general, in the case of an endless support having a completely smooth surface, both ends are easily broken when the web is peeled off, so that production is often interrupted due to a break accident. On the other hand, by providing the roughened zone, the releasability becomes very good, no film is formed and no bubbles are generated, which is very effective. The width is a width from 5 to 30 mm inside the dope film to both ends of the endless support so that the casting position may be slightly shifted in the width direction. If the average roughness Rz of the roughened zone is smaller than 0.5 μm, there is no roughening effect, and the adhesion is too strong and peeling is difficult. Adhesion is easy and peeling is difficult. The preferable range of Rz is 0.8 to 1.5 μm.
 近年、製造速度の高速化、フィルムの薄膜化が要求されているが、高速化するためには、無端支持体上の流延膜に送風する熱気の温度を高くせざるを得なくなるため、流延膜の側縁部の温度が上がり、より発泡しやすく、また、薄膜化が進むと無端支持体温度の影響を受けやすくなるため、従来の方法では発泡対策として不十分であるという問題がある。 In recent years, there has been a demand for higher production speed and thinner film, but in order to increase the speed, the temperature of the hot air blown to the casting film on the endless support must be increased, so There is a problem that the conventional method is insufficient as a countermeasure against foaming because the temperature of the side edge of the stretched film rises and foaming is more likely to occur, and as the film becomes thinner, it becomes susceptible to the temperature of the endless support. ..
 そのため、無端支持体上の流延膜をその幅方向で中央エリアと側縁エリアとに仕切るように遮風部材を設けるとともに、前記中央エリアに熱気を送風して、流延膜の幅方向の温度分布を均一化することが好ましい。前記側縁エリアに、前記無端支持体上の流延膜の幅方向内側から外側へ向けて冷気を送風し、流延膜の幅方向の温度分布を均一化するようにしてもよい。 Therefore, while providing a wind shielding member so as to partition the casting film on the endless support into a central area and a side edge area in the width direction, hot air is blown to the central area, and the width direction of the casting film is increased. It is preferable to make the temperature distribution uniform. Cool air may be blown to the side edge area from the inner side to the outer side in the width direction of the casting film on the endless support to make the temperature distribution in the width direction of the casting film uniform.
 また、無端支持体上の流延膜の幅方向内側から外側へ向けて冷気を送風し、流延膜の幅方向の温度分布を均一化することも好ましい。 Also, it is preferable to blow cool air from the inner side to the outer side in the width direction of the casting film on the endless support to make the temperature distribution in the width direction of the casting film uniform.
 前記遮風部材は、前記流延膜の側縁から中央部側に20~100mmの範囲、より好ましくは20~80mmの範囲で側縁に平行に設けるとよい。また、前記遮風部材と流延膜との隙間を5~30mmの範囲、より好ましくは5~15mmの範囲にするとよい。 The wind shield member may be provided in parallel with the side edge of the casting membrane in the range of 20 to 100 mm, more preferably 20 to 80 mm, from the side edge to the center side. In addition, the gap between the wind shielding member and the casting film is preferably in the range of 5 to 30 mm, more preferably 5 to 15 mm.
 具体的には、前記冷気送風を送風ダクトにより行い、この送風ダクトの送風口を、前記流延膜の側縁から中央部側に20~100mmの範囲で側縁に平行に設け、送風口と流延膜との隙間を5~30mmの範囲にし、前記冷気を流延膜に対して45~90°の範囲、より好ましくは60~80°の範囲の交差角度となるように送風するとよい。また、前記冷気は露点が-2℃以下、温度が15~60℃の範囲であり、前記冷気を風速1~10m/secの範囲で送風することが好ましい。 Specifically, the cool air is blown by a blower duct, and the blower port of the blower duct is provided parallel to the side edge of the casting membrane in the range of 20 to 100 mm from the side edge to the center side, It is advisable to set the gap between the casting film and the casting film to be in the range of 5 to 30 mm and to blow the cold air so that the cold air has an intersecting angle of 45 to 90°, more preferably 60 to 80°. The cold air has a dew point of −2° C. or lower and a temperature in the range of 15 to 60° C., and the cool air is preferably blown at a wind speed of 1 to 10 m/sec.
 また、無端支持体上に形成された直後の流延膜の表面に、乾燥装置を用いて乾燥する、いわゆる初期乾燥を行うことも好ましい。このように、初期乾燥を行うと、流延膜からの溶媒の蒸発を効果的に促進することができる。 Also, it is preferable to perform so-called initial drying, in which the surface of the casting film immediately after being formed on the endless support is dried using a drying device. Thus, the initial drying can effectively promote the evaporation of the solvent from the casting film.
 ただし、初期乾燥において、乾燥温度が無端支持体上の流延膜中に含まれる溶媒の沸点を超えると、流延膜の内部では溶媒による発泡が生じる。特に、流延膜の両側端部近傍では、この流延膜に対して無端支持体から熱が伝達しやすいので発泡が生じやすい。このように流延膜の内部に発泡が生じると、流延膜の表面に凹凸が生じたり、その内部に空隙ができてしまう。また、所定の温度に調整した乾燥風を送り出して乾燥を行うと、この乾燥風により、流延膜の表面には斜めむらや膜厚の不均一(厚さむら)が生じてしまう。したがって、このような斜めむらや厚さむら(総称して凹凸むらとする)や、上記のような発泡が流延膜の表面に生じると、流延膜の平面性が著しく低下してしまう。そのため、このような流延膜からは平面性に劣るフィルムしか製造することができない。 However, in the initial drying, if the drying temperature exceeds the boiling point of the solvent contained in the casting film on the endless support, the solvent causes foaming inside the casting film. In particular, in the vicinity of both end portions of the casting film, heat is easily transferred from the endless support to the casting film, so that foaming is likely to occur. When foaming occurs inside the casting film as described above, unevenness occurs on the surface of the casting film or voids are formed inside the casting film. Further, when the drying air adjusted to a predetermined temperature is sent out for drying, the drying air causes oblique unevenness and unevenness of the film thickness (unevenness) on the surface of the casting film. Therefore, when such oblique unevenness or thickness unevenness (generally referred to as uneven unevenness) or foaming as described above occurs on the surface of the casting film, the flatness of the casting film is significantly reduced. Therefore, only a film having poor flatness can be produced from such a casting film.
 そこで、金属製の無端支持体と対面するように備えられ、前記金属製の無端支持体の幅方向を長手方向とする第1送風口から、温度(℃)が30~160℃の範囲内で略一定とされた乾燥風を、静圧(Pa)が50~200Paの範囲内で略一定となるように調整しながら、形成された直後の流延膜に送り出す第1乾燥工程と、前記第1乾燥工程の後で、前記無端支持体の走行する向きに向くように備えられた第2送風口から、前記流延膜の残留溶媒量に応じて、前記無端支持体の走行する向きに対して略平行の乾燥風を送り出す第2乾燥工程とを含む流延膜乾燥方法を行うことが好ましい。 Therefore, the temperature (° C.) is within the range of 30 to 160° C. from the first air blower provided so as to face the metal endless support and having the width direction of the metal endless support as the longitudinal direction. A first drying step of sending out a substantially constant dry air to the casting film immediately after being formed while adjusting the static pressure (Pa) to be substantially constant within a range of 50 to 200 Pa; After the first drying step, from the second air outlet provided so as to face the running direction of the endless support, according to the residual solvent amount of the casting film, the running direction of the endless support is It is preferable to perform a casting film drying method including a second drying step of sending out substantially parallel drying air.
 また、前記第1送風口の内部に仕切り部材を設けて、前記無端支持体の走行方向と平行の向きに対して少なくとも三つのエリアに区画することが好ましい。前記第1送風口の区画のうち、前記流延膜の両側端部近傍の上方に位置する区画に風量制御部材を設けて、送り出す乾燥風の風量を前記無端支持体の幅方向で調整することが好ましい。 Further, it is preferable that a partition member is provided inside the first blower port to divide the endless support into at least three areas in a direction parallel to the traveling direction. An air volume control member is provided in a section located above both ends of the casting membrane in the first air outlet section to adjust the air volume of the dry air to be sent in the width direction of the endless support. Is preferred.
 前記流延膜の残留溶媒量が250質量%までの間は、前記第1乾燥処理を行うことが好ましく、前記第2送風口から、温度(℃)が30~160℃の範囲内で略一定であって、風速(m/秒)が5~20m/秒の範囲内で略一定となるように調整した乾燥風を、前記無端支持体の走行方向に対して平行になるように送り出すことが好ましい。 It is preferable to perform the first drying treatment while the residual solvent amount of the casting film is up to 250% by mass, and the temperature (°C) from the second blowing port is substantially constant within the range of 30 to 160°C. The dry air adjusted so that the wind speed (m/sec) is substantially constant within the range of 5 to 20 m/sec can be sent out in parallel with the running direction of the endless support. preferable.
 また、昨今の品質要求の高まりを受け、さらに周期構造をもつ凹凸むらが問題となりやすい。この周期構造をもつ凹凸むらを防止する手段としては下記が挙げられる。
 本発明のアクリル樹脂フィルムの製造方法においては、ドープをダイスから支持体上に流延する際に、その流延直後は限りなく無風状態に保つことが好ましい。
 もし無風でなく、さらに風の流れが不均一であれば、その不均一性に応じたドープの初期乾燥の乱れが生じ、乾燥速度が局所でばらつくことにより、ドープの流動が発生して膜厚均一性が損なわれることがある。
 また、均一な風を吹き付けたとして、流延膜の空気層側表面が蒸発潜熱によって急冷され、温調されたベルト側接触面との間で流延膜の層方向に温度勾配がつき、その環境によっていわゆるベナール対流が発生する。このため膜面上規則的なパターンでの乾燥速度差によってやはり膜厚均一性が損なわれることがある。膜厚均一性のためには、流延膜の流動性が小さくなるまで気流のない無風状態で乾燥させることが好ましい。具体的には、流延膜中の有機溶媒が乾燥固形分に対して100%以下になるまで、風速0.2m/s以下の環境にすることが好ましい。
 この無風環境を作るためには、流延直後のエリアを外部から遮蔽して風の流れを遮断することが重要であるが、支持体であるベルトを搬送する必要があり、なおかつ揮発した有機溶媒を排出する必要があり、完全な密閉系を構築することは不可能である。そのため、隣接するエリアとの気圧差及びその間の開口部形状を緻密に計算して流延膜面付近の風速を上記の範囲になるように設計することが好ましい。
In addition, due to the recent increasing demand for quality, unevenness in unevenness having a periodic structure is likely to become a problem. The following are examples of means for preventing unevenness having this periodic structure.
In the method for producing an acrylic resin film of the present invention, when the dope is cast from the die onto the support, it is preferable to keep the windless state immediately after the casting.
If the wind flow is not uniform and the wind flow is non-uniform, the initial drying of the dope will be disturbed according to the non-uniformity, and the drying speed will vary locally, causing flow of the dope and film thickness. Uniformity may be impaired.
Further, even if a uniform wind is blown, the air layer side surface of the casting film is rapidly cooled by the latent heat of vaporization, and a temperature gradient is applied in the layer direction of the casting film between the temperature-controlled belt side contact surface, So-called Benard convection occurs depending on the environment. For this reason, the uniformity of the film thickness may be impaired due to the difference in the drying speed in the regular pattern on the film surface. For uniform film thickness, it is preferable to dry the film without air flow until the flowability of the cast film becomes small. Specifically, it is preferable to set the environment where the wind speed is 0.2 m/s or less until the organic solvent in the cast film becomes 100% or less with respect to the dry solid content.
In order to create this windless environment, it is important to shield the area immediately after casting from the outside to block the flow of wind, but it is necessary to convey the belt that is the support, and the organic solvent that has volatilized Must be discharged, and it is impossible to build a completely closed system. Therefore, it is preferable to precisely calculate the pressure difference between the adjacent areas and the shape of the opening between them to design the wind speed near the casting membrane surface to fall within the above range.
 流延膜の金属製の無端支持体からの剥離性を向上するのに、剥離時に接触している移動する無端支持体のドープ膜剥離側とは反対の面に特定の温度範囲の冷却体を接触させ、剥離時の残留溶媒量を特定の範囲に制御することで、剥離性が改良し、無端支持体から良好に剥離できる。すなわち、流延膜を剥ぎ取る時の残留溶媒量を100質量%以下に制御し、かつ、前記流延膜を無端支持体から剥ぎ取る領域において、前記無端支持体の流延膜剥離側とは反対の面に表面温度が10℃以下の冷却体を接触させることが好ましい。 In order to improve the releasability of the casting film from the metal endless support, a cooling body in a specific temperature range is provided on the surface opposite to the dope film separation side of the moving endless support that is in contact during separation. By bringing them into contact with each other and controlling the amount of residual solvent at the time of peeling within a specific range, the peelability is improved, and good peeling from the endless support is possible. That is, the residual solvent amount when stripping the casting film is controlled to 100% by mass or less, and in the region where the casting film is stripped from the endless support, the casting film peeling side of the endless support is It is preferable to bring a cooling body having a surface temperature of 10° C. or less into contact with the opposite surface.
 前記残留溶媒量を55%以下に制御することが好ましく、前記冷却体の表面温度は-5℃以下であることが好ましい。 The amount of residual solvent is preferably controlled to 55% or less, and the surface temperature of the cooling body is preferably −5° C. or less.
 前記冷却体は、前記移動する無端支持体を回動させることができるローラーを兼ねていることが好ましい。前記冷却体の表面温度の制御方法としては、例えば、不凍液を用いたブラインチラーで冷却することによりの表面温度を10℃以下(上限値は好ましくは5℃以下、より好ましくは0℃以下、特に好ましくは-5℃以下)とすることができる。前記冷却体の表面温度は、-25~5℃であることが好ましく、-25~0℃であることがより好ましく、-20~0℃であることが特に好ましい。 It is preferable that the cooling body also serves as a roller that can rotate the moving endless support. As a method for controlling the surface temperature of the cooling body, for example, the surface temperature by cooling with a brilliantler using an antifreeze is 10° C. or lower (upper limit is preferably 5° C. or lower, more preferably 0° C. or lower, particularly It is preferably −5° C. or lower). The surface temperature of the cooling body is preferably −25 to 5° C., more preferably −25 to 0° C., and particularly preferably −20 to 0° C.
 さらに、金属製の無端支持体全体の温度を-50~10℃に設定することも好ましく、アクリル樹脂樹脂溶液が前記金属製の無端支持体上に流延されてから剥離されるまでの冷却速度を、(温度差/時間)で表した場合、3~5(℃/sec)であることが好ましい。 Further, it is also preferable to set the temperature of the entire metallic endless support to −50 to 10° C., and the cooling rate from the time when the acrylic resin resin solution is cast onto the metallic endless support to the time when it is peeled off. Is expressed as (temperature difference/hour), it is preferably 3 to 5 (° C./sec).
 また、その際ドープ中の貧溶媒比率が2~20質量%の範囲に調整することが剥離性の観点から好ましい。 Further, in that case, it is preferable from the viewpoint of peelability that the poor solvent ratio in the dope is adjusted to a range of 2 to 20% by mass.
 流延ダイの上端部に、アクリル樹脂ドープの供給口を複数箇所設けておき、流延ダイに対して、ドープを複数箇所の供給口から流延ダイのマニホールド内に供給することが好ましい。 It is preferable that a plurality of acrylic resin dope supply ports are provided at the upper end of the casting die, and the dope is supplied into the manifold of the casting die from the plurality of supply ports.
 (積層流延)
 共流延等の積層流延を行う際は、流延ダイのリップクリアランスを狭めることで吐出部分のせん断が大きくなり、スティックスリップを引き起こすドープの局所的な高濃度(高粘度)部分が混合され、円形変形発生を抑えることができる。また、多層からなるフィルムを製膜する際には、外層(表面層、エアー面層及び/又は裏面層、無端支持体面層)を形成するドープの粘度を下げることでスティックスリップそのものが弱くなり円形変形が起こらなくなる。さらに、前記リップクリアランスと前記外層形成用ドープ粘度との間に所定の相関がある。
(Layer casting)
When performing multi-layer casting such as co-casting, the lip clearance of the casting die is narrowed to increase the shear at the discharge part, and the locally high concentration (high viscosity) part of the dope that causes stick-slip is mixed. It is possible to suppress the occurrence of circular deformation. When forming a multi-layer film, the stick-slip itself becomes weaker by reducing the viscosity of the dope forming the outer layer (surface layer, air surface layer and/or back surface layer, endless support surface layer) Deformation will not occur. Furthermore, there is a predetermined correlation between the lip clearance and the dope viscosity for forming the outer layer.
 ポリマーと溶媒とを含む複数のドープを流延ダイから共流延し、多層フィルムを製膜する溶液流延法において、前記ドープを流延する際の温度T1(℃)での前記多層フィルムの表面又は裏面を形成するドープ粘度V(Pa・s)と、前記流延ダイのリップクリアランスの平均値C1(mm)との関係が、
 V≦-146×C1+219 を満たし、より好ましくは
 V≦-135×C1+200 であり、
 さらに好ましくは
 V≦-118×C1+175 である。
In a solution casting method in which a plurality of dopes containing a polymer and a solvent are co-cast from a casting die to form a multilayer film, the multilayer film at a temperature T1 (° C.) at the time of casting the dope The relationship between the dope viscosity V (Pa·s) forming the front surface or the back surface and the average value C1 (mm) of the lip clearance of the casting die is
V≦−146×C1+219, more preferably V≦−135×C1+200,
More preferably, V≦−118×C1+175.
 前記ドープを流延する際の温度T1(℃)での前記多層フィルムの表面又は裏面を形成するドープ粘度V(Pa・s)を5~60Pa・sの範囲とすることが好ましく、より好ましくは5~55Pa・sの範囲であり、最も好ましくは7~40Pa・sの範囲とすることである。前記リップクリアランスの平均値C1(mm)が、0.9~1.5mmの範囲であることが好ましく、より好ましくは0.9~1.2mmの範囲とすることであり、最も好ましくは0.9~1.1mmの範囲とすることである。前記ドープを流延する際の前記ドープの温度T1(℃)を20~38℃の範囲とすることが好ましい。 The dope viscosity V (Pa·s) forming the front surface or the back surface of the multilayer film at the temperature T1 (° C.) when casting the dope is preferably in the range of 5 to 60 Pa·s, and more preferably It is in the range of 5 to 55 Pa·s, and most preferably in the range of 7 to 40 Pa·s. The average value C1 (mm) of the lip clearance is preferably in the range of 0.9 to 1.5 mm, more preferably 0.9 to 1.2 mm, and most preferably 0. The range is 9 to 1.1 mm. The temperature T1 (° C.) of the dope when casting the dope is preferably in the range of 20 to 38° C.
 また、基層用ドープ、無端支持体面層用ドープ、エアー面層用ドープ、のうち少なくとも2種類以上は異なる粘度とし、流延膜を構成する基層の厚さt1(μm)と、無端支持体面層の厚さt2(μm)と、エアー面層の厚さt3(μm)との関係を、t2≦t3≦t1とすることが好ましい。さらに、流延膜の厚さに対するt3の割合を、3%以上40%以下とすることが好ましい。 Further, at least two or more of the base layer dope, the endless support surface layer dope, and the air surface layer dope have different viscosities, and the thickness t1 (μm) of the base layer forming the casting film and the endless support surface layer It is preferable that the relationship between the thickness t2 (μm) and the thickness t3 (μm) of the air surface layer is t2≦t3≦t1. Further, it is preferable that the ratio of t3 to the thickness of the casting film is 3% or more and 40% or less.
 基層用ドープの粘度η1(Pa・s)と、無端支持体面層用ドープの粘度η2(Pa・s)と、エアー面層用ドープの粘度η3(Pa・s)との関係を、η3≦η2≦η1とすることが好ましい。 The relationship between the viscosity η1 (Pa·s) of the base layer dope, the viscosity η2 (Pa·s) of the endless support surface layer dope, and the viscosity η3 (Pa·s) of the air surface layer dope is η3≦η2. It is preferable that ≦η1.
 エアー面層用ドープの質量Aと、このドープに含まれる有機溶媒の質量Bとは、16≦{(A-B)/A}×100≦21を満たすことが好ましい。 The mass A of the air surface layer dope and the mass B of the organic solvent contained in this dope preferably satisfy 16≦{(AB)/A}×100≦21.
 原料ドープは、添加剤を入れた後にインラインミキサーで撹拌混合することが好ましく、インラインミキサーは、原料ドープが流れる配管の直径方向に伸びるように設けられ、添加剤の投入口となるスリット状の添加口を備えることが好ましい。 The raw material dope is preferably stirred and mixed with an in-line mixer after adding the additive, and the in-line mixer is provided so as to extend in the diameter direction of the pipe through which the raw material dope flows, and has a slit-shaped addition serving as an input port for the additive. It is preferred to have a mouth.
 添加口は、配管の径方向に平行となる長さLが配管の内径の20%以上80%以下であることが好ましい。 The length L of the addition port, which is parallel to the radial direction of the pipe, is preferably 20% or more and 80% or less of the inner diameter of the pipe.
 スリットの隙間が、0.1mm以上前記配管の内径の1/10mm以下であることが好ましく、添加口からインラインミキサーまでの距離Dを、1mm以上250mm以下とすることが好ましい。さらに、配管内を流れる添加剤の流速V1及び原料ドープの流速V2は、1≦V1/V2≦5を満たすことが好ましい。 The gap between the slits is preferably 0.1 mm or more and 1/10 mm or less of the inner diameter of the pipe, and the distance D from the addition port to the in-line mixer is preferably 1 mm or more and 250 mm or less. Furthermore, it is preferable that the flow rate V1 of the additive flowing in the pipe and the flow rate V2 of the raw material dope satisfy 1≦V1/V2≦5.
 (乾燥)
 アクリル樹脂フィルムの製造に係る無端支持体上におけるドープの乾燥は、一般的には金属製の無端支持体(例えばドラム又はバンド)の表面側、つまり金属製の無端支持体上にあるウェブの表面から熱風を当てる方法、ドラム又はバンドの裏面から熱風を当てる方法、温度コントロールした液体をバンドやドラムのドープ流延面の反対側である裏面から接触させて、伝熱によりドラム又はバンドを加熱し表面温度をコントロールする液体伝熱方法などがあるが、裏面液体伝熱方式が好ましい。又は、後述のIRヒーターも好ましく用いられる。流延される前の金属製の無端支持体の表面温度はドープに用いられている溶媒の沸点以下であれば何度でもよい。しかし乾燥を促進するためには、また金属製の無端支持体上での流動性を失わせるためには、使用される溶媒の内の最も沸点の低い溶媒の沸点より1~10℃低い温度に設定することが好ましい。なお、流延ドープを冷却して乾燥することなく剥ぎ取る場合はこの限りではない。
(Dry)
Drying of the dope on the endless support for producing an acrylic resin film is generally performed on the surface side of a metal endless support (for example, a drum or a band), that is, the surface of a web on the metal endless support. From the back side of the drum or band, contacting the temperature-controlled liquid from the back side, which is the opposite side of the dope casting surface of the band or drum, to heat the drum or band by heat transfer. Although there is a liquid heat transfer method for controlling the surface temperature, the back surface liquid heat transfer method is preferable. Alternatively, the IR heater described below is also preferably used. The surface temperature of the metallic endless support before casting may be any number as long as it is equal to or lower than the boiling point of the solvent used for the dope. However, in order to accelerate the drying and to lose the fluidity on the metal endless support, the temperature is 1 to 10° C. lower than the boiling point of the solvent having the lowest boiling point. It is preferable to set. This is not the case when the cast dope is cooled and peeled off without drying.
 (剥離)
 金属製の無端支持体上で溶媒が蒸発したウェブを、剥離位置で剥離する工程である。剥離されたウェブはフィルムとして次工程に送られる。
(Peeling)
It is a step of peeling the web, in which the solvent is evaporated on the metal endless support, at the peeling position. The peeled web is sent to the next step as a film.
 金属製の無端支持体上の剥離位置における温度は好ましくは10~40℃の範囲であり、さらに好ましくは10~30℃の範囲である。 The temperature at the peeling position on the metal endless support is preferably in the range of 10 to 40°C, more preferably 10 to 30°C.
 なお、剥離する時点での金属製の無端支持体上でのウェブの剥離時残留溶媒量は、乾燥の条件の強弱、金属製の無端支持体の長さ等により10~130質量%の範囲、好ましくは10~100質量%の範囲で剥離することが好ましいが、残留溶媒量がより多い時点で剥離する場合、ウェブが柔らか過ぎると剥離時平面性を損ね、剥離張力によるツレや縦スジが発生しやすいため、経済速度と品質との兼ね合いで剥離時の残留溶媒量が決められる。 The amount of residual solvent at the time of peeling of the web on the metal endless support at the time of peeling is in the range of 10 to 130% by mass depending on the strength of the drying conditions, the length of the metal endless support, and the like. It is preferable to peel in the range of 10 to 100% by mass, but when peeling at a time when the amount of residual solvent is larger, if the web is too soft, the flatness is deteriorated during peeling, and cracks or vertical streaks due to peeling tension occur. Since it is easy to do, the amount of residual solvent at the time of peeling is determined by the balance between economic speed and quality.
 ウェブの残留溶媒量は下記式(Z)で定義される。 The amount of residual solvent in the web is defined by the following formula (Z).
 式(Z)
 残留溶媒量(%)=(ウェブの加熱処理前質量-ウェブの加熱処理後質量)/(ウェブの加熱処理後質量)×100
 なお、残留溶媒量を測定する際の加熱処理とは、115℃で1時間の加熱処理を行うことを表す。
Formula (Z)
Amount of residual solvent (%)=(mass before heat treatment of web−mass after heat treatment of web)/(mass after heat treatment of web)×100
Note that the heat treatment for measuring the amount of residual solvent means performing heat treatment at 115° C. for 1 hour.
 金属製の無端支持体とフィルムとを剥離する際の剥離張力は、通常、50~245N/mの範囲内であるが、剥離の際にシワが入りやすい場合、190N/m以下の張力で剥離することが好ましい。 The peeling tension when peeling the metal endless support and the film is usually in the range of 50 to 245 N/m, but if wrinkles easily occur during peeling, peeling is performed with a tension of 190 N/m or less. Preferably.
 本発明においては、当該金属製の無端支持体上の剥離位置における温度を-50~40℃の範囲内とするのが好ましく、5~40℃の範囲内がより好ましく、5~30℃の範囲内とするのが最も好ましい。 In the present invention, the temperature at the peeling position on the metallic endless support is preferably in the range of −50 to 40° C., more preferably in the range of 5 to 40° C., and in the range of 5 to 30° C. Most preferred is
 生乾きのフィルムを金属製の無端支持体から剥離するとき、剥離抵抗(剥離荷重)が大きいと、製膜方向にフィルムが不規則に伸ばされて光学的な異方性むらを生じる。特に剥離荷重が大きいときは、製膜方向に段状に伸ばされたところと伸ばされていないところが交互に生じて、リターデーションに分布を生じる。液晶表示装置に装填すると線状又は帯状にむらが見えるようになる。このような問題を発生させないためには、フィルムの剥離荷重をフィルム剥離幅1cmあたり2.5N以下にすることが好ましい。剥離荷重はより好ましくは2N/cm以下、さらに好ましくは1.8N以下、特に好ましくは1.5N以下である。剥離荷重2.5N/cm以下のときはむらが現れやすい液晶表示装置においても剥離起因のむらは全く認められず、特に好ましい。剥離荷重を小さくする方法としては、前述のように剥離剤を添加する方法と、使用する溶媒組成の選択による方法がある。 When peeling a raw dry film from a metal endless support, if the peeling resistance (peeling load) is large, the film is stretched randomly in the film forming direction, causing optical anisotropic unevenness. In particular, when the peeling load is large, a stepwise stretched portion and a non-stretched portion are alternately generated in the film forming direction, and the retardation is distributed. When the liquid crystal display device is loaded, the line-shaped or band-shaped unevenness becomes visible. In order not to cause such a problem, it is preferable that the peeling load of the film is 2.5 N or less per 1 cm of the peeling width of the film. The peeling load is more preferably 2 N/cm or less, still more preferably 1.8 N or less, and particularly preferably 1.5 N or less. When the peeling load is 2.5 N/cm or less, unevenness due to peeling is not observed at all even in a liquid crystal display device in which unevenness is likely to occur, which is particularly preferable. As a method for reducing the peeling load, there are a method of adding a peeling agent as described above and a method of selecting a solvent composition to be used.
 剥離荷重の測定は次のようにして行う。製膜装置の金属製の無端支持体と同じ材質・表面粗さの金属板上にドープを滴下し、ドクターブレードを用いて均等な厚さに展延し乾燥する。カッターナイフでフィルムに均等幅の切れ込みを入れ、フィルムの先端を手で剥がしてストレンゲージにつながったクリップで挟み、ストレンゲージを斜め45度方向に引き上げながら、荷重変化を測定する。剥離されたフィルム中の揮発分も測定する。乾燥時間を変えて何回か同じ測定を行い、実際の製膜工程における剥離時残留揮発分と同じ時の剥離荷重を定める。剥離速度が速くなると剥離荷重は大きくなる傾向があり、実際に近い剥離速度で測定することが好ましい。
 剥離荷重を低減するための手段として、後述の剥離促進剤も好ましく用いることができる。
The peeling load is measured as follows. The dope is dropped on a metal plate of the same material and surface roughness as the metal endless support of the film forming apparatus, spread using a doctor blade to a uniform thickness and dried. The film is cut into a uniform width with a cutter knife, the tip of the film is peeled off by hand, and the film is sandwiched by a clip connected to a strain gauge, and the load change is measured while pulling up the strain gauge in a direction at an angle of 45 degrees. The volatile content in the peeled film is also measured. The same measurement is performed several times while changing the drying time, and the peeling load at the same time as the peeling residual volatile content in the actual film forming process is determined. As the peeling speed increases, the peeling load tends to increase, and it is preferable to measure the peeling speed close to the actual peeling speed.
As a means for reducing the peeling load, a peeling accelerator described later can also be preferably used.
 剥離時の好ましい残留揮発分濃度は5~60質量%である。しかし使用するアクリル樹脂にもよるが、残留揮発分濃度30質量%以上ではフィルム強度が乏しく剥離力に負けて切断したり伸びてしまう。また剥離後の自己保持力が乏しく、変形、シワ、クニックを生じやすくなる。またリターデーションに分布を生じる原因になる。一方、高揮発分で剥離すると乾燥速度が稼げて、生産性が向上して好ましいという利点もある。したがってさらに好ましい剥離時の残留揮発分濃度は10~55質量%である。剥離剤使用量を少なくしても比較的に剥離抵抗が小さくなる15~50質量%が特に好ましい。 The preferred residual volatile matter concentration during stripping is 5 to 60% by mass. However, depending on the acrylic resin used, when the residual volatile matter concentration is 30% by mass or more, the film strength is poor and the film loses its peeling force and is cut or stretched. Further, the self-holding force after peeling is poor, and deformation, wrinkles, and knicks are likely to occur. It also causes a distribution in retardation. On the other hand, peeling with a high volatile content has an advantage that the drying speed can be increased and the productivity is improved, which is preferable. Therefore, the more preferable residual volatile content concentration at the time of peeling is 10 to 55 mass %. It is particularly preferable that the amount of release agent used is 15 to 50% by mass, which gives a relatively small release resistance even if the amount of release agent is reduced.
 剥取速度は10m/min以上で、かつ2Hz以上での剥取位置の変動量が20mm未満であることが好ましい。前記無端支持体から剥ぎ取った直後の膜を支持する剥取ローラーを用いた場合であって、前記剥離位置と前記剥取ローラーの前記膜の接触位置との距離Lを0.1mm~100mmの範囲とすることが好ましい。前記無端支持体の温度を10~40℃の範囲に調整することが好ましい。 It is preferable that the stripping speed is 10 m/min or more, and the variation of the stripping position at 2 Hz or more is less than 20 mm. When a peeling roller that supports the film immediately after being peeled from the endless support is used, the distance L between the peeling position and the contact position of the peeling roller with the film is 0.1 mm to 100 mm. It is preferably within the range. It is preferable to adjust the temperature of the endless support in the range of 10 to 40°C.
 その際、製膜速度は10~150m/minの範囲で行うことが好ましい。剥離時の温度は5~50℃の範囲とすることが好ましい。
 剥取ローラーの表面エネルギーについては、10~35mN/mの範囲が好ましいが、さらに18~26mN/mの範囲が好ましい。このような範囲にするために剥取ローラーの表面処理には、ハイパーコート、クロアモール、タングステンカーバイド、エーミューコートなどの処理が考えられるが、とりわけウルトラクロムII処理が好ましい。
At that time, it is preferable to perform the film formation at a rate of 10 to 150 m/min. The peeling temperature is preferably in the range of 5 to 50°C.
The surface energy of the peeling roller is preferably in the range of 10 to 35 mN/m, more preferably 18 to 26 mN/m. For the surface treatment of the stripping roller to achieve such a range, treatments such as Hypercoat, Chloamol, Tungsten Carbide, and Amucoat are conceivable, but Ultrachrome II treatment is particularly preferable.
 また、無端支持体から剥ぎ取り直後のフィルムは、薄い軟膜でありローラー搬送やフィルムの両側の端部(以下、耳端部と称する)を保持搬送するテンター搬送工程では、フィルムを膜厚を薄くするいわゆる薄手化とすると、安定搬送が難しくなる問題が生じる。また、フィルムの耳端部の厚さを厚くし過ぎると、高速製膜ではげ残り等が発生する場合がある。 In addition, the film immediately after being peeled off from the endless support is a thin soft film, and the film is made thin by a roller transfer process or a tenter transfer process in which both ends of the film (hereinafter, referred to as edge ends) are transferred. The so-called thinning causes a problem that stable conveyance becomes difficult. Further, if the thickness of the edge portion of the film is excessively increased, there are cases where bald residue or the like occurs in high-speed film formation.
 そのため、フィルムを薄手化しても、搬送安定性を確保するため、フィルム耳端部のみ厚さを厚くすることをリップクリアランス調整以外の方法により行うことが好ましく、ダイ本体の流路とは別に、各耳端部厚さ補正用のドープの流路を設け、そこを通過するドープの流量を、ダイリップ先端のクリアランス調整とは別の調整機構により制御し、厚さ補正用ドープを、ダイ両耳端部に供給し、フィルムの両耳端部のみ厚さを独立して制御する方法が好ましい。 Therefore, even if the film is thinned, in order to secure the transport stability, it is preferable to increase the thickness of only the film edge end by a method other than the lip clearance adjustment, separately from the flow path of the die body. A dope channel for thickness correction of each edge is provided, and the flow rate of the dope passing therethrough is controlled by an adjustment mechanism other than the clearance adjustment at the tip of the die lip to adjust the thickness of the dope for both ears. A method in which the film is supplied to the edges and the thickness is independently controlled only at both edges of the film is preferable.
 具体的に用いることのできる製造装置としては、ドープ用流路を有するダイ本体からドープを無端支持体上に流延するフィルムの製造装置において、前記ドープ用流路とは別に前記ダイに前記フィルム両端部厚さ補正用流路を備え、前記フィルムの両端部の厚さを独立で制御できる。前記補正用流路を通過する補正用ドープの流量を調整する調整機構を備え、前記フィルムの両端部の厚さを独立で制御できる装置であることが好ましい。前記補正用流路が、エアー抜部を有していることが好ましい。前記補正用流路が、前記ダイ本体とは独立して制御可能な保温機構を有していることが好ましく、前記補正用流路出口が、前記ダイ本体の流延幅となる流路からダイリップ先端までの間に設けられていることが好ましい。 As a manufacturing apparatus that can be specifically used, in a manufacturing apparatus of a film in which a dope is cast on an endless support from a die body having a dope channel, the film is formed in the die separately from the dope channel. It is possible to independently control the thickness of both ends of the film, by providing both end thickness correction channels. It is preferable that the apparatus is equipped with an adjusting mechanism for adjusting the flow rate of the correction dope passing through the correction channel, and can independently control the thickness of both ends of the film. It is preferable that the correction flow path has an air vent. It is preferable that the correction flow path has a heat retention mechanism that can be controlled independently of the die body, and the correction flow path outlet is formed from a flow path having a casting width of the die main body to a die lip. It is preferable that it is provided up to the tip.
 当該フィルムの製造方法によれば、流延膜の両端部が厚くなり、流延膜全体としても膜の強度が増し、無端支持体から薄手の流延膜を剥ぎ取る際に、剥ぎ取り残りなどの異常の発生を抑制できる。なお、このように流延膜の両端部のみを厚くする方法は、ダイの本体に備えられているドープ用流路とは別に、前記ダイに前記フィルム両端部厚さ補正用流路を設け、前記補正用ドープを、前記補正用流路から供給し、前記フィルムの両端部の厚さを独立で制御するから、従来の設備に少しの改良を施すのみで本発明を実施することが可能となり、コストの低減を図ることができる。また、前記補正用流路を通過する補正用ドープの流量を、ダイリップ先端のクリアランス調整とは別の調整機構を備えたものを用いて制御することで、よりフィルムの厚さの制御を精度良く行うことができる。 According to the method for producing the film, both end portions of the casting film are thickened, the strength of the film is increased as the casting film as a whole, and when the thin casting film is peeled from the endless support, the unpeeled residue, etc. It is possible to suppress the occurrence of abnormalities. Incidentally, the method of thickening only the both ends of the casting film in this manner, in addition to the dope channel provided in the body of the die, the die is provided with the film both ends thickness correction channel, The correction dope is supplied from the correction flow path, and the thickness of both ends of the film is independently controlled, so that the present invention can be carried out only by making a slight improvement to conventional equipment. Therefore, the cost can be reduced. Further, by controlling the flow rate of the correction dope that passes through the correction flow path by using an adjustment mechanism different from the clearance adjustment of the die lip tip, it is possible to more accurately control the film thickness. It can be carried out.
 (流延工程内の雰囲気)
 本発明に係る流延工程では、少なくとも流延工程内の酸素濃度を10vol%未満にすることが好ましく、より好ましくは8vol%未満である。また、流延工程に続く乾燥工程が流延工程と同一のケーシング内に配置されている場合は、乾燥工程内においても酸素濃度を10vol%未満にすることになるが、流延工程と乾燥工程との間の通気性がない場合は、流延工程内のみを酸素濃度が10vol%未満となるようにすればよい。
(Atmosphere in the casting process)
In the casting step according to the present invention, the oxygen concentration in the casting step is preferably at least less than 10 vol%, more preferably less than 8 vol%. Further, when the drying step following the casting step is arranged in the same casing as the casting step, the oxygen concentration will be less than 10 vol% in the drying step as well. If there is no air permeability between the two, the oxygen concentration may be less than 10 vol% only in the casting process.
 このように酸素濃度を10vol%未満にすることにより、有機溶剤ガスの爆発等を防止することができるものであり、流延工程内の有機溶剤ガスの濃度が大きい場合に特に有効である。すなわち、有機溶剤ガスの濃度が、その爆発下限界の25%以上となるような場合に特に有効である。 By setting the oxygen concentration to less than 10 vol% in this way, it is possible to prevent the explosion of the organic solvent gas, and it is particularly effective when the concentration of the organic solvent gas in the casting process is high. That is, it is particularly effective when the concentration of the organic solvent gas is 25% or more of the lower limit of explosion.
 流延工程内の酸素濃度を10vol%未満にするには、窒素ガス、炭酸ガス等の不活性ガス又は不活性ガスと空気とを混合したものであって酸素濃度が10vol%未満の混合ガスを供給することにより行うことができる。流延工程内の酸素濃度を酸素濃度計で測定し、この測定値に応じて不活性ガス等の供給量を制御することが好ましい。 In order to reduce the oxygen concentration in the casting step to less than 10 vol%, an inert gas such as nitrogen gas or carbon dioxide, or a mixture of an inert gas and air, in which the oxygen concentration is less than 10 vol%, is used. It can be done by supplying. It is preferable to measure the oxygen concentration in the casting step with an oxygen concentration meter and control the supply amount of the inert gas or the like according to the measured value.
 (4)乾燥・延伸工程
 (4-1.乾燥工程)
 乾燥工程は予備乾燥工程、本乾燥工程に分けて行うこともできる。
(4) Drying/Stretching Step (4-1. Drying Step)
The drying step can be performed separately in a preliminary drying step and a main drying step.
 金属製の無端支持体から剥離して得られたウェブを乾燥させるには、ウェブを上下に配置した多数のローラーにより搬送しながら乾燥させてもよいし、テンター乾燥機のようにウェブの両端部をクリップで固定して搬送しながら乾燥させてもよい。 In order to dry the web obtained by peeling from the metal endless support, the web may be dried while being conveyed by a large number of rollers arranged vertically, or both end portions of the web like a tenter dryer. May be fixed with a clip and dried while being transported.
 ウェブを乾燥させる手段は特に制限なく、一般的に熱風、赤外線、加熱ローラー、マイクロ波等で行うことができるが、簡便さの点で、熱風で行うことが好ましい。 The means for drying the web is not particularly limited, and generally, hot air, infrared rays, heating rollers, microwaves, etc. can be used, but hot air is preferable in terms of simplicity.
 赤外線を利用した好適な乾燥方法としてIRヒーターが挙げられる。以下にIRヒーターについて説明する。
 本発明における乾燥手段は熱風乾燥が最も好ましいが、赤外線ヒータ(IRヒーター)を補助的に併用することも好ましい。
 IRヒーターからの赤外線を溶媒含むウェットなフィルムに照射すると、その赤外線を吸収した溶媒分子の運動が活性化され、フィルム中の移動を促進させることができる。溶媒分子の伸縮運動に相当する中赤外~遠赤外線が特に好ましい。また、溶媒以外の樹脂などはこの照射波長帯に吸収を持たないことがさらに好ましい。
 また、溶媒分子の揮発時にウェットフィルムから蒸発潜熱としてエネルギーを奪ってフィルムの温度を低下させる現象に対し、熱風乾燥の熱伝導よりもIRヒーターによる吸収の方が速く、効率的に乾燥させることができると考えている。この効果は溶媒の少ない後半乾燥よりも、溶媒の多い前半乾燥でより発揮される。そのため、ベルト乾燥~剥離~初期乾燥の間に適用することが好ましい。
 IRヒーターは日本ガイシ(株)、(株)ハイベック、(株)加島などから提供されている。照射形式は線集光、平行照射などから適宜選択することができる。照射時間や出力エネルギーの調整、ヒーター本数なども適宜調整して使用することが好ましい。
 IRヒーターの高温部と揮発溶媒とは隔離されることが好ましい。すなわちIRヒーターの局所高温となるフィラメント部は、透明な冷却システムによって保護されることが好ましい。このため、石英ガラスによる二重管で覆い、ガラス間隙に水を流すことで水冷することが好ましい。これによってフィラメントから発せられる赤外線を遮断せずに、熱を遮断することが可能である。
 本発明者らは、IRヒーター照射によって得られる光学フィルムのカールが抑制されることを発見した。この機構は定かではないが、伝熱による蒸発よりも、赤外線吸収による蒸発の方が膜中溶媒分子の運動が均一化され、フィルム表裏面での物性差が小さくなるのではないかと推定している。Tg以上で加熱するテンター導入前にIRヒーターで加熱することが、特にこの効果を発揮する。
 カールの発生により、ロール搬送中のフィルム全幅にかかる応力が不均一になり、フィルムにスリキズやしわが入ることが課題となっていた。
 また上記の効果とは別に、テンター導入前にフィルム端部のみIRヒーターを照射することによって、フィルム中央部の膜厚偏差が改善することも見いだされた。この機構については解明中であるが、テンタークリップにおけるフィルムの粘弾性が何等か変化し、延伸時のフィルム中央への応力分布が変化したものと想定している。
An IR heater is mentioned as a suitable drying method using infrared rays. The IR heater will be described below.
The drying means in the present invention is most preferably hot air drying, but it is also preferable to supplementarily use an infrared heater (IR heater).
When a wet film containing a solvent is irradiated with infrared rays from an IR heater, the movement of solvent molecules that have absorbed the infrared rays is activated, and movement of the solvent molecules in the film can be promoted. Mid-infrared to far-infrared rays, which correspond to the stretching motion of solvent molecules, are particularly preferable. Further, it is more preferable that the resin other than the solvent has no absorption in this irradiation wavelength band.
Further, in contrast to the phenomenon that energy is taken from the wet film as evaporation latent heat when the solvent molecules are volatilized to lower the temperature of the film, absorption by an IR heater is faster than heat conduction in hot air drying, and efficient drying is possible. I think I can. This effect is more exerted in the first half drying with a large amount of solvent than in the latter half drying with a small amount of solvent. Therefore, it is preferably applied during belt drying-peeling-initial drying.
IR heaters are provided by NGK Insulators, Ltd., Hibeck Co., Ltd., Kashima Co., Ltd., etc. The irradiation method can be appropriately selected from line focusing, parallel irradiation and the like. It is preferable to adjust the irradiation time, the output energy, the number of heaters, etc., as appropriate.
The high temperature part of the IR heater and the volatile solvent are preferably isolated. That is, it is preferable that the filament portion of the IR heater, which has a locally high temperature, be protected by a transparent cooling system. For this reason, it is preferable to cover with a double tube made of quartz glass and to cool the glass by flowing water in the glass gap. This makes it possible to block the heat without blocking the infrared rays emitted from the filament.
The present inventors have discovered that curling of an optical film obtained by irradiation with an IR heater is suppressed. Although this mechanism is not clear, it is presumed that the evaporation by infrared absorption may make the movement of solvent molecules in the film more uniform than the evaporation by heat transfer, and the difference in physical properties between the front and back surfaces of the film may become smaller. There is. This effect is particularly exhibited by heating with an IR heater before introducing a tenter that heats at Tg or higher.
Due to the occurrence of curl, the stress applied to the entire width of the film during roll conveyance becomes non-uniform, and scratches and wrinkles are formed on the film.
In addition to the above effects, it was also found that the film thickness deviation in the central part of the film is improved by irradiating the IR heater only on the end part of the film before introducing the tenter. Although this mechanism is still being clarified, it is assumed that the viscoelasticity of the film in the tenter clip has changed and the stress distribution in the center of the film during stretching has changed.
 ウェブの乾燥工程における乾燥温度は好ましくはフィルムのガラス転移温度以下であって、100℃以上の温度で10~60分の範囲内の熱処理を行うことが効果的である。乾燥温度は100~200℃の範囲内、さらに好ましくは110~160℃の範囲内で乾燥が行われる。 The drying temperature in the web drying step is preferably lower than the glass transition temperature of the film, and it is effective to perform heat treatment within a range of 10 to 60 minutes at a temperature of 100° C. or higher. The drying temperature is 100 to 200° C., more preferably 110 to 160° C.
 (4-2.延伸工程)
 本発明に係るアクリル樹脂フィルムは、延伸処理することでフィルム内の分子の配向を制御することができ、平面性を向上したり、強靭性を得たりすることができる。また、所望の値に位相差を調整することができる。
(4-2. Stretching process)
The acrylic resin film according to the present invention can be stretched to control the orientation of the molecules in the film, improve the flatness, and obtain toughness. Also, the phase difference can be adjusted to a desired value.
 延伸操作は多段階に分割して実施してもよい。また、二軸延伸を行う場合には同時二軸延伸を行ってもよいし、段階的に実施してもよい。この場合、段階的とは、例えば、延伸方向の異なる延伸を順次行うことも可能であるし、同一方向の延伸を多段階に分割し、かつ異なる方向の延伸をそのいずれかの段階に加えることも可能である。 The stretching operation may be performed in multiple stages. When biaxial stretching is carried out, simultaneous biaxial stretching may be carried out or may be carried out stepwise. In this case, stepwise means that, for example, stretching in different stretching directions can be sequentially performed, or stretching in the same direction can be divided into multiple stages, and stretching in different directions can be added to any of the stages. Is also possible.
 すなわち、例えば、次のような延伸ステップも可能である:
 ・流延方向に延伸→幅手方向に延伸→流延方向に延伸→流延方向に延伸
 ・幅手方向に延伸→幅手方向に延伸→流延方向に延伸→流延方向に延伸
 また、同時二軸延伸には、一方向に延伸し、もう一方を、張力を緩和して収縮する場合も含まれる。
Thus, for example, the following stretching steps are possible:
・Stretching in casting direction → stretching in width direction → stretching in casting direction → stretching in casting direction ・Stretching in width direction → stretching in width direction → stretching in casting direction → stretching in casting direction Simultaneous biaxial stretching also includes stretching in one direction and contracting the other by relaxing the tension.
 延伸開始時の残留溶媒量は2~10質量%の範囲内であることが好ましい。 The amount of residual solvent at the start of stretching is preferably in the range of 2 to 10% by mass.
 当該残留溶媒量は、2質量%以上であれば、膜厚偏差が小さくなり、平面性の観点から好ましく、10質量%以内であれば、表面の凹凸が減り、平面性が向上し好ましい。 If the amount of the residual solvent is 2% by mass or more, the film thickness deviation is small, and it is preferable from the viewpoint of flatness.
 ウェブを金属製の無端支持体より剥離した後、ウェブ(フィルム)の乾燥工程においては、一般にロール乾燥方式(上下に配置した多数のロールをウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら、乾燥する方式が採られており、最終的に、残留溶媒量が0.5質量%以下となるまで乾燥される。 After peeling the web from the metal endless support, the web (film) drying process is generally performed by a roll drying method (a method in which a large number of rolls arranged above and below are alternately passed through the web to dry) or a tenter method. The method of drying while transporting is carried out, and finally it is dried until the residual solvent amount becomes 0.5% by mass or less.
 また、ウェブに含まれる残留溶媒量は目的のリターデーション値を得るために、やや高めの量であってもよく、高リターデーション値を付与するには、15~100質量%、好ましくは20~50質量%の範囲で有していてもよい。 The amount of residual solvent contained in the web may be a little higher in order to obtain a desired retardation value, and in order to impart a high retardation value, it is 15 to 100% by mass, preferably 20 to You may have in the range of 50 mass %.
 本発明によるアクリル樹脂フィルムの製造方法の一つは、フィルムの搬送方向に直行する方向(TD方向)に延伸する延伸工程を具備し、延伸工程より下流側に熱処理工程を備え、熱処理工程内でフィルム温度を、ガラス転移温度(Tg)-50℃以上、Tg+40℃以下の温度とし、さらに熱処理工程のガイドロールのロールスパンを50~300mmの範囲とし、フィルムの搬送張力を15~100N/mの範囲として加熱処理を行うものである。ここで、ガラス転移温度(Tg)は、完成したフィルムのガラス転移温度温度をいう。 One of the methods for producing an acrylic resin film according to the present invention comprises a stretching step of stretching in a direction (TD direction) orthogonal to the transport direction of the film, and comprises a heat treatment step downstream of the stretching step, The film temperature is set to a glass transition temperature (Tg) of -50° C. or higher and Tg+40° C. or lower, the roll span of the guide roll in the heat treatment step is set to 50 to 300 mm, and the transport tension of the film is set to 15 to 100 N/m. Heat treatment is performed within the range. Here, the glass transition temperature (Tg) refers to the glass transition temperature temperature of the completed film.
 本発明のアクリル樹脂フィルムの製造方法によれば、溶液流延法において、延伸工程より下流側の別の工程で、フィルムの幅手方向の収縮を抑制しつつ、フィルムにガラス転移温度(Tg)以上の温度を加えることによって、従来の溶液製膜法で作製されたセルロースエステル系樹脂では達成し得なかったフィルムのMD方向(フィルムの搬送方向)の収縮が促進され、厚さ方向リターデーション(Rt)の低下だけでなく、リターデーション値の幅手方向の均一性を確保することができて、フィルムのヘイズ値の低減をも実現できるものである。 According to the method for producing an acrylic resin film of the present invention, in the solution casting method, the glass transition temperature (Tg) of the film is reduced in another step downstream of the stretching step while suppressing shrinkage in the width direction of the film. By applying the above temperature, the shrinkage of the film in the MD direction (the transport direction of the film), which cannot be achieved by the conventional cellulose ester resin produced by the solution film-forming method, is promoted, and the retardation in the thickness direction ( Not only the decrease in Rt) but also the uniformity of the retardation value in the width direction can be ensured, and the haze value of the film can be reduced.
 本発明の製造方法では、フィルム搬送方向への延伸(MD延伸)における延伸倍率は、1~25%であることが好ましく、3~20%であることがより好ましい。 In the production method of the present invention, the stretching ratio in stretching in the film transport direction (MD stretching) is preferably 1 to 25%, more preferably 3 to 20%.
 なお、ここでいう「延伸倍率(%)」とは、以下の式により求められるものを意味する。 Note that the "stretching ratio (%)" here means the value obtained by the following formula.
 延伸倍率(%)=100×{(延伸後の長さ)-(延伸前の長さ)}/延伸前の長さ
 ウェブをフィルム搬送方向に延伸する方法には特に限定はない。例えば、複数のロールに周速差をつけ、その間でロール周速差を利用して縦方向に延伸する方法、ウェブの両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げて縦方向に延伸する方法、又は縦横同時に広げて縦横両方向に延伸する方法などが挙げられる。もちろんこれ等の方法は、組み合わせて用いてもよい。また、いわゆるテンター法の場合、リニアドライブ方式でクリップ部分を駆動すると滑らかな延伸が行うことができ、破断等の危険性が減少できるので好ましい。前記縦方向への延伸は、二つのニップロールを有する装置を用い、入口側のニップロールの回転速度よりも、出口側のニップロールの回転速度を速くすることにより、搬送方向(縦方向)に環状ポリオレフィンフィルムを好ましく延伸することが好ましい。このような延伸を行うことによって、リターデーションの発現性も調整することができる。
Stretching ratio (%)=100×{(length after stretching)−(length before stretching)/length before stretching There is no particular limitation on the method for stretching the web in the film conveying direction. For example, a method in which the peripheral speed difference is applied to multiple rolls and the roll peripheral speed difference between them is used to stretch in the longitudinal direction, both ends of the web are fixed with clips or pins, and the spacing between the clips or pins is widened in the traveling direction. And a method of stretching in the longitudinal direction, or a method of simultaneously stretching in the longitudinal and lateral directions and stretching in both the longitudinal and lateral directions. Of course, these methods may be used in combination. Further, in the case of the so-called tenter method, it is preferable to drive the clip portion by a linear drive method because smooth stretching can be performed and the risk of breakage can be reduced. The stretching in the machine direction uses an apparatus having two nip rolls, and the rotational speed of the nip roll on the outlet side is made faster than the rotational speed of the nip roll on the inlet side, so that the cyclic polyolefin film in the transport direction (longitudinal direction) Is preferably stretched. By performing such stretching, the expression of retardation can also be adjusted.
 本発明のアクリル樹脂フィルムの製造方法は、同様にフィルムの搬送方向に直行する方向(TD方向)に延伸する延伸工程を具備し、延伸工程より上流側に熱処理工程を備え、熱処理工程内でフィルム温度を、ガラス転移温度(Tg)-50℃以上、Tg+20℃以下の温度とし、さらに熱処理工程のガイドロールのロールスパンを50~300mmの範囲とし、フィルムの搬送張力を15~100N/mの範囲として加熱処理を行い、さらにこの熱処理工程より下流側で一旦フィルムをガラス転移温度(Tg)以下の温度まで冷却し、その後、延伸を施すものであることが好ましい。このアクリル樹脂フィルムの製造方法によれば、溶液流延製膜法において、延伸工程より上流側のプロセスで、ガラス転移温度(Tg)付近の温度まで昇温させたのち、再度冷却工程を経て、再度、ガラス転移温度(Tg)付近の温度まで昇温しながら延伸することによって、面内リターデーション(Ro)と厚さ方向リターデーション(Rt)の適切な組み合わせを実現することができて、フィルムのヘイズ値の低減をも実現できる。 Similarly, the method for producing an acrylic resin film of the present invention includes a stretching step of stretching in a direction (TD direction) orthogonal to the transport direction of the film, a heat treatment step on the upstream side of the stretching step, and the film is formed in the heat treatment step. The glass transition temperature (Tg) is not less than −50° C. and not more than Tg+20° C., the roll span of the guide roll in the heat treatment step is in the range of 50 to 300 mm, and the film transport tension is in the range of 15 to 100 N/m. It is preferable that the film is subjected to heat treatment as described above, the film is once cooled to a temperature not higher than the glass transition temperature (Tg) on the downstream side of this heat treatment step, and then stretched. According to this method for producing an acrylic resin film, in the solution casting film forming method, the temperature is raised to a temperature near the glass transition temperature (Tg) in the process upstream of the stretching step, and then the cooling step is performed again. By stretching again while raising the temperature to near the glass transition temperature (Tg), an appropriate combination of in-plane retardation (Ro) and thickness direction retardation (Rt) can be realized, and the film The haze value of can be reduced.
 本発明に係るアクリル樹脂フィルムは、例えば、VA型液晶表示装置用の位相差フィルムとして用いる場合には、面内リターデーション(Ro)が45~65nmの範囲、厚さ方向リターデーション(Rt)が105~140nmの範囲であり、厚さ方向リターデーション(Rt)と面内リターデーション(Ro)との比:Rt/Roが、1.6~2.6であることが好ましい。 When used as a retardation film for a VA type liquid crystal display device, the acrylic resin film according to the present invention has an in-plane retardation (Ro) in the range of 45 to 65 nm and a thickness direction retardation (Rt). It is preferably in the range of 105 to 140 nm, and the ratio of the thickness direction retardation (Rt) to the in-plane retardation (Ro): Rt/Ro is preferably 1.6 to 2.6.
 このような本発明に係るアクリル樹脂フィルムによれば、厚さ方向リターデーション(Rt)の低下だけでなく、リターデーション値の幅手方向の均一性を確保することができるとともに、面内リターデーション(Ro)と厚さ方向リターデーション(Rt)の適切な組み合わせを実現することができ、フィルムのヘイズ値の低減により、ひいては液晶表示パネルの正面コントラストの向上を果たし得るものである。 According to such an acrylic resin film of the present invention, not only the decrease in retardation (Rt) in the thickness direction but also the uniformity in the width direction of the retardation value can be ensured, and the in-plane retardation can be ensured. An appropriate combination of (Ro) and retardation in the thickness direction (Rt) can be realized, and the haze value of the film can be reduced, which in turn can improve the front contrast of the liquid crystal display panel.
 位相差フィルムを作製するための延伸工程(テンター工程ともいう)の一例を、図4を用いて説明する。 An example of a stretching process (also called a tenter process) for producing a retardation film will be described with reference to FIG.
 図4は、本発明に係るアクリル樹脂フィルムを製造するにあたって、好ましく使用されるテンター延伸装置201の一例を模式的に示したものである。同図において、テンター延伸装置201は模式的に記載されているが、通常は、無端チェーンよりなる左右一対の回転駆動装置(輪状のチェーン)201a、201bの1列状態に具備された多数のクリップ202a、202bのうち、フィルム(F)の左右両端部を把持して引っ張るチェーン往路側直線移行部のクリップ202a、202bがフィルム(F)の幅手方向に漸次離れるように、左右のチェーン201a、201bの軌道が設置されており、フィルムFの幅手方向の延伸が行われるようになされている。 FIG. 4 schematically shows an example of a tenter stretching device 201 that is preferably used in manufacturing the acrylic resin film according to the present invention. In the figure, the tenter stretching device 201 is schematically illustrated, but normally, a large number of clips provided in a single row state of a pair of left and right rotary drive devices (ring-shaped chains) 201a and 201b, which are endless chains. Of the 202a, 202b, the left and right chains 201a, 202b, 202b of the chain forward side straight line transition portion that grips and pulls both left and right ends of the film (F) are gradually separated in the width direction of the film (F). The track 201b is installed so that the film F is stretched in the width direction.
 図4において、工程Aでは、無端支持体(図示略)から剥離されて搬送されてきたウェブ(フィルム)Fを左右把持手段(クリップ)202a、202bによって把持する工程であり、次の工程Bにおいて、同図に示すような延伸角度でウェブが幅手方向(ウェブの進行方向と直交する方向)に延伸され、工程Cにおいては、延伸が終了し、ウェブを把持したまま搬送する工程で、工程Dは、ウェブを幅手方向に緩和する工程である。 In FIG. 4, in step A, the web (film) F separated from the endless support (not shown) and conveyed is gripped by the left and right gripping means (clips) 202a and 202b. In the next step B, The web is stretched in the width direction (direction orthogonal to the traveling direction of the web) at a stretching angle as shown in the same drawing, and in step C, the stretching is completed, and the web is gripped and conveyed. D is a step of relaxing the web in the width direction.
 無端支持体からウェブを剥離した後から工程B開始前及び/又は工程Cの直後に、ウェブ幅方向の端部を切り落とすスリッターを設けることが好ましい。特に、A工程開始直前にウェブ端部を切り落とすスリッターを設けることが好ましい。幅手方向に同一の延伸を行った際、特に工程B開始前にウェブ端部を切除した場合とウェブ端部を切除しない条件とを比較すると、前者がより光学遅相軸の分布(配向角分布ともいう)を改良する効果が得られる。 It is preferable to provide a slitter for cutting off the edge in the web width direction after the web is peeled from the endless support but before the step B is started and/or immediately after the step C. In particular, it is preferable to provide a slitter for cutting off the web end just before starting the step A. When the same stretching is performed in the width direction, comparing the case where the web end is cut off before the start of the process B and the condition where the web end is not cut off, the former shows the distribution of the optical slow axis (orientation angle (Also called distribution) is obtained.
 テンター工程において、配向角分布を改善するため意図的に異なる温度を持つ区画を作ることも好ましい。また、異なる温度区画の間にそれぞれの区画が干渉を起こさないように、ニュートラルゾーンを設けることも好ましい。 In the tenter process, it is also preferable to intentionally create compartments with different temperatures in order to improve the orientation angle distribution. It is also preferable to provide a neutral zone between different temperature zones so that the respective zones do not interfere with each other.
 なお、延伸操作は多段階に分割して実施してもよく、流延方向、幅手方向に二軸延伸を実施することが好ましい。また、二軸延伸を行う場合にも同時二軸延伸を行ってもよいし、段階的に実施してもよい。この場合、段階的とは、例えば、延伸方向の異なる延伸を順次行うことも可能であるし、同一方向の延伸を多段階に分割し、かつ異なる方向の延伸をそのいずれかの段階に加えることも可能である。 Note that the stretching operation may be performed in multiple stages, and it is preferable to perform biaxial stretching in the casting direction and the width direction. Also, when biaxial stretching is performed, simultaneous biaxial stretching may be performed or stepwise implementation may be performed. In this case, stepwise means that, for example, stretching in different stretching directions can be sequentially performed, or stretching in the same direction can be divided into multiple stages, and stretching in different directions can be added to any of the stages. Is also possible.
 金属製の無端支持体より剥離したウェブを乾燥させながら搬送し、さらにウェブの両端をピン又はクリップ等で把持するテンター方式で幅方向に延伸を行うことが特に好ましく、これによって所定の位相差を付与することができる。この時、幅方向のみに延伸してもよいし、同時二軸延伸することも好ましい。好ましい延伸倍率は1.05~2倍が好ましく、好ましくは1.15~1.5倍である。同時二軸延伸の際に縦方向に収縮させてもよく、0.8~0.99、好ましくは0.9~0.99となるように収縮させてもよい。好ましくは、横方向延伸及び縦方向の延伸若しくは収縮により面積が1.12~1.6倍となっていることが好ましく、1.15~1.5倍となっていることが好ましい。これは縦方向の延伸倍率×横方向の延伸倍率で求めることができる。 It is particularly preferable that the web peeled from the metal endless support is conveyed while being dried, and further stretched in the width direction by a tenter method in which both ends of the web are gripped by pins or clips, whereby a predetermined phase difference is obtained. Can be granted. At this time, stretching may be performed only in the width direction, or simultaneous biaxial stretching is also preferable. The preferred draw ratio is 1.05 to 2 times, preferably 1.15 to 1.5 times. At the time of simultaneous biaxial stretching, it may be contracted in the machine direction, or may be contracted so as to be 0.8 to 0.99, preferably 0.9 to 0.99. Preferably, the area is 1.12 to 1.6 times, and preferably 1.15 to 1.5 times due to the transverse stretching and the longitudinal stretching or contraction. This can be obtained by multiplying the draw ratio in the longitudinal direction by the draw ratio in the transverse direction.
 また、本発明における「延伸方向」とは、延伸操作を行う場合の直接的に延伸応力を加える方向という意味で使用する場合が通常であるが、多段階に二軸延伸される場合に、最終的に延伸倍率の大きくなった方(すなわち、通常遅相軸となる方向)の意味で使用されることもある。 Further, the "stretching direction" in the present invention is usually used to mean a direction in which a stretching stress is directly applied when a stretching operation is performed, but when biaxially stretching in multiple stages, the final In some cases, it is used in the sense of the one having a larger draw ratio (that is, the direction normally serving as the slow axis).
 工程Aでの予熱時間は、長時間又はより高温であることが好ましい。幅手方向のフィルム温度均一性とリターデーション制御性の点で、130~200℃が好ましく、3~60秒が好ましい。 The preheating time in step A is preferably a long time or a higher temperature. From the viewpoint of film temperature uniformity in the width direction and retardation controllability, 130 to 200° C. is preferable, and 3 to 60 seconds is preferable.
 工程Bでのウェブ昇温速度は、配向角分布を良好にするために、0.5~10℃/秒の範囲が好ましい。 The web heating rate in step B is preferably in the range of 0.5 to 10° C./sec in order to improve the orientation angle distribution.
 工程Bでの延伸時間は、短時間である方が好ましい。ただし、ウェブの均一性の観点から、最低限必要な延伸時間の範囲が規定される。具体的には1~10秒の範囲であることが好ましく、4~10秒の範囲がより好ましい。 The stretching time in step B is preferably short. However, from the viewpoint of web uniformity, the minimum required stretching time range is specified. Specifically, the range of 1 to 10 seconds is preferable, and the range of 4 to 10 seconds is more preferable.
 上記テンター工程において、熱伝達係数は一定でもよいし、変化させてもよい。熱伝達係数としては、41.9~419×10J/mhrの範囲の熱伝達係数を持つことが好ましい。さらに好ましくは、41.9~209.5×10J/mhrの範囲であり、41.9~126×10J/mhrの範囲が最も好ましい。 In the tenter process, the heat transfer coefficient may be constant or may be changed. The heat transfer coefficient preferably has a heat transfer coefficient in the range of 41.9 to 419×10 3 J/m 2 hr. More preferably, it is in the range of 41.9 to 209.5×10 3 J/m 2 hr, and most preferably in the range of 41.9 to 126×10 3 J/m 2 hr.
 上記工程Bでの幅手方向への延伸速度は、一定で行ってもよいし、変化させてもよい。延伸速度としては、50~2000%/minが好ましく、さらに好ましくは100~1000%/min、150~800%/minが最も好ましい。 The stretching speed in the width direction in the above step B may be constant or may be changed. The stretching speed is preferably 50 to 2000%/min, more preferably 100 to 1000%/min, and most preferably 150 to 800%/min.
 上記工程Bにおいて最初の10cmにおける応力を制御することは本発明の効果を得る上で好ましく、100~200N/mmの範囲で制御することが好ましい。 In the step B, it is preferable to control the stress in the first 10 cm in order to obtain the effect of the present invention, and it is preferable to control the stress in the range of 100 to 200 N/mm.
 テンター工程において、雰囲気の幅手方向の温度分布が少ないことが、ウェブの均一性を高める観点から好ましく、テンター工程での幅手方向の温度分布は、±5℃以内が好ましく、±2℃以内がより好ましく、±1℃以内が最も好ましい。上記温度分布を少なくすることにより、ウェブの幅手での温度分布も小さくなることが期待できる。 In the tenter process, it is preferable that the temperature distribution in the width direction of the atmosphere is small from the viewpoint of improving the uniformity of the web, and the temperature distribution in the width direction in the tenter process is preferably within ±5°C, and within ±2°C. Is more preferable, and within ±1°C is most preferable. By reducing the temperature distribution, it can be expected that the temperature distribution across the width of the web will also be reduced.
 工程Dにおいて、幅方向に緩和することが好ましい。具体的には、前工程の延伸後の最終的なウェブ幅に対して95~99.5%の範囲になるようにウェブ幅を調整することが好ましい。 In step D, it is preferable to relax in the width direction. Specifically, it is preferable to adjust the web width so that it is in the range of 95 to 99.5% with respect to the final web width after stretching in the previous step.
 また、本発明ではポリマーの配向を精度よく行うために、テンターの左右把持手段によってウェブの把持長(把持開始から把持終了までの距離)を左右で独立に制御できるテンターを用いることも好ましい。 Further, in the present invention, in order to accurately orient the polymer, it is also preferable to use a tenter capable of independently controlling the gripping length (distance from gripping start to gripping end) of the web by the left and right gripping means of the tenter.
 テンター延伸装置でウェブの左右両端を把持している部分の長さを左右独立に制御して、ウェブの把持長を左右で異なるものとする手段としては、具体的には、例えば図5に示すようなものがある。 As a means for independently controlling the lengths of the portions gripping the left and right ends of the web by the tenter stretching device to make the gripping length of the web different between the left and the right, specifically, for example, shown in FIG. There is something like this.
 図5は、位相差フィルムを製造するにあたって、好ましく使用されるテンター延伸装置201の一例を模式的に示したものである。 FIG. 5 schematically shows an example of a tenter stretching device 201 that is preferably used in manufacturing a retardation film.
 同図において、テンター延伸装置201の左右把持手段(クリップ)202a、202bの把持開始位置のクリップスターター203a、203bの設置位置を左右で同じとし、左右クリップクローザー204a、204bの設置位置を左右で変えることにより、フィルムFの左右把持長(Xa)(Xb)を変化させ、これによってテンター延伸装置201内でフィルムFをねじるような力が発生し、テンター延伸装置201以外の搬送による位置ずれを矯正することができ、剥離からテンターまでの搬送距離を長くしてもウェブの蛇行やツレ、シワの発生を効果的に防止することができる。 In the figure, the installation positions of the clip starters 203a and 203b at the grip start positions of the left and right gripping means (clips) 202a and 202b of the tenter stretching device 201 are the same on the left and right, and the installation positions of the left and right clip closers 204a and 204b are changed on the left and right. As a result, the left and right gripping lengths (Xa) and (Xb) of the film F are changed, whereby a force that twists the film F is generated in the tenter stretching device 201, and the positional deviation due to conveyance other than the tenter stretching device 201 is corrected. It is possible to effectively prevent the web from meandering, fraying and wrinkling even if the conveying distance from the peeling to the tenter is long.
 また、本発明ではシワ、ツレ、歪み等をさらに精度よく矯正するために、長尺フィルムの蛇行を防止する装置を付加することが好ましく、特開平6-8663号公報に記載のエッジポジションコントローラー(EPCと称することもある)や、センターポジションコントローラー(CPCと称することもある)等の蛇行修正装置が使用されることが好ましい。これらの装置は、フィルム耳端をエアーサーボセンサーや光センサーにて検知して、その情報に基づいてフィルムの搬送方向を制御し、フィルムの耳端や幅方向の中央が一定の搬送位置となるようにするもので、そのアクチュエーターとして、具体的には1~2本のガイドロールや駆動付きフラットエキスパンダーロールをライン方向に対して、左右(又は上下)にふることで蛇行修正したり、フィルムの左右に小型の2本1組のピンチロールを設置(フィルムの表と裏に1本ずつ設置されていて、それがフィルムの両側にある)し、これにてフィルムを挟み引っ張り蛇行修正したりしている(クロスガイダー方式)。これらの装置の蛇行修正の原理は、フィルムが走行中に、例えば左に行こうとする時は前者の方式ではロールをフィルムが右に行くように傾ける方法をとり、後者の方法では右側の1組のピンチロールがニップされて、右に引っ張るというものである。これら蛇行防止装置をフィルム剥離点からテンター延伸装置の間に少なくとも1台設置することが好ましい。 Further, in the present invention, in order to correct wrinkles, cracks, distortions, etc. more accurately, it is preferable to add a device for preventing meandering of the long film, and the edge position controller (JP-A-6-8663) ( A meandering correction device such as an EPC) or a center position controller (also sometimes referred to as CPC) is preferably used. These devices detect the edge of the film with an air servo sensor or an optical sensor and control the transport direction of the film based on the information, so that the edge of the film or the center in the width direction becomes a constant transport position. Specifically, as the actuator, specifically, one or two guide rolls or a flat expander roll with a drive is moved left and right (or up and down) with respect to the line direction to correct the meandering or the film. We installed a pair of small pinch rolls on the left and right (one on each side of the film, one on the front and one on the back of the film), and sandwiched the film with this to correct the meandering. Yes (cross guider method). The principle of the meandering correction of these devices is such that when the film is running, for example, when trying to go to the left, the former method tilts the roll so that the film goes to the right, and the latter method uses the right side A pair of pinch rolls are nipped and pulled to the right. It is preferable to install at least one of these meandering prevention devices between the film peeling point and the tenter stretching device.
 なお、テンター延伸装置を用いて延伸する場合、下記の問題があった。
 (1)フィルムの把持部分に応力が集中するため、破断が起こりやすい。
 (2)フィルム表面に揮発した添加剤等の析出物が付着し品質欠陥が発生する。
 (3)テンター出口で把持部のフィルム変形が大きく、スリット(耳切り)ができなくなる。
 この課題解決のため、把持具の温度をあらかじめ有機溶媒の沸点以上でかつ延伸温度未満に調整して該流延膜を把持することが好ましい。
 ウェブを把持する際の把持具の温度が用いる有機溶媒の沸点より低いと、把持部の有機溶媒の乾燥が遅くなり、ウェブ中央部に比べて柔らかくなり、破断の頻度が多くなってしまう。さらに、ウェブ中の添加剤等が把持部に析出し破断や品質欠陥になる場合もある。また、把持具の温度が延伸温度以上であると、把持部はウェブと接触しているためウェブ中央部よりも伝熱速度が速くなるので、ウェブ中央部に比べ把持部のウェブ温度が高くなり、破断頻度が多くなってしまう。把持具温度のさらに好ましい範囲は、用いる有機溶媒の沸点から10℃高い温度以上、延伸温度から10℃低い温度以下である。
The following problems were encountered when stretching was performed using a tenter stretching device.
(1) Since stress concentrates on the gripped portion of the film, breakage easily occurs.
(2) Volatile precipitates such as additives adhere to the film surface to cause quality defects.
(3) At the exit of the tenter, the deformation of the film at the grip is large, and slits (edge cutting) cannot be performed.
In order to solve this problem, it is preferable to adjust the temperature of the holding tool to a temperature not lower than the boiling point of the organic solvent and lower than the stretching temperature to hold the casting film.
When the temperature of the gripping tool for gripping the web is lower than the boiling point of the organic solvent used, the organic solvent in the gripping part dries slowly, becomes softer than the central part of the web, and breaks frequently. Further, additives and the like in the web may be deposited on the gripping portion to cause breakage and quality defects. Further, when the temperature of the gripping tool is equal to or higher than the stretching temperature, the gripping portion is in contact with the web, and therefore the heat transfer rate is higher than that of the central portion of the web, so that the web temperature of the gripping portion becomes higher than that of the central portion of the web. However, the breakage frequency increases. A more preferable range of the temperature of the gripping tool is a temperature 10°C or higher higher than the boiling point of the organic solvent used and a temperature 10°C or lower lower than the stretching temperature.
 把持具の温度を所定の温度範囲に調整する方法は、特に限定はないが、把持部の戻り側に加熱・冷却手段を設けることが好ましい。例えば、温度調整された熱風又は冷風を把持部に直接吹き付ける方法、把持部を温度調整されたゾーン中を通過させる方法等を好ましく用いることができる。なお、把持部の戻り側において、把持具の温度をウェブ中の添加剤等が析出しない温度以上に保温しておくことが好ましい。 The method of adjusting the temperature of the gripping tool within a predetermined temperature range is not particularly limited, but it is preferable to provide heating/cooling means on the return side of the gripping part. For example, it is possible to preferably use a method of directly blowing hot air or cold air whose temperature has been adjusted to the gripping portion, a method of passing the gripping portion through a temperature-controlled zone, and the like. In addition, on the return side of the grip portion, it is preferable to keep the temperature of the grip tool at a temperature not lower than the temperature at which the additives and the like in the web do not deposit.
 本発明では、横延伸を2段階で行い、かつ2段階目の延伸を1段階目の延伸温度より1~50℃高い温度で行う方法も好ましく用いられる。延伸温度を高くする方法に特に制限はない。例えば、熱風加熱の場合は、第1段階の延伸と第2段階の延伸をそれぞれ異なる温度でコントロールされた2つに区画されたオーブン内で延伸する方法、遠赤外線やマイクロ波加熱装置等の輻射加熱の場合は、第1段階の延伸と第2段階の延伸をヒーター本数や能力を変化させて行う方法等が好ましく用いられる。第1段階と第2段階の延伸は、連続的に行ってもよいし、第1段階の延伸の後、冷却行程や幅保持工程、縦方向又は幅方向の緩和工程等を通過させた後、第2段階の延伸を行ってもよい。テンター方式によりオーブン内の温度を下流に進むほど段階的に高く設定して延伸する方法が、設備がコンパクトにできるので好ましい。 In the present invention, a method in which the transverse stretching is performed in two stages and the second stage stretching is performed at a temperature 1 to 50° C. higher than the first stage stretching temperature is also preferably used. There is no particular limitation on the method of raising the stretching temperature. For example, in the case of hot air heating, a method of stretching the first stage stretching and the second stage stretching in two ovens controlled at different temperatures, and a radiation such as a far infrared ray or microwave heating device. In the case of heating, a method of performing the first stage stretching and the second stage stretching by changing the number of heaters and the capacity is preferably used. The stretching of the first stage and the second stage may be performed continuously, or after passing through a cooling process, a width holding process, a longitudinal direction or a relaxation process in the width direction after the stretching of the first stage, A second stage stretching may be performed. It is preferable to use a tenter method in which the temperature in the oven is set to be higher stepwise as it goes downstream so that the equipment can be made more compact.
 テンター工程で処理した後、さらに後乾燥工程を設けるのが好ましい。 After processing in the tenter process, it is preferable to further provide a post-drying process.
 この工程でウェブを乾燥させる手段は特に制限なく、一般的に熱風、赤外線、加熱ロール、マイクロ波等で行うことができるが、簡便さの点で熱風で行うことが好ましい。
 なお、ウェブを搬送しながら乾燥させるに際し、ウェブの温度は高温になりすぎないようにすることが好ましい。搬送方向に張力をかけてウェブを搬送するときに、ウェブがその軟化温度よりも高い温度になると、ウェブにシワが発生し故障となる。乾燥温度(乾燥時のウェブの温度)の目安として、ウェブの乾燥終了状態におけるTgに対し、10~50℃低温の範囲が好ましい。また、乾燥の進行に応じて軟化温度も上昇するため、それに合わせて乾燥温度を上げていくことも好ましい。例えば、乾燥初期はTgよりも30~50℃低温、乾燥中期はTgよりも20~40℃低温、乾燥終盤ではTgよりも10~20℃低温といったように段階的に乾燥温度を上げていくことが好ましく行われる。
 搬送によるシワの発生を抑制するために、搬送張力を適正に調整することが好ましい。特に厚さ10~20μmといった薄膜フィルムの場合は、フィルム幅1mあたり20~200Nの張力とすることが好ましく、10~50Nの範囲がさらに好ましい。
The means for drying the web in this step is not particularly limited, and generally, hot air, infrared rays, heating rolls, microwaves or the like can be used, but hot air is preferable in terms of simplicity.
In addition, when the web is dried while being transported, it is preferable that the temperature of the web is not too high. When the web is heated by applying tension in the transport direction and the temperature of the web is higher than the softening temperature of the web, wrinkles occur in the web and the web becomes defective. As a standard for the drying temperature (temperature of the web during drying), a low temperature range of 10 to 50° C. is preferable with respect to Tg when the web is completely dried. Further, since the softening temperature rises as the drying progresses, it is also preferable to raise the drying temperature accordingly. For example, the drying temperature should be raised stepwise, such as 30-50°C lower than Tg in the initial stage of drying, 20-40°C lower than Tg in the middle stage of drying, and 10-20°C lower than Tg in the final stage of drying. Is preferably carried out.
In order to suppress the occurrence of wrinkles during transportation, it is preferable to properly adjust the transportation tension. Particularly in the case of a thin film having a thickness of 10 to 20 μm, the tension is preferably 20 to 200 N per 1 m of the film width, and more preferably 10 to 50 N.
 (斜め延伸)
 斜め延伸は、製膜された長尺フィルムを幅手方向に対して斜めの方向に延伸する工程である。長尺フィルムの製造方法では、フィルムを連続的に製造することにより、所望の任意の長さにフィルムを製造しうる。なお、長尺延伸フィルムの製造方法は、長尺フィルムを製膜した後に一度巻芯に巻き取り、巻回体(原反ともいう)にしてから斜め延伸工程に供給するようにしてもよいし、製膜後のフィルムを巻き取ることなく、製膜工程から連続して斜め延伸工程に供給してもよい。製膜工程と斜め延伸工程を連続して行うことは、延伸後の膜厚や光学値の結果をフィードバックして製膜条件を変更し、所望の長尺延伸フィルムを得ることができるので好ましい。
(Diagonal stretching)
The oblique stretching is a step of stretching the formed long film in a direction oblique to the width direction. In the method for producing a long film, the film can be produced in any desired length by continuously producing the film. The method for producing a long stretched film may be such that after the long film is formed, it is wound around a winding core once to form a wound body (also referred to as a raw material) and then supplied to the oblique stretching step. Alternatively, the film after the film formation may be continuously supplied to the oblique stretching process from the film forming process without being wound up. It is preferable to continuously perform the film forming step and the oblique stretching step because the film forming conditions can be changed by feeding back the results of the film thickness after stretching and the optical value, and a desired long stretched film can be obtained.
 斜め延伸での長尺延伸フィルムの製造方法では、フィルムの幅手方向に対して0°を超え90°未満の角度に遅相軸を有する長尺延伸フィルムを製造する。ここで、フィルムの幅手方向に対する角度とは、フィルム面内における角度である。フィルム面内の遅相軸は、通常延伸方向又は延伸方向に直角な方向に発現するので、フィルムの延長方向に対して0°を超え90°未満の角度で延伸を行うことにより、このような遅相軸を有する長尺延伸フィルムを製造しうる。 In the method for producing a long stretched film by oblique stretching, a long stretched film having a slow axis at an angle of more than 0° and less than 90° with respect to the width direction of the film is produced. Here, the angle with respect to the width direction of the film is an angle in the film plane. Since the slow axis in the plane of the film is usually expressed in the stretching direction or in the direction perpendicular to the stretching direction, by stretching at an angle of more than 0° and less than 90° with respect to the stretching direction of the film, A long stretched film having a slow axis can be produced.
 長尺延伸フィルムの幅手方向と遅相軸とがなす角度、すなわち配向角は、0°を超え90°未満の範囲で、所望の角度に任意に設定することができる。 The angle formed by the width direction of the long stretched film and the slow axis, that is, the orientation angle can be arbitrarily set to a desired angle in the range of more than 0° and less than 90°.
 長尺フィルムに斜め方向の配向を付与するために、斜め延伸装置を用いる。本実施形態で用いられる斜め延伸装置は、把持具走行支持具の経路パターンを多様に変化させることにより、フィルムの配向角を自在に設定でき、さらに、フィルムの配向軸をフィルム幅方向に渡って左右均等に高精度に配向させることができ、かつ、高精度でフィルム厚さやリターデーションを制御できるフィルム延伸装置であることが好ましい。 An oblique stretching device is used to impart diagonal orientation to the long film. The oblique stretching device used in the present embodiment can freely set the orientation angle of the film by changing the path pattern of the gripping tool traveling support tool, and further, the orientation axis of the film can be set across the film width direction. It is preferable that the film stretching device be capable of uniformly orienting right and left with high accuracy and controlling the film thickness and retardation with high accuracy.
 図7は、本実施形態の長尺延伸フィルムの製造方法に用いられる斜め延伸を説明するための概略図である。ただし、これは一例であって本発明はこれに限定されるものではない。 FIG. 7 is a schematic diagram for explaining oblique stretching used in the method for producing a long stretched film of this embodiment. However, this is an example and the present invention is not limited to this.
 延伸装置に繰入る際の長尺フィルムの走行方向(延伸前の走行方向)D1は、延伸装置から繰出る際の長尺延伸フィルムの走行方向(延伸後の走行方向)D2と異なっており、繰出角度θiを成している。繰出角度θiは0°を超え90°未満の範囲で、所望の角度に任意に設定することができる。 The running direction (running direction before stretching) D1 of the long film when rolled into the stretching device is different from the running direction (running direction after stretching) D2 of the long stretched film when unrolled from the stretching device, It forms the payout angle θi. The feeding angle θi can be arbitrarily set to a desired angle in the range of more than 0° and less than 90°.
 長尺フィルムは斜め延伸装置入口(把持具が長尺フィルムを把持する把持開始点であり、当該把持開始点を結んだ直線を参照符号Aで示す)においてその両端を左右の把持具(一対の把持具対)によって把持され、把持具の走行に伴い走行される。 At the entrance of the oblique stretching device (the gripping tool is a gripping start point for gripping the long film, and a straight line connecting the gripping start points is indicated by a reference symbol A), both ends of the long film are held by a pair of left and right gripping tools (a pair of gripping tools). It is gripped by a gripping tool pair) and travels as the gripping tool travels.
 把持具対は、斜め延伸装置入口で、長尺フィルムの走行方向(延伸前の走行方向)D1に対して略垂直な方向に相対している左右の把持具Ci及び把持具Coからなる。左右の把持具Ci及び把持具Coは、それぞれ左右非対称な経路を走行し、延伸終了時の位置(把持具が把持を解放する把持解放点であり、当該把持解放点を結んだ直線を参照符号Bで示す)で把持した長尺延伸フィルムを解放する。 The pair of gripping tools is composed of left and right gripping tools Ci and Co that are opposed to each other at the entrance of the oblique stretching device in a direction substantially perpendicular to the running direction (running direction before stretching) D1 of the long film. The left and right gripping tools Ci and Co travel on a left-right asymmetrical path, respectively, and are at positions at the end of stretching (the gripping tool is a gripping release point at which the gripping is released, and a straight line connecting the gripping release points is referred to as a reference numeral). The elongated stretched film grasped in (B) is released.
 このとき、斜め延伸装置入口(図中Aの位置)で相対していた左右の把持具Ci及び把持具Coは、それぞれ内側の把持具走行支持具Ri及び外側の把持具走行支持具Roを走行するにつれて、内側の把持具走行支持具Riを走行する把持具Ciは、外側の把持具走行支持具Roを走行する把持具Coに対して進行する位置関係となる。 At this time, the left and right gripping tools Ci and gripping tools Co, which were facing each other at the entrance of the oblique stretching device (position A in the figure), travel on the inner gripping tool running support tool Ri and the outer gripping tool running support tool Ro, respectively. The gripping tool Ci traveling on the inner gripping tool travel support tool Ri has a positional relationship of advancing with respect to the gripping tool Co traveling on the outer gripping tool travel support tool Ro.
 すなわち、斜め延伸装置入口で長尺フィルムの走行方向D1に対して略垂直な方向に相対していた把持具Ci及び把持具Coが、位置Bにある状態で、該把持具Ci及び把持具Coを結んだ直線が長尺延伸フィルムの走行方向(延伸後の走行方向)D2に対して略垂直な方向に対して角度θLだけ傾斜している。 That is, the gripping tool Ci and the gripping tool Co, which were opposed to each other in the direction substantially perpendicular to the running direction D1 of the long film at the entrance of the oblique stretching device, are in the position B, and the gripping tool Ci and the gripping tool Co are in the state. The straight line connecting the lines is inclined by an angle θL with respect to the direction substantially perpendicular to the running direction (running direction after stretching) D2 of the long stretched film.
 以上の所作をもって、長尺フィルムがθLの方向に斜め延伸されることとなる。ここで略垂直とは、90±1°の範囲にあることを示す。 With the above actions, the long film will be stretched in the direction of θL. Here, “substantially vertical” means that the angle is in the range of 90±1°.
 斜め延伸可能な延伸装置は、長尺フィルムを、延伸可能な任意の温度に加熱し、斜め延伸する装置である。この延伸装置は、加熱ゾーン(加熱炉)と、長尺フィルムの両側を把持して走行するための両側で一対となる複数の把持具と、前記把持具の走行を支持するための把持具走行支持具とを備えている。 The oblique stretching device is a device that heats a long film to an arbitrary temperature at which it can be stretched and obliquely stretches it. This stretching device includes a heating zone (heating furnace), a plurality of gripping tools paired on both sides for gripping and traveling on both sides of a long film, and gripping tool travel for supporting the traveling of the gripping tools. And a support.
 延伸装置の入口部(把持開始点)に順次供給される長尺フィルムの両端を、把持具で把持し、加熱炉内に長尺フィルムを導き、延伸装置の出口部(把持解放点)で把持具から長尺延伸フィルムを解放する。把持具から解放された長尺延伸フィルムは巻芯に巻き取られる。把持具を備える把持具走行支持具は無端状の連続軌道を有し、延伸装置の出口部で長尺延伸フィルムの把持を解放した把持具は、把持具走行支持具によって順次把持開始点に戻されるようになっている。 Both ends of the long film that is sequentially supplied to the inlet of the stretching device (holding start point) are gripped by gripping tools, the long film is introduced into the heating furnace, and the outlet of the stretching device (holding release point) is gripped. Release the long stretched film from the tool. The long stretched film released from the gripping tool is wound around the winding core. The gripping tool running support provided with the gripping tool has an endless continuous track, and the gripping tool that has released the grip of the long stretched film at the exit of the stretching device is sequentially returned to the gripping start point by the gripping tool running support. It is supposed to be.
 把持具走行支持具は、例えば、ガイドレールやギアによってそれぞれ経路を規制されている無端状のチェーンが把持具を備える形態であってもよいし、無端状のガイドレールが把持具を備える形態であってもよい。すなわち、本発明では、把持具走行支持具は、例えば無端状のチェーンを備えた有端状のガイドレールであってもよく、無端状のチェーンを備えた無端状のガイドレールであってもよく、チェーンを備えない無端状のガイドレールであってもよい。把持具は、把持具走行支持具がチェーンを備えない場合には、把持具走行支持具そのものの経路を走行し、チェーンを備える場合には、当該チェーンを介して把持具走行支持具の経路を走行する。以下、本発明では、一例として、把持具走行支持具の経路を把持具が走行する場合を説明するが、把持具は、把持具が設けられたチェーンを介して把持具走行支持具の経路を走行してもよい。 The gripping tool travel support may be, for example, a form in which an endless chain whose path is regulated by a guide rail or a gear includes the gripping tool, or an endless guide rail includes the gripping tool. It may be. That is, in the present invention, the gripping tool travel support may be, for example, an endless guide rail having an endless chain, or an endless guide rail having an endless chain. Alternatively, an endless guide rail without a chain may be used. The gripper travels along the path of the gripper travel support itself when the gripper travel support does not include a chain, and when the gripper travel support includes the chain, the gripper travels along the path of the gripper travel support. To run. Hereinafter, in the present invention, as an example, a case where the gripping tool travels along the path of the gripping tool travel support tool will be described. You may drive.
 それぞれの把持具走行支持具に設けられた把持具の数は特に限定されないが、同数であることが好ましい。 The number of gripping tools provided on each gripping tool travel support is not particularly limited, but the same number is preferable.
 なお、延伸装置の把持具走行支持具は左右で非対称な形状となっており、製造すべき長尺延伸フィルムに与える配向角、延伸倍率等に応じて、把持具走行支持具の経路のパターンは手動で、又は自動で調整できるようになっている。 The gripping tool travel support of the stretching device has a left-right asymmetrical shape, and the pattern of the path of the gripping tool travel support depends on the orientation angle, the draw ratio, etc. given to the long stretched film to be produced. It can be adjusted manually or automatically.
 本実施形態の延伸装置では、各把持具走行支持具の経路を自由に設定し、把持具走行支持具の経路のパターンを任意に変更できることが好ましい。 In the stretching device of the present embodiment, it is preferable that the path of each gripping tool travel support tool can be freely set and the pattern of the path of the gripping tool travel support tool can be arbitrarily changed.
 把持具走行支持具の長さ(全長)としては特に限定されず、通常は10~100m程度である。また、両側の把持具走行支持具の全長は同じであってもよく、異なっていてもよい。 The length (total length) of the gripping tool travel support is not particularly limited, and is usually about 10 to 100 m. Further, the total lengths of the gripper traveling supports on both sides may be the same or different.
 本発明の実施形態において、延伸装置の把持具の走行速度は適宜選択できるが、中でも15~150m/分が好ましい。延伸装置の把持具の走行速度が150m/分より高速になると、屈曲部において、フィルムの端部にかかる局所的な応力が大きくなり、フィルムの端部にシワや寄りが発生し、延伸終了後に得られるフィルムの全幅のうち、良品として得られる有効幅が狭くなる傾向がある。 In the embodiment of the present invention, the traveling speed of the grasping tool of the stretching device can be appropriately selected, but 15 to 150 m/min is preferable among them. When the traveling speed of the gripping tool of the stretching device is higher than 150 m/min, the local stress applied to the edge of the film becomes large at the bent portion, and wrinkles and deviations occur at the edge of the film, and after the stretching is completed. Of the total width of the obtained film, the effective width obtained as a good product tends to be narrow.
 本発明において、把持具対を構成する二つの把持具の走行速度は、同じであってもよく、異なっていてもよい。延伸工程出口で長尺延伸フィルムの左右に走行速度差があると、延伸工程出口におけるシワ、寄りが発生する可能性があるため、把持具対を構成する左右の把持具の速度差は、実質的に等速であることが好ましい。 In the present invention, the traveling speeds of the two gripping tools forming the gripping tool pair may be the same or different. If there is a difference in running speed between the left and right of the long stretched film at the exit of the stretching step, wrinkles at the exit of the stretching step and deviation may occur, so the speed difference between the left and right gripping tools forming the gripping tool pair is substantially It is preferable that the speed is constant.
 本発明において、把持具は、前後の把持具と一定間隔を保って走行することが好ましい。 In the present invention, it is preferable that the gripping tool travels at a constant distance from the front and rear gripping tools.
 把持具対を構成する把持具の走行速度を等速とする場合において、それぞれの把持具の走行速度の差は、1%以下であることが好ましく、より好ましくは0.5%以下、さらに好ましくは0.1%以下である。一般的な延伸装置等では、チェーンを駆動するスプロケット(ギア)の歯の周期、駆動モーターの周波数等に応じ、秒以下のオーダーで発生する速度むらがあり、しばしば数%のむらを生ずるが、これらは本実施形態で述べる速度差には該当しない。 When the traveling speed of the grasping tools forming the pair of grasping tools is constant, the difference between the traveling speeds of the respective grasping tools is preferably 1% or less, more preferably 0.5% or less, and further preferably Is 0.1% or less. In a general stretching device, there is speed irregularity that occurs on the order of seconds or less depending on the tooth cycle of the sprocket (gear) that drives the chain, the frequency of the drive motor, etc. Does not correspond to the speed difference described in this embodiment.
 本発明で用いられる斜め延伸装置において、特に長尺フィルムの搬送が斜めになる箇所において、把持具の軌跡を規制する把持具走行支持具には、しばしば大きい屈曲率が求められる。急激な屈曲による把持具同士の干渉、又は局所的な応力集中を避ける目的から、屈曲部では把持具の軌跡が円弧を描くように湾曲していることが望ましい。 In the oblique stretching device used in the present invention, a large bending rate is often required for the gripping tool travel support that regulates the trajectory of the gripping tool, especially at the location where the long film is conveyed obliquely. For the purpose of avoiding interference between the gripping tools due to abrupt bending or local concentration of stress, it is desirable that the trajectory of the gripping tool is curved so as to draw an arc in the bent portion.
 長尺フィルムは、斜め延伸装置入口(図7の直線Aの位置)において、その両端を左右の把持具(一対の把持具対)によって順次把持されて、把持具の走行に伴い走行される。斜め延伸装置入口で、長尺フィルムの走行方向D1に対して略垂直な方向に相対している把持具対は、左右非対称な経路を走行し、予熱ゾーン、延伸ゾーン、熱固定ゾーンを有する加熱炉を通過する。 At the entrance of the oblique stretching device (the position of the straight line A in FIG. 7), the long film is sequentially gripped at both ends by the left and right grippers (a pair of grippers), and is run as the gripper travels. At the entrance of the oblique stretching device, a pair of gripping tools facing each other in a direction substantially perpendicular to the running direction D1 of the long film travels in a left-right asymmetric path and has a preheating zone, a stretching zone, and a heat fixing zone. Go through the furnace.
 予熱ゾーンとは、加熱炉入口において、両端を把持した把持具の間隔が一定の間隔を保ったまま走行する区間をさす。  The preheating zone refers to the section at the entrance of the heating furnace where the gripper holding both ends keeps running at a constant interval.
 延伸ゾーンとは、両端を把持した把持具の間隔が開きだし、所定の間隔になるまでの区間をさす。本実施形態においては、延伸ゾーン内で斜め方向に延伸することができるが、斜め方向の延伸だけに限らず、延伸ゾーン内で横延伸した後に斜め延伸してもよいし、斜め延伸した後にさらに幅手方向に延伸してもよい。 Extending zone refers to the section until the gap between the gripping tools that grips both ends begins to reach a predetermined gap. In the present embodiment, it can be stretched obliquely in the stretching zone, but is not limited to stretching in the diagonal direction, it may be diagonally stretched after transverse stretching in the stretching zone, or further after diagonal stretching. It may be stretched in the width direction.
 熱固定ゾーンとは、延伸ゾーンより後の把持具の間隔が再び一定となる期間において、両端の把持具が互いに平行を保ったまま走行する区間をさす。熱固定ゾーンを通過した後に、ゾーン内の温度が長尺フィルムを構成するアクリル樹脂のガラス転移温度Tg℃以下に設定される区間(冷却ゾーン)を通過してもよい。このとき、冷却による長尺延伸フィルムの縮みを考慮して、あらかじめ対向する把持具間隔を狭めるような経路パターンとしてもよい。 ㆍThe heat setting zone refers to the section in which the grippers at both ends travel while maintaining parallel to each other in the period after the stretching zone where the gap between the grippers becomes constant again. After passing through the heat setting zone, it may pass through a section (cooling zone) in which the temperature in the zone is set to the glass transition temperature Tg° C. or lower of the acrylic resin forming the long film. At this time, in consideration of shrinkage of the long stretched film due to cooling, a path pattern may be set such that the interval between the gripping tools facing each other is narrowed in advance.
 フィルムの機械物性や光学特性を調整する目的で斜め延伸装置に長尺フィルムを導入する前後の工程において必要に応じて横延伸及び縦延伸を実施してもよい。 In order to adjust the mechanical properties and optical properties of the film, transverse stretching and longitudinal stretching may be performed as necessary in the process before and after introducing the long film into the oblique stretching device.
 各ゾーンの温度は、アクリル樹脂のガラス転移温度Tgに対し、予熱ゾーンの温度はTg-10~Tg+30℃の範囲、延伸ゾーンの温度はTg-10~Tg+30℃の範囲、冷却ゾーンの温度はTg-30~Tg+10℃の範囲に設定することが好ましい。 The temperature of each zone is the glass transition temperature Tg of the acrylic resin, the temperature of the preheating zone is Tg-10 to Tg+30°C, the temperature of the stretching zone is Tg-10 to Tg+30°C, and the temperature of the cooling zone is Tg. It is preferably set in the range of -30 to Tg+10°C.
 なお、幅方向の厚さむらの制御のために延伸ゾーンにおいて幅方向に温度差をつけてもよい。延伸ゾーンにおいて幅方向に温度差をつけるには、温風を恒温室内に送り込むノズルの開度を幅方向で差をつけるように調整する方法や、ヒーターを幅方向に並べて加熱制御するなどの公知の手法を用いることができる。予熱ゾーン、延伸ゾーン及び熱固定ゾーンの長さは適宜選択でき、延伸ゾーンの長さに対して、予熱ゾーンの長さが通常100~150%の範囲、熱固定ゾーンの長さが通常50~100%の範囲である。 Note that in order to control the thickness unevenness in the width direction, a temperature difference may be applied in the width direction in the stretching zone. To make a temperature difference in the width direction in the stretching zone, a method of adjusting the opening degree of a nozzle that sends hot air into the temperature-controlled room so as to make a difference in the width direction, or a method of controlling heating by arranging heaters in the width direction is known. Can be used. The lengths of the preheating zone, the stretching zone and the heat setting zone can be appropriately selected. The length of the preheating zone is usually 100 to 150% of the length of the stretching zone, and the length of the heat setting zone is usually 50 to 50%. It is in the range of 100%.
 延伸工程における延伸倍率R(W/W0)は、好ましくは1.3~3.0の範囲、より好ましくは1.3~2.5の範囲である。延伸倍率がこの範囲にあると幅方向厚さむらが小さくなるので好ましい。また必要に応じて延伸ゾーンにおいて、幅方向で延伸温度に差をつけるように延伸温度を設定すると、幅方向の厚さむらをさらに抑制することが可能になる。なお、W0は延伸前の長尺フィルムの幅、Wは延伸後の長尺延伸フィルムの幅をあらわす。 The stretching ratio R (W/W0) in the stretching step is preferably in the range of 1.3 to 3.0, more preferably 1.3 to 2.5. When the stretching ratio is within this range, thickness unevenness in the width direction is reduced, which is preferable. Further, if necessary, if the stretching temperature is set so that the stretching temperature is made different in the width direction in the stretching zone, it becomes possible to further suppress the thickness unevenness in the width direction. In addition, W0 represents the width of the long stretched film before stretching, and W represents the width of the long stretched film after stretching.
 図8を参照しながら、より具体的に本実施形態の製造方法の斜め延伸工程について説明する。図8は、本実施形態の製造方法において使用する延伸装置の概略図である。 The diagonal stretching step of the manufacturing method of the present embodiment will be described more specifically with reference to FIG. 8. FIG. 8 is a schematic view of a stretching device used in the manufacturing method of the present embodiment.
 図8に示されるように、斜め延伸装置401は、長尺フィルムFの両側に、長尺フィルムFを把持する把持具(図示せず)が走行する把持具走行支持具402を有する。把持具走行支持具402は、一部が加熱炉403内を通過するように配置されている。 As shown in FIG. 8, the oblique stretching device 401 has, on both sides of the long film F, gripping tool travel support tools 402 on which gripping tools (not shown) for gripping the long film F travel. The gripping tool travel support 402 is arranged so that a part thereof passes through the heating furnace 403.
 加熱炉403は、上記のとおり、炉内において複数のゾーンに分けられている。図8では予熱ゾーン、延伸ゾーン404、熱固定ゾーンの三つのゾーンに分けられている場合を例示している。また、把持具走行支持具402は、少なくとも延伸ゾーン404に側壁406を有する。 The heating furnace 403 is divided into a plurality of zones in the furnace as described above. FIG. 8 exemplifies a case where it is divided into three zones of a preheating zone, a stretching zone 404 and a heat fixing zone. Further, the gripping tool travel support 402 has a side wall 406 at least in the stretching zone 404.
 側壁406は、延伸ゾーン404において、両側の把持具走行支持具402に沿って設けられている。側壁406は、走行する長尺フィルムにより発生する空気の対流を遮り、長尺フィルムFから余分空間への熱の移動を妨げることができる。そのため、長尺フィルムFは、延伸ゾーンにおいて、温度むらがなく、充分かつ均一に熱が付与された状態で延伸される。その結果、得られる長尺フィルムの配向角の幅手方向のばらつきが小さく、品質の安定した長尺延伸フィルムが得られる。 The side wall 406 is provided along the gripping tool travel support 402 on both sides in the stretching zone 404. The side wall 406 can block the convection of the air generated by the running long film, and can prevent the movement of heat from the long film F to the extra space. Therefore, the long film F is stretched in the stretching zone in a state where there is no temperature unevenness and heat is applied sufficiently and uniformly. As a result, there is little variation in the orientation angle of the obtained long film in the width direction, and a long stretched film with stable quality can be obtained.
 側壁406の設置方法としては特に限定されず、把持具走行支持具402の近傍に設置するか、把持具走行支持具402に一体的に設けることができる。把持具走行支持具402の近傍に側壁406を設置する場合は、加熱炉403又は把持具走行支持具402の設置面に固着するなどにより、安定に設置することが好ましい。側壁406は、以下に示すように、把持具走行支持具402の移動に追従して移動させるという観点から、把持具走行支持具402と一体的に設けることが好ましい。 The method of installing the side wall 406 is not particularly limited, and the side wall 406 can be installed in the vicinity of the grip tool travel support tool 402 or can be provided integrally with the grip tool travel support tool 402. When the side wall 406 is installed in the vicinity of the gripping tool travel support tool 402, it is preferable to stably install the side wall 406 by fixing it to the heating furnace 403 or the installation surface of the gripping tool travel support tool 402. As described below, the side wall 406 is preferably provided integrally with the grip tool travel support tool 402 from the viewpoint of moving following the movement of the grip tool travel support tool 402.
 斜め延伸装置401の延伸方向を変更する場合において、側壁406は、把持具走行支持具402の移動に追従して移動することが好ましい。 When the stretching direction of the diagonal stretching device 401 is changed, it is preferable that the side wall 406 moves following the movement of the gripping tool travel support tool 402.
 すなわち、延伸角度を変更する場合において、変更前後の把持具走行支持具402の形状に合わせて側壁406の形状、位置、向き(以下、これらを合わせて形状等という場合がある)が変化することが好ましい。このように、側壁406が把持具走行支持具402の移動に追従して移動することにより、側壁406の形状は、移動後の把持具走行支持具の経路パターンに合わせて調整される。そのため、延伸角度によらず、得られる長尺延伸フィルムの配向角の幅手方向のばらつきを小さくすることができ、安定した品質の長尺延伸フィルムが得られる長尺延伸フィルムを製造することができる。 That is, when the stretching angle is changed, the shape, position, and orientation of the side wall 406 may change according to the shape of the gripping tool travel support tool 402 before and after the change (hereinafter, these may be collectively referred to as the shape, etc.). Is preferred. In this way, the side wall 406 moves following the movement of the gripper travel support tool 402, whereby the shape of the side wall 406 is adjusted according to the path pattern of the gripper travel support tool after the movement. Therefore, regardless of the stretching angle, it is possible to reduce the variation in the widthwise direction of the orientation angle of the obtained long stretched film, it is possible to produce a long stretched film can be obtained stable quality long stretched film it can.
 このように側壁406を把持具走行支持具402の移動に追従させる方法としては特に限定されない。例えば、図6に示されるようなテンタークリップ300を用いてもよい。
 テンタークリップ300が湿潤フィルム301を両端で把持する場合、フィルム中央部(非把持部)と両端部(把持部)とに、テンタークリップ300の温度に起因する温度差が生じることがある。この温度差が膜厚ムラ等を引き起こすこともあるため、テンタークリップ300に対し送風機311aで加熱又は冷却することが好ましい。また、逆に、テンタークリップ300に対するフィルム301の噛み込みを制御する目的で、把持部300aの温度を積極的に非把持部と差異を持たせるよう、加熱又は冷却することも行われる。加熱・冷却はテンタークリップ300がフィルム301を把持していない間に行われることがある。
As described above, the method of causing the side wall 406 to follow the movement of the gripper travel support 402 is not particularly limited. For example, a tenter clip 300 as shown in FIG. 6 may be used.
When the tenter clip 300 grips the wet film 301 at both ends, a temperature difference due to the temperature of the tenter clip 300 may occur between the film center part (non-grip part) and both end parts (grip part). Since this temperature difference may cause film thickness unevenness and the like, it is preferable to heat or cool the tenter clip 300 with the blower 311a. On the contrary, in order to control the biting of the film 301 with respect to the tenter clip 300, heating or cooling may be performed so that the temperature of the grip portion 300a is positively different from that of the non-grip portion. The heating/cooling may be performed while the tenter clip 300 is not gripping the film 301.
 このように、側壁406を把持具走行支持具402と一体的に設けて把持具走行支持具402の移動に追従して移動できるように構成することにより、側壁406の形状等は、把持具走行支持具402の形状を変更させると同時に変更される。その結果、長尺フィルムFには、延伸角度によらず、充分かつ均一な熱が付与され続け、その結果、配向角の幅手方向のばらつきが小さい安定した品質の長尺延伸フィルムが得られうる。 As described above, the side wall 406 is provided integrally with the grip tool travel support tool 402 so that the side wall 406 can move following the movement of the grip tool travel support tool 402. The shape of the support tool 402 is changed at the same time. As a result, sufficient and uniform heat was continuously applied to the continuous film F regardless of the stretching angle, and as a result, a continuous stretched film of stable quality with little variation in the orientation angle in the width direction was obtained. sell.
 側壁406を構成する材料としては特に限定されず、樹脂や金属からなる側壁406を採用することができる。また、側壁406は、単一の部材で形成する必要がなく、複数の部材を蝶番等により接続して作製してもよい。 The material forming the side wall 406 is not particularly limited, and the side wall 406 made of resin or metal can be adopted. Further, the side wall 406 does not need to be formed of a single member, and may be formed by connecting a plurality of members with a hinge or the like.
 また、側壁406の表面は、長尺フィルムFから余分空間への熱の移動を妨げるために、断熱性を有する素材で構成されているか、被覆されていることが好ましい。 Further, the surface of the side wall 406 is preferably made of a material having a heat insulating property or coated so as to prevent heat from moving from the long film F to the extra space.
 側壁406の高さとしては、特に限定されず、加熱炉403の内部形状等を考慮して、長尺フィルムFと余分空間との熱の出入りを妨げることができる程度の高さであればよい。特に、側壁406の高さは、延伸角度を変更する場合に把持具走行支持具402の移動に追従して移動できるように、加熱炉403の内部と接触しない程度の高さを有することが好ましい。 The height of the side wall 406 is not particularly limited, and may be a height that can prevent heat from entering and exiting between the long film F and the extra space in consideration of the internal shape of the heating furnace 403 and the like. .. In particular, the height of the side wall 406 is preferably such that it does not come into contact with the inside of the heating furnace 403 so that the side wall 406 can move following the movement of the gripper traveling support 402 when the stretching angle is changed. ..
 側壁406の厚さとしては、特に限定されず、長尺フィルムFと余分空間との熱の出入りを妨げることができる程度の厚さであればよい。特に、側壁406の厚さは、延伸角度を変更する場合に把持具走行支持具402の移動に追従して側壁406が移動する場合において、側壁406の折り曲げや回動を妨げない程度の厚さであることが好ましい。 The thickness of the side wall 406 is not particularly limited as long as it can prevent heat from entering and exiting between the long film F and the extra space. In particular, the thickness of the side wall 406 is such that when the side wall 406 moves following the movement of the gripping tool travel support 402 when the extension angle is changed, it does not hinder the bending and rotation of the side wall 406. Is preferred.
 本実施形態の製造方法では、図8に示されるように、側壁406は少なくとも延伸ゾーン404を通過する把持具走行支持具402に沿って設けられている。そのため、長尺フィルムFの延伸角度を変更した場合であっても、余分空間の容積や位置の変化とは無関係に、延伸される長尺フィルムFには温度むらがなく充分かつ均一に熱が付与される。その結果、得られる長尺延伸フィルムは、延伸角度によらず、長尺フィルムFの配向角の幅手方向のばらつきが抑制される。 In the manufacturing method of the present embodiment, as shown in FIG. 8, the side wall 406 is provided along at least the gripping tool travel support tool 402 that passes through the stretching zone 404. Therefore, even when the stretching angle of the long film F is changed, the long film F to be stretched does not have temperature unevenness and heat is sufficiently and uniformly irrespective of changes in the volume and position of the extra space. Granted. As a result, in the obtained long stretched film, the variation in the orientation angle of the long film F in the width direction is suppressed regardless of the stretching angle.
 なお、図8に示されるように、延伸ゾーン404にのみ側壁406が設けられている場合には、側壁406が設けられていないゾーンにおいて、長尺フィルムFからの熱が余分空間に移動する可能性がある。しかしながら、上記のとおり、長尺フィルムFは、延伸ゾーン前の予熱ゾーンでは予熱されるに過ぎず、延伸ゾーン後の熱固定ゾーンでは収縮しないように熱固定されるに過ぎない。そのため、これらのゾーンにおいて長尺フィルムFに温度むらが生じたとしても、得られる長尺延伸フィルムの配向角の幅手方向のばらつきに与える影響は小さい。その結果、本実施形態の製造方法によれば、少なくとも延伸ゾーンにおいて側壁406を設けているため、得られる長尺延伸フィルムの配向角の幅手方向のばらつきを充分に小さくすることができる。 As shown in FIG. 8, when the side wall 406 is provided only in the stretching zone 404, the heat from the long film F can move to the extra space in the zone where the side wall 406 is not provided. There is a nature. However, as described above, the long film F is only preheated in the preheating zone before the stretching zone and is heat-set so as not to shrink in the heat-setting zone after the stretching zone. Therefore, even if temperature unevenness occurs in the long film F in these zones, the influence on the variation of the orientation angle of the obtained long stretched film in the width direction is small. As a result, according to the manufacturing method of the present embodiment, since the sidewall 406 is provided at least in the stretching zone, it is possible to sufficiently reduce the variation in the orientation angle of the obtained long stretched film in the width direction.
 また、本実施形態の製造方法の別例として、加熱炉403内に設置された把持具走行支持具402の全体に沿って側壁406を設けることができる。このように、加熱炉403内の全てのゾーンにおいて側壁406を設けることにより、より確実に長尺フィルムFと余分空間との熱の出入りを遮って、加熱炉403内を走行する長尺フィルムFの全体に渡って充分かつ均一に熱を付与することができる。また、延伸角度を変更した場合であっても、余分空間の容積や位置の変化とは無関係に、走行する長尺フィルムFには充分かつ均一な熱が加えられる。その結果、得られる長尺延伸フィルムの温度むらをより確実に抑制することができ、延伸角度によらず、長尺延伸フィルムの配向角の幅手方向のばらつきを小さくすることができる。 Further, as another example of the manufacturing method of the present embodiment, the side wall 406 can be provided along the entire grip tool traveling support 402 installed in the heating furnace 403. In this way, by providing the side walls 406 in all zones in the heating furnace 403, the long film F traveling in the heating furnace 403 can be more reliably shielded from the heat flow between the long film F and the extra space. It is possible to apply heat sufficiently and uniformly over the entire area. Further, even when the stretching angle is changed, sufficient and uniform heat is applied to the running long film F regardless of changes in the volume and position of the extra space. As a result, it is possible to more reliably suppress the temperature unevenness of the obtained long stretched film, and to reduce the variation of the orientation angle of the long stretched film in the width direction regardless of the stretching angle.
 図8では、把持具走行支持具402のうち、長尺フィルムFを把持している把持具が走行する区間(以下、この区間を往路区間という場合がある)のみを示しており、把持具が長尺フィルムFの把持を解放した後に走行する区間(以下、この区間を復路区間という場合がある)は省略している。復路区間の把持具走行支持具402は、加熱炉403内に配置されていてもよく、加熱炉403の外部に設けられていてもよい。 FIG. 8 shows only a section of the gripper travel support tool 402 in which the gripper gripping the long film F travels (hereinafter, this section may be referred to as a forward section). A section that runs after the long film F is released from gripping (hereinafter, this section may be referred to as a return section) is omitted. The gripping tool travel support tool 402 in the return path section may be arranged inside the heating furnace 403 or may be provided outside the heating furnace 403.
 そして、例えば、復路区間の把持具走行支持具402が、加熱炉403内に設けられており、かつ、往路区間の把持具走行支持具402の近傍に設けられている場合には、側壁406は、往路区間の把持具走行支持具402に設けてもよく、復路区間の把持具走行支持具402に設けてもよく、両区間の把持具走行支持具402に設けてもよい。すなわち、側壁406は、長尺フィルムFから余分空間への熱の移動を遮ることができる位置に配置すればよい。このように、復路区間の把持具走行支持具402が、加熱炉403内に設けられており、かつ、往路区間の把持具走行支持具402の近傍に設けられている場合には、復路区間の把持具走行支持具402に設けることによっても、長尺フィルムFから余分空間への熱の移動を遮るようにすることができる。 Then, for example, when the gripping tool travel support tool 402 in the return path section is provided in the heating furnace 403 and is provided in the vicinity of the gripping tool travel support tool 402 in the outward path section, the side wall 406 is The gripping tool travel support tool 402 in the forward path section may be provided, the gripping tool travel support tool 402 in the return path section, or the gripping tool travel support tool 402 in both sections. That is, the side wall 406 may be arranged at a position where the heat transfer from the long film F to the extra space can be blocked. In this way, when the gripping tool travel support tool 402 in the return path section is provided in the heating furnace 403 and in the vicinity of the gripping tool travel support tool 402 in the outward path section, By providing the gripping tool travel support tool 402, it is possible to block the transfer of heat from the long film F to the extra space.
 (湿式延伸)
 本発明に係るアクリル樹脂フィルムは、未延伸フィルムに湿式延伸を行うこともできる。このような湿式延伸によって、高分子鎖を配向させた高分子配向フィルムが得られる。
(Wet stretching)
The acrylic resin film according to the present invention may be wet-stretched on an unstretched film. By such wet stretching, a polymer oriented film in which polymer chains are oriented can be obtained.
 湿式延伸とは、延伸する直前にフィルムを軟化させる手段として実質的に水を使用した延伸方法の総称であり、この際、水はフィルムの主なポリマー材料にとって実質的な可塑剤の役目をしている。通常樹脂フィルムを可塑化させるためには可塑剤の量によってフィルムが軟化することは良く知られており、本発明に用いられる湿式延伸も基本的にこの考えに基づく。 Wet stretching is a general term for stretching methods in which water is used as a means for softening a film immediately before stretching, and in this case, water serves as a substantial plasticizer for the main polymer material of the film. ing. It is well known that, in order to plasticize a resin film, the film generally softens depending on the amount of the plasticizer, and the wet stretching used in the present invention is basically based on this idea.
 上述のように本発明のフィルム作製においては、延伸時にフィルムがどの程度水に軟化(可塑化)されているかが重要であり、どの程度フィルム中に水が含まれているか、すなわち含水率を知ることが重要である。 As described above, in the production of the film of the present invention, it is important how much the film is softened (plasticized) by water during stretching, and how much water is contained in the film, that is, the water content is known. This is very important.
 [含水率]
 含水率はフィルム中に含まれる水の質量分率(%)であり、実際には水分計の示した水分量(μg)をWとし、秤量したサンプル量をF(mg)とすると、含水率(質量%)=0.1×(W/F)で表される。
[Water content]
The water content is the mass fraction (%) of the water contained in the film. Actually, assuming that the water content (μg) indicated by the water content meter is W and the sample amount weighed is F (mg), the water content is (% by mass)=0.1×(W/F)
 実際に本発明のフィルムの材料にのっとって考えると、本発明に係るアクリル樹脂フィルムのポリマー材料においては、室温で含水率が0.01%程度である。通常、このようなアクリル樹脂フィルム(原反)に対してガラス転移温度(Tg)程度に昇温させることで延伸可能な状態とし、延伸を行う。このようなTg程度、例えば130℃にすると含水率はさらに低下し、0.001質量%となる。本発明ではこのような環状ポリオレフィンフィルム(原反)を延伸前に含水させることで、アクリル樹脂フィルムの含水率を0.001~1質量%の範囲、より好ましくは0.001~0.5質量%の範囲、さらに好ましくは0.005~0.3質量%の範囲とするものである。 Considering actually the material of the film of the present invention, the water content in the polymer material of the acrylic resin film of the present invention is about 0.01% at room temperature. Usually, such an acrylic resin film (raw fabric) is stretched by raising the temperature to a glass transition temperature (Tg) so that it can be stretched. At such a Tg, for example, 130° C., the water content further decreases to 0.001 mass %. In the present invention, such a cyclic polyolefin film (raw fabric) is hydrated before stretching so that the water content of the acrylic resin film is in the range of 0.001 to 1% by mass, more preferably 0.001 to 0.5% by mass. %, and more preferably 0.005 to 0.3% by mass.
 延伸時のフィルムの含水率を0.001~1質量%の範囲にすることは、アクリル樹脂フィルムのガラス転移温度(Tg)を130℃(含水率0.001質量%)から75℃(含水率0.005質量%)へ低下させることになり、通常の延伸温度(130℃)より低い温度で均一な延伸が可能となる。なお、含水率5.5質量%のアクリル樹脂フィルムのTgは、銀製密封パン(70μl)中に水を入れアクリル樹脂フィルムを浸漬させて、温度変調型DSC(TAインスツルメント社製DSC2910)を用いて測定したものである。 Setting the water content of the film during stretching in the range of 0.001 to 1% by mass means that the glass transition temperature (Tg) of the acrylic resin film is from 130°C (water content 0.001% by mass) to 75°C (water content). It will be reduced to 0.005% by mass, and uniform stretching can be performed at a temperature lower than the normal stretching temperature (130° C.). The Tg of the acrylic resin film having a water content of 5.5 mass% was measured by immersing the acrylic resin film in a silver sealed pan (70 μl) and immersing the acrylic resin film in a temperature modulation type DSC (DSC2910 manufactured by TA Instruments). It is measured by using.
 延伸時におけるフィルムの含水率を制御するため、延伸前に該フィルムを水中に浸漬してもよいし、又は恒温高湿にて調湿してもよいし、またこれら二つを併用して用いてもよい。水槽へ浸漬する場合、水の温度は50~100℃の範囲が好ましく、60~95℃の範囲がさらに好ましく、70~90℃の範囲が特に好ましい。浸漬時間は5秒~10分の範囲が好ましく、10秒~8分の範囲がさらに好ましく、20秒~6分の範囲が特に好ましい。恒温高湿で調湿する場合、温度は50~150℃の範囲が好ましく、60~140℃の範囲がさらに好ましく、70~120℃の範囲が特に好ましい。相対湿度は60~100%の範囲以下が好ましい。 In order to control the water content of the film at the time of stretching, the film may be immersed in water before stretching, or may be conditioned under constant temperature and high humidity, or these two may be used in combination. May be. When immersed in a water bath, the temperature of water is preferably in the range of 50 to 100°C, more preferably in the range of 60 to 95°C, particularly preferably in the range of 70 to 90°C. The immersion time is preferably 5 seconds to 10 minutes, more preferably 10 seconds to 8 minutes, and particularly preferably 20 seconds to 6 minutes. When the humidity is controlled with constant temperature and high humidity, the temperature is preferably in the range of 50 to 150°C, more preferably in the range of 60 to 140°C, particularly preferably in the range of 70 to 120°C. The relative humidity is preferably within the range of 60 to 100%.
 これらの浸漬、蒸気曝気に用いる水は実質的に水であれば良い。実質的に水とは60質量%以上が水からなるものを指し、水以外に下記の有機溶媒、可塑剤、界面活性剤等を含んでも良い。好ましい有機溶媒として炭素数が1~10の水溶性有機溶媒が挙げられる。ただし、より好ましくは90質量%以上が水であり、さらに好ましくは95質量%以上が水であり、最も好ましいのは、純水を用いたものである。以下に記述で用いられる水についても実質的に水であればよい。 The water used for these immersion and steam aeration should be substantially water. The term “substantially water” means that water is 60% by mass or more, and in addition to water, the following organic solvent, plasticizer, and surfactant may be included. Examples of preferable organic solvents include water-soluble organic solvents having 1 to 10 carbon atoms. However, more preferably 90% by mass or more is water, further preferably 95% by mass or more is water, and most preferably pure water is used. The water used in the following description may be substantially water.
 延伸時の雰囲気は空気中、水蒸気中、水中のいずれであってもよい。延伸時の雰囲気が空気中とは、温度を制御し湿度は制御していない雰囲気中での延伸を指している。延伸時温度は50~150℃の範囲であることが好ましく、60~130℃の範囲であることがさらに好ましく、65~110℃の範囲であることが特に好ましい。延伸時の雰囲気が水蒸気中とは、恒温高湿であること又は、水蒸気をフィルムにあてることを指している。延伸時温度は50~150℃の範囲が好ましく、60~140℃の範囲がさらに好ましく、70~130℃の範囲が特に好ましい。相対湿度は60~100%の範囲が好ましい。このようにすることで本発明のフィルム、特にアクリル樹脂中の含水率は2.0~20.0質量%の範囲に保持される。含水率が2.0質量%より小さくなると延伸時において破断伸度は小さく、切れやすくなり、所望のリターデーションに到達しないことがある。 The atmosphere during stretching may be air, water vapor, or water. When the atmosphere during stretching is in the air, it means stretching in an atmosphere in which the temperature is controlled and the humidity is not controlled. The stretching temperature is preferably in the range of 50 to 150°C, more preferably in the range of 60 to 130°C, and particularly preferably in the range of 65 to 110°C. The fact that the atmosphere during stretching is in water vapor means that the temperature and humidity are constant or that water vapor is applied to the film. The stretching temperature is preferably 50 to 150°C, more preferably 60 to 140°C, and particularly preferably 70 to 130°C. The relative humidity is preferably in the range of 60 to 100%. By doing so, the water content in the film of the present invention, particularly in the acrylic resin, is maintained in the range of 2.0 to 20.0 mass %. When the water content is less than 2.0% by mass, the elongation at break is small at the time of stretching, the film is easily broken, and the desired retardation may not be reached.
 延伸時の雰囲気が水中とは、フィルムを水槽へ浸漬させながら延伸することを指している。水の温度は50~100℃の範囲が好ましく、60~98℃の範囲がさらに好ましく、65~95℃の範囲が特に好ましい。浸漬時間は0.5秒~10分の範囲が好ましく、1秒~8分の範囲がさらに好ましく、1秒~7分の範囲が特に好ましい。 ▽The atmosphere during stretching means that the film is stretched while being immersed in a water tank. The temperature of water is preferably in the range of 50 to 100°C, more preferably in the range of 60 to 98°C, particularly preferably in the range of 65 to 95°C. The immersion time is preferably 0.5 seconds to 10 minutes, more preferably 1 second to 8 minutes, and particularly preferably 1 second to 7 minutes.
 延伸時にフィルムを固定する固定部材間の距離をLとし、その固定部材間と垂直な方向をWとし、延伸時のフィルム形状のアスペクト比をL/Wとすると、アスペクト比は0.1~10の範囲が好ましく、0.1~8.0の範囲がさらに好ましく、0.1~6.0の範囲が特に好ましい。なお、ここでいう「延伸時」とは、延伸前のフィルムの縦横比を意味する。 When the distance between the fixing members that fix the film during stretching is L, the direction perpendicular to the fixing members is W, and the aspect ratio of the film shape during stretching is L/W, the aspect ratio is 0.1 to 10 Is more preferable, the range of 0.1-8.0 is more preferable, and the range of 0.1-6.0 is particularly preferable. The term "during stretching" as used herein means the aspect ratio of the film before stretching.
 延伸直後の含水率を0.001~1質量%の範囲に保つことは、フィルムが均一に延伸なされるためには必須である。延伸直前のゾーンでフィルムの含水率を0.001~1質量%の範囲に制御しているため、含水率が1.0質量%以下だと破断伸度は小さくなり、所望の厚さで正面リターデーションをλ/4領域まで出すことができない。ここで、延伸直後の含水率とは、延伸工程を終えた直後のフィルムの含水率を指している。また、延伸工程を経た後、巻取り部位に至るまでにフィルムに付着している水分を除去してもよい。エアナイフ方式、ブレード方式など公知の方法を用いることができる。 Maintaining the water content immediately after stretching within the range of 0.001 to 1 mass% is essential for the film to be stretched uniformly. Since the water content of the film is controlled within the range of 0.001 to 1% by mass in the zone immediately before stretching, the breaking elongation becomes small when the water content is 1.0% by mass or less, and the film has a desired thickness in front. Retardation cannot be extended to the λ/4 region. Here, the water content immediately after stretching refers to the water content of the film immediately after the stretching step. Further, after passing through the stretching step, water adhering to the film may be removed before reaching the winding portion. Known methods such as an air knife method and a blade method can be used.
 (5)巻取り工程
 本発明に用いられる巻取り装置の一例を図9及び図10に示す。
(5) Winding Step An example of the winding device used in the present invention is shown in FIGS. 9 and 10.
 図9及び図10に示すように、巻取装置519は、巻取ユニット551を備え、さらに張力制御ユニット552を備えることが好ましい。 As shown in FIGS. 9 and 10, the winding device 519 preferably includes a winding unit 551 and further includes a tension control unit 552.
 巻取ユニット551は、回転軸555と、巻芯ホルダ556と、ターレット557と、モーター558と、シフト機構561と、コントローラ562、563とを有する。 The winding unit 551 includes a rotating shaft 555, a winding core holder 556, a turret 557, a motor 558, a shift mechanism 561, and controllers 562 and 563.
 回転軸555は、長手方向がB方向になるように配される。回転軸555は、長手方向の一端がターレット557に回転自在に取り付けられて、支持されている。回転軸555にはモーター558が接続し、このモーター558により回転軸555は周方向に回転する。モーター558には、コントローラ562が接続する。コントローラ562は、回転軸555の目的とする回転速度の信号が入力されると、この入力信号に基づいてモーター558を制御する。これにより、回転軸555は目的とする回転速度で回転する。 The rotary shaft 555 is arranged so that the longitudinal direction is the B direction. One end in the longitudinal direction of the rotating shaft 555 is rotatably attached to and supported by the turret 557. A motor 558 is connected to the rotating shaft 555, and the rotating shaft 555 is rotated in the circumferential direction by the motor 558. The controller 562 is connected to the motor 558. When a signal of the target rotation speed of the rotation shaft 555 is input, the controller 562 controls the motor 558 based on this input signal. As a result, the rotary shaft 555 rotates at the target rotation speed.
 回転軸555の外周には、長手方向に延びた一対の凹部が形成されている。フィルム527が巻かれる筒状の巻芯566の内周には、巻芯566の長手方向に延びた一対の凸部が形成されている。巻芯566の凸部が回転軸555の凹部に入ることで係合し、巻芯566は回転軸555にセットされる。これにより、巻芯566は、回転軸555と一体に回転する。 A pair of recesses extending in the longitudinal direction is formed on the outer circumference of the rotating shaft 555. A pair of convex portions extending in the longitudinal direction of the winding core 566 are formed on the inner circumference of the cylindrical winding core 566 around which the film 527 is wound. The convex portion of the winding core 566 engages by entering the concave portion of the rotating shaft 555, and the winding core 566 is set on the rotating shaft 555. As a result, the winding core 566 rotates integrally with the rotating shaft 555.
 回転軸555の長手方向における両端部には、巻芯566を長手方向での両端から押さえる一対の巻芯ホルダ556が設けられる。巻芯ホルダ556は、回転軸555の長手方向でスライド自在であり、スライドすることで巻芯566をB方向で変位させる。 A pair of core holders 556 that hold the core 566 from both ends in the longitudinal direction are provided at both ends in the longitudinal direction of the rotating shaft 555. The core holder 556 is slidable in the longitudinal direction of the rotating shaft 555, and the core 566 is displaced in the B direction by sliding.
 巻芯ホルダ556には、シフト機構561が接続し、このシフト機構561は巻芯ホルダ556を回転軸555の長手方向に沿って変位させる。この変位によって、巻芯566はB方向に変位する。 A shift mechanism 561 is connected to the core holder 556, and this shift mechanism 561 displaces the core holder 556 along the longitudinal direction of the rotating shaft 555. Due to this displacement, the winding core 566 is displaced in the B direction.
 シフト機構561には、コントローラ563が接続する。コントローラ563は、回転軸555の長手方向において巻芯ホルダ556を移動すべき向きと、移動の速度と、変位量との各目的値の信号が入力されると、この入力信号に基づいて巻芯ホルダ556を制御する。これにより、巻芯ホルダ556は、回転中の回転軸555上を、目的とするタイミング、速度で、目的とする変位量をもって変位する。 A controller 563 is connected to the shift mechanism 561. When the controller 563 receives signals of target values of the direction in which the core holder 556 should be moved in the longitudinal direction of the rotary shaft 555, the moving speed, and the amount of displacement, the core 563 is based on the input signals. Control the holder 556. As a result, the core holder 556 is displaced on the rotating rotation shaft 555 at a target timing and speed with a target displacement amount.
 張力制御ユニット552は、ガイドローラー571、572と、ダンサローラー573と、シフト機構576と、コントローラ577とを備えることが好ましい。 The tension control unit 552 preferably includes guide rollers 571 and 572, a dancer roller 573, a shift mechanism 576, and a controller 577.
 ガイドローラー571、572は、フィルム527を第2スリッター518から巻取ユニット551へのフィルムの搬送路をなすものであり、フィルム527を巻取ユニット551へ案内するようにフィルムを支持する。ガイドローラー571、572は駆動手段を有する駆動ローラーであってもよいし、搬送されているフィルム527に接触することで回転するいわゆるフリーローラーであってもよい。 The guide rollers 571 and 572 form a film conveying path for the film 527 from the second slitter 518 to the winding unit 551, and support the film so as to guide the film 527 to the winding unit 551. The guide rollers 571 and 572 may be drive rollers having drive means, or may be so-called free rollers that rotate by contacting the film 527 being conveyed.
 ダンサローラー573は、フィルム527の搬送方向に並ぶガイドローラー571とガイドローラー572との間に配される。フィルム527は、ガイドローラー571及びガイドローラー572に接するフィルム面とは反対側のフィルム面がダンサローラー573に接触するように、ダンサローラー573に巻きかけられる。 The dancer roller 573 is arranged between the guide roller 571 and the guide roller 572 which are arranged in the transport direction of the film 527. The film 527 is wound around the dancer roller 573 such that the film surface on the side opposite to the film surface in contact with the guide roller 571 and the guide roller 572 contacts the dancer roller 573.
 シフト機構576はダンサローラー573に接続しており、フィルム面と交差する方向に段差ローラー573を変位させる。この変位により、フィルム527の長手方向における張力が変化する。シフト機構576は、ダンサローラー573の変位量の信号が入力されると、この入力信号に基づき、ダンサローラー573を目的とする変位量だけ変位させる。 The shift mechanism 576 is connected to the dancer roller 573 and displaces the step roller 573 in the direction intersecting the film surface. This displacement changes the tension in the longitudinal direction of the film 527. When a shift amount signal of the dancer roller 573 is input, the shift mechanism 576 displaces the dancer roller 573 by a target shift amount based on the input signal.
 コントローラ577はシフト機構576に接続しており、フィルム527の長手方向における張力の目的値に対応する信号が入力されると、この入力信号に基づきダンサローラー573の変位量を求めて、求めた変位量の信号をシフト機構576に出力する。 The controller 577 is connected to the shift mechanism 576, and when a signal corresponding to the target value of the tension in the longitudinal direction of the film 527 is input, the displacement amount of the dancer roller 573 is calculated based on this input signal and the calculated displacement is calculated. The quantity signal is output to the shift mechanism 576.
 なお、下流側のガイドローラー572には、フィルム527の長手方向における張力を検出する張力センサ(図示無し)を設けることが好ましい。この場合には、コントローラ577とガイドローラー572の張力センサーとに接続する算出部578を設けることがさらに好ましい。算出部578は、張力センサーの検出信号が入力されると、その検出信号に対応する張力と張力の目的値との差を求め、差が0(ゼロ)でない場合に張力の目的値に対応する信号を出力してコントローラ577に送る。 Note that it is preferable that the guide roller 572 on the downstream side is provided with a tension sensor (not shown) that detects tension in the longitudinal direction of the film 527. In this case, it is more preferable to provide a calculation unit 578 connected to the controller 577 and the tension sensor of the guide roller 572. When the detection signal of the tension sensor is input, the calculation unit 578 obtains the difference between the tension corresponding to the detection signal and the target value of the tension, and when the difference is not 0 (zero), it corresponds to the target value of the tension. The signal is output and sent to the controller 577.
 以上の巻取ユニット551にセットされた巻芯566に、フィルム527の長手方向の先端を巻き付けて、モーター558を駆動する。案内されてきたフィルム527は、モーター558の駆動により、巻き取られる。案内されてくるフィルム527を巻き取る間に、シフト機構561により巻芯ホルダ556をB方向に変位させ、これにより巻芯566をB方向に往復動させる。この往復動により、案内されてくるフィルム527は、溶接部上形成領域527wがB方向にずれたロールを形成しながら巻芯566に巻かれる。なお、フィルム527の溶接部上形成領域527wは、バンド533の溶接部533w上に形成された流延膜539の溶接部上領域に対応する領域である。この溶接部上形成領域527wの詳細については、別の図面を用いて後述する。 The winding tip of the film 527 in the longitudinal direction is wound around the winding core 566 set in the winding unit 551, and the motor 558 is driven. The guided film 527 is wound up by driving a motor 558. While winding the guided film 527, the core holder 556 is displaced by the shift mechanism 561 in the B direction, whereby the core 566 is reciprocated in the B direction. Due to this reciprocal movement, the guided film 527 is wound around the winding core 566 while forming a roll in which the welded portion forming region 527w is displaced in the B direction. In addition, the welded portion forming region 527w of the film 527 is a region corresponding to the welded portion upper region of the casting film 539 formed on the welded portion 533w of the band 533. The details of the welded area formation region 527w will be described later with reference to another drawing.
 シフト機構561は、巻芯ホルダ556をB方向で一定の振幅で変位させ、巻芯566のB方向における往復動も一定の振幅をもつようになる。これにより、フィルム527の溶接部上形成領域527wが巻芯566の長手方向で一定の振幅でずれながら、フィルム527は巻芯566に巻かれる。得られたフィルムロールは、溶接部上形成領域527wがフィルム527の幅方向で一定の振幅をもってずれながら巻かれたものとなり、溶接部上形成領域527wの重なりに起因する黒い筋が無い。 The shift mechanism 561 displaces the core holder 556 with a constant amplitude in the B direction, and the reciprocating motion of the core 566 in the B direction also has a constant amplitude. As a result, the film 527 is wound around the winding core 566 while the welding portion formation region 527w of the film 527 is displaced with a constant amplitude in the longitudinal direction of the winding core 566. In the obtained film roll, the welded portion forming region 527w was wound while being displaced with a constant amplitude in the width direction of the film 527, and there was no black streak due to the overlap of the welded portion forming region 527w.
 溶接部上形成領域527wについて、図11を参照しながら説明する。流延膜539は、前述のとおり、バンド533の側部533sの一方から他方にわたる範囲に形成されるので、溶接部533w上にも形成されることになる。溶接部533wは、略一定の幅をもつ。溶接部533wの幅は、極めて精度良くバンド533を製造した場合であっても、10mm程度である。ただし、バンド533の精度によっては、溶接部533wの幅が、長手方向で不均一になっていたり、10mmよりも大きい場合もある。この溶接部533wは、バンド533を製造するにあたり原材料とした側部533s用の幅狭シートと中央部533c用の幅広シートとを溶接する際に、溶接ビードとして形成される領域である。この溶接部533wは、溶接後に研磨等の後処理をしても目視で認めることができる。 The welded area formation region 527w will be described with reference to FIG. As described above, the casting film 539 is formed in the range extending from one side portion 533s of the band 533 to the other side portion, and therefore is also formed on the welded portion 533w. The welded portion 533w has a substantially constant width. The width of the welded portion 533w is about 10 mm even when the band 533 is manufactured with extremely high accuracy. However, depending on the accuracy of the band 533, the width of the welded portion 533w may be uneven in the longitudinal direction or may be larger than 10 mm. The welded portion 533w is a region formed as a weld bead when the narrow sheet for the side portion 533s and the wide sheet for the central portion 533c, which are raw materials for manufacturing the band 533, are welded. The welded portion 533w can be visually recognized even after post-processing such as polishing after welding.
 流延膜539のうち、溶接部533w上に形成される領域を、溶接部上領域539wと称する。溶接部533wは、前述のとおり目視で特定することができるので、溶接部上領域539wは、溶接部533w上にある領域として特定される。 A region of the casting film 539 formed on the weld 533w is referred to as a weld upper region 539w. Since the weld 533w can be visually identified as described above, the weld upper region 539w is identified as a region on the weld 533w.
 流延膜539は、剥取位置PPで剥ぎ取られてから、搬送され、第1スリッター、第1テンター、第2テンター、第2スリッター等により、各種の処理が施される。これらの処理により、フィルム527にはA方向やB方向へ張力が付与されたり、B方向の側端部の切除が行われる。これにより、剥取位置PPで剥ぎ取られてから巻取装置で巻き取られるまでに、フィルム527は、長手方向に伸びたり、乾燥して幅方向で収縮したり、幅方向で延伸されて拡幅したり、切除により幅が狭くされる。 The casting film 539 is peeled off at the peeling position PP, then transported, and subjected to various treatments by the first slitter, the first tenter, the second tenter, the second slitter, and the like. By these treatments, tension is applied to the film 527 in the A direction and the B direction, and the side end portion in the B direction is cut off. As a result, the film 527 is stretched in the longitudinal direction, dried and contracted in the width direction, or stretched in the width direction and widened after being peeled at the peeling position PP and wound by the winding device. Or narrowed by excision.
 このため、流延膜とフィルム527との幅は異なる場合が通常である。さらに、流延膜の幅方向における溶接部上領域539wの位置や幅W539とフィルム527の幅方向における溶接部対応領域527wの位置や幅W527とは互いに異なる場合が通常である。 Therefore, the width of the casting film and the film 527 are usually different. Further, the position or width W539 of the welded portion upper region 539w in the width direction of the casting film and the position or width W527 of the welded portion corresponding region 527w in the width direction of the film 527 are usually different from each other.
 しかし、溶接部対応領域527wをフィルム527の幅方向において振幅をもつように変位させるにしても、巻取時のフィルム527においては溶接部対応領域527wを目視で確認することができない。そこで、巻取時における溶接部対応領域527wは以下の方法で特定するとよい。なお、巻取時におけるフィルム527は、本実施形態においては、巻取位置PWでのフィルム527に対応する。ただし、巻取前の一定時間のフィルム527は、乾燥が十分進んでいることから、寸法の変化が極めて少ない。このため、巻取位置PWよりも上流のフィルムを巻取時のフィルム527としてみなしても構わない。なお、巻取位置PWとは、巻芯566に巻き取られるフィルム527が、既に巻芯566に巻かれたフィルム527の外周面に接触する位置である。 However, even if the welded portion corresponding region 527w is displaced so as to have an amplitude in the width direction of the film 527, the welded portion corresponding region 527w cannot be visually confirmed in the film 527 at the time of winding. Therefore, the welded part corresponding region 527w at the time of winding may be specified by the following method. The film 527 at the time of winding corresponds to the film 527 at the winding position PW in the present embodiment. However, since the film 527 for a certain period of time before winding is sufficiently dried, the dimensional change is extremely small. Therefore, the film upstream of the winding position PW may be regarded as the film 527 at the time of winding. The winding position PW is a position where the film 527 wound around the winding core 566 comes into contact with the outer peripheral surface of the film 527 already wound around the winding core 566.
 まず、剥取位置PPにおける流延膜の溶接部上領域539wにマーキングをする。以降の説明においては、このマークを流延膜マークと称し、図11において符号M539を付す。マーキングは、溶媒に耐性をもつインク等で行えばよい。流延膜マークM539が、巻取位置PWに至ると、この流延膜マークM539がある領域が溶接部対応領域527wとして特定される。特定された溶接部対応領域527wに付されてあるマークを、以降の説明においてはフィルムマークと称し、図11において符号M527を付す。 First, the welded area 539w of the casting film at the peeling position PP is marked. In the following description, this mark will be referred to as a casting film mark, and is denoted by reference sign M539 in FIG. The marking may be performed with ink having resistance to a solvent. When the casting film mark M539 reaches the winding position PW, the area where the casting film mark M539 is located is specified as the welded portion corresponding area 527w. The mark attached to the identified welded portion corresponding region 527w is referred to as a film mark in the following description, and is denoted by reference numeral M527 in FIG.
 図11においては、フィルムマークM527が流延膜マークM539よりも大きくなる場合を示してあるが、剥ぎ取り以降の工程の条件によって、小さくなる場合や、略同等の大きさになる場合もあるし、幅と長手方向の長さとの割合(以降、単に「幅と長さとの比」と称する)が変化している場合がある。しかし、フィルムマークM527と流延膜マークM539とについて、大きさの関係や、幅と長さとの比の関係を考慮する必要はなく、フィルムマークM527の幅を検出すれば足りる。フィルムマークM527の幅が、溶接部対応領域527wの幅W527である。 Although FIG. 11 shows the case where the film mark M527 is larger than the casting film mark M539, the film mark M527 may be smaller or may have substantially the same size depending on the conditions of the steps after stripping. In some cases, the ratio between the width and the length in the longitudinal direction (hereinafter simply referred to as the “width-to-length ratio”) may change. However, regarding the film mark M527 and the casting film mark M539, it is not necessary to consider the size relationship or the width-length ratio relationship, and it is sufficient to detect the width of the film mark M527. The width of the film mark M527 is the width W527 of the welded portion corresponding region 527w.
 なお、図11においては、説明の便宜上、溶接部533w、溶接部上領域539w、溶接部上形成領域527wの各幅を、バンド533、流延膜539、フィルム527の幅に対して誇張して大きく描いてある。 Note that, in FIG. 11, for convenience of description, the widths of the welded portion 533w, the welded upper region 539w, and the welded upper formation region 527w are exaggerated with respect to the widths of the band 533, the casting film 539, and the film 527. It is drawn large.
 以上のように、溶接部対応領域527wを特定し、巻取装置519により溶接部対応領域527wがB方向にずれたロールを形成しながらフィルム527を巻芯566に巻くことにより、溶接部533wに起因するフィルムロールにおける黒い筋の発生が防止される。 As described above, the welded portion corresponding region 527w is specified, and the film 527 is wound around the winding core 566 while forming a roll in which the welded portion corresponding region 527w is displaced in the B direction by the winding device 519. The generation of black streaks on the film roll due to this is prevented.
 さらに、巻芯566のB方向における振幅をもった変位の周期は、走行するバンド533が1周する時間とすることが好ましい。バンド533が1周する時間とは、走行するバンド533の任意の部分が、バンド533の走行路の特定した位置からその特定した位置に戻ってくるまでに要する時間であり、例えば、流延位置PCにあるバンド533の部分が、再び流延位置PCに戻るまでの時間である。この時間は、例えば、バンド533の任意の箇所にマーキングをし、このマークが流延位置PCを通過する時点から次回通過する時点までの時間を測ることで求めることができる。 Further, the cycle of displacement of the winding core 566 having the amplitude in the B direction is preferably set to the time for the traveling band 533 to make one round. The time required for the band 533 to make one round is the time required for any part of the traveling band 533 to return from the specified position of the traveling path of the band 533 to the specified position, and for example, the casting position. It is the time until the part of the band 533 on the PC returns to the casting position PC again. This time can be obtained, for example, by marking an arbitrary portion of the band 533 and measuring the time from the time when the mark passes the casting position PC to the time when the mark next passes.
 巻芯566の変位の周期を、走行するバンド533が1周する時間とすることにより、フィルム527の溶接部上形成領域527wの位置が、バンド533の1周する時間で得られる長さを周期として幅方向で振幅する変位量をもったフィルムロールが得られる。これにより、フィルムロールにおける黒い筋の発生が、より確実に防止される。なお、巻芯566の変位の周期は、厳密にバンド533が1周する時間としなくてもよく、1周する時間と略同等にすれば一定の効果が得られる。 By setting the cycle of the displacement of the winding core 566 as the time for the traveling band 533 to make one round, the position of the welded portion formation region 527w of the film 527 has a length obtained by the time for the band 533 to make one round. As a result, a film roll having a displacement amount oscillating in the width direction can be obtained. As a result, the generation of black stripes on the film roll is more reliably prevented. Note that the displacement cycle of the winding core 566 does not have to be exactly the time for the band 533 to make one round, but a certain effect can be obtained if it is approximately equal to the time for one round.
 巻芯566の変位の周期は、巻芯ホルダ556の変位の周期により制御することができる。そこで、巻芯566の変位の周期を設定する場合には、コントローラ563は、バンド533の1周する時間を入力されると、この入力信号に基づいてシフト機構561を制御するものにするとよい。 The cycle of displacement of the core 566 can be controlled by the cycle of displacement of the core holder 556. Therefore, when the displacement cycle of the winding core 566 is set, the controller 563 may be configured to control the shift mechanism 561 based on this input signal when the time for one revolution of the band 533 is input.
 溶接部対応領域527wのB方向における変位の振幅は、溶接部対応領域527wの幅W527に応じて変えてもよい。具体的には、溶接部対応領域527wの幅W527が大きいほど、溶接部対応領域527wのB方向における変位の振幅を大きくする。これは、溶接部533wがバンド533の長手方向に伸びた略直線にある場合には、特に有効である。溶接部533wがバンド533の長手方向に伸びた略直線であるとは、B方向における溶接部533wの振幅が約2mm以内である場合をいう。なお、振幅とは、B方向における変位量の半分に当たる。 The amplitude of displacement of the welded portion corresponding area 527w in the B direction may be changed according to the width W527 of the welded portion corresponding area 527w. Specifically, the larger the width W527 of the welded portion corresponding region 527w, the larger the amplitude of the displacement of the welded portion corresponding region 527w in the B direction. This is particularly effective when the welded portion 533w is a substantially straight line extending in the longitudinal direction of the band 533. The welded portion 533w being a substantially straight line extending in the longitudinal direction of the band 533 means that the amplitude of the welded portion 533w in the B direction is within about 2 mm. The amplitude corresponds to half the displacement amount in the B direction.
 溶接部対応領域527wの幅W527が約10mmで一定の場合には、溶接部対応領域527wのB方向における変位の振幅は約10mmとすれば効果がある。 When the width W527 of the welded portion corresponding area 527w is constant at about 10 mm, it is effective to set the displacement amplitude of the welded portion corresponding area 527w in the B direction to about 10 mm.
 また、バンド533の長手方向を周期に対応させ、溶接部533wがサインカーブ(SINE CURVE)を描くように蛇行している場合には、溶接部対応領域527wも長手方向を周期に対応させるとサインカーブを描くように蛇行する。この場合には、溶接部対応領域527wのサインカーブと同期してこれと同位相になる方向にフィルム527をさせると、溶接部対応領域527wのB方向における変位の振幅をより小さく抑えることができて好ましい。 In addition, when the longitudinal direction of the band 533 corresponds to the cycle and the welded portion 533w meanders so as to draw a sine curve (SINE CURVE), the welded portion corresponding region 527w also corresponds to the longitudinal direction as a signature. Meander to draw a curve. In this case, if the film 527 is made to synchronize with the sine curve of the welded portion corresponding region 527w in the direction in which the film 527 has the same phase, the amplitude of displacement of the welded portion corresponding region 527w in the B direction can be further suppressed. Is preferable.
 この巻取装置519における巻取対象のフィルムサイズなどは特に限定されないが、例えば全巻取長が2000~10000mの範囲内であり、幅が500~2500mmの範囲内のサイズのフィルムであることが好ましい。 The size of the film to be wound by the winding device 519 is not particularly limited, but for example, it is preferable that the total winding length is in the range of 2000 to 10000 m and the width is in the range of 500 to 2500 mm. ..
 巻取り工程では除電処理を行うことが好ましい。除電処理について詳細に説明する。  It is preferable to perform static elimination processing in the winding process. The static elimination processing will be described in detail.
 図12は、乾燥工程から巻取り工程にかけての本発明の概略図であり、冷却室607から巻取室610までの間に、除電装置(送風式除電器)620、621、622を設ける。また、パスローラー623、624をアースさせ、これらパスローラー623、624にそれぞれ表面電位計625、626を近接させて設ける。 FIG. 12 is a schematic view of the present invention from the drying process to the winding process, and static eliminators (blower type static eliminators) 620, 621, 622 are provided between the cooling chamber 607 and the winding chamber 610. Further, the pass rollers 623 and 624 are grounded, and the surface potential meters 625 and 626 are provided close to the pass rollers 623 and 624, respectively.
 パスローラー604を経由しながら乾燥室605を出たフィルム601は、冷却室607内で除電装置620により室温まで冷却されながら除電される。除電装置620は、発生させたイオンを、送風機によりフィルム601に直接当てて除電する。この除電装置620を乾燥室605内に設置することにより、フィルムの帯電電位を下げることができる。図13は、送風式除電装置620による冷却室607内で行われるフィルム601の除電処理の概略である。図13に示すように、送風式除電装置620は、送風ヘッド620a内に収められているイオン発生器620bによってイオンを発生させ、送風機620cから通風ダクト620eを通して風を送り、スリット620dからイオン風をフィルム601に向けて放出する。なお、乾燥室605を出た時点でのフィルムの帯電電圧を測定するために、パスローラー623をアースし、このパスローラー623と接触しているフィルム601に対して、表面電位計625を用いて表面電位の測定を行うことが好ましい。この場合には、測定した表面電位に基づき所定の帯電電位まで除電されていない場合にはイオン風の発生量を制御して適正な表面電位、例えば-10~+10Vの範囲内となるようにする。 The film 601 exiting the drying chamber 605 while passing through the pass roller 604 is neutralized in the cooling chamber 607 by the neutralization device 620 while being cooled to room temperature. The static eliminator 620 directly applies the generated ions to the film 601 by a blower to eliminate the static electricity. By installing this static eliminator 620 in the drying chamber 605, the charging potential of the film can be lowered. FIG. 13 is a schematic view of the static elimination process of the film 601 performed in the cooling chamber 607 by the blow-type static eliminator 620. As shown in FIG. 13, the blow-type static eliminator 620 generates ions by the ion generator 620b housed in the blow head 620a, sends the air from the blower 620c through the ventilation duct 620e, and outputs the ion wind from the slit 620d. It is emitted toward the film 601. In order to measure the charging voltage of the film at the time of exiting the drying chamber 605, the pass roller 623 is grounded, and the surface electrometer 625 is used for the film 601 in contact with the pass roller 623. It is preferable to measure the surface potential. In this case, when the charge has not been eliminated to a predetermined charging potential based on the measured surface potential, the amount of ionic wind generated is controlled so that the surface potential is within an appropriate range, for example, -10 to +10V. ..
 また、冷却室607を出たフィルム601に対して、除電装置621を用いて除電を行う。さらに、ナーリング付与ローラー609を用いて、フィルム601両端部にエンボス加工でナーリングを付与する。除電装置621は、図13ではナーリング付与ローラーの上流側に設けられている例を図示しているが、その位置に限定されるものではない。 Further, the film 601 coming out of the cooling chamber 607 is destaticized by using the destaticizing device 621. Further, knurling is applied to both ends of the film 601 by embossing using a knurling roller 609. The static eliminator 621 is illustrated in FIG. 13 as an example provided on the upstream side of the knurling roller, but is not limited to that position.
 次に、巻取室610において、パスローラー624をアースし、このパスローラー624と接触しているフィルム601に対して表面電位計を設置し、フィルム601の表面電位を測定する。そして、測定した表面電位に基づきイオン風の発生量を制御して適正な表面電位、例えば-5~+5Vの範囲内となるようにして、巻取り直前で除電装置622を用いて除電を行いつつ、タッチローラー612及び巻取りローラー611で巻き取る。 Next, in the winding chamber 610, the pass roller 624 is grounded, a surface electrometer is installed on the film 601 in contact with the pass roller 624, and the surface potential of the film 601 is measured. Then, the generated amount of ionic wind is controlled based on the measured surface potential so that the surface potential is within an appropriate range, for example, in the range of −5 to +5 V, and static elimination is performed using the static elimination device 622 immediately before winding. Then, it is wound by the touch roller 612 and the winding roller 611.
 なお、除電装置621~623はイオン風を吹き付けて除電を行っているが、周知の各種除電装置により除電してもよい。また、表面電位計625、626によって測定された表面電位の値から、コントローラ(図示せず)を用いて各除電装置を制御し、より均一な除電を行うようにしているが、これら表面電位計は省略し、単に各種除電装置で除電を行ってもよい。 Note that the static eliminators 621 to 623 perform erasing by blowing ionic wind, but static eliminators may be eliminated by various known static eliminators. In addition, a controller (not shown) is used to control each static eliminator based on the value of the surface potential measured by the surface electrometers 625 and 626 to perform more uniform static elimination. May be omitted, and static elimination may be performed simply by various static elimination devices.
 本発明に係るアクリル樹脂フィルムは巻取りの際に保護フィルムを貼り合わせて積層フィルムとすることも好ましい。 The acrylic resin film according to the present invention is preferably laminated with a protective film at the time of winding.
 (保護フィルム)
 保護フィルムは、アクリル樹脂フィルムとの貼り合わせ及び剥離が可能なフィルムである。保護フィルムをアクリル樹脂フィルムに貼り合わせることによりアクリル樹脂フィルムの表面が傷付くのを防止したり、ハンドリング性を向上させたりすることができる。
(Protective film)
The protective film is a film that can be attached to and removed from the acrylic resin film. By sticking the protective film to the acrylic resin film, it is possible to prevent the surface of the acrylic resin film from being damaged or to improve the handling property.
 保護フィルムのアクリル樹脂フィルムと貼り合わせる面とは反対側の面の算術平均粗さRaは、通常0.2μm以上、好ましくは0.3μm以上、より好ましくは0.5μm以上であり、通常1.4μm以下、好ましくは1.0μm以下、より好ましくは0.8μm以下である。通常、保護フィルムのアクリル樹脂フィルムに貼り合わせる面は粘着面となっている。このため、通常は、保護フィルムの粘着面ではない面の算術平均粗さRaが、前記の範囲に収まるようにする。 The arithmetic mean roughness Ra of the surface of the protective film opposite to the surface to be bonded to the acrylic resin film is usually 0.2 μm or more, preferably 0.3 μm or more, more preferably 0.5 μm or more, and usually 1. It is 4 μm or less, preferably 1.0 μm or less, and more preferably 0.8 μm or less. Normally, the surface of the protective film that is attached to the acrylic resin film is an adhesive surface. Therefore, usually, the arithmetic average roughness Ra of the surface of the protective film, which is not the adhesive surface, falls within the above range.
 本発明者の検討によれば、保護フィルムのアクリル樹脂フィルムとは反対側の面の算術平均粗さRaは、アクリル樹脂フィルムロールのシワ及びゲージバンドの発生に対して、大きく関係していると考えられる。複層フィルムをアクリル樹脂フィルムロールとして巻回しする際、複層フィルムが巻き重なることにより、複層フィルムのアクリル樹脂フィルム側の面と保護フィルム側の面とが接する。この際、複層フィルムの保護フィルム側の面の表面粗さ(即ち、保護フィルムのアクリル樹脂フィルムとは反対側の面の表面粗さ)は、複層フィルム間の空気の巻き込み量及び排出量に、大きく影響を及ぼす。 According to the study by the present inventor, the arithmetic mean roughness Ra of the surface of the protective film opposite to the acrylic resin film is significantly related to the generation of wrinkles and gauge bands of the acrylic resin film roll. Conceivable. When the multi-layer film is wound as an acrylic resin film roll, the multi-layer film is overlapped, so that the surface of the multi-layer film on the acrylic resin film side and the surface of the multi-layer film on the protective film side are in contact with each other. At this time, the surface roughness of the surface of the multilayer film on the protective film side (that is, the surface roughness of the surface of the protective film on the side opposite to the acrylic resin film) is the amount of air entrapped and discharged between the multilayer films. Greatly affect
 具体的には、複層フィルムのアクリル樹脂フィルムとは反対側の面の表面が粗くなれば、巻回しの時の複層フィルム間の空気の巻き込み量は多くなり、変形してシワが発生しやすくなる。さらに、複層フィルムのアクリル樹脂フィルムとは反対側の面の表面粗さが粗いと、空気の通路が大きくなって、巻き込んだ空気が抜けやすくなる。そうすると、複層フィルム同士の間から空気が抜けることにより空気層の厚さが変化したとき、その厚さの変化に追従して複層フィルムが変形するので、アクリル樹脂フィルムロールにシワが発生しやすい。そこで、本実施形態では、保護フィルムのアクリル樹脂フィルムとは反対側の面の算術平均粗さRaを前記範囲の上限値以下にすることにより、シワを防止している。 Specifically, if the surface of the surface of the multilayer film opposite to the acrylic resin film is rough, the amount of air entrained between the multilayer films at the time of winding becomes large, causing deformation and wrinkling. It will be easier. Furthermore, if the surface roughness of the surface of the multilayer film opposite to the acrylic resin film is rough, the air passage becomes large and the trapped air is easily released. Then, when the thickness of the air layer changes due to the escape of air from between the multi-layer films, the multi-layer film deforms following the change in the thickness, causing wrinkles on the acrylic resin film roll. Cheap. Therefore, in the present embodiment, wrinkles are prevented by setting the arithmetic average roughness Ra of the surface of the protective film opposite to the acrylic resin film to be equal to or less than the upper limit value of the above range.
 一方、複層フィルムのアクリル樹脂フィルムとは反対側の面の表面が平滑になれば、巻取り時の複層フィルムの間の空気の巻き込み量は少なくなり、ゲージバンドが発生しやすい。そこで、本実施形態では、保護フィルムのアクリル樹脂フィルムとは反対側の面の算術平均粗さRaを前記範囲の下限値以上にすることにより、ゲージバンドを防止している。 On the other hand, if the surface of the multi-layer film on the side opposite to the acrylic resin film is smooth, the amount of air entrapped between the multi-layer films at the time of winding will be small, and gauge bands will easily occur. Therefore, in the present embodiment, the gauge band is prevented by setting the arithmetic average roughness Ra of the surface of the protective film on the side opposite to the acrylic resin film to be equal to or more than the lower limit value of the above range.
 保護フィルムの組成及び層構成は、本発明の効果を著しく損なわない限り任意である。例えば、保護フィルムは、1層のみを備える単層構造のフィルムであってもよく、2層以上の層を備える複層構造のフィルムであってもよい。また、保護フィルムの膜厚は任意であり、通常10μm以上、好ましくは15μm以上、より好ましくは20μm以上、また、通常80μm以下、好ましくは60μm以下、より好ましくは40μm以下としてもよい。 The composition and layer structure of the protective film are arbitrary as long as the effects of the present invention are not significantly impaired. For example, the protective film may be a film having a single-layer structure having only one layer or a film having a multi-layer structure having two or more layers. The thickness of the protective film is arbitrary and may be usually 10 μm or more, preferably 15 μm or more, more preferably 20 μm or more, and usually 80 μm or less, preferably 60 μm or less, more preferably 40 μm or less.
 中でも、保護フィルムは、ポリオレフィン系重合体を含むことが好ましい。保護フィルムが単層構造のフィルムであれば、当該層がポリオレフィン系重合体を含むことが好ましい。また、保護フィルムが複層構造のフィルムであれば、少なくとも一層がポリオレフィン系重合体を含むことが好ましい。ポリオレフィン系重合体を用いることにより、共押出しによる成形が可能となり、生産性に優れる。 Above all, the protective film preferably contains a polyolefin-based polymer. When the protective film is a film having a single layer structure, it is preferable that the layer contains a polyolefin polymer. If the protective film is a film having a multilayer structure, it is preferable that at least one layer contains a polyolefin-based polymer. By using a polyolefin-based polymer, molding by co-extrusion is possible and the productivity is excellent.
 保護フィルムは、通常は2層以上の層を備える複層構造のフィルムである。保護フィルムの好適な例を挙げると、粘着層及び背面層を備えるフィルム;粘着層、中間層及び背面層をこの順で備えるフィルム;などが挙げられる。この場合、粘着層の表面が、保護フィルムの粘着面を形成する。 Protective film is usually a multi-layered film having two or more layers. Preferable examples of the protective film include a film including an adhesive layer and a back layer; a film including an adhesive layer, an intermediate layer and a back layer in this order; and the like. In this case, the surface of the adhesive layer forms the adhesive surface of the protective film.
 以下、保護フィルムの好適な構成要素例について説明する。 Below, an example of suitable constituent elements of the protective film will be explained.
 (粘着層)
 粘着層は保護フィルムのアクリル樹脂フィルム側の表面に位置し、アクリル樹脂フィルムに粘着しうる層である。粘着層は粘着剤を含んで形成され、粘着剤による粘着力によって保護フィルムがアクリル樹脂フィルムに対して固定されうるようになっている。
(Adhesive layer)
The adhesive layer is a layer that is located on the surface of the protective film on the acrylic resin film side and can adhere to the acrylic resin film. The adhesive layer is formed by including an adhesive, and the protective film can be fixed to the acrylic resin film by the adhesive force of the adhesive.
 粘着剤としては、例えば、ゴム系粘着剤、アクリル系粘着剤、ポリビニルエーテル系粘着剤、ウレタン系粘着剤、シリコーン系粘着剤などを挙げることができる。なお、粘着剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the adhesive include rubber-based adhesives, acrylic-based adhesives, polyvinyl ether-based adhesives, urethane-based adhesives, silicone-based adhesives, and the like. The pressure-sensitive adhesive may be used alone or in combination of two or more at an arbitrary ratio.
 粘着剤の中でも、一般式A-B-Aも若しくは一般式A-Bで表されるブロック共重合体(ただし、これらの式中、Aはスチレン系重合体ブロックを表し、Bはブタジエン重合体ブロック、イソプレン重合体ブロック、及びこれらを水素添加して得られるオレフィン重合体ブロックからなる群より選ばれる重合体ブロックを表す。)を含有するゴム系粘着剤;アクリル系粘着剤が好ましい。 Among the adhesives, the block copolymers represented by the general formula ABA or the general formula AB (wherein A represents a styrene polymer block and B represents a butadiene polymer) Block, an isoprene polymer block, and a polymer block selected from the group consisting of olefin polymer blocks obtained by hydrogenating these). A rubber-based pressure-sensitive adhesive; an acrylic pressure-sensitive adhesive is preferable.
 前記の一般式A-B-A若しくは一般式A-Bで表されるブロック共重合体において、スチレン系重合体ブロックAは、重量平均分子量が12000以上、100000以下、ガラス転移温度が20℃以上のものが好ましい。また、ブタジエン重合体ブロック、イソプレン重合体ブロック、及びこれらを水素添加して得られるオレフィン重合体ブロックからなる群より選ばれる重合体ブロックBは、重量平均分子量が10000以上、300000以下、ガラス転移温度が-20℃以下のものが好ましい。さらに、上記A成分とB成分の質量比(A成分/B成分)が、好ましくは5/95以上、より好ましくは10/90以上であり、好ましくは50/50以下、より好ましくは30/70以下である。 In the block copolymer represented by the general formula ABA or the general formula AB, the styrene-based polymer block A has a weight average molecular weight of 12,000 or more and 100000 or less and a glass transition temperature of 20° C. or more. Are preferred. The polymer block B selected from the group consisting of a butadiene polymer block, an isoprene polymer block, and an olefin polymer block obtained by hydrogenating these has a weight average molecular weight of 10,000 or more and 300,000 or less, and a glass transition temperature. Is preferably −20° C. or lower. Furthermore, the mass ratio of the A component and the B component (A component/B component) is preferably 5/95 or more, more preferably 10/90 or more, preferably 50/50 or less, more preferably 30/70. It is as follows.
 上記一般式A-B-Aで表されるブロック共重合体の例としては、スチレン-エチレン/プロピレン-スチレン共重合体、スチレン-エチレン/ブチレン-スチレン共重合体、及びそれらの水素添加体を挙げることができ、一般式A-Bで表されるブロック共重合体の例としては、スチレン-エチレン/プロピレン共重合体、スチレン-エチレン/ブチレン共重合体及びそれらの水素添加体を挙げることができる。 Examples of the block copolymer represented by the above general formula ABA include styrene-ethylene/propylene-styrene copolymer, styrene-ethylene/butylene-styrene copolymer, and hydrogenated products thereof. Examples of the block copolymer represented by the general formula AB include styrene-ethylene/propylene copolymer, styrene-ethylene/butylene copolymer, and hydrogenated products thereof. it can.
 アクリル系粘着剤の例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等のアルキル(メタ)アクリレート類;メトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート等のアルコキシアルキル(メタ)アクリレート類;シクロヘキシル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、ビニルアセテート、(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド等の(メタ)アクリルアミド類;等の単独重合体若しくは共重合体などを挙げることができる。なお、(メタ)アクリレートとは、アクリレート及びメタクリレートのことを意味し、(メタ)アクリルとはアクリル及びメタクリルのことを意味する。 Examples of acrylic adhesives include methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isobutyl (meth)acrylate, hexyl (meth)acrylate, octyl. Alkyl (meth)acrylates such as (meth)acrylate, lauryl (meth)acrylate and stearyl (meth)acrylate; alkoxyalkyl (meth)acrylates such as methoxyethyl (meth)acrylate and butoxyethyl (meth)acrylate; cyclohexyl ( (Meth)acrylates such as (meth)acrylate, phenyl (meth)acrylate, benzyl (meth)acrylate, vinyl acetate, (meth)acrylamide, N-methylol (meth)acrylamide; Can be mentioned. In addition, (meth)acrylate means acrylate and methacrylate, and (meth)acryl means acryl and methacryl.
 アクリル系粘着剤には、好ましくは官能基を有するアクリル系単量体が共重合されて用いられる。官能基を有するアクリル系単量体の例としては、マレイン酸、フマル酸、(メタ)アクリル酸等の不飽和酸類;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシヘキシル(メタ)アクリレート、ジメチルアミノエチルメタクリレート、(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、グリシジル(メタ)アクリレート、無水マレイン酸などを挙げることができる。なお、官能基を有するアクリル系単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 For the acrylic adhesive, an acrylic monomer having a functional group is preferably copolymerized and used. Examples of the acrylic monomer having a functional group include unsaturated acids such as maleic acid, fumaric acid and (meth)acrylic acid; 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2 Examples thereof include hydroxyhexyl (meth)acrylate, dimethylaminoethyl methacrylate, (meth)acrylamide, N-methylol (meth)acrylamide, glycidyl (meth)acrylate, and maleic anhydride. The acrylic monomer having a functional group may be used alone or in combination of two or more at an arbitrary ratio.
 アクリル系粘着剤には、必要に応じて架橋剤を含ませてもよい。前記の架橋剤は、共重合体に存在する官能基と熱架橋反応し、最終的には三次元網状構造を有する粘着層とするための化合物である。架橋剤を含ませることにより、保護フィルムにおいて粘着層と接する他の層(中間層、背面層等)との密着性、保護フィルムの強靱性、耐溶剤性、耐水性等を向上させることができる。架橋剤としては、例えば、イソシアネート系化合物、メラミン系化合物、尿素系化合物、エポキシ系化合物、アミノ系化合物、アミド系化合物、アジリジン化合物、オキサゾリン化合物、シランカップリング剤等、また、それらの変性体を適宜使用してもよい。なお、架橋剤は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The acrylic pressure-sensitive adhesive may contain a cross-linking agent if necessary. The above-mentioned cross-linking agent is a compound that undergoes a thermal cross-linking reaction with a functional group present in the copolymer to finally form an adhesive layer having a three-dimensional network structure. By including a cross-linking agent, it is possible to improve the adhesion to other layers (intermediate layer, back layer, etc.) in contact with the adhesive layer in the protective film, the toughness of the protective film, the solvent resistance, the water resistance and the like. .. As the cross-linking agent, for example, an isocyanate compound, a melamine compound, a urea compound, an epoxy compound, an amino compound, an amide compound, an aziridine compound, an oxazoline compound, a silane coupling agent, and the like, and modified products thereof. You may use it suitably. The cross-linking agents may be used alone or in combination of two or more at an arbitrary ratio.
 粘着層の架橋性及び強靱性等の観点から、架橋剤としては、イソシアネート系化合物及びその変性体を使用することが好ましい。イソシアネート系化合物とは、1分子中にイソシアネート基を2個以上有する化合物であり、芳香族系と脂肪族系の化合物に大別される。芳香族系のイソシアネート系化合物としては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ポリメチレンポリフェニルポリイソシアネート、ナフタリンジイソシアネート、トリジンジイソシアネート、パラフェニレンジイソシアネート等が挙げられる。また、脂肪族系のイソシアネート系化合物としては、例えば、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、水添キシリレンジイソシアネート、リジンジイソシアネート、テトラメチルキシレンジイソシアネート、キシリレンジイソシアネート等が挙げられる。さらに、これらのイソシアネート系化合物の変性体としては、例えば、イソシアネート系化合物のビゥレット体、イソシアヌレート体、トリメチロールプロパンアダクト体等が挙げられる。 From the viewpoint of the crosslinkability and toughness of the adhesive layer, it is preferable to use an isocyanate compound or its modified product as the crosslinking agent. The isocyanate compound is a compound having two or more isocyanate groups in one molecule and is roughly classified into an aromatic compound and an aliphatic compound. Examples of the aromatic isocyanate compound include tolylene diisocyanate, diphenylmethane diisocyanate, polymethylene polyphenyl polyisocyanate, naphthalene diisocyanate, tolidine diisocyanate, and paraphenylene diisocyanate. Examples of aliphatic isocyanate compounds include hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, hydrogenated xylylene diisocyanate, lysine diisocyanate, tetramethylxylene diisocyanate, xylylene diisocyanate, and the like. Furthermore, examples of modified products of these isocyanate compounds include uret products of isocyanurate compounds, isocyanurate products, and trimethylolpropane adduct products.
 架橋剤を使用する場合、架橋反応を促進させるために、例えば、ジブチルスズラウレート等の架橋触媒を、粘着剤に含ませるようにしてもよい。 When a cross-linking agent is used, a cross-linking catalyst such as dibutyl tin laurate may be included in the pressure-sensitive adhesive to accelerate the cross-linking reaction.
 粘着層には、必要に応じて、粘着付与性重合体を含ませてもよい。粘着付与性重合体としては、例えば、芳香族炭化水素重合体、脂肪族炭化水素重合体、テルペン重合体、テルペンフェノール重合体、芳香族炭化水素変性テルペン重合体、クロマン・インデン重合体、スチレン系重合体、ロジン系重合体、フェノール系重合体、キシレン重合体等が挙げられ、中でも低密度ポリエチレン等の脂肪族炭化水素重合体が好ましい。ただし、具体的な粘着付与性重合体の種類は、他の重合体との相溶性、樹脂の融点、及び粘着層の粘着力の点から、適宜選択される。また、粘着付与性重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 If necessary, the adhesive layer may contain a tackifying polymer. Examples of the tackifying polymer include aromatic hydrocarbon polymers, aliphatic hydrocarbon polymers, terpene polymers, terpene phenol polymers, aromatic hydrocarbon-modified terpene polymers, chroman-indene polymers, and styrene-based polymers. Examples thereof include polymers, rosin-based polymers, phenol-based polymers, xylene polymers, etc. Among them, aliphatic hydrocarbon polymers such as low density polyethylene are preferable. However, the specific type of tackifying polymer is appropriately selected from the viewpoints of compatibility with other polymers, melting point of the resin, and adhesive strength of the adhesive layer. Further, the tackifying polymer may be used alone or in combination of two or more kinds at an arbitrary ratio.
 粘着付与性重合体の量としては、例えば前記のブロック共重合体100質量部に対しては、好ましくは5質量部以上であり、好ましくは200質量部以下、より好ましくは100質量部以下である。粘着付与性重合体の量を前記範囲の下限値以上とすることによりアクリル樹脂フィルムと貼り合わせた場合に保護フィルムが浮いたり剥がれたりしないようにできる。また、上限値以下とすることにより、保護フィルムの繰り出し張力を抑制して、アクリル樹脂フィルムとの貼り合わせの際のシワ及び傷を防止したり、粘着付与性重合体のブリードアウトを防いで粘着層の粘着力を高く維持したりできる。 The amount of the tackifying polymer is, for example, preferably 5 parts by mass or more, preferably 200 parts by mass or less, and more preferably 100 parts by mass or less with respect to 100 parts by mass of the block copolymer. .. By making the amount of the tackifying polymer not less than the lower limit of the above range, it is possible to prevent the protective film from floating or peeling when it is attached to the acrylic resin film. Further, by setting the upper limit value or less, the feeding tension of the protective film is suppressed, and wrinkles and scratches at the time of bonding with the acrylic resin film are prevented, or bleeding out of the tackifying polymer is prevented and adhesion is prevented. It can keep the adhesion of the layer high.
 粘着層には、必要に応じて、例えば軟化剤、老化防止剤、充填剤、着色剤(染料又は顔料など)などの添加剤を含ませてもよい。なお、添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The adhesive layer may contain additives such as a softening agent, an antioxidant, a filler, and a coloring agent (dye or pigment), if necessary. The additives may be used alone or in combination of two or more at an arbitrary ratio.
 軟化剤としては、例えば、プロセスオイル、液状ゴム、可塑剤などが挙げられる。 Examples of the softening agent include process oil, liquid rubber, plasticizer and the like.
 充填剤としては、例えば、硫酸バリウム、タルク、炭酸カルシウム、マイカ、シリカ、及び酸化チタンなどが挙げられる。 Examples of the filler include barium sulfate, talc, calcium carbonate, mica, silica, titanium oxide and the like.
 粘着層の粘着力は、保護フィルムにおいて粘着層と接する他の層(中間層、背面層等)に対して、0.4N/cm以上が好ましく、0.6N/cm以上がより好ましく、6N/cm以下が好ましく、4N/cm以下がより好ましい。粘着力を前記範囲の下限値以上にすることにより、アクリル樹脂フィルムに保護フィルムを貼り合わせた際に保護フィルムの浮き及び剥がれを防止できる。また、上限値以下にすることにより、保護フィルムの繰り出し張力を抑制して、環状ポリオレフィンフィルムとの貼り合わせの際のシワ及び傷を防止できる。 The adhesive force of the adhesive layer is preferably 0.4 N/cm or more, more preferably 0.6 N/cm or more, and 6 N/cm with respect to other layers (intermediate layer, back layer, etc.) in contact with the adhesive layer in the protective film. cm or less is preferable, and 4 N/cm or less is more preferable. By setting the adhesive strength to the lower limit of the above range or more, it is possible to prevent the protective film from floating and peeling when the protective film is attached to the acrylic resin film. Also, by setting the upper limit value or less, the feeding tension of the protective film can be suppressed, and wrinkles and scratches at the time of bonding with the cyclic polyolefin film can be prevented.
 粘着層の膜厚は、通常1.0μm以上、好ましくは2.0μm以上であり、通常50μm以下、好ましくは30μm以下である。粘着層の膜厚を前記範囲の下限値以上にすることにより、粘着力を高くして、アクリル樹脂フィルムに保護フィルムを貼り合わせた際に保護フィルムの浮き及び剥がれを防止できる。また、上限値以下にすることにより、粘着力が過度に高くなることを防止して、保護フィルムの繰り出し張力を抑制できるので、アクリル樹脂フィルムとの貼り合わせの際のシワ及び傷を防止できる。また、保護フィルムのコシが強くなりすぎることを防止できるので、保護フィルムのハンドリング性を良好にできる。 The thickness of the adhesive layer is usually 1.0 μm or more, preferably 2.0 μm or more, and usually 50 μm or less, preferably 30 μm or less. By setting the film thickness of the adhesive layer to be not less than the lower limit of the above range, it is possible to increase the adhesive force and prevent the protective film from floating and peeling when the protective film is attached to the acrylic resin film. Further, when the content is not more than the upper limit value, the adhesive force can be prevented from becoming excessively high and the feeding tension of the protective film can be suppressed, so that wrinkles and scratches at the time of bonding with the acrylic resin film can be prevented. Further, since the elasticity of the protective film can be prevented from becoming too strong, the handling property of the protective film can be improved.
 (背面層)
 背面層は、粘着層に対してアクリル樹脂フィルムとは反対側に位置し、通常は保護フィルムのアクリル樹脂フィルムとは反対側の表面に位置する層である。この背面層は、通常、アクリル樹脂フィルムとは粘着しない。背面層を備える保護フィルムにおいては、通常、この背面層の露出面の算術平均粗さRaが、保護フィルムの粘着面とは反対側の面の算術平均粗さRaになる。
(Back layer)
The back layer is a layer located on the side opposite to the acrylic resin film with respect to the adhesive layer, and usually on the surface of the protective film opposite the acrylic resin film. This back layer usually does not adhere to the acrylic resin film. In the protective film including the back layer, the arithmetic average roughness Ra of the exposed surface of the back layer is usually the arithmetic average roughness Ra of the surface opposite to the adhesive surface of the protective film.
 通常、背面層は樹脂により形成される。背面層を形成する樹脂に含まれる重合体は、単独重合体でもよく、共重合体でもよい。好適な例を挙げると、ポリオレフィン系重合体が挙げられる。 Normally, the back layer is made of resin. The polymer contained in the resin forming the back surface layer may be a homopolymer or a copolymer. If a suitable example is given, a polyolefin polymer will be mentioned.
 ポリオレフィン系重合体は、鎖状オレフィンの単独重合体若しくは共重合体、又は、鎖状オレフィンと当該鎖状オレフィンに共重合可能な単量体との共重合体である。その例を挙げると、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、プロピレン-αオレフィン共重合体、エチレン-α-オレフィン共重合体、エチレン-エチル(メタ)アクリレート共重合体、エチレン-メチル(メタ)アクリレート共重合体、エチレン-n-ブチル(メタ)アクリレート共重合体、エチレン-酢酸ビニル共重合体等が挙げられる。ここで、ポリエチレンとしては、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレンなどが挙げられる。また、エチレン-プロピレン共重合体としては、例えば、ランダム共重合体、ブロック共重合体などが挙げられる。さらに、α-オレフィンとしては、例えば、ブテン-1、ヘキセン-1、4-メチルペンテン-1、オクテン-1、ペンテン-1、ヘプテン-1等が挙げられる。 The polyolefin polymer is a homopolymer or copolymer of a chain olefin, or a copolymer of a chain olefin and a monomer copolymerizable with the chain olefin. Examples thereof include polyethylene, polypropylene, ethylene-propylene copolymer, propylene-α-olefin copolymer, ethylene-α-olefin copolymer, ethylene-ethyl (meth)acrylate copolymer, ethylene-methyl (meth ) Acrylate copolymers, ethylene-n-butyl(meth)acrylate copolymers, ethylene-vinyl acetate copolymers and the like. Here, examples of polyethylene include low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear low-density polyethylene. Examples of the ethylene-propylene copolymer include random copolymers and block copolymers. Further, examples of the α-olefin include butene-1, hexene-1, 4-methylpentene-1, octene-1, pentene-1, heptene-1 and the like.
 上述したポリオレフィン系重合体の中でも、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、プロピレン-αオレフィン共重合体からなる群より選ばれる重合体が好ましく、エチレン-プロピレン共重合体及びプロピレン-αオレフィン共重合体(以下、これらをまとめて「プロピレン系共重合体」ということがある。)がより好ましく、エチレン-プロピレン共重合体が特に好ましい。 Among the above-mentioned polyolefin-based polymers, a polymer selected from the group consisting of polyethylene, polypropylene, ethylene-propylene copolymer and propylene-α-olefin copolymer is preferable, and ethylene-propylene copolymer and propylene-α-olefin copolymer are preferable. A polymer (hereinafter, these may be collectively referred to as “propylene-based copolymer”) is more preferable, and an ethylene-propylene copolymer is particularly preferable.
 上述した重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。中でも、エチレン-プロピレン共重合体等のプロピレン系共重合体と、低密度ポリエチレンとを組み合わせて用いることが好ましい。この際、プロピレン系共重合体60~90質量%と、低密度ポリエチレン40~10質量%とを組み合わせることが特に好ましい。エチレン含有量が多くなる程、エチレン-プロピレン共重合体の融点を低下させることができる。このため、共押出の容易さ、及び、低温押出を可能にする観点から、コモノマであるエチレン含有量としては3~7モル%の範囲が好ましい。なお、背面層に耐熱性を付加したい場合は、エチレン含有量を少なくし、所望の耐熱性を得られるよう適宜選定してもよい。 The above-mentioned polymers may be used alone or in combination of two or more kinds at an arbitrary ratio. Among them, it is preferable to use a low density polyethylene in combination with a propylene-based copolymer such as an ethylene-propylene copolymer. At this time, it is particularly preferable to combine 60 to 90% by mass of the propylene copolymer and 40 to 10% by mass of low density polyethylene. As the ethylene content increases, the melting point of the ethylene-propylene copolymer can be lowered. Therefore, from the viewpoint of easy coextrusion and enabling low temperature extrusion, the ethylene content as a comonomer is preferably in the range of 3 to 7 mol %. When it is desired to add heat resistance to the back layer, the ethylene content may be reduced and the heat resistance may be appropriately selected so as to obtain desired heat resistance.
 プロピレン系共重合体の230℃におけるメルトフローレート(以下、適宜「MFR」ということがある。)は5g/10分~40g/10分の範囲が好ましい。特に、MFRが20g/10分~40g/10分の範囲のものは、低温押出が可能であり、低密度ポリエチレンと組み合わせることで背面層の表面を粗面化しやすいことから、より好ましい。 The melt flow rate of the propylene-based copolymer at 230° C. (hereinafter sometimes referred to as “MFR” as appropriate) is preferably in the range of 5 g/10 minutes to 40 g/10 minutes. Particularly, those having an MFR in the range of 20 g/10 min to 40 g/10 min are more preferable because they can be extruded at a low temperature and the surface of the back layer is easily roughened by combining with low density polyethylene.
 また、背面層を構成する低密度ポリエチレンは、190℃におけるMFRが0.5g/10分~5g/10分であることが好ましい。 Also, it is preferable that the low-density polyethylene constituting the back layer has an MFR at 190° C. of 0.5 g/10 minutes to 5 g/10 minutes.
 さらに、低密度ポリエチレンは、密度が0.910g/cm~0.929g/cmであることが好ましい。低密度ポリエチレンの密度をこの範囲の下限値以上にすることで、背面層の表面の表面粗さを適切な範囲に調整しやすい。また、上限値以下にすることで、搬送に用いるロール(例えば、金属ロール、ゴムロール等)との擦過による保護フィルムからの樹脂の脱離を防止して、白粉発生を抑制できる。 Further, the low-density polyethylene preferably has a density of 0.910 g/cm 3 to 0.929 g/cm 3 . By setting the density of the low-density polyethylene to be equal to or higher than the lower limit value of this range, it is easy to adjust the surface roughness of the surface of the back layer to an appropriate range. Further, by setting the content to the upper limit or less, it is possible to prevent the resin from being detached from the protective film due to rubbing with a roll used for conveyance (for example, a metal roll, a rubber roll, etc.), and suppress generation of white powder.
 背面層に含まれる重合体(例えば、プロピレン系共重合体及び低密度ポリエチレン)は、粘着層に含まれる重合体と異なるものであってもよいが、同一の重合体を用いることが好ましい。 The polymer contained in the back layer (for example, propylene-based copolymer and low-density polyethylene) may be different from the polymer contained in the adhesive layer, but it is preferable to use the same polymer.
 背面層を形成する樹脂には、本発明の効果を著しく損なわない限り、例えば、タルク、ステアリン酸アミド、ステアリン酸カルシウム等の充填剤、滑剤、酸化防止剤、紫外線吸収剤、顔料、帯電防止剤、核剤などの添加剤を含ませてもよい。なお、添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The resin forming the back layer, unless significantly impairing the effects of the present invention, for example, talc, stearic acid amide, fillers such as calcium stearate, lubricants, antioxidants, ultraviolet absorbers, pigments, antistatic agents, Additives such as nucleating agents may be included. The additives may be used alone or in combination of two or more at an arbitrary ratio.
 背面層の厚さは、粘着層の厚さとの比(粘着層/背面層)で、通常1/40以上、好ましくは1/20以上であり、通常1/1以下、好ましくは1/2以下である。これにより、背面層の厚さが粘着層に比較して過度に薄くなることを防止できるので、成膜性を改善して、フィッシュアイを防止することができる。また、背面層の厚さが粘着層に比較して過度に厚くなることを防止できるので、保護フィルムの繰り出し張力を抑制でき、アクリル樹脂との貼り合わせの際のシワ及び傷を防止できる。 The thickness of the back layer is a ratio (adhesive layer/back layer) to the thickness of the adhesive layer, which is usually 1/40 or more, preferably 1/20 or more, and usually 1/1 or less, preferably 1/2 or less. Is. As a result, it is possible to prevent the thickness of the back surface layer from becoming excessively thin as compared with the pressure-sensitive adhesive layer, so that it is possible to improve the film forming property and prevent fish eyes. Further, it is possible to prevent the thickness of the back layer from being excessively thicker than that of the adhesive layer, so that the feeding tension of the protective film can be suppressed, and wrinkles and scratches at the time of bonding with the acrylic resin can be prevented.
 (中間層)
 粘着層と背面層との間には、必要に応じて中間層を設けてもよい。中間層は通常は樹脂により形成されるが、中でも、ポリオレフィン系重合体を含む樹脂によって形成することが好ましい。
(Middle layer)
If necessary, an intermediate layer may be provided between the adhesive layer and the back layer. The intermediate layer is usually formed of a resin, but it is preferable that the intermediate layer be formed of a resin containing a polyolefin-based polymer.
 中間層に含まれるポリオレフィン系重合体としては、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、エチレン-α-オレフィン共重合体、ポリプロピレン、エチレン-プロピレン共重合体(ランダム共重合体及び/又はブロック共重合体)、α-オレフィン-プロピレン共重合体、エチレン-エチル(メタ)アクリレート共重合体、エチレン-メチル(メタ)アクリレート共重合体、エチレン-n-ブチル(メタ)アクリレート共重合体、エチレン-酢酸ビニル共重合体等が挙げられる。なお、ポリオレフィン系重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。ただし、中間層に含まれるポリオレフィン系重合体は、前記粘着層及び背面層に含まれる重合体とは異なる種類のポリオレフィン系重合体であることが好ましい。 Examples of the polyolefin-based polymer contained in the intermediate layer include low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear low-density polyethylene, ethylene-α-olefin copolymer, polypropylene, ethylene-propylene copolymer. (Random copolymer and/or block copolymer), α-olefin-propylene copolymer, ethylene-ethyl(meth)acrylate copolymer, ethylene-methyl(meth)acrylate copolymer, ethylene-n-butyl Examples thereof include (meth)acrylate copolymers and ethylene-vinyl acetate copolymers. The polyolefin-based polymers may be used alone or in combination of two or more at an arbitrary ratio. However, the polyolefin-based polymer contained in the intermediate layer is preferably a different type of polyolefin-based polymer from the polymers contained in the adhesive layer and the back layer.
 中間層には、必要に応じて、粘着層を形成する材料、及び、背面層を形成する材料を含ませてもよい。通常、共押出成形法で保護フィルムを製造する場合、端部の膜厚が不均一な部分はスリット工程等でスリットされ、除却される。このようにして除去された部分を中間層の原料として用いることで、使用原料の量を低減できる。 The intermediate layer may include a material forming the adhesive layer and a material forming the back layer, if necessary. Usually, when a protective film is manufactured by a coextrusion molding method, a portion where the film thickness at the end is not uniform is slit by a slitting process or the like and discarded. By using the portion thus removed as a raw material for the intermediate layer, the amount of raw material used can be reduced.
 中間層には、本発明の効果を著しく損なわない限り、例えば、タルク、ステアリン酸アミド、ステアリン酸カルシウム等の充填剤、滑剤、酸化防止剤、紫外線吸収剤、顔料、帯電防止剤、造核剤等の添加剤を含ませてもよい。なお、添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The intermediate layer may be, for example, a filler such as talc, stearic acid amide, calcium stearate, a lubricant, an antioxidant, an ultraviolet absorber, a pigment, an antistatic agent, a nucleating agent, etc., unless the effect of the present invention is significantly impaired. The additive may be included. The additives may be used alone or in combination of two or more at an arbitrary ratio.
 中間層の膜厚は、通常13~70μmの範囲である。 The thickness of the intermediate layer is usually in the range of 13 to 70 μm.
 (保護フィルムの製造方法)
 保護フィルムは、例えば、下記の製造方法(i)~(iii)により製造してもよい。
(Method for manufacturing protective film)
The protective film may be manufactured, for example, by the following manufacturing methods (i) to (iii).
 (i)粘着層の材料及び背面層の材料、並びに必要に応じて中間層の材料を共押し出しする方法。 (I) A method of co-extruding the material of the adhesive layer, the material of the back layer, and the material of the intermediate layer as necessary.
 (ii)背面層又は中間層を用意し、用意した層に粘着剤を塗布して粘着層を形成する方法。 (Ii) A method of forming an adhesive layer by preparing a back layer or an intermediate layer and applying an adhesive to the prepared layer.
 (iii)粘着層及び背面層、並びに必要に応じて中間層を別々に用意し、用意した各層
を貼り合わせて一体化する方法。
(Iii) A method in which an adhesive layer, a back surface layer, and, if necessary, an intermediate layer are separately prepared, and the prepared layers are bonded together to be integrated.
 例示した製造方法のうち、共押出成形法による製造方法(i)は、粘着層と背面層又は中間層とが強固に密着しており、アクリル樹脂フィルムへの糊残りが起こり難い点、製造工程が簡素化されるためにコストが安価である点、などの利点を有し、特に好ましい。ここで「糊残り」とは、保護フィルムの剥離後にアクリル樹脂フィルムに粘着剤が残留する現象をいう。製造方法(i)により製造される保護フィルムでは、背面層として、分岐状低密度ポリエチレン、ポリプレピレン等のポリオレフィン重合体が用いられることが多い。一方、粘着層には、通常は、例えば酢酸ビニル、直鎖状低密度ポリエチレン、メタロセン直鎖状低密度ポリエチレンなどが使用される。中でも、糊残り及び経時での密着力の増加などを避ける観点からは、酢酸ビニル系よりも直鎖状低密度ポリエチレン系の粘着剤を使用する場合が多い。 In the manufacturing method (i) by the coextrusion molding method among the exemplified manufacturing methods, the adhesive layer and the back layer or the intermediate layer are firmly adhered to each other, and the adhesive residue on the acrylic resin film is hard to occur, and the manufacturing process Is particularly preferable because it has advantages such as low cost because it is simplified. Here, "adhesive residue" refers to a phenomenon in which the adhesive remains on the acrylic resin film after the protective film is peeled off. In the protective film produced by the production method (i), a polyolefin polymer such as branched low-density polyethylene or polypropylene is often used as the back layer. On the other hand, for the adhesive layer, for example, vinyl acetate, linear low-density polyethylene, metallocene linear low-density polyethylene, etc. are usually used. Of these, from the viewpoint of avoiding adhesive residue and increase in adhesive strength over time, linear low-density polyethylene-based pressure-sensitive adhesives are often used rather than vinyl acetate-based adhesives.
 また、塗布法による製造方法(ii)により製造される保護フィルムでは、背面層として、通常、ポリエチレンテレフタレート及びポリオレフィン重合体が用いられることが多く、粘着層にはゴム系粘着剤及びアクリル系粘着剤が用いられることが多い。中でも、保護フィルム中の異物を懸念する場合には背面層にポリオレフィン重合体よりもポリエチレンテレフタレートを使用することが好ましい。また、製造方法(ii)では、クリーンルームで製造を行うと異物の無い高品質の保護フィルムが得られる。 Further, in the protective film produced by the production method (ii) by the coating method, polyethylene terephthalate and a polyolefin polymer are usually used as the back layer in many cases, and the adhesive layer has a rubber-based adhesive and an acrylic adhesive. Is often used. Above all, it is preferable to use polyethylene terephthalate for the back layer rather than a polyolefin polymer when foreign matters in the protective film are concerned. In addition, in the production method (ii), when the production is performed in a clean room, a high quality protective film free from foreign matter can be obtained.
 保護フィルムのアクリル樹脂フィルムとは反対側の面が上述した算術平均粗さRaを有するようにするためには、例えば、背面層の表面を変形させることにより、所定の算術平均粗さRaを有する凹凸を形成してもよい。例えば、凹凸を有する賦型ロールを用いて、共押出成形法において得られた押出直後の保護フィルムを押圧して背面層の表面に凹凸を転写するニップ成形法;保護フィルムを、凹凸を有する離型フィルムで挟圧して離型フィルムの凹凸を転写した後、離型フィルムを剥離する方法;保護フィルムの背面層の表面に微粒子を噴射して保護フィルムの背面層の表面を切削する方法;などが挙げられる。また、背面層の表面を変形させる工程は、背面層と粘着層とを貼り合わせる前でもよく、後でもよい。 In order for the surface of the protective film opposite to the acrylic resin film to have the above-mentioned arithmetic mean roughness Ra, for example, the surface of the back layer is deformed to have a predetermined arithmetic mean roughness Ra. Concavities and convexities may be formed. For example, using a shaping roll having irregularities, a nip molding method in which the protective film immediately after extrusion obtained in the coextrusion molding method is pressed to transfer the irregularities to the surface of the back layer; A method of pressing the mold film to transfer the unevenness of the mold release film, and then peeling the mold release film; a method of spraying fine particles to the surface of the back layer of the protective film to cut the surface of the back layer of the protective film; Are listed. Further, the step of deforming the surface of the back layer may be performed before or after the back layer and the adhesive layer are bonded together.
 さらに、背面層の組成を調整することで背面層の表面に凹凸を形成してもよい。例えば、背面層に所定の粒径の微粒子を含有させて背面層に凹凸を形成させる方法;背面層を形成する樹脂等の材料の配合比を調整して背面層に凹凸を形成させる方法、などが挙げられる。 Further, irregularities may be formed on the surface of the back layer by adjusting the composition of the back layer. For example, a method of forming fine particles having a predetermined particle size in the back layer to form unevenness in the back layer; a method of forming unevenness in the back layer by adjusting the compounding ratio of materials such as resin forming the back layer, etc. Are listed.
 上述した中でも、凹凸の転写むらのない保護フィルムを広幅で得られる事から、凹凸を有する賦型ロールを用いたニップ形成法が好ましく、鏡面ロールと凹凸を有する賦型ロールとを用いて保護フィルムを挟圧する方法が特に好ましい。 Among the above, since it is possible to obtain a protective film having no uneven transfer of unevenness in a wide width, a nip forming method using a shaping roll having unevenness is preferable, and a protective film using a mirror-shaped roll and a shaping roll having unevenness. Is particularly preferable.
 それぞれの鏡面ロール及び賦型ロールの表面材質は、例えば、金属、ゴム、樹脂などが挙げられる。これらは保護フィルムの背面層の表面に目的とする凹凸形状が転写できるように選ばれる。ただし、賦型ロールの硬さは、鏡面ロールの硬さ以上であることが好ましい。また、例えば、鏡面ロールと同等の表面性を持ち、賦型ロールより軟らかい樹脂フィルムなどを介して保護フィルムを狭圧させてもよい。 The surface material of each mirror roll and shaping roll may be, for example, metal, rubber, resin, or the like. These are selected so that the desired uneven shape can be transferred to the surface of the back layer of the protective film. However, the hardness of the shaping roll is preferably equal to or higher than that of the mirror-finished roll. In addition, for example, the protective film may have a surface property equivalent to that of a mirror-finished roll, and the pressure of the protective film may be narrowed via a resin film softer than the shaping roll.
 鏡面ロール及び賦型ロールは、それぞれ独立に温度調節ができるものが好ましい。鏡面ロールの温度は、40~160℃の範囲あることが好ましく、かつ、賦型ロールの温度は、60~200℃の範囲であることが好ましい。鏡面ロールの温度は、60~130℃の範囲がさらに好ましく、賦型ロールの温度は、80~180℃の範囲がさらに好ましい。鏡面ロール又は賦型ロールの温度を前記範囲の下限温度以上にすることにより、凹凸の転写むらを防止できる。また、鏡面ロール又は賦型ロールの温度を前記範囲の上限温度以下にすることにより、保護フィルムが鏡面ロール又は賦型ロールに巻きつくことを防止できる。 ㆍPreferably, the mirror surface roll and the shaping roll can control the temperature independently. The temperature of the mirror roll is preferably in the range of 40 to 160° C., and the temperature of the shaping roll is preferably in the range of 60 to 200° C. The temperature of the mirror roll is more preferably in the range of 60 to 130°C, and the temperature of the shaping roll is more preferably in the range of 80 to 180°C. By setting the temperature of the mirror-finished roll or the shaping roll to be not lower than the lower limit temperature of the above range, uneven transfer of unevenness can be prevented. In addition, by setting the temperature of the mirror-finished roll or the shaping roll to be equal to or lower than the upper limit temperature of the above range, the protective film can be prevented from being wound around the mirror-finished roll or the shaping roll.
 ニップ形成法において、保護フィルムのアクリル樹脂とは反対側の面の上述した算術平均粗さRaは、挟圧時における保護フィルム、鏡面ロール及び賦型ロールの温度、ロール速度、保護フィルムを挟圧する際の圧力、並びに鏡面ロール及び賦型ロールの表面の材質を、保護フィルムを形成する材料の特性に合わせて、適宜選定することで調整することができる。通常、鏡面ロール及び賦型ロール温度は、背面層を形成する樹脂のガラス転移温度(Tg)に対して、(Tg-60)~(Tg+20)℃とするのが好ましい。 In the nip forming method, the above-mentioned arithmetic mean roughness Ra of the surface of the protective film opposite to the acrylic resin is the pressure of the protective film, the mirror surface roll and the shaping roll at the time of pressing, the roll speed, and the pressing of the protective film. The pressure at that time and the materials of the surfaces of the mirror-finished roll and the shaping roll can be adjusted by appropriately selecting them according to the characteristics of the material forming the protective film. Usually, the mirror roll and shaping roll temperatures are preferably (Tg-60) to (Tg+20)° C. with respect to the glass transition temperature (Tg) of the resin forming the back layer.
 保護フィルムの表面には、必要に応じて、表面改質処理を施してもよい。表面改質処理としては、例えば、エネルギー線照射処理及び薬品処理などが挙げられる。 The surface of the protective film may be subjected to a surface modification treatment, if necessary. Examples of the surface modification treatment include energy ray irradiation treatment and chemical treatment.
 また、保護フィルムの表面には、必要に応じ印刷を行ってもよい。 Also, the surface of the protective film may be printed if necessary.
 (貼り合わせ)
 アクリル樹脂フィルムと保護フィルムとを貼り合わせることにより、複層フィルムを得る。貼り合わせの際には、アクリル樹脂フィルム及び保護フィルムのシワ及び弛みをなくすため、アクリル樹脂フィルム及び保護フィルムに所定の大きさの張力を与えることが好ましい。また、貼り合わせの際には、例えばニップロール等によって、圧力をかけながら貼り合わせを行うことが好ましい。
(Lamination)
By laminating the acrylic resin film and the protective film, a multilayer film is obtained. At the time of bonding, it is preferable to apply a predetermined amount of tension to the acrylic resin film and the protective film in order to eliminate wrinkles and looseness of the acrylic resin film and the protective film. In addition, at the time of bonding, it is preferable to perform bonding while applying pressure with, for example, a nip roll.
 こうして製造された複層フィルムは、アクリル樹脂フィルム及び保護フィルムを備える。また、複層フィルムは、通常、一方の表面においてアクリル樹脂フィルムが露出し、他方の表面において保護フィルムが露出している。この際、アクリル樹脂フィルムと保護フィルムとの間にさらに任意の層を備えていてもよい。任意の層は、1層であってもよく、2層以上であってもよい。また、任意の層が2層以上ある場合、これらの層は同じでもよく、異なっていてもよい。 The multi-layer film produced in this way comprises an acrylic resin film and a protective film. Further, in the multilayer film, the acrylic resin film is usually exposed on one surface and the protective film is exposed on the other surface. At this time, an optional layer may be further provided between the acrylic resin film and the protective film. The arbitrary layer may be one layer or two or more layers. Further, when there are two or more arbitrary layers, these layers may be the same or different.
 複層フィルムの幅は、1500mm以上が好ましく、1800mm以上がより好ましい。一般に、幅が広いフィルムを巻回したフィルムロールはシワ又はゲージバンドが生じやすい。しかし、本実施形態にかかる複層フィルムは、このように広い幅を有しながら、巻回したときに良好な巻き姿を実現することができる。また、複層フィルムの幅の上限は、通常2500mm以下である。 The width of the multilayer film is preferably 1500 mm or more, more preferably 1800 mm or more. In general, a film roll formed by winding a wide film is likely to have wrinkles or gauge bands. However, the multilayer film according to the present embodiment has such a wide width and can realize a good winding appearance when wound. Moreover, the upper limit of the width of the multilayer film is usually 2500 mm or less.
 (複層フィルムを巻回しする工程)
 複層フィルムを得た後で、その複層フィルムをロール状に巻回して、アクリル樹脂フィルムロールを得る。通常、複層フィルムを巻回しする工程においては、巻取りロール及び接圧ローラーを備える巻取り装置を用いる。そして、接圧ローラーで押圧して、複層フィルムに面圧を付与しながら、巻取りロールに複層フィルムを巻き取ることにより、アクリル樹脂フィルムロールを得る。
(Process of winding a multilayer film)
After obtaining the multilayer film, the multilayer film is wound into a roll to obtain an acrylic resin film roll. Usually, in the step of winding the multilayer film, a winding device including a winding roll and a pressure roller is used. Then, the acrylic resin film roll is obtained by rolling the multi-layer film around the winding roll while pressing it with a pressure roller to apply the surface pressure to the multi-layer film.
 接圧ローラーによって面圧を付与しながら複層フィルムを巻回しすることにより、高速での巻回しにおいて、空気の巻き込み量を抑制しやすい。このため、シワの発生を防止して、良好な巻き姿を有するアクリル樹脂フィルムロールを製造できる。 By winding the multi-layer film while applying surface pressure with a pressure roller, it is easy to suppress the amount of air entrained during high-speed winding. Therefore, it is possible to prevent the generation of wrinkles and manufacture an acrylic resin film roll having a good winding appearance.
 この際、保護フィルムのアクリル樹脂フィルムとは反対側の面の算術平均粗さをRa(μm)としたときに、接圧ローラーの圧力P(N/m)は、下記式(4-1)を満たすことが好ましい。 At this time, when the arithmetic mean roughness of the surface of the protective film on the side opposite to the acrylic resin film is Ra (μm), the pressure P (N/m) of the contact roller is expressed by the following formula (4-1). It is preferable to satisfy.
  50×Ra+75≦P≦23×Ra+160 (4-1)
 上述したように、複層フィルムの巻回しに際して、シワ及びゲージバンドを防止する観点では、巻重なる複層フィルムの間への空気の巻き込み量を抑制及び制御することが好ましい。この際、空気の巻き込み量は、保護フィルムのアクリル樹脂フィルムとは反対側の面の表面粗さによって変化する。そのため、接圧ローラーの圧力Pは、保護フィルムのアクリル樹脂フィルムとは反対側の面の表面粗さに応じて設定することが好ましい。
50×Ra+75≦P≦23×Ra+160 (4-1)
As described above, from the viewpoint of preventing wrinkles and gauge bands when the multilayer film is wound, it is preferable to suppress and control the amount of air entrained between the laminated multilayer films. At this time, the amount of air entrained changes depending on the surface roughness of the surface of the protective film opposite to the acrylic resin film. Therefore, it is preferable that the pressure P of the contact roller is set according to the surface roughness of the surface of the protective film opposite to the acrylic resin film.
 保護フィルムのアクリル樹脂フィルムとは反対側の面の表面粗さが粗ければ粗いほど、巻回し時の空気の巻き込み量は多くなるので、接圧ローラーの圧力Pを強くして、空気の巻き込みを抑制することが好ましい。さらに、保護フィルムのアクリル樹脂フィルムとは反対側の面の表面粗さが粗ければ、巻回し時の空気の巻き込み量が多くなるので、接圧ローラーの圧力Pの変化による空気の巻き込み量の変化も大きくなる。このため、保護フィルムのアクリル樹脂フィルムとは反対側の面の表面粗さが平滑である場合と比較して、保護フィルムのアクリル樹脂フィルムとは反対側の面の表面粗さが粗い場合には、接圧ローラーの圧力Pの好適な範囲は狭くなる。そのため、接圧ローラーの圧力Pは、保護フィルムのアクリル樹脂フィルムとは反対側の面の算術平均粗さRaの範囲において、上記式(4-1)のように、前記Raに応じた範囲であることが好ましい。 The rougher the surface roughness of the surface of the protective film opposite to the acrylic resin film, the greater the amount of air entrained during winding. Therefore, the pressure P of the contact roller is increased to entrain the air. Is preferably suppressed. Furthermore, if the surface roughness of the surface of the protective film opposite to the acrylic resin film is rough, the amount of air entrained at the time of winding increases, so that the amount of air entrained due to the change in the pressure P of the contact pressure roller The changes will also increase. Therefore, in the case where the surface roughness of the surface of the protective film opposite to the acrylic resin film is rough, compared with the case where the surface roughness of the surface of the protective film opposite to the acrylic resin film is smooth. The suitable range of the pressure P of the contact roller is narrowed. Therefore, the pressure P of the contact roller is within the range of the arithmetic mean roughness Ra of the surface of the protective film on the side opposite to the acrylic resin film, in the range corresponding to Ra as in the above formula (4-1). It is preferable to have.
 複層フィルムの巻回し速度は、通常5m/分以上、好ましくは10m/分以上であり、通常50m/分以下、好ましくは45m/分以下、より好ましくは40m/分以下である。巻回し速度を前記範囲の下限値以上とすることにより製造効率を高めることができ、上限値以下とすることにより空気の巻き込み量を抑制することができる。 The winding speed of the multilayer film is usually 5 m/min or more, preferably 10 m/min or more, usually 50 m/min or less, preferably 45 m/min or less, more preferably 40 m/min or less. When the winding speed is equal to or higher than the lower limit value of the above range, the manufacturing efficiency can be increased, and when the winding speed is equal to or lower than the upper limit value, the amount of air entrained can be suppressed.
 アクリル樹脂フィルムロールの巻回し数に制限は無いが、通常40回以上、好ましくは60回以上であり、通常27000回以下、好ましくは13000回以下である。 The number of windings of the acrylic resin film roll is not limited, but it is usually 40 times or more, preferably 60 times or more, and usually 27,000 times or less, preferably 13,000 times or less.
 また、アクリル樹脂フィルムロールの外径に制限はないが、通常160mm以上、好ましくは190mm以上であり、通常2300mm以下、好ましくは1200mm以下である。 The outer diameter of the acrylic resin film roll is not limited, but is usually 160 mm or more, preferably 190 mm or more, and usually 2300 mm or less, preferably 1200 mm or less.
 本発明に係るアクリル樹脂フィルムロール(ロール状フィルム)の包装方法及び包装体の好ましい実施形態について説明する。 A preferred embodiment of a method for packaging an acrylic resin film roll (roll film) and a package according to the present invention will be described.
 図14は、ロール状フィルムと包材を示す斜視図であり、図15は、ロール状フィルムを包材で包装した包装体を示す斜視図である。 FIG. 14 is a perspective view showing a roll-shaped film and a packaging material, and FIG. 15 is a perspective view showing a package body in which the roll-shaped film is wrapped with the packaging material.
 図14に示すように、ロール状フィルム712は、円筒状の巻芯716を有し、この巻芯716に長尺状のフィルム714がロール状に巻き付けられている。巻芯716の幅寸法は、フィルム714の幅寸法よりも大きく形成されており、フィルム714は巻芯716の幅方向の略中央位置に巻き付けられている。したがって、ロール状フィルム712は、巻芯716の両端部がフィルム714から突出した状態になっている。 As shown in FIG. 14, the roll-shaped film 712 has a cylindrical core 716, and the long film 714 is wound around the core 716 in a roll shape. The width dimension of the winding core 716 is formed larger than the width dimension of the film 714, and the film 714 is wound around the winding core 716 at a substantially central position in the width direction. Therefore, in the roll-shaped film 712, both ends of the winding core 716 are projected from the film 714.
 フィルム714は、後述するように、その表面に少なくとも一層の光硬化性樹脂層を備えている。 The film 714 has at least one photocurable resin layer on its surface, as described later.
 また、フィルム714は、その幅方向の両端部位置にエンボス又はナーリングとも称される微小な凹凸を有し、フィルムをロール状に巻取る際の端面ズレや巻き緩みの防止を目的として、例えば高さ5~50μmの範囲、又は、フィルム膜厚の0.05~0.3の範囲で形成される。 In addition, the film 714 has minute unevenness also called embossing or knurling at both end positions in the width direction, and for example, for the purpose of preventing end face deviation and winding looseness when the film is wound into a roll, the film is high. The thickness is 5 to 50 μm or the film thickness is 0.05 to 0.3.
 一方、包材718は、円筒状に形成され、その幅寸法は、フィルム714の幅寸法よりも大きく形成される。包材718の内径はロール状フィルム712の外径よりも大きく形成されており、ロール状フィルム712に包材718を被せることができるようになっている。なお、包材718は、矩形のシート状のものを用いてもよく、この場合には、ロール状フィルム712を包材718で包んで円筒状にした後、包材718の縁を粘着テープ等で貼り付けて固定するとよい。 On the other hand, the packaging material 718 is formed in a cylindrical shape, and its width dimension is formed larger than the width dimension of the film 714. The inner diameter of the packaging material 718 is formed larger than the outer diameter of the roll-shaped film 712, so that the roll-shaped film 712 can be covered with the packaging material 718. Note that the packaging material 718 may be a rectangular sheet, and in this case, the roll-shaped film 712 is wrapped with the packaging material 718 into a cylindrical shape, and then the edges of the packaging material 718 are attached with an adhesive tape or the like. It is good to stick and fix with.
 包材718は、その外面が日射反射率70%以上(JIS-R-3106準拠)のものが使用される。例えば、ポリエチレン(PET)の外面にアルミ蒸着を施した包材718が使用される。なお、包材718は、日射反射率が70%以上のものであればよく、アルミ以外の金属蒸着をしたものや、アルミ箔などの金属箔を用いてもよい。また、包材718の日射反射率は80%以上がより好ましく、90%以上がさらに好ましい。このような包材718を用いて図15の包装体710を形成することによって、包装体710の内部の温度差を25℃以内、好ましくは20℃以内に抑制することができる。 As the packaging material 718, an outer surface having a solar reflectance of 70% or more (JIS-R-3106 compliant) is used. For example, a packaging material 718 in which aluminum is vapor-deposited on the outer surface of polyethylene (PET) is used. The packaging material 718 may have a solar radiation reflectance of 70% or more, and may be a metal vapor-deposited metal other than aluminum or a metal foil such as an aluminum foil. The solar radiation reflectance of the packaging material 718 is more preferably 80% or more, further preferably 90% or more. By forming the packaging body 710 of FIG. 15 using such a packaging material 718, the temperature difference inside the packaging body 710 can be suppressed within 25° C., preferably within 20° C.
 また、包材718は、40℃90%RH環境下の透湿度が5.4g/m・day以下のものを用いることが好ましい。このような透湿度の包材718を用いることによって、包装体710の内部の湿度変化速度を4%/分以下に抑えることができる。 Further, as the packaging material 718, it is preferable to use one having a moisture vapor transmission rate of 5.4 g/m 2 ·day or less under an environment of 40° C. and 90% RH. By using the packaging material 718 having such a moisture permeability, the rate of humidity change inside the package 710 can be suppressed to 4%/min or less.
 上記のごとく構成された包材718は、図15に示すように、ロール状フィルム712に被せられ、その両端部にゴムバンド720が外嵌される。このゴムバンド720によって包材718の両端部が巻芯716の外周面に密着した状態で固定される。これにより、包材718でロール状フィルム712を包んだ包装体710が形成される。なお、包材718の固定方法はゴムバンド720に限定されるものではなく、粘着テープ等で巻芯716に貼り付けることによって固定してもよい。 As shown in FIG. 15, the packaging material 718 configured as described above is covered with the roll-shaped film 712, and the rubber bands 720 are externally fitted to both ends thereof. Both ends of the packaging material 718 are fixed to the outer peripheral surface of the winding core 716 by the rubber band 720 in a state of being in close contact with each other. As a result, the packaging body 710 in which the roll-shaped film 712 is wrapped with the packaging material 718 is formed. The method of fixing the packaging material 718 is not limited to the rubber band 720, and the packing material 718 may be fixed by being attached to the core 716 with an adhesive tape or the like.
 次に上記のごとく構成された包装体710の作用について説明する。図16(A)、図16(B)は、従来の包装体(すなわち、日射反射率が70%未満の包材で包装した包装体)におけるロール状フィルム712の故障を説明する模式図である。 Next, the operation of the package 710 configured as described above will be described. 16(A) and 16(B) are schematic diagrams illustrating a failure of the roll-shaped film 712 in a conventional package (that is, a package packaged with a packaging material having a solar radiation reflectance of less than 70%). ..
 従来の包装体の場合、包装体に太陽光が当たると、包装体の内部では当たった側と当たらない側とで温度差が発生し、さらに温度差に伴う湿度差が発生する。その結果、両者の間でフィルム714の熱膨張差又は湿度膨張差が生じ、ベコ故障と呼ばれるロール状フィルム712の変形が発生する。ベコ故障とは、図16(B)に示すように、フィルム714の幅方向の端部がローレット(エンボス)714Aによって固巻きされているのに対して、中央部では巻きが緩いために変形する現象であり、巻取り時のテンションを上げるほど発生しやすくなる。このため、従来は、前段の加工装置において巻取りテンションを上げることができず、フィルム714の長尺化や搬送速度の増加に対応することができない。 In the case of a conventional package, when the package is exposed to sunlight, a temperature difference occurs between the exposed side and the non-exposed side inside the package, and a difference in humidity occurs due to the temperature difference. As a result, a difference in thermal expansion or a difference in humidity expansion of the film 714 occurs between the two, and deformation of the roll-shaped film 712 called a "beco failure" occurs. As shown in FIG. 16B, the "beco failure" means that the end of the film 714 in the width direction is tightly wound by the knurling (embossing) 714A, while the center is deformed because the winding is loose. It is a phenomenon, and it tends to occur as the tension at the time of winding is increased. For this reason, conventionally, it is not possible to increase the winding tension in the former processing device, and it is impossible to cope with the lengthening of the film 714 and the increase of the transport speed.
 これに対して、本実施の形態の包装体は、日射反射率70%以上の包材718によって包装されている。したがって、太陽光が包装体710に当たった場合にも、太陽光のほとんどが包材718で反射され、包装体710に吸収させないので、包装体710の内部に温度差、湿度差が生じることを防止できる。これにより、フィルム714が変形してベコ故障を発生することを防止でき、巻取りテンションが高いロール状フィルム714の場合にも包装体710での不具合を防止することができる。よって、本実施の形態によれば、包装前の加工ラインにおいて巻取りテンションを増加させることができるので、フィルム714を長尺化したり、搬送速度を高めたりすることが可能となる。 On the other hand, the packaging body of the present embodiment is packaged by the packaging material 718 having a solar reflectance of 70% or more. Therefore, even when the sunlight hits the packaging body 710, most of the sunlight is reflected by the packaging material 718 and is not absorbed by the packaging body 710. Therefore, a temperature difference and a humidity difference may occur inside the packaging body 710. It can be prevented. As a result, it is possible to prevent the film 714 from deforming and to cause a bead failure, and it is possible to prevent a defect in the package 710 even in the case of the roll-shaped film 714 having a high winding tension. Therefore, according to the present embodiment, since the winding tension can be increased in the processing line before packaging, it is possible to lengthen the film 714 and increase the transport speed.
 また、巻き芯にアクリル樹脂フィルムを巻き取る際には、巻き芯に両面テープ、緩衝材等が貼り付けられる。両面テープは、フィルムの先端部を巻き芯に固定するためのものである。 Also, when winding the acrylic resin film around the core, double-sided tape, cushioning material, etc. are attached to the core. The double-sided tape is for fixing the leading end of the film to the winding core.
 図17に示すように、両面テープ831は、例えばPET(ポリエチレンテレフタレート)製の帯状支持体831aの一方の面(裏面)に巻き芯側の第1粘着層831bが、他方の面(表面)にフィルム側の第2粘着層831cが形成されている。両面テープ831の厚さt02は10~60μmの範囲であり、好ましくは10~30μmの範囲で、より好ましくは10~15μmの範囲である。この両面テープ831として、例えば、日東電工製(型式:5601、5603、5605、5606)が用いられる。なお、図17以降の各断面図において、実際の寸法で表示すると、フィルム815、両面テープ831、緩衝材832などの各部材の判別が困難になるため、各図において、厚さ方向寸法は誇張して表示してある。 As shown in FIG. 17, the double-sided tape 831 has, for example, one surface (rear surface) of the strip-shaped support 831a made of PET (polyethylene terephthalate) and the first adhesive layer 831b on the winding core side on the other surface (front surface). A second adhesive layer 831c on the film side is formed. The thickness t02 of the double-sided tape 831 is in the range of 10 to 60 μm, preferably 10 to 30 μm, and more preferably 10 to 15 μm. As the double-sided tape 831, for example, Nitto Denko (model: 5601, 5603, 5605, 5606) is used. In each of the cross-sectional views of FIG. 17 and subsequent figures, it is difficult to distinguish each member such as the film 815, the double-sided tape 831, the cushioning material 832, etc. when displayed in actual dimensions. Is displayed.
 両面テープ831の幅W02は25~150mmの範囲であり、好ましくは40~90mmの範囲であり、より好ましくは40~60mmの範囲である。25mm未満であると、貼り付け不良となり、150mmを超えるとテープにシワが発生しやすくなり、ともに好ましくない。 The width W02 of the double-sided tape 831 is in the range of 25 to 150 mm, preferably in the range of 40 to 90 mm, and more preferably in the range of 40 to 60 mm. If it is less than 25 mm, the attachment will be poor, and if it exceeds 150 mm, wrinkles are likely to occur on the tape, both of which are not preferable.
 両面テープ831の各粘着層831b、831cは、支持体831aの全面に形成されている。これら各粘着層831b、831cは、組成及び厚さが同じであるが、異なる組成や異なる厚さとしてもよい。第2粘着層831cの形成面には、図示は省略したが、剥離テープが貼り付けられている。剥離テープは、第1粘着層831bによって巻き芯823に両面テープ831を貼り付けた後に、フィルム815を巻き取る前に剥がされる。 The adhesive layers 831b and 831c of the double-sided tape 831 are formed on the entire surface of the support 831a. The adhesive layers 831b and 831c have the same composition and the same thickness, but may have different compositions and different thicknesses. Although not shown, a peeling tape is attached to the formation surface of the second adhesive layer 831c. The peeling tape is peeled off after winding the film 815 after the double-sided tape 831 is attached to the winding core 823 by the first adhesive layer 831b.
 緩衝材832は、例えばポリエステル、不織布などから構成されており、巻き取るフィルム815の厚さよりも薄く形成されている。そして、両面テープ831よりも弾力性を有するものが用いられる。緩衝材832は、それ自体が粘着層を持っていなくてもよく、この場合には両面テープ831を介して巻き芯823に取り付けられる。 The cushioning material 832 is made of, for example, polyester or non-woven fabric, and is formed thinner than the thickness of the film 815 to be wound. Further, one having elasticity more than the double-sided tape 831 is used. The cushioning material 832 may not have an adhesive layer itself, and in this case, it is attached to the winding core 823 via the double-sided tape 831.
 図18に示すように、緩衝材832の幅W03は5~30mmの範囲であり、好ましくは8~18mmの範囲であり、より好ましくは8~12mmの範囲である。5mm未満であると、巻芯への貼合わせ不良が発生し、30mmを超えると切り口写りを改善することができず、ともに好ましくない。なお、緩衝材832の幅W03を巻き芯円周長に基づき決定する場合には、巻き芯円周長の2%以下であることが好ましい。 As shown in FIG. 18, the width W03 of the cushioning material 832 is in the range of 5 to 30 mm, preferably in the range of 8 to 18 mm, and more preferably in the range of 8 to 12 mm. If it is less than 5 mm, the sticking to the winding core may be poor, and if it exceeds 30 mm, the cut image cannot be improved, which is not preferable. When the width W03 of the cushioning material 832 is determined based on the circumference length of the winding core, it is preferably 2% or less of the circumference length of the winding core.
 図18に示すように、緩衝材832の厚さt03は使用する緩衝材の数量によって異なる。例えば、図18~図21及び後述する図23に示すように、緩衝材832、833が1個の場合は、フィルム815の厚さの10~90%の範囲で、好ましくは25~75%の範囲、より好ましくは35~65%の範囲である。緩衝材832の厚さがフィルム815の厚さの10%未満、又は90%を超えると、切り口写り改善効果が減少する。緩衝材841~844が複数個の場合は、フィルム先端815aに近い緩衝材841~844から徐々に厚さを薄くしていけばよい。この場合に、各緩衝材841~844の厚さの差分はフィルム815の厚さの5%以上30%以下に抑えるのが望ましい。 As shown in FIG. 18, the thickness t03 of the cushioning material 832 varies depending on the number of cushioning materials used. For example, as shown in FIGS. 18 to 21 and FIG. 23 to be described later, when the number of the cushioning materials 832 and 833 is one, the thickness of the film 815 is in the range of 10 to 90%, preferably 25 to 75%. The range is more preferably 35 to 65%. If the thickness of the cushioning material 832 is less than 10% or more than 90% of the thickness of the film 815, the effect of improving the cut-out appearance decreases. When there are a plurality of cushioning materials 841 to 844, the thickness may be gradually reduced from the cushioning materials 841 to 844 near the film front end 815a. In this case, it is desirable that the difference in thickness between the cushioning materials 841 to 844 is suppressed to 5% or more and 30% or less of the thickness of the film 815.
 なお、図20に示す第2実施形態のように、緩衝材本体833aの少なくとも一方の面に粘着層833bを有する緩衝材833の場合には、両面テープ831を用いることなく、巻き芯823に直接に貼り付けられる。なお、以下の各実施形態において、同一構成部材には同一符号を付して重複した説明を省略している。 In the case of the cushioning material 833 having the adhesive layer 833b on at least one surface of the cushioning material body 833a as in the second embodiment shown in FIG. 20, the double-sided tape 831 is not used, and the cushioning material 833 is directly attached to the winding core 823. Pasted on. In addition, in each of the following embodiments, the same constituent members are denoted by the same reference numerals, and duplicate description is omitted.
 図21、図22は、第3実施形態を示すもので、厚さの異なる2種類の緩衝材841、842をフィルム815の巻取り方向に並べて配置したものである。フィルム815の先端815aに近い第1緩衝材841、先端815aから遠い第2緩衝材842はともに、厚さt12、t22がポリマーフィルム15の厚さt01以下であり、かつt12>t22である。また、第1緩衝材841、第2緩衝材842の幅W12、W22は巻き芯の円周長の0.5~6.0%の範囲である。 21 and 22 show the third embodiment, in which two kinds of cushioning materials 841 and 842 having different thicknesses are arranged side by side in the winding direction of the film 815. The thicknesses t12 and t22 of both the first cushioning material 841 near the tip 815a of the film 815 and the second cushioning material 842 far from the tip 815a are not more than the thickness t01 of the polymer film 15 and t12>t22. The widths W12 and W22 of the first buffer material 841 and the second buffer material 842 are in the range of 0.5 to 6.0% of the circumferential length of the winding core.
 第3実施形態では、第1緩衝材841と第2緩衝材842との厚さt21、t22を二段階で変えているので、第1実施形態のものに比べて段差跡の曲げ変形を二段階の小さなものにすることができ、第1実施形態の一つの緩衝材832のものに比べて、段差跡の発生長さがより短くなる。 In the third embodiment, since the thicknesses t21 and t22 of the first cushioning material 841 and the second cushioning material 842 are changed in two steps, the bending deformation of the step mark is performed in two steps as compared with the first embodiment. Can be made smaller, and the generation length of the step mark becomes shorter than that of the single cushioning material 832 of the first embodiment.
 第4実施形態では、図21、図22に示す第3実施形態に代えて、図23に示すように、緩衝材本体843a、844aの少なくとも一方の面に粘着層843b、844bを有する緩衝材843、844を用いている。この場合には、両面テープ831を用いることなく、巻き芯823に直接に緩衝材843、844が貼り付けられる。 In the fourth embodiment, instead of the third embodiment shown in FIGS. 21 and 22, as shown in FIG. 23, a cushioning material 843 having adhesive layers 843b and 844b on at least one surface of the cushioning material bodies 843a and 844a. , 844 are used. In this case, the cushioning materials 843 and 844 are directly attached to the winding core 823 without using the double-sided tape 831.
 なお、各緩衝材841~844の厚さt12、t22を変える代わりに各緩衝材841~844の弾性率(ヤング率)を変えたり、各緩衝材841~844の厚さと一緒に弾性率(ヤング率)を変えたりして、フィルム先端815aから遠ざかる第2緩衝材842、844の圧縮変形量を、第1緩衝材841、843の圧縮変形量よりも大きくしてもよい。この場合には、二つの緩衝材によって、フィルム先端の影響による段差の発生が抑えられ、切り口写りをより一層抑えることができる。 Note that instead of changing the thicknesses t12 and t22 of the cushioning materials 841 to 844, the elastic modulus (Young's modulus) of each of the cushioning materials 841 to 844 may be changed, or the elastic modulus (Young's modulus) of each cushioning material 841 to 844 may be changed. The compression deformation amount of the second cushioning materials 842 and 844 moving away from the film front end 815a may be made larger than the compression deformation amount of the first cushioning materials 841 and 843. In this case, the two cushioning materials can suppress the occurrence of a step due to the influence of the leading edge of the film, and can further suppress the cut image.
 緩衝材832、833、841~844の弾性率と厚さとの関係は、巻き取るフィルム815の弾性率に応じて変えることが好ましい。例えば、フィルム815の弾性率をEpとし、緩衝材の弾性率をEbとしたとき、Ep≦Ebのときは、フィルムの厚さをtp、緩衝材の厚さをtbとしたときに、(tp/2)<tb<tpとする。また、Ep>Ebのときは、tp<tb<2・tpとする。 The relationship between the elastic modulus and the thickness of the cushioning materials 832, 833, 841 to 844 is preferably changed according to the elastic modulus of the film 815 to be wound. For example, when the elastic modulus of the film 815 is Ep and the elastic modulus of the cushioning material is Eb, when Ep≦Eb, the film thickness is tp, and when the cushioning material thickness is tb, (tp /2)<tb<tp. When Ep>Eb, tp<tb<2·tp.
 図17、図18に示すように、フィルム先端815aから緩衝材832までの隙間G01は0.1~20mmの範囲であり、好ましくは0.1~10mmの範囲であり、より好ましくは0.1~8mmの範囲である。0.1mm未満ではフィルム815が緩衝材832に重なりやすくなり、20mmを超えると、フィルム先端815aと緩衝材832の間に段差が生じて、切り口写りの原因となり、ともに好ましくない。 As shown in FIGS. 17 and 18, the gap G01 from the film front end 815a to the cushioning material 832 is in the range of 0.1 to 20 mm, preferably 0.1 to 10 mm, and more preferably 0.1. The range is up to 8 mm. If it is less than 0.1 mm, the film 815 easily overlaps with the cushioning material 832. If it exceeds 20 mm, a step is formed between the film front end 815a and the cushioning material 832, which may cause a cut end image, which is not preferable.
 図19に示すように、フィルム815が巻き芯823に巻き取られて、フィルム先端815aに次のフィルム815が重なると、緩衝材832が次に巻かれたフィルム815の段差の影響を緩和する。これにより、フィルム815に極端な曲げが発生することがない。以下、同様にして次のフィルムが巻き取られていくが、いずれも緩衝材832の影響によって極端な曲げ変形が発生することがなく、切り口写りの発生が抑えられる。 As shown in FIG. 19, when the film 815 is wound around the winding core 823 and the next film 815 overlaps the film tip 815a, the cushioning material 832 reduces the influence of the step of the film 815 wound next. This prevents the film 815 from being extremely bent. In the same manner, the next film is wound up in the same manner, but in any case, extreme bending deformation does not occur due to the influence of the cushioning material 832, and the occurrence of cut edges is suppressed.
 両面テープ831の貼り付けや、フィルム先端部の両面テープ831による接着は、人手によってもよく、又はフィルム切断装置を用いてもよい。人手による場合には、巻取り装置813の直前に図示省略のフィルムリザーバを設ける。このフィルムリザーバにより、フィルム815の切断や巻き芯823への固定に要する時間分のフィルム815を一時的に貯留し、この貯留している間にフィルム815の切断及び巻き芯823への巻き付けを行う。また、自動で行う場合には、フィルム切断装置を用いて、フィルム815の切断と巻き芯823への固定とを行う。この場合には、巻き芯823上の両面テープ831の位置を自動検出し、この検出タイミングに基づき、フィルム815を切断し、切断したフィルム先端815aが緩衝材832に対して所定の隙間G01となるように、フィルム先端部を第2粘着層831cに接合する。 The sticking of the double-sided tape 831 and the adhesion of the front end of the film with the double-sided tape 831 may be performed manually or using a film cutting device. In the case of manual operation, a film reservoir (not shown) is provided immediately before the winding device 813. This film reservoir temporarily stores the film 815 for the time required for cutting the film 815 and fixing it to the winding core 823, and cutting the film 815 and winding the film 815 around the winding core 823 during the storage. .. In the case of automatic processing, a film cutting device is used to cut the film 815 and fix it to the winding core 823. In this case, the position of the double-sided tape 831 on the winding core 823 is automatically detected, the film 815 is cut based on this detection timing, and the cut film front end 815a becomes a predetermined gap G01 with respect to the cushioning material 832. As described above, the leading end of the film is bonded to the second adhesive layer 831c.
 なお、両面テープ831や緩衝材832、833、841~844は、あらかじめ巻き芯823に取り付けるようにしたが、フィルム切断装置側で、フィルム切断ドラムに両面テープ831、緩衝材832、833、841~844を貼り付けておき、フィルム切断ドラムによるフィルム815の切断時にフィルム815とともに、両面テープ831及び緩衝材832、833、841~844を巻き芯823に取り付けて、フィルム815を巻き取るようにしてもよい。 Although the double-sided tape 831 and the cushioning materials 832, 833, 841 to 844 were attached to the winding core 823 in advance, the double-sided tape 831, the cushioning materials 832, 833, 841 to the film cutting drum on the film cutting device side. 844 is attached, and when the film 815 is cut by the film cutting drum, the double-sided tape 831 and the cushioning materials 832, 833, 841 to 844 are attached to the winding core 823 to wind the film 815. Good.
 図21~図23に示すように、二つの緩衝材841~844の弾性率や厚さを変える代わりに、図示は省略したが、一つの緩衝材に対しフィルム先端815aに近い側の第1端縁から遠い側の第2端縁にかけて、厚さを次第に小さくしても良い。この場合にも、緩衝材によって次に巻かれるフィルムに、極端な曲げ変形が発生することがなく、切り口写りの発生が抑えられる。 As shown in FIGS. 21 to 23, although the illustration is omitted, instead of changing the elastic moduli and thicknesses of the two cushioning materials 841 to 844, the first end on the side closer to the film front end 815a with respect to one cushioning material is omitted. The thickness may be gradually reduced from the edge to the second end farther from the edge. Also in this case, the film wound next by the cushioning material does not undergo extreme bending deformation, and the occurrence of cut edges is suppressed.
 図24に示すように、フィルム幅方向基準線BL1に対するフィルム先端815aの傾斜角度θ1は、-30°<θ1<30°の範囲が好ましく、より好ましく-20°<θ1<20°の範囲であり、さらに好ましくは-10°<θ1<10°の範囲である。傾斜角度θ1が0°に近くなるほど、フィルム先端815aにそれ以降に重なるフィルム面圧の影響による応力を小さくすることができ、これによって切り口写りを抑制することができる。このように、フィルム815の先端815aを所定の傾斜角度θ1で切断する場合には、フィルム先端815aの傾斜角度θ1に合わせて、両面テープ831及び緩衝材832、833、841~844も同じ傾斜角度θ1で巻き芯823に貼り付ける。 As shown in FIG. 24, the inclination angle θ1 of the film front end 815a with respect to the film width direction reference line BL1 is preferably in the range of −30°<θ1<30°, more preferably −20°<θ1<20°. , And more preferably −10°<θ1<10°. The closer the inclination angle θ1 is to 0°, the smaller the stress due to the influence of the film surface pressure that overlaps the film front end 815a thereafter can be reduced, and thus the cut image can be suppressed. In this way, when the tip 815a of the film 815 is cut at a predetermined inclination angle θ1, the double-sided tape 831 and the cushioning materials 832, 833, 841 to 844 have the same inclination angle according to the inclination angle θ1 of the film tip 815a. The tape is attached to the winding core 823 at θ1.
 なお、フィルム815の幅は特に限定されるものではないが、600mm以上であることが好ましく、1100~2500mmの範囲であることがより好ましい。また、フィルム815の幅が2500mmよりも大きい場合にも効果がある。フィルム815の厚さは、10~200μmの範囲であることが好ましく、10~150μmの範囲であることがより好ましく、15~100μmの範囲であることがさらに好ましい。フィルム815の長さは、2000m以上であることが好ましく、2500~10000mの範囲であることがより好ましい。また、フィルムロールの巻取り半径は、450mm以上であることが好ましく、650~920mmの範囲であることがより好ましい。 The width of the film 815 is not particularly limited, but it is preferably 600 mm or more, more preferably 1100 to 2500 mm. It is also effective when the width of the film 815 is larger than 2500 mm. The thickness of the film 815 is preferably in the range of 10 to 200 μm, more preferably in the range of 10 to 150 μm, and further preferably in the range of 15 to 100 μm. The length of the film 815 is preferably 2000 m or more, more preferably 2500 to 10000 m. The winding radius of the film roll is preferably 450 mm or more, more preferably 650 to 920 mm.
 図18に示すように、巻き芯823の筒心方向における両面テープ831の長さL2は特に限定されるものではないが、フィルム815の幅W01を基準にしてL2=(W01-0)mm~(W01-10)mmが好ましい。 As shown in FIG. 18, the length L2 of the double-sided tape 831 in the cylinder center direction of the winding core 823 is not particularly limited, but L2=(W01-0) mm to the width W01 of the film 815 as a reference. (W01-10) mm is preferable.
 本発明に係るアクリル樹脂フィルムの巻き取りに用いられる巻取コアは、下記式(1)を満たすことが好ましい。 The winding core used for winding the acrylic resin film according to the present invention preferably satisfies the following formula (1).
  E > 0.06×Aa/I (1)
(E:巻取コアの弾性率[MPa]、A:巻取コアとフィルムとの合計質量[kg]、a:樹脂フィルムの幅[mm]、I:巻取コアの断面2次モーメント[mm])
 上記の構成によれば、フィルムを巻取コアにロール状に巻き取る巻取工程において使用する巻取コアが、巻き取るフィルムの幅や巻長に応じて、たわみを抑制できる弾性率を有するものである。このため、長期間放置しても馬の背変形の発生を抑制できるフィルムロールが得られる。したがって、得られたフィルムロールは、馬の背変形によるフィルム同士の貼着が抑制されたフィルムとして使用することができる。
E>0.06×Aa 3 /I (1)
(E: elastic modulus [MPa] of winding core, A: total mass [kg] of winding core and film, a: width of resin film [mm], I: second moment of area of winding core [mm] 4 ])
According to the above configuration, the winding core used in the winding step of winding the film around the winding core in a roll shape has an elastic modulus capable of suppressing flexure according to the width and winding length of the winding film. Is. Therefore, it is possible to obtain a film roll that can suppress the occurrence of back deformation of the horse even if left for a long time. Therefore, the obtained film roll can be used as a film in which the sticking of the films due to the back deformation of the horse is suppressed.
 本発明に係るアクリル樹脂フィルムを用いることによって、膜厚が均一であって、馬の背変形による樹脂フィルム同士の貼着が抑制されたフィルムを繰り出して供給できるフィルムロールが得られる。 By using the acrylic resin film according to the present invention, it is possible to obtain a film roll which can be fed out and supplied with a film having a uniform thickness and in which sticking of the resin films due to back deformation of the horse is suppressed.
 本発明者は、巻取コアにフィルムを巻き取ったフィルムロールに馬の背変形が発生するのは、巻き取ったフィルムや巻取コアの荷重により、巻取コアがたわむことによるのではないかと推察した。 The present inventor presumed that the back deformation of the horse in the film roll having the film wound on the winding core is caused by the winding core or the winding core bending due to the load of the winding film or the winding core. ..
 そこで、以下、巻取コアのたわみνについて説明する。 Therefore, the deflection ν of the winding core will be explained below.
 巻取コアのたわみνは、巻取コアが巻取コアの両端が支持されて保持されるので、一般的に、下記式(2)で表される。 The deflection ν of the winding core is generally expressed by the following equation (2), since the winding core is held while being supported by both ends of the winding core.
  ν = 5ωa/384EI (2)
(ν:巻取コアのたわみ[mm]、ω:巻取コアの単位長さあたりの荷重[N/mm]、a:樹脂フィルムの幅[mm]、E:巻取コアの弾性率[MPa]、I:巻取コアの断面2次モーメント[mm])
 上記式(2)中、巻取コアの単位長さあたりの荷重ωは、巻取コアにかかる荷重が分布荷重であるので、一般的に、下記式(3)で表される。
ν = 5ωa 4 /384EI (2)
(Ν: deflection of winding core [mm], ω: load per unit length of winding core [N/mm], a: width of resin film [mm], E: elastic modulus of winding core [MPa] ], I: second moment of area [mm 4 ] of the winding core)
In the above formula (2), the load ω per unit length of the winding core is generally expressed by the following formula (3) because the load applied to the winding core is a distributed load.
  ω = P/a (3)
 (ω:巻取コアの単位長さあたりの荷重[N/mm]、P:巻取コアの荷重[N]、a:樹脂フィルムの幅[mm])
 したがって、巻取コアのたわみνは、下記式(4)で表される。
ω = P/a (3)
(Ω: load per unit length of winding core [N/mm], P: load of winding core [N], a: width of resin film [mm])
Therefore, the deflection ν of the winding core is expressed by the following equation (4).
  ν = 5Pa/384EI (4)
(ν:巻取コアのたわみ[mm]、P:巻取コアの荷重[N]、a:樹脂フィルムの幅[mm]、E:巻取コアの弾性率[MPa]、I:巻取コアの断面2次モーメント[mm])
 次に、本発明者は、樹脂フィルムの幅や巻長等に基づく荷重の違いにより、巻取コアのたわみが異なることに着目した。
ν = 5Pa 3 /384EI (4)
(Ν: deflection of winding core [mm], P: load of winding core [N], a: width of resin film [mm], E: elastic modulus of winding core [MPa], I: winding core Second moment of area [mm 4 ])
Next, the present inventor has noticed that the deflection of the winding core differs depending on the difference in the load based on the width and the winding length of the resin film.
 そこで、まず、ここでの巻取コアの荷重Pは、樹脂フィルムを巻き取った状態では、巻取コアと樹脂フィルムとの合計質量Aに相関される値であるので、荷重Pを合計質量Aに置き換えた。そして、馬の背変形の発生を充分に抑制できる条件を鋭意検討した結果、上記式(1)の関係を見いだした。 Therefore, first, the load P of the winding core is a value that is correlated with the total mass A of the winding core and the resin film in the state where the resin film is wound. Replaced with. Then, as a result of diligent examination of the conditions capable of sufficiently suppressing the occurrence of back deformation of the horse, the relationship of the above formula (1) was found.
 したがって、上記式(1)の関係を満たすことによって、巻取コアの弾性率が、巻き取る樹脂フィルムの幅や巻長等に応じて、たわみを抑制できる弾性率である。このため、樹脂フィルムをロール状に巻取り、長期間放置しても馬の背変形の発生を抑制できる。 Therefore, by satisfying the relationship of the above formula (1), the elastic modulus of the winding core is an elastic modulus capable of suppressing the flexure according to the width and winding length of the resin film to be wound. Therefore, even if the resin film is wound into a roll and left for a long period of time, the back deformation of the horse can be suppressed.
 また、本実施形態において、巻取コアの弾性率は、上述したように、巻取コアと樹脂フィルムとの合計質量A、樹脂フィルムの幅a、及び巻取コアの断面2次モーメントIによって規定されるので、巻き取る樹脂フィルムの幅や巻長等に主に依存する。このため、巻取コアの弾性率を、巻き取る樹脂フィルムの幅や巻長等に基づいて、馬の背変形の発生を充分に抑制できるように設定できる。よって、巻取コアの製造コストを必要以上にかけることなく、馬の背変形の発生を充分に抑制できるので、好ましい。なお、巻取コアの断面2次モーメントは、一般的に、下記式(5)で表される値である。断面2次モーメントは、下記式(5)から分かるように、巻取コアの形状に依存する値である。 Further, in the present embodiment, the elastic modulus of the winding core is defined by the total mass A of the winding core and the resin film, the width a of the resin film, and the second moment of inertia I of the winding core, as described above. Therefore, it mainly depends on the width and winding length of the resin film to be wound. Therefore, the elastic modulus of the winding core can be set based on the width and the winding length of the resin film to be wound so as to sufficiently suppress the occurrence of back deformation of the horse. Therefore, it is possible to sufficiently suppress the occurrence of back deformation of the horse without increasing the manufacturing cost of the winding core more than necessary, which is preferable. The secondary moment of area of the winding core is generally a value represented by the following formula (5). The second moment of area is a value that depends on the shape of the winding core, as can be seen from the following formula (5).
 I = (d2-d1)×π/64 (5)
(d1:巻取コアの内径[mm]、d2:巻取コアの外径[mm])
 前記巻取コアは、上記範囲内の弾性率を有するものであればよく、特に材質等に限定されない。例えば、樹脂製であってもよいし、金属製であってもよい。その中でも、樹脂と繊維とを含む繊維強化樹脂(FRP)層を備えてなるものが好ましい。繊維強化樹脂層は、繊維によって強化された樹脂層であるので、含有する繊維の強度や含有率等によって、弾性率を容易に調整することができる。よって、巻取コアの弾性率を上記範囲内に容易に調整することができる。このような繊維強化樹脂層を備えてなる巻取コア11としては、例えば、1層の繊維強化樹脂層のみからなるものであってもよいし、異なる繊維強化樹脂層を2層積層したものであってもよいし、異なる繊維強化樹脂層を3層以上積層したものであってもよい。また、繊維強化樹脂層と、繊維を含まない樹脂層を積層したものであってもよい。
I=(d2 4 −d1 4 )×π/64 (5)
(D1: inner diameter [mm] of winding core, d2: outer diameter [mm] of winding core)
The winding core is not particularly limited in material as long as it has an elastic modulus within the above range. For example, it may be made of resin or metal. Among them, those having a fiber reinforced resin (FRP) layer containing a resin and fibers are preferable. Since the fiber-reinforced resin layer is a resin layer reinforced with fibers, the elastic modulus can be easily adjusted by the strength and content of the fibers contained. Therefore, the elastic modulus of the winding core can be easily adjusted within the above range. The winding core 11 including such a fiber-reinforced resin layer may be, for example, one fiber-reinforced resin layer only, or two different fiber-reinforced resin layers laminated together. It may be present, or may be a laminate of three or more different fiber reinforced resin layers. Further, it may be a laminate of a fiber-reinforced resin layer and a resin layer containing no fiber.
 また、前記巻取コアの形状としては、円筒形状であることが好ましい。前記巻取コアの弾性率が上記範囲内であるならば、内部が空洞である円筒形状の方が、軽量化できるので、好ましい。また、前記巻取コアに回転装置に装着しやすい点からも好ましい。前記巻取コアの形状が円筒形状である場合、前記巻取コアの厚さは、巻取コアの弾性率によっても異なるが、例えば、5~15mmの範囲であることが好ましい。 The shape of the winding core is preferably cylindrical. If the elastic modulus of the winding core is within the above range, it is preferable that the hollow core has a hollow shape because the weight can be reduced. It is also preferable in that the winding core can be easily attached to the rotating device. When the winding core has a cylindrical shape, the thickness of the winding core is preferably, for example, in the range of 5 to 15 mm, although it varies depending on the elastic modulus of the winding core.
 次に、上記のような繊維強化樹脂層を備えてなる巻取コアの製造方法について説明する。前記巻取コアを製造する方法は、特に限定されないが、例えば、フィラメントワインディング法やシートワインディング法等によって製造できる。フィラメントワインディング法とは、液状の樹脂を含浸したフィラメント状の繊維を所定の型に巻き付け、樹脂を乾燥又は硬化させた後、脱型して、円筒形状の繊維強化樹脂層を形成させる方法である。また、シートワインディング法とは、液状の樹脂を含浸させたシート状の繊維(プリプレグ)を所定の型に巻き付け、樹脂を乾燥又は硬化させた後、脱型して、円筒形状の繊維強化樹脂層を形成させる方法である。より具体的には、以下のような方法である。 Next, a method for manufacturing a winding core including the fiber reinforced resin layer as described above will be described. The method for manufacturing the winding core is not particularly limited, but the winding core can be manufactured by, for example, a filament winding method, a sheet winding method, or the like. The filament winding method is a method of forming a cylindrical fiber-reinforced resin layer by winding filamentous fibers impregnated with a liquid resin around a predetermined mold, drying or curing the resin, and then demolding. .. Further, the sheet winding method is to wind a sheet-shaped fiber (prepreg) impregnated with a liquid resin around a predetermined mold, dry or cure the resin, and then demold to form a cylindrical fiber-reinforced resin layer. Is a method of forming. More specifically, the following method is used.
 図25は、フィラメントワインディング法による巻取コアを製造する方法を説明するための概略図である。まず、型となるマンドレル931を、フィラメントワインダ932に取り付け、樹脂槽933に、繊維強化樹脂層の原料である樹脂を投入しておく。ここでの樹脂は、樹脂溶液又は硬化前の液状の樹脂である。繊維強化樹脂層の原料である繊維は、マンドレル931をフィラメントワインダ932によって回転させることによって、前記繊維を巻きつけたローラー934から順次供給される。そして、前記繊維は、ガイド935によって、巻き付ける位置を決め、マンドレル931に巻き付ける。その際、前記繊維は、マンドレル931に巻き付けられる前に、樹脂槽933の中を通過して、前記樹脂を含浸させる。そうすることによって、樹脂を含浸した繊維がマンドレルの表面上に巻き付けられる。その後、樹脂を乾燥又は硬化させることによって、マンドレル上に繊維強化樹脂層を形成させる。そして、繊維強化樹脂層からマンドレルを引き抜くことによって、目的の成形体を得る。 FIG. 25 is a schematic diagram for explaining a method of manufacturing a winding core by the filament winding method. First, the mandrel 931 to be a mold is attached to the filament winder 932, and the resin that is the raw material of the fiber reinforced resin layer is charged into the resin tank 933. The resin here is a resin solution or a liquid resin before curing. The fibers that are the raw material of the fiber reinforced resin layer are sequentially supplied from the roller 934 around which the fibers are wound by rotating the mandrel 931 by the filament winder 932. Then, the fiber is wound around the mandrel 931 by determining the winding position by the guide 935. At that time, the fibers pass through the resin tank 933 and are impregnated with the resin before being wound around the mandrel 931. By doing so, the resin impregnated fibers are wrapped around the surface of the mandrel. After that, the fiber-reinforced resin layer is formed on the mandrel by drying or curing the resin. Then, the mandrel is pulled out from the fiber reinforced resin layer to obtain the target molded body.
 図26は、シートワインディング法による巻取コアを製造する方法を説明するための概略図である。まず、型であるマンドレル941を、支持ローラー944、945上に載置する。支持ローラー944、945を回転駆動させることによって、マンドレル941を回転させる。その際、タッチローラ943は、マンドレル941の表面を押圧し、マンドレル941の回転によって、従動回転する。そして、型であるマンドレル941を回転させることによって、図26に示すように、フィルムロール(プリプレグ)942をタッチローラ943でマンドレル941に押し付けながら、マンドレル941上に巻き付ける。その後、樹脂を乾燥又は硬化させることによって、マンドレル上に繊維強化樹脂層を形成させる。そして、繊維強化樹脂層からマンドレルを引き抜くことによって、目的の成形体を得る。 FIG. 26 is a schematic diagram for explaining a method of manufacturing a winding core by the sheet winding method. First, the mandrel 941 which is a mold is placed on the support rollers 944 and 945. The mandrel 941 is rotated by rotationally driving the support rollers 944 and 945. At that time, the touch roller 943 presses the surface of the mandrel 941 and is rotated by the rotation of the mandrel 941. Then, by rotating the mandrel 941 as a mold, the film roll (prepreg) 942 is wound around the mandrel 941 while being pressed against the mandrel 941 by the touch roller 943 as shown in FIG. After that, the fiber-reinforced resin layer is formed on the mandrel by drying or curing the resin. Then, the mandrel is pulled out from the fiber reinforced resin layer to obtain the target molded body.
 前記繊維としては、例えば、糸、ロービング、織物、不織布、編物、組物、クロス等のいずれの形態の繊維材料であっても用いることができる。また、その素材としては、繊維強化樹脂に一般的に含有される繊維であれば、特に限定なく使用できる。例えば、ガラス繊維、カーボン繊維、アラミド繊維、及びセラミック繊維等が挙げられる。これらの中でも、高弾性率のものが得られる点から、ガラス繊維及びカーボン繊維が好ましく、カーボン繊維がより好ましい。 As the fiber, for example, any form of fiber material such as yarn, roving, woven fabric, non-woven fabric, knitted fabric, braid and cloth can be used. Further, as the material, any fiber generally contained in the fiber reinforced resin can be used without any particular limitation. Examples thereof include glass fiber, carbon fiber, aramid fiber, and ceramic fiber. Among these, glass fibers and carbon fibers are preferable, and carbon fibers are more preferable, from the viewpoint of obtaining one having a high elastic modulus.
 また、前記樹脂としては、繊維強化樹脂に一般的に含有される樹脂であれば、特に限定なく使用できる。例えば、ポリエステル樹脂、不飽和ポリエステル樹脂、及びエポキシ樹脂等が挙げられる。これらの中でも、不飽和ポリエステル樹脂やエポキシ樹脂等の硬化性樹脂が、熱に対して安定した巻取コアが得られる点から好ましい。 As the resin, any resin generally contained in fiber reinforced resins can be used without particular limitation. For example, polyester resin, unsaturated polyester resin, epoxy resin and the like can be mentioned. Of these, curable resins such as unsaturated polyester resins and epoxy resins are preferable from the viewpoint of obtaining a winding core that is stable against heat.
 また、繊維強化層を2層以上積層する場合、例えば、異なる繊維強化樹脂層を2層積層する場合、使用する繊維及び樹脂は、各層毎に異なるものを用いてもよいし、同じものを用いてもよい。また、樹脂を含浸した繊維を2種以上巻き付けてから同時に乾燥又は硬化させることによって、2層以上の繊維強化層を形成させてもよいし、樹脂を含浸した繊維を巻き付けて乾燥又は硬化させた後に、別途樹脂を含浸した繊維を巻き付けて乾燥又は硬化させることによって、2層以上の繊維強化層を形成させてもよい。 When two or more fiber reinforced layers are laminated, for example, when two different fiber reinforced resin layers are laminated, different fibers and resins may be used for each layer, or the same fibers and resins may be used. May be. Further, two or more fiber-impregnated fibers may be wound and then dried or cured at the same time to form two or more fiber-reinforced layers, or resin-impregnated fibers may be wound and dried or cured. After that, two or more fiber-reinforced layers may be formed by separately winding fibers impregnated with resin and drying or curing the fibers.
 巻取コアの弾性率の調整方法は、特に限定されないが、巻取コアの材質を代えることによって、調整が可能である。また、繊維強化層を備えた巻取コアの場合、使用する繊維として、カーボン繊維やアラミド繊維等の高強度繊維を用いたり、巻き付け量を多くしたり、繊維含有率を高めたりすることによって、弾性率を高めることができる。また、樹脂によっても、弾性率を調整することができる。さらに、繊維強化樹脂層の表面に繊維を含まない樹脂層を積層したものの場合、表層の樹脂層の樹脂によっても、弾性率を調整することができる。したがって、繊維強化樹脂層や表層の樹脂層の組成を適宜調整することによって、巻取コアの弾性率を上記弾性率範囲に調整することが可能である。 The method of adjusting the elastic modulus of the winding core is not particularly limited, but it can be adjusted by changing the material of the winding core. Further, in the case of a winding core having a fiber reinforced layer, as the fibers to be used, using high-strength fibers such as carbon fibers and aramid fibers, by increasing the winding amount, or by increasing the fiber content, The elastic modulus can be increased. Further, the elastic modulus can be adjusted also by the resin. Furthermore, in the case where a resin layer containing no fiber is laminated on the surface of the fiber reinforced resin layer, the elastic modulus can be adjusted also by the resin of the surface resin layer. Therefore, by appropriately adjusting the composition of the fiber-reinforced resin layer or the surface resin layer, the elastic modulus of the winding core can be adjusted within the above elastic modulus range.
 (6)スリット工程
 本発明のアクリル樹脂フィルムの製造方法において、フィルムの片側端部に設置されるスリット装置が、フィルム片側端部当たり1~3基である製造装置を採用することが、好ましい。
(6) Slit Step In the method for producing an acrylic resin film of the present invention, it is preferable to employ a production apparatus in which the number of slit devices installed at one end of the film is 1 to 3 per one end of the film.
 本発明に係るアクリル樹脂フィルムを製造する製造装置において、フィルムスリット装置が、円盤状の回転上刃と、ロール状の回転下刃とから構成されているのが、好ましい。 In the manufacturing apparatus for manufacturing the acrylic resin film according to the present invention, it is preferable that the film slitting device includes a disc-shaped rotating upper blade and a roll-shaped rotating lower blade.
 ここで、スリット装置の円盤状の回転上刃は、直径30~300mmの範囲、及び切断箇所の厚さ0.3~3mmの範囲を有するとともに、同回転上刃の材質が、超鋼、超鋼微粒、SKD(合金工具鋼)、又はSKH(高速度工具鋼)のいずれかである。また、上刃のトーイン角を30~90度の範囲にするのが、好ましい。 Here, the disk-shaped rotary upper blade of the slitting device has a diameter range of 30 to 300 mm and a thickness of the cut portion of 0.3 to 3 mm, and the rotary upper blade is made of super steel It is either steel granules, SKD (alloy tool steel), or SKH (high speed tool steel). Further, it is preferable that the toe-in angle of the upper blade is in the range of 30 to 90 degrees.
 ロール状の回転下刃は、ロール径75~200mmの範囲を有するとともに、同回転下刃のロール材質が、超鋼、超鋼微粒、SKD、SKHのいずれかである。 The roll-shaped rotating lower blade has a roll diameter in the range of 75 to 200 mm, and the roll material of the rotating lower blade is one of super steel, super steel fine particles, SKD, and SKH.
 当該製造装置においては、フィルムスリット装置が、円盤状の回転上刃のみによって構成されていても良い。この場合、スリット装置の円盤状の回転上刃が、直径30~300mmの範囲、及び切断箇所の厚さ0.3~3mmの範囲を有するとともに、同回転上刃の材質が、超鋼、超鋼微粒、SKD、又はSKHのいずれかである。 In the manufacturing apparatus, the film slitting device may be composed of only a disc-shaped rotating upper blade. In this case, the disk-shaped rotary upper blade of the slitting device has a diameter range of 30 to 300 mm and a thickness of the cut portion of 0.3 to 3 mm, and the rotary upper blade is made of super steel, It is either steel granules, SKD, or SKH.
 本発明において、スリッター周辺の温度を20~50℃の範囲、湿度を50~70%RHの範囲にするのが、好ましい。 In the present invention, it is preferable that the temperature around the slitter is in the range of 20 to 50° C. and the humidity is in the range of 50 to 70% RH.
 また、本発明において、上刃の周辺がボックス(Box)化され、かつ風速0.8~10m/secの範囲で吸引される吸引装置を設けるのが、好ましい。この場合、端部フィルムの吸引位置が、スリッティングポイントからベース搬送方向下流側とする。 Further, in the present invention, it is preferable to provide a suction device in which the periphery of the upper blade is boxed and suction is performed in a wind velocity range of 0.8 to 10 m/sec. In this case, the suction position of the end film is on the downstream side in the base transport direction from the slitting point.
 本発明においては、スリットされた端部フィルム(フィルム断片)を、次期断裁工程へ搬送する機構を設けるのが、好ましく、例えば、スリットされた端部フィルムをニップ及び/又は吸引する機構を設けるのが、好ましい。さらに、スリットされた端部フィルムをニップ及び/又は巻取る機構を設けるのが、好ましい。 In the present invention, it is preferable to provide a mechanism for conveying the slit end film (film fragment) to the next cutting step, for example, a mechanism for nipping and/or sucking the slit end film. Are preferred. Further, it is preferable to provide a mechanism for nipping and/or winding the slit end film.
 ここで、ドロー比すなわちニップ及び/又は巻き取るフィルムの速度をスリットされた端部フィルムの速度で割った値を、0.8~1.5の範囲にするのが、好ましい。 Here, it is preferable that the draw ratio, that is, the value of the speed of the nip and/or the film to be wound is divided by the speed of the slit end film to be in the range of 0.8 to 1.5.
 また、吸引圧を-1000~-100Paの範囲にするのが、好ましい。そして、ニップ圧を0.1~17MPaの範囲にするのが、好ましい。 Also, it is preferable to set the suction pressure in the range of −1000 to −100 Pa. Then, it is preferable to set the nip pressure within a range of 0.1 to 17 MPa.
 本発明に係るアクリル樹脂フィルムの製造においては、スリットされた端部フィルムの幅を20~150mmの範囲、厚さを30~150μmの範囲にする。 In the production of the acrylic resin film according to the present invention, the width of the slit end film is in the range of 20 to 150 mm and the thickness is in the range of 30 to 150 μm.
 本発明においては、搬送フィルムを、マスキングベースでカバーした後にスリットする方法もある。 In the present invention, there is also a method in which the transport film is covered with a masking base and then slit.
 マスキングベースの素材としては、フィルムを保護することができるものであれば、特に制限はなく、例えばポリエチレンテレフタレート(PET)フィルム、ポリエチレン(PE)フィルム、ポリプロピレン(PP)フィルムなどが挙げられる。 The material of the masking base is not particularly limited as long as it can protect the film, and examples thereof include polyethylene terephthalate (PET) film, polyethylene (PE) film and polypropylene (PP) film.
 また、スリットされた端部フィルムの帯電量を、0~±10kVの範囲にするのが、好ましい。このため、上刃周辺には、除電装置を設けるのが、好ましく、除電装置としては、例えば除電バー、除電ブロワー、除電糸のいずれかを使用する。 Also, it is preferable to set the charge amount of the slit end film in the range of 0 to ±10 kV. Therefore, it is preferable to provide a static eliminator around the upper blade. As the static eliminator, for example, any one of a static eliminator bar, a static eliminator, and a static eliminator is used.
 スリットされた端部フィルム(フィルム断片)は、エッジクリーナーで処理するのが、好ましい。 Edge slit film (film fragments) is preferably treated with an edge cleaner.
 また、スリット後の製品フィルムは、その端部をウェブクリーナーで処理し、切り粉を除去するのが、好ましい。 Also, it is preferable that the product film after slitting be treated with a web cleaner to remove the cutting chips.
 本発明の製造方法では、形成されたフィルムを加熱部で加熱する加熱工程をとることも好ましい。 In the production method of the present invention, it is also preferable to take a heating step of heating the formed film in a heating section.
 この加熱工程では、最初に、インライン膜厚計でフィルムの膜厚を計測する。これにより、例えば、幅手方向両端が内側に比べて厚く形成された膜厚が計測される。なお、このように幅手方向両端の膜厚が厚くなるのは、樹脂をTダイのスリットから押し出す際に、樹脂に幅手中心方向へ引っ張る力が作用することに起因する、いわゆるネックイン現象によるものである。 In this heating process, first measure the film thickness with an in-line film thickness meter. Thereby, for example, the film thickness formed at both ends in the width direction to be thicker than the inside is measured. Note that the film thickness at both ends in the width direction is increased in this manner because a force pulling the resin in the width center direction acts on the resin when the resin is pushed out from the slit of the T-die, which is a so-called neck-in phenomenon. It is due to.
 そして、膜厚の計測されたフィルムをヒートガンで加熱する。このとき、制御部により、膜厚の計測結果に基づいてフィルムの幅手方向両端から全幅の10%の幅の範囲における平均膜厚tが算出され、この範囲内であって平均膜厚t以下の膜厚となるフィルム部分Hの少なくとも一部を加熱するようヒートガンがセットされることが好ましい。同時に、加熱されるフィルム部分Hの少なくとも一部の温度Tが、80≦T≦Tg+50[℃](Tg:樹脂のガラス転移温度[℃])となるようにヒートガンの出力が調整される。 Then, heat the film whose thickness has been measured with a heat gun. At this time, the control unit calculates the average film thickness t in the range of 10% of the total width from both ends in the width direction of the film based on the measurement result of the film thickness. It is preferable that the heat gun is set so as to heat at least a part of the film portion H having the film thickness of. At the same time, the output of the heat gun is adjusted so that the temperature T of at least a part of the film portion H to be heated is 80≦T≦Tg+50[° C.] (Tg: glass transition temperature [° C.] of resin).
 この加熱は、フィルムの両端に生じる応力を熱変形により緩和するためのものである。詳細に説明すると、上述のネックイン現象によって膜厚が厚く形成されたフィルムの両端には、複数のローラーでの搬送時に搬送張力が集中する結果、フィルムを幅手中心方向に引っ張る力(フィルムの幅を狭める力)が作用して応力が生じる。上記の加熱は、この応力を緩和するためのものである。これにより、この応力に起因する長手方向(搬送方向)の縦シワや、目視では確認できない微小な歪の発生を抑制することができる。この効果は、上記の応力発生要因から、未延伸状態のフィルムを長く搬送する工程において、より顕著に作用する。  This heating is to relieve the stress generated at both ends of the film by thermal deformation. Explaining in detail, at both ends of the film formed to be thick due to the above-mentioned neck-in phenomenon, as a result of the transport tension being concentrated at the time of transport by a plurality of rollers, the force pulling the film in the width center direction (of the film A force that narrows the width) acts to generate stress. The above heating is for relieving this stress. As a result, it is possible to suppress longitudinal wrinkles in the longitudinal direction (conveyance direction) due to the stress and minute strain that cannot be visually confirmed. This effect is more remarkable in the step of transporting the unstretched film for a long time due to the above-mentioned stress generation factor.
 また、この加熱は、スリット工程以外にも、延伸工程の前に行うことで上記の縦シワや歪の発生を効果的に抑制することができるため好ましい。これは、延伸工程におけるフィルムの長手方向への延伸によって縦シワや歪が強調されるためである。さらには、この加熱は、冷却ローラーよる樹脂の冷却固化の直後に行うことが望ましい。 Further, it is preferable to perform this heating before the stretching step in addition to the slit step, because the above-mentioned longitudinal wrinkles and distortion can be effectively suppressed. This is because longitudinal wrinkles and distortion are emphasized by stretching the film in the longitudinal direction in the stretching step. Further, it is desirable that this heating be performed immediately after the resin is cooled and solidified by the cooling roller.
 また、この加熱によるフィルムの温度Tは、80℃未満であると、フィルムFの熱変形が少なく、応力を緩和する効果が不十分であり、Tg+50℃よりも高いと、フィルムFの加熱箇所が溶融して、フィルムがローラーに付着したり搬送方向に破断したりする恐れがある。したがって、この温度Tを80≦T≦Tg+50[℃]とすることで、加熱箇所の溶融を防止しつつフィルムを十分に熱変形させることができる。ただし、この温度Tは、80≦T≦Tg+30[℃]であるのがより好ましく、100≦T≦Tg+10[℃]であるのがさらに好ましい。 Further, if the temperature T of the film due to this heating is less than 80° C., the thermal deformation of the film F is small and the effect of relaxing the stress is insufficient, and if it is higher than Tg+50° C., the heated portion of the film F is The film may melt and adhere to the roller or break in the transport direction. Therefore, by setting the temperature T to 80≦T≦Tg+50 [° C.], it is possible to sufficiently heat-deform the film while preventing melting at the heated portion. However, the temperature T is more preferably 80≦T≦Tg+30 [° C.], and further preferably 100≦T≦Tg+10 [° C.].
 次に、加熱されたフィルム部分Hの少なくとも一部を切断して除去する(切断工程)。 Next, at least a part of the heated film portion H is cut and removed (cutting step).
 より詳しくは、フィルム部分Hのうちの加熱された部分からフィルムの最端部までを、加熱部のロータリーカッターでフィルムの長手方向に切断することによって除去する。この切断工程でフィルムの両端部を除去することにより、以降の搬送による当該両端部での応力の発生を防止できることから、縦シワや歪の発生をより確実に抑制することができる。なお、この切断工程では、フィルム部分Hのうちの加熱された部分のみを除去してもよいし、フィルム部分H全体を除去してもよい。また、この切断工程を行わなくともよい。 More specifically, the portion from the heated portion of the film portion H to the end of the film is removed by cutting in the longitudinal direction of the film with a rotary cutter in the heating portion. By removing both end portions of the film in this cutting step, it is possible to prevent the occurrence of stress at the both end portions due to the subsequent conveyance, so that it is possible to more reliably suppress the occurrence of vertical wrinkles and distortion. In this cutting step, only the heated portion of the film portion H may be removed, or the entire film portion H may be removed. Further, this cutting step may not be performed.
 次に、成形され加熱されたフィルムを縦延伸機で長手方向に延伸する(延伸工程)。 Next, the formed and heated film is stretched in the longitudinal direction by a longitudinal stretching machine (stretching step).
 この延伸工程では、IRヒーターでフィルムFを加熱しつつ、順番に徐々に周速が早くなるよう駆動された複数のローラーでフィルムを搬送することにより、当該フィルムを長手方向(搬送方向)へ延伸する。このとき、IRヒーターによってフィルムが加熱されるローラー間で最も周速の差が大きくなるように、ローラーが駆動される。 In this stretching step, while heating the film F with an IR heater, the film is conveyed by a plurality of rollers that are sequentially driven so that the peripheral speed gradually increases, so that the film is stretched in the longitudinal direction (conveying direction). To do. At this time, the rollers are driven so that the difference in peripheral speed between the rollers where the film is heated by the IR heater is the largest.
 次に、延伸されたフィルムを、巻取り部のワインダーで巻き取る。 Next, wind the stretched film with the winder in the winding section.
 以上の製造方法によれば、長手方向へ延伸される前のフィルムに対し、当該フィルムの幅手方向両端から所定の範囲内の少なくとも一部を加熱するので、長手方向の縦シワや歪が延伸によって強調される前に、幅手方向内側よりも強い搬送張力が作用している部分を熱変形させて、縦シワや歪の原因となる応力を効果的に緩和させることができる。 According to the above manufacturing method, since the film before being stretched in the longitudinal direction is heated at least a part within a predetermined range from both ends in the width direction of the film, longitudinal wrinkles and strain in the longitudinal direction are stretched. Before being emphasized by, it is possible to effectively relax the stress that causes vertical wrinkles and distortion by thermally deforming the portion on which the transport tension stronger than the inner side in the width direction acts.
 この際、フィルムの幅手方向両端から全幅の10%の幅の範囲内の少なくとも一部だけを加熱するので、フィルム全体が加熱されて搬送張力による不要な延伸や光学特性の変化を生じさせたり、上記範囲外のフィルム内側に縦シワや歪が生じて完成品であるアクリル樹脂フィルムの有効幅を減らしたりすることがない。 At this time, since at least a part of the film within the width range of 10% from both ends in the width direction is heated, the entire film is heated to cause unnecessary stretching or change in optical characteristics due to transport tension. In addition, vertical wrinkles and distortions are not generated inside the film outside the above range, and the effective width of the finished acrylic resin film is not reduced.
 また、上記範囲の平均膜厚t以下の膜厚となるフィルム部分Hの少なくとも一部だけを加熱するので、つまりは、最も厚く形成されて最も強く搬送張力が作用するフィルムFの最端部は加熱しない。これにより、当該最端部が加熱されてフィルムFが部分的に延伸することによる当該フィルムFの破断を防止することができる。 Further, since at least a part of the film portion H having a film thickness equal to or less than the average film thickness t in the above range is heated, that is, the outermost end portion of the film F formed to be the thickest and having the strongest conveyance tension acts. Do not heat. As a result, it is possible to prevent breakage of the film F due to the film F being partially stretched by heating the outermost end.
 また、上記フィルム部分Hの少なくとも一部を80≦T≦Tg+50[℃](Tg:アクリル樹脂Rのガラス転移温度[℃])を満たす温度Tに加熱するので、加熱箇所の溶融を防止しつつ十分に熱変形させて、縦シワや歪の原因となる応力を確実に緩和させることができる。 Further, since at least a part of the film portion H is heated to a temperature T satisfying 80≦T≦Tg+50[° C.] (Tg: glass transition temperature [° C.] of acrylic resin R), it is possible to prevent melting at a heated portion. The stress that causes vertical wrinkles and strain can be reliably relieved by sufficient thermal deformation.
 以上により、長手方向の縦シワや歪の発生を抑制することができる。 Due to the above, it is possible to suppress the occurrence of longitudinal wrinkles and distortion in the longitudinal direction.
 また、延伸工程においてフィルムを長手方向(搬送方向)のみに延伸することとしたが、縦延伸機の後流にテンターを設け、当該テンターによりフィルムを幅手方向に延伸することとしてもよい。 In addition, although the film is stretched only in the longitudinal direction (conveying direction) in the stretching step, a tenter may be provided downstream of the longitudinal stretching machine and the film may be stretched in the width direction by the tenter.
 また、インライン膜厚計は、接触式と非接触式とのいずれの形式であってもよいが、ライン中での計測が容易な点から、レーザーやX線を利用した非接触式のものとするのが好ましい。 The in-line film thickness meter may be of a contact type or a non-contact type, but is a non-contact type using a laser or X-ray because it is easy to measure in a line. Preferably.
 また、前記ヒートガンは、フィルムを熱風で加熱するものでなくともよく、ヒートローラ等の接触しながら加熱するものや、IRヒーター等の照射により加熱するものであってもよい。 The heat gun does not have to heat the film with hot air, but may heat the film while contacting it with a heat roller or the like, or heat it by irradiating it with an IR heater or the like.
 また、ロータリーカッターは、回転式のものでなくともよく、片刃のカッター等の固定式のものとしてもよい。 Also, the rotary cutter does not have to be a rotary type, but may be a fixed type such as a single-edged cutter.
 本発明のアクリル樹脂フィルムの製造方法では、スリット工程において、好ましくは、レーザー加工工程(レーザー光を照射してフィルムを加工する工程、以下単にレーザー加工と称する場合もある。)を採用することで、切断部溶融、切断部外観不良などのフィルムへのダメージが少なく、またレーザー強度が多少変動しても、切断部の形状が乱れることがない。また、フィルムの幅方向両端部に凹凸を形成する工程を、従来の凹凸を形成したエンボスローラーで加工する工程の替わりに、レーザー照射により加工する工程とすることもでき、所定の凹凸形状を良好に形成することができる。また、フィルムの膜厚仕様が変わっても、従来のようにフィルム膜厚に対応したエンボスローラーに取り替える必要が無く、過剰なレーザー強度を不要とし凹凸部分の損傷などのフィルムへのダメージが少なく、またレーザー光の強度を調節することにより、容易に適切なエンボス加工を行うことができるので、フィルムの生産性に優れている。また、レーザー光の照射位置を可変として、フィルム幅に応じてエンボス部を所定箇所に形成するのが好ましい。このように、レーザー光の照射位置を可変とすることで、フィルムの幅手方向の端部又は中央部のいずれにも、エンボス部の凹凸を容易に形成することが可能となり、これまでのエンボス加工時に、押圧用のエンボスローラーをバックローラーに接圧させたことにより生じたフィルム表面の微小なシワ・キズ等の故障が皆無となって、フィルムの表面性を飛躍的に向上し得る。 In the method for producing an acrylic resin film of the present invention, preferably, in the slitting step, a laser processing step (a step of irradiating a laser beam to process the film, hereinafter sometimes simply referred to as laser processing) is adopted. In addition, there is little damage to the film such as melting of the cut portion and defective appearance of the cut portion, and the shape of the cut portion is not disturbed even if the laser intensity changes to some extent. Further, the step of forming unevenness on both ends in the width direction of the film may be a step of processing by laser irradiation instead of the step of processing with the embossing roller on which the conventional unevenness is formed. Can be formed. Also, even if the film thickness specification changes, there is no need to replace it with an embossing roller that corresponds to the film thickness as in the past, unnecessary laser intensity is unnecessary and damage to the film such as uneven parts is less, Further, since the appropriate embossing can be easily performed by adjusting the intensity of the laser beam, the productivity of the film is excellent. Further, it is preferable to form the embossed portion at a predetermined position according to the film width by changing the irradiation position of the laser light. In this way, by varying the irradiation position of the laser beam, it becomes possible to easily form the unevenness of the embossed portion at either the end portion or the central portion in the width direction of the film. At the time of processing, there is no failure such as minute wrinkles or scratches on the film surface caused by contacting the back roller with the embossing roller for pressing, and the surface property of the film can be dramatically improved.
 また、レーザー加工工程は、上記のように切断加工やエンボス加工に限定するものではなく、フィルムの製造工程中で行われるレーザー加工であれば良く、例えば、搬送性を上げるためにフィルム端部の表面を粗面化する加工や溝、凹凸を設ける加工などのレーザー加工であっても良い。 Further, the laser processing step is not limited to the cutting processing and the embossing processing as described above, but may be any laser processing performed during the film manufacturing process. Laser processing such as processing for roughening the surface or processing for providing grooves or irregularities may be used.
 また、本発明において、レーザー加工工程におけるレーザー光が遠赤外線領域の光である場合は、フィルムに含有している化合物は、4~25μmの波長領域の光を吸収する化合物である。例えば、レーザー光がCOレーザーである場合は、レーザー光の波長が9.3~10.6μmであるので、この範囲の波長を吸収する化合物が好ましい。 Further, in the present invention, when the laser light in the laser processing step is light in the far infrared region, the compound contained in the film is a compound that absorbs light in the wavelength region of 4 to 25 μm. For example, when the laser light is a CO 2 laser, the wavelength of the laser light is 9.3 to 10.6 μm, so compounds that absorb wavelengths in this range are preferable.
 また、本発明において、レーザー加工工程におけるレーザー光が紫外線領域のUV光である場合は、フィルムに含有、又は、フィルム表面に塗布されている化合物は、0.2~0.4μmの波長領域の光を吸収する化合物である。例えば、UVレーザーとしては、KrFエキシマレーザー(波長0.248μm)、YAG-FHGレーザー(波長0.266μm)、YAG-THGレーザー(波長0.355μm)などがあり、上記化合物は、それぞれの波長を吸収する化合物が好ましい。 Further, in the present invention, when the laser light in the laser processing step is UV light in the ultraviolet range, the compound contained in the film or coated on the film surface has a wavelength range of 0.2 to 0.4 μm. It is a compound that absorbs light. For example, as UV lasers, there are KrF excimer laser (wavelength 0.248 μm), YAG-FHG laser (wavelength 0.266 μm), YAG-THG laser (wavelength 0.355 μm), etc. Compounds that absorb are preferred.
 また、本発明において、レーザー加工工程の前に、フィルムの表面のレーザー光を照射する部分に、レーザー光の波長を吸収する化合物を含有させるのが好ましい。 Further, in the present invention, it is preferable to include a compound that absorbs the wavelength of the laser light in the portion of the film surface to be irradiated with the laser light before the laser processing step.
 含有させる方法としては塗布、噴射などがあるが、それ以外の方法であってもよく、含有させる手段が特に限定されるものではない。 The method of inclusion includes coating, spraying, etc., but other methods may be used, and the means for inclusion is not particularly limited.
 レーザー照射部分に前記化合物を、例えば塗布することにより、化合物の使用量を少なくすることができるとともに、レーザー照射部分以外のフィルムの領域の物性(色変化や透明性など)に、前記化合物による影響を与えることがない。フィルムの表面に化合物を塗布する方法は、特に限定するものではなく、必要な膜厚の化合物を含む層を形成できれば良く、インクジェット方式やローラー塗布方式などを用いることができる。 The amount of the compound used can be reduced by, for example, coating the laser-irradiated portion with the compound, and the influence of the compound on the physical properties (color change, transparency, etc.) of the film region other than the laser-irradiated portion. Never give. The method of applying the compound to the surface of the film is not particularly limited as long as a layer containing the compound having a required film thickness can be formed, and an inkjet method, a roller application method or the like can be used.
 ところで、レーザー光とは、「誘導放出による光の増幅」(Light Amplification by Stimulated Emission of Radiation)という意味で、発振波長によって、上記COレーザー光やUVレーザー光に分類される。 By the way, laser light means “amplification of light by stimulated emission” (Light Amplification by Stimulated Emission of Radiation), and is classified into the CO 2 laser light and the UV laser light according to the oscillation wavelength.
 また、本発明では、フィルムの両端部にエンボス又はスリット目加工を施したテープ982を巻き付けて巻き取るようにすることも好ましい。 Further, in the present invention, it is also preferable to wind the tape 982 having embossed or slit-processed tape wound around both ends of the film.
 図27(A)は、フィルムの両端部にエンボス又はスリット目加工を施したテープ982を巻き付けて巻き取ったフィルムロール942を正面から見た図である。また、図27(B)は、図27(A)の丸く囲んだ部分Aの断面を拡大して示した図である。 FIG. 27(A) is a front view of a film roll 942 in which the tape 982 having embossed or slit-shaped finishes is wound around both ends of the film and wound up. 27B is an enlarged view of a cross section of a circled portion A in FIG. 27A.
 通常、フィルムが巻取り軸934に巻き取られる際は、基材Boの両端部にエンボス又はスリット目加工を施したテープ982を巻き付けて巻き取っていない。したがって、フィルムに付着した塵埃や巻きズレによりフィルムに傷などのダメージが与えられてしまうという問題があった。 Normally, when the film is wound on the winding shaft 934, the tape 982 which is embossed or slit-processed is not wound around both ends of the base material Bo. Therefore, there is a problem that the film is damaged such as scratches due to the dust attached to the film and the winding misalignment.
 本発明のように、フィルムBoの両端部にエンボス又はスリット目加工を施したテープ982を巻き付けて巻き取るようにすることで、塵埃や巻きズレによりフィルムに傷などのダメージが与えられるのを防止することができる。 As in the present invention, by embossing or slitting the tape 982 around both ends of the film Bo so as to be wound up, it is possible to prevent the film from being damaged by dust or winding misalignment. can do.
 図28は、テープ982を拡大して示したものであり、図28(A)は、エンボス加工が施されたテープの表面と、フィルムBoとフィルムBoの間にそのテープ982を挟んだときの断面と、を示したものであり、図28(B)は、スリット目加工が施されたテープの表面と、フィルムBoとフィルムBoの間にそのテープ982を挟んだときの断面と、を示したものである。 FIG. 28 is an enlarged view of the tape 982. FIG. 28A shows the tape 982 sandwiched between the film Bo and the surface of the embossed tape. FIG. 28B shows a cross section of the tape having slits and a cross section when the tape 982 is sandwiched between the film Bo and the film Bo. It is a thing.
 フィルムBoの両端部に図28のようなエンボス又はスリット目加工を施したテープ982を巻き付けて巻き取ることで、エンボス又はスリット目加工を施したテープ982をエアーが通ることができ、フィルムロール942として巻き取られたフィルムBoの中央部にエアーが入出することができる。したがって、ロールとして巻き取られたフィルムBoの中央部へエアーの出入りができるので、クニック(折れ曲がり、押し跡)やシワが発生するのを防止することができる。 By winding and winding the tape 982 having embossing or slit processing as shown in FIG. 28 around both ends of the film Bo, air can pass through the tape 982 having embossing processing or slit processing and the film roll 942. Air can flow in and out of the central portion of the film Bo wound as. Therefore, the air can flow in and out of the central portion of the film Bo wound up as a roll, so that it is possible to prevent the occurrence of knicks (bending, pushing marks) and wrinkles.
 ここで、テープ982の厚さXは50μm以上であることが好ましく、エンボス又はスリット目加工の深さxがテープの厚さの20~50%の範囲であることが好ましい。 Here, the thickness X of the tape 982 is preferably 50 μm or more, and the depth x of embossing or slitting is preferably in the range of 20 to 50% of the thickness of the tape.
 なお、テープの厚さXが50μm未満であると、テープ982のエンボス又はスリット目加工が巻圧で潰されてしまう。そして、エンボス又はスリット目加工の深さxがテープの厚さXの20%未満であると、テープのエンボス又はスリット目加工が巻圧で潰されてしまい、フィルムロール942として巻き取られたフィルムBoの中央部にエアーが入出することができなくなる。また、エンボス又はスリット目加工の深さxがテープの厚さXの50%よりも大きいと、エンボス又はスリット目加工された部分の強度が弱く、巻圧によって加工した形状が潰されてしまう。 If the tape thickness X is less than 50 μm, the embossing or slit processing of the tape 982 will be crushed by the winding pressure. When the depth x of embossing or slitting is less than 20% of the thickness X of the tape, the embossing or slitting of the tape is crushed by the winding pressure, and the film is wound as a film roll 942. Air cannot flow in and out of the central part of Bo. If the depth x of embossing or slitting is greater than 50% of the thickness X of the tape, the strength of the embossed or slitted portion is weak and the processed shape is crushed by the winding pressure.
 このように、エンボス又はスリット目加工を施したテープ982を巻き付けて巻き取ることで、塵埃などで膜面やフィルムにダメージが与えられることを防止し、且つ、クニックやシワが発生することを防止することができる。 In this manner, by winding and winding the embossed or slit-processed tape 982, it is possible to prevent the film surface or the film from being damaged by dust or the like, and prevent knicks or wrinkles from occurring. can do.
 本発明に用いられるフィルムスリット装置は、円盤状の回転上刃と、ロール状の回転下刃とから構成されているのが、好ましい。 The film slitting device used in the present invention preferably comprises a disk-shaped rotating upper blade and a roll-shaped rotating lower blade.
 ここで、スリット装置の円盤状の回転上刃は、直径30~300mm、及び切断箇所の厚さ0.3~3mmを有するとともに、同回転上刃の材質が、超鋼、超鋼微粒、SKD(合金工具鋼)、又はSKH(高速度工具鋼)のいずれかであることが好ましい。また、上刃のトーイン角を30~90度にするのが好ましい。 Here, the disk-shaped rotary upper blade of the slitting device has a diameter of 30 to 300 mm and a thickness of the cut portion of 0.3 to 3 mm, and the rotary upper blade is made of super steel, super steel fine particles, SKD. It is preferably either (alloy tool steel) or SKH (high speed tool steel). Further, it is preferable to set the toe-in angle of the upper blade to 30 to 90 degrees.
 ロール状の回転下刃は、ロール径75~200mmを有するとともに、同回転下刃のロール材質が、超鋼、超鋼微粒、SKD、SKHのいずれかであることが好ましい。 It is preferable that the roll-shaped rotary lower blade has a roll diameter of 75 to 200 mm, and that the material of the roll of the rotary lower blade is one of super steel, super steel fine particles, SKD, and SKH.
 本発明に用いられるフィルムスリット装置は、円盤状の回転上刃のみによって構成されていても良い。この場合、スリット装置の円盤状の回転上刃が、直径30~300mm、及び切断箇所の厚さ0.3~3mmを有するとともに、同回転上刃の材質が、超鋼、超鋼微粒、SKD、又はSKHのいずれかであることが好ましい。 The film slitting device used in the present invention may be composed of only a disc-shaped rotating upper blade. In this case, the disk-shaped rotary upper blade of the slitting device has a diameter of 30 to 300 mm and the thickness of the cut portion is 0.3 to 3 mm, and the rotary upper blade is made of super steel, super steel fine particles, SKD. , Or SKH.
 本発明において、スリッター周辺の温度を20~50℃、湿度を50~70%RHにするのが、好ましい。 In the present invention, it is preferable that the temperature around the slitter is 20 to 50° C. and the humidity is 50 to 70% RH.
 また、本発明において、上刃の周辺がボックス(Box)化され、かつ風速0.8~10m/secの範囲で吸引される吸引装置を設けるのが、好ましい。この場合、端部フィルムの吸引位置が、スリッティングポイントからベース搬送方向下流側とする。 Further, in the present invention, it is preferable to provide a suction device in which the periphery of the upper blade is boxed and suction is performed in a wind velocity range of 0.8 to 10 m/sec. In this case, the suction position of the end film is on the downstream side in the base transport direction from the slitting point.
 本発明においては、スリットされた端部フィルム(フィルム断片)を、次期断裁工程へ搬送する機構を設けるのが、好ましく、例えば、スリットされた端部フィルムをニップ及び/又は吸引する機構を設けるのが、好ましい。 In the present invention, it is preferable to provide a mechanism for conveying the slit end film (film fragment) to the next cutting step, for example, a mechanism for nipping and/or sucking the slit end film. Are preferred.
 さらに、スリットされた端部フィルムをニップ及び/又は巻取る機構を設けるのが、好ましい。 Furthermore, it is preferable to provide a mechanism for niping and/or winding the slit end film.
 ここで、ドロー比すなわちニップ及び/又は巻き取るフィルムの速度をスリットされた端部フィルムの速度で割った値を、0.8~1.5にするのが、好ましい。 Here, it is preferable that the draw ratio, that is, the value obtained by dividing the speed of the nip and/or winding film by the speed of the slit end film is 0.8 to 1.5.
 また、吸引圧を-1000~-100Paにするのが、好ましい。そして、ニップ圧を0.1~17MPaにするのが、好ましい。 Also, it is preferable to set the suction pressure to -1000 to -100 Pa. The nip pressure is preferably 0.1 to 17 MPa.
 (7)エンボス加工(ナーリング加工)工程
 本発明に係るアクリル樹脂フィルムは、フィルムの幅手方向の両端にエンボス領域を有するものであることが好ましい。エンボスは各エンボス領域において、搬送方向について略平行に凸列を1列以上で有している。凸列とは、凸領域が搬送方向において間欠的又は連続的に形成されたものである。本明細書中、凸領域が搬送方向において間欠的に形成された凸列を間欠的凸列と呼ぶものとし、凸領域が搬送方向において連続的に形成された凸列を連続的凸列と呼ぶものとする。凸列が間欠的凸列である場合、当該凸列を間欠的に構成する個々の凸領域を凸領域ユニットと呼ぶものとする。
(7) Embossing (Knurling) Step The acrylic resin film according to the present invention preferably has embossed regions at both ends in the width direction of the film. In each embossed area, the embossing has one or more convex rows substantially parallel to the transport direction. The convex row is an area in which convex areas are formed intermittently or continuously in the transport direction. In this specification, a convex row in which a convex region is intermittently formed in the transport direction is referred to as an intermittent convex row, and a convex row in which a convex region is continuously formed in the transport direction is referred to as a continuous convex row. I shall. When the convex row is an intermittent convex row, each convex area that intermittently configures the convex row is referred to as a convex area unit.
 本発明に係るアクリル樹脂フィルムが有する幅手方向両端のエンボス領域はそれぞれ独立して、以下に示す(I)又は(II)の要件を満たすものであることが好ましい。すなわち、両端のエンボス領域は共通して(I)の要件を満たしてもよいし、(II)の要件を満たしてもよいし、又は一端のエンボス領域が(I)の要件を満たし、かつ他端のエンボス領域が(II)の要件を満たしてもよい。両端のエンボス領域が共通して(I)の要件を満たすか、又は(II)の要件を満たす場合、両端のエンボス領域は、幅手方向の中央線について対称性を有してもよいし、又は所定の範囲内において互いに異なっていてもよい。両端のエンボス領域は好ましくは、共通して(I)の要件を満たすか、又は(II)の要件を満たし、かつ幅手方向の中央線について対称性を有する。以下、(I)及び(II)の要件について詳しく説明するが、これらの要件についての説明は一端分のエンボス領域を対象とするものである。本明細書中、フィルム面に対して垂直方向から見たとき、エンボス領域が有する凸領域のパターン形状をエンボスパターンということがある。 It is preferable that the embossed areas at both ends in the width direction of the acrylic resin film according to the present invention each independently satisfy the requirement (I) or (II) shown below. That is, the embossed regions at both ends may commonly satisfy the requirement (I), may satisfy the requirement (II), or the embossed regions at one end may satisfy the requirement (I), and The edge embossed region may meet the requirement of (II). When the embossed regions at both ends commonly satisfy the requirement (I) or satisfy the requirement (II), the embossed regions at both ends may have symmetry with respect to the center line in the width direction, Alternatively, they may be different from each other within a predetermined range. The embossed regions at both ends preferably satisfy the requirement (I) or the requirement (II) in common and have symmetry with respect to the center line in the width direction. Hereinafter, the requirements (I) and (II) will be described in detail, but the description of these requirements is directed to the embossed region at one end. In the present specification, the pattern shape of the convex area of the embossed area when viewed in the direction perpendicular to the film surface may be referred to as an embossed pattern.
 (I)エンボス領域が間欠的凸列のみを2列以上で有する場合、巻き込みエアーの抜けを阻害するように、各間欠的凸列の凸領域ユニットの配置を、搬送方向で隣り合う任意の二つの凸領域ユニット間及び幅手方向で隣り合う任意の2列の凸列間について制御する。 (I) When the embossed area has only two or more intermittent convex rows, the convex area units of each intermittent convex row are arranged so as to prevent the trapped air from being released. Control is performed between two convex area units and between any two adjacent convex rows in the width direction.
 要件(I)においてエンボス領域は間欠的凸列を好ましくは2~7列、より好ましくは3~5列で有する。具体的には、例えば図29(A)においてフィルムは、幅手方向一端におけるエンボス領域A10において、搬送方向(MD方向)について平行に間欠的凸列A1を3列で有している。凸列がこのように間欠的凸列である場合、当該間欠的凸列を構成する個々の凸領域を凸領域ユニットと呼ぶものとし、図29(A)中、A2で示すものとする。全ての間欠的凸列A1における全ての凸領域ユニットA2は通常、同じ寸法を有し、かつ一定の間隔で搬送方向に繰り返し形成される。 In the requirement (I), the embossed area preferably has intermittent convex rows in 2 to 7 rows, more preferably 3 to 5 rows. Specifically, for example, in FIG. 29A, the film has three intermittent convex rows A1 parallel to the transport direction (MD direction) in the embossed area A10 at one end in the width direction. When the convex row is the intermittent convex row in this way, each convex area forming the intermittent convex row is referred to as a convex area unit, and is indicated by A2 in FIG. 29A. All the convex area units A2 in all the intermittent convex rows A1 usually have the same size and are repeatedly formed at regular intervals in the transport direction.
 要件(I)では、まず、凸領域ユニットの配置を、搬送方向で隣り合う任意の二つの凸領域ユニット間において制御する。詳しくは、各間欠的凸列A1において搬送方向で隣り合う任意の二つの凸領域ユニットA2間の搬送方向距離x(mm)(図29(A)参照)を、凸領域ユニットA2の搬送方向長さy(mm)に対して0.4以下、特に0.01~0.4、好ましくは0.01~0.25にする。当該割合が大きすぎると、フィルムロールの巻き込みエアーが経時的に有効に保持されないため、フィルム同士の貼り付き、巻き緩み、シワ及び折れを十分に抑制できず、また巻きズレも十分に抑制できない。 Requirement (I): First, the placement of the convex area units is controlled between any two convex area units that are adjacent in the transport direction. Specifically, the conveyance direction distance x (mm) between any two convex area units A2 adjacent in the conveyance direction in each intermittent convex row A1 is defined as the conveyance direction length of the convex area unit A2. With respect to the thickness y (mm), it is 0.4 or less, particularly 0.01 to 0.4, and preferably 0.01 to 0.25. If the ratio is too large, the air taken up by the film roll is not effectively retained over time, so that sticking of the films, loosening of the film, wrinkles and folds cannot be sufficiently suppressed, and misalignment of the film cannot be sufficiently suppressed.
 凸領域ユニットA2間の搬送方向距離x(mm)は、上記割合が達成される限り特に制限されず、通常は0.5~3mmの範囲であり、好ましくは1~2mmの範囲である。 The transport direction distance x (mm) between the convex area units A2 is not particularly limited as long as the above ratio is achieved, and is usually in the range of 0.5 to 3 mm, preferably in the range of 1 to 2 mm.
 凸領域ユニットA2の搬送方向長さy(mm)は、本発明の目的が達成される限り特に制限されず、通常は3~20mmの範囲であり、好ましくは5~10mmの範囲である。 The length y (mm) in the transport direction of the convex area unit A2 is not particularly limited as long as the object of the present invention is achieved, and is usually in the range of 3 to 20 mm, preferably in the range of 5 to 10 mm.
 要件(I)では、さらに、凸領域ユニットの配置を、幅手方向で隣り合う任意の2列の凸列間において制御する。詳しくは、幅手方向で隣り合う任意の2列の凸列について、一方の凸列における任意の一つの凸領域ユニットが、幅手方向に対する垂直断面透視図上、他方の凸列において搬送方向で隣り合う二つの凸領域ユニットと重なるように配置する。 Requirement (I) further controls the placement of the convex area units between any two adjacent convex rows in the width direction. Specifically, for any two convex rows that are adjacent in the width direction, any one convex area unit in one convex row is in the conveyance direction in the other convex row on the perspective view perpendicular to the width direction. It is arranged so as to overlap two adjacent convex area units.
 具体的には、図29(B)に示すように、任意の一つの凸領域ユニットA2aは、その搬送方向上流側及び下流側で、隣り合う凸列において搬送方向で隣り合う二つの凸領域ユニットA2b、A2cと重なるように配置される。図29(B)は、図29(A)のフィルムにおいて一つの凸領域ユニットA2aに注目したときに、隣り合う間欠的凸列A1において当該凸領域ユニットA2aと最も近い凸領域ユニットA2c及び2番目に近い凸領域ユニットA2bとの関係を示す幅手方向に対する垂直断面透視図である。そのような垂直断面透視図において、任意の一つの凸領域ユニットが、隣り合う間欠的凸列の一つの凸領域ユニットとしか重ならない場合、フィルムロールの巻き込みエアーが経時的に有効に保持されないため、フィルム同士の貼り付き、巻き緩み、シワ及び折れを十分に抑制できず、また巻きズレも十分に抑制できない。 Specifically, as shown in FIG. 29(B), one arbitrary convex area unit A2a has two convex area units that are adjacent to each other in the conveying direction in the adjacent convex rows on the upstream side and the downstream side in the conveying direction. It is arranged so as to overlap with A2b and A2c. FIG. 29B is a convex area unit A2c and a second convex area unit A2c that are closest to the convex area unit A2a in the adjacent intermittent convex rows A1 when paying attention to one convex area unit A2a in the film of FIG. FIG. 8 is a perspective view of a vertical cross section in the width direction showing the relationship with the convex area unit A2b close to. In such a vertical cross-sectional perspective view, if any one convex area unit overlaps only one convex area unit of the adjacent intermittent convex rows, the air entrainment of the film roll is not effectively retained over time. However, sticking between films, looseness of winding, wrinkles and folds cannot be sufficiently suppressed, and winding deviation cannot be sufficiently suppressed.
 幅手方向に対する垂直断面透視図において、凸領域ユニットA2aにおける搬送方向上流側の凸領域ユニットA2bとの重なり部分の搬送方向長さZ1(mm)及び搬送方向下流側の凸領域ユニットA2cとの重なり部分の搬送方向長さZ2(mm)のうち小さい方の長さは凸領域ユニットの搬送方向長さy(mm)に対して0.3以上、特に0.3~0.5である。当該割合が小さすぎると、フィルムロールの巻き込みエアーが経時的に有効に保持されないため、フィルム同士の貼り付き、巻き緩み、シワ及び折れを十分に抑制できず、また巻きズレも十分に抑制できない。 In a perspective view of a vertical cross section in the width direction, the overlapping portion of the convex area unit A2a with the convex area unit A2b on the upstream side in the conveying direction overlaps with the conveying direction length Z1 (mm) and the convex area unit A2c on the downstream side in the conveying direction. The smaller length of the transport direction length Z2 (mm) of the portion is 0.3 or more, particularly 0.3 to 0.5, with respect to the transport direction length y (mm) of the convex region unit. If the ratio is too small, the air taken up by the film roll cannot be effectively retained over time, so that sticking of the films, loosening of the film, wrinkles and folds cannot be sufficiently suppressed, and misalignment of the films cannot be sufficiently suppressed.
 凸領域ユニットA2aが搬送方向上流側及び下流側でそれぞれ凸領域ユニットA2b、A2cと重なり合う上記関係は、本発明においては任意の凸列における任意の一つの凸領域ユニットと、隣り合う凸列において該凸領域ユニットと最も近い凸領域ユニット及び2番目に近い凸領域ユニットとの間において満たすものである。 The above-mentioned relationship in which the convex area unit A2a overlaps with the convex area units A2b and A2c on the upstream side and the downstream side in the transport direction, respectively. This is to be satisfied between the convex area unit and the nearest convex area unit and the second closest convex area unit.
 間欠的凸列A1を構成する凸領域ユニットA2は、凸領域が形成されていない領域から所定の高さで浮き上がっている。例えば、図29(B)において、凸領域ユニットA2(A2a、A2b、A2c)は、凸領域が形成されていない領域の表面A3から所定の高さhで浮き上がっている。高さhは本発明の目的が達成される限り特に制限されず、通常は平均で1.5~30μmであり、好ましくは2~20μmの範囲である。 The convex area unit A2 forming the intermittent convex array A1 is lifted up at a predetermined height from the area where no convex area is formed. For example, in FIG. 29B, the convex area unit A2 (A2a, A2b, A2c) is lifted at a predetermined height h from the surface A3 of the area where the convex area is not formed. The height h is not particularly limited as long as the object of the present invention is achieved, and is usually 1.5 to 30 μm on average, and preferably 2 to 20 μm.
 エンボス領域A10において、凸領域の面積率は20~80%の範囲である。凸領域の面積率が小さすぎると、フィルムロールの巻き込みエアーが有効に保持されないので、巻き緩みや張り付きを抑止する効果が得られない。凸領域の面積率が大きすぎると、フィルムロールの巻き込みエアーが多くなりすぎるため、巻き緩みが悪化する。 In the embossed area A10, the area ratio of the convex area is in the range of 20 to 80%. If the area ratio of the convex region is too small, the air taken up by the film roll cannot be effectively retained, and the effect of suppressing loosening and sticking cannot be obtained. If the area ratio of the convex region is too large, the amount of air taken up by the film roll will be too large, and the looseness of winding will be deteriorated.
 凸領域の面積率は、エンボス領域A10の全体面積に対する凸領域ユニットA2の総面積の割合である。エンボス領域A10とは、フィルムの幅手方向一端における全ての凸領域を含むように、搬送方向に平行な直線で区切られる最小な領域であり、例えば図29(C)において斜線で示される領域である。 The area ratio of the convex area is the ratio of the total area of the convex area unit A2 to the total area of the embossed area A10. The embossed area A10 is a minimum area divided by a straight line parallel to the transport direction so as to include all the convex areas at one end in the width direction of the film, and is an area indicated by diagonal lines in FIG. 29C, for example. is there.
 エンボス領域A10とフィルムの端面との距離a(図29(C)参照)、エンボス領域A10の幅手方向長さb(図29(C)参照)、及び幅手方向で隣り合う凸列の間の距離c(図29(C)参照)は、本発明の目的が達成される限り特に制限されない。 The distance a between the embossed area A10 and the end surface of the film (see FIG. 29C), the width b in the width direction of the embossed area A10 (see FIG. 29C), and between the adjacent convex rows in the width direction. The distance c (see FIG. 29C) is not particularly limited as long as the object of the present invention is achieved.
 距離aは通常、10mm以下であり、5mm以下が好ましい。 The distance a is usually 10 mm or less, preferably 5 mm or less.
 長さbは通常、5~30mmの範囲であり、10~20mmの範囲が好ましい。 The length b is usually in the range of 5 to 30 mm, preferably 10 to 20 mm.
 凸列間距離cは、上記凸領域の面積率が達成される限り特に制限されず、通常、0.1~5mmの範囲であり、0.5~2mmの範囲が好ましい。 The distance c between the convex rows is not particularly limited as long as the area ratio of the convex regions is achieved, and is usually in the range of 0.1 to 5 mm, preferably 0.5 to 2 mm.
 本発明に係るアクリル樹脂フィルムにおいて、幅手方向の長さ、搬送方向の長さ、及び幅手方向について中央の非エンボス領域A5における膜厚は特に制限されない。 In the acrylic resin film according to the present invention, the length in the width direction, the length in the transport direction, and the film thickness in the non-embossed area A5 at the center in the width direction are not particularly limited.
 幅手方向の長さは通常は500~4000mmの範囲であり、好ましくは1000~3000mmの範囲であり、より好ましくは1300~3000mmの範囲である。従来では、当該長さが長いほど、巻き込まれたエアーが抜け難い一方で、時間の経過とともにエアーは抜けるため、巻き緩み、シワ及び折れ等の問題が発生しやすいが、本発明においてはそのような長さであっても、それらの問題を有効に抑制できるためである。 The length in the width direction is usually in the range of 500 to 4000 mm, preferably in the range of 1000 to 3000 mm, and more preferably in the range of 1300 to 3000 mm. Conventionally, the longer the length is, the more difficult the air that is trapped is to escape, but since the air escapes over time, problems such as loose winding, wrinkles, and folds are likely to occur, but in the present invention, such This is because even if the length is long, those problems can be effectively suppressed.
 搬送方向の長さは通常は500~10000mの範囲であり、好ましくは2000~9000mの範囲であり、より好ましくは3000~8000mの範囲である。従来では、当該長さが長いほど、巻き込まれるエアー量が増大する一方で、時間の経過とともにエアーは抜けるため、巻き緩み、シワ及び折れ等の問題が発生しやすいが、本発明においてはそのような長さであっても、それらの問題を有効に抑制できるためである。 The length in the carrying direction is usually in the range of 500 to 10000 m, preferably in the range of 2000 to 9000 m, and more preferably in the range of 3000 to 8000 m. Conventionally, the longer the length, the larger the amount of air to be entrapped, but since the air escapes with the passage of time, problems such as loose winding, wrinkles, and folds are likely to occur. This is because even if the length is long, those problems can be effectively suppressed.
 非エンボス領域A5における膜厚は通常は10~200μmの範囲であり、好ましくは20~80μmの範囲である。当該厚さが薄いほど、アクリル樹脂フィルムが変形しやすいため、巻き緩み、シワ及び折れ等の問題が発生しやすいが、本発明においてはそのような厚さであっても、それらの問題を有効に抑制できるためである。 The film thickness in the non-embossed area A5 is usually in the range of 10 to 200 μm, preferably 20 to 80 μm. As the thickness is smaller, the acrylic resin film is more likely to be deformed, and therefore problems such as looseness of winding, wrinkles and folds are more likely to occur, but even such a thickness is effective in the present invention with respect to those problems. It is because it can be suppressed to.
 図30(A)に示すエンボスパターンおいて凸領域ユニットA2は、長方形形状を有しているが、本発明の目的が達成される限り特に制限されず、例えば、菱形形状、W字(M字)形状、六角形状、十字形状等を有していてもよい。 In the embossed pattern shown in FIG. 30(A), the convex area unit A2 has a rectangular shape, but is not particularly limited as long as the object of the present invention is achieved, and for example, a rhombic shape, a W-shape (M-shape). ), a hexagonal shape, a cross shape and the like.
 凸領域ユニットA2が菱形形状を有する場合のエンボスパターンの具体例を図30(A)~図30(C)に示す。 Specific examples of emboss patterns when the convex area unit A2 has a rhombus shape are shown in FIGS. 30(A) to 30(C).
 図30(A)~図30(C)はそれぞれ、凸領域ユニットA2が菱形形状を有すること以外、図29(A)~図29(C)と同様であるため、それらの説明を省略する。図30(A)~図30(C)における図29(A)~図29(C)と同じ符号は、凸領域ユニットA2の形状が異なること以外、図29(A)~図29(C)と同じ意味内容を示すものとする。 30A to 30C are the same as FIG. 29A to FIG. 29C except that the convex area unit A2 has a rhombus shape, and therefore description thereof will be omitted. 29A to 29C in FIGS. 30A to 30C have the same reference numerals as FIGS. 29A to 29C except that the shape of the convex area unit A2 is different. Shall have the same meaning as.
 図30(C)において斜線で示される領域がエンボス領域A10である。 The shaded area in FIG. 30(C) is the embossed area A10.
 (II)エンボス領域が連続的凸列を1列以上で有する場合、エンボス領域はさらに間欠的凸列を有しても、又は有さなくてもよい。すなわち、エンボス領域が有する全ての凸列は1列以上、好ましくは2~7列の連続的凸例のみからなっていてもよいし、又は1列以上、好ましくは1~7列の連続的凸列と、1列以上、好ましくは1~7列の間欠的凸列とからなっていてもよい。前者の場合の具体例として、例えば、図31(A)~図31(C)に示すエンボスパターンが例示できる。後者の場合の実施形態として、例えば、図31(A)~図31(C)に示すエンボスパターンが例示できる。 (II) When the embossed area has one or more continuous convex rows, the embossed area may or may not have intermittent convex rows. That is, all the convex rows in the embossed region may consist of only one or more, preferably 2 to 7 rows of continuous convex examples, or 1 or more, preferably 1 to 7 continuous convex rows. It may consist of rows and one or more rows, preferably 1 to 7 rows of intermittent convex rows. As a specific example of the former case, for example, the emboss patterns shown in FIGS. 31A to 31C can be exemplified. As an embodiment of the latter case, for example, the emboss patterns shown in FIGS. 31A to 31C can be exemplified.
 図31(A)~図31(C)はそれぞれ、全ての凸列が連続的凸列であること以外、図29(A)~図29(C)と同様であるため、それらの説明を省略する。図31(A)~図31(C)における図29(A)~図29(C)と同じ符号は、凸列が連続的であること以外、図29(A)~図29(C)と同じ意味内容を示すものとする。 31(A) to 31(C) are the same as FIGS. 29(A) to 29(C) except that all the convex columns are continuous convex columns, and therefore the description thereof is omitted. To do. 29(A) to 29(C) in FIGS. 31(A) to 31(C) are the same as those in FIGS. 29(A) to 29(C) except that the convex rows are continuous. They have the same meaning.
 図32(A)~図32(C)はそれぞれ、エンボス領域が1列の連続的凸列と1列の間欠的凸列とを有すること以外、図30(A)~図30(C)と同様であるため、それらの説明を省略する。図32(A)~図32(C)における図30(A)~図30(C)と同じ符号は、凸列の数が異なること、及び一つの凸列が連続的凸列であること以外、図30(A)~図30(C)と同じ意味内容を示すものとする。 32(A) to 32(C), except that the embossed region has one continuous convex row and one intermittent convex row, respectively. Since they are similar, the description thereof will be omitted. 32(A) to 32(C) that are the same as those in FIGS. 30(A) to 30(C) are different in the number of convex rows and that one convex row is a continuous convex row. , And have the same meaning as in FIGS. 30(A) to 30(C).
 特に要件(II)においては、要件(I)においてと同様に、エンボス領域A10における凸領域の面積率は20~80%の範囲であり、好ましくは30~60%の範囲である。凸領域の面積率が小さすぎると、フィルムロールの巻き込みエアーが有効に保持されないので、巻き緩みや張り付を抑止する効果が得られない。凸領域の面積率が大きすぎると、フィルムロールの巻き込みエアーが多くなりすぎるため、巻き緩みが悪化する。 Particularly in the requirement (II), as in the requirement (I), the area ratio of the convex region in the embossed region A10 is in the range of 20 to 80%, preferably in the range of 30 to 60%. If the area ratio of the convex region is too small, the air that is wound into the film roll cannot be effectively retained, and the effect of suppressing loosening and sticking cannot be obtained. If the area ratio of the convex region is too large, the amount of air taken up by the film roll will be too large, and the looseness of winding will be deteriorated.
 凸領域の面積率は、エンボス領域A10の全体面積に対する凸領域ユニットA2の総面積の割合である。エンボス領域A10は、フィルムの幅手方向一端における全ての凸領域を含むように、搬送方向に平行な直線で区切られる最小な領域であり、例えば図30(C)及び図32(C)において斜線で示される領域である。 The area ratio of the convex area is the ratio of the total area of the convex area unit A2 to the total area of the embossed area A10. The embossed area A10 is a minimum area divided by a straight line parallel to the transport direction so as to include all the convex areas at one end in the width direction of the film, and is a diagonal line in FIG. 30C and FIG. 32C, for example. This is the area indicated by.
 要件(II)において、エンボス領域が有し得る間欠的凸列は、特に制限されず、例えば、要件(I)においてと同様の間欠的凸列であってもよいし、又は当該間欠的凸列以外の間欠的凸列であってもよい。 In the requirement (II), the intermittent convex row that the embossed region may have is not particularly limited, and may be the same intermittent convex row as in the requirement (I), or the intermittent convex row. It may be an intermittent convex array other than the above.
 本発明に係るアクリル樹脂フィルムは、上記した(I)及び(II)の要件において、搬送方向に略平行に形成された間欠的凸列及び/又は連続的凸列以外に、他のエンボスパターンで形成された凸領域やランダム(不規則)に形成された凸領域をエンボス領域に有することを妨げるものではない。 In the requirements of (I) and (II) described above, the acrylic resin film according to the present invention has an embossed pattern other than the intermittent convex rows and/or the continuous convex rows formed substantially parallel to the transport direction. It does not prevent that the embossed areas have the formed protruding areas or the randomly (irregularly) formed protruding areas.
 本発明では、エンボス部を形成するナーリング加工は、ナーリング加工の処理温度をT(℃)、ベースフィルムのガラス転移温度をTg(℃)、ベースフィルムがエンボスリングに接している時間をs(秒)としたときに、下記の関係式を満たす条件でナーリング加工を行い、ロール状のフィルムを製造することが好ましい。 In the present invention, in the knurling process for forming the embossed portion, the processing temperature of the knurling process is T (°C), the glass transition temperature of the base film is Tg (°C), and the time during which the base film is in contact with the embossing ring is s (seconds). ), it is preferable to perform knurling under conditions satisfying the following relational expression to produce a roll-shaped film.
  0.75≦(T-Tg)×s≦1.00
 なお、ベースフィルムがエンボスリングに接している時間s(秒)は、フィルムの搬送速度と、ニップ幅、換言すれば押し圧を変えることで、変更することが可能である。なお、ニップ幅や押し圧を変えるには、ゴムロールよりなるバックロール表面のゴムの硬度を調整したり、エンボスリング及びエンボスバックロールの直径を変えることで、行うことができる。
0.75≦(T−Tg)×s≦1.00
The time s (second) during which the base film is in contact with the embossing ring can be changed by changing the film transport speed, the nip width, in other words, the pressing pressure. The nip width and the pressing pressure can be changed by adjusting the hardness of the rubber on the surface of the back roll made of a rubber roll or by changing the diameters of the embossing ring and the embossing back roll.
 上記において、(T-Tg)×sの値が、0.75未満であれば、エンボス高さが十分得られず、巻き取った状態での実効ナールが低くなるため、フィルム同士の貼り付き故障が発生したり、凸状の局所的な変形が発生し、フィルムとしての平面性を満たさなくなるので、好ましくない。 In the above, if the value of (T−Tg)×s is less than 0.75, the embossed height cannot be sufficiently obtained, and the effective knurl in the wound state becomes low, so that the sticking failure between the films may occur. Is generated, or local deformation in a convex shape occurs, and the flatness as a film is not satisfied, which is not preferable.
 また、(T-Tg)×sの値が、1.00を超えると、エンボス高さが出すぎて、結果として巻き取った状態での実効ナールも高くなるため、巻きの中央が馬の背中のような形状に凹み、フィルムとしての平面性が保て無くなるので、好ましくない。またTの値であるナーリング加工時の温度を高くすると(T-Tg)×sの値も大きくなるが、この場合(T-Tg)×sの値が1.00を超える程度までTの温度を高くすると、ヒゲ状故障が発生するため好ましくない。 Also, if the value of (T-Tg) xs exceeds 1.00, the emboss height is too high, and as a result the effective knurl in the wound state is high, so the center of the winding is on the back of the horse. Such a shape is not preferable because it has a concave shape and loses the flatness of the film. When the temperature of knurling, which is the value of T, is increased, the value of (T−Tg)×s also increases, but in this case, the temperature of T is increased until the value of (T−Tg)×s exceeds 1.00. A high value is not preferable because a whisker-like failure occurs.
 また、本発明において、ナーリング加工の際に、エンボス刻印ローラーのフィルム排出側に10~20℃の冷風を当てるのが、好ましい。ここで、ナーリング加工の際に、エンボス刻印ローラーのフィルム排出側に10~20℃の冷風を当てるのは、エンボス加工直後にフィルムとリング部を冷却することにより熱で溶けた樹脂部分が冷却固化するため、糸状の異物(ヒゲ状異物)の発生を抑えられ、充分に高いエンボス高さを得ることができるという理由による。 Also, in the present invention, it is preferable to apply cold air of 10 to 20° C. to the film discharge side of the embossing/marking roller during knurling. Here, at the time of knurling, applying a cold air of 10 to 20° C. to the film discharge side of the embossing marking roller is to cool and solidify the resin portion melted by heat by cooling the film and the ring portion immediately after the embossing. Therefore, the generation of thread-like foreign matter (whisker-like foreign matter) can be suppressed, and a sufficiently high embossing height can be obtained.
 本発明に係るアクリル樹脂フィルムは、ロール状フィルムの下記式で定義される実効ナールが0.5~7.0μmであるのが、好ましい。 The acrylic resin film according to the present invention preferably has an effective knall defined by the following formula of the roll-shaped film of 0.5 to 7.0 μm.
 実効ナール=(エンボス部ロール断面積-コア断面積)/巻き長さ-平均膜厚
 上記において、実効ナールが0.5μm以上であれば、フィルム同士の貼り付き故障が発生せず、凸状の局所的な変形の発生を抑制し、フィルムとしての平面性が向上する。また、実効ナールが7.0μm以下であると、巻きの中央が馬の背中のような形状に凹むこともなく、フィルムとしての平面性が向上する。
Effective knurl=(Embossed roll cross-sectional area-Core cross-sectional area)/Coil length-Average film thickness In the above, if the effective knurl is 0.5 μm or more, sticking failure between the films does not occur and the convex shape The occurrence of local deformation is suppressed, and the flatness of the film is improved. When the effective knurl is 7.0 μm or less, the flatness of the film is improved without causing the center of the winding to be recessed into a shape like the back of a horse.
 本発明に係るアクリル樹脂フィルムは、ロール状のフィルムのエンボス部周囲に付着しているヒゲ状異物の個数が、0~50個/cmであることが好ましく、0~20個/cmであることがより好ましく、0~10個/cmであることがさらに好ましい。 In the acrylic resin film according to the present invention, the number of beard-like foreign matters attached around the embossed portion of the roll-shaped film is preferably 0 to 50 pieces/cm 2 , and 0 to 20 pieces/cm 2 . It is more preferable that the amount is 0 to 10 pieces/cm 2 .
 上記において、フィルムのエンボス部周囲に付着しているヒゲ状異物の個数は、少ないほど好ましく、ヒゲ状異物の個数が50個/cmを超えると、偏光板として加工する際のクリーニング装置でも除去しきれなくなり、偏光子とフィルムの間に異物として入り込み液晶表示装置に組み込んだ場合画像欠陥となるので、好ましくない。表面に反射防止処理や防眩処理などの塗布加工を施す場合も同様である。 In the above, it is preferable that the number of the mustache-like foreign matters attached to the periphery of the embossed portion of the film is as small as possible. If the number of the mustache-like foreign matters exceeds 50/cm 2 , it is also removed by a cleaning device when processing as a polarizing plate. This is not preferable, because it becomes impossible to fill the gap and enters as a foreign substance between the polarizer and the film to cause an image defect when incorporated in a liquid crystal display device. The same applies to the case where coating processing such as antireflection treatment or antiglare treatment is applied to the surface.
 ここで、エンボス部の高さh(μm)は、フィルム膜厚Hの0.05~0.3倍の範囲、幅Wは、フィルム幅Lの0.005~0.02倍の範囲に設定する。エンボス部は、フィルムの両面に形成してもよい。この場合、エンボス部の高さh1+h2(μm)は、フィルム膜厚Hの0.05~0.3倍の範囲、幅Wはフィルム幅Lの0.005~0.02倍の範囲に設定する。例えばフィルム膜厚40μmであるとき、エンボス部の高さh1+h2(μm)は2~12μmの範囲に設定することが好ましく、エンボス部幅は5~30mmの範囲に設定することが好ましい。 Here, the height h (μm) of the embossed portion is set in the range of 0.05 to 0.3 times the film thickness H, and the width W is set in the range of 0.005 to 0.02 times the film width L. To do. The embossed portions may be formed on both sides of the film. In this case, the height h1+h2 (μm) of the embossed portion is set to a range of 0.05 to 0.3 times the film thickness H, and the width W is set to a range of 0.005 to 0.02 times the film width L. .. For example, when the film thickness is 40 μm, the height h1+h2 (μm) of the embossed portion is preferably set in the range of 2 to 12 μm, and the embossed portion width is preferably set in the range of 5 to 30 mm.
 エンボス部高さの下限については、フィルム間の部分的な密着むらを防ぐために必要な高さから、一方、上限は、これ以上にするとエンボス部が高すぎるため、ロール状巻き製品の形態が馬の背状に多角形状に変形し、故障を誘発するからである。 The lower limit of the height of the embossed part is based on the height required to prevent uneven adhesion between the films.On the other hand, the upper limit is higher than this, and the embossed part is too high. This is because it deforms into a polygonal shape and induces a failure.
 エンボス部の幅については、エンボス部は最終的にロス部分となるため少なくしたいが、例えば50μm以内の薄膜フィルムで、50m/分以上の高速製膜時において、フィルムのすべりを抑えるための最低限必要なエンボス部幅である。 Regarding the width of the embossed part, it is desirable to reduce it because it will eventually become a loss part. This is the required embossed part width.
 ただし、前述のエンボス部の高さともリンクしており、凸状、ピラミッド状、馬の背、多角形状、巻きずれ故障を全てクリアーするエンボス部高さ×エンボス部幅を設定する必要がある。 However, it is also linked to the height of the embossed part, and it is necessary to set the embossed part height x the embossed part width that clears all convex, pyramid-shaped, horse back, polygonal, and winding misalignment failures.
 エンボス加工を施した後のフィルムは以下の巻取方法で巻取ることが好ましい。 The film after embossing is preferably wound by the following winding method.
 巻取方法は、フィルムの側縁が揃うように前記フィルムを巻芯に巻き取るストレート巻き工程と、前記ストレート巻き工程の後に、前記側縁が前記フィルムの幅方向に対して一定範囲で周期的にずれるように、前記フィルムの幅方向に前記フィルム又は前記巻芯を周期的に振動させて前記フィルムを前記巻芯に巻き取るオシレート巻き工程とを有することが好ましい。 The winding method is a straight winding step of winding the film around a winding core so that the side edges of the film are aligned, and after the straight winding step, the side edges are cyclic in a certain range with respect to the width direction of the film. It is preferable to have an oscillate winding step in which the film or the winding core is periodically vibrated in the width direction of the film so that the film is wound around the winding core.
 特に、前記フィルムの巻長が、前記フィルムの全巻長に対して10~30%の範囲内であらかじめ定められる切替時巻長に達したときに、前記ストレート巻き工程から前記オシレート巻き工程に切り替えることが好ましい。 In particular, when the winding length of the film reaches a predetermined switching winding length within a range of 10 to 30% with respect to the total winding length of the film, the straight winding step is switched to the oscillating winding step. Is preferred.
 フィルムの巻取装置は、巻芯を回転させて前記巻芯にフィルムを巻き取るフィルム巻取部と、前記フィルムが前記巻芯上で前記フィルムの幅方向に一定範囲内で周期的にずれるオシレート巻きになるように、前記フィルムの巻取りに連動させて前記フィルム又は前記巻芯を前記フィルムの幅方向に振動させるオシレート部と、前記フィルムの巻長があらかじめ定められる切替時巻長に達したときに、前記フィルムの巻取りを前記ストレート巻きから前記オシレート巻きに切り替える切替部とを備えることが好ましい。 The film winding device includes a film winding unit that rotates a winding core to wind a film around the winding core, and an oscillator in which the film is periodically displaced on the winding core within a certain range in a width direction of the film. The oscillating portion that vibrates the film or the core in the width direction of the film by interlocking with the winding of the film so that the film is wound, and the winding length of the film reaches a predetermined switching winding length. At this time, it is preferable to include a switching unit that switches the winding of the film from the straight winding to the oscillating winding.
 以下オシレート巻きについて説明する。 Explain the oscillating winding below.
 図33に示すように、フィルム製造ラインB10は、フィルム製造装置B11と、巻取装置B12とを備えている。フィルム製造装置B11は、溶液製膜方法によりフィルムB13を製造する。溶液製膜方法では、まず、原料を用いてドープを調製する。そして、調製したドープを無端支持体上に流延して流延膜を形成する。流延膜が自己支持性を有するようになったときに、無端支持体から流延膜を剥離する。剥離された流延膜を熱風等で乾燥することによって、フィルムB13が形成される。形成されたフィルムB13は、ナーリング付与ローラーB15を介して、巻取装置B12に送られる。ナーリング付与ローラーB15は、エンボス加工等により、フィルムB13の幅方向の両側縁部(耳部)に対して微小な凹凸を形成する。なお、ナーリング付与ローラーにより形成される凹凸の高さは0.5~20μmの範囲であることが好ましい。 As shown in FIG. 33, the film manufacturing line B10 includes a film manufacturing device B11 and a winding device B12. The film manufacturing apparatus B11 manufactures the film B13 by a solution casting method. In the solution casting method, first, a dope is prepared using raw materials. Then, the prepared dope is cast on an endless support to form a casting film. When the casting film becomes self-supporting, the casting film is peeled off from the endless support. The film B13 is formed by drying the peeled casting film with hot air or the like. The formed film B13 is sent to the winding device B12 via the knurling roller B15. The knurling roller B15 forms minute irregularities on both side edges (ears) in the width direction of the film B13 by embossing or the like. The height of the irregularities formed by the knurling roller is preferably in the range of 0.5 to 20 μm.
 図33及び図34に示すように、巻取装置B12は、巻取軸B19、巻芯ホルダB20、巻芯B21、ターレットB22、ガイドローラーB23、B24、ダンサローラーB25、エンコーダB27、オシレート部B29、巻取モーターB30、コントローラB31、及びダンサ部B32を備えている。この巻取装置B12における巻取対象のフィルムサイズなどは特に限定されないが、例えば全巻取長が2000~10000mの範囲であり、幅が500~2500mmの範囲のサイズのフィルムであることが好ましい。 As shown in FIGS. 33 and 34, the winding device B12 includes a winding shaft B19, a winding core holder B20, a winding core B21, a turret B22, guide rollers B23, B24, a dancer roller B25, an encoder B27, and an oscillating portion B29. A winding motor B30, a controller B31, and a dancer section B32 are provided. The size of the film to be wound by the winding device B12 is not particularly limited, but it is preferable that the film has a total winding length in the range of 2000 to 10000 m and a width in the range of 500 to 2500 mm.
 図34に示すように、巻取軸B19はターレットB22に片持ち支持機構で取り付けられている。片持ち支持機構とは、巻取軸B19の一端のみを支持する機構である。巻取軸B19には、巻芯B21が取り付けられている。巻芯B21は、巻取軸B19の巻芯ホルダB20により両端部が挟持される。巻芯ホルダB20は巻取軸B19の軸方向(Y方向)でスライド自在にかつ巻取軸B19に回転不能に取り付けられている。巻取軸B19の一端には巻取モーターB30が連結されており、巻取軸B19を回転するように構成されている。この回転により、巻芯B21も回転し、フィルムB13を巻芯B21に巻き取ることができる。このフィルムB13の巻取りにより、フィルムB13がロール状に巻き付けられたフィルムロールB38が得られる。 As shown in FIG. 34, the winding shaft B19 is attached to the turret B22 by a cantilever support mechanism. The cantilever support mechanism is a mechanism that supports only one end of the winding shaft B19. A winding core B21 is attached to the winding shaft B19. Both ends of the winding core B21 are held by the winding core holder B20 of the winding shaft B19. The winding core holder B20 is mounted slidably in the axial direction (Y direction) of the winding shaft B19 and non-rotatably attached to the winding shaft B19. A winding motor B30 is connected to one end of the winding shaft B19, and is configured to rotate the winding shaft B19. By this rotation, the winding core B21 also rotates and the film B13 can be wound around the winding core B21. By winding the film B13, a film roll B38 in which the film B13 is wound into a roll is obtained.
 ターレットB22には、巻取軸B19の取付端部にシフト機構B28が取り付けられている。このシフト機構B28は巻芯ホルダB20を巻取軸B19上で軸方向に往復運動させる。このシフト機構B28、巻取軸B19、巻芯ホルダB20により、オシレート部B29が構成されている。このオシレート部B29を作動させて、シフト機構B28により巻芯ホルダB20を巻取軸B19上でY方向に往復運動させることにより、フィルムB13が積層するごとに側縁B13aの位置が振幅Woの範囲内でずれながら、フィルムB13が巻き取られるオシレート巻きを可能にする。オシレート部B29を作動させない場合には、フィルムB13の両側縁が揃った状態になるストレート巻きが可能になる。このストレート巻き及びオシレート巻きの切り替えはコントローラB31により行われる。 The turret B22 has a shift mechanism B28 attached to the attachment end of the winding shaft B19. The shift mechanism B28 reciprocates the core holder B20 in the axial direction on the winding shaft B19. The shift mechanism B28, the winding shaft B19, and the core holder B20 constitute an oscillating portion B29. By operating the oscillating portion B29 and causing the shift mechanism B28 to reciprocate the core holder B20 in the Y direction on the winding shaft B19, the position of the side edge B13a is within the range of the amplitude Wo each time the film B13 is laminated. It enables oscillate winding in which the film B13 is wound while being displaced inside. When the oscillating portion B29 is not operated, straight winding in which both side edges of the film B13 are aligned is possible. Switching between the straight winding and the oscillating winding is performed by the controller B31.
 ここで、オシレート巻きにおいて、その振り幅であるオシレート幅Woは任意に設定することができ、振幅Woは10~30mmの範囲内であることが好ましく、前記範囲内であれば、振幅Woは一定値で固定する他、徐々に増加させたり、減少させたり、増加後に減少させたりしてもよい。 Here, in the oscillating winding, the oscillating width Wo, which is the swing width, can be arbitrarily set, and the amplitude Wo is preferably within the range of 10 to 30 mm. Within the above range, the amplitude Wo is constant. The value may be fixed, or may be gradually increased, decreased, or decreased after the increase.
 ガイドローラーB23、B24及びダンサローラーB25は、フィルム製造装置B11からのフィルムB13を搬送方向(X方向)に案内する。また、ダンサローラーB25はシフト機構B26によりフィルムB13を上下方向(Z方向)に移動させることにより、フィルムB13の巻取張力を調整する。このシフト機構B26及びダンサローラーB25によりダンサ部B32が構成される。エンコーダB27は、ガイドローラーB24が一定の回転角度で回転するごとに、エンコーダパルス信号をコントローラB31に送信する。なお、ガイドローラーB24にはフィルムB13の巻取張力を測定する張力センサを設けてもよい。 The guide rollers B23, B24 and the dancer roller B25 guide the film B13 from the film manufacturing apparatus B11 in the transport direction (X direction). Further, the dancer roller B25 adjusts the winding tension of the film B13 by moving the film B13 in the vertical direction (Z direction) by the shift mechanism B26. The shifter B26 and the dancer roller B25 form a dancer section B32. The encoder B27 sends an encoder pulse signal to the controller B31 every time the guide roller B24 rotates at a constant rotation angle. The guide roller B24 may be provided with a tension sensor that measures the winding tension of the film B13.
 コントローラB31は、オシレート部B29、巻取モーターB30、及びダンサ部B32の駆動を制御する。コントローラB31は、巻取情報入力部B39、LUTメモリB40、切替時巻長特定部B41、巻長測定部B42、及び切り替え判定部B43を備えている。巻取情報入力部B39には、フィルムB13の全巻取長、厚さ、幅、巻芯B21の外径、巻取張力などの巻取情報が入力される。 The controller B31 controls driving of the oscillating unit B29, the winding motor B30, and the dancer unit B32. The controller B31 includes a winding information input unit B39, a LUT memory B40, a switching time winding length specifying unit B41, a winding length measuring unit B42, and a switching determination unit B43. The winding information such as the total winding length, thickness, width of the film B13, the outer diameter of the winding core B21, and the winding tension is input to the winding information input section B39.
 LUTメモリB40には、巻取情報ごとに、ストレート巻きからオシレート巻きに切り替えるときのフィルムB13の巻長(切替時巻長)が記憶されている。切替時巻長は、好ましくはフィルムB13の全巻長に対して10~30%の範囲であらかじめ設定されており、より好ましくはフィルムB13の全長に対して15~25%の範囲であらかじめ設定されている。 The LUT memory B40 stores the winding length of the film B13 when switching from straight winding to oscillating winding (rolling length at switching) for each winding information. The roll length at the time of switching is preferably preset in the range of 10 to 30% with respect to the total roll length of the film B13, and more preferably in the range of 15 to 25% with respect to the total length of the film B13. There is.
 切替時巻長が上記範囲に設定されているのは以下の理由からである。図35に示すように、グラフB50は巻芯B21の円周方向でフィルムB13に発生する応力と巻長との関係を表したものである。フィルムB13の円周方向の応力は、巻芯B21の回転トルクとダンサ部B32による張力とに基づいて求められる。巻芯B21の回転トルクがダンサ部B32による張力よりも大きくなったときにフィルムB13の円周方向の応力は正となり、巻芯B21の回転トルクがダンサ部B32による張力よりも小さくなったときに負となる。なお、図36に示すように、フィルムB13が巻芯B21に巻き取られているフィルムロールB38において、点P1から周方向の外側に向かって力がかかるときに、フィルムB13の点P1における円周方向の応力が正であるという。また、点P2に向かって周方向で力がかかるときに、フィルムB13の点P2における円周方向の応力が負であるという。 The reason why the roll length at the time of switching is set in the above range is as follows. As shown in FIG. 35, a graph B50 represents the relationship between the stress generated in the film B13 in the circumferential direction of the winding core B21 and the winding length. The stress in the circumferential direction of the film B13 is obtained based on the rotation torque of the winding core B21 and the tension of the dancer portion B32. When the rotation torque of the winding core B21 becomes larger than the tension by the dancer portion B32, the stress in the circumferential direction of the film B13 becomes positive, and when the rotation torque of the winding core B21 becomes smaller than the tension by the dancer portion B32. Will be negative. As shown in FIG. 36, in the film roll B38 in which the film B13 is wound around the winding core B21, when a force is applied from the point P1 toward the outer side in the circumferential direction, the circumference of the film B13 at the point P1 is measured. The stress in the direction is said to be positive. Further, when a force is applied in the circumferential direction toward the point P2, the stress in the circumferential direction at the point P2 of the film B13 is said to be negative.
 図35のグラフB50は、フィルムB13の巻取り始めの張力と巻取り終わりの張力などに基づいて、周知の応力計算式からあらかじめ求められる。フィルムB13の円周方向の応力の分布パターンは、各フィルムの厚さ、幅、巻取り長さ、巻芯の外径などのパラメーターや巻取り張力パターンの変化状況に応じて、各種値や負の領域などが変化するが、これまでのフィルム巻取結果からおおむね図35と略同じ分布パターンであることが分かっている。 The graph B50 in FIG. 35 is obtained in advance from a well-known stress calculation formula based on the tension at the start of winding the film B13 and the tension at the end of winding. The distribution pattern of the stress in the circumferential direction of the film B13 has various values and negative values depending on the parameters such as the thickness, width, winding length, and outer diameter of the winding core of each film and the changing situation of the winding tension pattern. It is known from the results of film winding so far that the distribution pattern is approximately the same as that of FIG. 35.
 グラフB50が示すように、フィルムB13の円周方向の応力は、フィルムロールB38において巻芯B21側の巻長が小さい部分では正(+)となっている。図35では、巻長が0であるところから応力が減少して負(-)に変わる巻長に、符号L1を付す。このように巻取り始めでは、巻長が長くなるにつれて、円周方向の応力は急激に減少する。そして、円周方向の応力は、さらに減少して負(-)の領域に入る。なお、図35では、巻取完了に対応する巻長には、符号LEを付す。そして、負(-)の領域で、円周方向の応力は、最小値Sminを示す。図35では、円周方向の応力が最小値Sminを示した巻長に、符号Lminを付す。巻長がLminを超える部分では、円周方向の応力は、巻長が長くなるに従い次第に増加し、正(+)の領域に入る。円周方向の応力が最小値Sminを示した後に増加して正に変わる巻長に、符号L2を付す。ここで、フィルムB13の円周方向の応力が負の領域にある場合には、巻芯B21の回転トルクがダンサ部B32による張力よりも大きくなってフィルムB13が巻き緩んでしまうため、フィルムB13の表面の圧力(面圧)は低下してしまう。図37のグラフB51は、ストレート巻きで巻取りを行ったときのフィルムB13の両側端部における面圧の変化を示しており、図38のグラフB52は、オシレート巻きで巻取りを行ったときのフィルムB13の左側端部における面圧の変化を示しており、グラフB53は右側端部における面圧の変化を示している。これらグラフB51~B53が示すように、フィルムB13の巻取り始めでは、ストレート巻きで巻き取ったときの面圧の低下は、オシレート巻きで巻き取ったときの面圧の低下よりも比較的小さい。なお、フィルムB13の左側端部とは、X方向に向かって左側の端部であり、右側端部とはX方向に向かって右側の端部である。 As indicated by the graph B50, the stress in the circumferential direction of the film B13 is positive (+) in the portion of the film roll B38 where the winding length on the winding core B21 side is small. In FIG. 35, reference numeral L1 is attached to the winding length where the stress decreases from the winding length of 0 to become negative (−). Thus, at the beginning of winding, the stress in the circumferential direction sharply decreases as the winding length increases. Then, the stress in the circumferential direction further decreases and enters the negative (−) region. Note that, in FIG. 35, the winding length corresponding to the completion of winding is denoted by LE. In the negative (-) region, the stress in the circumferential direction shows the minimum value Smin. In FIG. 35, the winding length for which the stress in the circumferential direction has the minimum value Smin is denoted by Lmin. In the portion where the winding length exceeds Lmin, the stress in the circumferential direction gradually increases as the winding length increases, and enters the positive (+) region. A coil length L2 is attached to the winding length that increases and becomes positive after the stress in the circumferential direction shows the minimum value Smin. Here, when the stress in the circumferential direction of the film B13 is in the negative region, the rotational torque of the winding core B21 becomes larger than the tension of the dancer portion B32, and the film B13 is loosened. The surface pressure (surface pressure) is reduced. A graph B51 in FIG. 37 shows a change in the surface pressure at both end portions of the film B13 when the film is wound by straight winding, and a graph B52 in FIG. 38 is a graph B52 when the film is wound by oscillating winding. The change in the surface pressure at the left end of the film B13 is shown, and the graph B53 shows the change in the surface pressure at the right end. As shown by these graphs B51 to B53, at the beginning of winding the film B13, the decrease in the surface pressure when the film is wound in the straight winding is relatively smaller than the decrease in the surface pressure when the film is wound in the oscillate winding. The left side end of the film B13 is the left side end in the X direction, and the right side end is the right side end in the X direction.
 フィルムB13の巻取り始めにおける面圧の低下は巻取り後のフィルムロールB38に巻き緩みや巻きズレなどを生じさせる原因となる。そこで、上記のようにフィルムB13の巻取り始めにおいて面圧が低下する間、即ち、フィルムB13の円周方向の応力が負の領域にある間はストレート巻きを行い、その後、巻長が全巻長に対して10~30%の範囲になったときに、オシレート巻きに切り替える。これにより、フィルムB13の巻取り始めにおいて、ストレート巻きで巻き取ることによって面圧の低下が抑えられるとともに、フィルムB13の円周方向の応力が負の領域を抜け出したときにオシレート巻きで巻き取ることによって、面圧をフィルムB13の幅方向に対して左右方向に分散し、耳伸びの発生を軽減することができる。ストレート巻きからオシレート巻きに切り替えるタイミングとしてあらかじめ求める切替時巻長は、本実施形態のように、グラフB50のような円周方向の応力と巻長との関係に基づき求めておくとよい。このようにして求めた切替時巻長にフィルムB13の巻長が達したときに、コントローラB31は、ストレート巻きからオシレート巻きに切り替える。ストレート巻きからオシレート巻きに切り替えるタイミングは、巻長が全巻長に対して15~25%の範囲になったときがより好ましい。 The decrease in the surface pressure at the beginning of winding the film B13 causes loosening or misalignment of the film roll B38 after winding. Therefore, as described above, straight winding is performed while the surface pressure decreases at the beginning of winding the film B13, that is, while the stress in the circumferential direction of the film B13 is in the negative region, and then the winding length is the total winding length. When it is within the range of 10 to 30%, switching to oscillate winding. As a result, at the beginning of winding the film B13, the reduction of the surface pressure is suppressed by winding in a straight winding, and the film is wound in an oscillating winding when the stress in the circumferential direction of the film B13 leaves the negative region. Thus, the surface pressure can be dispersed in the left-right direction with respect to the width direction of the film B13, and the occurrence of ear extension can be reduced. The winding length at the time of switching, which is obtained in advance as the timing for switching from straight winding to oscillating winding, may be obtained based on the relationship between the stress in the circumferential direction and the winding length as shown in the graph B50 as in the present embodiment. When the winding length of the film B13 reaches the switching winding length thus obtained, the controller B31 switches from straight winding to oscillating winding. The timing of switching from straight winding to oscillating winding is more preferably when the winding length is in the range of 15 to 25% with respect to the total winding length.
 なお、巻長が全巻長に対して10%以上のときにストレート巻きからオシレート巻きに切り替えたときには、10%未満のときに切り替える場合と比べてフィルムB13の巻取り始めにおいて面圧が急激に低下することをより確実に防止する。このため、フィルムロールB38に巻き緩みや巻きズレが発生してしまうことを、より確実に防ぐことができる。また、巻長が全巻長に対して30%を超えてから切り替えたときには、フィルムB13の円周方向の応力が負の領域を抜け出した後もストレート巻きで巻き取ることになるため、30%以下のときに切り替える場合と比べてフィルムロールB38に耳伸びが発生しやすい。そこで、巻長が全巻長に対して30%以下のときにストレート巻きからオシレート巻きに切り替えることにより、30%を超えてから切り替える場合よりも、耳伸びの発生をより確実に防止することができる。 When the winding length is 10% or more of the total winding length, when the straight winding is switched to the oscillating winding, the surface pressure sharply decreases at the beginning of winding the film B13 as compared with the case where the winding length is less than 10%. To prevent more surely. Therefore, it is possible to more reliably prevent the film roll B38 from being loosened or misaligned. Further, when the winding length exceeds 30% with respect to the total winding length and is switched, the film is wound in a straight winding even after the film B13 has passed through the region where the stress in the circumferential direction is negative. Ear rolls are more likely to occur on the film roll B38 than when switching at this time. Therefore, by switching from the straight winding to the oscillating winding when the winding length is 30% or less with respect to the total winding length, it is possible to more reliably prevent the occurrence of ear extension than when switching is performed after the winding length exceeds 30%. ..
 切替時巻長特定部B41は、LUTメモリB40に記憶された巻取情報と、巻取情報入力部B39に入力された巻取情報とを照合して、入力された巻取情報に対応する切替時巻長を特定する。巻長測定部B42は、エンコーダB27からのエンコーダパルス信号に基づき、巻芯B21に巻き取ったフィルムB13の巻長を測定する。 The switching winding length identifying unit B41 collates the winding information stored in the LUT memory B40 with the winding information input to the winding information input unit B39, and performs switching corresponding to the input winding information. Specify the time length. The winding length measuring unit B42 measures the winding length of the film B13 wound around the winding core B21 based on the encoder pulse signal from the encoder B27.
 切り替え判定部B43は、巻長測定部B42で測定した巻長が、切替時巻長特定部B41で特定された切替時巻長を超えたか否かを判定する。巻長が切替時巻長を超えたと判定した場合には、オシレート部B29にオシレート巻き開始信号が送信される。オシレート部B29は、オシレート巻き開始信号を受信すると、フィルムの側縁B13aが揃うようにフィルムB13を巻き取っていくストレート巻きから、側縁B13aの位置を振幅Woの範囲内でずらしながらフィルムB13を巻き取っていくオシレート巻きにフィルムB13の巻取りを変更する。 The switching determination unit B43 determines whether the winding length measured by the winding length measuring unit B42 exceeds the switching winding length specified by the switching winding length specifying unit B41. When it is determined that the winding length exceeds the switching winding length, an oscillating winding start signal is transmitted to the oscillating unit B29. When the oscillating section B29 receives the oscillating winding start signal, the film B13 is moved while shifting the position of the side edge B13a within the range of the amplitude Wo from the straight winding that winds the film B13 so that the side edges B13a of the film are aligned. The winding of the film B13 is changed to the oscillating winding.
 次に、巻取装置の作用について、図39に示すフローチャートを参照しながら説明する。まず、巻取対象となるフィルムB13の巻取情報を巻取情報入力部B39に入力する。切替時巻長特定部B41は、巻取情報入力部B39に入力された巻取情報とLUTメモリB40に記憶された巻取情報とを照合することにより、入力された巻取情報に対応する切替時巻長を特定する。 Next, the operation of the winding device will be described with reference to the flowchart shown in FIG. First, the winding information of the film B13 to be wound is input to the winding information input section B39. The switching-time winding length identifying unit B41 compares the winding information input to the winding information input unit B39 with the winding information stored in the LUT memory B40, and switches the winding information corresponding to the input winding information. Specify the time length.
 そして、フィルムB13の巻取りがストレート巻きで開始される。巻取りの際には、ガイドローラーB24が一定の回転角度で回転するごとに、エンコーダB27からエンコーダパルス信号が一定時間毎にコントローラB31に送信される。このエンコーダパルス信号に基づいて、巻長測定部B42でフィルムB13の巻長が測定される。 Then, the winding of the film B13 is started by the straight winding. During winding, an encoder pulse signal is transmitted from the encoder B27 to the controller B31 at regular intervals every time the guide roller B24 rotates at a constant rotation angle. The winding length of the film B13 is measured by the winding length measuring unit B42 based on the encoder pulse signal.
 巻長測定部B42で測定された巻長が切替時巻長を超えたか否かが、切り替え判定部B43により順次判定される。巻長が切替時巻長を超えたと判定されたときには、コントローラB31からオシレート部B29にオシレート巻き開始信号が送信される。オシレート巻き開始信号を受信したオシレート部B29は、巻芯B21を軸方向(Y方向)に沿って一定の振幅Woで振動させる。これにより、フィルムB13の巻取りが、ストレート巻きからオシレート巻きに変更される。 The switching determination unit B43 sequentially determines whether the winding length measured by the winding length measuring unit B42 exceeds the winding length at the time of switching. When it is determined that the winding length exceeds the switching winding length, an oscillating winding start signal is transmitted from the controller B31 to the oscillating unit B29. The oscillating portion B29 that has received the oscillating winding start signal vibrates the winding core B21 at a constant amplitude Wo along the axial direction (Y direction). As a result, the winding of the film B13 is changed from the straight winding to the oscillating winding.
 フィルムB13の巻取りが完了すると、フィルムロールB38が巻取軸B19から取り外される。フィルムロールB38はトラックなどの輸送手段により各種工場に搬送される。その際、フィルムロールB38の巻芯内側はストレート巻きになっているため、巻き緩みが無く、搬送時の振動等があってもフィルムロールB38に巻ズレが生じることはない。また、加えて、フィルムロールB38の巻芯外側がオシレート巻きとなっていることから、耳伸びの発生が抑えられている。 When the winding of the film B13 is completed, the film roll B38 is removed from the winding shaft B19. The film roll B38 is transported to various factories by transportation means such as a truck. At that time, since the inner side of the core of the film roll B38 is straightly wound, there is no looseness, and the film roll B38 is not misaligned even if there is vibration during transportation. In addition, since the outside of the core of the film roll B38 is oscillated, the occurrence of edge extension is suppressed.
 なお、上記実施形態では、巻芯B21をフィルムB13の幅方向に振動させることによりフィルムB13を巻き取っている。しかし、オシレート巻きの方法はこの方法に限定されず、周知の方法を用いればよい。例えば、巻芯B21は動かさずに、フィルムB13自体をその幅方向に振動させてもよい。 In the above embodiment, the film B13 is wound by vibrating the winding core B21 in the width direction of the film B13. However, the method of oscillating winding is not limited to this method, and a known method may be used. For example, the film B13 itself may be vibrated in the width direction without moving the winding core B21.
 (8)返材回収(トリミング工程)
 返材回収とは、前記(6)のスリット工程でフィルムを搬送しながらフィルムの幅手方向の端部を切断した箇所を回収する工程である。例えば、延伸工程でテンターにより把持されたためにその痕跡が残った端部を除去する。端部の切断・回収は通常、フィルム幅手方向の両端部において行われる。回収された返材は、溶解工程に適量持ち込まれ、溶媒に溶解されて、ドープ調製に供される。
(8) Collection of returned materials (trimming process)
The return material recovery is a step of recovering a portion where the widthwise end portion of the film is cut while the film is conveyed in the slit step (6). For example, the end portion where the trace remains due to being gripped by the tenter in the stretching step is removed. The cutting and recovery of the end portion are usually performed at both end portions in the width direction of the film. An appropriate amount of the recovered recycled material is brought into the dissolution step, dissolved in a solvent, and provided for dope preparation.
 トリミング工程は、フィルム幅手方向の端部を切断する端部切断段階及び切断された端部を回収する端部回収段階を有する。 The trimming process has an edge cutting step of cutting the edge in the film width direction and an edge collecting step of collecting the cut edge.
 端部切断段階では、フィルムを搬送方向Tに搬送しながら、固定されたカッター等の切断手段により、フィルム端部を切断し、フィルム本体を巻取り工程等の次工程に提供する。 At the edge cutting stage, while the film is being transported in the transport direction T, the edge of the film is cut by a cutting means such as a fixed cutter, and the film body is provided to the next step such as the winding step.
 切断される端部の幅手方向長さ(幅)xは特に制限されず、そのようなxは具体的には、例えば、30~300mmの範囲、特に50~130mmの範囲であることが好ましい。 The length (width) x of the end to be cut in the width direction is not particularly limited, and specifically, such x is preferably in the range of, for example, 30 to 300 mm, particularly preferably in the range of 50 to 130 mm. ..
 端部回収段階では、切断されたフィルム端部を吸い込み口より回収する。吸い込み口は通常、筒形状、特に円筒形状を有しており、吸引装置により吸い込み方向に吸引を行っている。吸引速度は本発明の目的が達成される限り特に制限されない。 At the edge recovery stage, the cut film edge is recovered from the suction port. The suction port usually has a cylindrical shape, particularly a cylindrical shape, and suction is performed by the suction device in the suction direction. The suction speed is not particularly limited as long as the object of the present invention is achieved.
 本段階では、切断されたフィルム端部を吸い込み口より回収するに際し、フィルム搬送方向の上流側と下流側とから吸い込み口の開口部に向けて、搬送風を供給し、フィルム端部bの搬送・回収を補助する。上流側からの搬送風の供給速度V1及び下流側からの搬送風の供給速度V2は、それぞれ独立して、フィルム搬送速度に対して100~6000%の範囲、好ましくは500~5500%の範囲であり、それらの比率V1/V2は1未満、特に0.1~0.9の範囲、好ましくは0.3~0.9の範囲である。これによって、切断された端部のバタツキや蛇行を抑制し、端部の切断・回収を十分に円滑に行うことができる。 At this stage, when collecting the cut film end portion from the suction port, the conveying air is supplied from the upstream side and the downstream side in the film conveying direction toward the opening of the suction port to convey the film end portion b.・Assist the collection. The feeding speed V1 of the conveying air from the upstream side and the feeding speed V2 of the conveying air from the downstream side are each independently 100 to 6000% of the film conveying speed, preferably 500 to 5500%. And their ratio V1/V2 is less than 1, especially in the range 0.1 to 0.9, preferably in the range 0.3 to 0.9. As a result, flapping and meandering of the cut end can be suppressed, and the end can be cut and collected sufficiently smoothly.
 上流側からの搬送風の温度T1及び下流側からの搬送風の温度T2は特に制限されるものではなく、通常はそれぞれ独立して、雰囲気温度より0~50℃の範囲だけ高い温度である。温度T1及びT2をそれぞれ独立して雰囲気温度より0~50℃の範囲、特に0~45℃の範囲だけ高く設定することにより、フィルム端部80bにおける支持体面側と反支持体面側との収縮差を低減できる。その結果、端部の蛇行をより一層有効に抑制できるため、吸い込み口及び当該吸い込み口に連結された配管内での端部詰まりをより一層十分に抑制できる。雰囲気温度とは、本工程を行う周囲雰囲気の温度であり、前記端部切断段階におけるフィルムの支持体面における幅手方向で中央部の温度を用いるものとし、非接触温度計によって測定できる。 The temperature T1 of the carrier air from the upstream side and the temperature T2 of the carrier air from the downstream side are not particularly limited, and are usually each independently a temperature higher by 0 to 50° C. than the ambient temperature. By setting the temperatures T1 and T2 independently higher than the ambient temperature by a range of 0 to 50° C., particularly a range of 0 to 45° C., the difference in shrinkage between the support surface side and the non-support surface side at the film end portion 80b is set. Can be reduced. As a result, the meandering of the end portion can be suppressed more effectively, so that the clogging of the end portion inside the suction port and the pipe connected to the suction port can be suppressed more sufficiently. The ambient temperature is the temperature of the ambient atmosphere in which this step is performed, and the temperature of the central portion in the width direction on the support surface of the film in the edge cutting step is used and can be measured by a non-contact thermometer.
 搬送風の温度T1は通常、30~170℃の範囲であり、特に30~150℃の範囲が好ましい。 The temperature T1 of the carrier air is usually in the range of 30 to 170°C, and particularly preferably in the range of 30 to 150°C.
 搬送風の温度T2は通常、30~170℃の範囲であり、特に30~150℃の範囲が好ましい。 The temperature T2 of the carrier air is usually in the range of 30 to 170°C, and particularly preferably in the range of 30 to 150°C.
 雰囲気温度は通常、30~120℃の範囲であり、特に30~100℃の範囲が好ましい。 The ambient temperature is usually in the range of 30 to 120°C, particularly preferably in the range of 30 to 100°C.
 上流側からの搬送風は上流側供給装置から供給され、下流側からの搬送風は下流側供給装置から供給される。搬送風が加熱される場合は、加熱手段の具体例として、例えば、温風ヒーター、温調ロール、IR(赤外線)ヒーター等によって行われる。  The transport air from the upstream side is supplied from the upstream supply device, and the transport air from the downstream side is supplied from the downstream supply device. When the transport air is heated, as a specific example of the heating means, for example, a hot air heater, a temperature control roll, an IR (infrared) heater, or the like is used.
 上流側供給装置の供給口と吸い込み口の開口部との距離L1及び下流側供給装置の供給口と吸い込み口の開口部との距離L2は、切断された端部のバタツキや蛇行をより一層十分に抑制する観点から、それぞれ独立して20~200mmの範囲、特に30~180mmの範囲であることが好ましい。 The distance L1 between the supply port of the upstream side supply device and the opening of the suction port and the distance L2 between the supply port of the downstream side supply device and the opening of the suction port are more sufficient to prevent flapping or meandering at the cut end. From the viewpoint of suppressing the above, it is preferable that each of them is independently in the range of 20 to 200 mm, particularly in the range of 30 to 180 mm.
 上流側からの搬送風の供給方向と吸い込み方向(吸い込み口内におけるフィルム端部の搬送方向)とのなす角度θ1及び下流側からの搬送風の供給方向と吸い込み方向とのなす角度は、本発明の目的が達成される限り特に制限されず、切断された端部のバタツキや蛇行をより一層十分に抑制する観点から、それぞれ独立して10~90°の範囲、特に30~85°の範囲であることが好ましい。 The angle θ1 between the supply direction of the transport air from the upstream side and the suction direction (the transport direction of the film end portion in the suction port) and the angle between the supply direction of the transport air from the downstream side and the suction direction are the same as those of the present invention. It is not particularly limited as long as the purpose is achieved, and from the viewpoint of more sufficiently suppressing flapping and meandering of the cut end, each is independently in the range of 10 to 90°, particularly in the range of 30 to 85°. It is preferable.
 上流側供給装置及び下流側供給装置は通常、供給口が円形状を有するものが使用される。
 トリミングされた端部フィルムは、速やかに粉砕されて細片として搬送され、返材回収の貯蔵容器に貯蔵されることが好ましい。
 返材を粉砕するカッターは一般に発熱を伴うため高温となり、低Tgであるアクリル樹脂がカッター刃に融着して粉砕を妨げることも発生しやすい。カッターは冷却機構を備えることが好ましく、例えばその冷却方法としてドライアイス等の冷却媒体をフィルムと同伴するように吹き付けることなども挙げられる。
As the upstream supply device and the downstream supply device, those having a circular supply port are usually used.
It is preferable that the trimmed end film is quickly crushed and conveyed as a strip, and stored in a storage container for returning material recovery.
Since a cutter for crushing the returned material generally generates heat, the temperature thereof becomes high, and the acrylic resin having a low Tg is apt to be fused to the cutter blade to hinder the crushing. The cutter is preferably provided with a cooling mechanism. For example, as a cooling method thereof, a cooling medium such as dry ice may be blown together with the film.
 本工程、特に端部切断段階に供されるフィルムの残留溶媒量は、0~50質量%の範囲、特に0~20質量%の範囲であることが好ましい。これによって、フィルム端部の切断を容易に達成しながらも、フィルム端部における支持体面側と反支持体面側との収縮差をより有効に低減できるためである。 The residual solvent amount of the film used in this step, particularly in the edge cutting step, is preferably in the range of 0 to 50% by mass, particularly preferably in the range of 0 to 20% by mass. This is because it is possible to more effectively reduce the contraction difference between the support surface side and the non-support surface side at the film end while easily cutting the film end.
 (9)溶剤リサイクル工程
 本発明のアクリル樹脂フィルムの製造方法においては、使用した有機溶媒をリサイクルすることが好ましい。乾燥工程で発生する有機溶媒蒸気を含んだ乾燥気体をリサイクル工程に導入し、不純物を除去して有機溶媒を再生することが好ましく行われる。このようなリサイクル工程について、以下の図を用いて説明する。
 図40は、本発明に用いられるフィルム製膜ラインの一例を示した概略図である。
 図40に示すように、フィルム製膜ライン309は、仕込みゾーン310とバンドゾーン311と乾燥ゾーン312とに分けられる。仕込みゾーン310は、仕込みタンク314とポンプ315とフィルター316とを備えている。また、仕込みタンク314には、撹拌翼317によりドープ313を均一に調製する。調製されたドープ313は、ポンプ315とフィルター316とを介してバンドゾーン311の流延ダイ320に送られる。
 バンドゾーン311には、ローラー321、322に掛け渡された流延バンド323が設けられており、この流延バンド323は、図示しない駆動装置により回転する。流延バンド323の上に流延ダイ320が設けられている。ドープ313は、仕込みタンク314からポンプ315により送液され、フィルター316で不純物が除去された後に流延ダイ320に送られる。流延ダイ320からドープ313を流延バンド323上に流延する。ドープ313は流延バンド323で搬送されながら徐々に乾燥することで自己支持性を有し、剥ぎ取りローラー324によって流延バンド323から剥ぎ取られフィルム325が形成される。さらに、フィルム325は、テンター326により所定の幅に引き伸ばされ、搬送されながら乾燥される。なお、周知のようにバンドゾーン311内は必要に応じて隔壁により複数の室に分けられており、これら各室に対してガスの排出及び乾燥用ガスの送出が行われる。
(9) Solvent Recycling Step In the method for producing an acrylic resin film of the present invention, it is preferable to recycle the organic solvent used. It is preferable to introduce a dry gas containing the organic solvent vapor generated in the drying step into the recycling step to remove impurities and regenerate the organic solvent. Such a recycling process will be described with reference to the following drawings.
FIG. 40 is a schematic view showing an example of the film forming line used in the present invention.
As shown in FIG. 40, the film forming line 309 is divided into a charging zone 310, a band zone 311, and a drying zone 312. The preparation zone 310 includes a preparation tank 314, a pump 315, and a filter 316. Further, the dope 313 is uniformly prepared in the charging tank 314 by the stirring blade 317. The prepared dope 313 is sent to the casting die 320 in the band zone 311 via the pump 315 and the filter 316.
The band zone 311 is provided with a casting band 323 which is stretched around rollers 321 and 322, and the casting band 323 is rotated by a driving device (not shown). A casting die 320 is provided on the casting band 323. The dope 313 is sent from the preparation tank 314 by the pump 315, and after the impurities are removed by the filter 316, it is sent to the casting die 320. The dope 313 is cast from the casting die 320 onto the casting band 323. The dope 313 has a self-supporting property by being gradually dried while being conveyed by the casting band 323, and is stripped from the casting band 323 by the stripping roller 324 to form a film 325. Further, the film 325 is stretched to a predetermined width by the tenter 326 and dried while being conveyed. Note that, as is well known, the inside of the band zone 311 is divided into a plurality of chambers by partition walls as necessary, and gas is discharged and a drying gas is delivered to these chambers.
 テンター326から乾燥ゾーン312に送られたフィルム325は、乾燥ゾーン312内で、複数のローラー327に巻き掛けられて搬送されながら乾燥する。乾燥後のフィルム325は、巻き取り機328に巻き取られる。
 乾燥ゾーン312内で揮発した溶剤を含み熱風であるガス(以下、熱風ガスとも称する)350は、溶剤回収ライン331を用いて処理される。熱交換器351に送り込まれた後に、送風機352により開放チャンバー353に送風される。
 そして、送風機355により開放チャンバー353からガス350と大気354とを吸引することにより、開放チャンバー353の下流側(送風機355側)を大気圧より低い圧力(負圧)にすることが可能となる。なお、本発明において用いられる開放チャンバーの形態は、図示したものに限定されず、公知のいずれの開放チャンバーをも用いることもできる。また、溶剤回収ライン331の一部を負圧状態にする装置も開放チャンバーに限定されずに、ラインの一部を負圧にする機能を有する送風ファンなどを用いることも可能である。
The film 325 sent from the tenter 326 to the drying zone 312 is dried while being wound around a plurality of rollers 327 and conveyed in the drying zone 312. The dried film 325 is wound up by a winding machine 328.
A gas (hereinafter, also referred to as hot air gas) 350 that is a hot air containing a solvent that has been volatilized in the drying zone 312 is processed using a solvent recovery line 331. After being sent to the heat exchanger 351, the blower 352 sends the air to the open chamber 353.
Then, by sucking the gas 350 and the atmosphere 354 from the open chamber 353 by the blower 355, the pressure (negative pressure) on the downstream side of the open chamber 353 (the blower 355 side) can be made lower than the atmospheric pressure. The form of the open chamber used in the present invention is not limited to that shown in the drawing, and any known open chamber may be used. Further, the device for bringing a part of the solvent recovery line 331 into a negative pressure state is not limited to the open chamber, and it is also possible to use a blower fan having a function of making a part of the line into a negative pressure.
 また、開放チャンバー353と送風機355との間には、ガス350を冷却するための冷却器356、及びガス乾燥工程のための前処理活性炭357、除湿器358が取り付けられているが、これらは適宜省略してもよい。 Further, between the open chamber 353 and the blower 355, a cooler 356 for cooling the gas 350, a pretreatment activated carbon 357 for the gas drying process, and a dehumidifier 358 are attached, but these are appropriately used. It may be omitted.
 さらに、ガス350は、送風機355により吸着器359、360、361のいずれかに切替バルブ(図示しない)により選択的に送られ、ガス350中に含まれていた揮発した溶剤が吸着器359、360、361によって吸着される。また、吸着処理後のガスは、温度調節器362により所定の温度に調節された後に、送風機363により熱交換器351に送り込まれる。そして、前述した熱風ガス350と熱交換がなされ加熱された後に、さらに加熱器364によって所定の温度まで加熱され、再度、乾燥ゾーン12内に送り込まれ、乾燥風として再利用される。 Further, the gas 350 is selectively sent by a blower 355 to one of the adsorbers 359, 360, 361 by a switching valve (not shown), and the vaporized solvent contained in the gas 350 is adsorbed by the adsorbers 359, 360. , 361. The gas after the adsorption treatment is adjusted to a predetermined temperature by the temperature controller 362, and then sent to the heat exchanger 351 by the blower 363. Then, after being exchanged with the hot air gas 350 and heated, it is further heated to a predetermined temperature by the heater 364, fed again into the drying zone 12, and reused as a dry air.
 吸着器359、360、361に吸着された揮発溶剤成分は、脱着ガス370(通常は水蒸気)により脱着し、凝縮器371へ送り出される。脱着ガス370は凝縮器371で凝縮液化され、液体は回収溶剤としてデカンタ372に送液される。また、液化しないガス成分は、再度、送風機355に送り出され、吸着器359、360、361に送り込まれ、吸着回収される。 The volatile solvent components adsorbed by the adsorbers 359, 360, 361 are desorbed by the desorption gas 370 (usually steam) and sent to the condenser 371. The desorption gas 370 is condensed and liquefied in the condenser 371, and the liquid is sent to the decanter 372 as a recovery solvent. Further, the gas component which is not liquefied is again sent to the blower 355, sent to the adsorbers 359, 360 and 361, and adsorbed and recovered.
デカンタ372に導入された回収溶剤(有機溶媒)は、粗親水溶剤(水を含む)と粗疎水溶剤とに分離され粗親水溶剤タンク381及び粗疎水溶剤タンク382に送られる。粗親水溶剤は蒸留塔383で水と親水溶剤に分離され、水は排水又はリサイクルされる。親水溶剤は再利用のための親水溶剤タンク384に貯蔵される。粗疎水溶剤にはアクリル樹脂及びゴム粒子に存在する残存モノマー成分があり、これを分離するために蒸留塔385を設けることが好ましい。蒸留塔385で分離された疎水溶剤は再利用のための疎水溶剤タンク386に貯蔵される。親水溶剤タンク384及び疎水溶剤タンク386に貯蔵された溶剤は、適当な混合比に調整され精製溶剤タンク376に送られる。精製溶剤タンク376内の精製溶剤は、調製器378に送り込まれ撹拌された後に仕込みタンク314に送られて、ドープ調製溶剤として再利用される。 The recovered solvent (organic solvent) introduced into the decanter 372 is separated into a crude hydrophilic solvent (including water) and a crude hydrophobic solvent and sent to the crude hydrophilic solvent tank 381 and the crude hydrophobic solvent tank 382. The crude hydrophilic solvent is separated into water and hydrophilic solvent in the distillation column 383, and the water is drained or recycled. The hydrophilic solvent is stored in the hydrophilic solvent tank 384 for reuse. The crude hydrophobic solvent has residual monomer components present in the acrylic resin and rubber particles, and it is preferable to provide a distillation column 385 to separate the residual monomer components. The hydrophobic solvent separated in the distillation column 385 is stored in a hydrophobic solvent tank 386 for reuse. The solvent stored in the hydrophilic solvent tank 384 and the hydrophobic solvent tank 386 is adjusted to an appropriate mixing ratio and sent to the purified solvent tank 376. The refined solvent in the refined solvent tank 376 is sent to the preparation device 378, stirred, and then sent to the preparation tank 314 to be reused as a dope preparation solvent.
 特に本発明で好ましく用いられる有機溶媒は、ジクロロメタン及び低級アルコールである。また、アクリル樹脂の残存モノマーのうち代表的なものはメチルメタクリレートである。そのため、熱交換器はジクロロメタン、低級アルコール、メチルメタクリレートが凝縮しない温度に乾燥気体を制御する必要がある。また、デカンタでは上層が主に水と低級アルコール、下層が主にジクロロメタンとメチルメタクリレートという成分になる。それぞれ蒸留塔は水と低級アルコール、ジクロロメタンとメチルメタクリレートを分離するために最適な設計がなされる。
 これらの分離を確実にするために、デカンタ372や蒸留塔383,385は多段にしてもよいし、分離が未熟な成分を適宜上流工程に戻す配管を設けてもよい。
Particularly preferred organic solvents used in the present invention are dichloromethane and lower alcohols. Further, methyl methacrylate is a typical one of the residual monomers of the acrylic resin. Therefore, the heat exchanger needs to control the dry gas to a temperature at which dichloromethane, lower alcohol, and methyl methacrylate do not condense. In the decanter, the upper layer mainly contains water and lower alcohol, and the lower layer mainly contains dichloromethane and methyl methacrylate. Each distillation column is designed optimally for separating water and lower alcohol, and dichloromethane and methyl methacrylate.
In order to ensure the separation of these, the decanter 372 and the distillation columns 383 and 385 may be provided in multiple stages, or a pipe may be provided to appropriately return unripened components to the upstream process.
 ≪アクリル樹脂フィルムを構成する材料≫
 以下、本発明のアクリル樹脂フィルムの製造方法に用いられる材料について詳細に説明する。
 本発明のアクリル樹脂フィルムの製造方法は、アクリル樹脂を有機溶媒を用いて溶解し、添加剤を加えてドープすることを特徴とする。本発明に用いることのできる材料は、以下に限定されるものではなく、公知の材料をその構成要素として適宜用いることができる。
<<Materials that make up the acrylic resin film>>
Hereinafter, the materials used in the method for producing an acrylic resin film of the present invention will be described in detail.
The method for producing an acrylic resin film of the present invention is characterized by dissolving an acrylic resin using an organic solvent and adding an additive to dope. The material that can be used in the present invention is not limited to the following, and known materials can be appropriately used as the constituent elements.
 (1)アクリル樹脂
 (構成するモノマー種)
 アクリル系樹脂としては、ガラス転移温度(Tg)が120~180℃の範囲内で、かつ、重量平均分子量が30万~400万であれば、任意の適切な(メタ)アクリル系樹脂を採用し得る。例えば、ポリメタクリル酸メチルなどのポリ(メタ)アクリル酸エステル、メタクリル酸メチル-(メタ)アクリル酸共重合体、メタクリル酸メチル-(メタ)アクリル酸エステル共重合体、メタクリル酸メチル-アクリル酸エステル-(メタ)アクリル酸共重合体、(メタ)アクリル酸メチル-スチレン共重合体(MS樹脂など)、脂環族炭化水素基を有する重合体(例えば、メタクリル酸メチル-メタクリル酸シクロヘキシル共重合体、メタクリル酸メチル-(メタ)アクリル酸ノルボルニル共重合体など)が挙げられる。
 より詳細には、後述例示するモノマー等から任意に選ばれた組み合わせで単独重合又は共重合された樹脂、さらにその樹脂に対して環化反応、脱水縮合反応、水素付加反応、保護官能基の脱離反応などの後反応を施した樹脂のうち、(メタ)アクリル酸エステルを重量比で50%以上有するものである。
(1) Acrylic resin (constituent monomer species)
As the acrylic resin, any appropriate (meth)acrylic resin is adopted as long as it has a glass transition temperature (Tg) in the range of 120 to 180° C. and a weight average molecular weight of 300,000 to 4,000,000. obtain. For example, poly(meth)acrylic acid ester such as polymethylmethacrylate, methyl methacrylate-(meth)acrylic acid copolymer, methyl methacrylate-(meth)acrylic acid ester copolymer, methyl methacrylate-acrylic acid ester -(Meth)acrylic acid copolymer, methyl (meth)acrylate-styrene copolymer (MS resin, etc.), alicyclic hydrocarbon group-containing polymer (for example, methyl methacrylate-cyclohexyl methacrylate copolymer) , Methyl methacrylate-(meth)acrylic acid norbornyl copolymer and the like).
More specifically, a resin homopolymerized or copolymerized with a combination arbitrarily selected from the monomers exemplified below, and further a cyclization reaction, a dehydration condensation reaction, a hydrogenation reaction, a removal of a protective functional group with respect to the resin. Among resins that have undergone post-reaction such as separation reaction, those having 50% or more by weight ratio of (meth)acrylic acid ester.
 前記モノマーとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸i-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸s-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸n-アミル、(メタ)アクリル酸s-アミル、(メタ)アクリル酸t-アミル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸シクロヘキシルメチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェニル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸トリシクロデカニル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸テトラヒドロフルフリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸β-メチルグリシジル、(メタ)アクリル酸β-エチルグリシジル、(メタ)アクリル酸(3,4-エポキシシクロヘキシル)メチル、(メタ)アクリル酸N,N-ジメチルアミノエチル、α-ヒドロキシメチルアクリル酸メチル、α-ヒドロキシメチルアクリル酸エチルなどの(メタ)アクリル酸エステル類等が挙げられる。 Examples of the monomer include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, i-propyl (meth)acrylate, n-butyl (meth)acrylate, (meth) ) S-butyl acrylate, t-butyl (meth)acrylate, n-amyl (meth)acrylate, s-amyl (meth)acrylate, t-amyl (meth)acrylate, n-(meth)acrylate Hexyl, 2-ethylhexyl (meth)acrylate, isodecyl (meth)acrylate, tridecyl (meth)acrylate, cyclohexyl (meth)acrylate, cyclohexylmethyl (meth)acrylate, octyl (meth)acrylate, (meth) Lauryl acrylate, stearyl (meth)acrylate, benzyl (meth)acrylate, phenyl (meth)acrylate, isobornyl (meth)acrylate, adamantyl (meth)acrylate, tricyclodecanyl (meth)acrylate, ( 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, ( 4-hydroxybutyl (meth)acrylate, 2-methoxyethyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate, phenoxyethyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, (meth)acrylic Glycidyl acid, β-methylglycidyl (meth)acrylate, β-ethylglycidyl (meth)acrylate, (3,4-epoxycyclohexyl)methyl (meth)acrylate, N,N-dimethylaminoethyl (meth)acrylate And (meth)acrylic acid esters such as methyl α-hydroxymethyl acrylate and ethyl α-hydroxymethyl acrylate.
 メタクリル酸イソブチル、メタクリル酸2-メチルブチル、メタクリル酸2-エチルブチル、メタクリル酸2-イソプロピルブチル、メタクリル酸2-イソプロピル-4-メチルブチル、メタクリル酸2,3-ジメチルブチル、メタクリル酸2-メチルペンチル、メタクリル酸2-エチルペンチル、メタクリル酸2-プロピルペンチル、メタクリル酸2-イソプロピルペンチル; Isobutyl methacrylate, 2-methylbutyl methacrylate, 2-ethylbutyl methacrylate, 2-isopropylbutyl methacrylate, 2-isopropyl-4-methylbutyl methacrylate, 2,3-dimethylbutyl methacrylate, 2-methylpentyl methacrylate, 2-methacryl methacrylate Acid 2-ethylpentyl, 2-propylpentyl methacrylate, 2-isopropylpentyl methacrylate;
 メタクリル酸s-ブチル、メタクリル酸1-メチルブチル、メタクリル酸1-メチルペンチル、メタクリル酸1,3-ジメチルブチル、メタクリル酸1,2-ジメチルプロピル、メタクリル酸1,2-ジメチルブチル、メタクリル酸1,2-ジメチルペンチル、メタクリル酸1,2,3-トリメチルブチル、メタクリル酸2-エチル-1-メチルブチル、メタクリル酸2-エチル-1-メチルペンチル、メタクリル酸2-エチル-1,3-ジメチルブチル、メタクリル酸1-メチル-2-プロピルペンチル、メタクリル酸2-イソプロピル-1-メチルペンチル、メタクリル酸2-イソプロピル-1,3-ジメチルブチル、メタクリル酸1-エチルプロピル、メタクリル酸1-エチルブチル、メタクリル酸1-エチルペンチル、メタクリル酸1-エチル-3-メチルブチル、メタクリル酸1-エチル-2-メチルプロピル、メタクリル酸1-エチル-2-メチルブチル、メタクリル酸1-エチル-2-メチルペンチル、メタクリル酸1-エチル-2,3-ジメチルブチル、メタクリル酸1,2-ジエチルブチル、メタクリル酸1,2-ジエチルペンチル、メタクリル酸1,2-ジエチル-3-メチルブチル、メタクリル酸1-エチル-2-プロピルペンチル、メタクリル酸2-イソプロピル-1-エチルペンチル、メタクリル酸1-エチル-2-イソプロピル-3-メチルブチル、メタクリル酸1-プロピルブチル、 S-butyl methacrylate, 1-methylbutyl methacrylate, 1-methylpentyl methacrylate, 1,3-dimethylbutyl methacrylate, 1,2-dimethylpropyl methacrylate, 1,2-dimethylbutyl methacrylate, 1,1-methacrylic acid 2-dimethylpentyl, 1,2,3-trimethylbutyl methacrylate, 2-ethyl-1-methylbutyl methacrylate, 2-ethyl-1-methylpentyl methacrylate, 2-ethyl-1,3-dimethylbutyl methacrylate, 1-Methyl-2-propylpentyl methacrylate, 2-isopropyl-1-methylpentyl methacrylate, 2-isopropyl-1,3-dimethylbutyl methacrylate, 1-ethylpropyl methacrylate, 1-ethylbutyl methacrylate, methacrylic acid 1-ethylpentyl, 1-ethyl-3-methylbutyl methacrylate, 1-ethyl-2-methylpropyl methacrylate, 1-ethyl-2-methylbutyl methacrylate, 1-ethyl-2-methylpentyl methacrylate, 1-methacrylic acid -Ethyl-2,3-dimethylbutyl, 1,2-diethylbutyl methacrylate, 1,2-diethylpentyl methacrylate, 1,2-diethyl-3-methylbutyl methacrylate, 1-ethyl-2-propylpentyl methacrylate , 2-isopropyl-1-ethylpentyl methacrylate, 1-ethyl-2-isopropyl-3-methylbutyl methacrylate, 1-propylbutyl methacrylate,
 メタクリル酸1-プロピルペンチル、メタクリル酸3-メチル-1-プロピルブチル、メタクリル酸1-イソプロピルブチル、メタクリル酸2-メチル-1-プロピルブチル、メタクリル酸2-メチル-1-プロピルペンチル、メタクリル酸2,3-ジメチル-1-プロピルブチル、メタクリル酸2-エチル-1-プロピルブチル、メタクリル酸2-エチル-1-プロピルペンチル、メタクリル酸2-エチル-3-メチル-1-プロピルブチル、メタクリル酸1,2-ジプロピルペンチル、メタクリル酸2-イソプロピル-1-プロピルペンチル、メタクリル酸2-イソプロピル-3-メチル-1-プロピルブチル、メタクリル酸1-イソプロピルペンチル、メタクリル酸1-イソプロピル-3-メチルブチル、メタクリル酸1-イソプロピル-2-メチルプロピル、メタクリル酸1-イソプロピル-2-メチルブチル、メタクリル酸1-イソプロピル-2-メチルペンチル、メタクリル酸1-イソプロピル-2,3-ジメチルブチル、メタクリル酸2-エチル-1-イソプロピルブチル、メタクリル酸2-エチル-1-イソプロピルペンチル、メタクリル酸2-ジエチル-1-イソプロピル-3-メチルブチル、メタクリル酸1-イソプロピル-2-プロピルペンチル、メタクリル酸1,2-ジイソプロピルペンチル、メタクリル酸1,2-イソプロピル-3-メチルブチル; 1-propylpentyl methacrylate, 3-methyl-1-propylbutyl methacrylate, 1-isopropylbutyl methacrylate, 2-methyl-1-propylbutyl methacrylate, 2-methyl-1-propylpentyl methacrylate, 2 methacrylate ,3-Dimethyl-1-propylbutyl, 2-ethyl-1-propylbutyl methacrylate, 2-ethyl-1-propylpentyl methacrylate, 2-ethyl-3-methyl-1-propylbutyl methacrylate, 1-methacrylic acid , 2-dipropylpentyl, 2-isopropyl-1-propylpentyl methacrylate, 2-isopropyl-3-methyl-1-propylbutyl methacrylate, 1-isopropylpentyl methacrylate, 1-isopropyl-3-methylbutyl methacrylate, 1-isopropyl-2-methylpropyl methacrylate, 1-isopropyl-2-methylbutyl methacrylate, 1-isopropyl-2-methylpentyl methacrylate, 1-isopropyl-2,3-dimethylbutyl methacrylate, 2-ethyl methacrylate 1-isopropylbutyl, 2-ethyl-1-isopropylpentyl methacrylate, 2-diethyl-1-isopropyl-3-methylbutyl methacrylate, 1-isopropyl-2-propylpentyl methacrylate, 1,2-diisopropylpentyl methacrylate , 1,2-isopropyl-3-methylbutyl methacrylate;
 メタクリル酸t-ブチル、メタクリル酸1,1-ジメチルプロピル、メタクリル酸1-エチル-1-メチルプロピル、メタクリル酸1,1-ジエチルプロピル、メタクリル酸1,1-ジメチルブチル、メタクリル酸1-エチル-1-メチルブチル、メタクリル酸1,1-ジエチルブチル、メタクリル酸1-メチル-1-プロピルブチル、メタクリル酸1-エチル-1-プロピルブチル、メタクリル酸1,1-ジプロピルブチル、メタクリル酸1,1,2-トリメチルプロピル、メタクリル酸1-エチル-1,2-ジメチルプロピル、メタクリル酸1,1-ジエチル-2-メチルプロピル、メタクリル酸1-イソプロピル-1-メチルブチル、メタクリル酸1-エチル-1-イソプロピルブチル、メタクリル酸1-イソプロピル-1-プロピルブチル、メタクリル酸1-イソプロピル-1,2-ジメチルプロピル、メタクリル酸1,1-ジイソプロピルプロピル、メタクリル酸1,1-ジイソプロピルブチル、メタクリル酸1,1-ジイソプロピル-2-メチルプロピル; T-Butyl methacrylate, 1,1-dimethylpropyl methacrylate, 1-ethyl-1-methylpropyl methacrylate, 1,1-diethylpropyl methacrylate, 1,1-dimethylbutyl methacrylate, 1-ethyl methacrylate- 1-methylbutyl, 1,1-diethylbutyl methacrylate, 1-methyl-1-propylbutyl methacrylate, 1-ethyl-1-propylbutyl methacrylate, 1,1-dipropylbutyl methacrylate, 1,1 methacrylate ,2-trimethylpropyl, 1-ethyl-1,2-dimethylpropyl methacrylate, 1,1-diethyl-2-methylpropyl methacrylate, 1-isopropyl-1-methylbutyl methacrylate, 1-ethyl-1-methacrylate Isopropylbutyl, 1-isopropyl-1-propylbutyl methacrylate, 1-isopropyl-1,2-dimethylpropyl methacrylate, 1,1-diisopropylpropyl methacrylate, 1,1-diisopropylbutyl methacrylate, 1,1 methacrylate -Diisopropyl-2-methylpropyl;
 メタクリル酸4-メチルシクロヘキシル、メタクリル酸2-メチルシクロヘキシル、メタクリル酸4-イソプロピルシクロヘキシル、メタクリル酸2-イソプロピルシクロヘキシル、メタクリル酸4-t-ブチルシクロヘキシル、メタクリル酸2-t-ブチルシクロヘキシル; 4-methylcyclohexyl methacrylate, 2-methylcyclohexyl methacrylate, 4-isopropylcyclohexyl methacrylate, 2-isopropylcyclohexyl methacrylate, 4-t-butylcyclohexyl methacrylate, 2-t-butylcyclohexyl methacrylate;
 メタクリル酸2-ノルボルニル、メタクリル酸2-メチル-2-ノルボルニル、メタクリル酸2-エチル-2-ノルボルニル、メタクリル酸2-イソボルニル、メタクリル酸2-メチル-2-イソボルニル、メタクリル酸2-エチル-2-イソボルニル、メタクリル酸8-トリシクロ[5.2.1.02,6]デカニル、メタクリル酸8-メチル-8-トリシクロ[5.2.1.02,6]デカニル、メタクリル酸8-エチル-8-トリシクロ[5.2.1.02,6]デカニル、メタクリル酸2-アダマンチル、メタクリル酸2-メチル-2-アダマンチル、メタクリル酸2-エチル-2-アダマンチル、メタクリル酸1-アダマンチル、メタクリル酸2-フェンキル、メタクリル酸2-メチル-2-フェンキル、メタクリル酸2-エチル-2-フェンキル、メタクリル酸デカリン-1-イル、メタクリル酸デカリン-2-イルなどが挙げられる。 2-norbornyl methacrylate, 2-methyl-2-norbornyl methacrylate, 2-ethyl-2-norbornyl methacrylate, 2-isobornyl methacrylate, 2-methyl-2-isobornyl methacrylate, 2-ethyl-2-methacrylate Isobornyl, 8-tricyclo[5.2.1.02,6]decanyl methacrylate, 8-methyl-8-tricyclo[5.2.1.02,6]decanyl methacrylate, 8-ethyl-8-methacrylate Tricyclo[5.2.1.02,6]decanyl, 2-adamantyl methacrylate, 2-methyl-2-adamantyl methacrylate, 2-ethyl-2-adamantyl methacrylate, 1-adamantyl methacrylate, 2-methacrylate Examples thereof include fenkill, 2-methyl-2-fenkill methacrylate, 2-ethyl-2-fenkill methacrylate, decalin-1-yl methacrylate, decalin-2-yl methacrylate and the like.
 (共重合可能なモノマー)
 共重合可能なモノマーとしては、N,N-ジメチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド等の(メタ)アクリルアミド類;(メタ)アクリル酸、クロトン酸、けい皮酸、ビニル安息香酸等の不飽和モノカルボン酸類;マレイン酸、フマル酸、イタコン酸、シトラコン酸、メサコン酸等の不飽和多価カルボン酸類;コハク酸モノ(2-アクリロイルオキシエチル)、コハク酸モノ(2-メタクリロイルオキシエチル)等の不飽和基とカルボキシ基の間が鎖延長されている不飽和モノカルボン酸類;無水マレイン酸、無水イタコン酸などの不飽和酸無水物類;スチレン、α-メチルスチレン、α-クロロスチレン、p-t-ブチルスチレン、p-メチルスチレン、p-クロロスチレン、o-クロロスチレン、2,5-ジクロロスチレン、3,4-ジクロロスチレン、ビニルトルエン、メトキシスチレン等の芳香族ビニル類;メチルマレイミド、エチルマレイミド、イソプロピルマレイミド、シクロヘキシルマレイミド、フェニルマレイミド、ベンジルマレイミド、ナフチルマレイミドなどのN置換マレイミド類;1,3-ブタジエン、イソプレン、クロロプレン等の共役ジエン類;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、2-エチルヘキシルビニルエーテル、n-ノニルビニルエーテル、ラウリルビニルエーテル、シクロヘキシルビニルエーテル、メトキシエチルビニルエーテル、エトキシエチルビニルエーテル、メトキシエトキシエチルビニルエーテル、メトキシポリエチレングリコールビニルエーテル、2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル等のビニルエーテル類;N-ビニルピロリドン、N-ビニルカプロラクタム、N-ビニルイミダゾール、N-ビニルモルフォリン、N-ビニルアセトアミド等のN-ビニル化合物類;(メタ)アクリル酸イソシアナトエチル、アリルイソシアネート等の不飽和イソシアネート類;アクリロニトリル、メタクリロニトリルなどのシアン化ビニル類;などが挙げられる。
(Copolymerizable monomer)
Examples of the copolymerizable monomer include (meth)acrylamides such as N,N-dimethyl(meth)acrylamide and N-methylol(meth)acrylamide; (meth)acrylic acid, crotonic acid, cinnamic acid, vinylbenzoic acid, etc. Unsaturated monocarboxylic acids; maleic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid and other unsaturated polycarboxylic acids; succinic acid mono(2-acryloyloxyethyl), succinic acid mono(2-methacryloyloxyethyl) Unsaturated monocarboxylic acids having a chain extension between an unsaturated group such as) and a carboxy group; unsaturated acid anhydrides such as maleic anhydride and itaconic anhydride; styrene, α-methylstyrene, α-chlorostyrene , Pt-butylstyrene, p-methylstyrene, p-chlorostyrene, o-chlorostyrene, 2,5-dichlorostyrene, 3,4-dichlorostyrene, vinyltoluene, methoxystyrene and other aromatic vinyls; methyl N-substituted maleimides such as maleimide, ethylmaleimide, isopropylmaleimide, cyclohexylmaleimide, phenylmaleimide, benzylmaleimide, naphthylmaleimide; conjugated dienes such as 1,3-butadiene, isoprene, chloroprene; vinyl acetate, vinyl propionate, vinyl butyrate. Vinyl esters such as vinyl benzoate; methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, 2-ethylhexyl vinyl ether, n-nonyl vinyl ether, lauryl vinyl ether, cyclohexyl vinyl ether, methoxyethyl vinyl ether, ethoxyethyl vinyl ether, methoxyethoxyethyl vinyl ether. , Vinyl ethers such as methoxy polyethylene glycol vinyl ether, 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether; N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylimidazole, N-vinylmorpholine, N-vinylacetamide, etc. -Vinyl compounds; unsaturated isocyanates such as isocyanatoethyl (meth)acrylate and allyl isocyanate; vinyl cyanides such as acrylonitrile and methacrylonitrile; and the like.
 (その他のアクリル樹脂)
 下記一般式(E)で表され、平均分子量(Mw)が1000~30000の範囲内であるアクリル樹脂は、本発明に係るアクリル樹脂との相溶性が高く、耐熱性を向上する観点から、併用することが好ましい。
(Other acrylic resin)
An acrylic resin represented by the following general formula (E) and having an average molecular weight (Mw) in the range of 1,000 to 30,000 has high compatibility with the acrylic resin according to the present invention and is used in combination from the viewpoint of improving heat resistance. Preferably.
 一般式(E)
 -[CH-C(-R)(-CO)]-[CH-C(-R)(-CO-OH)-]
(式中、R、R、はH又はCH、R、RはCH又はC又はC、m、nは繰り返し単位を表す)
 本発明に用いられる一般式(E)で表される化合物は重量平均分子量が1000~30000の範囲内であるから、オリゴマーから低分子量ポリマーの間にあると考えられるものである。
General formula (E)
- [CH 2 -C (-R 1 ) (- CO 2 R 2)] m - [CH 2 -C (-R 3) (- CO 2 R 4 -OH) -] n
(In the formula, R 1 and R 3 are H or CH 3 , R 2 and R 4 are CH 2 or C 2 H 4 or C 3 H 6 , and m and n are repeating units.)
Since the compound represented by the general formula (E) used in the present invention has a weight average molecular weight in the range of 1,000 to 30,000, it is considered to be present between the oligomer and the low molecular weight polymer.
 一般式(E)で表される化合物は、下記エチレン性不飽和モノマーXaの一種、及び下記エチレン性不飽和モノマーXbの一種とを共重合して得られたポリマーであることが好ましい。 The compound represented by the general formula (E) is preferably a polymer obtained by copolymerizing one of the following ethylenically unsaturated monomers Xa and one of the following ethylenically unsaturated monomers Xb.
 -(Xa)-(Xb)-  (m、nは繰り返し単位を表す)
 一般式(E)で表される化合物を構成するモノマー単位としてのモノマーを下記に挙げるがこれに限定されない。
-(Xa) m -(Xb) n- (m and n represent repeating units)
Examples of the monomer as a monomer unit constituting the compound represented by the general formula (E) are shown below, but the monomer is not limited thereto.
 エチレン性不飽和モノマーXaは、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル(i-、n-)、アクリル酸ブチル(n-、i-、s-、t-)、アクリル酸ペンチル(n-、i-、s-)、アクリル酸ヘキシル(n-、i-)、アクリル酸ヘプチル(n-、i-)、アクリル酸オクチル(n-、i-)、アクリル酸ノニル(n-、i-)、アクリル酸ミリスチル(n-、i-)、アクリル酸(2-エチルヘキシル)、アクリル酸(ε-カプロラクトン)、アクリル酸(2-エトキシエチル)等、又は上記アクリル酸エステルをメタクリル酸エステルに変えたものを挙げることができる。中でも、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル(i-、n-)であることが好ましい。 Examples of the ethylenically unsaturated monomer Xa include methyl acrylate, ethyl acrylate, propyl acrylate (i-, n-), butyl acrylate (n-, i-, s-, t-), and pentyl acrylate ( n-, i-, s-), hexyl acrylate (n-, i-), heptyl acrylate (n-, i-), octyl acrylate (n-, i-), nonyl acrylate (n-, i-), myristyl acrylate (n-, i-), acrylic acid (2-ethylhexyl), acrylic acid (ε-caprolactone), acrylic acid (2-ethoxyethyl), or the like, or the above-mentioned acrylic ester as a methacrylic ester. You can list the ones that have been changed to. Of these, methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, and propyl methacrylate (i-, n-) are preferable.
 エチレン性不飽和モノマーXbは、アクリル酸又はメタクリル酸エステルが好ましく、例えば、アクリル酸(2-ヒドロキシエチル)、アクリル酸(2-ヒドロキシプロピル)、アクリル酸(3-ヒドロキシプロピル)、アクリル酸(4-ヒドロキシブチル)、アクリル酸(2-ヒドロキシブチル)、又はこれらアクリル酸をメタクリル酸に置き換えたものを挙げることができ、好ましくは、アクリル酸(2-ヒドロキシエチル)及びメタクリル酸(2-ヒドロキシエチル)、アクリル酸(2-ヒドロキシプロピル)、アクリル酸(3-ヒドロキシプロピル)である。 The ethylenically unsaturated monomer Xb is preferably acrylic acid or methacrylic acid ester, and examples thereof include acrylic acid (2-hydroxyethyl), acrylic acid (2-hydroxypropyl), acrylic acid (3-hydroxypropyl), acrylic acid (4 -Hydroxybutyl), acrylic acid (2-hydroxybutyl), or those obtained by replacing these acrylic acids with methacrylic acid, preferably acrylic acid (2-hydroxyethyl) and methacrylic acid (2-hydroxyethyl). ), acrylic acid (2-hydroxypropyl), and acrylic acid (3-hydroxypropyl).
 Xa、Xbのモル組成比m:nは99:1~65:35の範囲が好ましく、さらに好ましくは95:5~75:25の範囲である。 The molar composition ratio m:n of Xa and Xb is preferably 99:1 to 65:35, more preferably 95:5 to 75:25.
 Xaのモル組成比が多いと環状ポリオレフィン系樹脂との相溶性が良化するが、フィルムの耐熱性が低下する。Xbのモル組成比が多いと上記相溶性が悪くなる。また、Xbのモル組成比が上記範囲を超えると製膜時にヘイズが出る傾向があり、これらの最適化を図りXa、Xbのモル組成比を決めることが好ましい。 If the molar composition ratio of Xa is high, the compatibility with the cyclic polyolefin resin improves, but the heat resistance of the film decreases. If the molar composition ratio of Xb is large, the compatibility becomes poor. Further, if the molar composition ratio of Xb exceeds the above range, haze tends to occur during film formation, and it is preferable to optimize these and determine the molar composition ratio of Xa and Xb.
 一般式(E)で表される化合物の重量平均分子量は1000~30000範囲内であり、より好ましくは8000~25000である。 The weight average molecular weight of the compound represented by formula (E) is in the range of 1,000 to 30,000, and more preferably 8,000 to 25,000.
 重量平均分子量を1000以上30000以下とすることにより、蒸発や揮発することなく樹脂との相溶性がより向上し好ましい。 By setting the weight average molecular weight to 1,000 or more and 30,000 or less, compatibility with the resin is further improved without evaporation or volatilization, which is preferable.
 重量平均分子量の測定方法は下記方法によることができる。 The weight average molecular weight can be measured by the following method.
 (重量平均分子量測定方法)
 重量平均分子量Mwは、ゲルパーミエーションクロマトグラフィーを用いて測定した。測定条件は以下のとおりである。
(Weight average molecular weight measurement method)
The weight average molecular weight Mw was measured using gel permeation chromatography. The measurement conditions are as follows.
 溶媒: メチレンクロライド
 カラム: Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度: 0.1質量%
 検出器: RI Model 504(GLサイエンス社製)
 ポンプ: L6000((株)日立製作所製)
 流量: 1.0ml/min
 校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)
製)Mw=500~1000000迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いる。
Solvent: Methylene chloride Column: Shodex K806, K805, K803G (Used by connecting three Showa Denko KK products)
Column temperature: 25°C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (GL Science Co., Ltd.)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0 ml/min
Calibration curve: Standard polystyrene STK standard polystyrene (Tosoh Corporation)
A calibration curve with 13 samples of Mw=500 to 1,000,000 was used. The 13 samples are used at substantially equal intervals.
 一般式(E)で表される化合物を合成するには、通常の重合では分子量のコントロールが難しく、分子量を余り大きくしない方法でできるだけ分子量を揃えることのできる方法を用いることが望ましい。かかる重合方法としては、クメンペルオキシドやt-ブチルヒドロペルオキシドのような過酸化物重合開始剤を使用する方法、重合開始剤を通常の重合より多量に使用する方法、重合開始剤の他にメルカプト化合物や四塩化炭素等の連鎖移動剤を使用する方法、重合開始剤の他にベンゾキノンやジニトロベンゼンのような重合停止剤を使用する方法、さらに特開2000-128911号公報又は同2000-344823号公報にあるような一つのチオール基と2級のヒドロキシ基とを有する化合物、又は、該化合物と有機金属化合物を併用した重合触媒を用いて塊状重合する方法等を挙げることができ、いずれも本発明において好ましく用いられるが、特に、分子中にチオール基と2級のヒドロキシ基とを有する化合物を連鎖移動剤として使用する重合方法が好ましい。 In order to synthesize the compound represented by the general formula (E), it is difficult to control the molecular weight by ordinary polymerization, and it is desirable to use a method that can make the molecular weight as uniform as possible without increasing the molecular weight too much. Examples of the polymerization method include a method using a peroxide polymerization initiator such as cumene peroxide and t-butyl hydroperoxide, a method using a larger amount of the polymerization initiator than usual polymerization, and a mercapto compound in addition to the polymerization initiator. And a method of using a chain transfer agent such as carbon tetrachloride, a method of using a polymerization terminator such as benzoquinone or dinitrobenzene in addition to the polymerization initiator, and further, JP-A-2000-128911 or 2000-344823. The compound having one thiol group and a secondary hydroxy group as described in 1 or a method of bulk polymerization using a polymerization catalyst in which the compound and an organometallic compound are used in combination can be mentioned. In particular, a polymerization method using a compound having a thiol group and a secondary hydroxy group in the molecule as a chain transfer agent is preferable.
 この場合、一般式(E)で表される化合物の末端には、重合触媒及び連鎖移動剤に起因するヒドロキシ基、チオエーテルを有することとなる。この末端残基により、一般式(E)で表される化合物と脂環式構造を有する重合体樹脂との相溶性を調整することができる。 In this case, the terminal of the compound represented by the general formula (E) has a hydroxy group and a thioether derived from the polymerization catalyst and the chain transfer agent. With this terminal residue, the compatibility between the compound represented by the general formula (E) and the polymer resin having an alicyclic structure can be adjusted.
 また、重合温度は通常室温から130℃、好ましくは50~100℃で行われるが、この温度又は重合反応時間を調整することで分子量のコントロールが可能である。 The polymerization temperature is usually room temperature to 130° C., preferably 50 to 100° C. The molecular weight can be controlled by adjusting this temperature or the polymerization reaction time.
 また、一般式(E)で表される化合物のヒドロキシ基価は30~150[mgKOH/g]であることが好ましい。 The hydroxy group value of the compound represented by the general formula (E) is preferably 30 to 150 [mgKOH/g].
 (ヒドロキシ価の測定方法)
 この測定は、JIS K 0070(1992)に準ずる。このヒドロキシ価は、試料1gをアセチル化させたとき、ヒドロキシ基と結合した酢酸を中和するのに必要とする水酸化カリウムのmg数と定義される。具体的には試料Xg(約1g)をフラスコに精秤し、これにアセチル化試薬(無水酢酸20mlにピリジンを加えて400mlにしたもの)20mlを正確に加える。フラスコの口に空気冷却管を装着し、95~100℃のグリセリン浴にて加熱する。
(Method of measuring hydroxy value)
This measurement is based on JIS K 0070 (1992). This hydroxy number is defined as the number of mg of potassium hydroxide required to neutralize acetic acid bound to hydroxy groups when 1 g of sample is acetylated. Specifically, a sample Xg (about 1 g) is precisely weighed in a flask, and 20 ml of an acetylating reagent (prepared by adding pyridine to 20 ml of acetic anhydride to make 400 ml) is accurately added thereto. The flask is equipped with an air cooling tube and heated in a glycerin bath at 95 to 100°C.
 1時間30分後、冷却し、空気冷却管から精製水1mlを加え、無水酢酸を酢酸に分解する。次に電位差滴定装置を用いて0.5mol/L水酸化カリウムエタノール溶液で滴定を行い、得られた滴定曲線の変曲点を終点とする。さらに空試験として、試料を入れないで滴定し、滴定曲線の変曲点を求める。 After 1 hour and 30 minutes, cool and add 1 ml of purified water from the air cooling tube to decompose acetic anhydride into acetic acid. Next, titration is performed with a 0.5 mol/L potassium hydroxide ethanol solution using a potentiometric titrator, and the inflection point of the obtained titration curve is set as the end point. Further, as a blank test, titration is performed without inserting the sample, and the inflection point of the titration curve is determined.
 ヒドロキシ価は、次の式によって算出する。 The hydroxy value is calculated by the following formula.
 ヒドロキシ価={(B-C)×f×28.05/X}+D
(式中、Bは空試験に用いた0.5mol/Lの水酸化カリウムエタノール溶液の量(ml)、Cは滴定に用いた0.5mol/Lの水酸化カリウムエタノール溶液の量(ml)、fは0.5mol/L水酸化カリウムエタノール溶液のファクター、Dは酸価、また、28.05は水酸化カリウムの1mol量56.11の1/2を表す)
 一般式(E)で表される化合物は、環状ポリオレフィン系樹脂中に0.1~30質量%含有させることが必要であり、好ましくは1~25質量%、より好ましくは3~20質量%、特に好ましくは5~15質量%である。
Hydroxyl value={(BC)×f×28.05/X}+D
(In the formula, B is the amount of the 0.5 mol/L potassium hydroxide ethanol solution used in the blank test (ml), and C is the amount of the 0.5 mol/L potassium hydroxide ethanol solution used in the titration (ml). , F is a factor of 0.5 mol/L potassium hydroxide ethanol solution, D is an acid value, and 28.05 is 1/2 of 1 mol amount of potassium hydroxide of 56.11.
The compound represented by the general formula (E) must be contained in the cyclic polyolefin resin in an amount of 0.1 to 30% by mass, preferably 1 to 25% by mass, more preferably 3 to 20% by mass, It is particularly preferably 5 to 15% by mass.
 (アクリル樹脂の製造方法)
 本発明に係るアクリル樹脂を製造する方法としては、例えばキャスト重合、塊状重合、懸濁重合、溶液重合、乳化重合、アニオン重合等の一般に行われている重合方法を用いることができる。中でも、光学用途としては不都合な微小異物の混入を低減することが可能であるため、懸濁剤や乳化剤を用いない塊状重合や溶液重合が好ましい。
(Method for producing acrylic resin)
As a method for producing the acrylic resin according to the present invention, for example, a commonly used polymerization method such as cast polymerization, bulk polymerization, suspension polymerization, solution polymerization, emulsion polymerization, anion polymerization and the like can be used. Among them, bulk polymerization or solution polymerization without using a suspending agent or an emulsifier is preferable because it is possible to reduce the inclusion of minute foreign matter, which is inconvenient for optical applications.
 《溶液重合》
 溶液重合を行う場合には、単量体の混合物をトルエン、エチルベンゼン等の芳香族炭化水素の溶媒に溶解して調製した溶液を用いることができる。塊状重合により重合させる場合には、通常行われるように加熱により生じる遊離ラジカルや電離性放射線照射により重合を開始させることができる。
<Solution polymerization>
When carrying out solution polymerization, a solution prepared by dissolving a mixture of monomers in a solvent of aromatic hydrocarbon such as toluene or ethylbenzene can be used. When the polymerization is carried out by bulk polymerization, the polymerization can be initiated by irradiation of free radicals generated by heating or ionizing radiation, as is usually done.
 重合反応に用いられる開始剤としては、ラジカル重合において用いられる任意の開始剤を使用することができ、例えば、アゾビスイソブチルニトリル等のアゾ化合物;ベンゾイルパーオキサイド、ラウロイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート等の有機過酸化物を用いることができる。 As the initiator used in the polymerization reaction, any initiator used in radical polymerization can be used. For example, azo compounds such as azobisisobutylnitrile; benzoyl peroxide, lauroyl peroxide, t-butyl peroxy. An organic peroxide such as -2-ethylhexanoate can be used.
 特に、90℃以上の高温下で重合を行う場合には、溶液重合が一般的であるので、10時間半減期温度が80℃以上で、かつ用いる有機溶媒に可溶である過酸化物、アゾビス開始剤などが好ましい。具体的には、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、シクロヘキサンパーオキシド、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、1,1-アゾビス(1-シクロヘキサンカルボニトリル)、2-(カルバモイルアゾ)イソブチロニトリル等を挙げることができる。これらの開始剤は、例えば、全体のモノマー100質量%に対して、0.005~5質量%の範囲で用いることが好ましい。 In particular, when the polymerization is carried out at a high temperature of 90° C. or higher, solution polymerization is generally used, so that the 10-hour half-life temperature is 80° C. or higher and a peroxide or azobis which is soluble in the organic solvent used. An initiator and the like are preferable. Specifically, 1,1-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane, cyclohexane peroxide, 2,5-dimethyl-2,5-di(benzoylperoxy)hexane, 1 , 1-azobis(1-cyclohexanecarbonitrile), 2-(carbamoylazo)isobutyronitrile and the like. These initiators are preferably used, for example, in the range of 0.005 to 5% by mass based on 100% by mass of the total monomers.
 重合反応において、必要に応じて用いられる分子量調節剤としては、ラジカル重合において一般に用いられる任意のものが使用でき、例えば、ブチルメルカプタン、オクチルメルカプタン、ドデシルメルカプタン、チオグリコール酸2-エチルヘキシル等のメルカプタン化合物が特に好ましいものとして挙げられる。これらの分子量調節剤は、アクリル樹脂の分子量が、上記の好ましい範囲内に制御されるような濃度範囲で添加する。 In the polymerization reaction, as the molecular weight modifier used as necessary, any of those generally used in radical polymerization can be used, and examples thereof include mercaptan compounds such as butyl mercaptan, octyl mercaptan, dodecyl mercaptan, and 2-ethylhexyl thioglycolate. Are particularly preferred. These molecular weight regulators are added in a concentration range such that the molecular weight of the acrylic resin is controlled within the above preferable range.
 《塊状重合》
 塊状重合は、例えば、単量体成分及び重合開始剤等を反応容器の中に連続的に供給しながら、反応容器内に所定時間滞留させて得られる部分重合体を連続的に抜き出すことにより行われ、高い生産性で共重合体を製造することができる。 
<<Bulk polymerization>>
Bulk polymerization is performed, for example, by continuously supplying a monomer component, a polymerization initiator, and the like into the reaction vessel, and continuously withdrawing a partial polymer obtained by staying in the reaction vessel for a predetermined time. Thus, the copolymer can be produced with high productivity.
 単量体成分を重合する際に用いられる重合開始剤は、特に制限されるものでなく、例えば、アゾビスイソブチロニトリル等のアゾ化合物、1,1-ジ(tert-ブチルパーオキシ)シクロヘキサン、ベンゾイルパーオキシド、p-クロロベンゾイルパーオキシド、ジイソプロピルパーオキシカーボネート、ジ-2-エチルヘキシルパーオキシカーボネート、t-ブチルパーオキシピバレート、t-ブチルパーオキシ(2-エチルヘキサノエート)等の過酸化物など、公知のラジカル重合開始剤を用いることができる。重合開始剤は、1種のみを用いてもよいし、2種以上組み合わせて用いてもよい。 また、その使用量は混合物の総量に対して通常0.01~5質量%である。熱重合における加熱温度は通常40~200℃であり、加熱時間は通常30分~8時間程度である。 The polymerization initiator used for polymerizing the monomer component is not particularly limited, and examples thereof include azo compounds such as azobisisobutyronitrile, 1,1-di(tert-butylperoxy)cyclohexane. , Benzoyl peroxide, p-chlorobenzoyl peroxide, diisopropyl peroxycarbonate, di-2-ethylhexyl peroxycarbonate, t-butylperoxypivalate, t-butylperoxy(2-ethylhexanoate), etc. Known radical polymerization initiators such as oxides can be used. As the polymerization initiator, only one kind may be used, or two or more kinds may be used in combination. Also, the amount used is usually 0.01 to 5 mass% with respect to the total amount of the mixture. The heating temperature in the thermal polymerization is usually 40 to 200° C., and the heating time is usually 30 minutes to 8 hours.
 単量体成分を重合する際には、必要に応じて、連鎖移動剤を用いることができる。連鎖移動剤は特に制限されないが、例えば、n-ブチルメルカプタン、n-オクチルメルカプタン、n-ドデシルメルカプタン、2-エチルヘキシルチオグリコレート等のメルカプタン類などが、好適なものとして挙げられる。連鎖移動剤も、1種のみを用いてもよいし、2種以上組み合わせて用いてもよい。 When polymerizing the monomer component, a chain transfer agent can be used if necessary. The chain transfer agent is not particularly limited, but preferable examples include mercaptans such as n-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, and 2-ethylhexyl thioglycolate. As the chain transfer agent, only one kind may be used, or two or more kinds may be used in combination.
 《懸濁重合》
 懸濁重合の場合、通常の懸濁重合に使用されるものを用いることができ、有機過酸化物、アゾ化合物を挙げることができる。
 また、懸濁安定剤としては通常用いられる公知のものを使用することができ、有機コロイド性高分子物質、無機コロイド性高分子物質、無機微粒子及びこれらと界面活性剤との組み合わせを挙げることができる。
《Suspension polymerization》
In the case of suspension polymerization, those used in ordinary suspension polymerization can be used, and examples thereof include organic peroxides and azo compounds.
In addition, as the suspension stabilizer, a commonly used known one can be used, and examples thereof include an organic colloidal polymer substance, an inorganic colloidal polymer substance, inorganic fine particles, and a combination of these with a surfactant. it can.
 単量体混合物を重合させるための水性媒体としては、水、又は水とアルコール(例えば、メタノール、エタノール)のような水溶性溶媒との混合媒体が挙げられる。水性媒体の使用量は、架橋樹脂粒子の安定化を図るために、通常、単量体混合物100質量部に対して、100~1000質量部である。
 また、水系での乳化粒子の発生を抑えるために、亜硝酸塩類、亜硫酸塩類、ハイドロキノン類、アスコルビン酸類、水溶性ビタミンB類、クエン酸、ポリフェノール類等の水溶性の重合禁止剤を用いてもよい。
Examples of the aqueous medium for polymerizing the monomer mixture include water, or a mixed medium of water and a water-soluble solvent such as alcohol (eg, methanol, ethanol). The amount of the aqueous medium used is usually 100 to 1000 parts by mass with respect to 100 parts by mass of the monomer mixture in order to stabilize the crosslinked resin particles.
Further, in order to suppress the generation of emulsified particles in an aqueous system, a water-soluble polymerization inhibitor such as nitrites, sulfites, hydroquinones, ascorbic acids, water-soluble vitamin Bs, citric acid and polyphenols may be used. Good.
 さらに必要に応じて他の懸濁安定剤を添加してもよい。例えば、リン酸カルシウム、リン酸マグネシウム、リン酸アルミニウム、リン酸亜鉛等のリン酸塩、ピロリン酸カルシウム、ピロリン酸マグネシウム、ピロリン酸アルミニウム、ピロリン酸亜鉛等のピロリン酸塩、炭酸カルシウム、炭酸マグネシウム、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、メタケイ酸カルシウム、硫酸カルシウム、硫酸バリウム等の難水溶性無機化合物、ポリビニルアルコールの分散安定剤等が挙げられる。 Further, other suspension stabilizers may be added if necessary. For example, calcium phosphate, magnesium phosphate, aluminum phosphate, zinc phosphate, and other phosphates, calcium pyrophosphate, magnesium pyrophosphate, aluminum pyrophosphate, zinc pyrophosphate, and other pyrophosphates, calcium carbonate, magnesium carbonate, calcium hydroxide. , A poorly water-soluble inorganic compound such as magnesium hydroxide, aluminum hydroxide, calcium metasilicate, calcium sulfate, and barium sulfate, and a dispersion stabilizer of polyvinyl alcohol.
 また、上記懸濁安定剤と、アニオン性界面活性剤、カチオン性界面活性剤、両性イオン性界面活性剤、ノニオン性界面活性剤等の界面活性剤とを併用することも可能である。 It is also possible to use the above suspension stabilizer in combination with a surfactant such as an anionic surfactant, a cationic surfactant, a zwitterionic surfactant, or a nonionic surfactant.
 アニオン性界面活性剤としては、例えば、オレイン酸ナトリウム、ヒマシ油カリ等の脂肪酸油、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム等のアルキル硫酸エステル塩、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、アルキルスルホン酸塩、アルキルナフタレンスルホン酸塩、アルカンスルホン酸塩、コハクスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンアルキル硫酸エステル塩等が挙げられる。 Examples of the anionic surfactant include fatty acid oils such as sodium oleate and potassium castor oil, alkyl sulfate ester salts such as sodium lauryl sulfate and ammonium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, and alkylsulfonates. Salt, alkyl naphthalene sulfonate, alkane sulfonate, succinate, dialkyl sulfosuccinate, alkyl phosphate ester salt, naphthalene sulfonate formalin condensate, polyoxyethylene alkyl phenyl ether sulfate ester salt, polyoxyethylene alkyl Examples thereof include sulfate ester salts.
 ノニオン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステル、オキシエチレン-オキシプロピレンブロックポリマー等が挙げられる。 Examples of the nonionic surfactant include polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxysorbitan fatty acid ester, polyoxyethylene alkylamine, glycerin fatty acid ester, and oxy. Examples thereof include ethylene-oxypropylene block polymers.
 カチオン性界面活性剤としては、例えば、ラウリルアミンアセテート、ステアリルアミンアセテート等のアルキルアミン塩、ラウリルトリメチルアンモニウムクロライド等の第四級アンモニウム塩等が挙げられる。 Examples of the cationic surfactant include alkylamine salts such as laurylamine acetate and stearylamine acetate, and quaternary ammonium salts such as lauryltrimethylammonium chloride.
 両性イオン界面活性剤としては、ラウリルジメチルアミンオキサイドや、リン酸エステル系又は亜リン酸エステル系界面活性剤が挙げられる。  Examples of zwitterionic surfactants include lauryl dimethylamine oxide, and phosphoric acid ester-based or phosphorous acid ester-based surfactants. ‥
 これら懸濁安定剤や界面活性剤は、単独で又は2種以上を組み合わせて用いてもよいが、得られる粒子の径と重合時の分散安定性を考慮して、懸濁安定剤の選択や使用量を適宜調整して使用される。通常、懸濁安定剤の添加量は、単量体混合物100質量部に対して、0.5~15質量部であり、界面活性剤の添加量は、水性媒体100質量部に対して0.001~10質量部である。 These suspension stabilizers and surfactants may be used alone or in combination of two or more, but in consideration of the diameter of particles to be obtained and the dispersion stability at the time of polymerization, selection of the suspension stabilizer or The amount used is adjusted appropriately before use. Usually, the amount of the suspension stabilizer added is 0.5 to 15 parts by mass with respect to 100 parts by mass of the monomer mixture, and the amount of the surfactant added is 0.1% with respect to 100 parts by mass of the aqueous medium. 001 to 10 parts by mass.
 このようにして調製された水性媒体に単量体混合物を添加して、重合を行う。 -Polymerization is carried out by adding the monomer mixture to the aqueous medium thus prepared.
 単量体混合物の分散方法として、例えば、水性媒体中に単量体混合物を直接添加し、プロペラ翼等の撹拌力によりモノマー滴として水性媒体に分散させる方法、ローターとステーターから構成される高せん断力を利用する分散機であるホモミキサー、又は超音波分散機等を用いて分散させる方法等が挙げられる。
 次いで、単量体混合物が球状滴として分散された水性懸濁液を、加熱することにより重合を開始させる。重合反応中は、水性懸濁液を撹拌するのが好ましく、その撹拌は例えば、球状滴の浮上や重合後の粒子の沈降を防止できる程度に緩く行えばよい。
As a method for dispersing the monomer mixture, for example, a method in which the monomer mixture is directly added to the aqueous medium and dispersed in the aqueous medium as monomer droplets by the stirring force of a propeller blade or the like, high shear composed of a rotor and a stator Examples thereof include a homomixer, which is a disperser that utilizes force, or a method of dispersing using an ultrasonic disperser or the like.
Then, the aqueous suspension in which the monomer mixture is dispersed as spherical drops is heated to initiate polymerization. During the polymerization reaction, it is preferable to stir the aqueous suspension, and the stirring may be performed, for example, gently enough to prevent the floating of spherical droplets and the sedimentation of particles after polymerization.
 重合温度は30~100℃程度にするのが好ましく、さらに好ましくは、40~80℃程度である。そしてこの重合温度を保持する時間としては、0.1~20時間程度が好ましい。 The polymerization temperature is preferably about 30 to 100°C, more preferably about 40 to 80°C. The time for maintaining this polymerization temperature is preferably about 0.1 to 20 hours.
 重合後、粒子を吸引ろ過、遠心脱水、遠心分離、加圧脱水等の方法により含水ケーキとして分離し、さらに、得られた含水ケーキを水洗し、乾燥して目的の粒子を得ることができる。ここで、粒子の平均粒子径の調整は、単量体混合物と水との混合条件、懸濁安定剤や界面活性剤等の添加量及び上記撹拌機の撹拌条件、分散条件を調整することで可能である。 After the polymerization, the particles can be separated as a water-containing cake by a method such as suction filtration, centrifugal dehydration, centrifugal separation, or pressure dehydration, and the obtained water-containing cake can be washed with water and dried to obtain the target particles. Here, the average particle size of the particles is adjusted by adjusting the mixing conditions of the monomer mixture and water, the addition amount of the suspension stabilizer, the surfactant and the like, the stirring conditions of the stirrer, and the dispersion conditions. It is possible.
 (アクリル樹脂中の添加剤)
 本発明に係るアクリル樹脂フィルムの原料となるアクリル樹脂中には各種添加剤を含有してもよい。モノマーの保存性、重合反応の制御、樹脂の保存性を高めるなどの目的で以降に説明する各種添加剤が通常含有されることが好ましい。
(Additives in acrylic resin)
Various additives may be contained in the acrylic resin which is a raw material of the acrylic resin film according to the present invention. It is preferable that various additives described below are usually contained for the purpose of storability of monomers, control of polymerization reaction, and storability of resins.
 《重合開始剤》
 重合開始剤としては、前記した溶液重合、塊状重合及び懸濁重合で説明したとおり、通常使用されるものを用いることができ、過酸化物系重合開始剤又はアゾ系重合開始剤が挙げられる。
 具体的には、過酸化ベンゾイル、過酸化ラウロイル、過酸化オクタノイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、メチルエチルケトンパーオキサイド、ジイソプロピルパーオキシジカーボネート、キュメンハイドロパーオキサイド、シクロヘキサノンパーオキサイド、t-ブチルハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド等の過酸化物系重合開始剤、アソビスバレロニトリル、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,3-ジメチルブチロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,3,3-トリメチルブチロニトリル)、2,2’-アゾビス(2-イソプロピルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル、(2-カルバモイルアゾ)イソブチロニトリル、4,4’-アゾビス(4-シアノバレリン酸)、ジメチル-2,2’-アゾビスイソブチレート等のアゾ系開始剤が挙げられる。
<Polymerization initiator>
As the polymerization initiator, as described in the solution polymerization, bulk polymerization and suspension polymerization described above, those which are usually used can be used, and examples thereof include a peroxide type polymerization initiator and an azo type polymerization initiator.
Specifically, benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, benzoyl orthochloroperoxide, benzoyl orthomethoxyperoxide, methyl ethyl ketone peroxide, diisopropyl peroxydicarbonate, cumene hydroperoxide, cyclohexanone peroxide, t-butyl. Peroxide polymerization initiators such as hydroperoxide and diisopropylbenzene hydroperoxide, asobisvaleronitrile, 2,2′-azobisisobutyronitrile, 2,2′-azobis(2,4-dimethylvaleronitrile) ), 2,2'-azobis(2,3-dimethylbutyronitrile), 2,2'-azobis(2-methylbutyronitrile), 2,2'-azobis(2,3,3-trimethylbutyro) Nitrile), 2,2'-azobis(2-isopropylbutyronitrile), 1,1'-azobis(cyclohexane-1-carbonitrile), 2,2'-azobis(4-methoxy-2,4-dimethylvalero) Examples thereof include azo initiators such as nitrile, (2-carbamoylazo)isobutyronitrile, 4,4′-azobis(4-cyanovaleric acid), and dimethyl-2,2′-azobisisobutyrate.
 この中でも、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、過酸化ベンゾイル、過酸化ラウロイル等が、重合開始剤の分解速度等の点で好ましい。
 重合開始剤は、単量体混合物100質量部に対して、0.01~10質量部用いるのが好ましく、さらに好ましくは0.01~5質量部である。重合開始剤が0.01質量部未満では、重合開始の機能を果たし難く、また、10質量部を超えて用いる場合は、コスト的に不経済であるため好ましくない。
Among these, 2,2'-azobisisobutyronitrile, 2,2'-azobis(2,4-dimethylvaleronitrile), benzoyl peroxide, lauroyl peroxide, etc. are used in view of the decomposition rate of the polymerization initiator. Is preferred.
The polymerization initiator is preferably used in an amount of 0.01 to 10 parts by mass, more preferably 0.01 to 5 parts by mass, based on 100 parts by mass of the monomer mixture. When the amount of the polymerization initiator is less than 0.01 parts by mass, it is difficult to fulfill the function of initiating the polymerization, and when it is used in excess of 10 parts by mass, it is uneconomical in terms of cost, which is not preferable.
 《連鎖移動剤》
 連鎖移動剤としては、例えばn-オクチルメルカプタン、n-ドデシルメルカプタン、tert-ドデシルメルカプタン、1,4-ブタンジチオール、1,6-ヘキサンジチオール、エチレングリコールビスチオプロピオネート、ブタンジオールビスチオグリコレート、ブタンジオールビスチオプロピオネート、ヘキサンジオールビスチオグリコレート、ヘキサンジオールビスチオプロピオネート、トリメチロールプロパントリス-(β-チオプロピオネート)、ペンタエリスリトールテトラキスチオプロピオネート等のアルキルメルカプタン類等が挙げられる。これらのうちn-オクチルメルカプタン、n-ドデシルメルカプタン等の単官能アルキルメルカプタンが好ましい。これら連鎖移動剤は1種単独で又は2種以上を組み合わせて用いることができる。
《Chain transfer agent》
Examples of the chain transfer agent include n-octyl mercaptan, n-dodecyl mercaptan, tert-dodecyl mercaptan, 1,4-butanedithiol, 1,6-hexanedithiol, ethylene glycol bisthiopropionate, butanediol bisthioglycolate. Alkyl mercaptans such as butanediol bisthiopropionate, hexanediol bisthioglycolate, hexanediol bisthiopropionate, trimethylolpropane tris-(β-thiopropionate), pentaerythritol tetrakisthiopropionate Etc. Of these, monofunctional alkyl mercaptans such as n-octyl mercaptan and n-dodecyl mercaptan are preferred. These chain transfer agents may be used alone or in combination of two or more.
 連鎖移動剤の使用量は、単量体混合物100質量部に対して、好ましくは0.1~1質量部の範囲であり、より好ましくは0.15~0.8質量部の範囲であり、さらに好ましくは0.2~0.6質量部の範囲であり、特に好ましくは0.2~0.5質量部の範囲である。また、連鎖移動剤の使用量は、重合開始剤100質量部に対して、好ましくは2500~7000質量部の範囲であり、より好ましくは3500~4500質量部の範囲であり、さらに好ましくは3800~4300質量部の範囲である。 The chain transfer agent is used in an amount of preferably 0.1 to 1 part by mass, more preferably 0.15 to 0.8 part by mass, based on 100 parts by mass of the monomer mixture. The range is more preferably 0.2 to 0.6 parts by mass, and particularly preferably 0.2 to 0.5 parts by mass. The amount of chain transfer agent used is preferably in the range of 2500 to 7000 parts by mass, more preferably 3500 to 4500 parts by mass, and further preferably 3800 to 100 parts by mass of the polymerization initiator. The range is 4300 parts by mass.
 (重量平均分子量(Mw))
 本発明に係るアクリル樹脂の重量平均分子量は、30万~400万の範囲内である。
 前記重量平均分子量は、以下のようにして求めることができる。
 本発明に係るアクリル樹脂の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)を用い、以下の測定条件に従って、ポリスチレン換算により求める。
 測定システム:東ソー社製「GPCシステムHLC-8220」
 展開溶媒:クロロホルム(和光純薬工業製;特級)
 溶媒流量:0.6mL/分
 標準試料:TSK標準ポリスチレン(東ソー製「PS-オリゴマーキット」)
 測定側カラム構成:東ソー社製「TSK-GEL super HZM-M 6.0x150」2本直列接続、東ソー社製「TSK-GEL super HZ-L 4.6x35」1本
 リファレンス側カラム構成:東ソー社製「TSK-GEL SuperH-RC 6.0x150」2本直列接続
 カラム温度:40℃
(Weight average molecular weight (Mw))
The acrylic resin according to the present invention has a weight average molecular weight in the range of 300,000 to 4,000,000.
The weight average molecular weight can be determined as follows.
The weight average molecular weight (Mw) of the acrylic resin according to the present invention is calculated by polystyrene conversion using gel permeation chromatography (GPC) according to the following measurement conditions.
Measuring system: "GPC system HLC-8220" manufactured by Tosoh Corporation
Developing solvent: Chloroform (Wako Pure Chemical Industries; special grade)
Solvent flow rate: 0.6 mL/min Standard sample: TSK standard polystyrene ("PS-Oligomer Kit" manufactured by Tosoh Corporation)
Measurement side column configuration: Tosoh "TSK-GEL super HZM-M 6.0x150" 2 in series connection, Tosoh "TSK-GEL super HZ-L 4.6x35" 1 reference side column configuration: Tosoh "TSK-GEL SuperH-RC 6.0x150" Two serially connected column temperature: 40°C
 (重量平均分子量及び分子量分布の調整方法)
 アクリル樹脂の重量平均分子量は、主に、後述する連鎖移動剤の量を調整することによって調整することができる。また、重合温度や重合反応時間を調整することによっても調整することが可能である。
 分子量分布も同様に、連鎖移動剤の量、重合温度及び重合反応時間によって調整することが可能である。分子量分布を極端に狭くする方法としてはリビングラジカル重合(特許3845109号公報、同4107996号公報に例示。)が知られている。また、分子量分布を広くする方法としては、異なる分子量の樹脂どうしをブレンドすることが簡便である。
 重量平均分子量(Mw)及び分子量分布(Mw/Mn)はゲルパーミエーションクロマトグラフィー(GPC)を用いて測定することができる。
(Method of adjusting weight average molecular weight and molecular weight distribution)
The weight average molecular weight of the acrylic resin can be adjusted mainly by adjusting the amount of a chain transfer agent described later. It can also be adjusted by adjusting the polymerization temperature and the polymerization reaction time.
Similarly, the molecular weight distribution can be adjusted by the amount of the chain transfer agent, the polymerization temperature and the polymerization reaction time. Living radical polymerization (illustrated in Japanese Patent Nos. 3845109 and 4107996) is known as a method for extremely narrowing the molecular weight distribution. As a method of broadening the molecular weight distribution, it is convenient to blend resins having different molecular weights.
The weight average molecular weight (Mw) and the molecular weight distribution (Mw/Mn) can be measured using gel permeation chromatography (GPC).
 (残存モノマー)
 アクリル樹脂の合成段階において、未反応のモノマー成分が残存モノマーとしてアクリル樹脂中に含まれる。残存モノマー量を低減する方法としては、反応効率を上げて未反応モノマーを低減することが基本であるが、後から残存モノマーを除去する方法もある。
 一般的には、高温の押出機にて押出する途中でベントによる脱揮をすることが実施されるが、これに限らずオーブン中で加熱する方法、適当な溶媒を選択してアクリル樹脂を洗浄・乾燥する方法などが考えられる。
 アクリル樹脂中の残存モノマーの量としては0.01~1質量%の範囲が好ましく、0.01~0.1質量%の範囲がさらに好ましい。
(Residual monomer)
In the acrylic resin synthesis stage, unreacted monomer components are contained in the acrylic resin as residual monomers. As a method of reducing the amount of residual monomer, it is basically necessary to increase the reaction efficiency to reduce unreacted monomer, but there is also a method of removing the residual monomer later.
In general, venting is used for devolatilization during extrusion with a high-temperature extruder, but this is not the only option, but a method of heating in an oven, and selecting an appropriate solvent to wash the acrylic resin・Methods such as drying are possible.
The amount of residual monomer in the acrylic resin is preferably in the range of 0.01 to 1% by mass, more preferably 0.01 to 0.1% by mass.
 (ガラス転移温度)
 本発明に係るアクリル樹脂のTg(ガラス転移温度)は、120~180℃の範囲内であることを特徴とする。
 昨今の光学フィルムの高耐久化要請により、100℃を超える温度(例えば105℃)での耐久性が試験されるようになっており、このため本発明に係るアクリル樹脂のTgは120℃以上であることが必要である。なお、代表的なアクリル樹脂であるポリメタクリル酸メチルのTgは105~115℃であり、本発明には適さない。
(Glass-transition temperature)
The acrylic resin according to the present invention is characterized by having a Tg (glass transition temperature) in the range of 120 to 180°C.
Due to the recent demand for high durability of optical films, durability at a temperature exceeding 100° C. (for example, 105° C.) has been tested. Therefore, the Tg of the acrylic resin according to the present invention is 120° C. or more. It is necessary to be. The Tg of poly(methyl methacrylate), which is a typical acrylic resin, is 105 to 115° C., which is not suitable for the present invention.
 (ガラス転移温度の調製方法)
 従来からアクリル樹脂のTgを挙げるための取り組みがなされており、その具体例を以下に示す。その多くは、ポリマー主鎖の自由回転を規制するために、主鎖に部分的に環状構造を導入したものである。
(Method for adjusting glass transition temperature)
There have been efforts to increase the Tg of acrylic resins, and specific examples are shown below. Most of them are those in which a cyclic structure is partially introduced into the main chain in order to regulate free rotation of the polymer main chain.
 (公知の高Tgアクリル樹脂)
 《ラクトン環系》
 ラクトン環構造が重合体の分子鎖中(重合体の主骨格中は主鎖中ともいう。)に形成されることにより、共重合体であるアクリル樹脂に高い耐熱性が付与され、かつ、ガラス転移温度(Tg)も高くなるため好ましい。また、耐熱性向上及びフィルム製造時の泡やシルバーストリーク抑制の観点から、ラクトン環構造を導く環化縮合反応の反応率は十分に高いことが好ましい。
(Known high Tg acrylic resin)
<<Lactone ring system>>
By forming the lactone ring structure in the molecular chain of the polymer (the main skeleton of the polymer is also referred to as the main chain), high heat resistance is imparted to the acrylic resin as the copolymer, and the glass The transition temperature (Tg) is also high, which is preferable. From the viewpoint of improving heat resistance and suppressing bubbles and silver streaks during film production, it is preferable that the reaction rate of the cyclization condensation reaction leading to the lactone ring structure is sufficiently high.
 本発明においてアクリル樹脂との共重合に用いられるラクトン環単位としては、特に制限はないが、特開2007-297615号、特開2007-63541号、特開2007-70607号、特開2007-100044号、特開2007-254726号、特開2007-254727号、特開2007-261265号、特開2007-293272号、特開2007-297619号、特開2007-316366号、特開2008-9378号、特開2008-76764号等の各公報に記載のものを挙げることができる。なお、これらは本発明を限定するものではなく、これらは単独で又は二種以上組み合わせて使用できる。 The lactone ring unit used for the copolymerization with the acrylic resin in the present invention is not particularly limited, but is disclosed in JP2007-297615A, JP2007-63541A, JP2007-70607A, and JP2007-100044A. No. 2007-254726, No. 2007-254727, No. 2007-261265, No. 2007-293272, No. 2007-297619, No. 2007-316366, No. 2008-9378. , JP-A-2008-76764 and the like. These do not limit the present invention, and these may be used alone or in combination of two or more.
 主鎖中のラクトン環単位の構造は、4~8員環であることが好ましく、構造の安定性から5~6員環であることがより好ましく、6員環であることが特に好ましい。主鎖中のラクトン環単位の構造が6員環である場合、下記一般式(2)で表される構造や特開2004-168882号公報で表される構造などが挙げられるが、主鎖にラクトン環単位の構造を導入する前の重合体を合成する上において重合収率が高い点や、ラクトン環構造の含有割合の高い重合体を高い重合収率で得易い点や、メタクリル酸メチルなどの(メタ)アクリル酸エステルとの共重合性がよい点で、下記一般式(2)で表される構造であることが特に好ましい。 The structure of the lactone ring unit in the main chain is preferably a 4- to 8-membered ring, more preferably a 5- to 6-membered ring, and particularly preferably a 6-membered ring in view of structural stability. When the structure of the lactone ring unit in the main chain is a 6-membered ring, the structure represented by the following general formula (2) and the structure represented by JP-A-2004-168882 may be mentioned. A high polymerization yield in synthesizing the polymer before introducing the structure of the lactone ring unit, a polymer having a high content of the lactone ring structure in a high polymerization yield, a methyl methacrylate, etc. From the viewpoint of good copolymerizability with the (meth)acrylic acid ester of, the structure represented by the following general formula (2) is particularly preferable.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 前記一般式(2)中、R11~R13は、それぞれ独立に、水素原子又は炭素数1~20の有機残基を表す。 In the general formula (2), R 11 to R 13 each independently represent a hydrogen atom or an organic residue having 1 to 20 carbon atoms.
 前記有機残基は、炭素数が1~20の範囲内であれば特には限定されないが、例えば、直鎖又は分岐状のアルキル基、直鎖又は分岐状のアルキレン基、アリール基、-OAc基、-CN基などが挙げられる。また、有機残基は酸素原子を含んでいてもよい。
 前記R11~R13の炭素数は1~10であることが好ましく、1~5であることがより好ましい。
The organic residue is not particularly limited as long as it has 1 to 20 carbon atoms, and examples thereof include a linear or branched alkyl group, a linear or branched alkylene group, an aryl group, and an —OAc group. , --CN group and the like. Moreover, the organic residue may contain an oxygen atom.
The carbon number of R 11 to R 13 is preferably 1 to 10, and more preferably 1 to 5.
 ラクトン環単位含有アクリル樹脂の製造方法については、特に限定はされないが、好ましくは、重合工程によって分子鎖中にヒドロキシ基とエステル基とを有する重合体を得た後に、得られた重合体を加熱処理することによりラクトン環構造を重合体に導入するラクトン環化縮合工程を行うことによってラクトン環含有重合体を得ることができる。 The method for producing the lactone ring unit-containing acrylic resin is not particularly limited, but preferably, after the polymer having a hydroxy group and an ester group in the molecular chain is obtained by the polymerization step, the obtained polymer is heated. A lactone ring-containing polymer can be obtained by performing a lactone cyclization condensation step of introducing a lactone ring structure into the polymer by treatment.
 《無水マレイン酸系》
 無水マレイン酸構造が重合体の分子鎖中(重合体の主骨格中)に形成されることにより、共重合体であるアクリル樹脂に高い耐熱性が付与され、かつ、ガラス転移温度(Tg)も高くなるため好ましい。
<Maleic anhydride type>
By forming the maleic anhydride structure in the molecular chain of the polymer (in the main skeleton of the polymer), high heat resistance is imparted to the acrylic resin as the copolymer, and the glass transition temperature (Tg) is also increased. It is preferable because it becomes high.
 前記アクリル樹脂との共重合に用いられる前記無水マレイン酸単位としては、特に制限はないが、特開2007-113109号、特開2003-292714号、特開平6-279546号、特開2007-51233号、特開2001-270905号、特開2002-167694号、特開2000-302988号、特開2007-113110号、特開2007-11565号の各公報に記載のものや、マレイン酸変性樹脂を挙げることができる。なお、これらは本発明を限定するものではない。
 この中でも、特開2007-113109号公報に記載の樹脂及びマレイン酸変性MAS樹脂(メタクリル酸メチル-アクリロニトリル-スチレン共重合体、例えば旭化成ケミカルズ(株)製デルペット980N)を好ましく使用することができる。なお、これらは本発明を限定するものではなく、これらは単独で又は二種以上組み合わせて使用できる。また、無水マレイン酸単位を含むアクリル樹脂を製造する方法は特に制限がなく公知の方法を用いることができる。
The maleic anhydride unit used for the copolymerization with the acrylic resin is not particularly limited, but is disclosed in JP-A-2007-113109, JP-A-2003-292714, JP-A-6-279546, and JP-A-2007-51233. JP-A-2001-270905, JP-A-2002-167694, JP-A-2000-302988, JP-A-2007-113110 and JP-A-2007-11565, and maleic acid-modified resins. Can be mentioned. However, these do not limit the present invention.
Among these, the resins described in JP-A 2007-113109 and maleic acid-modified MAS resins (methyl methacrylate-acrylonitrile-styrene copolymer, for example, Delpet 980N manufactured by Asahi Kasei Chemicals Corporation) can be preferably used. .. These do not limit the present invention, and these may be used alone or in combination of two or more. The method for producing an acrylic resin containing a maleic anhydride unit is not particularly limited, and a known method can be used.
 前記マレイン酸変性樹脂としては、得られるポリマー中に無水マレイン酸単位が含まれるものであれば制限はなく、例えば、(無水)マレイン酸変性MS樹脂、(無水)マレイン酸変性MAS樹脂(メタクリル酸メチル-アクリロニトリル-スチレン共重合体)、(無水)マレイン酸変性MBS樹脂、(無水)マレイン酸変性AS樹脂、(無水)マレイン酸変性AA樹脂、(無水)マレイン酸変性ABS樹脂、エチレン-無水マレイン酸共重合体、エチレン-(メタ)アクリル酸-無水マレイン酸共重合体、無水マレイン酸グラフトポリプロピレンなどが挙げられる。
 前記無水マレイン酸単位は、下記一般式(3)で表される構造である。
The maleic acid-modified resin is not limited as long as the obtained polymer contains maleic anhydride units, and examples thereof include (anhydrous) maleic acid-modified MS resin and (anhydrous) maleic acid-modified MAS resin (methacrylic acid). (Methyl-acrylonitrile-styrene copolymer), (anhydrous) maleic acid modified MBS resin, (anhydrous) maleic acid modified AS resin, (anhydrous) maleic acid modified AA resin, (anhydrous) maleic acid modified ABS resin, ethylene-maleic anhydride Examples thereof include acid copolymers, ethylene-(meth)acrylic acid-maleic anhydride copolymers, and maleic anhydride graft polypropylene.
The maleic anhydride unit has a structure represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 前記一般式(3)中、R21及びR22は、それぞれ独立に、水素原子又は炭素数1~20の有機残基を表す。
 前記有機残基は、炭素数が1~20の範囲内であれば特には限定されないが、例えば、直鎖又は分岐状のアルキル基、直鎖又は分岐状のアルキレン基、アリール基、-OAc基、-CN基などが挙げられる。また、有機残基は酸素原子を含んでいてもよい。   
 前記R21及びR22の炭素数は1~10であることが好ましく、1~5であることがより好ましい。
In the general formula (3), R 21 and R 22 each independently represent a hydrogen atom or an organic residue having 1 to 20 carbon atoms.
The organic residue is not particularly limited as long as it has 1 to 20 carbon atoms, and examples thereof include a linear or branched alkyl group, a linear or branched alkylene group, an aryl group, and an —OAc group. , --CN group and the like. Moreover, the organic residue may contain an oxygen atom.
The carbon number of R 21 and R 22 is preferably 1-10, more preferably 1-5.
 前記R21及びR22がそれぞれ水素原子を表す場合は、固有複屈折の調整の観点から、さらにその他の共重合成分を含むことも好ましい。このような3元系以上の耐熱性アクリル樹脂として、例えば、メタクリル酸メチル-無水マレイン酸-スチレン共重合体を好ましく用いることができる。 When R 21 and R 22 each represent a hydrogen atom, it is also preferable to further contain other copolymerization components from the viewpoint of adjusting the intrinsic birefringence. As such a ternary or higher heat-resistant acrylic resin, for example, a methyl methacrylate-maleic anhydride-styrene copolymer can be preferably used.
 《無水グルタル酸系》
 グルタル酸無水物構造が重合体の分子鎖中(重合体の主骨格中)に形成されることにより、共重合体であるアクリル樹脂に高い耐熱性が付与され、かつ、ガラス転移温度(Tg)も高くなるため好ましい。
  本発明においてアクリル樹脂との共重合に用いられる前記無水マレイン酸単位としては、特に制限はないが、特開2006-241263号、特開2004-70290号、特開2004-70296号、特開2004-126546号、特開2004-163924号、特開2004-291302号、特開2004-292812号、特開2005-314534号、特開2005-326613号、特開2005-331728号、特開2006-131898号、特開2006-134872号、特開2006-206881号、特開2006-241197号、特開2006-283013号、特開2007-118266号、特開2007-176982号、特開2007-178504号、特開2007-197703号、特開2008-74918号、WO2005/105918等の各公報に記載のものを使用できる。
 この中で、より好ましいのが特開2008-74918号公報に記載のものである。なお、これらは本発明を限定するものではなく、これらは単独で又は二種以上組み合わせて使用できる。
<Glutaric anhydride type>
By forming a glutaric anhydride structure in the polymer molecular chain (in the main skeleton of the polymer), high heat resistance is imparted to the acrylic resin that is a copolymer, and the glass transition temperature (Tg) Is also high, which is preferable.
The maleic anhydride unit used for copolymerization with the acrylic resin in the present invention is not particularly limited, but is disclosed in JP-A-2006-241263, JP-A-2004-70290, JP-A-2004-70296, and JP-A-2004. -126546, JP2004-163924, JP2004-291302, JP2004-292812, JP2005-314534, JP2005-326613, JP2005-331728, JP2006- 131898, JP-A 2006-134872, JP-A 2006-206881, JP-A 2006-241197, JP-A 2006-283013, JP-A 2007-118266, JP-A 2007-176982, and JP-A 2007-178504. JP-A-2007-197703, JP-A-2008-74918, WO2005/105918 and the like can be used.
Among these, more preferable is that described in JP-A-2008-74918. These do not limit the present invention, and these may be used alone or in combination of two or more.
 前記グルタル酸無水物単位は、下記一般式(4)で表される構造である。 The glutaric anhydride unit has a structure represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 前記一般式(4)中、R31及びR32は、同一又は相異なる水素原子又は炭素数1~5のアルキル基を表す。
 前記R31及びR32の炭素数は1~10であることが好ましく、1~5であることがより好ましい。
In the general formula (4), R 31 and R 32 represent the same or different hydrogen atoms or alkyl groups having 1 to 5 carbon atoms.
The carbon number of R 31 and R 32 is preferably 1-10, and more preferably 1-5.
 このようなグルタル酸無水物単位を含むアクリル樹脂は、グルタル酸無水物単位を与える不飽和カルボン酸単量体と不飽和カルボン酸アルキルエステル単量体とを共重合体とした後、該共重合体を適当な触媒の存在下あるいは非存在下で加熱し、脱アルコール及び/又は脱水による分子内環化反応を行わせることにより製造することができる。 Such an acrylic resin containing a glutaric anhydride unit is prepared by forming an unsaturated carboxylic acid monomer giving a glutaric anhydride unit and an unsaturated carboxylic acid alkyl ester monomer into a copolymer, It can be produced by heating the combined product in the presence or absence of a suitable catalyst to carry out an intramolecular cyclization reaction by dealcoholation and/or dehydration.
 《グルタルイミド系》
 環構造としてグルタルイミドを有するアクリル系樹脂は、下記一般式(1a)で表されるグルタルイミド単位を含有する樹脂である。
<Glutarimide type>
The acrylic resin having glutarimide as a ring structure is a resin containing a glutarimide unit represented by the following general formula (1a).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 (ここで、R及びRはそれぞれ独立に、水素又は炭素数1~8のアルキル基を示し、Rは炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基又は炭素数6~10のアリール基を示す。) (Here, R 1 and R 2 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and R 3 is an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or a carbon atom. (Indicates an aryl group of the numbers 6 to 10.)
 グルタルイミドを有するアクリル系樹脂の製造方法は特に制限されず、公知の方法を適用可能である。具体的には、ポリメタクリル酸メチルやメタクリル酸メチル-スチレン共重合体などを原料として使用し、イミド化剤と処理するイミド化工程、さらに必要に応じてエステル化剤と処理するエステル化工程を行い、グルタルイミドを有するアクリル系樹脂を製造することができる。 The method for producing the acrylic resin having glutarimide is not particularly limited, and known methods can be applied. Specifically, using a polymethylmethacrylate or a methylmethacrylate-styrene copolymer as a raw material, an imidation step of treating with an imidizing agent, and an esterification step of treating with an esterifying agent as necessary Then, an acrylic resin having glutarimide can be manufactured.
 イミド化剤は、前記一般式(1a)で表されるグルタルイミドを生成できるものであれば特に制限されず、WO2005/054311記載の化合物等が挙げられる。これらのイミド化剤のうち、コスト、物性の両面からメチルアミン、アンモニア、シクロヘキシルアミン、アニリンを用いることが好ましく、メチルアミンを用いることが特に好ましい。 The imidizing agent is not particularly limited as long as it can form the glutarimide represented by the general formula (1a), and examples thereof include the compounds described in WO2005/054311. Of these imidizing agents, methylamine, ammonia, cyclohexylamine, and aniline are preferably used from the viewpoints of cost and physical properties, and methylamine is particularly preferably used.
 常温にてガス状のメチルアミンなどは、メタノールなどのアルコール類に溶解させた状態で使用してもよい。
 このイミド化工程において、上記イミド化剤の添加割合を調整することにより、得られるアクリル系樹脂におけるグルタルイミド単位及び(メタ)アクリル酸エステル単位の割合を調整することができる。
Methylamine, which is gaseous at room temperature, may be dissolved in alcohols such as methanol before use.
In this imidization step, the proportion of the glutarimide unit and the (meth)acrylic acid ester unit in the resulting acrylic resin can be adjusted by adjusting the addition ratio of the imidizing agent.
 イミド化工程の具体例としては、例えば、特開2008-273140号公報、特開2008-274187号公報記載の方法など公知の方法を挙げることができる。 Specific examples of the imidization process include known methods such as those described in JP 2008-273140 A and JP 2008-274187 A.
 《マレイミド系》
 マレイミド系構造が重合体の分子鎖中(重合体の主骨格中)に形成されることにより、共重合体であるアクリル樹脂に高い耐熱性が付与され、かつ、ガラス転移温度(Tg)も高くなるため好ましい。マレイミド系構造単位としては、下記一般式(2a)で示される単量体が好適に用いられる。
<Maleimide type>
Since the maleimide structure is formed in the polymer molecular chain (in the main skeleton of the polymer), high heat resistance is imparted to the acrylic resin as the copolymer, and the glass transition temperature (Tg) is also high. Therefore, it is preferable. As the maleimide-based structural unit, a monomer represented by the following general formula (2a) is preferably used.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 前記一般式(2a)中のRは、水素原子、炭素数が1~12のアルキル基、炭素数が1~12のアルコキシ基、炭素数が6~12のアリール基からなる群より選択されるいずれかを表し、炭素原子上に置換基を有していてもよい。 R 3 in the general formula (2a) is selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, and an aryl group having 6 to 12 carbon atoms. And may have a substituent on the carbon atom.
 マレイミド系構造単位を形成するための単量体としては、特に限定されるものではないが、例えば、マレイミド、N-メチルマレイミド、N-エチルマレイミド、N-シクロヘキシルマレイミド;N-フェニルマレイミド、N-メチルフェニルマレイミド、N-エチルフェニルマレイミド、N-ブチルフェニルマレイミド、N-ジメチルフェニルマレイミド、N-ヒドロキシフェニルマレイミド、N-メトキシフェニルマレイミド、N-(o-クロロフェニル)マレイミド、N-(m-クロロフェニル)マレイミド、N-(p-クロロフェニル)マレイミド等のN-アリール基置換マレイミドが挙げられる。 The monomer for forming the maleimide-based structural unit is not particularly limited, and examples thereof include maleimide, N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide; N-phenylmaleimide, N- Methylphenylmaleimide, N-ethylphenylmaleimide, N-butylphenylmaleimide, N-dimethylphenylmaleimide, N-hydroxyphenylmaleimide, N-methoxyphenylmaleimide, N-(o-chlorophenyl)maleimide, N-(m-chlorophenyl) Examples thereof include N-aryl group-substituted maleimides such as maleimide and N-(p-chlorophenyl)maleimide.
 耐熱性付与、耐湿熱性の観点から、好ましくは、N-シクロヘキシルマレイミド、N-フェニルマレイミド、N-メチルフェニルマレイミド、N-(o-クロロフェニル)マレイミド、N-(m-クロロフェニル)マレイミド、N-(p-クロロフェニル)マレイミが挙げられ、入手のしやすさ、耐熱性付与の観点から、より好ましくはN-シクロヘキシルマレイミド、N-フェニルマレイミドが挙げられ、さらに好ましくはN-フェニルマレイミドである。 From the viewpoint of imparting heat resistance and resistance to moist heat, preferably N-cyclohexylmaleimide, N-phenylmaleimide, N-methylphenylmaleimide, N-(o-chlorophenyl)maleimide, N-(m-chlorophenyl)maleimide, N-( p-chlorophenyl)maleimi is preferred, and N-cyclohexylmaleimide and N-phenylmaleimide are more preferred, and N-phenylmaleimide is more preferred, from the viewpoints of easy availability and heat resistance.
 《スチレン共重合体の水素化物》
 スチレン共重合体の水素化物が、重合体の分子鎖中(重合体の主骨格中)に形成されることにより、アクリル樹脂に高い耐熱性が付与され、かつ、ガラス転移温度(Tg)も高くなるため好ましい。
 本発明に係るスチレン共重合体の水素化物は、(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーを重合して熱可塑性樹脂(B0)を得た後に、該熱可塑性樹脂(B0)における芳香族ビニルモノマー由来の構成単位中の芳香族二重結合の70%以上を水素化して得られる。
<<Styrene copolymer hydride>>
By forming the hydride of the styrene copolymer in the molecular chain of the polymer (in the main skeleton of the polymer), high heat resistance is imparted to the acrylic resin and the glass transition temperature (Tg) is also high. Therefore, it is preferable.
The hydride of the styrene copolymer according to the present invention is obtained by polymerizing a (meth)acrylic acid ester monomer and an aromatic vinyl monomer to obtain a thermoplastic resin (B0), and then the aromatic resin in the thermoplastic resin (B0). It is obtained by hydrogenating 70% or more of aromatic double bonds in the constitutional unit derived from a vinyl monomer.
 上記水素化反応に用いられる溶媒は、例えば、シクロヘキサン、メチルシクロヘキサンなどの炭化水素系溶媒、酢酸エチル、イソ酪酸メチルなどのエステル系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒、メタノール、イソプロパノールなどのアルコール系溶媒などを挙げることができる。 Examples of the solvent used in the hydrogenation reaction include hydrocarbon solvents such as cyclohexane and methylcyclohexane, ester solvents such as ethyl acetate and methyl isobutyrate, ketone solvents such as acetone and methyl ethyl ketone, and ethers such as tetrahydrofuran and dioxane. Examples include system solvents, alcohol solvents such as methanol and isopropanol, and the like.
 水素化の方法は特に限定されず、公知の方法を用いることができる。例えば、水素圧力3~30MPa、反応温度60~250℃でバッチ式又は連続流通式で行うことができる。温度を60℃以上とすることにより反応時間がかかり過ぎることがなく、また250℃以下とすることにより分子鎖の切断やエステル部位の水素化を起こすことが少ない。 The method of hydrogenation is not particularly limited, and a known method can be used. For example, the hydrogen pressure may be 3 to 30 MPa, the reaction temperature may be 60 to 250° C., and the batch type or continuous flow type may be used. When the temperature is 60° C. or higher, the reaction time does not take too long, and when the temperature is 250° C. or lower, the molecular chain is not cleaved and the ester moiety is less hydrogenated.
 水素化反応に用いられる触媒としては、例えば、ニッケル、パラジウム、白金、コバルト、ルテニウム、ロジウムなどの金属又はそれら金属の酸化物又は塩又は錯体化合物を、カーボン、アルミナ、シリカ、シリカ・アルミナ、珪藻土などの多孔性担体に担持した固体触媒などが挙げられる。 Examples of the catalyst used in the hydrogenation reaction include metals such as nickel, palladium, platinum, cobalt, ruthenium, and rhodium, or oxides or salts or complex compounds of these metals, carbon, alumina, silica, silica-alumina, and diatomaceous earth. And the like, such as a solid catalyst supported on a porous carrier.
 スチレン共重合体の水素化物は、前記熱可塑性樹脂(B0)において、芳香族ビニルモノマー由来の構成単位中の芳香族二重結合の70%以上を水素化して得られたものである。すなわち、芳香族ビニルモノマー由来の構成単位中に残存する芳香族二重結合の割合は30%以下であり、好ましくは10%未満の範囲であり、より好ましくは5%未満の範囲である。 The styrene copolymer hydride is obtained by hydrogenating 70% or more of the aromatic double bonds in the structural unit derived from the aromatic vinyl monomer in the thermoplastic resin (B0). That is, the proportion of aromatic double bonds remaining in the constitutional unit derived from the aromatic vinyl monomer is 30% or less, preferably less than 10%, more preferably less than 5%.
 (高次構造)
 《立体規則性》
 本発明に係るアクリル樹脂の立体規則性については任意のものが選択可能である。
 特開2017-48344に説明があるとおり、ポリマー分子中の構造単位の連鎖(2連子、diad)において立体配置が同じものをメソ(meso)、逆のものをラセモ(racemo)と称し、それぞれm、rと表記する。連続する3つの構造単位の連鎖(3連子、triad)が有する2つの連鎖(2連子、diad)が、ともにラセモ(rrと表記する)である割合が、三連子表示のシンジオタクティシティ(rr)(以下、単に「シンジオタクティシティ(rr)」と称する。)である。
 本発明では三連子表示のシンジオタクティシティ(rr)が、53~57%、好ましくは54~56%であるアクリル樹脂を選択してもよい。
 特開2002-145914に開示される不飽和カルボン酸及びその誘導体の重合体をラジカル重合により製造する方法であって、得られる重合体の立体規則性を効果的に制御できる安価な方法も好適に実施できる。
(Higher-order structure)
<Stereoregularity>
Any stereoregularity of the acrylic resin according to the present invention can be selected.
As described in JP-A-2017-48344, in the chain (diad, diad) of structural units in a polymer molecule, those having the same configuration are referred to as meso, and the opposite ones are referred to as racemo. Notated as m and r. The ratio of the two chains (triples, diad) of the chain of three consecutive structural units (triples, triad) being both racemo (denoted as rr) is syndiotactic in triplets. It is a city (rr) (hereinafter, simply referred to as “syndiotacticity (rr)”).
In the present invention, an acrylic resin having a triplet syndiotacticity (rr) of 53 to 57%, preferably 54 to 56% may be selected.
A method for producing a polymer of an unsaturated carboxylic acid or a derivative thereof disclosed in JP-A-2002-145914 by radical polymerization, which is an inexpensive method capable of effectively controlling the stereoregularity of the obtained polymer is also preferable. Can be implemented.
 《ブロック共重合体》
 本発明に係るアクリル樹脂として、特開2018-24794号公報等に開示されるブロック共重合体も好ましく選択される。ブロックの構成としては、耐熱性を高める比較的高Tgのブロックと、柔軟性を高める比較的低Tgのブロックとからなる構成が好ましい。また、ブロック共重合体は本発明に係るアクリル樹脂全部ではなく、樹脂ブレンドされた一部を構成することもできる。
《Block copolymer》
As the acrylic resin according to the present invention, a block copolymer disclosed in JP-A-2018-24794 is also preferably selected. As a block structure, a block having a relatively high Tg for improving heat resistance and a block having a relatively low Tg for improving flexibility are preferable. Further, the block copolymer may form not only the entire acrylic resin according to the present invention but a resin-blended part thereof.
 ブロック共重合体の製造方法としては、特に限定されず、公知の手法に準じた方法を採用することができる。例えば、各ブロックを構成するモノマーをリビング重合する方法が一般に使用される。このようなリビング重合の手法としては、例えば、有機アルカリ金属化合物を重合開始剤としアルカリ金属又はアルカリ土類金属塩などの鉱酸塩の存在下でアニオン重合する方法(特公平7-25859号公報参照。)、有機アルカリ金属化合物を重合開始剤とし有機アルミニウム化合物の存在下でアニオン重合する方法(特開平11-335432号公報参照。)、有機希土類金属錯体を重合開始剤として重合する方法(特開平6-93060号公報参照。)、α-ハロゲン化エステル化合物を開始剤として銅化合物の存在下ラジカル重合する方法(マクロモレキュラケミカルフィジックス(Macromol. Chem. Phys.)201巻,1108~1114頁(2000年)参照。)などが挙げられる。
 また、多価ラジカル重合開始剤や多価ラジカル連鎖移動剤を用いて、各ブロックを構成するモノマーを重合させ、本発明に係るアクリル系ブロック共重合体を含有する混合物として製造する方法なども挙げられる。これらの方法中、特に、アクリル系ブロック共重合体が高純度で得られ、また分子量や組成比の制御が容易であり、かつ経済的であることから、有機アルカリ金属化合物を重合開始剤とし有機アルミニウム化合物の存在下でアニオン重合する方法が推奨される。
The method for producing the block copolymer is not particularly limited, and a method according to a known method can be adopted. For example, a method of subjecting the monomers constituting each block to living polymerization is generally used. As such a living polymerization technique, for example, a method of anionic polymerization using an organic alkali metal compound as a polymerization initiator in the presence of a mineral acid salt such as an alkali metal or alkaline earth metal salt (Japanese Patent Publication No. 7-25859). A), a method of anionic polymerization using an organic alkali metal compound as a polymerization initiator in the presence of an organic aluminum compound (see JP-A No. 11-335432), and a method of polymerizing an organic rare earth metal complex as a polymerization initiator (special Kaihei 6-93060), a method of radical polymerization in the presence of a copper compound using an α-halogenated ester compound as an initiator (Macromol. Chem. Phys.) 201, 1108 to 1114. (2000).) and the like.
Further, using a polyvalent radical polymerization initiator or a polyvalent radical chain transfer agent, a method of polymerizing the monomers constituting each block to produce a mixture containing the acrylic block copolymer according to the present invention, etc. To be Among these methods, in particular, an acrylic block copolymer can be obtained with high purity, the molecular weight and composition ratio can be easily controlled, and it is economical. A method of anionic polymerization in the presence of an aluminum compound is recommended.
 《分岐構造》
 本発明に係るアクリル樹脂として、分岐構造をもつポリマーを選択可能である。分岐構造とは、ポリマー主鎖以外に側鎖にも繰り返し構造単位を持つものである。分岐構造を持つポリマーは、ポリマー鎖どうしの絡み合いが増すため物性向上のために好ましく選択される。
 ポリマーに分岐構造を導入する手段としては、側鎖構造に対応するマクロモノマーを用いることが一般的である。
《Branching structure》
A polymer having a branched structure can be selected as the acrylic resin according to the present invention. The branched structure has a repeating structural unit in a side chain in addition to the polymer main chain. A polymer having a branched structure is preferably selected for improving the physical properties because the entanglement of polymer chains increases.
As a means for introducing a branched structure into a polymer, it is general to use a macromonomer corresponding to a side chain structure.
 マクロモノマーとしては、例えば、メタクリル酸メチル重合体の末端にメタクリロイルオキシ基が付加した化合物などが挙げられる。
 このようなマクロモノマーは、例えば、重合性官能基をプレポリマーの末端に結合させる方法(特開昭60-133007号公報参照。)などの方法により調製することができる。また、マクロモノマーとして、市販されているものを用いることもできる。
Examples of the macromonomer include a compound in which a methacryloyloxy group is added to the end of a methyl methacrylate polymer.
Such a macromonomer can be prepared by, for example, a method of bonding a polymerizable functional group to the end of the prepolymer (see JP-A-60-133007). Further, as the macromonomer, a commercially available product can also be used.
 《架橋構造》
 本発明に係るアクリル樹脂は、架橋構造が導入されてもよい。架橋方法の一つとして、アクリル樹脂の重合時に多官能モノマーを使用することが挙げられる。もう一つの方法として、アクリル樹脂のポリマー側鎖に反応性基を組み込み、架橋剤によって、又は自己架橋によって反応性基どうしを架橋することが挙げられる。
 架橋構造の導入により、アクリル樹脂の耐熱性や力学特性を向上させることが可能である。
<<Crosslinked structure>>
A crosslinked structure may be introduced into the acrylic resin according to the present invention. One of the cross-linking methods is to use a polyfunctional monomer during the polymerization of the acrylic resin. Another method is to incorporate a reactive group into the polymer side chain of an acrylic resin and crosslink the reactive groups with a crosslinking agent or by self-crosslinking.
By introducing a crosslinked structure, it is possible to improve the heat resistance and mechanical properties of the acrylic resin.
 架橋性モノマーとしては、多官能アクリル系モノマー、多官能アリル系モノマー、及びこれらの混合モノマー等が挙げられる。
 さらに具体例を挙げると、例えば、多官能アクリル系モノマーとしては、エチレンオキシド変性ビスフェノールAジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、カプロラクトン変性ジペンタエリスリトールヘキサアクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリアクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、トリス(メタクリロキシエチル)イソシアヌレート及びこれらの混合物が一般的である。特にトリス(アクリロキシエチル)イソシアヌレート(トリス(2-ヒドロキシエチル)イソシアヌル酸のトリアクリル酸エステル)は皮膚刺激性が低く好ましく使用できる。
Examples of the crosslinkable monomer include polyfunctional acrylic monomers, polyfunctional allyl monomers, and mixed monomers thereof.
More specific examples include, as the polyfunctional acrylic-based monomer, ethylene oxide-modified bisphenol A di(meth)acrylate, 1,4-butanediol di(meth)acrylate, diethylene glycol di(meth)acrylate, dipentaerythritol hexa Acrylate, dipentaerythritol monohydroxypentaacrylate, caprolactone modified dipentaerythritol hexaacrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, polyethylene glycol di(meth)acrylate, trimethylolpropane triacrylate, EO modified Trimethylolpropane tri(meth)acrylate, PO-modified trimethylolpropane tri(meth)acrylate, tris(acryloxyethyl)isocyanurate, tris(methacryloxyethyl)isocyanurate and mixtures thereof are common. In particular, tris(acryloxyethyl)isocyanurate (triacrylic acid ester of tris(2-hydroxyethyl)isocyanuric acid) has low skin irritation and can be preferably used.
 多官能アリル系モノマーとしては、例えば、トリアリルシアヌレート、トリアリルイソシアヌレート、ジアリルフタレート、ジアリルベンゼンホスフォネート及びこれらの混合物等が挙げられ、中でもトリアリルシアヌレート、トリアリルイソシアヌレート及びこれらの混合物が好ましく用いられる。 Examples of the polyfunctional allyl monomer include, for example, triallyl cyanurate, triallyl isocyanurate, diallyl phthalate, diallyl benzene phosphonate, and mixtures thereof. Among them, triallyl cyanurate, triallyl isocyanurate and these Mixtures are preferably used.
 (複屈折(光弾性係数、固有複屈折))
 本発明に係るアクリル樹脂フィルムは、光弾性係数及び配向複屈折(固有複屈折)のいずれも絶対値として低いことが好ましい。配向複屈折とフィルム厚みを掛けた面内レターデーションの値としては-20nm~+20nm、又は-5nm~+5nmの範囲にあることが好ましい。光弾性係数の値としては、-20×10-12~+20×10-12Pa-1、又は-5×10-12~+5×10-12Pa-1の範囲が好ましい。
(Birefringence (photoelastic coefficient, intrinsic birefringence))
It is preferable that the acrylic resin film according to the present invention has a low absolute value in both photoelastic coefficient and orientation birefringence (inherent birefringence). The in-plane retardation value obtained by multiplying the orientation birefringence and the film thickness is preferably in the range of -20 nm to +20 nm, or -5 nm to +5 nm. The value of the photoelastic coefficient is preferably in the range of −20×10 −12 to +20×10 −12 Pa −1 , or −5×10 −12 to +5×10 −12 Pa −1 .
 本願における「光弾性係数」とは、外力による複屈折の変化の生じやすさを表す係数で、下式により定義される。
 CR[/Pa]=Δn/σR
 ここで、σRは伸張応力[Pa]、Δnは応力付加時の複屈折であり、Δnは下式により定義される。
 Δn=n1-n2
 ここで、n1は伸張方向と平行な方向の屈折率、n2は伸張方向と垂直な方向の屈折率である。
The “photoelastic coefficient” in the present application is a coefficient representing the easiness of change in birefringence due to an external force, and is defined by the following equation.
CR[/Pa]=Δn/σR
Here, σR is a tensile stress [Pa], Δn is a birefringence when a stress is applied, and Δn is defined by the following equation.
Δn=n1-n2
Here, n1 is a refractive index in a direction parallel to the stretching direction, and n2 is a refractive index in a direction perpendicular to the stretching direction.
 光弾性係数の値がゼロに近いほど、外力による複屈折の変化が小さいことを示しており、各用途に応じて設計された複屈折が外力によって変化しにくいことを意味する。
 そして、本発明において、光弾性係数が正(負)の単量体とは、該単量体の単独重合体の光弾性係数が正(負)となる単量体をいう。
The closer the value of the photoelastic coefficient is to zero, the smaller the change in birefringence due to external force, which means that the birefringence designed for each application is less likely to change due to external force.
In the present invention, the monomer having a positive (negative) photoelastic coefficient means a monomer having a positive (negative) photoelastic coefficient of a homopolymer of the monomer.
 また、本願における「固有複屈折」とは、配向に依存した複屈折の大きさを表す値で、下式により定義される。
 固有複屈折=npr-nvt
 ここで、nprは、一軸性の秩序をもって配向した高分子の配向方向と平行な方向の屈折率、nvtはその配向方向と垂直な方向の屈折率である。
 そして、本発明において、固有複屈折が負である単量体とは、該単量体の単独重合体が一軸性の秩序をもって配向して形成された層に光が入射したとき、前記配向方向の光の屈折率が前記配向方向に直交する方向の光の屈折率より小さくなる単量体をいう。
Further, the “inherent birefringence” in the present application is a value representing the magnitude of birefringence depending on the orientation, and is defined by the following formula.
Intrinsic birefringence = npr-nvt
Here, npr is the refractive index in the direction parallel to the orientation direction of the polymer oriented with uniaxial order, and nvt is the refractive index in the direction perpendicular to the orientation direction.
In the present invention, the monomer having a negative intrinsic birefringence means that when light is incident on a layer formed by orienting a homopolymer of the monomer with uniaxial order, the orientation direction is Is a monomer whose refractive index of light is smaller than the refractive index of light in the direction orthogonal to the alignment direction.
 本発明に係るのアクリル樹脂フィルムは、光弾性係数が正でかつ固有複屈折が負の単量体に由来する単位(a)5質量%以上85質量%未満と、光弾性係数が負でかつ固有複屈折が負の単量体に由来する単位(b)5質量%以上85質量%未満と、5又は6員環構造を有する単位(c)を10質量%超えて50質量%以下、含む共重合体(1)を含むことが好ましい。 The acrylic resin film according to the present invention has a negative photoelastic coefficient and a unit (a) of 5% by mass or more and less than 85% by mass derived from a monomer having a positive photoelastic coefficient and a negative intrinsic birefringence. A unit (b) derived from a monomer having a negative intrinsic birefringence is included in an amount of 5% by mass or more and less than 85% by mass and a unit (c) having a 5- or 6-membered ring structure in an amount of more than 10% by mass and 50% by mass or less. It is preferable to include the copolymer (1).
 前記単位(a)としては、その光弾性係数が正で、かつ、固有複屈折が負であるという条件を満たす単量体に由来する単位であれば、いかなる単位でもよい。
 光弾性係数が正で、かつ、固有複屈折が負である単量体としては、例えば、芳香族ビニル化合物単位が挙げられる。ここで、芳香族ビニル化合物とは、その構造中にスチレン骨格を有する化合物をいう。
The unit (a) may be any unit as long as it is a unit derived from a monomer that satisfies the conditions that the photoelastic coefficient is positive and the intrinsic birefringence is negative.
Examples of the monomer having a positive photoelastic coefficient and a negative intrinsic birefringence include aromatic vinyl compound units. Here, the aromatic vinyl compound means a compound having a styrene skeleton in its structure.
 芳香族ビニル化合物の具体例としては、スチレンのほか、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、2,5-ジメチルスチレン、3,4-ジメチルスチレン、3,5-ジメチルスチレン、p-エチルスチレン、m-エチルスチレン、о-エチルスチレン、p-tert-ブチルスチレン等の核アルキル置換スチレン類;1,1-ジフェニルエチレン等が挙げられ、代表的なものはスチレンである。
 これらの芳香族ビニル化合物は、一種又は二種以上組み合わせて使用することもできる。
Specific examples of the aromatic vinyl compound include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, 2,5-dimethylstyrene, 3,4-dimethylstyrene, Nuclear alkyl-substituted styrenes such as 3,5-dimethylstyrene, p-ethylstyrene, m-ethylstyrene, o-ethylstyrene, p-tert-butylstyrene; 1,1-diphenylethylene, etc. The thing is styrene.
These aromatic vinyl compounds may be used alone or in combination of two or more.
 前記単位(b)としては、その光弾性係数が負で、かつ、固有複屈折が負であるという条件を満たす単量体に由来する単位であれば、いかなる単位でもよい。光弾性係数が負で、かつ、固有複屈折が負である単量体としては、例えば、(メタ)アクリル系単量体が挙げられる。 The unit (b) may be any unit as long as it is derived from a monomer that satisfies the conditions that the photoelastic coefficient is negative and the intrinsic birefringence is negative. Examples of the monomer having a negative photoelastic coefficient and a negative intrinsic birefringence include (meth)acrylic monomers.
 ここで、(メタ)アクリル系単量体とは、メタクリル酸、アクリル酸、及びこれらの誘導体をいい、好ましくはメタクリル酸エステル及びアクリル酸エステルである。
 メタクリル酸エステルの具体例としては、メタクリル酸ブチル、メタクリル酸エチル、メタクリル酸メチル、メタクリル酸プロピル、メタクリル酸シクロヘキシル、メタクリル酸フェニル、メタクリル酸2-エチルヘキシル、メタクリル酸t-ブチルシクロヘキシル、メタクリル酸ベンジル、メタクリル酸2,2,2-トリフルオロエチルなどが挙げられ、代表的なものはメタクリル酸メチルである。
 アクリル酸エステルの具体例としては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸イソプロピル、アクリル酸2-エチルヘキシル、アクリル酸シクロヘキシル、アクリル酸フェニルなどが挙げられる。
Here, the (meth)acrylic monomer means methacrylic acid, acrylic acid, and derivatives thereof, preferably methacrylic acid ester and acrylic acid ester.
Specific examples of the methacrylic acid ester include butyl methacrylate, ethyl methacrylate, methyl methacrylate, propyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, 2-ethylhexyl methacrylate, t-butylcyclohexyl methacrylate, benzyl methacrylate, Examples thereof include 2,2,2-trifluoroethyl methacrylate, and a typical one is methyl methacrylate.
Specific examples of the acrylate ester include methyl acrylate, ethyl acrylate, butyl acrylate, isopropyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, and phenyl acrylate.
 アクリル酸アルキルエステル単位を含む共重合体は、耐熱分解性に優れ、また成形加工時の流動性を高める。したがって、耐熱分解性、成形加工性を向上させるためには(メタ)アクリル系単量体としてアクリル酸アルキルエステルを用いることが好ましい。この場合、アクリル酸アルキルエステル単位の使用量は、耐熱分解性の観点から0.1質量%以上であることが好ましく、耐熱性の観点から15質量%以下であることが好ましい。0.2~14質量%の範囲内であることがさらに好ましく、1~12質量%の範囲内であることがとりわけ好ましい。このアクリル酸アルキルエステル単量体の中でも、特にアクリル酸メチル及びアクリル酸エチルは、それを少量共重合させても上記改良効果は著しく好ましい。
 一方、耐熱性を向上させるためには、(メタ)アクリル系単量体としてメタクリル酸エステルを用いることが好ましい。
The copolymer containing an alkyl acrylate unit is excellent in thermal decomposition resistance and enhances fluidity during molding. Therefore, in order to improve the thermal decomposition resistance and molding processability, it is preferable to use an acrylic acid alkyl ester as the (meth)acrylic monomer. In this case, the amount of the acrylic acid alkyl ester unit used is preferably 0.1% by mass or more from the viewpoint of thermal decomposition resistance, and is preferably 15% by mass or less from the viewpoint of heat resistance. It is more preferably in the range of 0.2 to 14% by mass, and particularly preferably in the range of 1 to 12% by mass. Among the acrylic acid alkyl ester monomers, particularly, methyl acrylate and ethyl acrylate are remarkably preferable for the above-mentioned improving effect even if a small amount of them is copolymerized.
On the other hand, in order to improve heat resistance, it is preferable to use a methacrylic acid ester as the (meth)acrylic monomer.
 上記(メタ)アクリル系単量体は一種又は二種以上組み合わせて使用することもできる。 The above (meth)acrylic monomers can be used alone or in combination of two or more.
 前記単位(c)としては、その構造中に5又は6員環を有する単位であれば、いかなる単位でもよい。
 単位(c)としては、例えば、無水マレイン酸、グルタル酸などの無水物である不飽和ジカルボン酸無水物単量体単位;ラクトン環構造などの不飽和カルボン酸単位;N-フェニルマレイミド、N-シクロヘキシルマレイミド等のマレイミド単位等が挙げられる。
The unit (c) may be any unit as long as it has a 5- or 6-membered ring in its structure.
Examples of the unit (c) include unsaturated dicarboxylic acid anhydride monomer units which are anhydrides such as maleic anhydride and glutaric acid; unsaturated carboxylic acid units such as lactone ring structures; N-phenylmaleimide, N- Examples thereof include maleimide units such as cyclohexylmaleimide.
 前記単位(a)、単位(b)、単位(c)の含有量は、それぞれ、5質量%以上85質量%未満、5質量%以上85質量%未満、10質量%を超えて50質量%以下であることが好ましい。
 前記共重合体(1)を構成する各単位の割合をこのような範囲とすることにより、本発明に係るアクリル樹脂フィルムは、面内レタデーション(Re)が付き難いものとなり、面内レタデーションの値を厳密に制御することが可能になる。
 また、共重合体(1)を構成する各単位の割合が特定の関係を満たす場合、すなわち、以下の式で表されるKの値が-3.1以上3.1以下であると、共重合体(1)の光弾性係数の絶対値は特に小さくなる。
 Kの値は、より好ましくは-3.1~0であり、さらに好ましくは-3.1~-1.0である。
The content of the unit (a), the unit (b), and the unit (c) is 5% by mass or more and less than 85% by mass, 5% by mass or more and less than 85% by mass, and 10% by mass or more and 50% by mass or less, respectively. Is preferred.
By setting the proportion of each unit constituting the copolymer (1) in such a range, the acrylic resin film according to the present invention becomes difficult to have in-plane retardation (Re), and the value of in-plane retardation. It becomes possible to control strictly.
Further, when the ratio of each unit constituting the copolymer (1) satisfies a specific relationship, that is, when the value of K represented by the following formula is −3.1 or more and 3.1 or less, The absolute value of the photoelastic coefficient of the polymer (1) is particularly small.
The value of K is more preferably -3.1 to 0, and even more preferably -3.1 to -1.0.
 K=7×(A/100)+(-6)×(B/100)+4×(C/100)
 式中、A、B、Cは、それぞれ、共重合体(1)中の各単位(a)、(b)、(c)の割合(質量%)を表す。
K=7×(A/100)+(−6)×(B/100)+4×(C/100)
In the formula, A, B and C represent the proportions (% by mass) of the respective units (a), (b) and (c) in the copolymer (1).
 (樹脂ブレンド)
 本発明に係るアクリル樹脂は、アクリル以外の樹脂をブレンドしてもよい。ブレンド比率はアクリル樹脂全体に対して1~45質量%の範囲が好ましい。ブレンドに好ましい樹脂として、例えばセルロースエステル樹脂、ポリビニルアセタール樹脂、スチレン系樹脂が挙げられる。
(Resin blend)
The acrylic resin according to the present invention may be blended with a resin other than acrylic. The blending ratio is preferably in the range of 1 to 45 mass% with respect to the entire acrylic resin. Examples of preferable resins for blending include cellulose ester resins, polyvinyl acetal resins, and styrene resins.
 《セルロースエステル樹脂》
 前記セルロースエステル樹脂は、脂肪族のアシル基、芳香族のアシル基のいずれで置換されていても良いが、アセチル基で置換されていることが好ましい。
<Cellulose ester resin>
The cellulose ester resin may be substituted with either an aliphatic acyl group or an aromatic acyl group, but it is preferably substituted with an acetyl group.
 前記セルロースエステル樹脂が、脂肪族アシル基とのエステルであるとき、脂肪族アシル基は炭素原子数が2~20で具体的にはアセチル、プロピオニル、ブチリル、イソブチリル、バレリル、ピバロイル、ヘキサノイル、オクタノイル、ラウロイル、ステアロイル等が挙げられる。
 本発明において前記脂肪族アシル基とはさらに置換基を有するものも包含する意味であり、置換基としては上述の芳香族アシル基において、芳香族環がベンゼン環であるとき、ベンゼン環の置換基として例示したものが挙げられる。
When the cellulose ester resin is an ester with an aliphatic acyl group, the aliphatic acyl group has 2 to 20 carbon atoms, specifically acetyl, propionyl, butyryl, isobutyryl, valeryl, pivaloyl, hexanoyl, octanoyl, Examples include lauroyl and stearoyl.
In the present invention, the above-mentioned aliphatic acyl group is meant to include those having a substituent, and the substituent is a substituent of the benzene ring when the aromatic ring is a benzene ring in the above-mentioned aromatic acyl group. Examples of the above are listed.
 前記セルロースエステル樹脂が、芳香族アシル基とのエステルであるとき、芳香族環に置換する置換基の数は0又は1~5個であり、好ましくは1~3個で、特に好ましいのは1又は2個である。
 さらに、芳香族環に置換する置換基の数が2個以上の時、互いに同じでも異なっていてもよいが、また、互いに連結して縮合多環化合物(例えばナフタレン、インデン、インダン、フェナントレン、キノリン、イソキノリン、クロメン、クロマン、フタラジン、アクリジン、インドール、インドリンなど)を形成してもよい。
When the cellulose ester resin is an ester with an aromatic acyl group, the number of substituents on the aromatic ring is 0 or 1 to 5, preferably 1 to 3, and particularly preferably 1 Or two.
Furthermore, when the number of substituents on the aromatic ring is 2 or more, they may be the same or different from each other, but they may also be linked to each other to form a condensed polycyclic compound (for example, naphthalene, indene, indane, phenanthrene, quinoline). , Isoquinoline, chromene, chroman, phthalazine, acridine, indole, indoline, etc.).
 前記セルロースエステル樹脂において、置換又は無置換の脂肪族アシル基、置換又は無置換の芳香族アシル基の少なくともいずれか1種選択された構造を有することが本発明に係るセルロース樹脂に用いる構造として用いられ、これらは、セルロースの単独又は混合酸エステルでもよい。 In the cellulose ester resin, a structure having at least one selected from a substituted or unsubstituted aliphatic acyl group and a substituted or unsubstituted aromatic acyl group is used as the structure used in the cellulose resin according to the present invention. These may be a single acid ester or a mixed acid ester of cellulose.
 前記セルロースエステル樹脂の置換度は、アシル基の総置換度(T)が2.00~3.00であり、アセチル基は必ずしも必要ではなく、アセチル基置換度(ac)が0~1.89である。より好ましくはアセチル基以外のアシル基置換度(r)が2.00~2.89である。
 アセチル基以外のアシル基は炭素数が3~7であることが好ましい。
Regarding the degree of substitution of the cellulose ester resin, the total degree of substitution (T) of the acyl group is 2.00 to 3.00, the acetyl group is not always necessary, and the degree of acetyl group substitution (ac) is 0 to 1.89. Is. More preferably, the substitution degree (r) of the acyl group other than the acetyl group is 2.00 to 2.89.
The acyl group other than the acetyl group preferably has 3 to 7 carbon atoms.
 前記セルロースエステル樹脂において、炭素原子数2~7のアシル基を置換基として有するもの、すなわちセルロースアセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートベンゾエート、及びセルロースベンゾエートから選ばれる少なくとも一種であることが好ましい。
 これらの中で特に好ましいセルロースエステル樹脂は、セルロースアセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネートやセルロースアセテートブチレートが挙げられる。
 混合脂肪酸として、さらに好ましくは、セルロースアセテートプロピオネートやセルロースアセテートブチレートの低級脂肪酸エステルであり、炭素原子数2~4のアシル基を置換基として有するものが好ましい。
 アシル基で置換されていない部分は通常、ヒドロキシ基として存在しているものである。これらは公知の方法で合成することができる。
 なお、アセチル基の置換度や他のアシル基の置換度は、ASTM-D817-96に規定の方法により求めたものである。
The cellulose ester resin having an acyl group having 2 to 7 carbon atoms as a substituent, that is, cellulose acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate benzoate, And at least one selected from cellulose benzoate.
Among these, particularly preferred cellulose ester resins include cellulose acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate and cellulose acetate butyrate.
The mixed fatty acid is more preferably a lower fatty acid ester of cellulose acetate propionate or cellulose acetate butyrate, which has an acyl group having 2 to 4 carbon atoms as a substituent.
The moiety not substituted with an acyl group is usually present as a hydroxy group. These can be synthesized by a known method.
The degree of substitution of the acetyl group and the degree of substitution of other acyl groups are determined by the method specified in ASTM-D817-96.
 前記セルロースエステル樹脂の重量平均分子量(Mw)は、75000以上であれば、1000000程度のものであっても本発明の目的を達成することができるが、生産性を考慮すると75000~280000のものが好ましく、100000~240000のものがさらに好ましい。この重量平均分子量の測定は、GPC法によってすることができる。
 セルロースエステル樹脂はダイセル株式会社やEastman Chemical Companyから市販されている。特に好ましいセルロースエステル樹脂は、EastmanTM Cellulose Acetate Propionate (CAP-482-20)である。
If the weight average molecular weight (Mw) of the cellulose ester resin is 75,000 or more, the object of the present invention can be achieved even if the weight average molecular weight (Mw) is about 1,000,000. Those of 100,000 to 240,000 are more preferable. This weight average molecular weight can be measured by the GPC method.
Cellulose ester resins are commercially available from Daicel Corporation and Eastman Chemical Company. A particularly preferred cellulose ester resin is Eastman Cellulose Acetate Propionate (CAP-482-20).
 《ポリビニルアセタール樹脂》
 本発明に用いられるポリビニルアセタール樹脂は、ポリビニルアルコール樹脂をアルデヒドでアセタール化することによって得ることができる。
 ポリビニルアセタール樹脂の製造に用いられるポリビニルアルコール樹脂は、粘度平均重合度が、200~4000、好ましくは300~3000、より好ましくは500~2000の範囲内である。
 ポリビニルアルコール樹脂の粘度平均重合度が200未満であると、得られるポリビニルアセタール樹脂の力学物性が不足し、本発明のアクリル系樹脂フィルムの力学物性、特に靭性が不足する傾向があり、フィルムの取扱い性が悪くなる傾向がある。一方、ポリビニルアルコール樹脂の粘度平均重合度が4000を超えるとメタクリル系樹脂と溶融混練する際の溶融粘度が高くなり、製造が困難になる傾向がある。
《Polyvinyl acetal resin》
The polyvinyl acetal resin used in the present invention can be obtained by acetalizing a polyvinyl alcohol resin with an aldehyde.
The polyvinyl alcohol resin used for producing the polyvinyl acetal resin has a viscosity average degree of polymerization of 200 to 4000, preferably 300 to 3000, and more preferably 500 to 2000.
When the viscosity average degree of polymerization of the polyvinyl alcohol resin is less than 200, the mechanical properties of the obtained polyvinyl acetal resin are insufficient, and the mechanical properties of the acrylic resin film of the present invention, especially the toughness, tend to be insufficient. It tends to be bad. On the other hand, if the viscosity average degree of polymerization of the polyvinyl alcohol resin exceeds 4000, the melt viscosity at the time of melt kneading with the methacrylic resin becomes high, and the production tends to be difficult.
 前記ポリビニルアセタール樹脂の製造に用いられる炭素数3以下のアルデヒドとしては、例えばホルムアルデヒド(パラホルムアルデヒドを含む)、アセトアルデヒド(パラアセトアルデヒドを含む)、プロピオンアルデヒドなどが挙げられる。これら炭素数3以下のアルデヒドは1種単独で又は2種以上を組み合わせて用いることができる。これら炭素数3以下のアルデヒドのうち、製造の容易さの観点から、アセトアルデヒド(パラアセトアルデヒドを含む)及びホルムアルデヒド(パラホルムアルデヒドを含む)を主体とするものが好ましく、アセトアルデヒドが特に好ましい。 Examples of the aldehyde having 3 or less carbon atoms used in the production of the polyvinyl acetal resin include formaldehyde (including paraformaldehyde), acetaldehyde (including paraacetaldehyde), propionaldehyde and the like. These aldehydes having 3 or less carbon atoms can be used alone or in combination of two or more. Among these aldehydes having 3 or less carbon atoms, those mainly containing acetaldehyde (including paraacetaldehyde) and formaldehyde (including paraformaldehyde) are preferable, and acetaldehyde is particularly preferable, from the viewpoint of ease of production.
 ポリビニルアセタール樹脂の製造に用いられる炭素数4以上のアルデヒドとしては、ブチルアルデヒド、n-オクチルアルデヒド、アミルアルデヒド、ヘキシルアルデヒド、ヘプチルアルデヒド、2-エチルヘキシルアルデヒド、シクロヘキシルアルデヒド、フルフラール、グリオキザール、グルタルアルデヒド、ベンズアルデヒド、2-メチルベンズアルデヒド、3-メチルベンズアルデヒド、4-メチルベンズアルデヒド、p-ヒドロキシベンズアルデヒド、m-ヒドロキシベンズアルデヒド、フェニルアセトアルデヒド、β-フェニルプロピオンアルデヒド等が挙げられる。これら炭素数4以上のアルデヒドは1種単独で又は2種類以上を組み合わせて用いてもよい。これらアルデヒドのうち、製造の容易さの観点からブチルアルデヒドを主体とするものが好ましく、ブチルアルデヒドが特に好ましい。 Examples of the aldehyde having 4 or more carbon atoms used for producing the polyvinyl acetal resin include butyraldehyde, n-octylaldehyde, amylaldehyde, hexylaldehyde, heptylaldehyde, 2-ethylhexylaldehyde, cyclohexylaldehyde, furfural, glyoxal, glutaraldehyde, benzaldehyde. , 2-methylbenzaldehyde, 3-methylbenzaldehyde, 4-methylbenzaldehyde, p-hydroxybenzaldehyde, m-hydroxybenzaldehyde, phenylacetaldehyde, β-phenylpropionaldehyde and the like. These aldehydes having 4 or more carbon atoms may be used alone or in combination of two or more. Among these aldehydes, those mainly containing butyraldehyde are preferable from the viewpoint of easy production, and butyraldehyde is particularly preferable.
 《スチレン系樹脂》
 本発明において、スチレン系樹脂とは、少なくともスチレン系単量体を単量体成分として含む重合体を意味する。ここで、スチレン系単量体とは、その構造中にスチレン骨格を有する単量体を意味する。
 前記スチレン系単量体としては、その構造中にスチレン骨格を有する単量体であれば特に限定されず、例えば、スチレン;o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、エチルスチレン、p-tert-ブチルスチレン等の核アルキル置換スチレン;α-メチルスチレン、α-メチル-p-メチルスチレン等のα-アルキル置換スチレン等の芳香族ビニル化合物単量体が挙げられ、中でも、スチレンが好ましい。
<Styrene resin>
In the present invention, the styrene resin means a polymer containing at least a styrene monomer as a monomer component. Here, the styrene-based monomer means a monomer having a styrene skeleton in its structure.
The styrene-based monomer is not particularly limited as long as it has a styrene skeleton in its structure, and examples thereof include styrene; o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4 -Nuclear alkyl-substituted styrenes such as dimethylstyrene, ethylstyrene and p-tert-butylstyrene; aromatic vinyl compound monomers such as α-alkylsubstituted styrenes such as α-methylstyrene and α-methyl-p-methylstyrene. Among them, styrene is preferable.
 スチレン系樹脂は、スチレン系単量体の単独重合体でも、スチレン系単量体と他の単量体成分との共重合体であってもよい。スチレン系単量体と共重合可能な単量体成分としては、メチルメタクリレート、シクロヘキシルメタクリレート、メチルフェニルメタクリレート、イソプロピルメタクリレート等のアルキルメタクリレート単量体、メチルアクリレート、エチルアクリレート、ブチルアクリレート、2-エチルヘキシルアクリレート、シクロヘキシルアクリレート等のアルキルアクリレート単量体等の不飽和カルボン酸アルキルエステル単量体;メタクリル酸、アクリル酸、イタコン酸、マレイン酸、フマル酸、桂皮酸等の不飽和カルボン酸単量体;無水マレイン酸、イタコン酸、エチルマレイン酸、メチルイタコン酸、クロルマレイン酸などの無水物である不飽和ジカルボン酸無水物単量体;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル単量体;1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン等の共役ジエン単量体などが挙げられ、これらの2種以上を共重合してもよい。このような他の単量体成分の共重合割合は、スチレン系単量体に対して、好ましくは50質量%以下、より好ましくは40質量%以下、さらに好ましくは30質量%以下である。 Styrene resin may be a homopolymer of styrene monomer or a copolymer of styrene monomer and other monomer components. Examples of the monomer component copolymerizable with the styrene-based monomer include alkyl methacrylate monomers such as methyl methacrylate, cyclohexyl methacrylate, methylphenyl methacrylate, and isopropyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate. Unsaturated carboxylic acid alkyl ester monomers such as alkyl acrylate monomers such as cyclohexyl acrylate; unsaturated carboxylic acid monomers such as methacrylic acid, acrylic acid, itaconic acid, maleic acid, fumaric acid, cinnamic acid; anhydrous Unsaturated dicarboxylic acid anhydride monomers which are anhydrides such as maleic acid, itaconic acid, ethyl maleic acid, methyl itaconic acid and chloromaleic acid; unsaturated nitrile monomers such as acrylonitrile and methacrylonitrile; 1,3 -Conjugated diene monomers such as butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and 1,3-hexadiene. Alternatively, two or more of these may be copolymerized. The copolymerization ratio of such other monomer component is preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 30% by mass or less based on the styrene-based monomer.
 スチレン系樹脂としては、特に、スチレン-アクリロニトリル共重合体、スチレン-メタクリル酸共重合体、スチレン-無水マレイン酸共重合体が、耐熱性、透明性等の光学材料に求められる特性に関して、特に優れているため好ましい。
 スチレン-アクリロニトリル共重合体の場合、共重合体中のアクリロニトリルの共重合割合は、好ましくは1~40質量%であり、より好ましくは1~30質量%であり、さらに好ましくは1~25質量%である。共重合体中のアクリロニトリルの共重合割合が1~40質量%の範囲内である場合、透明性に優れた共重合体が得られる傾向にあるため好ましい。
As the styrene resin, a styrene-acrylonitrile copolymer, a styrene-methacrylic acid copolymer, and a styrene-maleic anhydride copolymer are particularly excellent in properties required for optical materials such as heat resistance and transparency. Therefore, it is preferable.
In the case of a styrene-acrylonitrile copolymer, the copolymerization ratio of acrylonitrile in the copolymer is preferably 1 to 40% by mass, more preferably 1 to 30% by mass, and further preferably 1 to 25% by mass. Is. When the copolymerization ratio of acrylonitrile in the copolymer is in the range of 1 to 40% by mass, a copolymer having excellent transparency tends to be obtained, which is preferable.
 スチレン-メタクリル酸共重合体の場合、共重合体中のメタクリル酸の共重合割合は、好ましくは0.1~50質量%であり、より好ましくは0.1~40質量%であり、さらに好ましくは0.1~30質量%である。共重合体中のメタクリル酸の共重合割合が0.1質量%以上であると耐熱性に優れた共重合体が得られる傾向にあり、50質量%以下であれば透明性に優れた共重合体が得られる傾向にあるため好ましい。 In the case of a styrene-methacrylic acid copolymer, the copolymerization ratio of methacrylic acid in the copolymer is preferably 0.1 to 50% by mass, more preferably 0.1 to 40% by mass, and further preferably Is 0.1 to 30% by mass. When the copolymerization ratio of methacrylic acid in the copolymer is 0.1% by mass or more, a copolymer having excellent heat resistance tends to be obtained, and when it is 50% by mass or less, the copolymer having excellent transparency is obtained. It is preferable because a coalescence tends to be obtained.
 スチレン-無水マレイン酸共重合体の場合、共重合体中の無水マレイン酸の共重合割合は、好ましくは0.1~50質量%であり、より好ましくは0.1~40質量%であり、さらに好ましくは0.1~30質量%である。共重合体中の無水マレイン酸の共重合割合が0.1質量%以上であると耐熱性に優れた共重合体が得られる傾向にあり、50質量%以下であれば透明性に優れた共重合体が得られる傾向にあるため好ましい。 In the case of a styrene-maleic anhydride copolymer, the copolymerization ratio of maleic anhydride in the copolymer is preferably 0.1 to 50% by mass, more preferably 0.1 to 40% by mass, More preferably, it is 0.1 to 30 mass %. When the copolymerization ratio of maleic anhydride in the copolymer is 0.1% by mass or more, a copolymer having excellent heat resistance tends to be obtained, and when 50% by mass or less, the copolymer having excellent transparency is obtained. It is preferable because a polymer tends to be obtained.
 (2)ゴム粒子
 フィルム中に微粒子を用いる意図は様々であり、フィルムの表面に凹凸を付与して滑り性を高めるいわゆるマット剤、結晶性微粒子の複屈折を利用した位相差制御微粒子などがある。本発明ではこれらに加え、弾性体微粒子とも呼ばれるゴム粒子を用いることで、脆くて割れやすいアクリル樹脂フィルムにしなやかな可撓性を付与するものである。本発明の微粒子にはマット剤もゴム粒子も含まれるが、まずここではゴム粒子について記載する。
 本発明に係るアクリル樹脂フィルムは、コア・シェル構造(多層構造)のゴム粒子を含有することを特徴とする。コア層とシェル層からなる2層でも良いし、コア層/中間層/シェル層の3層構造、種粒子層/コア層/シェル層の3層でもよい。ただし、シェル層は最外層のことである。
 従来公知のとおり、脆いアクリル樹脂フィルムに弾性体であるゴム粒子を添加することによって靭性を付与することが可能となる。アクリル樹脂フィルム中のゴム粒子含有量は1~45質量%が好ましく、5~35質量%がより好ましく、5~20質量%が最も好ましい。
(2) Rubber Particles There are various intentions of using fine particles in a film, and there are so-called matting agents that enhance the slipperiness by giving unevenness to the surface of the film, fine particles for retardation using birefringence of crystalline fine particles, and the like. .. In the present invention, in addition to these, rubber particles also called elastic fine particles are used to impart supple flexibility to the acrylic resin film which is brittle and easily cracked. Although the matting agent and the rubber particles are included in the fine particles of the present invention, the rubber particles will first be described here.
The acrylic resin film according to the present invention is characterized by containing rubber particles having a core/shell structure (multilayer structure). It may be two layers consisting of a core layer and a shell layer, a three-layer structure of core layer/intermediate layer/shell layer, or three layers of seed particle layer/core layer/shell layer. However, the shell layer is the outermost layer.
As is conventionally known, toughness can be imparted by adding rubber particles, which are elastic bodies, to a brittle acrylic resin film. The content of rubber particles in the acrylic resin film is preferably 1 to 45% by mass, more preferably 5 to 35% by mass, and most preferably 5 to 20% by mass.
 (ゴム粒子の層構造)
 ゴム粒子は、平均粒子径0.01~1μmの範囲内のコア部となる粒子状重合体に、シェル部として(メタ)アクリル酸エステルをさらに重合してなるコア部とシェル部とからなる多層構造を有する。
 前記ゴム粒子は、中心の部分(コア)のみに多官能性化合物由来の構造を有し、中心の部分を囲む部分(シェル)には、アクリル樹脂フィルムを構成するアクリル樹脂との相溶性が高い構造を有することが好ましい。これより、ゴム粒子は上記アクリル樹脂中でより均一に分散することができ、ゴム粒子の凝集などによって生じる異物の副生をより抑制することができる。
 以下、上記コア・シェル構造のシェル部及びコア部について説明する。
(Layer structure of rubber particles)
The rubber particles are a multi-layer composed of a core part and a shell part obtained by further polymerizing a (meth)acrylic acid ester as a shell part to a particulate polymer forming the core part having an average particle diameter of 0.01 to 1 μm. Have a structure.
The rubber particles have a structure derived from a polyfunctional compound only in the central portion (core), and the portion (shell) surrounding the central portion has high compatibility with the acrylic resin constituting the acrylic resin film. It is preferable to have a structure. As a result, the rubber particles can be more uniformly dispersed in the acrylic resin, and the by-product of foreign matter caused by aggregation of the rubber particles can be further suppressed.
Hereinafter, the shell part and the core part of the core-shell structure will be described.
 《シェル部》
 前記シェル部としては、アクリル樹脂フィルムを構成するアクリル樹脂との相溶性が高い構造であれば特には限定されない。
《Shell part》
The shell portion is not particularly limited as long as it has a structure having high compatibility with the acrylic resin forming the acrylic resin film.
 《コア部》
 前記コア部としては、アクリル樹脂フィルムを構成するアクリル樹脂の可撓性を改善する効果を発現する構造であれば特には限定されず、例えば、架橋を有する構造が挙げられる。また、架橋を有する構造としては、架橋ゴム構造であることが好ましい。
 前記架橋ゴム構造とは、ガラス転移点が-100℃から25℃の範囲内である重合体を主鎖とし、多官能性化合物によって、その主鎖間を架橋することによって弾性を持たせたゴムの構造を意味する。架橋ゴム構造としては、例えばアクリル系ゴム、ポリブタジエン系ゴム、オレフィン系ゴムの構造(繰り返し構造単位)が挙げられる。これらの中でも、平均粒子径が0.3μm以下にコントロールし易く、樹脂中に均一に分散した場合にフィルムの透明性等の光学特性が良いことから、アクリル系ゴムが好ましい。
《Core part》
The core portion is not particularly limited as long as it has a structure capable of improving the flexibility of the acrylic resin forming the acrylic resin film, and examples thereof include a structure having a crosslink. The crosslinked structure is preferably a crosslinked rubber structure.
The crosslinked rubber structure is a rubber in which a polymer having a glass transition point in the range of −100° C. to 25° C. is used as a main chain, and the main chains are crosslinked with a polyfunctional compound to give elasticity. Means the structure of. Examples of the crosslinked rubber structure include acrylic rubber, polybutadiene rubber, and olefin rubber structures (repeating structural units). Among these, acrylic rubber is preferable because it is easy to control the average particle diameter to 0.3 μm or less and the optical properties such as transparency of the film are good when uniformly dispersed in the resin.
 前記架橋を有する構造としては、例えば、上述した多官能性化合物由来の構造が挙げられる。前記多官能性化合物の中でも、1,4-ブタンジオールジメタクリレート、ジエチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、ジビニルベンゼン、メタクリル酸アリル、アクリル酸アリル、メタクリル酸ジシクロペンテニルがより好ましい。
 前記コア部の製造時における多官能性単量体の使用量は、用いる単量体組成物の0.01~15質量%の範囲内であることが好ましく、0.1~10質量%の範囲内であることがより好ましい。多官能性単量体を上記範囲内で使用することにより、得られるフィルムは良好な耐折曲げ性を示す。
Examples of the structure having a crosslink include the structures derived from the above-mentioned polyfunctional compounds. Among the polyfunctional compounds, 1,4-butanediol dimethacrylate, diethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, divinylbenzene, allyl methacrylate, allyl acrylate, and dicyclopentenyl methacrylate are more preferable.
The amount of the polyfunctional monomer used during the production of the core part is preferably 0.01 to 15% by mass of the monomer composition used, and 0.1 to 10% by mass. It is more preferable that When the polyfunctional monomer is used within the above range, the resulting film exhibits good bending resistance.
 (構成する材料)
 ゴム粒子の材質としては、例えば、ブタジエン系架橋重合体、(メタ)アクリル系架橋重合体、オルガノシロキサン系架橋重合体等が挙げられる。中でも、フィルムの耐候性(耐光性)、透明性の面で、(メタ)アクリル系架橋重合体(本願明細書において、(メタ)アクリル系共重合体からなるゴム部を、アクリル系ゴム粒子ともいう)が特に好ましい。
(Constituent material)
Examples of the material of the rubber particles include a butadiene-based crosslinked polymer, a (meth)acrylic crosslinked polymer, and an organosiloxane crosslinked polymer. Among them, in terms of weather resistance (light resistance) and transparency of the film, a (meth)acrylic crosslinked polymer (in the specification of the present application, a rubber portion made of a (meth)acrylic copolymer is also referred to as acrylic rubber particles). Is particularly preferable.
 アクリル系ゴム粒子としては、例えばABS樹脂ゴム粒子、ASA樹脂ゴム粒子、アクリル酸エステル系ゴム粒子が挙げられる。
 多層構造粒子としては、これらのアクリル系ゴム粒子の表面に、所望する単量体を用いてグラフト重合を行ってシェル層を形成して得られる多層構造粒子が好ましい。
 得られるフィルムの透明性等の点から、多層構造粒子としては、以下に示すアクリル酸エステル系ゴム状重合体の粒子の表面にグラフト重合を行って得られる、アクリル系グラフト共重合体粒子が好ましい。
 アクリル系グラフト共重合体粒子は、アクリル酸エステル系ゴム状重合体の粒子の存在下に、メタクリル酸エステルを主成分とする単量体混合物を重合して得ることができる。
Examples of acrylic rubber particles include ABS resin rubber particles, ASA resin rubber particles, and acrylate ester rubber particles.
As the multilayer structure particles, multilayer structure particles obtained by forming a shell layer on the surface of these acrylic rubber particles by graft polymerization using a desired monomer are preferable.
From the viewpoint of transparency of the obtained film, the multilayer structure particles are preferably acrylic graft copolymer particles obtained by performing graft polymerization on the surface of the particles of the acrylic ester rubber polymer shown below. ..
Acrylic graft copolymer particles can be obtained by polymerizing a monomer mixture containing methacrylic acid ester as a main component in the presence of particles of an acrylic acid ester rubbery polymer.
 《単官能》
 ゴム部の材質である、アクリル酸エステル系ゴム状重合体は、アクリル酸エステルを主成分としたゴム状重合体である。具体的には、アクリル酸エステル50~100質量%及び共重合可能な他のビニル系単量体50~0質量%からなる単量体混合物(100質量%)並びに、1分子あたり2個以上の非共役な反応性二重結合を有する多官能性単量体を重合させてなるものが好ましい。
 多官能性単量体は、ゴム部の架橋度が、2.3~4.0質量%の範囲内であるように、所望する量使用される。
 単量体を全部混合して使用してもよく、また単量体組成を変化させて2段以上で使用してもよい。
《Monofunctional》
The acrylic acid ester-based rubber-like polymer, which is the material of the rubber portion, is a rubber-like polymer containing acrylic acid ester as a main component. Specifically, a monomer mixture (100% by mass) consisting of 50 to 100% by mass of an acrylic ester and 50 to 0% by mass of another copolymerizable vinyl-based monomer, and two or more monomers per molecule are used. Those obtained by polymerizing a polyfunctional monomer having a non-conjugated reactive double bond are preferable.
The polyfunctional monomer is used in a desired amount so that the degree of crosslinking of the rubber portion is within the range of 2.3 to 4.0% by mass.
The monomers may be mixed and used, or the monomer composition may be changed and used in two or more stages.
 アクリル酸エステルとしては、重合性やコストの点より、アルキル基の炭素数1~12のものを用いることが好ましい。例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸n-ブチル、アクリル酸sec-ブチル、アクリル酸イソブチル、アクリル酸ベンジル、アクリル酸シクロヘキシル、アクリル酸2-エチルヘキシル、アクリル酸n-オクチル、アクリル酸フェニル、及びアクリル酸2-フェノキシエチル等が挙げられる。
 これらのアクリル酸エステルは2種以上併用してもよい。
 アクリル酸エステル量は、単量体混合物100質量%において50~100質量%が好ましく、60~99質量%がより好ましく、70~99質量%以下がさらに好ましく、80~99質量%以下が最も好ましい。50質量%未満では耐衝撃性が低下し、引張破断時の伸びが低下し、フィルム切断時にクラックが発生しやすくなる傾向がある。
As the acrylate ester, it is preferable to use one having an alkyl group having 1 to 12 carbon atoms from the viewpoint of polymerizability and cost. For example, methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, sec-butyl acrylate, isobutyl acrylate, benzyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, n-acrylate Examples include octyl, phenyl acrylate, and 2-phenoxyethyl acrylate.
Two or more kinds of these acrylic acid esters may be used in combination.
The amount of acrylic acid ester is preferably 50 to 100% by mass, more preferably 60 to 99% by mass, further preferably 70 to 99% by mass, and most preferably 80 to 99% by mass in 100% by mass of the monomer mixture. .. If it is less than 50% by mass, the impact resistance tends to be low, the elongation at tensile rupture tends to be low, and cracking tends to occur when the film is cut.
 アクリル酸エステルと共重合可能な他のビニル系単量体としては、耐候性、透明性の点より、メタクリル酸エステル類が特に好ましい。メタクリル酸エステル類としては、例えばメタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸n-ブチル、メタクリル酸sec-ブチル、メタクリル酸イソブチル、メタクリル酸ベンジル、メタクリル酸シクロヘキシル、メタクリル酸2-フェノキシエチル、メタクリル酸2-エチルヘキシル、メタクリル酸フェニル、及びメタクリル酸n-オクチル等が挙げられる。 Methacrylic acid esters are particularly preferable as the other vinyl-based monomer copolymerizable with the acrylic acid ester from the viewpoint of weather resistance and transparency. Examples of the methacrylic acid esters include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, sec-butyl methacrylate, isobutyl methacrylate, benzyl methacrylate, cyclohexyl methacrylate, 2-methacrylic acid. Examples thereof include phenoxyethyl, 2-ethylhexyl methacrylate, phenyl methacrylate, and n-octyl methacrylate.
 また、芳香族ビニル類及びその誘導体、及びシアン化ビニル類も好ましい。これらのビニル系単量体としては、例えば、スチレン、メチルスチレン、アクリロニトリル、メタクリロニトリル等が挙げられる。その他、無置換及び/又は置換無水マレイン酸類、(メタ)アクリルアミド類、ビニルエステル、ハロゲン化ビニリデン、(メタ)アクリル酸及びその塩、(ヒドロキシアルキル)アクリル酸エステル等が挙げられる。 Also, aromatic vinyls and their derivatives, and vinyl cyanides are preferable. Examples of these vinyl monomers include styrene, methylstyrene, acrylonitrile and methacrylonitrile. Other examples include unsubstituted and/or substituted maleic anhydrides, (meth)acrylamides, vinyl esters, vinylidene halides, (meth)acrylic acid and salts thereof, (hydroxyalkyl)acrylic acid esters and the like.
 多層構造重合体は、前記ゴム部の内側(中心側)に、さらに他の重合体層を有していてもよい。アンチブロッキング性の観点から、メタクリル酸アルキルエステル40~100質量%、及び、これと共重合可能な二重結合を有する他の単量体60~0質量%からなる単量体混合物、並びに、当該単量体混合物100質量部に対して多官能性単量体0.01~10質量部を重合して得られるメタクリル系架橋重合体層を有することが好ましい。共重合可能な二重結合を有する単量体としては、上述の共重合可能な他のビニル系単量体や、アクリル酸エステル等を同様に例示される。
 ゴム部と、ゴム部の表面にグラフト重合により形成されたシェル層とを備える、アクリル系グラフト共重合体は、アクリル酸エステル系ゴム状重合体の粒子5~90質量部(より好ましくは、5~75質量部)の存在下に、メタクリル酸エステルを主成分とする単量体混合物95~25質量部を少なくとも1段階で重合させることより得られるものが好ましい。
The multi-layer structure polymer may further have another polymer layer on the inner side (center side) of the rubber part. From the viewpoint of anti-blocking property, a monomer mixture comprising 40 to 100% by mass of an alkyl methacrylate and 60 to 0% by mass of another monomer having a double bond copolymerizable therewith, and It is preferable to have a methacrylic cross-linked polymer layer obtained by polymerizing 0.01 to 10 parts by mass of a polyfunctional monomer with respect to 100 parts by mass of the monomer mixture. As the monomer having a copolymerizable double bond, the above-mentioned other copolymerizable vinyl monomers, acrylic acid ester and the like are similarly exemplified.
The acrylic graft copolymer comprising a rubber part and a shell layer formed on the surface of the rubber part by graft polymerization is an acrylic ester rubber-like polymer particle of 5 to 90 parts by mass (more preferably 5 parts by mass). It is preferably obtained by polymerizing 95 to 25 parts by mass of a monomer mixture containing a methacrylic acid ester as a main component in at least one step in the presence of (about 75 to 75 parts by mass).
 グラフト共重合組成(単量体混合物)中のメタクリル酸エステルは50質量%以上が好ましい。50質量%未満では得られるフィルムの硬度、剛性が低下する傾向がある。
 グラフト共重合に用いられる単量体としては、前述のメタクリル酸エステル、アクリル酸エステル、これらを共重合可能なビニル系単量体を同様に使用でき、メタクリル酸エステル、アクリル酸エステルが好適に使用される。アクリル系樹脂との相溶性の観点からメタクリル酸メチル、ジッパー解重合を抑制する点からアクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチルが好ましい。
The methacrylic acid ester in the graft copolymer composition (monomer mixture) is preferably 50% by mass or more. If it is less than 50% by mass, the hardness and rigidity of the obtained film tend to be lowered.
As the monomer used for the graft copolymerization, the above-mentioned methacrylic acid ester, acrylic acid ester, and vinyl-based monomers capable of copolymerizing these can be similarly used, and methacrylic acid ester and acrylic acid ester are preferably used. To be done. Methyl methacrylate is preferred from the viewpoint of compatibility with acrylic resins, and methyl acrylate, ethyl acrylate, and n-butyl acrylate are preferred from the viewpoint of suppressing zipper depolymerization.
 《多官能性化合物》
 上記架橋構造を有するゴム粒子としては、例えば、1分子あたり2個以上の非共役二重結合を有する多官能性化合物を含む単量体組成物を重合することによって得ることができる。
 上記多官能性化合物としては、ジビニルベンゼン、メタクリル酸アリル、アクリル酸アリル、メタクリル酸ジシクロペンテニル、アクリル酸ジシクロペンテニル、ジメタクリル酸1,4-ブタンジオール、ジメタクリル酸エチレングリコール、トリアリルシアヌレ-ト、トリアリルイソシアヌレ-ト、ジアリルフタレ-ト、ジアリルマレ-ト、ジビニルアジペ-ト、ジビニルベンゼンエチレングリコ-ルジメタクリレ-ト、ジビニルベンゼンエチレングリコ-ルジアクリレ-ト、ジエチレングリコ-ルジメタクリレ-ト、ジエチレングリコ-ルジアクリレ-ト、トリエチレングリコ-ルジメタクリレ-ト、トリエチレングリコ-ルジアクリレ-ト、トリメチロ-ルプロパントリメタクリレ-ト、トリメチロ-ルプロパントリアクリレ-ト、テトラメチロ-ルメタンテトラメタクリレ-ト、テトラメチロ-ルメタンテトラアクリレ-ト、ジプロピレングリコ-ルジメタクリレ-ト及びジプロピレングリコ-ルジアクリレ-トなどが挙げられ、これらは1種類のみ用いてもよいし、2種以上併用してもよい。
<<Multifunctional compound>>
The rubber particles having a crosslinked structure can be obtained, for example, by polymerizing a monomer composition containing a polyfunctional compound having two or more non-conjugated double bonds per molecule.
Examples of the polyfunctional compound include divinylbenzene, allyl methacrylate, allyl acrylate, dicyclopentenyl methacrylate, dicyclopentenyl acrylate, 1,4-butanediol dimethacrylate, ethylene glycol dimethacrylate, triallyl sialic acid. Nuret, triallyl isocyanurate, diallyl phthalate, diallyl maleate, divinyl adipate, divinylbenzene ethylene glycol dimethacrylate, divinylbenzene ethylene glycol diacrylate, diethylene glycol dimethacrylate, diethylene glycol diacrylate -, triethylene glycol dimethacrylate, triethylene glycol diacrylate, trimethylol propane trimethacrylate, trimethylol propane triacrylate, tetramethyl methane tetramethacrylate, tetramethylol -Methane acrylate, dipropylene glycol dimethacrylate, dipropylene glycol diacrylate, etc. may be used, and these may be used alone or in combination of two or more.
 (合成方法)
 本発明におけるコア・シェル型ゴム粒子の製造方法としては、コア・シェル型のゴム粒子を製造し得る任意の適切な方法を採用することができる。
 例えば、コア層を構成するゴム状重合体を形成する重合性モノマーを懸濁又は乳化重合させて、ゴム状重合体粒子を含む懸濁又は乳化分散液を製造し、続いて、該懸濁液又は乳化分散液にシェル層を構成するガラス状重合体を形成する重合性モノマーを加えてラジカル重合させ、ゴム状重合体粒子の表面をガラス状重合体が被覆してなる多層構造を有するコア・シェル型弾性体を得る方法が挙げられる。ここで、ゴム状重合体を形成する重合性モノマー、及び、ガラス状重合体を形成する重合性モノマーは、一段で重合しても良いし、組成比を変更して2段以上で重合してもよい。
(Synthesis method)
As the method for producing the core/shell type rubber particles in the present invention, any suitable method capable of producing the core/shell type rubber particles can be adopted.
For example, a polymerizable monomer forming a rubber-like polymer forming the core layer is suspended or emulsion-polymerized to produce a suspension or emulsion dispersion containing rubber-like polymer particles, and then the suspension is prepared. Alternatively, a core having a multilayer structure in which a polymerizable monomer that forms a glassy polymer forming a shell layer is added to the emulsion dispersion and radically polymerized to coat the surface of the rubbery polymer particles with the glassy polymer. A method of obtaining a shell-type elastic body can be mentioned. Here, the polymerizable monomer that forms the rubber-like polymer and the polymerizable monomer that forms the glass-like polymer may be polymerized in one step or may be polymerized in two or more steps by changing the composition ratio. Good.
 本発明に係るアクリル樹脂フィルムの物性バランスを確保するためには、上記コア・シェル型ゴム粒子の構造を適宜制御することが望ましい。
 上記コア・シェル型弾性体の好ましい構造としては、例えば、(a)軟質でゴム状のコア層及び、硬質でガラス状のシェル層を有し、上記コア層が(メタ)アクリル系架橋弾性重合体層を有するもの、(b)上記ゴム状のコア層が、その内部にガラス状の層を一層以上有する多層構造を有し、さらにコア層の外側にガラス状のシェル層を有するものなどが挙げられる。各層のモノマー種を適宜選択することによって、(メタ)アクリル系樹脂の諸物性(機械的特性、光学特性、特に、配向複屈折や光弾性係数)を任意に制御することができる。軟質でゴム状の層は、重合体のガラス転移温度が20℃未満、好ましくは0℃未満であることが好ましく、硬質でガラス状の層は、重合体のガラス転移温度が0℃以上、好ましくは20℃以上であることが好ましい。
In order to secure the physical property balance of the acrylic resin film according to the present invention, it is desirable to appropriately control the structure of the core-shell type rubber particles.
A preferred structure of the core-shell type elastic body includes, for example, (a) a soft, rubber-like core layer and a hard, glass-like shell layer, wherein the core layer is a (meth)acrylic crosslinked elastic polymer. Those having a united layer, (b) those having a multilayer structure in which the rubber-like core layer has one or more glass-like layers inside thereof, and further having a glass-like shell layer outside the core layer, and the like. Can be mentioned. By appropriately selecting the monomer species of each layer, various physical properties (mechanical properties, optical properties, particularly orientation birefringence and photoelastic coefficient) of the (meth)acrylic resin can be controlled arbitrarily. The soft, rubbery layer preferably has a polymer glass transition temperature of less than 20° C., preferably less than 0° C., and the hard, glassy layer has a polymer glass transition temperature of 0° C. or more, preferably Is preferably 20° C. or higher.
 コア・シェル型ゴム粒子のさらに好ましい構造の具体例としては、例えば、(i)上記コア・シェル型ゴム粒子のシェル層がアルキルアクリレートを好ましくは3質量%以上、より好ましくは10質量%以上、さらに好ましくは15質量%以上含む非架橋のメタクリル樹脂であるもの、(ii)上記コア・シェル型ゴム粒子のシェル層がアルキルアクリレートの含有量の異なる2段以上の多層からなり、トータルでアルキルアクリレートを好ましくは10質量%以上、より好ましくは15質量%以上含む非架橋のメタクリル樹脂であるもの、(iii)上記コア・シェル型ゴム粒子のコア層が、アルキルメタクリレート、多官能性モノマー、アルキルメルカプタン、適宜その他モノマーの混合物を重合したガラス状重合体層の存在下に、アクリルアクリレート、多官能性モノマー、アルキルメルカプタン、適宜その他のモノマーの混合物を重合したゴム状重合体層を形成した多層構造を有するもの、(iv)上記コア・シェル型ゴム粒子のコア層が、有機過酸化物をレドックス型重合開始剤として使用して重合したガラス状重合体層の存在下に、過酸(過硫酸、過リン酸塩等)を熱分解型開始剤として使用して重合したゴム状重合体層を形成した多層構造を有するもの、等が例示される。 As a specific example of a more preferable structure of the core-shell type rubber particles, for example, (i) the shell layer of the core-shell type rubber particles preferably contains alkyl acrylate in an amount of 3% by mass or more, more preferably 10% by mass or more, More preferably, it is a non-crosslinked methacrylic resin containing 15% by mass or more, and (ii) the shell layer of the core-shell type rubber particles is composed of two or more multi-layers having different alkyl acrylate contents, and a total of alkyl acrylate. Is a non-crosslinked methacrylic resin containing 10% by mass or more, more preferably 15% by mass or more, and (iii) the core layer of the core-shell type rubber particles is an alkyl methacrylate, a polyfunctional monomer, an alkyl mercaptan. In the presence of a glassy polymer layer obtained by polymerizing a mixture of other monomers as appropriate, a multi-layer structure is formed in which a rubbery polymer layer obtained by polymerizing a mixture of acrylic acrylate, a polyfunctional monomer, an alkyl mercaptan, and other appropriate monomers is formed. And (iv) the core layer of the core-shell type rubber particles, in the presence of a glassy polymer layer polymerized by using an organic peroxide as a redox type polymerization initiator, a peracid (persulfate, Examples thereof include those having a multi-layer structure in which a rubbery polymer layer formed by polymerizing (using a superphosphate or the like) as a thermal decomposition type initiator is formed.
 なお、上述のシェル層のアルキルアクリレートの使用量はトータルで好ましくは60質量%以下、より好ましくは50%質量%以下、さらに好ましくは40%質量%以下である。60質量%を超える場合、マトリックス中でのコア・シェル型ゴム粒子の分散性が悪くなりやすく、機械的強度、透明性が悪化し、さらにはフィッシュアイなどの異物原因となりやすい。また、コア・シェル型ゴム粒子の生産性の面でも、製品が粗粒になりやすいなど、支障をきたしやすい。このような好ましいコア・シェル型ゴム粒子の構造上の設計要素は、一つだけを有しても良いし、二つ以上の複数の設計要素を併用しても良い。このような構造を有することにより、本発明に係るアクリル樹脂中でコア・シェル型ゴム粒子が良好に分散しやすくなり、フィルムを形成した際に未分散や凝集による欠陥が少なく、また、強度、靭性、耐熱性、透明性、外観に優れ、さらに温度変化や応力による白化が抑制され、品質の優れたフィルムを得ることができる。 The total amount of the alkyl acrylate used in the shell layer is preferably 60% by mass or less, more preferably 50% by mass or less, still more preferably 40% by mass or less. When it exceeds 60% by mass, the dispersibility of the core/shell type rubber particles in the matrix tends to be poor, the mechanical strength and the transparency are likely to be poor, and further, foreign matter such as fish eyes is likely to occur. Also, in terms of productivity of the core/shell type rubber particles, it is easy to cause troubles such as the product tends to be coarse particles. The structural design element of such preferable core-shell type rubber particles may have only one, or two or more design elements may be used in combination. By having such a structure, the core/shell type rubber particles are easily dispersed in the acrylic resin according to the present invention easily, and there are few defects due to undispersion and aggregation when a film is formed, and strength, It is possible to obtain a film having excellent toughness, heat resistance, transparency and appearance, and suppressing whitening due to temperature change and stress, and having excellent quality.
 本発明におけるコア・シェル型ゴム粒子を乳化重合、懸濁重合等により製造する場合には、公知の重合開始剤を用いることができる。特に好ましい重合開始剤としては、過硫酸カリウム、過硫酸アンモニウム、過硫酸アンモニウム等の過硫酸塩、過リン酸ナトリウム等の過リン酸塩、アゾビスイソブチロニトリル等の有機アゾ化合物、クメンハイドロパーオキサイド、ターシャリーブチルハイドロパーオキサイド、1,1ジメチル-2ヒドロキシエチルハイドロパーオキサイド等のハイドロパーオキサイド化合物、ターシャリーブチルイソプロピルオキシカーボネート、ターシャリーブチルパーオキシブチレート等のパーエステル類、ベンゾイルパーオキサイド、ジブチルパーオキサイド、ラウリルパーオキサイド等の有機パーオキサイド化合物などが挙げられる。これらは熱分解型重合開始剤として使用してもよく、硫酸第一鉄などの触媒及びアスコルビン酸、ソジウムホルムアルデヒドスルホキシレート等の水溶性還元剤の存在下にレドックス型重合開始剤として使用しても良く、重合するべき単量体組成、層構造、重合温度条件等に応じて適宜選定すれば良い。 When the core/shell type rubber particles of the present invention are produced by emulsion polymerization, suspension polymerization, etc., a known polymerization initiator can be used. Particularly preferred polymerization initiators are potassium persulfate, ammonium persulfate, persulfates such as ammonium persulfate, perphosphates such as sodium perphosphate, organic azo compounds such as azobisisobutyronitrile, cumene hydroperoxide. , Tertiary butyl hydroperoxide, hydroperoxide compounds such as 1,1 dimethyl-2hydroxyethyl hydroperoxide, tertiary butyl isopropyloxy carbonate, peresters such as tertiary butyl peroxybutyrate, benzoyl peroxide, Examples thereof include organic peroxide compounds such as dibutyl peroxide and lauryl peroxide. These may be used as a thermal decomposition type polymerization initiator, and may be used as a redox type polymerization initiator in the presence of a catalyst such as ferrous sulfate and a water-soluble reducing agent such as ascorbic acid and sodium formaldehyde sulfoxylate. It may be selected appropriately depending on the monomer composition to be polymerized, the layer structure, the polymerization temperature conditions and the like.
 本発明におけるコア・シェル型ゴム粒子を乳化重合により製造する場合には、公知の乳化剤を用いて通常の乳化重合により製造することができる。公知の乳化剤としては、例えばアルキルスルフォン酸ナトリウム、アルキルベンゼンスルフォン酸ナトリウム、ジオクチルスルフォコハク酸ナトリウム、ラウリル硫酸ナトリウム、脂肪酸ナトリウム、ポリオキシエチレンラウリルエーテルリン酸ナトリウムなどのリン酸エステル塩等の陰イオン性界面活性剤や、アルキルフェノール類、脂肪族アルコール類とプロピレンオキサイド、エチレンオキサイドとの反応生成物等の非イオン性界面活性剤等が示される。これらの界面活性剤は単独で用いてもよく、2種以上併用してもよい。さらに要すれば、アルキルアミン塩等の陽イオン性界面活性剤を使用してもよい。このうち、得られたコア・シェル型ゴム粒子の熱安定性を向上させる観点から、特にはポリオキシエチレンラウリルエーテルリン酸ナトリウムなどのリン酸エステル塩(アルカリ金属、又はアルカリ土類金属)を用いて重合することが好ましい。乳化重合により得られるコア・シェル型ゴム粒子ラテックスは、噴霧乾燥、又は一般的に知られるように、ラテックスに凝固剤として電解質又は有機溶剤等を添加することでポリマー分を凝固し、適宜加熱・洗浄・水相の分離等の操作を実施してポリマー分の乾燥を行ない、塊状あるいは粉末状のコア・シェル型ゴム粒子が得られる。 When the core/shell type rubber particles in the present invention are produced by emulsion polymerization, they can be produced by ordinary emulsion polymerization using a known emulsifier. Known emulsifiers include, for example, sodium alkyl sulfonate, sodium alkylbenzene sulfonate, sodium dioctyl sulfosuccinate, sodium lauryl sulfate, sodium fatty acid, anionic salts such as sodium phosphate ester of polyoxyethylene lauryl ether phosphate. Surfactants and nonionic surfactants such as alkylphenols, reaction products of aliphatic alcohols with propylene oxide and ethylene oxide are shown. These surfactants may be used alone or in combination of two or more. Further, if necessary, a cationic surfactant such as an alkylamine salt may be used. Of these, from the viewpoint of improving the thermal stability of the obtained core-shell type rubber particles, a phosphate ester salt (alkali metal or alkaline earth metal) such as sodium polyoxyethylene lauryl ether phosphate is particularly used. It is preferable to polymerize. The core-shell type rubber particle latex obtained by emulsion polymerization is spray-dried, or, as is generally known, coagulates a polymer component by adding an electrolyte or an organic solvent as a coagulant to the latex, and heats appropriately. The polymer content is dried by carrying out operations such as washing and separation of the aqueous phase to obtain lump or powder core/shell type rubber particles.
 凝固剤としては、水溶性電解質や有機溶剤等、公知のものが使用できるが、得られた共重合体の成形時の熱安定性を向上させる観点や生産性の面からは、塩化マグネシウム又は硫酸マグネシウム等のマグネシウム塩や、酢酸カルシウムや塩化カルシウム等のカルシウム塩を用いることが好ましい。 As the coagulant, known ones such as a water-soluble electrolyte and an organic solvent can be used, but from the viewpoint of improving the thermal stability during molding of the obtained copolymer and from the viewpoint of productivity, magnesium chloride or sulfuric acid is used. It is preferable to use a magnesium salt such as magnesium or a calcium salt such as calcium acetate or calcium chloride.
 (屈折率)
 ゴム粒子は、フィルムを構成するアクリル樹脂(マトリクス樹脂とも言う)との屈折率差が0.015以下であることが好ましく、より好ましくは0.012以下、さらに好ましくは、0.01以下である。マトリクス樹脂との屈折率差が0.015以下であると、透明性に優れたフィルムを得ることが可能となる。上記屈折率条件を満たすための方法としては、マトリクス樹脂の各単量体の単位組成比を調整する方法、及び/又は、ゴム粒子の各層に使用される重合体及び/又は単量体の組成比を調整する方法等が挙げられる。
(Refractive index)
The difference in refractive index between the rubber particles and the acrylic resin (also referred to as matrix resin) constituting the film is preferably 0.015 or less, more preferably 0.012 or less, and further preferably 0.01 or less. .. When the difference in refractive index from the matrix resin is 0.015 or less, a film having excellent transparency can be obtained. As a method for satisfying the above refractive index condition, a method of adjusting a unit composition ratio of each monomer of the matrix resin, and/or a composition of a polymer and/or a monomer used for each layer of rubber particles Examples include a method of adjusting the ratio.
 《測定方法》
 マトリクス樹脂とゴム粒子の屈折率差は次のようにして測定することができる。
 まず、ゴム粒子については、ゴム粒子をプレス成形し、当該成形体の平均屈折率をレーザー屈折計にて測定しその値をゴム粒子の屈折率とする。
 同様に、マトリクス樹脂については、マトリクス樹脂を構成する材料(樹脂又は樹脂組成物)を成形し、当該成形体の平均屈折率をレーザー屈折計にて測定し、その値をマトリクス樹脂の屈折率とする。
 上記により測定されたマトリクス樹脂及びゴム粒子の屈折率の値の差を算出することにより屈折率差を求めることができる。
 なお、本実施の形態において、屈折率とは、23℃における550nmの波長の光に対する屈折率をいう。
"Measuring method"
The difference in refractive index between the matrix resin and the rubber particles can be measured as follows.
First, regarding rubber particles, the rubber particles are press-molded, the average refractive index of the molded body is measured by a laser refractometer, and the value is taken as the refractive index of the rubber particles.
Similarly, for the matrix resin, a material (resin or resin composition) forming the matrix resin is molded, the average refractive index of the molded body is measured by a laser refractometer, and the value is defined as the refractive index of the matrix resin. To do.
The refractive index difference can be obtained by calculating the difference in the refractive index values of the matrix resin and the rubber particles measured as described above.
In addition, in the present embodiment, the refractive index means a refractive index with respect to light having a wavelength of 550 nm at 23° C.
 《温度依存性》
 上記したマトリクス樹脂とゴム粒子との屈折率差は、0~50℃の範囲で同様に低い値となることが好ましい。そのためには、マトリクス樹脂とゴム粒子との屈折率温度依存性を同等にすることが好ましい。
《Temperature dependence》
The difference in the refractive index between the matrix resin and the rubber particles is preferably as low as possible in the range of 0 to 50°C. For that purpose, it is preferable that the matrix resin and the rubber particles have the same refractive index temperature dependence.
 (複屈折)
 本発明に係るアクリル樹脂フィルムは、延伸によるポリマーの配向状態にある場合があり、また使用時に応力を加えられる場合もある。このような場合でもフィルムとして複屈折を発現しないことが好ましく、そのためにはゴム粒子も配向や応力による複屈折を発現しないことが好ましい。
 例えば、WO2014/162370に記載された、配向複屈折が-15×10-4から15×10-4、光弾性定数が-10×10-12から10×10-12Pa-1であるグラフト共重合体も、本発明に係るゴム粒子として好ましく用いられる。
(Birefringence)
The acrylic resin film according to the present invention may be in a polymer orientation state by stretching, and may be stressed during use. Even in such a case, it is preferable that the film does not exhibit birefringence, and for that purpose, it is preferable that the rubber particles do not exhibit birefringence due to orientation or stress.
For example, a graft copolymer described in WO2014/162370 having an orientation birefringence of −15×10 −4 to 15×10 −4 and a photoelastic constant of −10×10 −12 to 10×10 −12 Pa −1. Polymers are also preferably used as the rubber particles according to the present invention.
 《制御方法》
 ゴム粒子を構成するモノマーの単独重合体自体の光弾性複屈折を小さくするのに適したモノマー種に関しては、光弾性定数が異符号となるモノマー種を組み合わせて使用すればよい。
<Control method>
Regarding the monomer species suitable for reducing the photoelastic birefringence of the homopolymer itself of the monomer constituting the rubber particles, the monomer species having different photoelastic constants may be used in combination.
 ポリマーの光弾性定数を設定する上で、参考になる具体的なモノマーの例を以下に記すが、これらに限定されるわけではない。([ ]内は対応するホモポリマーの光弾性定数)
 正の光弾性複屈折を示すモノマー:
 ベンジルメタクリレート [48.4×10-12Pa-1]
 ジシクロペンタニルメタクリレート [6.7×10-12Pa-1]
 スチレン [10.1×10-12Pa-1]
 パラクロロスチレン [29.0×10-12Pa-1
 負の光弾性複屈折を示すモノマー:
 メチルメタクリレート [-4.3×10-12Pa-1]
 2,2,2-トリフルオロエチルメタクリレート [-1.7×10-12Pa-1]
 2,2,2-トリクロロエチルメタクリレート [-10.2×10-12Pa-1]
 イソボルニルメタクリレート [-5.8×10-12Pa-1]
 共重合体の光弾性定数は、共重合に用いたモノマー種に対応するそれぞれのホモポリマーの光弾性定数との間に加成性が成り立つことが知られている。例えば、メチルメタクリレート(MMA)とベンジルメタクリレート(BzMA)の2元共重合系については、poly-MMA/BzMA=92/8(wt%)にて光弾性複屈折がほぼゼロになることが報告されている。また、2種以上のポリマー混合(アロイ)についても同様であり、各ポリマーが有する光弾性定数との間に加成性が成り立つ。以上のことから、本発明の光学樹脂材料、及び光学フィルムの光弾性複屈折が小さくなるように、ゴム粒子を構成するモノマーの単独重合体の光弾性定数を低くし、且つその配合量(wt%)を調整することが必要である。
Examples of specific monomers to be referred to in setting the photoelastic constant of the polymer are shown below, but the present invention is not limited thereto. (The value in [] is the photoelastic constant of the corresponding homopolymer)
Monomers that exhibit positive photoelastic birefringence:
Benzyl methacrylate [48.4×10-12Pa-1]
Dicyclopentanyl methacrylate [6.7×10-12 Pa-1]
Styrene [10.1×10-12Pa-1]
Parachlorostyrene [29.0 x 10-12 Pa-1
Monomers showing negative photoelastic birefringence:
Methyl methacrylate [-4.3×10-12Pa-1]
2,2,2-Trifluoroethyl methacrylate [-1.7×10-12Pa-1]
2,2,2-Trichloroethyl methacrylate [-10.2 x 10-12 Pa-1]
Isobornyl methacrylate [-5.8×10-12Pa-1]
It is known that the photoelastic constant of the copolymer has additivity with the photoelastic constant of each homopolymer corresponding to the monomer species used for the copolymerization. For example, regarding a binary copolymerization system of methyl methacrylate (MMA) and benzyl methacrylate (BzMA), it is reported that the photoelastic birefringence becomes almost zero at poly-MMA/BzMA=92/8 (wt %). ing. The same applies to a mixture (alloy) of two or more kinds of polymers, and the additivity is established with the photoelastic constant of each polymer. From the above, in order to reduce the photoelastic birefringence of the optical resin material and the optical film of the present invention, the photoelastic constant of the homopolymer of the monomer that constitutes the rubber particles is lowered, and the compounding amount (wt) is set. %) must be adjusted.
 また、共重合体ポリマーの配向複屈折は、共重合に用いたモノマー種に対応するそれぞれのホモポリマーの固有複屈折との間に加成性が成り立つことが知られている。また、2種以上のポリマー混合(アロイ)についても同様であり、各ポリマーが有する固有複屈折との間に加成性が成り立つ。ゴム粒子を構成するモノマーの単独重合体自体の配向複屈折を小さくするのに適したモノマー種に関しては、配向複屈折が異符号となるモノマー種を組み合わせて使用すればよい。 Also, it is known that the orientation birefringence of a copolymer polymer has an additivity with the intrinsic birefringence of each homopolymer corresponding to the monomer species used for the copolymerization. The same applies to a mixture (alloy) of two or more kinds of polymers, and the additivity is established with the intrinsic birefringence of each polymer. Regarding the monomer species suitable for reducing the orientation birefringence of the homopolymer itself of the monomer constituting the rubber particles, monomer species having different orientation birefringence may be used in combination.
 ポリマーの配向複屈折を設定する上で、参考になる具体的なモノマー(そのモノマーからなるホモポリマーの固有複屈折)の例を以下に記すが、これらに限定されるわけではない。なお、固有複屈折とは、ポリマーが完全に一方向に配向した状態のときの複屈折(配向複屈折)である。 [Examples] Specific examples of specific monomers (specific birefringence of homopolymers composed of the monomers) that are helpful in setting the orientation birefringence of the polymer are described below, but the present invention is not limited thereto. The intrinsic birefringence is birefringence (orientation birefringence) when the polymer is perfectly oriented in one direction.
 正の固有複屈折を示すポリマー:
 ポリベンジルメタクリレート [+0.002]
 ポリフェニレンオキサイド [+0.210]
 ビスフェノールAポリカーボネート [+0.106]
 ポリビニルクロライド [+0.027]
 ポリエチレンテレフタレート [+0.105]
 ポリエチレン [+0.044]
 負の固有複屈折を示すポリマー:
 ポリメチルメタクリレート [-0.0043]
 ポリスチレン [-0.100]
 以上、一部のポリマーの光弾性定数、配向複屈折のデータを記載したが、ポリマーによっては配向複屈折が「正」、光弾性定数が「負」など、両方の複屈折が同じ符号であるとは限らない。次表Iに一部のホモポリマーの配向複屈折と光弾性複屈折(定数)の符号の例を示す。
Polymers showing positive intrinsic birefringence:
Polybenzyl methacrylate [+0.002]
Polyphenylene oxide [+0.210]
Bisphenol A Polycarbonate [+0.106]
Polyvinyl chloride [+0.027]
Polyethylene terephthalate [+0.105]
Polyethylene [+0.044]
Polymers with negative intrinsic birefringence:
Polymethylmethacrylate [-0.0043]
Polystyrene [−0.100]
The data on the photoelastic constant and orientation birefringence of some polymers have been described above. However, depending on the polymer, the orientation birefringence is "positive" and the photoelastic constant is "negative". Not necessarily. Table I below shows examples of the signs of orientation birefringence and photoelastic birefringence (constant) of some homopolymers.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 例えば、poly(MMA/BzMA=82/18(wt%))付近の組成は配向複屈折がほぼゼロとなること、poly(MMA/BzMA=92/8(wt%))付近の組成は光弾性複屈折(定数)がほぼゼロとなることが知られている。 For example, the composition near poly(MMA/BzMA=82/18(wt%)) has almost zero orientation birefringence, and the composition near poly(MMA/BzMA=92/8(wt%)) is photoelastic. It is known that the birefringence (constant) becomes almost zero.
 光弾性複屈折と配向複屈折の両方を極めて小さく、理想的には両方ともほぼゼロにするためのポリマー組成の好適な例として、特許第4624845号記載の、poly(MMA/3FMA/BzMA=55.5/38.0/6.5)が挙げられる。ただし、このポリマー組成はメタクリル酸エステル系のモノマーのみで構成されているため、高温成形においてはジッパー解重合が生じて分子量の低下がおき、機械的強度の低下、着色、発泡等の課題がある。この解決方法として、少量のアクリル酸エステルを共重合させることが挙げられ、高温成形時のジッパー解重合による過度の分解を抑えることが可能となる。 As a preferable example of the polymer composition for making both the photoelastic birefringence and the orientation birefringence extremely small and ideally making both of them substantially zero, poly(MMA/3FMA/BzMA=55) described in Japanese Patent No. 4624845. 0.5/38.0/6.5). However, since this polymer composition is composed only of methacrylic acid ester-based monomers, in high temperature molding, zipper depolymerization occurs and the molecular weight decreases, which causes problems such as reduction in mechanical strength, coloring, and foaming. .. As a solution to this problem, copolymerization of a small amount of acrylic acid ester can be mentioned, and it becomes possible to suppress excessive decomposition due to zipper depolymerization during high temperature molding.
 ゴム粒子を構成するモノマーの単独重合体の組成に関しては特に限定はない。その中でも特に好適に使用されうるモノマー(単量体)を挙げるとすれば、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル、メタクリル酸エポキシシクロヘキシルメチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピル、メタクリル酸ジシクロペンタニル、メタクリル酸ジシクロペンテニルオキシエチル、2,2,2-トリフルオロエチルメタクリレート、2,2,2-トリクロロエチルメタクリレート、メタクリル酸イソボロニル、メタクリル酸フェニル、メタクリル酸フェノキシエチル、メタクリル酸ペンタメチルピペリジニル、メタクリル酸テトラメチルピペリジニル、メタクリル酸テトラヒドロフルフリル等のメタクリル酸エステル類;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸グリシジル、アクリル酸エポキシシクロヘキシルメチル、アクリル酸ベンジル、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、アクリル酸ジシクロペンタニル、アクリル酸ジシクロペンテニルオキシエチル、アクリル酸フェニル、アクリル酸フェノキシエチル、アクリル酸ペンタメチルピペリジニル、アクリル酸テトラメチルピペリジニル、アクリル酸テトラヒドロフルフリル等のアクリル酸エステル類;メタクリル酸、アクリル酸などのカルボン酸類及びそのエステル類;無水マレイン酸、無水シトラコン酸、ジメチル無水マレイン酸、ジクロロ無水マレイン酸、ブロモ無水マレイン酸、ジブロモ無水マレイン酸、フェニル無水マレイン酸、ジフェニル無水マレイン酸等の無置換及び/又は置換無水マレイン酸類;2-(ヒドロキシメチル)アクリル酸メチル、2-(ヒドロキシメチル)アクリル酸エチル、2-(ヒドロキシメチル)アクリル酸イソプロピル、2-(ヒドロキシメチル)アクリル酸ノルマルブチル、2-(ヒドロキシメチル)アクリル酸ターシャリーブチル等の(ヒドロキシアルキル)アクリル酸エステル;アクリロニトニル、メタクリロニトリルなどのビニルシアン類;スチレン、α-メチルスチレン、モノクロロスチレン、ジクロロスチレン等のビニルアレーン類;マレイン酸、フマル酸及びそれらのエステル等;塩化ビニル、臭化ビニル、クロロプレンなどのハロゲン化ビニル類;酢酸ビニル;エチレン、プロピレン、ブチレン、ブタジエン、イソブチレンなどのアルケン類;ハロゲン化アルケン類;アリルメタクリレート、ジアリルフタレート、トリアリルシアヌレート、モノエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、ジビニルベンゼンなどの多官能性モノマーが挙げられる。これらのビニル系単量体は単独で又は2種類以上を併用して使用することができる。特に複屈折制御の点から、応力に対してポリマー鎖が配向できる程度に多官能性モノマーを使用することが好ましいが、多官能性モノマーは使用しないことが特に好ましい。 There is no particular limitation on the composition of the homopolymer of the monomers constituting the rubber particles. Among them, monomers that can be particularly preferably used include, for example, methyl methacrylate, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, glycidyl methacrylate, epoxycyclohexyl methacrylate. Methyl, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, dicyclopentanyl methacrylate, dicyclopentenyloxyethyl methacrylate, 2,2,2-trifluoroethyl methacrylate, 2,2,2-trichloroethyl Methacrylic acid esters such as methacrylate, isobornyl methacrylate, phenyl methacrylate, phenoxyethyl methacrylate, pentamethylpiperidinyl methacrylate, tetramethylpiperidinyl methacrylate, tetrahydrofurfuryl methacrylate; methyl acrylate, ethyl acrylate , Butyl acrylate, 2-ethylhexyl acrylate, glycidyl acrylate, epoxycyclohexylmethyl acrylate, benzyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, dicyclopentanyl acrylate, dicycloacrylate Acrylic esters such as pentenyloxyethyl, phenyl acrylate, phenoxyethyl acrylate, pentamethylpiperidinyl acrylate, tetramethylpiperidinyl acrylate, tetrahydrofurfuryl acrylate; carboxylic acids such as methacrylic acid and acrylic acid And their esters; unsubstituted and/or substituted maleic anhydride, citraconic anhydride, dimethyl maleic anhydride, dichloromaleic anhydride, bromomaleic anhydride, dibromomaleic anhydride, phenylmaleic anhydride, diphenylmaleic anhydride, etc. Maleic anhydride; methyl 2-(hydroxymethyl)acrylate, ethyl 2-(hydroxymethyl)acrylate, isopropyl 2-(hydroxymethyl)acrylate, normal butyl 2-(hydroxymethyl)acrylate, 2-(hydroxymethyl) ) (Hydroxyalkyl)acrylic acid esters such as tertiary butyl acrylate; vinyl cyanes such as acrylonitonyl and methacrylonitrile; vinyl arenes such as styrene, α-methylstyrene, monochlorostyrene, dichlorostyrene; maleic acid, fumaric acid And their esters; vinyl halides such as vinyl chloride, vinyl bromide, chloroprene; vinegar Vinyl acetate; alkenes such as ethylene, propylene, butylene, butadiene and isobutylene; halogenated alkenes; allyl methacrylate, diallyl phthalate, triallyl cyanurate, monoethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate , And polyfunctional monomers such as divinylbenzene. These vinyl monomers can be used alone or in combination of two or more kinds. Particularly, from the viewpoint of controlling birefringence, it is preferable to use a polyfunctional monomer to such an extent that the polymer chains can be oriented with respect to stress, but it is particularly preferable not to use a polyfunctional monomer.
 上記のモノマーのうち、複屈折を小さくするという観点からは、分子構造中に、脂環式構造、複素環式構造又は芳香族基等の環構造を有するビニル系単量体が好ましく、中でも、脂環式構造、複素環式構造又は芳香族基を有するビニル系単量体を含有することがより好ましい。例えば、脂環式構造を有する単量体としては、(メタ)アクリル酸ジシクロペンタニル、ジシクロペンテニルオキシエチル(メタ)アクリレートなどが挙げられる。また、芳香族基を有する単量体としては、スチレン、α-メチルスチレン、モノクロロスチレン、ジクロロスチレン等のビニルアレーン類、又は(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェニル、(メタ)アクリル酸フェノキシエチル等を挙げることができる。複素環式構造を有する単量体としては、ペンタメチルピペリジニル(メタ)アクリレート、テトラメチルピペリジニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート等を挙げることができる。脂環式構造を有するビニル系単量体においては、その環構造は、多環式構造が好ましく、縮合環式構造がより好ましい。脂環式構造、複素環式構造又は芳香族基を有するビニル系単量体としては、下記式(4c)で表される単量体であることが好ましい。 Among the above monomers, from the viewpoint of reducing the birefringence, a vinyl-based monomer having a ring structure such as an alicyclic structure, a heterocyclic structure or an aromatic group in the molecular structure is preferable, and among them, It is more preferable to contain a vinyl-based monomer having an alicyclic structure, a heterocyclic structure or an aromatic group. Examples of the monomer having an alicyclic structure include dicyclopentanyl (meth)acrylate and dicyclopentenyloxyethyl (meth)acrylate. Examples of the monomer having an aromatic group include vinyl arenes such as styrene, α-methylstyrene, monochlorostyrene and dichlorostyrene, or benzyl (meth)acrylate, phenyl (meth)acrylate, (meth)acrylic. Examples thereof include phenoxyethyl acid. Examples of the monomer having a heterocyclic structure include pentamethylpiperidinyl (meth)acrylate, tetramethylpiperidinyl (meth)acrylate, and tetrahydrofurfuryl (meth)acrylate. In the vinyl-based monomer having an alicyclic structure, its ring structure is preferably a polycyclic structure, more preferably a condensed ring structure. The vinyl-based monomer having an alicyclic structure, a heterocyclic structure or an aromatic group is preferably a monomer represented by the following formula (4c).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記式(4c)において、Rは、水素原子、又は、置換もしくは無置換で直鎖状もしくは分岐状の炭素数1~12のアルキル基を表す。R10は、置換もしくは無置換の炭素数1~24の芳香族基、又は、置換もしくは無置換の炭素数1~24の脂環式基であり、単素環式構造又は複素環式構造を有する。R及びR10が有していてもよい置換基としては、例えば、ハロゲン、ヒドロキシ基、カルボキシ基、アルコキシ基、カルボニル基(ケトン構造)、アミノ基、アミド基、エポキシ基、炭素-炭素間の二重結合、エステル基(カルボキシ基の誘導体)、メルカプト基、スルホニル基、スルホン基、及びニトロ基からなる群より選択される少なくとも1種が挙げられる。中でも、ハロゲン、ヒドロキシ基、カルボキシ基、アルコキシ基、及びニトロ基からなる群より選択される少なくとも1種が好ましい。lは1~4の整数を示し、好ましくは0又は1である。mは0~1の整数を示す。nは0~10の整数を示し、好ましくは0~2の整数を示し、より好ましくは0又は1である。 In the above formula (4c), R 9 represents a hydrogen atom or a substituted or unsubstituted linear or branched alkyl group having 1 to 12 carbon atoms. R 10 is a substituted or unsubstituted aromatic group having 1 to 24 carbon atoms, or a substituted or unsubstituted alicyclic group having 1 to 24 carbon atoms, and has a monocyclic structure or a heterocyclic structure. Have. Examples of the substituent which R 9 and R 10 may have include halogen, hydroxy group, carboxy group, alkoxy group, carbonyl group (ketone structure), amino group, amide group, epoxy group, carbon-carbon group. And at least one selected from the group consisting of a double bond, an ester group (a derivative of a carboxy group), a mercapto group, a sulfonyl group, a sulfone group, and a nitro group. Among them, at least one selected from the group consisting of halogen, hydroxy group, carboxy group, alkoxy group, and nitro group is preferable. l represents an integer of 1 to 4, preferably 0 or 1. m represents an integer of 0 to 1. n represents an integer of 0 to 10, preferably an integer of 0 to 2, and more preferably 0 or 1.
 中でも、脂環式構造、複素環式構造又は芳香族基を有するビニル系単量体は、脂環式構造、複素環式構造又は芳香族基を有する(メタ)アクリル系単量体が好ましい。具体的には、上記式(4c)において、Rが水素原子、もしくは、置換もしくは無置換で直鎖状又は分岐状の炭素数1のアルキル基である(メタ)アクリレート系単量体であることが好ましく、上記式(4c)において、R10が置換もしくは無置換の炭素数1~24の芳香族基、又は、置換もしくは無置換の炭素数1~24の脂環式基であり、単素環式構造を有する(メタ)アクリレート系単量体であることがより好ましい。また、上記式(4c)において、lは1~2の整数である、nは0~2の整数である、(メタ)アクリレート系単量体であることが好ましい。
 式(4)で表される(メタ)アクリレート系単量体の中でも、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸フェノキシエチルが好ましい。
Among them, the vinyl-based monomer having an alicyclic structure, a heterocyclic structure or an aromatic group is preferably a (meth)acrylic monomer having an alicyclic structure, a heterocyclic structure or an aromatic group. Specifically, in the above formula (4c), R 9 is a (meth)acrylate-based monomer in which R 9 is a hydrogen atom or a substituted or unsubstituted linear or branched C 1 alkyl group. In the above formula (4c), R 10 is preferably a substituted or unsubstituted aromatic group having 1 to 24 carbon atoms, or a substituted or unsubstituted alicyclic group having 1 to 24 carbon atoms, A (meth)acrylate-based monomer having a cyclic structure is more preferable. Further, in the formula (4c), l is an integer of 1 to 2, and n is an integer of 0 to 2, and is preferably a (meth)acrylate-based monomer.
Among the (meth)acrylate-based monomers represented by the formula (4), benzyl (meth)acrylate, dicyclopentanyl (meth)acrylate, and phenoxyethyl (meth)acrylate are preferable.
 また、上記式(4c)で表される単量体は、ゴム粒子を構成するモノマーの単独重合体100質量%のうち、1~99質量%含まれることが好ましく、より好ましくは1~70質量%、さらにより好ましくは1~50質量%含まれることが好ましい。 The monomer represented by the above formula (4c) is preferably contained in an amount of 1 to 99% by mass, more preferably 1 to 70% by mass, based on 100% by mass of the homopolymer of the monomer constituting the rubber particles. %, and even more preferably 1 to 50% by mass.
 ゴム粒子を構成するモノマーの単独重合体は全部混合して1段で重合してもよい。ゴム粒子を構成するモノマーの単独重合体を単独で重合した際に得られるポリマーからなる成形体の複屈折が本発明を満たすのに十分な非複屈折性を有しておれば、単量体組成を変化させて2段以上で重合してもよい。 The homopolymers of the monomers constituting the rubber particles may be mixed and polymerized in one stage. If the birefringence of the molded product composed of the polymer obtained by polymerizing the homopolymer of the monomer constituting the rubber particles alone has sufficient non-birefringence to satisfy the present invention, the monomer The composition may be changed and polymerization may be carried out in two or more stages.
 《測定方法》
 ゴム粒子の複屈折を測定するためには、屈折率の測定と同様にゴム粒子のみを単独成形して板状又はフィルム状のサンプルを作成する。このサンプルを用いて通常の複屈折測定を行えばよい。
"Measuring method"
In order to measure the birefringence of the rubber particles, only the rubber particles are separately molded in the same manner as in the measurement of the refractive index to prepare a plate-shaped or film-shaped sample. Ordinary birefringence measurement may be performed using this sample.
 (粒子径)
 前記コア・シェル型ゴム粒子の好ましい粒子径としては、軟質のコア層の粒子径が1~500nmであることが好ましく、10~400nmであることがより好ましく、50~300nmであることがさらに好ましく、70~300nmであることが特に好ましい。
 前記コア・シェル型ゴム粒子のコア層の粒子径が1nm未満であると、(メタ)アクリル系樹脂の機械的強度の向上が十分ではなく、500nmよりも大きいと、(メタ)アクリル系樹脂の耐熱性や透明性が損なわれるおそれがある。
(Particle size)
The core/shell type rubber particles preferably have a particle diameter of the soft core layer of 1 to 500 nm, more preferably 10 to 400 nm, and further preferably 50 to 300 nm. , 70 to 300 nm is particularly preferable.
If the particle diameter of the core layer of the core-shell type rubber particles is less than 1 nm, the mechanical strength of the (meth)acrylic resin is not sufficiently improved, and if it is more than 500 nm, the (meth)acrylic resin Heat resistance and transparency may be impaired.
 ここで、粒子径は、例えば、MICROTRAC UPA150(日機装株式会社製)を用いる動的光散乱法により求めたり、濁度計を用いて単位重量辺りの重合液の透過度を測定する濁度法により求めることができる。また、コア・シェル架橋ゴム粒子とポリメチルメタクリレート(例えば、住友化学製スミペックスEX)とを20:80の重量比でブレンドしたコンパウンドを成形し得られたフィルムを、透過型電子顕微鏡(日本電子製 JEM-1200EX)にて、加速電圧80kV、RuO4染色超薄切片法で撮影し、得られた写真からゴム粒子画像を無作為に100個選択し、それらの粒子径の平均値を求めることもできる。 Here, the particle size is obtained by, for example, a dynamic light scattering method using MICROTRAC UPA150 (manufactured by Nikkiso Co., Ltd.), or by a turbidity method in which the permeation rate of the polymerization solution per unit weight is measured using a turbidimeter. You can ask. In addition, a film obtained by molding a compound obtained by blending core/shell crosslinked rubber particles and polymethylmethacrylate (for example, Sumipex EX manufactured by Sumitomo Chemical Co., Ltd.) in a weight ratio of 20:80 was used as a transmission electron microscope (manufactured by JEOL Ltd.). (JEM-1200EX), it is also possible to take an image with an acceleration voltage of 80 kV by a RuO4 stained ultrathin section method, randomly select 100 rubber particle images from the obtained photographs, and obtain the average value of those particle diameters. ..
 (ゴム粒子分散液・分散機) 本発明に係るゴム粒子をアクリル樹脂フィルムに含有させる方法としては、まずゴム粒子の分散液を作成し、その分散液をアクリル樹脂を含むドープに均一に添加し、そのドープを溶液流延してゴム粒子を含有するアクリル樹脂フィルムを得ることが好ましい。 (Rubber Particle Dispersion Liquid/Disperser) As a method of incorporating the rubber particles according to the present invention into an acrylic resin film, first, a dispersion liquid of rubber particles is prepared, and the dispersion liquid is uniformly added to a dope containing an acrylic resin. It is preferable that the dope be solution-cast to obtain an acrylic resin film containing rubber particles.
 ゴム粒子分散液は、原料であるゴム粒子粉体と有機溶媒とを主な成分とする。ゴム粒子が分散し、分散液を調製できる範囲において、使用できる有機溶媒は特に限定されない。
 本発明で用いられる有機溶媒は、例えばジクロロメタン、クロロホルムの如き塩素系溶媒、炭素原子数が3~12の鎖状炭化水素、環状炭化水素、芳香族炭化水素、エステル、ケトン、エーテルから選ばれる溶媒が好ましい。エステル、ケトン及び、エーテルは、環状構造を有していてもよい。炭素原子数が3~12の鎖状炭化水素類の例としては、ヘキサン、オクタン、イソオクタン、デカンなどが挙げられる。炭素原子数が3~12の環状炭化水素類としてはシクロペンタン、シクロヘキサン、デカリン及びその誘導体が挙げられる。炭素原子数が3~12の芳香族炭化水素としては、ベンゼン、トルエン、キシレンなどが挙げられる。炭素原子数が3~12のエステル類の例には、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテート及びペンチルアセテートが挙げられる。炭素原子数が3~12のケトン類の例には、アセトン、メチルエチルケトン、ジエチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン及びメチルシクロヘキサノンが挙げられる。炭素原子数が3~12のエーテル類の例には、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4-ジオキサン、1,3-ジオキソラン、テトラヒドロフラン、アニソール及びフェネトールが挙げられる。
The rubber particle dispersion contains rubber particle powder as a raw material and an organic solvent as main components. The organic solvent that can be used is not particularly limited as long as the rubber particles are dispersed and a dispersion can be prepared.
The organic solvent used in the present invention is, for example, a chlorine-based solvent such as dichloromethane or chloroform, a solvent selected from chain hydrocarbons having 3 to 12 carbon atoms, cyclic hydrocarbons, aromatic hydrocarbons, esters, ketones and ethers. Is preferred. The ester, ketone and ether may have a cyclic structure. Examples of chain hydrocarbons having 3 to 12 carbon atoms include hexane, octane, isooctane, decane and the like. Examples of cyclic hydrocarbons having 3 to 12 carbon atoms include cyclopentane, cyclohexane, decalin and derivatives thereof. Examples of the aromatic hydrocarbon having 3 to 12 carbon atoms include benzene, toluene and xylene. Examples of the ester having 3 to 12 carbon atoms include ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate and pentyl acetate. Examples of ketones having 3 to 12 carbon atoms include acetone, methyl ethyl ketone, diethyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone and methylcyclohexanone. Examples of ethers having 3 to 12 carbon atoms include diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane, tetrahydrofuran, anisole and phenetole.
 2種類以上の官能基を有する有機溶媒の例には、2-エトキシエチルアセテート、2-メトキシエタノール及び2-ブトキシエタノールが挙げられる。本発明に係るゴム粒子分散液の調製方法において用いられる有機溶媒は、1種類の有機溶媒を単独で用いてもよく、2種類以上の有機溶媒を任意の割合で混合して用いてもよい。
 本発明に好ましく用いられる有機溶媒としては、ドープとの混和性の観点でジクロロメタン、低級アルコール、及びその混合物が挙げられる。ゴム粒子の分散性観点からはメタノール、エタノール等の親水性有機溶媒が好ましく用いられる。
 ゴム粒子の分散性のため、従来公知の粒子分散安定化技術としてアニオン系、カチオン系、ノニオン系の各種界面活性剤や、立体反発効果を得るためのポリマーも分散剤として好ましく添加される。分散剤としては、ゴム粒子合成時に用いる分散剤をそのまま用いてもよいし、新たに同種の分散剤を添加してもよいし、さらに新たな別種の分散剤を添加してもよい。
 特に、分散剤としてアクリル樹脂を用い、さらに該分散剤の存在下で微粒子を分散させることが好ましい。この時のアクリル樹脂としては、分子量が1000~10万の比較的低分子量のものが好ましい。高分子量のアクリル樹脂を分散剤として用いると、橋掛け凝集を発生させてゴム粒子どうしの凝集を誘発することがある。
 ゴム粒子分散液中のゴム粒子の含有量は1~50%が好ましい。低含有率だと、必要なゴム粒子の量に対し、有機溶媒の量が多くなり、添加した後のドープの希釈度が高くなり好ましくない。高含有率の場合はゴム粒子分散液の分散安定性が低くなるため好ましくない。より好ましい含有量は5~20%である。
Examples of the organic solvent having two or more kinds of functional groups include 2-ethoxyethyl acetate, 2-methoxyethanol and 2-butoxyethanol. As the organic solvent used in the method for preparing a rubber particle dispersion according to the present invention, one kind of organic solvent may be used alone, or two or more kinds of organic solvents may be mixed and used at an arbitrary ratio.
Examples of the organic solvent preferably used in the present invention include dichloromethane, lower alcohols, and mixtures thereof from the viewpoint of miscibility with the dope. From the viewpoint of dispersibility of rubber particles, hydrophilic organic solvents such as methanol and ethanol are preferably used.
Due to the dispersibility of rubber particles, various conventional anionic, cationic and nonionic surfactants and polymers for obtaining a steric repulsion effect are preferably added as dispersants as conventionally known particle dispersion stabilizing techniques. As the dispersant, the dispersant used at the time of synthesizing the rubber particles may be used as it is, a dispersant of the same kind may be newly added, or a dispersant of another kind may be further added.
In particular, it is preferable to use an acrylic resin as the dispersant and further disperse the fine particles in the presence of the dispersant. The acrylic resin at this time is preferably a relatively low molecular weight one having a molecular weight of 1,000 to 100,000. When a high molecular weight acrylic resin is used as a dispersant, it may cause cross-linking aggregation and induce aggregation of rubber particles.
The content of rubber particles in the rubber particle dispersion is preferably 1 to 50%. When the content is low, the amount of the organic solvent is large with respect to the amount of the necessary rubber particles, and the degree of dilution of the dope after the addition is high, which is not preferable. A high content is not preferable because the dispersion stability of the rubber particle dispersion becomes low. A more preferable content is 5 to 20%.
 本発明に係るゴム粒子分散液を作成するにあたり、ゴム粒子の原料粉体と有機溶媒とが混和されてから0.1秒~1分の間に分散処理がなされることが好ましい。さらに、分散処理はバッチ処理よりもインライン処理の方が好ましく、インライン処理で分散された分散液が、停滞することなくそのままドープに添加されることが好ましい。
 逆に、バッチ分散でゴム粒子分散液を作成し、タンクに一定時間貯蔵してからドープに添加することも好ましく行われる。この場合、貯蔵期間中にゴム粒子が凝集を起こして分散液が増粘することなども起こりやすいため、貯蔵期間中は絶えず撹拌して流動を保つことが好ましい。
 有機溶媒がメチレンクロライドを主成分とする場合、その比重が大きいためゴム粒子がうまく混和しにくく、継子を発生させることがある。そのため最初の混和状態は大量のゴム粒子粉体と大量の有機溶媒から混じり合わせるのではなく、互いに少量の状態で混和させることが好ましい。すなわち、ゴム粒子粉体と有機溶媒とがオンラインで計量ののち提供され、0.1~10L程度の小さな空間で最初の混和がなされ、順次分散機へと送り込まれるインライン混合が好ましい。インライン混合装置としては、例えば(株)粉研パウテックスのフロージェットミキサー連続噴射混合機、IKA社製インライン型循環式 固液混合・分散装置 CMXなどが挙げられる。
In preparing the rubber particle dispersion according to the present invention, it is preferable that the dispersion treatment is performed within 0.1 second to 1 minute after the raw material powder of the rubber particles and the organic solvent are mixed. Furthermore, the dispersion treatment is preferably an inline treatment rather than a batch treatment, and the dispersion liquid dispersed by the inline treatment is preferably added to the dope as it is without stagnation.
Conversely, it is also preferable to prepare a rubber particle dispersion by batch dispersion, store it in a tank for a certain period of time, and then add it to the dope. In this case, rubber particles tend to agglomerate during the storage period to increase the viscosity of the dispersion liquid, and therefore it is preferable to constantly stir and maintain the flow during the storage period.
When the organic solvent contains methylene chloride as a main component, its specific gravity is large, so that the rubber particles are difficult to mix well and a step may be generated. Therefore, it is preferable that the first mixing state is not a mixture of a large amount of rubber particle powder and a large amount of an organic solvent, but a small amount of each other. That is, it is preferable to use in-line mixing in which the rubber particle powder and the organic solvent are weighed and provided online, first mixed in a small space of about 0.1 to 10 L, and then sequentially fed to the disperser. Examples of the in-line mixing device include a flow jet mixer continuous injection mixer manufactured by Koken Powtex Co., Ltd., and an in-line circulation type solid-liquid mixing/dispersing device CMX manufactured by IKA.
 ゴム粒子を分散する分散機は、通常の分散機が使用できる。分散機は、大きく分けてメディア分散機とメディアレス分散機に分けられる。メディア分散機としては、ボールミル、サンドミル、ダイノミルなどが挙げられる。メディアレス分散機としては、超音波型、遠心型、高圧型などがあるが、本発明においては、高圧分散装置が好ましい。 A normal disperser can be used as the disperser for dispersing the rubber particles. Dispersers are roughly classified into media dispersers and medialess dispersers. Examples of the media disperser include a ball mill, a sand mill and a dyno mill. As the medialess disperser, there are an ultrasonic type, a centrifugal type, a high pressure type, and the like. In the present invention, a high pressure dispersing device is preferable.
 高圧分散装置は、微粒子と溶媒を混合した組成物を、細管中に高速通過させることで、高剪断や高圧状態など特殊な条件を作りだす装置である。高圧分散装置で処理することにより、例えば、管径1~2000μmの細管中で装置内部の最大圧力条件が9.8×10N以上であることが好ましい。さらに好ましくは1.96×10N以上である。またその際、最高到達速度が100m/sec以上に達するもの、伝熱速度が100kcal/hr以上に達するものが好ましい。
 上記のような高圧分散装置には、MicrofluidicsCorporation社製の超高圧ホモジナイザー(2商品名マイクロフルイダイザー)又はナノマイザー社製ナノマイザー、又はウルトラタラックスがあり、他にもマントンゴーリン型高圧分散装置、例えばイズミフードマシナリ製ホモゲナイザー、三和機械株式会社製、品番UHN-01等が挙げられる。
 インライン処理とするためにこれらの分散機のうち複数を直列又は並列に接続することも好ましく行われる。例えば、フロージェットミキサーで処理された混和液を、マントンゴーリン型高圧分散装置に導入する前に、乳化分散機(例えば、(株)マツボー製マイルダー)であらかじめ多少の分散処理をしておくことなども好ましく行われる。
得られた分散液は粗大凝集粒子を含むことがあり、これをストレーナやフィルターで取り除くことが好ましい。この時の好ましいろ過精度は5μm~500μmである。
The high-pressure dispersing device is a device that creates special conditions such as high shear and high-pressure state by passing a composition obtained by mixing fine particles and a solvent at high speed through a thin tube. It is preferable that the maximum pressure condition inside the apparatus is 9.8×10 2 N or more in a thin tube having a tube diameter of 1 to 2000 μm by processing with a high-pressure dispersion apparatus. More preferably, it is 1.96×10 3 N or more. At that time, it is preferable that the maximum reaching speed is 100 m/sec or more and the heat transfer speed is 100 kcal/hr or more.
The high-pressure disperser as described above includes an ultrahigh-pressure homogenizer manufactured by Microfluidics Corporation (2 brand name: Microfluidizer) or Nanomizer manufactured by Nanomizer, or Ultra Turrax. Examples include Food Machinery homogenizer, Sanwa Machinery Co., Ltd., product number UHN-01.
It is also preferable to connect a plurality of these dispersers in series or in parallel for in-line processing. For example, before introducing the admixture treated with a flow jet mixer into a Manton-Gorlin type high-pressure disperser, some dispersion treatment should be performed in advance with an emulsifying disperser (eg, Milder made by Matsubo Co., Ltd.). Is also preferably performed.
The obtained dispersion may contain coarse aggregated particles, which are preferably removed by a strainer or a filter. The preferable filtration accuracy at this time is 5 μm to 500 μm.
 (フィルム中の構造)
 本発明に係るアクリル樹脂フィルム中におけるゴム粒子の状態としては、一次粒子が均一に単分散されている状態が最も好ましい。それとは逆に、本発明の主旨に反しない範囲で、緩やかな凝集や偏在があってもよい。
 例えば、ゴム粒子の存在濃度がフィルム表層付近に大きい形態や、逆にフィルム中心層付近に大きい形態なども目的に応じて選択できる。
 個々のゴム粒子の粒子形状については、真球状、扁平状、棒状など任意に選択できる。フィルムの表面凹凸に影響が少ないため、扁平形状が好ましく、扁平な面がフィルム面と平行に存在することが好ましい。
(Structure in film)
The state of rubber particles in the acrylic resin film according to the present invention is most preferably a state in which primary particles are uniformly and monodispersed. On the contrary, moderate aggregation or uneven distribution may occur within the range not deviating from the gist of the present invention.
For example, a mode in which the concentration of rubber particles is large near the surface layer of the film, or conversely, a mode in which the concentration is large near the center layer of the film can be selected according to the purpose.
The particle shape of each rubber particle can be arbitrarily selected such as a spherical shape, a flat shape, or a rod shape. A flat shape is preferable because the surface unevenness of the film is less affected, and it is preferable that the flat surface is parallel to the film surface.
 (3)セルロースアシレート
 本発明に係るアクリル樹脂フィルムは、ドープ中にセルロースアシレート系樹脂を微量添加することによって、添加剤起因の異物溶解性が増し、異物故障低減の効果が顕著になる。アクリル樹脂に溶解しない添加剤に起因する異物が、極性の高いセルロースアシレート系樹脂に相溶する為、異物が大幅に減少するものと推定される。
(3) Cellulose Acylate In the acrylic resin film according to the present invention, by adding a very small amount of a cellulose acylate resin to the dope, the solubility of foreign matter due to the additive is increased, and the foreign matter failure reduction effect becomes remarkable. It is presumed that foreign substances resulting from the additives that are not soluble in the acrylic resin are compatible with the highly polar cellulose acylate resin, so that the foreign substances are significantly reduced.
 また、フィルムの表面に機能層を塗布する際の塗布性が向上し、ハジキや塗布むらを低減する観点から、少量のセルロースアシレートを併用することが好ましい。さらに、セルロースアシレート樹脂が入ることで、ハードコート基材との密着性が増し、ハードコートフィルムとしての硬度を上げることができる。 Further, it is preferable to use a small amount of cellulose acylate in combination, from the viewpoint of improving the coating property when coating the functional layer on the surface of the film and reducing cissing and coating unevenness. Further, by containing the cellulose acylate resin, the adhesion to the hard coat substrate is increased, and the hardness of the hard coat film can be increased.
 特に好適なセルロースアシレートとしては、アシル基の置換度が2.50~2.98の範囲のものが挙げられ、アシル基がアセチル基、プロピオニル基及びブチリル基から選ばれる少なくとも一つのものである。具体的にはセルローストリアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネートブチレート等を挙げることができ、本発明においては、セルローストリアセテート、セルロースアセテートプロピオネート及びセルロースアセテートブチレートが好ましい。アセチル基の置換度が1.40以上であることが好ましい。セルロースアシレートの原料となるセルロースは特に限定はなく、綿花リンター、木材パルプ、ケナフなどを用いることができる。これらを混合して使用してもよい。綿花リンターから合成されたセルロースアシレートの比率が60質量%以上であることが好ましく、85質量%以上がさらに好ましく、100質量%であることが最も好ましい。セルロースアシレートの合成方法は、特に限定はないが、例えば、特開平10-45804号公報に記載の方法で合成することができる。アシル基の置換度の測定方法は、ASTM-D817-96により測定することができる。セルロースアシレートの数平均分子量は、偏光板用保護フィルムとして好ましい機械的強度を得るためには、70000~300000の範囲内が好ましく、さらに80000~200000の範囲内が好ましい。 Particularly preferred cellulose acylates include those having an acyl group substitution degree in the range of 2.50 to 2.98, and the acyl group is at least one selected from an acetyl group, a propionyl group and a butyryl group. .. Specifically, cellulose triacetate, cellulose acetate propionate, cellulose acetate butyrate, cellulose propionate, cellulose butyrate, cellulose acetate propionate butyrate and the like can be mentioned, in the present invention, cellulose triacetate, cellulose Acetate propionate and cellulose acetate butyrate are preferred. The substitution degree of the acetyl group is preferably 1.40 or more. Cellulose as a raw material of cellulose acylate is not particularly limited, and cotton linter, wood pulp, kenaf and the like can be used. You may mix and use these. The ratio of cellulose acylate synthesized from cotton linter is preferably 60% by mass or more, more preferably 85% by mass or more, and most preferably 100% by mass. The method for synthesizing cellulose acylate is not particularly limited, but it can be synthesized, for example, by the method described in JP-A-10-45804. The acyl group substitution degree can be measured by ASTM-D817-96. The number average molecular weight of cellulose acylate is preferably in the range of 70,000 to 300,000, and more preferably in the range of 80,000 to 200,000 in order to obtain a mechanical strength preferable as a protective film for a polarizing plate.
 (4)有機増粘剤
 本発明のアクリル樹脂フィルムの製造方法では、特開2005-314636号公報記載の下記有機増粘剤を、流延性を向上し横段やむらの発生を改良する観点から、添加することが好ましい。
(4) Organic Thickener In the method for producing an acrylic resin film of the present invention, the following organic thickeners described in JP-A-2005-314636 are used from the viewpoint of improving the castability and improving the occurrence of horizontal streaks and unevenness. , Is preferably added.
 本発明のように有機溶媒を用いた流延法は生産性の観点からは非常に有利である反面、流延直後の溶媒乾燥を一定に保つことが容易でなく、面状むらが生じやすい。ここで言う面状むらとは、流延後のレベリング不良に起因するスジや、溶媒乾燥速度差に起因する乾燥むら、乾燥風で引き起こされる厚さむらである風むらのことである。 The casting method using an organic solvent as in the present invention is very advantageous from the viewpoint of productivity, but on the other hand, it is not easy to keep the solvent drying constant immediately after casting, and uneven surface is likely to occur. The term "planar unevenness" as used herein means streaks caused by poor leveling after casting, uneven drying caused by a difference in solvent drying rate, and uneven thickness caused by dry air.
 均一な膜を形成しつつ、むらを防止するための一手段として、塗布液の粘度を高めて流動防止する方法が考えられる。ドープの粘度を上昇させるためにはポリマー等の増粘剤を添加することが知られているが、単にドープの粘度を高めることは、レベリング性を悪化させ、流延時にスジが発生することにつながる。乾燥時のむら発生も、流延時のスジ発生も防止する手段として、チキソトロピーをもつ添加剤(以下チキソ剤)を加えることにより、ドープにチキソトロピーを付与する方法が好ましい。 As a means for preventing unevenness while forming a uniform film, a method of increasing the viscosity of the coating liquid to prevent flow can be considered. It is known to add a thickener such as a polymer in order to increase the viscosity of the dope, but simply increasing the viscosity of the dope deteriorates the leveling property and causes streaks during casting. Connect As a means for preventing unevenness during drying and streaking during casting, a method of adding thixotropy to the dope by adding an additive having a thixotropy (hereinafter, thixotropic agent) is preferable.
 そのため、
 [1]下記条件(a)を満たす、下記一般式(1b)で表される化合物からなる有機溶剤系増粘剤を用いることが、好ましい、
 一般式(1b)
  (R)t-Z-(B)s
 式中、Rは、炭素数4以上の少なくとも8個のフッ素原子で置換されたアルキル基を表し、Zは(t+s)価の連結基を表し、Bは置換若しくは無置換のアルキル基、アリール基、又はヘテロ環基を表す。tは1~6までの整数であり、sは1~6までの整数である。
for that reason,
[1] It is preferable to use an organic solvent-based thickener composed of a compound represented by the following general formula (1b), which satisfies the following condition (a):
General formula (1b)
(R)t-Z-(B)s
In the formula, R represents an alkyl group having 4 or more carbon atoms and substituted with at least 8 fluorine atoms, Z represents a (t+s)-valent linking group, and B represents a substituted or unsubstituted alkyl group or aryl group. Or represents a heterocyclic group. t is an integer of 1 to 6, and s is an integer of 1 to 6.
 式中、Rは、炭素数4以上の少なくとも8個のフッ素原子で置換されたアルキル基を表し、Rは少なくとも8個のフッ素原子で置換されていればよく、直鎖状、分岐状及び環状のいずれの構造であってもよい。また、フッ素原子以外の置換基でさらに置換されていてもよいし、フッ素原子のみで置換されていてもよい。Rのフッ素原子以外の置換基としては、アルケニル基、アリール基、アルコキシル基、フッ素以外のハロゲン原子、ヒドロキシ基、アリールオキシカルボニル基、アルコキシカルボニル基、アシルオキシ基、アシルアミノ基、カルバモイル基等が挙げられる。 In the formula, R represents an alkyl group having 4 or more carbon atoms and substituted with at least 8 fluorine atoms, R may be substituted with at least 8 fluorine atoms, and may be linear, branched or cyclic. Any structure of Further, it may be further substituted with a substituent other than a fluorine atom, or may be substituted only with a fluorine atom. Examples of the substituent other than the fluorine atom of R include an alkenyl group, an aryl group, an alkoxyl group, a halogen atom other than fluorine, a hydroxy group, an aryloxycarbonyl group, an alkoxycarbonyl group, an acyloxy group, an acylamino group, a carbamoyl group and the like. ..
 Zは(t+s)価の連結基を表し、RとBを結びつけるものであれば特に制限はない。tは1から6までの整数であり、sは1から6までの整数であるが、好ましくは、tは2から4までの整数であり、より好ましくは、tは2又は3であり、最も好ましくは、tは2である。また、好ましくは、sは1から4までの整数であり、より好ましくは、sは1から3までの整数である。 Z represents a (t+s)-valent linking group and is not particularly limited as long as it connects R and B. t is an integer from 1 to 6 and s is an integer from 1 to 6, but preferably t is an integer from 2 to 4, more preferably t is 2 or 3 and most preferably Preferably t is 2. In addition, s is preferably an integer of 1 to 4, and more preferably s is an integer of 1 to 3.
 Zとしては、アミノ酸誘導体が好ましく用いられる。アミノ酸誘導体におけるアミノ酸の不斉炭素は光学活性であってもラセミ体であってもかまわない。光学活性体が好ましく用いられる。 As Z, an amino acid derivative is preferably used. The asymmetric carbon of the amino acid in the amino acid derivative may be optically active or racemic. An optically active substance is preferably used.
 Bは置換若しくは無置換のアルキル基、アリール基、又はヘテロ環基を表す。 B represents a substituted or unsubstituted alkyl group, aryl group, or heterocyclic group.
 《条件(a)》
 0.01~5000s-1の範囲内のいずれかのせん断速度において、溶媒の粘度η0に対する、該溶媒に一般式(1b)で表される化合物を5質量%以下の濃度で含有させた液の粘度η1の相対粘度η1/η0が2以上である領域を有する。ここで用いることができる溶媒としては、所望の効果が得られれば特に限定されないが、好ましくは、トルエン、ヘキサン、イソプロパノール、エタノール、メタノール、クロロホルム、メチルエチルケトン、2-メチルペンタノン、及びシクロヘキサノンである。より好ましくは、トルエン、メチルエチルケトン、2-メチルペンタノン、シクロヘキサノンであり、最も好ましくはメチルエチルケトン、2-メチルペンタノン、シクロヘキサノンである。
<<Condition (a)>>
At any shear rate within the range of 0.01 to 5000 s −1 , a solution containing the compound represented by the general formula (1b) at a concentration of 5% by mass or less with respect to the viscosity η0 of the solvent There is a region where the relative viscosity η1/η0 of the viscosity η1 is 2 or more. The solvent that can be used here is not particularly limited as long as the desired effect can be obtained, but toluene, hexane, isopropanol, ethanol, methanol, chloroform, methyl ethyl ketone, 2-methylpentanone, and cyclohexanone are preferable. More preferred are toluene, methyl ethyl ketone, 2-methylpentanone and cyclohexanone, and most preferred are methyl ethyl ketone, 2-methylpentanone and cyclohexanone.
 [2]下記条件(b)を満たす、前記一般式(1b)で表される化合物からなる有機溶媒系チキソトロピー付与剤であることが、好ましい。 [2] An organic solvent-based thixotropy-imparting agent composed of the compound represented by the general formula (1b), which satisfies the following condition (b), is preferable.
 《条件(b)》
 溶媒に一般式(1b)で表される化合物を5質量%以下の濃度で含有させた液において、0.01~5000s-1の範囲内のいずれかのせん断速度x1における粘度η(x1)の、x2x1≧10であるせん断速度x2における粘度η(x2)に対する値η(x1)/η(x2)が1.5以上である。
<<Condition (b)>>
In a liquid containing the compound represented by the general formula (1b) at a concentration of 5% by mass or less, the viscosity η ( x1 ) at any shear rate x1 within the range of 0.01 to 5000 s −1 , X2 / x1 ≧10, the value η( x1 )/η( x2 ) for the viscosity η( x2 ) at the shear rate x2 is 1.5 or more.
 [3]前記一般式(1b)で表される化合物が下記一般式(2b)で表されることを特徴とする[1]又は[2]項記載の有機溶媒系増粘剤又はチキソトロピー付与剤であることが好ましい。 [3] The organic solvent-based thickener or thixotropy-imparting agent according to item [1] or [2], wherein the compound represented by the general formula (1b) is represented by the following general formula (2b). Is preferred.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式中、R及びRはそれぞれ独立に水素原子又はアルキル基を表すが、R及びRの少なくとも一つは少なくとも8個以上のフッ素原子で置換されたアルキル基を表す。R、R及びRはそれぞれ独立に水素原子又は置換基を表し、T、T及びLはそれぞれ独立に2価の連結基又は単結合を表し、kは0又は1である。Bは置換若しくは無置換のアルキル基、アリール基、又はヘテロ環基を表す。 In the formula, R 1 and R 2 each independently represent a hydrogen atom or an alkyl group, but at least one of R 1 and R 2 represents an alkyl group substituted with at least 8 or more fluorine atoms. R 3 , R 4 and R 5 each independently represent a hydrogen atom or a substituent, T 1 , T 2 and L 1 each independently represent a divalent linking group or a single bond, and k is 0 or 1. .. B represents a substituted or unsubstituted alkyl group, aryl group, or heterocyclic group.
 [4]前記一般式(1b)で表される化合物が下記一般式(3b)で表されることを特徴とする[1]~[3]のいずれか一項に記載の有機溶媒系増粘剤又はチキソトロピー付与剤であることが、好ましい。 [4] The organic solvent-based thickening agent according to any one of [1] to [3], wherein the compound represented by the general formula (1b) is represented by the following general formula (3b). It is preferably an agent or a thixotropic agent.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式中、R及びRはそれぞれ独立に炭素数4以上の少なくとも8個のフッ素原子で置換されたアルキル基を表す。Bは置換若しくは無置換のアルキル基、アリール基、又はヘテロ環基を表す。T及びTはそれぞれ独立に-O-、-S-又は-NR23-を表す。R23は水素原子又は置換基を表し、Lは2価の連結基又は単結合を表し、kは0又は1である。 In the formula, R 1 and R 2 each independently represent an alkyl group having 4 or more carbon atoms and substituted with at least 8 fluorine atoms. B represents a substituted or unsubstituted alkyl group, aryl group, or heterocyclic group. T 3 and T 4 each independently represent —O—, —S— or —NR 23 —. R 23 represents a hydrogen atom or a substituent, L 1 represents a divalent linking group or a single bond, and k is 0 or 1.
 [5]前記一般式(1b)で表される化合物が下記一般式(4b)で表されることを特徴とする[1]~[4]のいずれか一項に記載の有機溶媒系増粘剤又はチキソトロピー付与剤であることが好ましい。 [5] The organic solvent-based thickening agent according to any one of [1] to [4], wherein the compound represented by the general formula (1b) is represented by the following general formula (4b). It is preferably an agent or a thixotropic agent.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式中、A及びAはそれぞれ独立にフッ素原子又は水素原子を表す。n11及びn21はそれぞれ独立に0~6の整数を、n12及びn22はそれぞれ独立に3~12の整数を表す。T及びTはそれぞれ独立に-O-、-S-又は-NR23-を表す。R23は水素原子又は置換基を表し、Lは2価の連結基又は単結合を表す。Bは置換若しくは無置換のアルキル基、アリール基、又はヘテロ環基を表し、kは0又は1である。 In the formula, A 1 and A 2 each independently represent a fluorine atom or a hydrogen atom. n 11 and n 21 each independently represent an integer of 0 to 6, and n 12 and n 22 each independently represent an integer of 3 to 12. T 3 and T 4 each independently represent —O—, —S— or —NR 23 —. R 23 represents a hydrogen atom or a substituent, and L 1 represents a divalent linking group or a single bond. B represents a substituted or unsubstituted alkyl group, aryl group, or heterocyclic group, and k is 0 or 1.
 一般式(1b)~(4b)で表される化合物の具体例は、特開2005-314636号公報段落〔0083〕~〔0089〕に記載の化合物の中から選択することが好ましく、ドープ中の上記含フッ素化合物の含有量には特に制限はないが、通常ドープ中に0.01~10質量%(ドープ全体の質量に対する質量%)、好ましくは0.01~5質量%、より好ましくは0.01~2.5質量%含有させることができる。また、上記含フッ素化合物は1種類のみ含有させても、複数種類含有させても良い。 Specific examples of the compounds represented by the general formulas (1b) to (4b) are preferably selected from the compounds described in paragraphs [0083] to [0089] of JP-A-2005-314636. The content of the above-mentioned fluorine-containing compound is not particularly limited, but is usually 0.01 to 10% by mass (% by mass based on the total mass of the dope) in the dope, preferably 0.01 to 5% by mass, and more preferably 0. It can be contained in an amount of 0.01 to 2.5% by mass. Further, the fluorine-containing compound may be contained in only one kind or in plural kinds.
 (5)マット剤
 (マット剤)
 本発明のフィルム中に用いられる微粒子の一つであるマット剤は、通常、フィルムの添加物として用いられるもので、フィルム面のすべり性の悪さを改良するためには、フィルム表面に凹凸を付与することが有効であり、有機、無機物質の微粒子を含有させて、フィルム表面の粗さを増加させ、いわゆるマット化することで、接着性を減少させるために用いられるものである。
(5) Matting agent (matting agent)
The matting agent, which is one of the fine particles used in the film of the present invention, is usually used as an additive to the film, and in order to improve the slipperiness of the film surface, unevenness is imparted to the film surface. It is effective to add fine particles of an organic or inorganic substance to increase the roughness of the film surface and form a so-called matte, which is used to reduce the adhesiveness.
 しかしながら、粗い表面にするほどヘイズアップを生じ、透明性は低下するためにその平均粒径や含有量は限定される。本発明に使用するマット剤の微粒子は、平均粒径1~1000nmの範囲であり、好ましくは1~100nmの範囲、より好ましくは3~50nmの範囲である。 However, the rougher the surface, the more haze occurs and the transparency decreases, so the average particle size and content are limited. The fine particles of the matting agent used in the present invention have an average particle size of 1 to 1000 nm, preferably 1 to 100 nm, and more preferably 3 to 50 nm.
 また、上記マット剤の微粒子を各種フィルムに添加して用いる場合のフィルムにおける含有量は、フィルム100質量%に対して、球形、不定形微粒子を問わず、0.03~1質量%の範囲であり、好ましくは0.03~0.60質量%の範囲であり、より好ましくは0.03~0.5質量%の範囲である。 When the fine particles of the matting agent are used by adding them to various films, the content thereof in the film is 0.03 to 1% by mass with respect to 100% by mass of the film, regardless of whether the particles are spherical or amorphous particles. %, preferably in the range of 0.03 to 0.60% by mass, and more preferably in the range of 0.03 to 0.5% by mass.
 本発明におけるマット剤を含有したアクリル樹脂フィルムの好ましいヘイズの範囲は2.0%以下であり、1.2%以下がさらに好ましく、0.5%以下が特に好ましい。マット剤を添加したアクリル樹脂フィルムの好ましい静摩擦係数は1.5以下であり、1.0以下が特に好ましい。静摩擦係数が1.5以下であれば、アクリル樹脂フィルムは製膜及び加工における巻取り時に、ツレや巻きシワを生じず、従ってツレや巻きシワにより巻き姿が損なわれたり、ツレやシワによって不均一な張力がアクリル樹脂フィルムにかかったりすることがなく、フィルム面に意図しない不均一な光学特性が発現するといった問題が生じない。 The preferable haze range of the acrylic resin film containing the matting agent in the present invention is 2.0% or less, 1.2% or less is more preferable, and 0.5% or less is particularly preferable. The preferred static friction coefficient of the acrylic resin film containing the matting agent is 1.5 or less, and 1.0 or less is particularly preferred. When the coefficient of static friction is 1.5 or less, the acrylic resin film does not cause cracks or winding wrinkles during winding during film formation and processing, and therefore the winding shape is impaired by the cracks or winding wrinkles, or cracks or wrinkles do not occur. No uniform tension is applied to the acrylic resin film, and there is no problem that unintended nonuniform optical properties are developed on the film surface.
 静摩擦係数は同一素材同士で測定されるものであり、具体的には実施例に記載の方法に従って測定される。 Statistic friction coefficient is measured between the same materials, and is specifically measured according to the method described in the examples.
 使用されるマット剤としては通常フィルムに用いられるものであれば特に制限はなく、またこれらのマット剤は2種以上混ぜて用いることもできる。上記マット剤としては、無機化合物や高分子化合物が挙げられる。無機化合物としては、例えば、硫酸バリウム、マンガンコロイド、二酸化チタン、硫酸ストロンチウムバリウム、二酸化ケイ素、などの無機物の微粉末があるが、さらに例えば湿式法やケイ酸のゲル化より得られる合成シリカ等の二酸化ケイ素やチタンスラッグと硫酸により生成する二酸化チタン(ルチル型やアナタース型)等が挙げられる。また、粒径の比較的大きい、例えば20μm以上の無機物から粉砕した後、分級(振動濾過、風力分級など)することによっても得られる。無機微粒子はケイ素を含むものが、濁度が低くなる点、フィルムのヘイズを低下できる点で好ましい。二酸化ケイ素のような微粒子は有機物により表面処理されているものがおおいが、このようなものはフィルムの表面ヘイズを低下できるため好ましい。表面処理で好ましい有機物としては、ハロシラン類、アルコキシシラン類、シラザン、シロキサンなどを挙げることができる。 The matting agent used is not particularly limited as long as it is usually used for a film, and two or more kinds of these matting agents can be mixed and used. Examples of the matting agent include inorganic compounds and polymer compounds. Examples of the inorganic compound include fine powders of inorganic substances such as barium sulfate, manganese colloid, titanium dioxide, strontium barium sulfate, and silicon dioxide, and further, for example, synthetic silica obtained by a wet method or gelation of silicic acid. Titanium dioxide (rutile type or anatase type) produced by silicon dioxide or titanium slag and sulfuric acid can be used. It can also be obtained by crushing from an inorganic material having a relatively large particle size, for example, 20 μm or more, and then classifying (vibrating filtration, air classification, etc.). It is preferable that the inorganic fine particles contain silicon because the turbidity is low and the haze of the film can be reduced. Most of the fine particles such as silicon dioxide are surface-treated with an organic substance, but such fine particles are preferable because they can reduce the surface haze of the film. Preferred organic substances for the surface treatment include halosilanes, alkoxysilanes, silazanes, siloxanes and the like.
 また、高分子化合物としてはポリテトラフルオロエチレン、セルロースアセテート、ポリスチレン、ポリメチルメタクリレート、ポリプロピルメタクリレート、ポリメチルアクリレート、ポリエチレンカーボネート、デンプン等があり、またそれらの粉砕分級物もあげられる。又は又懸濁重合法で合成した高分子化合物、スプレードライ法又は分散法等により球型にした高分子化合物、又は無機化合物を用いることができる。 Further, as the polymer compound, there are polytetrafluoroethylene, cellulose acetate, polystyrene, polymethyl methacrylate, polypropyl methacrylate, polymethyl acrylate, polyethylene carbonate, starch and the like, and pulverized and classified products thereof are also included. Alternatively, a polymer compound synthesized by a suspension polymerization method, a polymer compound spherically formed by a spray drying method or a dispersion method, or an inorganic compound can be used.
 また以下に述べるような単量体化合物の1種又は2種以上の重合体である高分子化合物を種々の手段によって粒子としたものであってもよい。高分子化合物の単量体化合物について具体的に示すと、アクリル酸エステル、メタクリル酸エステル、イタコン酸ジエステル、クロトン酸エステル、マレイン酸ジエステル、フタル酸ジエステル類が挙げられエステル残基としては、メチル、エチル、プロピル、イソプロピル、ブチル、ヘキシル、2-エチルヘキシル、2-クロロエチル、シアノエチル、2-アセトキシエチル、ジメチルアミノエチル、ベンジル、シクロヘキシル、フルフリル、フェニル、2-ヒドロキシエチル、2-エトキシエチル、グリシジル、ω-メトキシポリエチレングリコール(付加モル数9)などが挙げられる。 Also, a polymer compound which is a polymer of one or more of the following monomer compounds may be formed into particles by various means. Specific examples of the monomer compound of the polymer compound include acrylic acid ester, methacrylic acid ester, itaconic acid diester, crotonic acid ester, maleic acid diester, and phthalic acid diester. Ethyl, propyl, isopropyl, butyl, hexyl, 2-ethylhexyl, 2-chloroethyl, cyanoethyl, 2-acetoxyethyl, dimethylaminoethyl, benzyl, cyclohexyl, furfuryl, phenyl, 2-hydroxyethyl, 2-ethoxyethyl, glycidyl, ω -Methoxy polyethylene glycol (the number of moles added is 9) and the like.
 ビニルエステル類の例としては、ビニルアセテート、ビニルプロピオネート、ビニルブチレート、ビニルイソブチレート、ビニルカプロエート、ビニルクロロアセテート、ビニルメトキシアセテート、ビニルフェニルアセテート、安息香酸ビニル、サリチル酸ビニルなどが挙げられる。またオレフィン類の例としては、ジシクロペンタジエン、エチレン、プロピレン、1-ブテン、1-ペンテン、塩化ビニル、塩化ビニリデン、イソプレン、クロロプレン、ブタジエン、2,3-ジメチルブタジエン等を挙げることができる。 Examples of vinyl esters include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl caproate, vinyl chloroacetate, vinyl methoxyacetate, vinyl phenyl acetate, vinyl benzoate, vinyl salicylate and the like. Can be mentioned. Examples of olefins include dicyclopentadiene, ethylene, propylene, 1-butene, 1-pentene, vinyl chloride, vinylidene chloride, isoprene, chloroprene, butadiene and 2,3-dimethylbutadiene.
 スチレン類としては、例えば、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、イソプロピルスチレン、クロルメチルスチレン、メトキシスチレン、アセトキシスチレン、クロルスチレン、ジクロルスチレン、ブロムスチレン、トリフルオロメチルスチレン、ビニル安息香酸メチルエステルなどが挙げられる。 Examples of styrenes include styrene, methylstyrene, dimethylstyrene, trimethylstyrene, ethylstyrene, isopropylstyrene, chloromethylstyrene, methoxystyrene, acetoxystyrene, chlorostyrene, dichlorostyrene, bromostyrene, trifluoromethylstyrene, vinyl. Examples thereof include benzoic acid methyl ester.
 アクリルアミド類としては、アクリルアミド、メチルアクリルアミド、エチルアクリルアミド、プロピルアクリルアミド、ブチルアクリルアミド、tert-ブチルアクリルアミド、フェニルアクリルアミド、ジメチルアクリルアミドなど;メタクリルアミド類、例えば、メタクリルアミド、メチルメタクリルアミド、エチルメタクリルアミド、プロピルメタクリルアミド、tert-ブチルメタクリルアミド、など;アリル化合物、例えば、酢酸アリル、カプロン酸アリル、ラウリン酸アリル、安息香酸アリルなど;ビニルエーテル類、例えば、メチルビニルエーテル、ブチルビニルエーテル、ヘキシルビニルエーテル、メトキシエチルビニルエーテル、ジメチルアミノエチルビニルエーテルなど;ビニルケトン類、例えば、メチルビニルケトン、フェニルビニルケトン、メトキシエチルビニルケトンなど;ビニル異節環化合物、例えば、ビニルピリジン、N-ビニルイミダゾール、N-ビニルオキサゾリドン、N-ビニルトリアゾール、N-ビニルピロリドンなど;不飽和ニトリル類、例えば、アクリロニトリル、メタクリロニトリルなど;多官能性モノマー、例えば、ジビニルベンゼン、メチレンビスアクリルアミド、エチレングリコールジメタクリレートなど。 Examples of acrylamides include acrylamide, methyl acrylamide, ethyl acrylamide, propyl acrylamide, butyl acrylamide, tert-butyl acrylamide, phenyl acrylamide and dimethyl acrylamide; methacrylamides such as methacrylamide, methyl methacrylamide, ethyl methacrylamide, propyl methacryl Amides, tert-butyl methacrylamide, etc.; allyl compounds such as allyl acetate, allyl caproate, allyl laurate, allyl benzoate, etc.; vinyl ethers such as methyl vinyl ether, butyl vinyl ether, hexyl vinyl ether, methoxyethyl vinyl ether, dimethyl. Aminoethyl vinyl ether and the like; vinyl ketones such as methyl vinyl ketone, phenyl vinyl ketone, methoxyethyl vinyl ketone and the like; vinyl heterocyclic compounds such as vinyl pyridine, N-vinyl imidazole, N-vinyl oxazolidone, N-vinyl triazole, N-vinylpyrrolidone and the like; unsaturated nitriles such as acrylonitrile, methacrylonitrile and the like; polyfunctional monomers such as divinylbenzene, methylenebisacrylamide, ethylene glycol dimethacrylate and the like.
 さらに、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、イタコン酸モノアルキル(例えば、イタコン酸モノエチル、など);マレイン酸モノアルキル(例えば、マレイン酸モノメチルなど;スチレンスルホン酸、ビニルベンジルスルホン酸、ビニルスルホン酸、アクリロイルオキシアルキルスルホン酸(例えば、アクリロイルオキシメチルスルホン酸など);メタクリロイルオキシアルキルスルホン酸(例えば、メタクリロイルオキシエチルスルホン酸など);アクリルアミドアルキルスルホン酸(例えば、2-アクリルアミド-2-メチルエタンスルホン酸など);メタクリルアミドアルキルスルホン酸(例えば、2-メタクリルアミド-2-メチルエタンスルホン酸など);アクリロイルオキシアルキルホスフェート(例えば、アクリロイルオキシエチルホスフェートなど);が挙げられる。これらの酸はアルカリ金属(例えば、Na、Kなど)又はアンモニウムイオンの塩であってもよい。さらにその他のモノマー化合物としては、米国特許第3459790号、同第3438708号、同第3554987号、同第4215195号、同第4247673号、特開昭57-205735号公報明細書等に記載されている架橋性モノマーを用いることができ好ましい。このような架橋性モノマーの例としては、具体的にはN-(2-アセトアセトキシエチル)アクリルアミド、N-(2-(2-アセトアセトキシエトキシ)エチル)アクリルアミド等を挙げることができる。 Further, acrylic acid, methacrylic acid, itaconic acid, maleic acid, monoalkyl itaconate (eg, monoethyl itaconate); monoalkyl maleate (eg, monomethyl maleate; styrene sulfonic acid, vinyl benzyl sulfonic acid, vinyl) Sulfonic acid, acryloyloxyalkylsulfonic acid (eg, acryloyloxymethylsulfonic acid); methacryloyloxyalkylsulfonic acid (eg, methacryloyloxyethylsulfonic acid); acrylamidoalkylsulfonic acid (eg, 2-acrylamido-2-methylethane) Methacrylic acid alkyl sulfonic acid (eg, 2-methacrylamido-2-methylethane sulfonic acid); acryloyloxyalkyl phosphate (eg, acryloyloxyethyl phosphate), etc. These acids are alkali. It may be a salt of a metal (for example, Na, K, etc.) or an ammonium ion, and as other monomer compounds, U.S. Patent Nos. 3,459,790, 3,438,708, 3,554,987, and 4,215,195 may be used. No. 4,247,673 and JP-A No. 57-205735, etc. can be used, which is preferable, and specific examples of such a cross-linkable monomer include N-(2- Examples thereof include acetoacetoxyethyl)acrylamide and N-(2-(2-acetoacetoxyethoxy)ethyl)acrylamide.
 これらの単量体化合物は単独で重合した重合体の粒子にして用いてもよいし、複数の単量体を組み合わせて重合した共重合体の粒子にして用いてもよい。これらのモノマー化合物のうち、アクリル酸エステル類、メタクリル酸エステル類、ビニルエステル類、スチレン類、オレフィン類が好ましく用いられる。また、本発明には特開昭62-14647号公報、同62-17744号公報、同62-17743号公報に記載されているようなフッ素原子又はシリコーン原子を有する粒子を用いてもよい。
 なお、これら重合体や共重合体のマット剤微粒子はガラス転移温度が25℃より高いものが好ましい。
These monomer compounds may be used as particles of a polymer polymerized alone, or may be used as particles of a copolymer polymerized by combining a plurality of monomers. Among these monomer compounds, acrylic acid esters, methacrylic acid esters, vinyl esters, styrenes and olefins are preferably used. Further, particles having a fluorine atom or a silicone atom as described in JP-A Nos. 62-14647, 62-17744, and 62-17743 may be used in the present invention.
The matting agent particles of these polymers or copolymers preferably have a glass transition temperature higher than 25°C.
 これらの中で好ましく用いられる粒子組成としてポリスチレン、ポリメチル(メタ)アクリレート、ポリエチルアクリレート、ポリ(メチルメタクリレート/メタクリル酸=95/5(モル比)、ポリ(スチレン/スチレンスルホン酸=95/5(モル比)、ポリアクリロニトリル、ポリ(メチルメタクリレート/エチルアクリレート/メタクリル酸=50/40/10)、シリカなどを挙げることができる。 Among these, the particle composition preferably used is polystyrene, polymethyl(meth)acrylate, polyethyl acrylate, poly(methyl methacrylate/methacrylic acid=95/5 (molar ratio), poly(styrene/styrene sulfonic acid=95/5( (Molar ratio), polyacrylonitrile, poly(methyl methacrylate/ethyl acrylate/methacrylic acid=50/40/10), silica and the like.
 また、本発明に用いられるマット剤としては特開昭64-77052号公報、ヨーロッパ特許307855号に記載の反応性(特にゼラチン)基を有する粒子を使用することもできる。さらには、アルカリ性、又は酸性で溶解するような基を多量含有させることもできる。マット剤は、無機化合物若しくは高分子化合物を含有してなり、その平均一次粒径が10-3~10μmの範囲であるのが好ましい。平均一次粒径は10-3~10μmの範囲であるのがより好ましく、0.005~5μmの範囲であるのがさらに好ましく、0.01~3μmの範囲であるのが特に好ましい。また、前記マット剤は、二酸化ケイ素微粒子であるのが好ましい。 Further, as the matting agent used in the present invention, particles having a reactive (particularly gelatin) group described in JP-A No. 64-77052 and European Patent No. 307855 can be used. Further, a large amount of groups that can be dissolved in alkaline or acid can be contained. The matting agent contains an inorganic compound or a polymer compound, and its average primary particle size is preferably in the range of 10 −3 to 10 μm. The average primary particle size is more preferably in the range of 10 −3 to 10 μm, further preferably in the range of 0.005 to 5 μm, and particularly preferably in the range of 0.01 to 3 μm. Further, the matting agent is preferably silicon dioxide fine particles.
 (マット剤の微粒子分散液に使用する有機溶媒)
 マット剤の微粒子分散液の調製において用いられる有機溶媒は、マット剤の微粒子が分散し、分散液を調製できる範囲において、使用できる有機溶媒は特に限定されない。本発明で用いられる有機溶媒は、例えばジクロロメタン、クロロホルムの如き塩素系溶媒、炭素原子数が3~12の鎖状炭化水素、環状炭化水素、芳香族炭化水素、エステル、ケトン、エーテルから選ばれる溶媒が好ましい。エステル、ケトン及び、エーテルは、環状構造を有していてもよい。炭素原子数が3~12の鎖状炭化水素類の例としては、ヘキサン、オクタン、イソオクタン、デカンなどが挙げられる。炭素原子数が3~12の環状炭化水素類としてはシクロペンタン、シクロヘキサン、デカリン及びその誘導体が挙げられる。炭素原子数が3~12の芳香族炭化水素としては、ベンゼン、トルエン、キシレンなどが挙げられる。炭素原子数が3~12のエステル類の例には、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテート及びペンチルアセテートが挙げられる。炭素原子数が3~12のケトン類の例には、アセトン、メチルエチルケトン、ジエチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン及びメチルシクロヘキサノンが挙げられる。炭素原子数が3~12のエーテル類の例には、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4-ジオキサン、1,3-ジオキソラン、テトラヒドロフラン、アニソール及びフェネトールが挙げられる。2種類以上の官能基を有する有機溶媒の例には、2-エトキシエチルアセテート、2-メトキシエタノール及び2-ブトキシエタノールが挙げられる。本発明に係るマット剤微粒子分散液の調製方法において用いられる有機溶媒は、1種類の有機溶媒を単独で用いてもよく、2種類以上の有機溶媒を任意の割合で混合して用いてもよい。
(Organic solvent used for fine particle dispersion of matting agent)
The organic solvent used in the preparation of the fine particle dispersion of the matting agent is not particularly limited as long as the fine particles of the matting agent are dispersed and the dispersion can be prepared. The organic solvent used in the present invention is, for example, a chlorine-based solvent such as dichloromethane or chloroform, a solvent selected from chain hydrocarbons having 3 to 12 carbon atoms, cyclic hydrocarbons, aromatic hydrocarbons, esters, ketones and ethers. Is preferred. The ester, ketone and ether may have a cyclic structure. Examples of chain hydrocarbons having 3 to 12 carbon atoms include hexane, octane, isooctane, decane and the like. Examples of cyclic hydrocarbons having 3 to 12 carbon atoms include cyclopentane, cyclohexane, decalin and derivatives thereof. Examples of the aromatic hydrocarbon having 3 to 12 carbon atoms include benzene, toluene and xylene. Examples of the ester having 3 to 12 carbon atoms include ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate and pentyl acetate. Examples of ketones having 3 to 12 carbon atoms include acetone, methyl ethyl ketone, diethyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone and methylcyclohexanone. Examples of ethers having 3 to 12 carbon atoms include diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane, tetrahydrofuran, anisole and phenetole. Examples of the organic solvent having two or more kinds of functional groups include 2-ethoxyethyl acetate, 2-methoxyethanol and 2-butoxyethanol. As the organic solvent used in the method for preparing a matting agent particle dispersion according to the present invention, one kind of organic solvent may be used alone, or two or more kinds of organic solvents may be mixed and used at an arbitrary ratio. ..
 上記マット剤の微粒子を分散する際に、上記の有機溶媒の量が少ないと十分な分散ができず、凝集体を発生し、異物故障の原因となる。逆に、有機溶媒の量が多い時には、マット剤の微粒子の分散性には優れるものの、大量の分散液を調液することとなり、製造におけるハンドリングの面で好ましくない。したがって上記有機溶媒の使用量は、上記マット剤の微粒子100質量部に対して1000~100000質量部の範囲とするのが好ましく、1500~40000質量部の範囲とするのがさらに好ましく、2000~20000質量部の範囲とするのが特に好ましい。 When the fine particles of the matting agent are dispersed, if the amount of the above organic solvent is small, the particles cannot be sufficiently dispersed, and aggregates are generated, which causes foreign matter failure. On the contrary, when the amount of the organic solvent is large, the dispersibility of the fine particles of the matting agent is excellent, but a large amount of the dispersion liquid is prepared, which is not preferable from the viewpoint of handling in production. Therefore, the amount of the organic solvent used is preferably in the range of 1,000 to 100,000 parts by mass, more preferably in the range of 1,500 to 40,000 parts by mass, and further preferably in the range of 2,000 to 20,000, based on 100 parts by mass of the fine particles of the matting agent. The range of parts by mass is particularly preferable.
 (分散剤)
 次に本発明に用いる分散剤について記述する。マット剤の微粒子分散液とドープをインラインで混合させる場合、粘度の低い分散液を使用すると、粘度の高いドープに粘度の違いから力負けして添加しにくく、混合が上手くいかない。この問題は、分散剤を分散液に溶解させ、粘度を僅かにあげることで解決される。このため分散剤としては通常樹脂が用いられる。混合だけを考えれば、ドープと分散液の粘度は等しいことが好ましいが、マット剤の微粒子分散液としての分散能や取扱の簡便性を考慮すると、マット剤の微粒子分散液の粘度は0.7mPa・s以上であることが好ましく、1mPa・s以上であることがさらに好ましい。また、粘度を上げるため分散剤の重量平均分子量を大きくしすぎると、分散剤の溶解性不良や濾過性の悪化を引き起こす。このためドープに力負けしない、溶解性と濾過性に優れた分散液を調製するためには、分散剤の重量平均分子量は10000~500000の範囲が好ましく、10000~300000の範囲がより好ましく、30000~200000の範囲がさらに好ましい。
(Dispersant)
Next, the dispersant used in the present invention will be described. When the fine particle dispersion liquid of the matting agent and the dope are mixed in-line, if the dispersion liquid having a low viscosity is used, it is difficult to add to the dope having a high viscosity due to the difference in viscosity and it is difficult to add the mixture. This problem is solved by dissolving the dispersant in the dispersion and slightly increasing the viscosity. Therefore, a resin is usually used as the dispersant. Considering only mixing, it is preferable that the viscosity of the dope and the dispersion liquid are the same, but in consideration of the dispersibility of the matting agent as a fine particle dispersion and the ease of handling, the viscosity of the matting agent fine particle dispersion is 0.7 mPa ·S or more is preferable, and 1 mPa·s or more is more preferable. Further, if the weight average molecular weight of the dispersant is too large in order to increase the viscosity, poor solubility of the dispersant and deterioration of filterability are caused. Therefore, in order to prepare a dispersion having excellent solubility and filterability that does not lose power against the dope, the weight average molecular weight of the dispersant is preferably in the range of 10,000 to 500,000, more preferably 10,000 to 300,000, and more preferably 30,000 to The range of 200,000 is more preferable.
 分散剤としてアクリル樹脂を用い、さらに該分散剤の存在下で微粒子を分散させることが好ましい。これはドープを調製する際に、微粒子分散液とドープとの相溶性が向上し、流延ドープとした際の分散微粒子の安定性も向上し、凝集物のないドープを形成できる観点からも好ましい。 It is preferable to use an acrylic resin as a dispersant and further disperse the fine particles in the presence of the dispersant. This is preferable from the viewpoint that the compatibility of the fine particle dispersion and the dope is improved when the dope is prepared, the stability of the dispersed fine particles is improved when the dope is cast, and the dope having no agglomerates can be formed. ..
 (6)含窒素複素環化合物
 本発明に係るアクリル樹脂フィルムは、位相差性等の光学性能を制御するのに、以下の含窒素複素環化合物を含有することが好ましい。含窒素複素環化合物は、分子量が100~800の範囲内である含窒素複素環化合物であり、中でも下記一般式(A1)で表される構造の化合物であることが好ましい。下記一般式(A1)で表される構造を有する化合物はアクリル樹脂とともに用いることにより、例えば、偏光板を液晶表示装置に用いたとき、環境の湿度変動による位相差の変動の発生を抑え、コントラスト低下や色むらの発生を抑制することができる。さらに、位相差上昇剤としても機能することができる。
(6) Nitrogen-containing heterocyclic compound The acrylic resin film according to the present invention preferably contains the following nitrogen-containing heterocyclic compound in order to control the optical performance such as retardation. The nitrogen-containing heterocyclic compound is a nitrogen-containing heterocyclic compound having a molecular weight in the range of 100 to 800, and is preferably a compound having a structure represented by the following general formula (A1). By using the compound having a structure represented by the following general formula (A1) together with an acrylic resin, for example, when a polarizing plate is used in a liquid crystal display device, it is possible to suppress fluctuations in phase difference due to humidity fluctuations in the environment and to reduce contrast. It is possible to suppress the deterioration and the occurrence of color unevenness. Further, it can also function as a phase difference increasing agent.
 分子量は250~450の範囲内であることが、湿度変動による位相差の変動抑制効果と、飛散物発生の観点から好ましい範囲である。 A molecular weight in the range of 250 to 450 is a preferable range from the viewpoint of the effect of suppressing the fluctuation of the phase difference due to humidity fluctuation and the generation of scattered matter.
 (一般式(A1)で表される構造を有する化合物)
Figure JPOXMLDOC01-appb-C000011
(Compound having structure represented by general formula (A1))
Figure JPOXMLDOC01-appb-C000011
 上記一般式(A1)において、A、A及びBは、それぞれ独立に、アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチヘキシル基等)、シクロアルキル基(シクロヘキシル基、シクロペンチル基、4-n-ドデシルシクロヘキシル基等)、芳香族炭化水素環又は芳香族複素環を表す。この中で、芳香族炭化水素環又は芳香族複素環が好ましく、特に、5員若しくは6員の芳香族炭化水素環又は芳香族複素環であることが好ましい。 In the general formula (A1), A 1 , A 2 and B are each independently an alkyl group (methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group, 2- Etc.), a cycloalkyl group (cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.), an aromatic hydrocarbon ring or an aromatic heterocycle. Among these, an aromatic hydrocarbon ring or an aromatic heterocycle is preferable, and a 5-membered or 6-membered aromatic hydrocarbon ring or an aromatic heterocycle is particularly preferable.
 5員若しくは6員の芳香族炭化水素環又は芳香族複素環の構造に制限はないが、例えば、ベンゼン環、ピロール環、ピラゾール環、イミダゾール環、1,2,3-トリアゾール環、1,2,4-トリアゾール環、テトラゾール環、フラン環、オキサゾール環、イソオキサゾール環、オキサジアゾール環、イソオキサジアゾール環、チオフェン環、チアゾール環、イソチアゾール環、チアジアゾール環、イソチアジアゾール環等が挙げられる。 The structure of the 5- or 6-membered aromatic hydrocarbon ring or aromatic heterocycle is not limited, but examples thereof include a benzene ring, a pyrrole ring, a pyrazole ring, an imidazole ring, a 1,2,3-triazole ring, and a 1,2 ring. , 4-triazole ring, tetrazole ring, furan ring, oxazole ring, isoxazole ring, oxadiazole ring, isoxadiazole ring, thiophene ring, thiazole ring, isothiazole ring, thiadiazole ring, isothiadiazole ring and the like. ..
 A、A及びBで表される5員若しくは6員の芳香族炭化水素環又は芳香族複素環は、置換基を有していてもよく、当該置換基としては、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル基等)、シクロアルキル基(シクロヘキシル基、シクロペンチル基、4-n-ドデシルシクロヘキシル基等)、アルケニル基(ビニル基、アリル基等)、シクロアルケニル基(2-シクロペンテン-1-イル、2-シクロヘキセン-1-イル基等)、アルキニル基(エチニル基、プロパルギル基等)、芳香族炭化水素環基(フェニル基、p-トリル基、ナフチル基等)、芳香族複素環基(2-ピロール基、2-フリル基、2-チエニル基、ピロール基、イミダゾリル基、オキサゾリル基、チアゾリル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、2-ベンゾチアゾリル基、ピラゾリノン基、ピリジル基、ピリジノン基、2-ピリミジニル基、トリアジン基、ピラゾール基、1,2,3-トリアゾール基、1,2,4-トリアゾール基、オキサゾール基、イソオキサゾール基、1,2,4-オキサジアゾール基、1,3,4-オキサジアゾール基、チアゾール基、イソチアゾール基、1,2,4-チオジアゾール基、1,3,4-チアジアゾール基等)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アルコキシ基(メトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基、n-オクチルオキシ基、2-メトキシエトキシ基等)、アリールオキシ基(フェノキシ基、2-メチルフェノキシ基、4-tert-ブチルフェノキシ基、3-ニトロフェノキシ基、2-テトラデカノイルアミノフェノキシ基等)、アシルオキシ基(ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p-メトキシフェニルカルボニルオキシ基等)、アミノ基(アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N-メチル-アニリノ基、ジフェニルアミノ基等)、アシルアミノ基(ホルミルアミノ基、アセチルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、ベンゾイルアミノ基等)、アルキル及びアリールスルホニルアミノ基(メチルスルホニルアミノ基、ブチルスルホニルアミノ基、フェニルスルホニルアミノ基、2,3,5-トリクロロフェニルスルホニルアミノ基、p-メチルフェニルスルホニルアミノ基等)、メルカプト基、アルキルチオ基(メチルチオ基、エチルチオ基、n-ヘキサデシルチオ基等)、アリールチオ基(フェニルチオ基、p-クロロフェニルチオ基、m-メトキシフェニルチオ基等)、スルファモイル基(N-エチルスルファモイル基、N-(3-ドデシルオキシプロピル)スルファモイル基、N,N-ジメチルスルファモイル基、N-アセチルスルファモイル基、N-ベンゾイルスルファモイル基、N-(N′-フェニルカルバモイル)スルファモイル基等)、スルホ基、アシル基(アセチル基、ピバロイルベンゾイル基等)、カルバモイル基(カルバモイル基、N-メチルカルバモイル基、N,N-ジメチルカルバモイル基、N,N-ジ-n-オクチルカルバモイル基、N-(メチルスルホニル)カルバモイル基等)等の各基が挙げられる。 The 5- or 6-membered aromatic hydrocarbon ring or aromatic heterocycle represented by A 1 , A 2 and B may have a substituent, and as the substituent, for example, a halogen atom ( Fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), alkyl group (methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group, 2-ethylhexyl group, etc.), cycloalkyl Group (cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.), alkenyl group (vinyl group, allyl group, etc.), cycloalkenyl group (2-cyclopenten-1-yl, 2-cyclohexen-1-yl group, etc.) ), alkynyl groups (ethynyl group, propargyl group, etc.), aromatic hydrocarbon ring groups (phenyl group, p-tolyl group, naphthyl group, etc.), aromatic heterocyclic groups (2-pyrrole group, 2-furyl group, 2) -Thienyl group, pyrrole group, imidazolyl group, oxazolyl group, thiazolyl group, benzimidazolyl group, benzoxazolyl group, 2-benzothiazolyl group, pyrazolinone group, pyridyl group, pyridinone group, 2-pyrimidinyl group, triazine group, pyrazole group, 1,2,3-triazole group, 1,2,4-triazole group, oxazole group, isoxazole group, 1,2,4-oxadiazole group, 1,3,4-oxadiazole group, thiazole group, Isothiazole group, 1,2,4-thiodiazole group, 1,3,4-thiadiazole group, etc.), cyano group, hydroxy group, nitro group, carboxy group, alkoxy group (methoxy group, ethoxy group, isopropoxy group, tert. -Butoxy group, n-octyloxy group, 2-methoxyethoxy group, etc.), aryloxy group (phenoxy group, 2-methylphenoxy group, 4-tert-butylphenoxy group, 3-nitrophenoxy group, 2-tetradecanoyl) Aminophenoxy group, etc.), acyloxy group (formyloxy group, acetyloxy group, pivaloyloxy group, stearoyloxy group, benzoyloxy group, p-methoxyphenylcarbonyloxy group, etc.), amino group (amino group, methylamino group, dimethylamino group) Group, anilino group, N-methyl-anilino group, diphenylamino group, etc.), acylamino group (formylamino group, acetylamino group, pivaloylamino group, lauroylamino group, benzoylamino group, etc.), alkyl and arylsulfonylamino groups (methyl Sulfonylamino group, butylsulfonylamino group, Nylsulfonylamino group, 2,3,5-trichlorophenylsulfonylamino group, p-methylphenylsulfonylamino group, etc.), mercapto group, alkylthio group (methylthio group, ethylthio group, n-hexadecylthio group, etc.), arylthio group (phenylthio group) Group, p-chlorophenylthio group, m-methoxyphenylthio group, etc.), sulfamoyl group (N-ethylsulfamoyl group, N-(3-dodecyloxypropyl)sulfamoyl group, N,N-dimethylsulfamoyl group, N-acetylsulfamoyl group, N-benzoylsulfamoyl group, N-(N'-phenylcarbamoyl)sulfamoyl group, etc.), sulfo group, acyl group (acetyl group, pivaloylbenzoyl group, etc.), carbamoyl group ( Examples thereof include carbamoyl group, N-methylcarbamoyl group, N,N-dimethylcarbamoyl group, N,N-di-n-octylcarbamoyl group, N-(methylsulfonyl)carbamoyl group and the like.
 前記一般式(A1)において、A、A及びBは、ベンゼン環、ピロール環、ピラゾール環、イミダゾール環、1,2,3-トリアゾール環又は1,2,4-トリアゾール環を表すことが、光学特性の変動効果に優れ、かつ耐久性に優れたアクリル樹脂フィルムが得られるために好ましい。 In the general formula (A1), A 1 , A 2 and B each represent a benzene ring, a pyrrole ring, a pyrazole ring, an imidazole ring, a 1,2,3-triazole ring or a 1,2,4-triazole ring. It is preferable because an acrylic resin film excellent in the effect of changing optical characteristics and excellent in durability can be obtained.
 前記一般式(A1)において、T及びTは、それぞれ独立に、ピロール環、ピラゾール環、イミダゾール環、1,2,3-トリアゾール環又は1,2,4-トリアゾール環を表すことが好ましい。これらの中で、ピラゾール環、トリアゾール環又はイミダゾール環であることが、湿度変動に対する位相差の変動抑制効果に特に優れ、かつ耐久性に優れた樹脂組成物が得られるために好ましく、ピラゾール環であることが特に好ましい。T及びTで表されるピラゾール環、1,2,3-トリアゾール環又は1,2,4-トリアゾール環、イミダゾール環は、互変異性体であってもよい。ピロール環、ピラゾール環、イミダゾール環、1,2,3-トリアゾール環又は1,2,4-トリアゾール環の具体的な構造を下記に示す。 In the general formula (A1), it is preferable that T 1 and T 2 each independently represent a pyrrole ring, a pyrazole ring, an imidazole ring, a 1,2,3-triazole ring or a 1,2,4-triazole ring. .. Among these, a pyrazole ring, a triazole ring or an imidazole ring is particularly preferable because it is excellent in the effect of suppressing the fluctuation of the phase difference with respect to humidity fluctuation, and a resin composition having excellent durability can be obtained. It is particularly preferable that The pyrazole ring, 1,2,3-triazole ring, 1,2,4-triazole ring or imidazole ring represented by T 1 and T 2 may be tautomers. Specific structures of the pyrrole ring, the pyrazole ring, the imidazole ring, the 1,2,3-triazole ring and the 1,2,4-triazole ring are shown below.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式中、※は一般式(A1)におけるL、L、L又はLとの結合位置を表す。Rは水素原子又は非芳香族置換基を表す。Rで表される非芳香族置換基としては、前記一般式(A1)におけるAが有してもよい置換基のうちの非芳香族置換基と同様の基を挙げることができる。Rで表される置換基が芳香族基を有する置換基の場合、AとT又はBとTがねじれやすくなり、A、B及びTがアクリル樹脂との相互作用を形成できなくなるため、光学的特性の変動を抑制することが難しい。光学的特性の変動抑制効果を高めるためには、Rは水素原子、炭素数1~5のアルキル基又は炭素数1~5のアシル基であることが好ましく、水素原子であることが特に好ましい。 In the formula, * represents a bonding position with L 1 , L 2 , L 3 or L 4 in the general formula (A1). R 5 represents a hydrogen atom or a non-aromatic substituent. Examples of the non-aromatic substituent represented by R 5 include the same groups as the non-aromatic substituents among the substituents that A 1 in the general formula (A1) may have. When the substituent represented by R 5 is a substituent having an aromatic group, A 1 and T 1 or B and T 1 are likely to be twisted, and A 1 , B and T 1 form an interaction with an acrylic resin. Since it becomes impossible, it is difficult to suppress the fluctuation of the optical characteristics. In order to enhance the effect of suppressing fluctuations in optical properties, R 5 is preferably a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an acyl group having 1 to 5 carbon atoms, and particularly preferably a hydrogen atom. ..
 前記一般式(A1)において、T及びTは置換基を有してもよく、当該置換基としては、前記一般式(A1)におけるA及びAが有してもよい置換基と同様の基を挙げることができる。 In the general formula (A1), T 1 and T 2 may have a substituent, and the substituent may be a substituent which A 1 and A 2 in the general formula (A1) may have. Similar groups may be mentioned.
 前記一般式(A1)において、L、L、L及びLは、それぞれ独立に、単結合又は、2価の連結基を表し、2個以下の原子を介して、5員若しくは6員の芳香族炭化水素環又は芳香族複素環が連結されている。2個以下の原子を介してとは、連結基を構成する原子のうち連結される置換基間に存在する最小の原子数を表す。連結原子数2個以下の2価の連結基としては、特に制限はないが、アルキレン基、アルケニレン基、アルキニレン基、O、(C=O)、NR、S、(O=S=O)からなる群より選ばれる2価の連結基であるか、それらを2個組み合わせた連結基を表す。Rは、水素原子又は置換基を表す。Rで表される置換基の例には、アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル基等)、シクロアルキル基(シクロヘキシル基、シクロペンチル基、4-n-ドデシルシクロヘキシル基等)、芳香族炭化水素環基(フェニル基、p-トリル基、ナフチル基等)、芳香族複素環基(2-フリル基、2-チエニル基、2-ピリミジニル基、2-ベンゾチアゾリル基、2-ピリジル基等)、シアノ基等が含まれる。L、L、L及びLで表される2価の連結基は置換基を有してもよく、置換基としては特に制限はないが、例えば、前記一般式(A1)におけるA及びAが有してもよい置換基と同様の基を挙げることができる。 In the general formula (A1), L 1 , L 2 , L 3 and L 4 each independently represent a single bond or a divalent linking group, and a 5-membered or 6-membered group with 2 or less atoms interposed therebetween. Membered aromatic hydrocarbon rings or aromatic heterocycles are linked. Through 2 or less atoms means the minimum number of atoms existing between the substituents to be linked among the atoms constituting the linking group. The divalent linking group having 2 or less linking atoms is not particularly limited, but from an alkylene group, an alkenylene group, an alkynylene group, O, (C=O), NR, S, (O=S=O) It represents a divalent linking group selected from the group consisting of or a combination of two of them. R represents a hydrogen atom or a substituent. Examples of the substituent represented by R include an alkyl group (methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group, 2-ethylhexyl group, etc.), cycloalkyl group ( Cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc., aromatic hydrocarbon ring group (phenyl group, p-tolyl group, naphthyl group, etc.), aromatic heterocyclic group (2-furyl group, 2-thienyl group) Group, 2-pyrimidinyl group, 2-benzothiazolyl group, 2-pyridyl group), cyano group and the like. The divalent linking group represented by L 1 , L 2 , L 3 and L 4 may have a substituent, and the substituent is not particularly limited. For example, in the general formula (A1), A 1 and A 2 may be the same groups as the substituents which A 2 may have.
 前記一般式(A1)において、L、L、L及びLは、前記一般式(A1)で表される構造を有する化合物の平面性が高くなることで、水を吸着する樹脂との相互作用が強くなり、光学的特性の変動が抑制されるため、単結合又は、O、(C=O)-O、O-(C=O)、(C=O)-NR又はNR-(C=O)であることが好ましく、単結合であることがより好ましい。 In the general formula (A1), L 1 , L 2 , L 3 and L 4 are a resin that adsorbs water by increasing the planarity of the compound having the structure represented by the general formula (A1). Of the single bond or O, (C=O)-O, O-(C=O), (C=O)-NR or NR- (C=O) is preferable, and a single bond is more preferable.
 前記一般式(A1)において、nは0~5の整数を表す。nが2以上の整数を表すとき、前記一般式(A1)における複数のA、T、L、Lは同じであってもよく、異なっていてもよい。nが大きい程、前記一般式(A1)で表される構造を有する化合物と水を吸着する樹脂との相互作用が強くなることで光学的特性の変動抑制効果が優れ、nが小さいほど、水を吸着する樹脂との相溶性が優れる。このため、nは1~3の整数であることが好ましく、1~2の整数であることがより好ましい。 In the general formula (A1), n represents an integer of 0-5. When n represents an integer of 2 or more, the plurality of A 2 , T 2 , L 3 and L 4 in the general formula (A1) may be the same or different. The larger n is, the stronger the interaction between the compound having the structure represented by the general formula (A1) and the resin that adsorbs water is, and the more excellent the effect of suppressing fluctuation of optical properties is. Excellent compatibility with resins that adsorb Therefore, n is preferably an integer of 1 to 3, more preferably an integer of 1 to 2.
 〈一般式(A2)で表される構造を有する化合物〉
 一般式(A1)で表される構造を有する化合物は、一般式(A2)で表される構造を有する化合物であることが好ましい。
<Compound having structure represented by general formula (A2)>
The compound having a structure represented by general formula (A1) is preferably a compound having a structure represented by general formula (A2).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 (式中、A、A、T、T、L、L、L及びLは、それぞれ前記一般式(A1)におけるA、A、T、T、L、L、L及びLと同義である。A及びTは、それぞれ一般式(A1)におけるA及びTと同様の基を表す。L及びLは、前記一般式(A1)におけるLと同様の基を表す。mは0~4の整数を表す。)
 mが小さい方がセルロースアシレートとの相溶性に優れるため、mは0~2の整数であることが好ましく、0~1の整数であることがより好ましい。
(In the formula, A 1 , A 2 , T 1 , T 2 , L 1 , L 2 , L 3 and L 4 are respectively A 1 , A 2 , T 1 , T 2 and L in the general formula (A1). 1 , L 2 , L 3 and L 4 have the same meanings, A 3 and T 3 respectively represent the same groups as A 1 and T 1 in the general formula (A1), and L 5 and L 6 represent the above-mentioned general groups. It represents the same group as L 1 in formula (A1), and m represents an integer of 0 to 4.)
Since the smaller m is, the better the compatibility with the cellulose acylate is, m is preferably an integer of 0 to 2, and more preferably an integer of 0 to 1.
 <一般式(A1.1)で表される構造を有する化合物>
 一般式(A1)で表される構造を有する化合物は、下記一般式(A1.1)で表される構造を有するトリアゾール化合物であることが好ましい。
<Compound having structure represented by general formula (A1.1)>
The compound having a structure represented by general formula (A1) is preferably a triazole compound having a structure represented by the following general formula (A1.1).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 (式中、A、B、L及びLは、上記一般式(A1)におけるA、B、L及びLと同様の基を表す。kは、1~4の整数を表す。Tは、1,2,4-トリアゾール
環を表す。)
 さらに、上記一般式(A1.1)で表される構造を有するトリアゾール化合物は、下記一般式(A1.2)で表される構造を有するトリアゾール化合物であることが好ましい。
(Wherein, A 1, B, L 1 and L 2, .k representing the A 1, B, the same group as L 1 and L 2 in formula (A1) represents an integer of 1-4 . T 1 represents a 1,2,4-triazole ring.)
Furthermore, the triazole compound having a structure represented by the general formula (A1.1) is preferably a triazole compound having a structure represented by the following general formula (A1.2).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 (式中、Zは、下記一般式(A1.2a)の構造を表す。qは、2~3の整数を表す。少なくとも二つのZは、ベンゼン環に置換された少なくとも一つのZに対してオルト位又はメタ位に結合する。)。 (In the formula, Z represents the structure of the following general formula (A1.2a). q represents an integer of 2 to 3. At least two Zs are at least one Z substituted on the benzene ring. Attaches to the ortho or meta position.).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 (式中、R10は水素原子、アルキル基又はアルコキシ基を表す。pは1~5の整数を表す。*はベンゼン環との結合位置を表す。Tは1,2,4-トリアゾール環を表す。)
 前記一般式(A1)、(A2)、(A1.1)又は(A1.2)で表される構造を有する化合物は、水和物、溶媒和物若しくは塩を形成してもよい。なお、本発明において、水和物は有機溶媒を含んでいてもよく、また溶媒和物は水を含んでいてもよい。即ち、「水和物」及び「溶媒和物」には、水と有機溶媒のいずれも含む混合溶媒和物が含まれる。塩としては、無機又は有機酸で形成された酸付加塩が含まれる。無機酸の例として、ハロゲン化水素酸(塩酸、臭化水素酸など)、硫酸、リン酸などが含まれ、またこれらに限定されない。また、有機酸の例には、酢酸、トリフルオロ酢酸、プロピオン酸、酪酸、シュウ酸、クエン酸、安息香酸、アルキルスルホン酸(メタンスルホン酸など)、アリルスルホン酸(ベンゼンスルホン酸、4-トルエンスルホン酸、1,5-ナフタレンジスルホン酸など)などが挙げられ、またこれらに限定されない。これらのうち好ましくは、塩酸塩、酢酸塩、プロピオン酸塩、酪酸塩である。
(In the formula, R 10 represents a hydrogen atom, an alkyl group or an alkoxy group. p represents an integer of 1 to 5. * represents a bonding position with the benzene ring. T 1 represents a 1,2,4-triazole ring. Represents.)
The compound having a structure represented by the general formula (A1), (A2), (A1.1) or (A1.2) may form a hydrate, a solvate or a salt. In the present invention, the hydrate may include an organic solvent, and the solvate may include water. That is, the "hydrate" and "solvate" include a mixed solvate containing both water and an organic solvent. Salts include acid addition salts formed with inorganic or organic acids. Examples of inorganic acids include, but are not limited to, hydrohalic acids (such as hydrochloric acid, hydrobromic acid), sulfuric acid, phosphoric acid, and the like. Examples of organic acids include acetic acid, trifluoroacetic acid, propionic acid, butyric acid, oxalic acid, citric acid, benzoic acid, alkylsulfonic acid (methanesulfonic acid, etc.), allylsulfonic acid (benzenesulfonic acid, 4-toluene). Sulfonic acid, 1,5-naphthalenedisulfonic acid, etc.) and the like, but are not limited thereto. Of these, preferred are hydrochlorides, acetates, propionates and butyrates.
 塩の例としては、親化合物に存在する酸性部分が、金属イオン(例えばアルカリ金属塩、例えばナトリウム又はカリウム塩、アルカリ土類金属塩、例えばカルシウム又はマグネシウム塩、アンモニウム塩アルカリ金属イオン、アルカリ土類金属イオン、又はアルミニウムイオンなど)により置換されるか、又は有機塩基(エタノールアミン、ジエタノールアミン、トリエタノールアミン、モルホリン、ピペリジン、など)と調整されたときに形成される塩が挙げられ、またこれらに限定されない。これらのうち好ましくはナトリウム塩、カリウム塩である。 Examples of salts include acidic moieties present on the parent compound which are metal ions (eg alkali metal salts, eg sodium or potassium salts, alkaline earth metal salts, eg calcium or magnesium salts, ammonium salts alkali metal ions, alkaline earth salts). Metal ions, or aluminum ions, etc.), or salts formed when adjusted with organic bases (ethanolamine, diethanolamine, triethanolamine, morpholine, piperidine, etc.), and also these Not limited. Of these, sodium salts and potassium salts are preferable.
 溶媒和物が含む溶媒の例には、一般的な有機溶媒のいずれも含まれる。具体的には、アルコール(例、メタノール、エタノール、2-プロパノール、1-ブタノール、1-メトキシ-2-プロパノール、t-ブタノール)、エステル(例、酢酸エチル)、炭化水素(例、トルエン、ヘキサン、ヘプタン)、エーテル(例、テトラヒドロフラン)、ニトリル(例、アセトニトリル)、ケトン(アセトン)などが挙げられる。好ましくは、アルコール(例、メタノール、エタノール、2-プロパノール、1-ブタノール、1-メトキシ-2-プロパノール、t-ブタノール)の溶媒和物である。これらの溶媒は、前記化合物の合成時に用いられる反応溶媒であっても、合成後の晶析精製の際に用いられる溶媒であってもよく、又はこれらの混合であってもよい。 Examples of the solvent included in the solvate include any of common organic solvents. Specifically, alcohol (eg, methanol, ethanol, 2-propanol, 1-butanol, 1-methoxy-2-propanol, t-butanol), ester (eg, ethyl acetate), hydrocarbon (eg, toluene, hexane) , Heptane), ether (eg, tetrahydrofuran), nitrile (eg, acetonitrile), ketone (acetone) and the like. Preferred are solvates of alcohols (eg, methanol, ethanol, 2-propanol, 1-butanol, 1-methoxy-2-propanol, t-butanol). These solvents may be a reaction solvent used in the synthesis of the compound, a solvent used in the crystallization purification after the synthesis, or a mixture thereof.
 また、2種類以上の溶媒を同時に含んでもよいし、水と溶媒を含む形(例えば、水とアルコール(例えば、メタノール、エタノール、t-ブタノールなど)など)であってもよい。 Further, it may contain two or more kinds of solvents at the same time, or may contain water and a solvent (eg, water and alcohol (eg, methanol, ethanol, t-butanol, etc.)).
 なお、前記一般式(A1)、(A2)、(A1.1)又は(A1.2)で表される構造を有する化合物を、水や溶媒、塩を含まない形態で添加しても、本発明における樹脂組成物又はアクリル樹脂フィルム中において、水和物、溶媒和物又は塩を形成してもよい。 Even if the compound having a structure represented by the general formula (A1), (A2), (A1.1) or (A1.2) is added in a form containing no water, solvent or salt, A hydrate, solvate or salt may be formed in the resin composition or acrylic resin film of the invention.
 前記一般式(A1)、(A2)、(A1.1)又は(A1.2)で表される構造を有する化合物の分子量は特に制限はないが、小さいほど樹脂との相溶性に優れ、大きいほど環境湿度の変化に対する光学値の変動抑制効果が高いため、150~2000であることが好ましく、200~1500であることがより好ましく、300~1000であることがより好ましい。 The molecular weight of the compound having the structure represented by the general formula (A1), (A2), (A1.1) or (A1.2) is not particularly limited, but the smaller the compound, the better the compatibility with the resin and the larger the molecular weight. Since the effect of suppressing fluctuations in optical value with respect to changes in environmental humidity is higher, it is preferably 150 to 2000, more preferably 200 to 1500, and even more preferably 300 to 1000.
 また、本発明に係る含窒素複素環化合物は、下記一般式(A3)で表される構造を有する化合物であることがより好ましい。 Further, the nitrogen-containing heterocyclic compound according to the present invention is more preferably a compound having a structure represented by the following general formula (A3).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 (式中Aはピラゾール環を表し、Ar及びArはそれぞれ芳香族炭化水素環又は芳香族複素環を表し、置換基を有してもよい。Rは水素原子、アルキル基、アシル基、スルホニル基、アルキルオキシカルボニル基、又はアリールオキシカルボニル基を表し、qは1~2の整数を表し、n及びmは1~3の整数を表す。)
 Ar及びArで表される芳香族炭化水素環又は芳香族複素環は、それぞれ一般式(A1)で挙げた5員若しくは6員の芳香族炭化水素環又は芳香族複素環であることが好ましい。また、Ar及びArの置換基としては、前記一般式(A1)で表される構造を有する化合物で示したのと同様な置換基が挙げられる。
(In the formula, A represents a pyrazole ring, Ar 1 and Ar 2 each represent an aromatic hydrocarbon ring or an aromatic heterocycle, and may have a substituent. R 1 represents a hydrogen atom, an alkyl group, or an acyl group. , A sulfonyl group, an alkyloxycarbonyl group, or an aryloxycarbonyl group, q represents an integer of 1 to 2, and n and m represent an integer of 1 to 3.)
The aromatic hydrocarbon ring or aromatic heterocycle represented by Ar 1 and Ar 2 is the 5-membered or 6-membered aromatic hydrocarbon ring or aromatic heterocycle mentioned in the general formula (A1), respectively. preferable. In addition, examples of the substituent of Ar 1 and Ar 2 include the same substituents as those shown for the compound having the structure represented by the general formula (A1).
 Rの具体例としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル基等)、アシル基(アセチル基、ピバロイルベンゾイル基等)、スルホニル基(例えば、メチルスルホニル基、エチルスルホニル基等)、アルキルオキシカルボニル基(例えば、メトキシカルボニル基)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基等)等が挙げられる。 Specific examples of R 1 include halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), alkyl group (methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n-octyl group). Group, 2-ethylhexyl group, etc.), acyl group (acetyl group, pivaloylbenzoyl group etc.), sulfonyl group (eg methylsulfonyl group, ethylsulfonyl group etc.), alkyloxycarbonyl group (eg methoxycarbonyl group), An aryloxy carbonyl group (for example, a phenoxy carbonyl group etc.) etc. are mentioned.
 qは1~2の整数を表し、n及びmは1~3の整数を表す。 Q represents an integer of 1 to 2, and n and m represent an integer of 1 to 3.
 以下に、本発明に用いられる5員若しくは6員の芳香族炭化水素環又は芳香族複素環を有する化合物の具体例を例示する。中でも前記一般式(A1)、(A2)、(A1.1)、(A1.2)で表される構造を有する化合物、又は一般式(A3)で表される構造を有する化合物であることが好ましい。本発明で用いることができる前記5員若しくは6員の芳香族炭化水素環又は芳香族複素環を有する化合物は、以下の具体例によって何ら限定されることはない。なお、前述のように、以下の具体例は互変異性体であってもよく、水和物、溶媒和物又は塩を形成していてもよい。 Specific examples of the compound having a 5- or 6-membered aromatic hydrocarbon ring or aromatic heterocycle used in the present invention are shown below. Among them, it is a compound having a structure represented by the general formula (A1), (A2), (A1.1), or (A1.2), or a compound having a structure represented by the general formula (A3). preferable. The compound having a 5- or 6-membered aromatic hydrocarbon ring or aromatic heterocycle that can be used in the present invention is not limited by the following specific examples. In addition, as mentioned above, the following specific examples may be tautomers and may form hydrates, solvates or salts.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
 次に、前記一般式(A1)で表される構造を有する化合物の合成方法について説明する。 Next, a method for synthesizing the compound having the structure represented by the general formula (A1) will be described.
 前記一般式(A1)で表される構造を有する化合物は、公知の方法で合成することができる。前記一般式(A1)で表される構造を有する化合物において、1,2,4-トリアゾール環を有する化合物は、いかなる原料を用いても構わないが、ニトリル誘導体又はイミノエーテル誘導体と、ヒドラジド誘導体を反応させる方法が好ましい。反応に用いる溶媒としては、原料と反応しないと溶媒であれば、いかなる溶媒でも構わないが、エステル系(例えば、酢酸エチル、酢酸メチル等)、アミド系(ジメチルホルムアミド、ジメチルアセトアミド等)、エーテル系(エチレングリコールジメチルエーテル等)、アルコール系(例えば、メタノール、エタノール、プロパノール、イソプロパノール、n-ブタノール、2-ブタノール、エチレングリコール、エチレングリコールモノメチルエーテル等)、芳香族炭化水素系(例えば、トルエン、キシレン等)、水を挙げられることができる。使用する溶媒として、好ましくは、アルコール系溶媒である。また、これらの溶媒は、混合して用いても良い。 The compound having the structure represented by the general formula (A1) can be synthesized by a known method. In the compound having the structure represented by the general formula (A1), the compound having a 1,2,4-triazole ring may be any raw material, but a nitrile derivative or an iminoether derivative and a hydrazide derivative may be used. A method of reacting is preferable. The solvent used in the reaction may be any solvent as long as it does not react with the raw materials, but may be an ester type (eg, ethyl acetate, methyl acetate, etc.), an amide type (dimethylformamide, dimethylacetamide, etc.), an ether type. (Ethylene glycol dimethyl ether etc.), Alcohol type (eg methanol, ethanol, propanol, isopropanol, n-butanol, 2-butanol, ethylene glycol, ethylene glycol monomethyl ether etc.), aromatic hydrocarbon type (eg toluene, xylene etc.) ), water can be mentioned. The solvent used is preferably an alcohol solvent. Moreover, these solvents may be mixed and used.
 溶媒の使用量は、特に制限はないが、使用するヒドラジド誘導体の質量に対して、0.5~30倍量の範囲内であることが好ましく、さらに好ましくは、1.0~25倍量であり、特に好ましくは、3.0~20倍量の範囲内である。 The amount of the solvent used is not particularly limited, but it is preferably within a range of 0.5 to 30 times, and more preferably 1.0 to 25 times the amount of the hydrazide derivative used. Yes, and particularly preferably in the range of 3.0 to 20 times.
 ニトリル誘導体とヒドラジド誘導体を反応させる場合、触媒を使用しなくても構わないが、反応を加速させるために触媒を使用する方が好ましい。使用する触媒としては、酸を用いても良く、塩基を用いても良い。酸としては、塩酸、硫酸、硝酸、酢酸等が挙げられ、好ましくは塩酸である。酸は、水に希釈して添加しても良く、ガスを系中に吹き込む方法で添加しても良い。塩基としては、無機塩基(炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム、水酸化カリウム、水酸化ナトリウム等)及び有機塩基(ナトリウムメチラート、ナトリウムエチラート、カリウムメチラート、カリウムエチラート、ナトリウムブチラート、カリウムブチラート、ジイソプロピルエチルアミン、N,N′-ジメチルアミノピリジン、1,4-ジアザビシクロ[2.2.2]オクタン、N-メチルモルホリン、イミダゾール、N-メチルイミダゾール、ピリジン等)のいずれを用いて良く、無機塩基としては、炭酸カリウムが好ましく、有機塩基としては、ナトリウムエチラート、ナトリウムエチラート、ナトリウムブチラートが好ましい。無機塩基は、粉体のまま添加しても良く、溶媒に分散させた状態で添加しても良い。また、有機塩基は、溶媒に溶解した状態(例えば、ナトリウムメチラートの28%メタノール溶液等)で添加しても良い。 When a nitrile derivative and a hydrazide derivative are reacted, it is not necessary to use a catalyst, but it is preferable to use a catalyst to accelerate the reaction. The catalyst used may be an acid or a base. Examples of the acid include hydrochloric acid, sulfuric acid, nitric acid, acetic acid and the like, and hydrochloric acid is preferable. The acid may be added by diluting it with water, or by adding a gas into the system. As the base, an inorganic base (potassium carbonate, sodium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, potassium hydroxide, sodium hydroxide, etc.) and an organic base (sodium methylate, sodium ethylate, potassium methylate, potassium ethylate, Sodium butyrate, potassium butyrate, diisopropylethylamine, N,N′-dimethylaminopyridine, 1,4-diazabicyclo[2.2.2]octane, N-methylmorpholine, imidazole, N-methylimidazole, pyridine, etc.) Either may be used, potassium carbonate is preferable as the inorganic base, and sodium ethylate, sodium ethylate, and sodium butyrate are preferable as the organic base. The inorganic base may be added as a powder, or may be added in a state of being dispersed in a solvent. In addition, the organic base may be added in a state of being dissolved in a solvent (for example, a 28% methanol solution of sodium methylate).
 触媒の使用量は、反応が進行する量であれば特に制限はないが、形成されるトリアゾール環に対して1.0~5.0倍モルの範囲内が好ましく、さらに1.05~3.0倍モルの範囲内が好ましい。 The amount of the catalyst used is not particularly limited as long as the reaction proceeds, but it is preferably in the range of 1.0 to 5.0 times by mole with respect to the triazole ring formed, and further 1.05 to 3. The molar ratio is preferably 0 times.
 イミノエーテル誘導体とヒドラジド誘導体を反応させる場合は、触媒を用いる必要がなく、溶媒中で加熱することにより目的物を得ることができる。 When the imino ether derivative and the hydrazide derivative are reacted, it is not necessary to use a catalyst, and the desired product can be obtained by heating in a solvent.
 反応に用いる原料、溶媒及び触媒の添加方法は、特に制限がなく、触媒を最後に添加しても良く、溶媒を最後に添加しても良い。また、ニトリル誘導体を溶媒に分散若しくは溶解させ、触媒を添加した後、ヒドラジド誘導体を添加する方法も好ましい。 There are no particular restrictions on the method of adding the raw materials, solvent and catalyst used in the reaction, and the catalyst may be added last or the solvent may be added last. A method in which the nitrile derivative is dispersed or dissolved in a solvent, the catalyst is added, and then the hydrazide derivative is added is also preferable.
 反応中の溶液温度は、反応が進行する温度であればいかなる温度でも構わないが、好ましくは、0~150℃の範囲内であり、さらに好ましくは、20~140℃の範囲内である。また、生成する水を除去しながら、反応を行っても良い。 The temperature of the solution during the reaction may be any temperature as long as the reaction proceeds, but it is preferably in the range of 0 to 150°C, more preferably in the range of 20 to 140°C. Further, the reaction may be carried out while removing the produced water.
 反応溶液の処理方法は、いかなる手段を用いても良いが、塩基を触媒として用いた場合は、反応溶液に酸を加えて中和する方法が好ましい。中和に用いる酸としては、例えば、塩酸、硫酸、硝酸又は酢酸等が挙げられるが、特に好ましくは酢酸である。中和に使用する酸の量は、反応溶液のpHが4~9になる範囲であれば特に制限はないが、使用する塩基に対して、0.1~3倍モルが好ましく、特に好ましくは、0.2~1.5倍モルの範囲内である。 Any method may be used for treating the reaction solution, but when a base is used as a catalyst, a method of adding an acid to the reaction solution to neutralize it is preferable. Examples of the acid used for neutralization include hydrochloric acid, sulfuric acid, nitric acid, acetic acid and the like, and acetic acid is particularly preferable. The amount of acid used for neutralization is not particularly limited as long as the pH of the reaction solution is in the range of 4 to 9, but is preferably 0.1 to 3 times the molar amount of the base used, and particularly preferably , 0.2 to 1.5 times the molar range.
 反応溶液の処理方法として、適当な有機溶媒を用いて抽出する場合、抽出後に有機溶媒を水で洗浄した後、濃縮する方法が好ましい。ここでいう適当な有機溶媒とは、酢酸エチル、トルエン、ジクロロメタン、エーテル等非水溶性の溶媒、又は、前記非水溶性の溶媒とテトラヒドロフラン又はアルコール系溶媒との混合溶媒のことであり、好ましくは酢酸エチルである。 As a method for treating the reaction solution, when extracting with an appropriate organic solvent, it is preferable to wash the organic solvent with water after the extraction and then concentrate. The suitable organic solvent referred to herein is a water-insoluble solvent such as ethyl acetate, toluene, dichloromethane, or ether, or a mixed solvent of the water-insoluble solvent and tetrahydrofuran or an alcohol solvent, preferably It is ethyl acetate.
 一般式(A1)で表される構造を有する化合物を晶析させる場合、特に制限はないが、中和した反応溶液に水を追加して晶析させる方法、若しくは、一般式(A1)で表される構造を有する化合物が溶解した水溶液を中和して晶析させる方法が好ましい。 When the compound having the structure represented by the general formula (A1) is crystallized, there is no particular limitation, but a method in which water is added to the neutralized reaction solution for crystallization, or a compound represented by the general formula (A1) is used. A method of neutralizing an aqueous solution in which a compound having the structure described above is dissolved to perform crystallization is preferable.
 例えば、例示化合物1は以下のスキームによって合成することができる。 For example, Exemplified Compound 1 can be synthesized by the following scheme.
 (例示化合物1の合成)
Figure JPOXMLDOC01-appb-C000093
(Synthesis of Exemplified Compound 1)
Figure JPOXMLDOC01-appb-C000093
 n-ブタノール350mlにベンゾニトリル77.3g(75.0mmol)、ベンゾイルヒドラジン34.0g(25.0mmol)、炭酸カリウム107.0g(77.4mmol)を加え、窒素雰囲気下、120℃で24時間撹拌した。反応液を室温まで冷却し、析出物を濾過後、濾液を減圧下で濃縮した。濃縮物にイソプロパノール20mlを加え、析出物を濾取した。濾取した析出物をメタノール80mlに溶解し、純水300mlを加え、溶液のpHが7になるまで酢酸を滴下した。析出した結晶を濾取後、純水で洗浄し、50℃で送風乾燥することにより、例示化合物1を38.6g得た。収率は、ベンゾイルヒドラジン基準で70%であった。 To 350 ml of n-butanol, 77.3 g (75.0 mmol) of benzonitrile, 34.0 g (25.0 mmol) of benzoylhydrazine and 107.0 g (77.4 mmol) of potassium carbonate were added, and the mixture was stirred at 120° C. for 24 hours under a nitrogen atmosphere. did. The reaction solution was cooled to room temperature, the precipitate was filtered, and the filtrate was concentrated under reduced pressure. 20 ml of isopropanol was added to the concentrate, and the precipitate was collected by filtration. The precipitate collected by filtration was dissolved in 80 ml of methanol, 300 ml of pure water was added, and acetic acid was added dropwise until the pH of the solution reached 7. The precipitated crystals were collected by filtration, washed with pure water, and then air-dried at 50° C. to obtain 38.6 g of Exemplified Compound 1. The yield was 70% based on benzoylhydrazine.
 得られた例示化合物1のH-NMRスペクトルは以下のとおりである。 The 1 H-NMR spectrum of the obtained Exemplified Compound 1 is as follows.
 H-NMR(400MHz、溶媒:重DMSO、基準:テトラメチルシラン)δ(ppm):7.56~7.48(6H、m)、7.62~7.61(4H、m)
 (例示化合物6の合成)
 例示化合物6は以下のスキームによって合成することができる。
1 H-NMR (400 MHz, solvent: heavy DMSO, standard: tetramethylsilane) δ (ppm): 7.56 to 7.48 (6 H, m), 7.62 to 7.61 (4 H, m)
(Synthesis of Exemplified Compound 6)
Exemplified compound 6 can be synthesized by the following scheme.
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
 n-ブタノール40mlに1,3-ジシアノベンゼン2.5g(19.5mmol)、ベンゾイルヒドラジン7.9g(58.5mmol)、炭酸カリウム9.0g(68.3mmol)を加え、窒素雰囲気下、120℃で24時間撹拌した。反応液を冷却後、純水40mlを加え、室温で3時間撹拌した後、析出した固体を濾別し、純水で洗浄した。得られた固体に水及び酢酸エチルを加えて分液し、有機層を純水で洗浄した。有機層を硫酸マグネシウムで乾燥し、溶媒を減圧留去した。得られた粗結晶をシリカゲルクロマトグラフィー(酢酸エチル/ヘプタン)で精製し、例示化合物6を5.5g得た。収率は、1,3-ジシアノベンゼン基準で77%であった。 2.5 g (19.5 mmol) of 1,3-dicyanobenzene, 7.9 g (58.5 mmol) of benzoylhydrazine and 9.0 g (68.3 mmol) of potassium carbonate were added to 40 ml of n-butanol, and the mixture was heated at 120° C. under a nitrogen atmosphere. It was stirred for 24 hours. After cooling the reaction solution, 40 ml of pure water was added, and the mixture was stirred at room temperature for 3 hours, then the precipitated solid was separated by filtration and washed with pure water. Water and ethyl acetate were added to the obtained solid for liquid separation, and the organic layer was washed with pure water. The organic layer was dried over magnesium sulfate, and the solvent was evaporated under reduced pressure. The obtained crude crystals were purified by silica gel chromatography (ethyl acetate/heptane) to obtain 5.5 g of Exemplified compound 6. The yield was 77% based on 1,3-dicyanobenzene.
 得られた例示化合物6のH-NMRスペクトルは以下のとおりである。 The 1 H-NMR spectrum of the obtained Exemplified Compound 6 is as follows.
 H-NMR(400MHz、溶媒:重DMSO、基準:テトラメチルシラン)δ(ppm):8.83(1H、s)、8.16~8.11(6H、m)、7.67~7.54(7H、m)
 (例示化合物176の合成)
 例示化合物176は以下のスキームによって合成することができる。
1 H-NMR (400 MHz, solvent: heavy DMSO, reference: tetramethylsilane) δ (ppm): 8.83 (1 H, s), 8.16 to 8.11 (6 H, m), 7.67 to 7 .54 (7H, m)
(Synthesis of Exemplified Compound 176)
The exemplified compound 176 can be synthesized by the following scheme.
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000095
 脱水テトラヒドロフラン520mlにアセトフェノン80g(0.67mol)、イソフタル酸ジメチル52g(0.27mol)を加え、窒素雰囲気下、氷水冷で撹拌しながら、ナトリウムアミド52.3g(1.34mol)を少しずつ滴下した。氷水冷下で3時間撹拌した後、水冷下で12時間撹拌した。反応液に濃硫酸を加えて中和した後、純水及び酢酸エチルを加えて分液し、有機層を純水で洗浄した。有機層を硫酸マグネシウムで乾燥し、溶媒を減圧留去した。得られた粗結晶にメタノールを加えて懸濁洗浄することにより、中間体Aを55.2g得た。 80 g (0.67 mol) of acetophenone and 52 g (0.27 mol) of dimethyl isophthalate were added to 520 ml of dehydrated tetrahydrofuran, and 52.3 g (1.34 mol) of sodium amide was added little by little while stirring under ice cooling with ice water under a nitrogen atmosphere. .. After stirring for 3 hours under ice-water cooling, the mixture was stirred for 12 hours under water cooling. After concentrated sulfuric acid was added to the reaction solution for neutralization, pure water and ethyl acetate were added for liquid separation, and the organic layer was washed with pure water. The organic layer was dried over magnesium sulfate, and the solvent was evaporated under reduced pressure. 55.2 g of Intermediate A was obtained by adding methanol to the obtained crude crystals and performing suspension washing.
 テトラヒドロフラン300ml、エタノール200mlに中間体A55g(0.15mol)を加え、室温で撹拌しながら、ヒドラジン1水和物18.6g(0.37mol)を少しずつ滴下した。滴下終了後、12時間加熱還流した。反応液に純水及び酢酸エチルを加えて分液し、有機層を純水で洗浄した。有機層を硫酸マグネシウムで乾燥し、溶媒を減圧留去した。得られた粗結晶をシリカゲルクロマトグラフィー(酢酸エチル/ヘプタン)で精製することによって、例示化合物176を27g得た。 55 g (0.15 mol) of Intermediate A was added to 300 ml of tetrahydrofuran and 200 ml of ethanol, and 18.6 g (0.37 mol) of hydrazine monohydrate was added little by little while stirring at room temperature. After completion of the dropping, the mixture was heated under reflux for 12 hours. Pure water and ethyl acetate were added to the reaction solution for liquid separation, and the organic layer was washed with pure water. The organic layer was dried over magnesium sulfate, and the solvent was evaporated under reduced pressure. The crude crystals obtained were purified by silica gel chromatography (ethyl acetate/heptane) to obtain 27 g of Exemplified Compound 176.
 得られた例示化合物176のH-NMRスペクトルは以下のとおりである。なお、互変異性体の存在により、ケミカルシフトが複雑化するのを避けるために、測定溶媒にトリフルオロ酢酸を数滴加えて測定を行った。 The 1 H-NMR spectrum of the obtained Exemplified Compound 176 is as follows. The measurement was carried out by adding a few drops of trifluoroacetic acid to the measurement solvent in order to prevent the chemical shift from becoming complicated due to the presence of the tautomer.
 H-NMR(400MHz、溶媒:重DMSO、基準:テトラメチルシラン)δ(ppm):8.34(1H、s)、7.87~7.81(6H、m)、7.55~7.51(1H、m)、7.48~7.44(4H、m)、7.36~7.33(2H、m)、7.29(1H、s)
 その他の化合物についても同様の方法によって合成が可能である。
1 H-NMR (400 MHz, solvent: heavy DMSO, reference: tetramethylsilane) δ (ppm): 8.34 (1 H, s), 7.87 to 7.81 (6 H, m), 7.55 to 7 0.51 (1H, m), 7.48 to 7.44 (4H, m), 7.36 to 7.33 (2H, m), 7.29 (1H, s)
Other compounds can be synthesized by the same method.
 〈一般式(A1)で表される構造を有する化合物の使用方法について〉
 本発明に用いられる前記一般式(A1)で表される構造を有する化合物は、適宜量を調整してアクリル樹脂フィルムに含有することができるが、添加量としてはアクリル樹脂フィルム中に、0.1~10質量%含むことが好ましく、特に、0.5~5質量%含むことが好ましい。この範囲内であれば、本発明に係るアクリル樹脂フィルムの機械強度を損なうことなく、環境湿度の変化に依存した位相差の変動を低減することができる。
<Using Method of Compound Having Structure Represented by General Formula (A1)>
The compound having a structure represented by the general formula (A1) used in the present invention can be contained in the acrylic resin film in an appropriate amount, but the addition amount is 0. The content is preferably 1 to 10% by mass, and particularly preferably 0.5 to 5% by mass. Within this range, it is possible to reduce the fluctuation of the phase difference depending on the change of the environmental humidity without impairing the mechanical strength of the acrylic resin film according to the present invention.
 また、前記一般式(A1)で表される構造を有する化合物の添加方法としては、アクリル樹脂フィルムを形成する樹脂に粉体で添加しても良く、溶媒に溶解した後、アクリル樹脂フィルムを形成する樹脂に添加しても良い。 Further, as a method of adding the compound having the structure represented by the general formula (A1), it may be added in the form of powder to the resin forming the acrylic resin film, and after dissolving in a solvent, the acrylic resin film is formed. It may be added to the resin.
 (7)有機エステル
 本発明に係るアクリル樹脂フィルムは、可塑剤として以下の有機エステルを用いることが、成型性や寸法安定性の観点から好ましい。
(7) Organic ester In the acrylic resin film according to the present invention, it is preferable to use the following organic ester as a plasticizer from the viewpoint of moldability and dimensional stability.
 有機エステルは、融点が-60~120℃の範囲内である化合物であることが好ましく、かつ示差熱・熱重量測定による1%質量減少温度Td1が100~350℃の範囲内である有機エステルであることが好ましい。有機エステルとしては、特に限定されるものではないが、当該有機エステルが、糖エステル、重縮合エステル、及び多価アルコールエステルから選択される少なくとも1種であることが好ましく、前記重縮合エステルは、構造中に窒素原子を含まないエステルであることが好ましい。 The organic ester is preferably a compound having a melting point in the range of −60 to 120° C., and an organic ester having a 1% mass reduction temperature Td1 in the range of 100 to 350° C. by differential thermal/thermogravimetric measurement. It is preferable to have. The organic ester is not particularly limited, but the organic ester is preferably at least one selected from sugar ester, polycondensation ester, and polyhydric alcohol ester, and the polycondensation ester is An ester having no nitrogen atom in its structure is preferable.
 (有機エステルの融点の測定)
 融点の測定は、セイコーインスツル製示差熱・熱重量同時測定装置、EXSTAR6220TG/DTAを用いて測定した。アルミパンに試料化合物を10mg入れて、10℃/minで30~350℃、350~30℃に温度を変化させたときの吸熱・発熱ピークから融点を求めた。融点が0℃以下の化合物を測定するときは5℃/minで-50~30℃、30~-50℃までの温度の吸熱・発熱ピークから融点を求めた。
(Measurement of melting point of organic ester)
The melting point was measured using an EXSTAR 6220TG/DTA, a differential thermal and thermogravimetric simultaneous measuring device manufactured by Seiko Instruments. The melting point was determined from the endothermic and exothermic peaks when 10 mg of the sample compound was placed in an aluminum pan and the temperature was changed to 30 to 350° C. and 350 to 30° C. at 10° C./min. When measuring a compound having a melting point of 0° C. or lower, the melting point was determined from the endothermic/exothermic peaks at temperatures of −50 to 30° C. and 30 to −50° C. at 5° C./min.
 本発明に用いられる有機エステルは、本発明の効果を呈するのに、融点が-60~120℃の範囲内であることが必要であり、好ましくは、-45~90℃の範囲内である。 The organic ester used in the present invention must have a melting point within the range of −60 to 120° C., preferably within the range of −45 to 90° C., in order to exhibit the effects of the present invention.
 有機エステルの融点が-60~120℃の範囲内であると、製造ライン中で飛散し、かつ冷却された後液状化しやすいため、本発明の効果発現の観点からこの範囲内であることが好ましい。 When the melting point of the organic ester is within the range of −60 to 120° C., the organic ester scatters in the production line and is easily liquefied after being cooled. ..
 (有機エステルの1%質量減少温度の測定)
 有機エステルの1%質量減少温度Td1の測定は、例えば、セイコーインスツル製示差熱・熱重量同時測定装置、EXSTAR6200TG/DTAによって、アルミパンに試料化合物を10mg入れて、50℃/minで100℃まで昇温した後、40分間そのまま加熱し、その後、10℃/minで400℃まで昇温しながら質量変動をモニターし、質量が1質量%減少したときの温度を、1%質量減少温度とする。なお、測定は乾燥空気(露点-30℃)下で測定する。
(Measurement of 1% mass reduction temperature of organic ester)
The 1% mass reduction temperature Td1 of the organic ester is measured, for example, by a differential thermal/thermogravimetric simultaneous measurement device manufactured by Seiko Instruments, EXSTAR6200TG/DTA, 10 mg of the sample compound is put in an aluminum pan, and 100°C at 50°C/min. After heating to 40° C. for 40 minutes, the temperature is raised to 400° C. at 10° C./min, and the mass variation is monitored. To do. The measurement is performed under dry air (dew point −30° C.).
 本発明に用いられる有機エステルは、本発明の効果を呈するのに、1%質量減少温度が、100~300℃の範囲内であることが好ましく、より好ましくは200~270℃の範囲内である。 The organic ester used in the present invention preferably has a 1% mass reduction temperature in the range of 100 to 300° C., more preferably in the range of 200 to 270° C., in order to exhibit the effects of the present invention. ..
 有機エステルの1%質量減少温度が100℃以上であると、飛散、冷却後液状化したときの粘度が適度であり、含窒素複素環化合物の飛散物の嵩高さを小さくすることができ、1%質量減少温度が350℃以下であると、当該含窒素複素環化合物の飛散物の嵩高さを小さくするのに必要な量が飛散して、十分な効果を得ることができる。 When the 1% mass reduction temperature of the organic ester is 100° C. or higher, the viscosity when liquefied after scattering and cooling is appropriate, and the bulkiness of the scattered nitrogen-containing heterocyclic compound can be reduced. When the% mass reduction temperature is 350° C. or lower, the amount of the nitrogen-containing heterocyclic compound necessary for reducing the bulkiness of the scattered material is scattered, and a sufficient effect can be obtained.
 以下、本発明に好ましく用いられる有機エステルとして、糖エステル、重縮合エステル、及び多価アルコールエステルについて説明する。 Hereinafter, sugar esters, polycondensation esters, and polyhydric alcohol esters will be described as the organic esters preferably used in the present invention.
 本発明では以下の好ましい有機エステルの中から、上記融点及び1%質量減少温度Td1が本発明の範囲内である化合物を、適宜選択して用いることができる。 In the present invention, a compound having the above melting point and 1% mass reduction temperature Td1 within the range of the present invention can be appropriately selected and used from the following preferable organic esters.
 (7-1)糖エステル
 本発明に用いられる糖エステルとしては、ピラノース環又はフラノース環の少なくとも1種を1個以上12個以下有しその構造のOH基の全て若しくは一部をエステル化した糖エステルであることが好ましい。
(7-1) Sugar ester As the sugar ester used in the present invention, a sugar ester having 1 or more and 12 or less of at least one pyranose ring or furanose ring and esterifying all or part of the OH groups of the structure. It is preferably an ester.
 本発明に用いられる糖エステルとは、フラノース環又はピラノース環の少なくともいずれかを含む化合物であり、単糖であっても、糖構造が2~12個連結した多糖であってもよい。そして、糖エステルは、糖構造が有するOH基の少なくとも一つがエステル化された化合物が好ましい。本発明に係る糖エステルにおいては、平均エステル置換度が、4.0~8.0の範囲内であることが好ましく、5.0~7.5の範囲内であることがより好ましい。 The sugar ester used in the present invention is a compound containing at least either a furanose ring or a pyranose ring, and may be a monosaccharide or a polysaccharide in which 2 to 12 sugar structures are linked. The sugar ester is preferably a compound in which at least one OH group of the sugar structure is esterified. In the sugar ester according to the present invention, the average ester substitution degree is preferably in the range of 4.0 to 8.0, more preferably in the range of 5.0 to 7.5.
 本発明に用いられる糖エステルとしては、特に制限はないが、下記一般式(B)で表される糖エステルを挙げることができる。 The sugar ester used in the present invention is not particularly limited, and examples thereof include sugar esters represented by the following general formula (B).
 一般式(B)
   (HO)-G-(O-C(=O)-R
 上記一般式(B)において、Gは、単糖類又は二糖類の残基を表し、Rは、脂肪族基又は芳香族基を表し、mは、単糖類又は二糖類の残基に直接結合しているヒドロキシ基の数の合計であり、nは、単糖類又は二糖類の残基に直接結合している-(O-C(=O)-R)基の数の合計であり、3≦m+n≦8であり、n≠0である。
General formula (B)
(HO) m -G-(OC(=O)-R 2 ) n
In the general formula (B), G represents a residue of a monosaccharide or a disaccharide, R 2 represents an aliphatic group or an aromatic group, and m is a direct bond to the residue of a monosaccharide or a disaccharide. Is the total number of hydroxy groups present, and n is the total number of —(OC(═O)—R 2 ) groups directly bonded to the residues of the monosaccharide or disaccharide, 3≦m+n≦8, and n≠0.
 一般式(B)で表される構造を有する糖エステルは、ヒドロキシ基の数(m)、-(O-C(=O)-R)基の数(n)が固定された単一種の化合物として単離することは困難であり、式中のm、nの異なる成分が数種類混合された化合物となることが知られている。したがって、ヒドロキシ基の数(m)、-(O-C(=O)-R)基の数(n)が各々変化した混合物としての性能が重要であり、本発明に係るアクリル樹脂フィルムの場合、平均エステル置換度が、5.0~7.5の範囲内である糖エステルが好ましい。 The sugar ester having the structure represented by the general formula (B) is a single type of ester in which the number of hydroxy groups (m) and the number of -(OC(=O)-R 2 ) groups (n) are fixed. It is difficult to isolate as a compound, and it is known that a compound is obtained by mixing several kinds of components having different m and n in the formula. Therefore, performance as a mixture in which the number of hydroxy groups (m) and the number of -(OC(=O)-R 2 ) groups (n) are changed is important, and the acrylic resin film of the present invention has In this case, a sugar ester having an average degree of ester substitution within the range of 5.0 to 7.5 is preferable.
 上記一般式(B)において、Gは単糖類又は二糖類の残基を表す。単糖類の具体例としては、例えばアロース、アルトロース、グルコース、マンノース、グロース、イドース、ガラクトース、タロース、リボース、アラビノース、キシロース、リキソースなどが挙げられる。 In the above general formula (B), G represents a monosaccharide or disaccharide residue. Specific examples of monosaccharides include allose, altrose, glucose, mannose, gulose, idose, galactose, talose, ribose, arabinose, xylose and lyxose.
 以下に、一般式(B)で表される糖エステルの単糖類残基を有する化合物の具体例を示すが、本発明はこれら例示する化合物に限定されるものではない。 Specific examples of the compound having a monosaccharide residue of the sugar ester represented by the general formula (B) are shown below, but the present invention is not limited to these exemplified compounds.
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
 また、二糖類残基の具体例としては、例えば、トレハロース、スクロース、マルトース、セロビオース、ゲンチオビオース、ラクトース、イソトレハロース等が挙げられる。 Further, specific examples of the disaccharide residue include trehalose, sucrose, maltose, cellobiose, gentiobiose, lactose, isotrehalose and the like.
 以下に、一般式(B)で表される糖エステルの二糖類残基を有する化合物の具体例を示すが、本発明はこれら例示する化合物に限定されるものではない。 Specific examples of the compound having a disaccharide residue of the sugar ester represented by the general formula (B) are shown below, but the present invention is not limited to these exemplified compounds.
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000097
 一般式(B)において、Rは、脂肪族基又は芳香族基を表す。ここで、脂肪族基及び芳香族基は、それぞれ独立に置換基を有していてもよい。 In the general formula (B), R 2 represents an aliphatic group or an aromatic group. Here, the aliphatic group and the aromatic group may each independently have a substituent.
 また、一般式(B)において、mは、単糖類又は二糖類の残基に直接結合しているヒドロキシ基の数の合計であり、nは、単糖類又は二糖類の残基に直接結合している-(O-C(=O)-R)基の数の合計である。そして、3≦m+n≦8であることが必要であり、4≦m+n≦8であることが好ましい。また、n≠0である。なお、nが2以上である場合、-(O-C(=O)-R)基は互いに同じでもよいし異なっていてもよい。 Further, in the general formula (B), m is the total number of hydroxy groups directly bonded to the residues of the monosaccharide or disaccharide, and n is directly bonded to the residues of the monosaccharide or disaccharide. Is the total number of —(O—C(═O)—R 2 ) groups. Then, it is necessary that 3≦m+n≦8, and preferably 4≦m+n≦8. Also, n≠0. When n is 2 or more, the -(OC(=O)-R 2 ) groups may be the same or different from each other.
 Rの定義における脂肪族基は、直鎖であっても、分岐であっても、環状であってもよく、炭素数1~25のものが好ましく、1~20のものがより好ましく、2~15のものが特に好ましい。脂肪族基の具体例としては、例えば、メチル、エチル、n-プロピル、iso-プロピル、シクロプロピル、n-ブチル、iso-ブチル、tert-ブチル、アミル、iso-アミル、tert-アミル、n-ヘキシル、シクロヘキシル、n-ヘプチル、n-オクチル、ビシクロオクチル、アダマンチル、n-デシル、tert-オクチル、ドデシル、ヘキサデシル、オクタデシル、ジデシル等の各基が挙げられる。 The aliphatic group in the definition of R 2 may be linear, branched or cyclic and preferably has 1 to 25 carbon atoms, more preferably 1 to 20 carbon atoms, or 2 Those of -15 are particularly preferable. Specific examples of the aliphatic group include, for example, methyl, ethyl, n-propyl, iso-propyl, cyclopropyl, n-butyl, iso-butyl, tert-butyl, amyl, iso-amyl, tert-amyl, n- Examples thereof include hexyl, cyclohexyl, n-heptyl, n-octyl, bicyclooctyl, adamantyl, n-decyl, tert-octyl, dodecyl, hexadecyl, octadecyl and didecyl groups.
 また、Rの定義における芳香族基は、芳香族炭化水素基でもよいし、芳香族複素環基でもよく、より好ましくは芳香族炭化水素基である。芳香族炭化水素基としては、炭素数が6~24のものが好ましく、6~12のものがさらに好ましい。芳香族炭化水素基の具体例としては、例えば、ベンゼン、ナフタレン、アントラセン、ビフェニル、ターフェニル等の各環が挙げられる。芳香族炭化水素基としては、ベンゼン環、ナフタレン環、ビフェニル環が特に好ましい。芳香族複素環基としては、酸素原子、窒素原子又は硫黄原子のうち少なくとも一つを含む環が好ましい。複素環の具体例としては、例えば、フラン、ピロール、チオフェン、イミダゾール、ピラゾール、ピリジン、ピラジン、ピリダジン、トリアゾール、トリアジン、インドール、インダゾール、プリン、チアゾリン、チアジアゾール、オキサゾリン、オキサゾール、オキサジアゾール、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、アクリジン、フェナントロリン、フェナジン、テトラゾール、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、ベンゾトリアゾール、テトラザインデン等の各環が挙げられる。芳香族複素環基としては、ピリジン環、トリアジン環、キノリン環が特に好ましい。 The aromatic group in the definition of R 2 may be an aromatic hydrocarbon group or an aromatic heterocyclic group, more preferably an aromatic hydrocarbon group. The aromatic hydrocarbon group preferably has 6 to 24 carbon atoms, more preferably 6 to 12 carbon atoms. Specific examples of the aromatic hydrocarbon group include rings such as benzene, naphthalene, anthracene, biphenyl, and terphenyl. As the aromatic hydrocarbon group, a benzene ring, a naphthalene ring and a biphenyl ring are particularly preferable. The aromatic heterocyclic group is preferably a ring containing at least one of an oxygen atom, a nitrogen atom and a sulfur atom. Specific examples of the heterocycle include, for example, furan, pyrrole, thiophene, imidazole, pyrazole, pyridine, pyrazine, pyridazine, triazole, triazine, indole, indazole, purine, thiazoline, thiadiazole, oxazoline, oxazole, oxadiazole, quinoline, Examples thereof include isoquinoline, phthalazine, naphthyridine, quinoxaline, quinazoline, cinnoline, pteridine, acridine, phenanthroline, phenazine, tetrazole, benzimidazole, benzoxazole, benzthiazole, benzotriazole, and tetrazaindene. As the aromatic heterocyclic group, a pyridine ring, a triazine ring and a quinoline ring are particularly preferable.
 次に、一般式(B)で表される糖エステルの好ましい例を下記に示すが、本発明はこれらの例示する化合物に限定されるものではない。下記例示化合物はいずれも融点及び1%質量減少温度Td1が、本発明の範囲内である。 Next, preferred examples of the sugar ester represented by the general formula (B) are shown below, but the present invention is not limited to these exemplified compounds. The melting point and the 1% mass reduction temperature Td1 of all of the following exemplified compounds are within the scope of the present invention.
 糖エステルは一つの分子中に二つ以上の異なった置換基を含有していても良く、芳香族置換基と脂肪族置換基を1分子内に含有、異なる二つ以上の芳香族置換基を1分子内に含有、異なる二つ以上の脂肪族置換基を1分子内に含有することができる。 The sugar ester may contain two or more different substituents in one molecule, contains an aromatic substituent and an aliphatic substituent in one molecule, and contains two or more different aromatic substituents. Two or more different aliphatic substituents contained in one molecule can be contained in one molecule.
 また、2種類以上の糖エステルを混合して含有することも好ましい。芳香族置換基を含有する糖エステルと、脂肪族置換基を含有する糖エステルを同時に含有することも好ましい。 Also, it is preferable to contain a mixture of two or more types of sugar ester. It is also preferable to simultaneously contain a sugar ester containing an aromatic substituent and a sugar ester containing an aliphatic substituent.
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
 〈合成例:一般式(B)で表される糖エステルの合成例〉
 以下に、本発明に好適に用いることのできる糖エステルの合成の一例を示す。
<Synthesis Example: Synthesis Example of Sugar Ester Represented by General Formula (B)>
The following is an example of the synthesis of sugar ester that can be preferably used in the present invention.
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
 撹拌装置、還流冷却器、温度計及び窒素ガス導入管を備えた四頭コルベンに、ショ糖を34.2g(0.1モル)、無水安息香酸を180.8g(0.8モル)、ピリジンを379.7g(4.8モル)、それぞれ仕込み、撹拌下で窒素ガス導入管から窒素ガスをバブリングさせながら昇温し、70℃で5時間エステル化反応を行った。次に、コルベン内を4×10Pa以下に減圧し、60℃で過剰のピリジンを留去した後に、コルベン内を1.3×10Pa以下に減圧し、120℃まで昇温させ、無水安息香酸、生成した安息香酸の大部分を留去した。そして、次にトルエンを1L、0.5質量%の炭酸ナトリウム水溶液を300g添加し、50℃で30分間撹拌した後、静置して、トルエン層を分取した。最後に、分取したトルエン層に水を100g添加し、常温で30分間水洗した後、トルエン層を分取し、減圧下(4×10Pa以下)、60℃でトルエンを留去させ、化合物A-1、A-2、A-3、A-4及びA-5の混合物を得た。得られた混合物をHPLC及びLC-MASSで解析したところ、A-1が7質量%、A-2が58質量%、A-3が23質量%、A-4が9質量%、A-5が3質量%で、糖エステルの平均エステル置換度が、6.57であった。なお、得られた混合物の一部をシリカゲルカラムクロマトグラフィーにより精製することで、それぞれ純度100%のA-1、A-2、A-3、A-4及びA-5を得た。 34.2 g (0.1 mol) of sucrose, 180.8 g (0.8 mol) of benzoic anhydride, and pyridine were placed in a four-head Kolben equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen gas inlet tube. 379.7 g (4.8 mol) of each was charged, and the temperature was raised while bubbling nitrogen gas through the nitrogen gas introduction tube under stirring, and the esterification reaction was carried out at 70° C. for 5 hours. Next, after decompressing the inside of Kolben to 4×10 2 Pa or less and distilling off excess pyridine at 60° C., depressurizing the inside of Kolben to 1.3×10 Pa or less and raising the temperature to 120° C., anhydrous benzoin Most of the acid and benzoic acid formed were distilled off. Then, 1 L of toluene and 300 g of a 0.5% by mass sodium carbonate aqueous solution were added, and the mixture was stirred at 50° C. for 30 minutes and then left standing to separate the toluene layer. Finally, 100 g of water was added to the separated toluene layer, washed with water at room temperature for 30 minutes, the toluene layer was separated, and the toluene was distilled off at 60° C. under reduced pressure (4×10 2 Pa or less). A mixture of compounds A-1, A-2, A-3, A-4 and A-5 was obtained. The obtained mixture was analyzed by HPLC and LC-MASS. As a result, A-1 was 7% by mass, A-2 was 58% by mass, A-3 was 23% by mass, A-4 was 9% by mass, A-5. Was 3% by mass, and the average ester substitution degree of the sugar ester was 6.57. A part of the obtained mixture was purified by silica gel column chromatography to obtain 100% pure A-1, A-2, A-3, A-4 and A-5.
 当該糖エステルの添加量は、アクリル樹脂に対して0.1~20質量%の範囲で添加することが好ましく、1~15質量%の範囲で添加することがより好ましい。 The addition amount of the sugar ester is preferably in the range of 0.1 to 20% by mass, more preferably in the range of 1 to 15% by mass, based on the acrylic resin.
 (7-2)重縮合エステル
 本発明に係るアクリル樹脂フィルムにおいては、有機エステルとして、下記一般式(C)で表される構造を有する重縮合エステルを用いることが、温湿度変化に対する寸法安定性の観点から好ましい。
(7-2) Polycondensed Ester In the acrylic resin film according to the present invention, it is preferable to use a polycondensed ester having a structure represented by the following general formula (C) as the organic ester because of its dimensional stability against changes in temperature and humidity. From the viewpoint of.
 当該重縮合エステルはその可塑的な効果から、本発明に係るアクリル樹脂フィルムにおいては、1~30質量%の範囲で含有することが好ましく、5~20質量%の範囲で含有することがより好ましい。 Due to its plasticizing effect, the polycondensed ester is preferably contained in the range of 1 to 30% by mass, more preferably 5 to 20% by mass in the acrylic resin film according to the present invention. ..
 一般式(C)
   B-(G-A)-G-B
 上記一般式(C)において、B及びBは、それぞれ独立に脂肪族又は芳香族モノカルボン酸残基、若しくはヒドロキシ基を表す。Gは、炭素数2~12のアルキレングリコール残基、炭素数6~12のアリールグリコール残基又は炭素数が4~12のオキシアルキレングリコール残基を表す。Aは、炭素数4~12のアルキレンジカルボン酸残基又は炭素数6~12のアリールジカルボン酸残基を表す。nは1以上の整数を表す。
General formula (C)
B 3 -(G 2 -A) n -G 2 -B 4
In the general formula (C), B 3 and B 4 each independently represent an aliphatic or aromatic monocarboxylic acid residue or a hydroxy group. G 2 represents an alkylene glycol residue having 2 to 12 carbon atoms, an aryl glycol residue having 6 to 12 carbon atoms, or an oxyalkylene glycol residue having 4 to 12 carbon atoms. A represents an alkylenedicarboxylic acid residue having 4 to 12 carbon atoms or an aryldicarboxylic acid residue having 6 to 12 carbon atoms. n represents an integer of 1 or more.
 本発明において、重縮合エステルは、ジカルボン酸とジオールを反応させて得られる繰り返し単位を含む重縮合エステルであり、Aは重縮合エステル中のカルボン酸残基を表し、Gはアルコール残基を表す。 In the present invention, the polycondensation ester is a polycondensation ester containing a repeating unit obtained by reacting a dicarboxylic acid and a diol, A represents a carboxylic acid residue in the polycondensation ester, and G 2 represents an alcohol residue. Represent
 重縮合エステルを構成するジカルボン酸は、芳香族ジカルボン酸、脂肪族ジカルボン酸又は脂環式ジカルボン酸であり、好ましくは芳香族ジカルボン酸である。ジカルボン酸は、1種類であっても、2種類以上の混合物であってもよい。特に芳香族、脂肪族を混合させることが好ましい。 The dicarboxylic acid forming the polycondensed ester is an aromatic dicarboxylic acid, an aliphatic dicarboxylic acid or an alicyclic dicarboxylic acid, and preferably an aromatic dicarboxylic acid. The dicarboxylic acid may be one type or a mixture of two or more types. In particular, it is preferable to mix aromatic and aliphatic.
 重縮合エステルを構成するジオールは、芳香族ジオール、脂肪族ジオール又は脂環式ジオールであり、好ましくは脂肪族ジオールであり、より好ましくは炭素数1~4のジオールである。ジオールは、1種類であっても、2種類以上の混合物であってもよい。 The diol constituting the polycondensed ester is an aromatic diol, an aliphatic diol or an alicyclic diol, preferably an aliphatic diol, more preferably a diol having 1 to 4 carbon atoms. The diol may be one kind or a mixture of two or more kinds.
 中でも、少なくとも芳香族ジカルボン酸を含むジカルボン酸と、炭素数1~8のジオールとを反応させて得られる繰り返し単位を含むことが好ましく、芳香族ジカルボン酸と脂肪族ジカルボン酸とを含むジカルボン酸と、炭素数1~8のジオールとを反応させて得られる繰り返し単位を含むことがより好ましい。 Among them, it is preferable to include a repeating unit obtained by reacting a dicarboxylic acid containing at least an aromatic dicarboxylic acid with a diol having 1 to 8 carbon atoms, and a dicarboxylic acid containing an aromatic dicarboxylic acid and an aliphatic dicarboxylic acid. More preferably, it contains a repeating unit obtained by reacting with a diol having 1 to 8 carbon atoms.
 重縮合エステルの分子の両末端は、封止されていても、封止されていなくてもよい。 Both ends of the polycondensed ester molecule may or may not be sealed.
 一般式(C)のAを構成するアルキレンジカルボン酸の具体例としては、1,2-エタンジカルボン酸(コハク酸)、1,3-プロパンジカルボン酸(グルタル酸)、1,4-ブタンジカルボン酸(アジピン酸)、1,5-ペンタンジカルボン酸(ピメリン酸)、1,8-オクタンジカルボン酸(セバシン酸)などから誘導される2価の基が含まれる。Aを構成するアルケニレンジカルボン酸の具体例としては、マレイン酸、フマル酸などが挙げられる。Aを構成するアリールジカルボン酸の具体例としては、1,2-ベンゼンジカルボン酸(フタル酸)、1,3-ベンゼンジカルボン酸、1,4-ベンゼンジカルボン酸、1,5-ナフタレンジカルボン酸などが挙げられる。 Specific examples of the alkylenedicarboxylic acid that constitutes A in the general formula (C) include 1,2-ethanedicarboxylic acid (succinic acid), 1,3-propanedicarboxylic acid (glutaric acid), and 1,4-butanedicarboxylic acid. It includes a divalent group derived from (adipic acid), 1,5-pentanedicarboxylic acid (pimelic acid), 1,8-octanedicarboxylic acid (sebacic acid) and the like. Specific examples of the alkenylene dicarboxylic acid that constitutes A include maleic acid and fumaric acid. Specific examples of the aryldicarboxylic acid that constitutes A include 1,2-benzenedicarboxylic acid (phthalic acid), 1,3-benzenedicarboxylic acid, 1,4-benzenedicarboxylic acid, and 1,5-naphthalenedicarboxylic acid. Can be mentioned.
 Aは、1種類であっても、2種類以上が組み合わされてもよい。中でも、Aは、炭素原子数4~12のアルキレンジカルボン酸と炭素原子数8~12のアリールジカルボン酸との組み合わせが好ましい。 A may be one type or a combination of two or more types. Among them, A is preferably a combination of an alkylenedicarboxylic acid having 4 to 12 carbon atoms and an aryldicarboxylic acid having 8 to 12 carbon atoms.
 一般式(C)中のGは、炭素原子数2~12のアルキレングリコールから誘導される2価の基、炭素原子数6~12のアリールグリコールから誘導される2価の基、又は炭素原子数4~12のオキシアルキレングリコールから誘導される2価の基を表す。 G 2 in the general formula (C) is a divalent group derived from an alkylene glycol having 2 to 12 carbon atoms, a divalent group derived from an aryl glycol having 6 to 12 carbon atoms, or a carbon atom. It represents a divalent group derived from oxyalkylene glycol of the formula 4 to 12.
 Gにおける炭素原子数2~12のアルキレングリコールから誘導される2価の基の例には、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,2-プロパンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3-プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、及び1,12-オクタデカンジオール等から誘導される2価の基が含まれる。 Examples of the divalent group derived from alkylene glycol having 2 to 12 carbon atoms in G 2 include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1 ,3-butanediol, 1,2-propanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (Neopentyl glycol), 2,2-diethyl-1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-di) Methylol heptane), 3-methyl-1,5-pentanediol, 1,6-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, 2- Included are divalent groups derived from methyl-1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-octadecanediol and the like.
 Gにおける炭素原子数6~12のアリールグリコールから誘導される2価の基の例には、1,2-ジヒドロキシベンゼン(カテコール)、1,3-ジヒドロキシベンゼン(レゾルシノール)、1,4-ジヒドロキシベンゼン(ヒドロキノン)などから誘導される2価の基が含まれる。Gにおける炭素原子数が4~12のオキシアルキレングリコールから誘導される2価の基の例には、ジエチレングルコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコールなどから誘導される2価の基が含まれる。 Examples of the divalent group derived from the aryl glycol having 6 to 12 carbon atoms in G 2 include 1,2-dihydroxybenzene (catechol), 1,3-dihydroxybenzene (resorcinol) and 1,4-dihydroxy. A divalent group derived from benzene (hydroquinone) or the like is included. Examples of the divalent group derived from oxyalkylene glycol having 4 to 12 carbon atoms in G are derived from diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol and the like. Divalent groups are included.
 Gは、1種類であっても、2種類以上が組み合わされてもよい。中でも、Gは、炭素原子数2~12のアルキレングリコールから誘導される2価の基が好ましく、2~5がさらに好ましく、2~4が最も好ましい。 G 2 may be one type or a combination of two or more types. Among them, G 2 is preferably a divalent group derived from an alkylene glycol having 2 to 12 carbon atoms, more preferably 2 to 5, and most preferably 2 to 4.
 一般式(C)におけるB及びBは、各々芳香環含有モノカルボン酸又は脂肪族モノカルボン酸から誘導される1価の基、若しくはヒドロキシ基である。 B 3 and B 4 in the general formula (C) are each a monovalent group derived from an aromatic ring-containing monocarboxylic acid or an aliphatic monocarboxylic acid, or a hydroxy group.
 芳香環含有モノカルボン酸から誘導される1価の基における芳香環含有モノカルボン酸は、分子内に芳香環を含有するカルボン酸であり、芳香環がカルボキシ基と直接結合したものだけでなく、芳香環がアルキレン基などを介してカルボキシ基と結合したものも含む。芳香環含有モノカルボン酸から誘導される1価の基の例には、安息香酸、パラターシャリブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸、フェニル酢酸、3-フェニルプロピオン酸などから誘導される1価の基が含まれる。中でも安息香酸、パラトルイル酸が好ましい。 The aromatic ring-containing monocarboxylic acid in the monovalent group derived from the aromatic ring-containing monocarboxylic acid is a carboxylic acid containing an aromatic ring in the molecule, and not only the aromatic ring directly bonded to a carboxy group, Also included are those in which an aromatic ring is bonded to a carboxy group via an alkylene group or the like. Examples of monovalent groups derived from aromatic ring-containing monocarboxylic acids include benzoic acid, paratertiarybutylbenzoic acid, orthotoluic acid, metatoluic acid, paratoluic acid, dimethylbenzoic acid, ethylbenzoic acid, normal propylbenzoic acid. , Monobenzoic acid, acetoxybenzoic acid, phenylacetic acid, 3-phenylpropionic acid and the like. Among them, benzoic acid and paratoluic acid are preferable.
 脂肪族モノカルボン酸から誘導される1価の基の例には、酢酸、プロピオン酸、ブタン酸、カプリル酸、カプロン酸、デカン酸、ドデカン酸、ステアリン酸、オレイン酸などから誘導される1価の基が含まれる。中でも、アルキル部分の炭素原子数が1~3であるアルキルモノカルボン酸から誘導される1価の基が好ましく、アセチル基(酢酸から誘導される1価の基)がより好ましい。 Examples of monovalent groups derived from aliphatic monocarboxylic acids include monovalent groups derived from acetic acid, propionic acid, butanoic acid, caprylic acid, caproic acid, decanoic acid, dodecanoic acid, stearic acid, oleic acid, etc. Groups are included. Among them, a monovalent group derived from an alkyl monocarboxylic acid having an alkyl moiety having 1 to 3 carbon atoms is preferable, and an acetyl group (a monovalent group derived from acetic acid) is more preferable.
 本発明に用いられる重縮合エステルの重量平均分子量は、500~3000の範囲であることが好ましく、600~2000の範囲であることがより好ましい。重量平均分子量は前記ゲルパーミエーションクロマトグラフィー(GPC)によって測定することができる。 The weight average molecular weight of the polycondensed ester used in the present invention is preferably in the range of 500 to 3000, more preferably in the range of 600 to 2000. The weight average molecular weight can be measured by the gel permeation chromatography (GPC).
 以下、一般式(C)で表される構造を有する重縮合エステルの具体例を示すが、これに限定されるものではない。下記例示化合物はいずれも融点及び1%質量減少温度Td1が、本発明の範囲内である。 Hereinafter, specific examples of the polycondensed ester having the structure represented by the general formula (C) will be shown, but the polycondensed ester is not limited thereto. The melting point and the 1% mass reduction temperature Td1 of all of the following exemplified compounds are within the scope of the present invention.
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
 以下、上記説明した重縮合エステルの具体的な合成例について記載する。 The following describes specific synthesis examples of the polycondensed ester described above.
 〈重縮合エステルP1〉
 エチレングリコール180g、無水フタル酸278g、アジピン酸91g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応のエチレングリコールを減圧留去することにより、重縮合エステルP1を得た。酸価0.20、数平均分子量450であった。
<Polycondensation ester P1>
180 g of ethylene glycol, 278 g of phthalic anhydride, 91 g of adipic acid, 610 g of benzoic acid, and 0.191 g of tetraisopropyl titanate as an esterification catalyst were charged into a 2 L four-necked flask equipped with a thermometer, a stirrer, and a rapid cooling tube. Gradually raise the temperature with stirring until it reaches 230° C. in a nitrogen stream. A dehydration condensation reaction was performed while observing the degree of polymerization. After completion of the reaction, unreacted ethylene glycol was distilled off under reduced pressure at 200° C. to obtain polycondensed ester P1. The acid value was 0.20 and the number average molecular weight was 450.
 〈重縮合エステルP2〉
 1,2-プロピレングリコール251g、無水フタル酸103g、アジピン酸244g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、下記重縮合エステルP2を得た。酸価0.10、数平均分子量450であった。
<Polycondensation ester P2>
251 g of 1,2-propylene glycol, 103 g of phthalic anhydride, 244 g of adipic acid, 610 g of benzoic acid, 0.191 g of tetraisopropyl titanate as an esterification catalyst, 2 L four-neck equipped with a thermometer, a stirrer, and a rapid cooling tube. The mixture is placed in a flask and gradually heated in a nitrogen stream until the temperature reaches 230° C. with stirring. A dehydration condensation reaction was performed while observing the degree of polymerization. After completion of the reaction, unreacted 1,2-propylene glycol was distilled off under reduced pressure at 200° C. to obtain the following polycondensed ester P2. The acid value was 0.10 and the number average molecular weight was 450.
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000104
 〈重縮合エステルP3〉
 1,4-ブタンジオール330g、無水フタル酸244g、アジピン酸103g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応の1,4-ブタンジオールを減圧留去することにより、重縮合エステルP3を得た。酸価0.50、数平均分子量2000であった。
<Polycondensation ester P3>
330 g of 1,4-butanediol, 244 g of phthalic anhydride, 103 g of adipic acid, 610 g of benzoic acid, 0.191 g of tetraisopropyl titanate as an esterification catalyst, 2 L four-neck equipped with a thermometer, a stirrer, and a rapid cooling tube. The mixture is placed in a flask and gradually heated in a nitrogen stream until the temperature reaches 230° C. with stirring. A dehydration condensation reaction was performed while observing the degree of polymerization. After completion of the reaction, unreacted 1,4-butanediol was distilled off under reduced pressure at 200° C. to obtain polycondensed ester P3. The acid value was 0.50 and the number average molecular weight was 2000.
 〈重縮合エステルP4〉
 1,2-プロピレングリコール251g、テレフタル酸354g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、重縮合エステルP4を得た。酸価0.10、数平均分子量400であった。
<Polycondensation ester P4>
1,2-Propylene glycol (251 g), terephthalic acid (354 g), benzoic acid (610 g), and tetraisopropyl titanate (0.191 g) as an esterification catalyst were charged into a 2 L four-necked flask equipped with a thermometer, a stirrer, and a rapid cooling tube, and nitrogen was charged. Gradually raise the temperature with stirring until the temperature reaches 230° C. in an air stream. A dehydration condensation reaction was performed while observing the degree of polymerization. After the reaction was completed, unreacted 1,2-propylene glycol was distilled off under reduced pressure at 200° C. to obtain polycondensed ester P4. The acid value was 0.10 and the number average molecular weight was 400.
 〈重縮合エステルP5〉
 1,2-プロピレングリコール251g、テレフタル酸354g、p-トロイル酸680g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、下記重縮合エステルP5を得た。酸価0.30、数平均分子量400であった。
<Polycondensation ester P5>
251 g of 1,2-propylene glycol, 354 g of terephthalic acid, 680 g of p-troylic acid, and 0.191 g of tetraisopropyl titanate as an esterification catalyst were charged into a 2 L four-necked flask equipped with a thermometer, a stirrer, and a rapid cooling tube. The temperature is gradually raised with stirring in a nitrogen stream until the temperature reaches 230°C. A dehydration condensation reaction was performed while observing the degree of polymerization. After completion of the reaction, unreacted 1,2-propylene glycol was distilled off under reduced pressure at 200° C. to obtain the following polycondensed ester P5. The acid value was 0.30 and the number average molecular weight was 400.
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000105
 〈重縮合エステルP6〉
 180gの1,2-プロピレングリコール、292gのアジピン酸、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中200℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、重縮合エステルP6を得た。酸価0.10、数平均分子量400であった。
<Polycondensation ester P6>
180 g of 1,2-propylene glycol, 292 g of adipic acid, and 0.191 g of tetraisopropyl titanate as an esterification catalyst were placed in a 2 L four-necked flask equipped with a thermometer, a stirrer, and a rapid cooling tube, and the mixture was placed in a nitrogen stream. Gradually raise the temperature with stirring until the temperature reaches 200°C. A dehydration condensation reaction was performed while observing the degree of polymerization. After completion of the reaction, unreacted 1,2-propylene glycol was distilled off under reduced pressure at 200° C. to obtain polycondensed ester P6. The acid value was 0.10 and the number average molecular weight was 400.
 〈重縮合エステルP7〉
 180gの1,2-プロピレングリコール、無水フタル酸244g、アジピン酸103g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中200℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、重縮合エステルP7を得た。酸価0.10、数平均分子量320であった。
<Polycondensation ester P7>
Charge 180 g of 1,2-propylene glycol, 244 g of phthalic anhydride, 103 g of adipic acid, and 0.191 g of tetraisopropyl titanate as an esterification catalyst into a 2 L four-necked flask equipped with a thermometer, a stirrer, and a rapid cooling tube. The temperature is gradually raised with stirring in a nitrogen stream until the temperature reaches 200°C. A dehydration condensation reaction was performed while observing the degree of polymerization. After completion of the reaction, unreacted 1,2-propylene glycol was distilled off under reduced pressure at 200° C. to obtain polycondensed ester P7. The acid value was 0.10 and the number average molecular weight was 320.
 〈重縮合エステルP8〉
 エチレングリコール251g、無水フタル酸244g、コハク酸120g、酢酸150g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中200℃になるまで、撹拌しながら徐々に昇温する。重合度を観察しながら脱水縮合反応させた。反応終了後200℃で未反応のエチレングリコールを減圧留去することにより、重縮合エステルP8を得た。酸価0.50、数平均分子量1200であった。
<Polycondensation ester P8>
251 g of ethylene glycol, 244 g of phthalic anhydride, 120 g of succinic acid, 150 g of acetic acid, and 0.191 g of tetraisopropyl titanate as an esterification catalyst were charged into a 2 L four-necked flask equipped with a thermometer, a stirrer, and a rapid cooling tube, and nitrogen was added. Gradually raise the temperature in an air stream with stirring until the temperature reaches 200°C. A dehydration condensation reaction was performed while observing the degree of polymerization. After completion of the reaction, unreacted ethylene glycol was distilled off under reduced pressure at 200° C. to obtain polycondensed ester P8. The acid value was 0.50 and the number average molecular weight was 1200.
 〈重縮合エステルP9〉
 上記重縮合エステルP2と同様の製造方法で、反応条件を変化させて、酸価0.10、数平均分子量315の重縮合エステルP9を得た。
<Polycondensation ester P9>
The reaction conditions were changed by the same production method as for the polycondensed ester P2 to obtain a polycondensed ester P9 having an acid value of 0.10 and a number average molecular weight of 315.
 (7-3)多価アルコールエステル
 本発明に係るアクリル樹脂フィルムにおいては、多価アルコールエステルを含有することも好ましい。
(7-3) Polyhydric Alcohol Ester The acrylic resin film according to the present invention preferably also contains a polyhydric alcohol ester.
 多価アルコールエステルは2価以上の脂肪族多価アルコールとモノカルボン酸のエステルよりなる化合物であり、分子内に芳香環又はシクロアルキル環を有することが好ましい。好ましくは2~20価の脂肪族多価アルコールエステルである。 The polyhydric alcohol ester is a compound composed of an ester of an aliphatic polyhydric alcohol having a valence of 2 or more and a monocarboxylic acid, and preferably has an aromatic ring or a cycloalkyl ring in the molecule. It is preferably an aliphatic polyhydric alcohol ester having a valence of 2 to 20.
 本発明に好ましく用いられる多価アルコールは次の一般式(D)で表される。 The polyhydric alcohol preferably used in the present invention is represented by the following general formula (D).
 一般式(D)
   R11-(OH)
 ただし、R11はn価の有機基、nは2以上の正の整数、OH基はアルコール性、及び/又はフェノール性ヒドロキシ基を表す。
General formula (D)
R 11 -(OH) n
However, R 11 represents an n-valent organic group, n represents a positive integer of 2 or more, and the OH group represents an alcoholic and/or phenolic hydroxy group.
 好ましい多価アルコールの例としては、例えば以下のようなものを挙げることができるが、本発明はこれらに限定されるものではない。 Examples of preferable polyhydric alcohols include the followings, but the present invention is not limited thereto.
 アドニトール、アラビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ジブチレングリコール、1,2,4-ブタントリオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ヘキサントリオール、ガラクチトール、マンニトール、3-メチルペンタン-1,3,5-トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトール等を挙げることができる。 Adonitol, arabitol, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propanediol, 1,3-propanediol, dipropylene glycol, tripropylene glycol, 1,2-butanediol, 1,3- Butanediol, 1,4-butanediol, dibutylene glycol, 1,2,4-butanetriol, 1,5-pentanediol, 1,6-hexanediol, hexanetriol, galactitol, mannitol, 3-methylpentane- Examples include 1,3,5-triol, pinacol, sorbitol, trimethylolpropane, trimethylolethane, xylitol and the like.
 特に、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ソルビトール、トリメチロールプロパン、キシリトールが好ましい。 Especially, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, sorbitol, trimethylolpropane and xylitol are preferable.
 多価アルコールエステルに用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。脂環族モノカルボン酸、芳香族モノカルボン酸を用いると透湿性、保留性を向上させる点で好ましい。 The monocarboxylic acid used for the polyhydric alcohol ester is not particularly limited, and known aliphatic monocarboxylic acids, alicyclic monocarboxylic acids, aromatic monocarboxylic acids, etc. can be used. It is preferable to use an alicyclic monocarboxylic acid or an aromatic monocarboxylic acid in terms of improving moisture permeability and retention.
 好ましいモノカルボン酸の例としては以下のようなものを挙げることができるが、本発明はこれに限定されるものではない。 The following may be mentioned as examples of preferable monocarboxylic acids, but the present invention is not limited thereto.
 脂肪族モノカルボン酸としては、炭素数1~32の直鎖又は側鎖を有する脂肪酸を好ましく用いることができる。炭素数は1~20であることがさらに好ましく、1~10であることが特に好ましい。酢酸を含有させるとセルロースアセテートとの相溶性が増すため好ましく、酢酸と他のモノカルボン酸を混合して用いることも好ましい。 As the aliphatic monocarboxylic acid, a straight-chain or side-chain fatty acid having 1 to 32 carbon atoms can be preferably used. The number of carbon atoms is more preferably 1 to 20, particularly preferably 1 to 10. It is preferable to contain acetic acid because the compatibility with cellulose acetate increases, and it is also preferable to use acetic acid and another monocarboxylic acid as a mixture.
 好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸等を挙げることができる。 Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanoic acid, undecylic acid, lauric acid, tridecyl acid, Saturated fatty acids such as myristic acid, pentadecyl acid, palmitic acid, heptadecyl acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, cerotic acid, heptacosanoic acid, montanic acid, melissic acid, undecylenic acid, olein Examples thereof include unsaturated fatty acids such as acids, sorbic acid, linoleic acid, linolenic acid, and arachidonic acid.
 好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、又はそれらの誘導体を挙げることができる。 Examples of preferable alicyclic monocarboxylic acid include cyclopentanecarboxylic acid, cyclohexanecarboxylic acid, cyclooctanecarboxylic acid, and derivatives thereof.
 好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基、メトキシ基又はエトキシ基などのアルコキシ基を1~3個を導入したもの、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、又はそれらの誘導体を挙げることができる。特に安息香酸が好ましい。 Examples of preferred aromatic monocarboxylic acids include benzoic acid, toluic acid and other benzoic acids having 1 to 3 alkoxy groups such as alkyl groups, methoxy groups or ethoxy groups introduced into the benzene ring, biphenylcarboxylic acid, Examples thereof include aromatic monocarboxylic acids having two or more benzene rings such as naphthalenecarboxylic acid and tetralincarboxylic acid, or derivatives thereof. Benzoic acid is particularly preferable.
 多価アルコールエステルの分子量は特に制限はないが、300~1500の範囲であることが好ましく、350~750の範囲であることがさらに好ましい。分子量が大きい方が揮発し難くなるため好ましく、透湿性、セルロースアシレートとの相溶性の点では小さい方が好ましい。 The molecular weight of the polyhydric alcohol ester is not particularly limited, but it is preferably in the range of 300 to 1500, more preferably in the range of 350 to 750. A higher molecular weight is preferable because it is less likely to volatilize, and a lower molecular weight is preferable in terms of moisture permeability and compatibility with cellulose acylate.
 多価アルコールエステルに用いられるカルボン酸は1種類でもよいし、2種以上の混合であってもよい。また、多価アルコール中のOH基は、全てエステル化してもよいし、一部をOH基のままで残してもよい。 The carboxylic acid used for the polyhydric alcohol ester may be one kind or a mixture of two or more kinds. Further, all the OH groups in the polyhydric alcohol may be esterified, or a part thereof may be left as it is.
 以下に、多価アルコールエステルの具体的化合物を例示する。下記例示化合物はいずれも融点及び1%質量減少温度Td1が、本発明の範囲内である。 The following are specific examples of polyhydric alcohol ester compounds. The melting point and the 1% mass reduction temperature Td1 of all of the following exemplified compounds are within the scope of the present invention.
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000109
 本発明に用いられる多価アルコールエステルは、アクリル樹脂フィルムに対して0.5~5質量%の範囲で含有することが好ましく、1~3質量%の範囲で含有することがより好ましく、1~2質量%の範囲で含有することが特に好ましい。 The polyhydric alcohol ester used in the present invention is contained in the acrylic resin film in an amount of preferably 0.5 to 5% by mass, more preferably 1 to 3% by mass, and further preferably 1 to 3% by mass. It is particularly preferable that the content is 2% by mass.
 本発明に用いられる多価アルコールエステルは、従来公知の一般的な合成方法に従って合成することができる。 The polyhydric alcohol ester used in the present invention can be synthesized according to a conventionally known general synthetic method.
 (8)その他の可塑剤
 (8-1)リン酸エステル
 本発明に係るアクリル樹脂フィルムは、リン酸エステルを用いることができる。リン酸エステルとしては、トリアリールリン酸エステル、ジアリールリン酸エステル、モノアリールリン酸エステル、アリールホスホン酸化合物、アリールホスフィンオキシド化合物、縮合アリールリン酸エステル、ハロゲン化アルキルリン酸エステル、含ハロゲン縮合リン酸エステル、含ハロゲン縮合ホスホン酸エステル、含ハロゲン亜リン酸エステル等が挙げることができる。
(8) Other plasticizers (8-1) Phosphoric acid ester The acrylic resin film according to the present invention may use a phosphoric acid ester. Examples of the phosphoric acid ester include triaryl phosphoric acid ester, diaryl phosphoric acid ester, monoaryl phosphoric acid ester, arylphosphonic acid compound, arylphosphine oxide compound, condensed aryl phosphoric acid ester, halogenated alkyl phosphoric acid ester, halogen-containing condensed phosphoric acid. Examples thereof include esters, halogen-containing condensed phosphonates, halogen-containing phosphites and the like.
 具体的なリン酸エステルとしては、トリフェニルホスフェート、9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン-10-オキシド、フェニルホスホン酸、トリス(β-クロロエチル)ホスフェート、トリス(ジクロロプロピル)ホスフェート、トリス(トリブロモネオペンチル)ホスフェート等が挙げられる。 Specific phosphoric acid esters include triphenyl phosphate, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, phenylphosphonic acid, tris(β-chloroethyl)phosphate, tris(dichloro). Propyl)phosphate, tris(tribromoneopentyl)phosphate and the like can be mentioned.
 (8-2)グリコール酸のエステル類
 また、本発明においては、多価アルコールエステル類の1種として、グリコール酸のエステル類(グリコレート化合物)を用いることができる。
(8-2) Glycolic Acid Esters In the present invention, glycolic acid esters (glycolate compounds) can be used as one type of polyhydric alcohol ester.
 本発明に適用可能なグリコレート化合物としては、特に限定されないが、アルキルフタリルアルキルグリコレート類が好ましく用いることができる。 The glycolate compound applicable to the present invention is not particularly limited, but alkylphthalylalkyl glycolates can be preferably used.
 アルキルフタリルアルキルグリコレート類としては、例えば、メチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレート、メチルフタリルエチルグリコレート、エチルフタリルメチルグリコレート、エチルフタリルプロピルグリコレート、メチルフタリルブチルグリコレート、エチルフタリルブチルグリコレート、ブチルフタリルメチルグリコレート、ブチルフタリルエチルグリコレート、プロピルフタリルブチルグリコレート、ブチルフタリルプロピルグリコレート、メチルフタリルオクチルグリコレート、エチルフタリルオクチルグリコレート、オクチルフタリルメチルグリコレート、オクチルフタリルエチルグリコレート等が挙げられ、好ましくはエチルフタリルエチルグリコレートである。 Examples of the alkyl phthalyl alkyl glycolates include methyl phthalyl methyl glycolate, ethyl phthalyl ethyl glycolate, propyl phthalyl propyl glycolate, butyl phthalyl butyl glycolate, octyl phthalyl octyl glycolate, methyl phthalyl. Ethyl glycolate, ethyl phthalyl methyl glycolate, ethyl phthalyl propyl glycolate, methyl phthalyl butyl glycolate, ethyl phthalyl butyl glycolate, butyl phthalyl methyl glycolate, butyl phthalyl ethyl glycolate, propyl phthalyl butyl Glycolate, butyl phthalyl propyl glycolate, methyl phthalyl octyl glycolate, ethyl phthalyl octyl glycolate, octyl phthalyl methyl glycolate, octyl phthalyl ethyl glycolate, etc. are mentioned, and preferably ethyl phthalyl ethyl glycolate. Is.
 (9)紫外線吸収剤
 本発明に係るアクリル樹脂フィルムは、紫外線吸収剤を含有することが耐光性を向上する観点から好ましい。紫外線吸収剤は400nm以下の紫外線を吸収することで、耐光性を向上させることを目的としており、特に波長370nmでの透過率が、2~30%の範囲であることが好ましく、より好ましくは4~20%の範囲、さらに好ましくは5~10%の範囲である。
(9) Ultraviolet absorber The acrylic resin film according to the present invention preferably contains an ultraviolet absorber from the viewpoint of improving light resistance. The ultraviolet absorber is intended to improve light resistance by absorbing ultraviolet rays having a wavelength of 400 nm or less, and in particular, the transmittance at a wavelength of 370 nm is preferably in the range of 2 to 30%, more preferably 4 To 20%, more preferably 5 to 10%.
 本発明で好ましく用いられる紫外線吸収剤は、含窒素複素環化合物であるベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤であり、特に好ましくはベンゾトリアゾール系紫外線吸収剤及びベンゾフェノン系紫外線吸収剤である。 The ultraviolet absorber preferably used in the present invention is a benzotriazole type ultraviolet absorber which is a nitrogen-containing heterocyclic compound, a benzophenone type ultraviolet absorber, a triazine type ultraviolet absorber, particularly preferably a benzotriazole type ultraviolet absorber and benzophenone. It is a UV absorber.
 例えば、5-クロロ-2-(3,5-ジ-sec-ブチル-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール、(2-2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、2,4-ベンジルオキシベンゾフェノン等があり、また、チヌビン109、チヌビン171、チヌビン234、チヌビン326、チヌビン327、チヌビン328、チヌビン928等のチヌビン類があり、これらはいずれもBASFジャパン(株)製の市販品であり好ましく使用できる。この中ではハロゲンフリーのものが好ましい。 For example, 5-chloro-2-(3,5-di-sec-butyl-2-hydroxyphenyl)-2H-benzotriazole, (2-2H-benzotriazol-2-yl)-6-(straight chain and pendant Chain dodecyl)-4-methylphenol, 2-hydroxy-4-benzyloxybenzophenone, 2,4-benzyloxybenzophenone, etc., and also tinuvin 109, tinuvin 171, tinuvin 234, tinuvin 326, tinuvin 327, tinuvin 328, There are tinuvins such as tinuvin 928, all of which are commercial products manufactured by BASF Japan Ltd., and can be preferably used. Of these, halogen-free ones are preferable.
 このほか、1,3,5-トリアジン環を有する化合物等の円盤状化合物も紫外線吸収剤として好ましく用いられる。 In addition, discotic compounds such as compounds having a 1,3,5-triazine ring are also preferably used as an ultraviolet absorber.
 本発明に係るアクリル樹脂フィルムは、紫外線吸収剤を2種以上含有することが好ましい。 The acrylic resin film according to the present invention preferably contains two or more kinds of ultraviolet absorbers.
 また、紫外線吸収剤としては高分子紫外線吸収剤も好ましく用いることができ、特に特開平6-148430号記載のポリマータイプの紫外線吸収剤が好ましく用いられる。また、紫外線吸収剤は、ハロゲン基を有していないことが好ましい。
 さらに、紫外線吸収剤といわゆるHALS(ヒンダードアミン系安定剤)を併用することも好ましい。HALSの例としては、アデカスタブLA-52、同LA-57、同LA-63P、同LA-68、同LA-72、同LA-77、同LA-81((株)ADEKA製)、Tinuvin PA 144、Tinuvin 765、Tinuvin 770 DF、Tinuvin XT 55 FB、Chimassorb 2020 FDL、Chimassorb 944 FDL、Chimassorb 944 LD、Tinuvin 622 SF(BASFジャパン(株)製)などが挙げられる。
Further, as the ultraviolet absorber, a polymeric ultraviolet absorber can also be preferably used, and in particular, a polymer type ultraviolet absorber described in JP-A-6-148430 is preferably used. Further, the ultraviolet absorber preferably does not have a halogen group.
Further, it is also preferable to use an ultraviolet absorber and a so-called HALS (hindered amine stabilizer) in combination. Examples of HALS include ADEKA STAB LA-52, LA-57, LA-63P, LA-68, LA-72, LA-77, LA-81 (manufactured by ADEKA Corporation), Tinuvin PA. 144, Tinuvin 765, Tinuvin 770 DF, Tinuvin XT 55 FB, Chimassorb 2020 FDL, Chimassorb 944 FDL, Chimassorb 944 LD, Tinuvin 622 SF, and the like (BASF Japan) (BASF Japan).
 紫外線吸収剤の添加方法は、メタノール、エタノール、ブタノール等のアルコールやメチレンクロライド、酢酸メチル、アセトン、ジオキソラン等の有機溶媒又はこれらの混合溶媒に紫外線吸収剤を溶解してからドープに添加するか、又は直接ドープ組成中に添加してもよい。 The addition method of the ultraviolet absorber, methanol, ethanol, alcohol such as butanol and methylene chloride, methyl acetate, acetone, or an organic solvent such as dioxolane or a mixed solvent thereof is added to the dope after dissolving the ultraviolet absorber in the solvent, Alternatively, it may be added directly in the dope composition.
 無機粉体のように有機溶媒に溶解しないものは、有機溶媒とセルロースアシレート中にディゾルバーやサンドミルを使用し、分散してからドープに添加する。 For inorganic powders that do not dissolve in organic solvents, use a dissolver or sand mill in the organic solvent and cellulose acylate to disperse them before adding them to the dope.
 紫外線吸収剤の使用量は、紫外線吸収剤の種類、使用条件等により一様ではないが、アクリル樹脂フィルムの乾燥膜厚が15~50μmの場合は、アクリル樹脂フィルムに対して0.5~10質量%の範囲が好ましく、0.6~4質量%の範囲がさらに好ましい。 The amount of the ultraviolet absorber used is not uniform depending on the type of the ultraviolet absorber and the use conditions, but when the dry thickness of the acrylic resin film is 15 to 50 μm, it is 0.5 to 10 relative to the acrylic resin film. The range of mass% is preferable, and the range of 0.6 to 4 mass% is more preferable.
 (10)酸化防止剤
 酸化防止剤は劣化防止剤ともいわれる。高湿高温の状態に電子デバイスなどが置かれた場合には、アクリル樹脂フィルムの劣化が起こる場合がある。
(10) Antioxidant Antioxidants are also called deterioration inhibitors. When an electronic device or the like is placed in a high humidity and high temperature state, the acrylic resin film may be deteriorated.
 酸化防止剤は、例えば、アクリル樹脂フィルム中の残留溶媒量のハロゲンやリン酸系可塑剤のリン酸等によりアクリル樹脂フィルムが分解するのを遅らせたり、防いだりする役割を有するので、本発明に係るアクリル樹脂フィルム中に含有させるのが好ましい。 The antioxidant, for example, has a role of delaying or preventing the decomposition of the acrylic resin film due to the residual solvent amount of halogen in the acrylic resin film or phosphoric acid of the phosphoric acid-based plasticizer. It is preferably contained in the acrylic resin film.
 このような酸化防止剤としては、ヒンダードフェノール系の化合物が好ましく用いられ、例えば、2,6-ジ-t-ブチル-p-クレゾール、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサンジオール-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、2,2-チオ-ジエチレンビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N′-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレート等を挙げることができる。 As such an antioxidant, a hindered phenol compound is preferably used, and examples thereof include 2,6-di-t-butyl-p-cresol and pentaerythrityl-tetrakis[3-(3,5-di). -T-butyl-4-hydroxyphenyl)propionate], triethylene glycol-bis[3-(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate], 1,6-hexanediol-bis[3 -(3,5-di-t-butyl-4-hydroxyphenyl)propionate], 2,4-bis-(n-octylthio)-6-(4-hydroxy-3,5-di-t-butylanilino)- 1,3,5-triazine, 2,2-thio-diethylenebis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], octadecyl-3-(3,5-di-t -Butyl-4-hydroxyphenyl)propionate, N,N'-hexamethylenebis(3,5-di-t-butyl-4-hydroxy-hydrocinnamamide), 1,3,5-trimethyl-2,4 , 6-tris(3,5-di-t-butyl-4-hydroxybenzyl)benzene, tris-(3,5-di-t-butyl-4-hydroxybenzyl)-isocyanurate and the like.
 特に、2,6-ジ-t-ブチル-p-クレゾール、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール-ビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕が好ましい。また、例えば、N,N′-ビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル〕ヒドラジン等のヒドラジン系の金属不活性剤やトリス(2,4-ジ-t-ブチルフェニル)ホスファイト等のリン系加工安定剤を併用してもよい。 In particular, 2,6-di-t-butyl-p-cresol, pentaerythrityl-tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], triethylene glycol-bis[3 -(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate] is preferred. In addition, for example, hydrazine-based metal deactivators such as N,N'-bis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionyl]hydrazine and tris(2,4-di- A phosphorus-based processing stabilizer such as t-butylphenyl)phosphite may be used in combination.
 これらの化合物の添加量は、アクリル樹脂フィルムに対して質量割合で1ppm~1.0%の範囲が好ましく、10~1000ppmの範囲がさらに好ましい。
 特に、返材を利用する場合は熱履歴に伴う樹脂劣化の影響が大きくなるため、上記の酸化防止剤を使用することが好ましい。
The amount of these compounds added is preferably in the range of 1 ppm to 1.0% by mass, more preferably in the range of 10 to 1000 ppm, relative to the acrylic resin film.
In particular, when the recycled material is used, the influence of the resin deterioration due to the heat history becomes large, so that it is preferable to use the above-mentioned antioxidant.
 (11)位相差制御剤
 液晶表示装置等の画像表示装置の表示品質の向上のため、アクリル樹脂フィルム中に位相差制御剤を添加するか、配向膜を形成して液晶層を設け、偏光板保護フィルムと液晶層由来の位相差を複合化することにより、アクリル樹脂フィルムに光学補償能を付与することができる。
(11) Retardation control agent In order to improve the display quality of an image display device such as a liquid crystal display device, a retardation control agent is added to an acrylic resin film, or an alignment film is formed to provide a liquid crystal layer and a polarizing plate. By compounding the protective film and the retardation derived from the liquid crystal layer, the acrylic resin film can be provided with an optical compensation ability.
 位相差制御剤としては、欧州特許911656A2号明細書に記載されているような、2以上の芳香族環を有する芳香族化合物、特開2006-2025号公報に記載の棒状化合物等が挙げられる。また、2種類以上の芳香族化合物を併用してもよい。この芳香族化合物の芳香族環には、芳香族炭化水素環に加えて、芳香族性ヘテロ環を含む芳香族性ヘテロ環であることが好ましい。芳香族性ヘテロ環は、一般に不飽和ヘテロ環である。中でも、特開2006-2026号公報に記載の1,3,5-トリアジン環が好ましい。 Examples of the retardation control agent include aromatic compounds having two or more aromatic rings, such as those described in European Patent 911656A2, rod-shaped compounds described in JP 2006-2025 A, and the like. Moreover, you may use together 2 or more types of aromatic compounds. The aromatic ring of this aromatic compound is preferably an aromatic heterocycle containing an aromatic heterocycle in addition to the aromatic hydrocarbon ring. The aromatic heterocycle is generally an unsaturated heterocycle. Of these, the 1,3,5-triazine ring described in JP-A 2006-2026 is preferable.
 なお、一般式(A1)で表される構造を有する化合物は、位相差制御剤としても機能する。このため、一般式(A1)で表される構造を有する化合物は、一つの化合物で位相差制御と湿度変動に対する光学値変動抑制の両方の機能を付与することができる。 Note that the compound having the structure represented by the general formula (A1) also functions as a retardation control agent. Therefore, the compound having the structure represented by the general formula (A1) can impart both functions of retardation control and suppression of optical value fluctuation due to humidity fluctuation with one compound.
 これらの位相差制御剤の添加量は、アクリル樹脂100質量%に対して、0.5~20質量%の範囲内であることが好ましく、1~10質量%の範囲内であることがより好ましい。 The addition amount of these retardation control agents is preferably in the range of 0.5 to 20% by mass, and more preferably in the range of 1 to 10% by mass, relative to 100% by mass of the acrylic resin. ..
 (12)剥離促進剤
 アクリル樹脂フィルムの剥離抵抗を小さくする添加剤としては界面活性剤に効果の顕著なものが多く、好ましい剥離剤としてはリン酸エステル系の界面活性剤、カルボン酸又はカルボン酸塩系の界面活性剤、スルホン酸又はスルホン酸塩系の界面活性剤、硫酸エステル系の界面活性剤が効果的である。また上記界面活性剤の炭化水素鎖に結合している水素原子の一部をフッ素原子に置換したフッ素系界面活性剤も有効である。以下に剥離剤を例示する。
RZ-1 C17O-P(=O)-(OH)
RZ-2 C1225O-P(=O)-(OK)
RZ-3 C1225OCHCHO-P(=O)-(OK)
RZ-4 C1531(OCHCHO-P(=O)-(OK)
RZ-5 {C1225O(CHCHO)-P(=O)-OH
RZ-6 {C1835(OCHCHO}-P(=O)-ONH
RZ-7 (t-C-C-OCHCHO-P(=O)-(OK)RZ-8 (iso-C19-C-O-(CHCHO)-P(=O)-(OK)(OH)
RZ-9 C1225SONa
RZ-10 C1225OSONa
RZ-11 C1733COOH
RZ-12 C1733COOH・N(CHCHOH)
RZ-13 iso-C17-C-O-(CHCHO)-(CHSONa
RZ-14 (iso-C19-C-O-(CHCHO)-(CHSONa
RZ-15 トリイソプロピルナフタレンスルフォン酸ナトリウム
RZ-16 トリ-t-ブチルナフタレンスルフォン酸ナトリウム
RZ-17 C1733CON(CH)CHCHSONa
RZ-18 C1225-CSO・NH
 剥離促進剤の添加量はアクリル樹脂に対して0.05~5質量%が好ましく、0.1~2質量%がさらに好ましく、0.1~0.5質量%が最も好ましい。
(12) Peeling Accelerator As an additive for reducing the peeling resistance of an acrylic resin film, many surfactants have a remarkable effect, and as a preferable peeling agent, a phosphate ester-based surfactant, carboxylic acid or carboxylic acid is used. A salt-based surfactant, a sulfonic acid or sulfonate-based surfactant, and a sulfate ester-based surfactant are effective. Further, a fluorine-based surfactant in which a part of hydrogen atoms bonded to the hydrocarbon chain of the above-mentioned surfactant is replaced with a fluorine atom is also effective. The release agent is exemplified below.
RZ-1 C 8 H 17 OP (=O)-(OH) 2
RZ-2 C 12 H 25 OP (=O)-(OK) 2
RZ-3 C 12 H 25 OCH 2 CH 2 O-P(=O)-(OK) 2
RZ-4 C 15 H 31 (OCH 2 CH 2 ) 5 OP(═O)-(OK) 2
RZ-5 {C 12 H 25 O(CH 2 CH 2 O) 5 } 2 -P(=O)-OH
RZ-6 {C 18 H 35 (OCH 2 CH 2 ) 8 O} 2 -P(=O)-ONH 4
RZ-7 (t-C 4 H 9) 3 -C 6 H 2 -OCH 2 CH 2 O-P (= O) - (OK) 2 RZ-8 (iso-C 9 H 19 -C 6 H 4 - O-(CH 2 CH 2 O) 5 -P(=O)-(OK)(OH)
RZ-9 C 12 H 25 SO 3 Na
RZ-10 C 12 H 25 OSO 3 Na
RZ-11 C 17 H 33 COOH
RZ-12 C 17 H 33 COOH.N(CH 2 CH 2 OH) 3
RZ-13 iso-C 8 H 17 -C 6 H 4 -O-(CH 2 CH 2 O) 3 -(CH 2 ) 2 SO 3 Na
RZ-14 (iso-C 9 H 19 ) 2 —C 6 H 3 —O—(CH 2 CH 2 O) 3 —(CH 2 ) 4 SO 3 Na
RZ-15 Sodium triisopropylnaphthalene sulfonate RZ-16 Sodium tri-t-butylnaphthalene sulfonate RZ-17 C 17 H 33 CON(CH 3 )CH 2 CH 2 SO 3 Na
RZ-18 C 12 H 25 -C 6 H 4 SO 3 · NH 4
The amount of the peeling accelerator added is preferably 0.05 to 5% by mass, more preferably 0.1 to 2% by mass, and most preferably 0.1 to 0.5% by mass, based on the acrylic resin.
 ≪アクリル樹脂フィルムの物性≫
 (1)アクリル樹脂フィルムの厚さ
 本発明の出来上がり(乾燥後)のアクリル樹脂フィルムの厚さは、使用目的によって異なるが、通常5~500μmの範囲であり、10~150μmの範囲が好ましく、液晶表示装置用には20~110μmであることが好ましく、最近の薄型化を考慮すると20~60μmの範囲であることが、特に好ましい。
<<Physical properties of acrylic resin film>>
(1) Thickness of Acrylic Resin Film The thickness of the finished (dried) acrylic resin film of the present invention varies depending on the purpose of use, but is usually in the range of 5 to 500 μm, preferably in the range of 10 to 150 μm, and liquid crystal The thickness is preferably 20 to 110 μm for a display device, and particularly preferably 20 to 60 μm in view of recent thinning.
 フィルム厚さの調製は、所望の厚さ及び本発明に厚さ分布になるように、ドープ中に含まれる固形分濃度、ダイの口金のスリット間隙、ダイからの押し出し圧力、金属支持体速度等を調節すればよい。以上のようにして得られたアクリル樹脂フィルムの幅は0.5~4mの範囲が好ましく、より好ましくは0.6~3mの範囲、さらに好ましくは0.8~2.5mである。長さは1ロールあたり100~10000mの範囲で巻き取るのが好ましく、より好ましくは500~9000mの範囲であり、さらに好ましくは1000~8000mの範囲である。 The film thickness can be adjusted by adjusting the solid content concentration contained in the dope, the slit gap of the die die, the extrusion pressure from the die, the metal support speed, etc. so that the desired thickness and the thickness distribution in the present invention can be obtained. Can be adjusted. The width of the acrylic resin film obtained as described above is preferably in the range of 0.5 to 4 m, more preferably in the range of 0.6 to 3 m, and further preferably in the range of 0.8 to 2.5 m. The length is preferably 100 to 10000 m per roll, more preferably 500 to 9000 m, and further preferably 1000 to 8000 m.
 (2)アクリル樹脂フィルムの光学特性
 本発明に係るアクリル樹脂フィルムの好ましい光学特性は、フィルムの用途により異なる。偏光板保護フィルム用途の場合は、面内リターデーション(Ro)の絶対値は10nm以下が好ましく、5nm以下がさらに好ましい。厚さ方向リターデーション(Rt)の絶対値も50nm以下が好ましく、35nm以下がさらに好ましく、10nm以下が特に好ましい。
(2) Optical Properties of Acrylic Resin Film The preferred optical properties of the acrylic resin film according to the present invention differ depending on the application of the film. In the case of use as a polarizing plate protective film, the absolute value of in-plane retardation (Ro) is preferably 10 nm or less, more preferably 5 nm or less. The absolute value of the retardation (Rt) in the thickness direction is also preferably 50 nm or less, more preferably 35 nm or less, particularly preferably 10 nm or less.
 アクリル樹脂フィルムを光学補償フィルム(位相差フィルム)として使用する場合は、位相差フィルムの種類によってRoやRtの範囲は異なり、多様なニーズがあるが、0nm≦Ro≦100nm、40nm≦Rt≦400nmであることが好ましい。TNモードなら0nm≦Ro≦20nm、40nm≦Rt≦80nm、IPSモードなら0nm≦Ro≦20nm、-30nm≦Rt≦30nm、VAモードなら20nm≦Ro≦80nm、80nm≦Rt≦400nmがより好ましく、特にVAモードで好ましい範囲は、30nm≦Ro≦75nm、120nm≦Rt≦250nmであり、一枚の位相差膜で補償する場合は、50nm≦Ro≦75nm、180nm≦Rt≦250nm、2枚の位相差膜で補償する場合は、30nm≦Ro≦60nm、80nm≦Rt≦140nmであることがVAモードの補償膜の場合、黒表示時のカラーシフト、コントラストの視野角依存性の点でより好ましい態様である。 When an acrylic resin film is used as an optical compensation film (retardation film), the range of Ro and Rt differs depending on the type of retardation film, and there are various needs, but 0 nm≦Ro≦100 nm, 40 nm≦Rt≦400 nm Is preferred. 0 nm ≤ Ro ≤ 20 nm, 40 nm ≤ Rt ≤ 80 nm for TN mode, 0 nm ≤ Ro ≤ 20 nm, -30 nm ≤ Rt ≤ 30 nm for IPS mode, and 20 nm ≤ Ro ≤ 80 nm, 80 nm ≤ Rt ≤ 400 nm for VA mode, particularly preferred. The preferable ranges in the VA mode are 30 nm≦Ro≦75 nm and 120 nm≦Rt≦250 nm, and when compensating with one retardation film, 50 nm≦Ro≦75 nm, 180 nm≦Rt≦250 nm, and two phase differences. In the case of compensation with a film, it is more preferable that 30 nm≦Ro≦60 nm and 80 nm≦Rt≦140 nm in the case of a VA mode compensation film in terms of color shift during black display and viewing angle dependence of contrast. is there.
 本発明に係るアクリル樹脂フィルムは使用するポリマー構造、添加剤の種類及び添加量、延伸倍率、剥離時の残留揮発分などの工程条件を適宜調節することで所望の光学特性を実現することができる。例えば剥離時の残留溶媒量を40~85質量%内で調節することにより厚さ方向のリターデーションRtを180~300nmに幅広く制御することも可能である。一般に剥離時の残留溶媒量が多いほど、Rtは小さくなり、剥離時の残留溶媒量が少ないほどRtは大きくなる。例えば金属製の無端支持体上での乾燥時間を短くし、剥離時残留溶媒量を多くすることで、面配向を緩和させてRtを低くすることが自在にでき、工程条件を調節することにより様々な用途に応じた様々なリターデーションを発現することが可能である。 The acrylic resin film according to the present invention can achieve desired optical characteristics by appropriately adjusting process conditions such as a polymer structure to be used, a kind and an addition amount of additives, a draw ratio, and a residual volatile content during peeling. .. For example, the retardation Rt in the thickness direction can be widely controlled to 180 to 300 nm by adjusting the residual solvent amount at the time of peeling within 40 to 85% by mass. Generally, the larger the residual solvent amount at the time of peeling, the smaller the Rt, and the smaller the residual solvent amount at the time of peeling, the larger the Rt. For example, by shortening the drying time on a metal endless support and increasing the residual solvent amount at the time of peeling, it is possible to relax the plane orientation and lower Rt, and by adjusting the process conditions. It is possible to express various retardations according to various uses.
 (リターデーション、Ro、Rt)
 本明細書において、Ro、Rtは各々、波長λにおける面内のリターデーション及び厚さ方向のリターデーションを表す。RoはKOBRA 21ADH(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。Rtは前記Ro、面内の遅相軸(KOBRA 21ADHにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して+40°傾斜した方向から波長λnmの光を入射させて測定したリターデーション値、及び面内の遅相軸を傾斜軸(回転軸)としてフィルム法線方向に対して-40°傾斜した方向から波長λnmの光を入射させて測定したリターデーション値の計三つの方向で測定したリターデーション値を基にKOBRA 21ADHが算出する。ここで平均屈折率の仮定値は ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADHはnx、ny、nzを算出し下記式(i)及び(ii)に基づいてリターデーションを計算する。
(Retardation, Ro, Rt)
In the present specification, Ro and Rt represent in-plane retardation and retardation in the thickness direction at wavelength λ, respectively. Ro is measured with KOBRA 21ADH (manufactured by Oji Scientific Instruments Co., Ltd.) with light having a wavelength of λ nm incident in the film normal direction. Rt was measured by making light having a wavelength λnm incident from a direction tilted by +40° with respect to the film normal direction with Ro as the tilt axis (rotation axis) using the in-plane slow axis (determined by KOBRA 21ADH). The retardation value and the retardation value measured by injecting light of wavelength λnm from a direction inclined by −40° with respect to the film normal direction with the in-plane slow axis as the inclination axis (rotation axis) KOBRA 21ADH is calculated based on the retardation value measured in the direction. Here, as the assumed value of the average refractive index, the values in Polymer Handbook (JOHN WILEY & SONS, INC) and catalogs of various optical films can be used. If the average refractive index value is unknown, it can be measured with an Abbe refractometer. KOBRA 21ADH calculates nx, ny, and nz by inputting the assumed value of the average refractive index and the film thickness, and calculates the retardation based on the following formulas (i) and (ii).
 式(i):Ro=(n-n)×d(nm)
 式(ii):Rt={(n+n)/2-n}×d(nm)
(式中、Roはフィルム内の面内リターデーション値を表し、Rtはフィルム内の厚さ方向のリターデーション値を表す。また、dは光学フィルムの厚さ(nm)を表し、nはフィルムの面内の最大の屈折率を表し、遅相軸方向の屈折率ともいう。nはフィルム面内で遅相軸に直角な方向の屈折率を表し、nは厚さ方向におけるフィルムの屈折率を表す。いずれも波長590nmにおける測定値である。)
 本発明に係るアクリル樹脂フィルムの光弾性率は10×10-12/Pa以下が好ましく、より好ましくは3×10-12/Pa以下である。
Formula (i): Ro=(n x −n y )×d (nm)
Formula (ii): Rt={(n x +n y )/2−n z }×d (nm)
(In the formula, Ro represents the in-plane retardation value in the film, Rt represents the retardation value in the thickness direction in the film, d represents the thickness (nm) of the optical film, and n x represents represents the maximum refractive index in the plane of the film, also referred to as a slow axis direction of the refractive index .n y represents a refractive index in the direction perpendicular to the slow axis in the film plane, n z is the film in the thickness direction Represents the refractive index of each of them. All are measured values at a wavelength of 590 nm.)
The photoelasticity of the acrylic resin film according to the present invention is preferably 10×10 −12 /Pa or less, more preferably 3×10 −12 /Pa or less.
 (3)全光線透過率及びヘイズ
 本発明に係るアクリル樹脂フィルムは、高透明性であることが特徴であるが、23℃・55%RHの環境下で調湿後測定される全光線透過率が80%以上、好ましくは85%以上、より好ましくは90%以上、特に好ましくは95%以上である。全光線透過率は、JIS7573「プラスチック-全光線透過率及び全光線反射率の求め方」に従って測定することができる。
(3) Total Light Transmittance and Haze The acrylic resin film according to the present invention is characterized by high transparency, but the total light transmittance measured after humidity control in an environment of 23° C. and 55% RH. Is 80% or more, preferably 85% or more, more preferably 90% or more, and particularly preferably 95% or more. The total light transmittance can be measured according to JIS7573 "Plastic-Method for obtaining total light transmittance and total light reflectance".
 本発明に係るアクリル樹脂フィルムの内部ヘイズは1%未満であることが好ましく、0.5%未満であることがより好ましい。ヘイズを1%未満とすることにより、フィルムの透明性がより高くなり、光学用途のフィルムとしてより用いやすくなるという利点がある。さらには、0.1%未満であると、液晶ディスプレイの偏光子の内側(2枚の偏光子で構成するクロスニコルの内側)のフィルムとして、光散乱による偏光解消を起こさないため、特に好ましく用いられる。
 内部ヘイズの測定には、フィルムの表面散乱をキャンセルするためにフィルムと同等の屈折率を持つ液体を塗布し、平滑なガラスでカバーすることが通常行われる。測定は、試料フィルムを23℃・55%RHの環境で5時間以上調湿した後、ヘイズ計(1001DP型、日本電色工業(株)製)で行う。
 全光線透過率、ヘイズ及び内部ヘイズは、基本的にはフィルム中の散乱物質を除去することで好ましい範囲に調節することができる。散乱物質とならないよう添加材料の屈折率をフィルムの樹脂に合わせこむことも好ましく実施される。表面散乱を起こさないようフィルムの表面を平滑に保つために、キャスティングベルトや接触する搬送ロールの表面粗度を調整したり、延伸による表面形状変化を延伸温度・倍率等で調整することも好ましく行われる。
The internal haze of the acrylic resin film according to the present invention is preferably less than 1%, more preferably less than 0.5%. By setting the haze to less than 1%, the transparency of the film becomes higher, and there is an advantage that it becomes easier to use as a film for optical use. Furthermore, when the content is less than 0.1%, it is particularly preferably used as a film inside the polarizer of the liquid crystal display (inside the crossed Nicols composed of two polarizers) because depolarization due to light scattering does not occur. To be
The internal haze is usually measured by applying a liquid having the same refractive index as that of the film and covering it with a smooth glass in order to cancel the surface scattering of the film. The measurement is performed with a haze meter (1001DP type, manufactured by Nippon Denshoku Industries Co., Ltd.) after conditioning the sample film in an environment of 23° C. and 55% RH for 5 hours or more.
The total light transmittance, the haze, and the internal haze can be adjusted to a preferable range basically by removing the scattering substances in the film. It is also preferable to adjust the refractive index of the additive material to the resin of the film so as not to become a scattering substance. In order to keep the surface of the film smooth so as not to cause surface scattering, it is also preferable to adjust the surface roughness of the casting belt or the contacting roll to be in contact, or to adjust the surface shape change due to stretching by the stretching temperature and the magnification. Be seen.
 (4)イエローインデックス
 本発明に係るアクリル樹脂フィルムのイエローインデックス(JIS K 7373に規定)は3.0未満であることが好ましい。より好ましくは1.0未満である。また、フィルムを高温・高湿や、紫外線暴露下に保存した場合のイエローインデックスの変化量(いわゆるΔYI)としては5.0未満が好ましい。
 イエローインデックス及びΔYIを好ましい範囲に調節するため、紫外線吸収剤などの着色性添加剤の種類・量を調整したり、樹脂や添加剤の分解・反応性不純物を可能な限り低減したり、着色を防止するための酸化防止剤や紫外線吸収剤を添加することが好ましく実施される。
(4) Yellow Index The yellow index (specified in JIS K7373) of the acrylic resin film according to the present invention is preferably less than 3.0. More preferably, it is less than 1.0. The amount of change in the yellow index (so-called ΔYI) when the film is stored under high temperature/high humidity or exposure to ultraviolet rays is preferably less than 5.0.
In order to adjust the yellow index and ΔYI within the preferred range, the type and amount of coloring additives such as UV absorbers are adjusted, decomposition of resins and additives, reactive impurities are reduced as much as possible, and coloring is reduced. It is preferable to add an antioxidant or an ultraviolet absorber for prevention.
 (5)平衡含水率
 本発明に係るアクリル樹脂フィルムは、25℃、相対湿度60%における平衡含水率が3%以下であることが好ましく、1%以下であることがより好ましい。平衡含水率を3%以下とすることにより、湿度変化に対応しやすく、光学特性や寸法がより変化しにくく好ましい。
(5) Equilibrium Water Content The acrylic resin film of the present invention preferably has an equilibrium water content of 3% or less at 25° C. and a relative humidity of 60%, more preferably 1% or less. By setting the equilibrium water content to 3% or less, it is easy to respond to changes in humidity, and it is more difficult for optical characteristics and dimensions to change, which is preferable.
 平衡含水率は、試料フィルムを23℃、相対湿度20%に調湿された部屋に4時間以上放置した後、23℃80%RHに調湿された部屋に24時間放置し、サンプルを微量水分計(例えば三菱化学(株)製、CA-20型)を用いて、温度150℃で水分を乾燥・気化させた後、カールフィッシャー法により定量する。 The equilibrium water content is determined by leaving the sample film in a room conditioned at 23° C. and a relative humidity of 20% for 4 hours or more and then in a room conditioned at 23° C. 80% RH for 24 hours. The moisture is dried and vaporized at a temperature of 150° C. using a meter (for example, CA-20 type manufactured by Mitsubishi Chemical Co., Ltd.) and then quantified by the Karl Fischer method.
 (6)透湿度
 本発明に係るアクリル樹脂フィルムの透湿度(JIS K 7129に規定)は200g/m・d(40℃・90%RH)以下が好ましい。偏光子保護フィルムとしては、偏光子の水分を適度に保つために50~200g/m・dの範囲が好ましく、その他の光学フィルムや電子回路基板フィルムとしては50g/m・d未満が好ましい。透湿度を調整するには膜厚(反比例する)の調整が最も効果的であるが、フィルムの樹脂に対してより親水的又は疎水的な添加剤を添加することによって調整することも可能である。
(6) Water vapor transmission rate The water vapor transmission rate (specified in JIS K 7129) of the acrylic resin film according to the present invention is preferably 200 g/m 2 ·d (40°C · 90% RH) or less. The polarizer protective film is preferably in the range of 50 to 200 g/m 2 ·d in order to keep the water content of the polarizer appropriately, and is preferably less than 50 g/m 2 ·d for other optical films and electronic circuit board films. .. The adjustment of the film thickness (inversely proportional) is the most effective for adjusting the water vapor transmission rate, but it can also be adjusted by adding a more hydrophilic or hydrophobic additive to the resin of the film. ..
 (7)力学特性
 本発明に係るアクリル樹脂フィルムの引張弾性率、引張破壊強さ、引張破壊伸び(JIS K 7127に規定)については下記の範囲の値が好ましい。このうち、引張破壊伸びを調整するにはゴム粒子の種類や量を調整することが特に有効である。
(7) Mechanical Properties The acrylic resin film according to the present invention preferably has a tensile elastic modulus, a tensile breaking strength, and a tensile breaking elongation (defined in JIS K 7127) in the following ranges. Of these, it is particularly effective to adjust the type and amount of rubber particles in order to adjust the tensile elongation at break.
 引張弾性率の好ましい範囲:1.5~3.0GPa
 引張弾性率のさらに好ましい範囲:2.0~2.5GPa
 引張破壊強さの好ましい範囲:30~150MPa
 引張破壊強さのさらに好ましい範囲:50~100MPa
 引張破壊伸びの好ましい範囲:2~15%
 引張破壊伸びのさらに好ましい範囲:4~10%
Preferable range of tensile modulus: 1.5 to 3.0 GPa
More preferable range of tensile modulus: 2.0 to 2.5 GPa
Preferable range of tensile fracture strength: 30 to 150 MPa
More preferable range of tensile fracture strength: 50 to 100 MPa
Preferable range of tensile breaking elongation: 2 to 15%
More preferable range of tensile elongation at break: 4 to 10%
 (8)寸法変化
 本発明に係るアクリル樹脂フィルムの、線膨張係数は30℃~80℃の範囲で50~100ppm/℃が好ましい。湿度変化に対する膨張係数としては50ppm/%RH未満(23℃20%~23℃80%の範囲において)が好ましい。
 また、長期保存後における寸法変化も小さいことが好ましく、例えば80℃90%RH下に500時間保存されたフィルムの保存前後の寸法変化率は±1%未満、さらには±0.3%未満であることが好ましい。
(8) Dimensional Change The acrylic resin film according to the present invention preferably has a linear expansion coefficient of 50 to 100 ppm/°C in the range of 30°C to 80°C. The expansion coefficient with respect to changes in humidity is preferably less than 50 ppm/%RH (in the range of 23°C 20% to 23°C 80%).
Also, it is preferable that the dimensional change after long-term storage is small, for example, the dimensional change rate before and after storage of a film stored at 80° C. and 90% RH for 500 hours is less than ±1%, and further less than ±0.3%. It is preferable to have.
 ≪アクリル樹脂フィルムの用途≫
 本発明に係るアクリル樹脂フィルムは、表示デバイスである液晶表示装置や有機エレクトロルミネッセンス表示装置用の偏光板保護フィルムや位相差フィルム等の光学フィルム、タッチパネル用基材フィルムやガスバリアー性基材フィルム等の基材フィルム、及びナノインプリント用基板フィルムやフレキシブル電子回路用基板フィルム等の基板フィルムなどに好適に用いることができる。
<<Applications of acrylic resin film>>
The acrylic resin film according to the present invention is an optical film such as a polarizing plate protective film or a retardation film for a liquid crystal display device or an organic electroluminescence display device which is a display device, a base film for a touch panel, a gas barrier base film or the like. Can be suitably used for the base film, the substrate film for nanoimprint, the substrate film for flexible electronic circuits, and the like.
 以下、代表的な用途である、偏光板保護フィルム、偏光板、液晶表示装置、有機エレクトロルミネッセンス表示装置、及びガスバリアー性フィルムについて説明する。 The following describes typical applications such as a polarizing plate protective film, a polarizing plate, a liquid crystal display device, an organic electroluminescent display device, and a gas barrier film.
 (1)偏光板保護フィルム及び偏光板
 偏光板は、本発明に係るアクリル樹脂フィルムを偏光板保護フィルムとして、適宜表面処理を行い、水糊又は活性エネルギー線硬化性接着剤を用いて、少なくとも偏光子の一方の面に貼合されていることが好ましい。前記偏光子の前記アクリル樹脂フィルムが貼合されている面とは反対側の面に、同様に本発明に係るアクリル樹脂フィルムを貼合することができる。
(1) Polarizing Plate Protective Film and Polarizing Plate A polarizing plate is subjected to at least surface treatment using the acrylic resin film according to the present invention as a polarizing plate protective film, and at least polarized by using water glue or an active energy ray curable adhesive. It is preferably attached to one surface of the child. The acrylic resin film according to the present invention can be similarly bonded to the surface of the polarizer opposite to the surface on which the acrylic resin film is bonded.
 また、反対側の面に液晶セルの光学補償機能有するセルロースアシレートフィルムが、水糊又は活性エネルギー線硬化性接着剤を用いて偏光子と貼合されていることも好ましい。本発明に係るアクリル樹脂フィルムによって当該セルロースアシレートフィルムの温湿度に対する位相差の変動をより小さくでき、環境変動に安定な、視認性に優れた偏光板を提供する観点から、好ましい。 Further, it is also preferable that a cellulose acylate film having an optical compensation function of a liquid crystal cell is attached to the opposite surface of the polarizer with a water paste or an active energy ray-curable adhesive. The acrylic resin film according to the present invention is preferable from the viewpoint of making it possible to further reduce the variation in retardation of the cellulose acylate film with respect to temperature and humidity, and to provide a polarizing plate that is stable against environmental changes and has excellent visibility.
 偏光板が視認側の偏光板として用いられる場合は、偏光板の視認側のフィルムは、ハードコート層、防眩層、反射防止層、帯電防止層、又は防汚層等を設けることが好ましい。
 〔偏光子〕
 偏光板の主たる構成要素である偏光子は、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光子は、ポリビニルアルコール系偏光フィルムである。ポリビニルアルコール系偏光フィルムには、ポリビニルアルコール系フィルムにヨウ素を染色させたものと、二色性染料を染色させたものとがある。
When the polarizing plate is used as the viewing side polarizing plate, the viewing side film of the polarizing plate is preferably provided with a hard coat layer, an antiglare layer, an antireflection layer, an antistatic layer, an antifouling layer or the like.
[Polarizer]
A polarizer, which is a main component of a polarizing plate, is an element that allows only light having a polarization plane in a certain direction to pass therethrough, and a typical polarizer currently known is a polyvinyl alcohol-based polarizing film. Polyvinyl alcohol-based polarizing films include those obtained by dyeing a polyvinyl alcohol-based film with iodine and those obtained by dyeing a dichroic dye.
 偏光子としては、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行った偏光子が用いられ得る。偏光子の膜厚は2~30μmが好ましく、特に2~15μmであることが好ましい。 As the polarizer, a polarizer obtained by forming a polyvinyl alcohol aqueous solution into a film and uniaxially stretching it for dyeing, or dyeing it and then uniaxially stretching it, and preferably performing durability treatment with a boron compound can be used. The film thickness of the polarizer is preferably 2 to 30 μm, and particularly preferably 2 to 15 μm.
 また、特開2003-248123号公報、特開2003-342322号公報等に記載のエチレン単位の含有量1~4モル%、重合度2000~4000、ケン化度99.0~99.99モル%のエチレン変性ポリビニルアルコールも好ましく用いられる。中でも、熱水切断温度が66~73℃であるエチレン変性ポリビニルアルコールフィルムが好ましく用いられる。このエチレン変性ポリビニルアルコールフィルムを用いた偏光子は、偏光性能及び耐久性能に優れている上に、色むらが少なく、大型液晶表示装置に特に好ましく用いられる。 Further, the content of ethylene units described in JP-A-2003-248123 and JP-A-2003-342322 is 1 to 4 mol %, the degree of polymerization is 2000 to 4000, and the degree of saponification is 99.0 to 99.99 mol %. The ethylene-modified polyvinyl alcohol of is also preferably used. Above all, an ethylene-modified polyvinyl alcohol film having a hot water cutting temperature of 66 to 73° C. is preferably used. A polarizer using this ethylene-modified polyvinyl alcohol film is excellent in polarization performance and durability performance, has less color unevenness, and is particularly preferably used for a large-sized liquid crystal display device.
 〈積層フィルム型の偏光子〉
 また、偏光板は薄膜とすることが好ましく、偏光子の厚さは2~15μmの範囲内であることが、偏光板の強度と薄膜化を両立する観点から特に好ましい。
<Multilayer film type polarizer>
The polarizing plate is preferably a thin film, and the thickness of the polarizer is particularly preferably in the range of 2 to 15 μm from the viewpoint of achieving both strength and thinning of the polarizing plate.
 このような薄膜の偏光子としては、特開2011-100161号公報、特許第4691205号公報、特許4751481号公報、特許第4804589号公報に記載の方法で、積層フィルム型の偏光子を作製することが好ましい。 As such a thin film polarizer, a laminated film type polarizer is produced by the method described in JP 2011-100161 A, JP 4691205 A, JP 4751481 A, and JP 4804589 A. Is preferred.
 一例として、以下の工程によって製造される薄膜の積層フィルム型の偏光子(偏光性積層フィルム)を用いることが、偏光板の全体の厚さを薄くして軽量化できる観点から好ましい。 As an example, it is preferable to use a thin film laminated film type polarizer (polarizing laminated film) manufactured by the following steps from the viewpoint that the entire thickness of the polarizing plate can be reduced and the weight can be reduced.
 (偏光性積層フィルムの製造方法)
 本発明に用いられる偏光性積層フィルムの製造方法は下記工程を含む。
(a)熱可塑性樹脂にゴム成分が分散されてなる基材フィルムの一方の面にポリビニルアルコール系樹脂層を形成して積層フィルムを得る積層工程、
(b)積層フィルムを一軸延伸して延伸フィルムを得る延伸工程、
(c)延伸フィルムのポリビニルアルコール系樹脂層を二色性色素で染色して、染色フィルムを得る染色工程、
(d)染色フィルムのポリビニルアルコール系樹脂層を、架橋剤を含む溶液に浸漬して偏光子層を形成し、架橋フィルムを得る架橋工程、及び
(e)架橋フィルムを乾燥する乾燥工程
 以下、各工程を説明すると、
 (a)積層工程
 本工程では、熱可塑性樹脂にゴム成分が分散(ブレンド分散)されてなるフィルムを基材フィルムとして、その一方の面にポリビニルアルコール系樹脂層を形成して積層フィルムを得ることが好ましい。
(Method for manufacturing a polarizing laminated film)
The method for producing a polarizing laminated film used in the present invention includes the following steps.
(A) a laminating step in which a polyvinyl alcohol-based resin layer is formed on one surface of a substrate film in which a rubber component is dispersed in a thermoplastic resin to obtain a laminated film,
(B) a stretching step of uniaxially stretching the laminated film to obtain a stretched film,
(C) a dyeing step of dyeing the polyvinyl alcohol resin layer of the stretched film with a dichroic dye to obtain a dyed film,
(D) The polyvinyl alcohol-based resin layer of the dyed film is immersed in a solution containing a crosslinking agent to form a polarizer layer, and a crosslinking step of obtaining a crosslinked film, and (e) a drying step of drying the crosslinked film Explaining the process,
(A) Laminating step In this step, a film obtained by dispersing (blending) a rubber component in a thermoplastic resin is used as a base film, and a polyvinyl alcohol resin layer is formed on one surface of the base film to obtain a laminated film. Is preferred.
 (基材フィルム)
 基材フィルムのベースとなる熱可塑性樹脂は、透明性、機械的強度、熱安定性、延伸性などに優れる熱可塑性樹脂であることが好ましい。このような熱可塑性樹脂の具体例を挙げれば、例えば、鎖状ポリオレフィン系樹脂;環状ポリオレフィン系樹脂;(メタ)アクリル系樹脂;ポリエステル系樹脂;セルロースアシレート系樹脂;ポリカーボネート系樹脂;ポリビニルアルコール系樹脂;酢酸ビニル系樹脂;ポリアリレート系樹脂;ポリスチレン系樹脂;ポリエーテルスルホン系樹脂;ポリスルホン系樹脂;ポリアミド系樹脂;ポリイミド系樹脂;及びこれらの混合物又は共重合物などが挙げられる。
(Base film)
The thermoplastic resin serving as the base of the base film is preferably a thermoplastic resin having excellent transparency, mechanical strength, thermal stability, stretchability and the like. Specific examples of such a thermoplastic resin include, for example, chain polyolefin resin; cyclic polyolefin resin; (meth)acrylic resin; polyester resin; cellulose acylate resin; polycarbonate resin; polyvinyl alcohol resin. Resins; vinyl acetate resins; polyarylate resins; polystyrene resins; polyether sulfone resins; polysulfone resins; polyamide resins; polyimide resins; and mixtures or copolymers thereof.
 熱可塑性樹脂に分散されるゴム成分はゴム弾性を有する樹脂成分であり、通常、ゴム粒子として熱可塑性樹脂中に均一に分散される。ゴム成分を混合分散させることにより、基材フィルム、ひいては延伸フィルムの引裂き強さを向上させることができる。ゴム成分は、ゴム弾性を有する樹脂である限り特に制限されないが、熱可塑性樹脂との相溶性の観点から、用いる熱可塑性樹脂と同種又は類似の樹脂から構成されることが好ましい。 The rubber component dispersed in the thermoplastic resin is a resin component having rubber elasticity, and is usually uniformly dispersed as rubber particles in the thermoplastic resin. By mixing and dispersing the rubber component, it is possible to improve the tear strength of the base film, and thus the stretched film. The rubber component is not particularly limited as long as it is a resin having rubber elasticity, but from the viewpoint of compatibility with the thermoplastic resin, the rubber component is preferably composed of the same or similar resin as the thermoplastic resin used.
 例えば、熱可塑性樹脂が鎖状ポリオレフィン系樹脂である場合、ゴム成分は、エチレン及びα-オレフィンから選択される2種以上のモノマーの共重合体であることができる。この場合において、当該共重合体を構成する各モノマーの含有量(重合比率)は、90質量%未満であることが好ましく、80質量%未満であることがより好ましい。 For example, when the thermoplastic resin is a chain polyolefin resin, the rubber component can be a copolymer of two or more monomers selected from ethylene and α-olefin. In this case, the content (polymerization ratio) of each monomer constituting the copolymer is preferably less than 90% by mass, and more preferably less than 80% by mass.
 熱可塑性樹脂が(メタ)アクリル系樹脂である場合、相溶性の観点から、ゴム成分としてゴム弾性を有するアクリル系重合体を含有することが好ましい。アクリル系重合体は、アクリル酸アルキルを主体とする重合体であるのがよく、アクリル酸アルキルの単独重合体であってもよいし、アクリル酸アルキル50質量%以上と他のモノマー50質量%以下との共重合体であってもよい。 When the thermoplastic resin is a (meth)acrylic resin, it is preferable to contain an acrylic polymer having rubber elasticity as a rubber component from the viewpoint of compatibility. The acrylic polymer is preferably a polymer mainly containing alkyl acrylate, and may be a homopolymer of alkyl acrylate, or 50% by mass or more of alkyl acrylate and 50% by mass or less of other monomer. It may be a copolymer of
 ゴム成分の配合量は、好ましくは熱可塑性樹脂の5~50質量%であり、より好ましくは10~45質量%である。ゴム成分の配合量が少なすぎると、十分な引裂き強さ向上効果が得られにくい傾向にあり、ゴム成分の配合量が多すぎると、基材フィルムの取扱い性が低下する傾向にある。 The compounding amount of the rubber component is preferably 5 to 50% by mass of the thermoplastic resin, and more preferably 10 to 45% by mass. If the blending amount of the rubber component is too small, a sufficient effect of improving the tear strength tends to be difficult to obtain, and if the blending amount of the rubber component is too large, the handleability of the base film tends to decrease.
 ゴム成分の熱可塑性樹脂への分散方法は特に限定されず、例えば別々に作製した熱可塑性樹脂とゴム成分(ゴム粒子)をプラストミル等で混練して分散させる方法や、熱可塑性樹脂調製時に同じ反応容器内でゴム成分も調製してゴム成分が分散された熱可塑性樹脂を得るリアクターブレンド法などを挙げることができる。リアクターブレンド法は、ゴム成分の分散程度を向上させる上で有利である。 The method of dispersing the rubber component in the thermoplastic resin is not particularly limited. For example, a method of kneading the separately prepared thermoplastic resin and the rubber component (rubber particles) by a plastomill or the like, or the same reaction when preparing the thermoplastic resin A reactor blend method in which a rubber component is also prepared in a container to obtain a thermoplastic resin in which the rubber component is dispersed can be used. The reactor blending method is advantageous in improving the degree of dispersion of the rubber component.
 (ポリビニルアルコール系樹脂層)
 ポリビニルアルコール系樹脂層を形成するポリビニルアルコール系樹脂としては、例えば、ポリビニルアルコール樹脂及びその誘導体が挙げられる。ポリビニルアルコール樹脂の誘導体としては、ポリビニルホルマール、ポリビニルアセタールなどの他、ポリビニルアルコール樹脂をエチレン、プロピレン等のオレフィン、アクリル酸、メタクリル酸、クロトン酸等の不飽和カルボン酸、不飽和カルボン酸のアルキルエステル、アクリルアミドなどで変性したものが挙げられる。これらの中でも、ポリビニルアルコール樹脂を用いるのが好ましい。
(Polyvinyl alcohol resin layer)
Examples of the polyvinyl alcohol-based resin forming the polyvinyl alcohol-based resin layer include a polyvinyl alcohol resin and its derivatives. Derivatives of polyvinyl alcohol resins include polyvinyl formal and polyvinyl acetal, as well as polyvinyl alcohol resins such as olefins such as ethylene and propylene, unsaturated carboxylic acids such as acrylic acid, methacrylic acid and crotonic acid, and alkyl esters of unsaturated carboxylic acids. , Those modified with acrylamide and the like. Among these, it is preferable to use polyvinyl alcohol resin.
 ポリビニルアルコール系樹脂は、完全ケン化品であることが好ましい。ケン化度の範囲は、好ましくは80.0~100.0モル%の範囲であり、より好ましくは90.0~99.5モル%の範囲であり、さらに好ましくは94.0~99.0モル%の範囲である。 The polyvinyl alcohol resin is preferably a completely saponified product. The range of the degree of saponification is preferably 80.0 to 100.0 mol%, more preferably 90.0 to 99.5 mol%, and further preferably 94.0 to 99.0. It is in the range of mol %.
 上述のポリビニルアルコール系樹脂には、必要に応じて、可塑剤、界面活性剤等の添加剤が添加されてもよい。可塑剤としては、ポリオール及びその縮合物などを用いることができ、例えばグリセリン、ジグリセリン、トリグリセリン、エチレングリコール、プロピレングリコール、ポリエチレングリコールなどが例示される。添加剤の配合量は特に制限されないが、ポリビニルアルコール系樹脂の20質量%以下とするのが好適である。 If necessary, additives such as a plasticizer and a surfactant may be added to the above-mentioned polyvinyl alcohol resin. As the plasticizer, polyol and its condensate can be used, and examples thereof include glycerin, diglycerin, triglycerin, ethylene glycol, propylene glycol, polyethylene glycol and the like. The amount of the additive compounded is not particularly limited, but is preferably 20% by mass or less of the polyvinyl alcohol resin.
 ポリビニルアルコール系樹脂溶液を基材フィルムに塗工する方法としては、ワイヤーバーコーティング法、リバースコーティング、グラビアコーティング等のロールコーティング法、スピンコーティング法、スクリーンコーティング法、ファウンテンコーティング法、ディッピング法、スプレー法などの公知の方法から適宜選択できる。乾燥温度は、例えば50~200℃の範囲であり、好ましくは60~150℃の範囲である。乾燥時間は、例えば2~20分の範囲である。 The method for applying the polyvinyl alcohol-based resin solution to the substrate film includes a wire bar coating method, a reverse coating method, a roll coating method such as a gravure coating method, a spin coating method, a screen coating method, a fountain coating method, a dipping method, and a spray method. It can be appropriately selected from known methods such as. The drying temperature is, for example, in the range of 50 to 200°C, preferably in the range of 60 to 150°C. The drying time is, for example, in the range of 2 to 20 minutes.
 積層フィルムにおけるポリビニルアルコール系樹脂層の厚さは、3μm以上50μm以下が好ましく、5μm以上45μm以下がより好ましい。3μm以下であると延伸後に薄くなりすぎて染色性が著しく悪化してしまい、50μmを超えると、得られる偏光性積層フィルムが厚くなる。 The thickness of the polyvinyl alcohol resin layer in the laminated film is preferably 3 μm or more and 50 μm or less, more preferably 5 μm or more and 45 μm or less. If it is 3 μm or less, it becomes too thin after stretching and the dyeing property is significantly deteriorated, and if it exceeds 50 μm, the polarizing laminate film obtained becomes thick.
 本発明に用いる偏光子としてのポリビニルアルコール系樹脂層の厚さは、薄膜化と偏光子としての強度、柔軟性の観点から、下記延伸処理後の膜厚として2~15μmの範囲内であることが好ましい。 The thickness of the polyvinyl alcohol-based resin layer as the polarizer used in the present invention is within the range of 2 to 15 μm as the film thickness after the following stretching treatment from the viewpoints of thinning and strength and flexibility as the polarizer. Is preferred.
 (b)延伸工程
 本工程は、基材フィルム及びポリビニルアルコール系樹脂層を備える積層フィルムを一軸延伸して延伸フィルムを得る工程である。積層フィルムの延伸倍率は、所望する偏光特性に応じて適宜選択することができるが、好ましくは積層フィルムの元長に対して5~17倍の範囲内であり、より好ましくは5~8倍の範囲内である。
(B) Stretching Step This step is a step of uniaxially stretching a laminated film including a substrate film and a polyvinyl alcohol resin layer to obtain a stretched film. The stretching ratio of the laminated film can be appropriately selected according to the desired polarization characteristics, but it is preferably in the range of 5 to 17 times, and more preferably 5 to 8 times the original length of the laminated film. It is within the range.
 延伸は、積層フィルムの長手方向(フィルム搬送方向)に延伸を行う縦延伸であることが好ましい。縦延伸方式としては、ローラー間延伸方法、圧縮延伸方法、テンターを用いた延伸方法などが挙げられる。なお、一軸延伸は、縦延伸処理に限定されることはなく、斜め延伸等であってもよい。 The stretching is preferably longitudinal stretching in which the laminated film is stretched in the longitudinal direction (film transport direction). Examples of the longitudinal stretching method include inter-roller stretching method, compression stretching method, and stretching method using a tenter. The uniaxial stretching is not limited to the longitudinal stretching process and may be oblique stretching or the like.
 (c)染色工程
 本工程は、延伸フィルムのポリビニルアルコール樹脂層を、二色性色素で染色して染色フィルムを得る工程である。二色性色素としては、例えば、ヨウ素や有機染料などが挙げられる。有機染料としては、例えば、レッドBR、レッドLR、レッドR、ピンクLB、ルビンBL、ボルドーGS、スカイブルーLG、レモンイエロー、ブルーBR、ブルー2R、ネイビーRY、グリーンLG、バイオレットLB、バイオレットB、ブラックH、ブラックB、ブラックGSP、イエロー3G、イエローR、オレンジLR、オレンジ3R、スカーレットGL、スカーレットKGL、コンゴーレッド、ブリリアントバイオレットBK、スプラブルーG、スプラブルーGL、スプラオレンジGL、ダイレクトスカイブルー、ダイレクトファーストオレンジS、ファーストブラックなどが使用できる。これらの二色性物質は、1種のみを単独で使用してもよいし、2種以上を併用してもよい。
(C) Dyeing step This step is a step of dyeing the polyvinyl alcohol resin layer of the stretched film with a dichroic dye to obtain a dyed film. Examples of the dichroic pigment include iodine and organic dyes. As the organic dye, for example, red BR, red LR, red R, pink LB, rubin BL, Bordeaux GS, sky blue LG, lemon yellow, blue BR, blue 2R, navy RY, green LG, violet LB, violet B, Black H, Black B, Black GSP, Yellow 3G, Yellow R, Orange LR, Orange 3R, Scarlet GL, Scarlet KGL, Congo Red, Brilliant Violet BK, Supra Blue G, Supra Blue GL, Supra Orange GL, Direct Sky Blue, Direct First Orange S, First Black, etc. can be used. These dichroic substances may be used alone or in combination of two or more.
 二色性色素としてヨウ素を使用する場合、染色効率をより一層向上できることから、さらにヨウ化物を、ヨウ素を含有する染色溶液に添加することが好ましい。このヨウ化物としては、例えば、ヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化スズ、ヨウ化チタンなどが挙げられる。 When iodine is used as the dichroic dye, it is preferable to add iodide to the iodine-containing dyeing solution because the dyeing efficiency can be further improved. Examples of the iodide include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and iodide. Examples include titanium.
 (d)架橋工程
 本工程は、二色性色素で染色させて得られた染色フィルムのポリビニルアルコール系樹脂層に対して架橋処理を行い、ポリビニルアルコール系樹脂層を偏光子層とする架橋フィルムを得る工程である。架橋工程は、例えば架橋剤を含む溶液(架橋溶液)中に染色フィルムを浸漬することにより行うことができる。架橋剤としては、従来公知の物質を使用することができる。例えば、ホウ酸、ホウ砂等のホウ素化合物や、グリオキザール、グルタルアルデヒドなどが挙げられる。これらは1種のみを単独で使用してもよいし、2種以上を併用してもよい。
(D) Crosslinking step In this step, the polyvinyl alcohol resin layer of the dyed film obtained by dyeing with a dichroic dye is subjected to a crosslinking treatment to form a crosslinked film having the polyvinyl alcohol resin layer as a polarizer layer. It is a process of obtaining. The crosslinking step can be performed, for example, by immersing the dyed film in a solution containing a crosslinking agent (crosslinking solution). A conventionally known substance can be used as the crosslinking agent. Examples thereof include boron compounds such as boric acid and borax, glyoxal, and glutaraldehyde. These may be used alone or in combination of two or more.
 (e)乾燥工程
 得られた架橋フィルムは、通常、洗浄を行った後、乾燥される。これにより偏光性積層フィルムが得られる。洗浄は、イオン交換水、蒸留水などの純水に架橋フィルムを浸漬することにより行うことができる。水洗浄温度は、通常3~50℃の範囲、好ましくは4~20℃の範囲である。浸漬時間は、通常2~300秒間の範囲、好ましくは5~240秒間である。洗浄は、ヨウ化物溶液による洗浄処理と水洗浄処理とを組み合わせてもよく、適宜にメタノール、エタノール、イソプロピルアルコール、ブタノール、プロパノール等の液体アルコールを配合した溶液を用いることもできる。
(E) Drying step The obtained crosslinked film is usually washed and then dried. Thereby, a polarizing laminated film is obtained. The washing can be performed by immersing the crosslinked film in pure water such as ion-exchanged water or distilled water. The water washing temperature is usually in the range of 3 to 50°C, preferably 4 to 20°C. The immersion time is usually in the range of 2 to 300 seconds, preferably 5 to 240 seconds. The washing may be a combination of a washing treatment with an iodide solution and a washing treatment with water, and it is also possible to use a solution in which a liquid alcohol such as methanol, ethanol, isopropyl alcohol, butanol or propanol is appropriately mixed.
 乾燥方法としては、任意の適切な方法(例えば、自然乾燥、送風乾燥、加熱乾燥)を採用しうる。例えば、加熱乾燥の場合の乾燥温度は、通常20~95℃の範囲であり、乾燥時間は、通常1~15分間程度である。 As the drying method, any appropriate method (for example, natural drying, blast drying, heat drying) can be adopted. For example, in the case of heat drying, the drying temperature is usually in the range of 20 to 95°C, and the drying time is usually about 1 to 15 minutes.
 偏光性積層フィルムは、二色性色素が吸着配向されたポリビニルアルコール系樹脂層からなる偏光子層を備えるものであり、これ自体偏光板として用いることができる。本発明の好ましい実施態様としては、上記工程によって偏光性積層フィルムを形成した後、当該偏光性積層フィルムの前記ポリビニルアルコール層を基材フィルムから剥離することによって、当該ポリビニルアルコール層を偏光子として用いることである。この方法によれば、偏光子層の厚さを15μm以下にすることが可能であるため、薄型の偏光子を得ることができる。また、本発明に用いられる偏光子は、偏光性能及び耐久性にも優れる。 The polarizing laminated film has a polarizer layer composed of a polyvinyl alcohol resin layer in which a dichroic dye is adsorbed and oriented, and can be used as a polarizing plate itself. As a preferred embodiment of the present invention, after the polarizing laminate film is formed by the above steps, the polyvinyl alcohol layer of the polarizing laminate film is peeled from the substrate film to use the polyvinyl alcohol layer as a polarizer. That is. According to this method, since the thickness of the polarizer layer can be set to 15 μm or less, a thin polarizer can be obtained. Further, the polarizer used in the present invention is also excellent in polarization performance and durability.
 〔偏光板の作製〕
 偏光板は一般的な方法で作製することができる。本発明に係るアクリル樹脂フィルムの偏光子側を表面処理し、下記活性エネルギー線硬化性接着剤を用いて、ヨウ素溶液中に浸漬延伸して作製した偏光子と貼合することが好ましい。また、アクリル樹脂フィルムを貼合した面とは反対側の面に、セルロースアシレートフィルムを用いる場合は、当該セルロースアシレートフィルムをアルカリケン化処理し、偏光子の少なくとも一方の面に、完全ケン化型ポリビニルアルコール水溶液(水糊)を用いて貼り合わせることが好ましい。もう一方の面には他の偏光板保護フィルムを貼合することができる。
[Production of polarizing plate]
The polarizing plate can be manufactured by a general method. It is preferable that the polarizer side of the acrylic resin film according to the present invention is surface-treated, and the resulting active energy ray-curable adhesive is used to bond with a polarizer prepared by dipping and stretching in an iodine solution. Further, when a cellulose acylate film is used on the surface opposite to the surface on which the acrylic resin film is attached, the cellulose acylate film is subjected to alkali saponification treatment, and at least one surface of the polarizer is completely saponified. It is preferable to bond them by using an aqueous polyvinyl alcohol solution (water glue). Another polarizing plate protective film can be attached to the other surface.
 例えば、市販のセルロースアシレートフィルム(例えば、コニカミノルタタック KC8UX、KC5UX、KC8UCR3、KC8UCR4、KC8UCR5、KC8UY、KC6UY、KC6UA、KC4UY、KC4UE、KC8UE、KC8UY-HA、KC8UX-RHA、KC8UXW-RHA-C、KC8UXW-RHA-NC、KC4UXW-RHA-NC、以上コニカミノルタ(株)製)が好ましく用いられる。
 その他、東洋紡(株)製コスモシャイン(R)超複屈折タイプ(SRF)、日本ゼオン(株)製シクロオレフィンポリマー(COP)成形品-ゼオノアフィルム(R)の各種グレードも好ましく用いられる。
さらには、本発明に係るアクリル樹脂フィルムを含む各種アクリル樹脂フィルムも、反対側の面に用いる偏光板保護フィルムとして好ましく用いられる。
For example, commercially available cellulose acylate films (for example, Konica Minolta Tuck KC8UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC6UY, KC6UA, KC4UY, KC4UE, KC8UE, KC8UY-HA, XUUR, KC8UE, KC8UY-HA, UC, UC, UC, XC, UC, XC, UC, XC, XC, XC, XC, XC, XC, XC, X, X, X, X, X, X, X, X, X, X, X, X, X, Y, X, X, X, X, Y, X, X, Y, X, X, X, Y, X, X, Y, X, Y, X, X, Y, X, X, Y, Y, X, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y. KC8UXW-RHA-NC, KC4UXW-RHA-NC, manufactured by Konica Minolta Co., Ltd. are preferably used.
In addition, various grades of Cosmo Shine (R) Super Birefringence Type (SRF) manufactured by Toyobo Co., Ltd. and Cycloolefin Polymer (COP) molded product-Zeonor Film (R) manufactured by Nippon Zeon Co., Ltd. are also preferably used.
Further, various acrylic resin films including the acrylic resin film according to the present invention are also preferably used as a polarizing plate protective film used on the opposite surface.
 [活性エネルギー線硬化性接着剤]
 また、偏光板においては、本発明に係るアクリル樹脂フィルムと偏光子とが、活性エネルギー線硬化性接着剤により貼合されていることが好ましい。
[Active energy ray curable adhesive]
Further, in the polarizing plate, it is preferable that the acrylic resin film according to the present invention and the polarizer are attached to each other with an active energy ray-curable adhesive.
 活性エネルギー線硬化性接着剤は、下記紫外線硬化型接着剤を用いることが好ましい。 As the active energy ray curable adhesive, it is preferable to use the following ultraviolet curable adhesive.
 本発明においては、アクリル樹脂フィルムと偏光子との貼合に紫外線硬化型接着剤を適用することにより、薄膜でも強度が高く、平面性に優れた偏光板を得ることができる。 In the present invention, by applying an ultraviolet-curable adhesive to bond the acrylic resin film and the polarizer, it is possible to obtain a polarizing plate having high strength and excellent flatness even with a thin film.
 〈紫外線硬化型接着剤の組成〉
 偏光板用の紫外線硬化型接着剤組成物としては、光ラジカル重合を利用した光ラジカル重合型組成物、光カチオン重合を利用した光カチオン重合型組成物、並びに光ラジカル重合及び光カチオン重合を併用したハイブリッド型組成物が知られている。
<Composition of UV curable adhesive>
As the ultraviolet curable adhesive composition for a polarizing plate, a photoradical polymerization type composition utilizing photoradical polymerization, a photocationic polymerization type composition utilizing photocationic polymerization, and a combination of photoradical polymerization and photocationic polymerization are used. Hybrid type compositions are known.
 光ラジカル重合型組成物としては、特開2008-009329号公報に記載のヒドロキシ基やカルボキシ基等の極性基を含有するラジカル重合性化合物及び極性基を含有しないラジカル重合性化合物を特定割合で含む組成物)等が知られている。特に、ラジカル重合性化合物は、ラジカル重合可能なエチレン性不飽和結合を有する化合物であることが好ましい。ラジカル重合可能なエチレン性不飽和結合を有する化合物の好ましい例には、(メタ)アクリロイル基を有する化合物が含まれる。(メタ)アクリロイル基を有する化合物の例には、N置換(メタ)アクリルアミド系化合物、(メタ)アクリレート系化合物などが含まれる。(メタ)アクリルアミドは、アクリアミド又はメタクリアミドを意味する。 The photo-radical-polymerizable composition contains a radical-polymerizable compound containing a polar group such as a hydroxy group or a carboxy group and a radical-polymerizable compound not containing a polar group described in JP-A-2008-009329 in a specific ratio. Composition) and the like are known. In particular, the radically polymerizable compound is preferably a compound having a radically polymerizable ethylenically unsaturated bond. Preferred examples of the compound having a radically polymerizable ethylenically unsaturated bond include a compound having a (meth)acryloyl group. Examples of compounds having a (meth)acryloyl group include N-substituted (meth)acrylamide compounds and (meth)acrylate compounds. (Meth)acrylamide means acrylamide or methacrylamide.
 また、光カチオン重合型組成物としては、特開2011-028234号公報に開示されているような、(α)カチオン重合性化合物、(β)光カチオン重合開始剤、(γ)380nmより長い波長の光に極大吸収を示す光増感剤、及び(δ)ナフタレン系光増感助剤の各成分を含有する紫外線硬化型接着剤組成物が挙げられる。ただし、これ以外の紫外線硬化型接着剤が用いられてもよい。 Further, as the photocationic polymerization type composition, (α) cationically polymerizable compound, (β) photocationic polymerization initiator, (γ) wavelength longer than 380 nm as disclosed in JP 2011-028234A An ultraviolet-curable adhesive composition containing each component of a photosensitizer that exhibits maximum absorption for light and (δ) a naphthalene-based photosensitization aid. However, other UV curable adhesives may be used.
 (i)前処理工程
 前処理工程は、アクリル樹脂フィルムの偏光子との接着面に易接着処理を行う工程である。易接着処理としては、コロナ処理、プラズマ処理等が挙げられる。
(I) Pretreatment Step The pretreatment step is a step of performing an easy-adhesion treatment on the adhesive surface of the acrylic resin film with the polarizer. Examples of the easy adhesion treatment include corona treatment and plasma treatment.
 (紫外線硬化型接着剤の塗布工程)
 紫外線硬化型接着剤の塗布工程としては、偏光子とアクリル樹脂フィルムとの接着面のうち少なくとも一方に、上記紫外線硬化型接着剤を塗布する。偏光子又はアクリル樹脂フィルムの表面に直接、紫外線硬化型接着剤を塗布する場合、その塗布方法に特段の限定はない。例えば、ドクターブレード、ワイヤーバー、ダイコーター、カンマコーター、グラビアコーター等、種々の湿式塗布方式が利用できる。また、偏光子とアクリル樹脂フィルムの間に、紫外線硬化型接着剤を流延させたのち、ローラー等で加圧して均一に押し広げる方法も利用できる。
(Application process of UV curable adhesive)
In the step of applying the ultraviolet curable adhesive, the ultraviolet curable adhesive is applied to at least one of the bonding surfaces of the polarizer and the acrylic resin film. When the ultraviolet curable adhesive is directly applied to the surface of the polarizer or the acrylic resin film, the application method is not particularly limited. For example, various wet coating methods such as doctor blade, wire bar, die coater, comma coater and gravure coater can be used. Alternatively, a method in which an ultraviolet-curable adhesive is cast between the polarizer and the acrylic resin film and then pressure is applied with a roller or the like to uniformly spread it can be used.
 (ii)貼合工程
 上記の方法により紫外線硬化型接着剤を塗布した後は、貼合工程で処理される。この貼合工程では、例えば、先の塗布工程で偏光子の表面に紫外線硬化型接着剤を塗布した場合、そこにアクリル樹脂フィルムが重ね合わされる。また、はじめにアクリル樹脂フィルムの表面に紫外線硬化型接着剤を塗布する方式の場合には、そこに偏光子が重ね合わされる。また、偏光子とアクリル樹脂フィルムの間に紫外線硬化型接着剤を流延させた場合は、その状態で偏光子とアクリル樹脂フィルムとが重ね合わされる。そして、通常は、この状態で両面のアクリル樹脂フィルム側から加圧ローラー等で挟んで加圧することになる。加圧ローラーの材質は、金属やゴム等を用いることが可能である。両面に配置される加圧ローラーは、同じ材質であってもよいし、異なる材質であってもよい。
(Ii) Laminating Step After applying the ultraviolet curable adhesive by the above method, it is treated in the laminating step. In this laminating step, for example, when the surface of the polarizer is coated with the ultraviolet curable adhesive in the previous coating step, the acrylic resin film is superposed thereon. Further, in the case of a system in which an ultraviolet curable adhesive is first applied to the surface of an acrylic resin film, a polarizer is superposed on it. Further, when the ultraviolet curable adhesive is cast between the polarizer and the acrylic resin film, the polarizer and the acrylic resin film are superposed in that state. Then, in this state, the pressure is normally applied by sandwiching the acrylic resin film on both sides with a pressure roller or the like. The pressure roller can be made of metal, rubber, or the like. The pressure rollers arranged on both sides may be made of the same material or different materials.
 (iii)硬化工程
 硬化工程では、未硬化の紫外線硬化型接着剤に紫外線を照射して、カチオン重合性化合物(例えば、エポキシ化合物やオキセタン化合物)やラジカル重合性化合物(例えば、アクリレート系化合物、アクリルアミド系化合物等)を含む紫外線硬化型接着剤層を硬化させ、紫外線硬化型接着剤を介して重ね合わせた偏光子とアクリル樹脂フィルムを接着させる。偏光子の片面にアクリル樹脂フィルムを貼合する場合、活性エネルギー線は、偏光子側又はアクリル樹脂フィルム側のいずれから照射してもよい。また、偏光子の両面にアクリル樹脂フィルムを貼合する場合、偏光子の両面にそれぞれ紫外線硬化型接着剤を介してアクリル樹脂フィルムを重ね合わせた状態で、紫外線を照射し、両面の紫外線硬化型接着剤を同時に硬化させるのが有利である。
(Iii) Curing step In the curing step, the uncured ultraviolet curable adhesive is irradiated with ultraviolet rays to generate a cationically polymerizable compound (for example, an epoxy compound or an oxetane compound) or a radically polymerizable compound (for example, an acrylate compound, acrylamide). The ultraviolet curable adhesive layer containing a system compound or the like) is cured, and the laminated polarizer and the acrylic resin film are adhered via the ultraviolet curable adhesive. When the acrylic resin film is attached to one surface of the polarizer, the active energy ray may be irradiated from either the polarizer side or the acrylic resin film side. Also, when laminating acrylic resin films on both sides of the polarizer, the acrylic resin films are superposed on both sides of the polarizer with ultraviolet curable adhesives, respectively, and then irradiated with ultraviolet rays to cure ultraviolet rays on both sides. It is advantageous to cure the adhesive at the same time.
 紫外線の照射条件は、本発明に適用する紫外線硬化型接着剤を硬化しうる条件であれば、任意の適切な条件を採用できる。紫外線の照射量は積算光量で50~1500mJ/cmの範囲であることが好ましく、100~500mJ/cmの範囲であるのがさらに好ましい。 Any appropriate condition can be adopted as the irradiation condition of the ultraviolet light as long as it can cure the ultraviolet curing adhesive applied to the present invention. Preferably the dose of ultraviolet rays in the range of 50 ~ 1500mJ / cm 2 in accumulated light quantity, and even more preferably in the range of 100 ~ 500mJ / cm 2.
 偏光板の製造工程を連続ラインで行う場合、ライン速度は、接着剤の硬化時間によるが、好ましくは1~500m/minの範囲、より好ましくは5~300m/minの範囲、さらに好ましくは10~100m/minの範囲である。ライン速度が1m/min以上であれば、生産性を確保することができ、又はアクリル樹脂フィルムへのダメージを抑制することができ、耐久性に優れた偏光板を作製することができる。また、ライン速度が500m/min以下であれば、紫外線硬化型接着剤の硬化が十分となり、目的とする硬度を備え、接着性に優れた紫外線硬化型接着剤層を形成することができる。 When the production process of the polarizing plate is performed in a continuous line, the line speed depends on the curing time of the adhesive, but is preferably in the range of 1 to 500 m/min, more preferably 5 to 300 m/min, and further preferably 10 to It is in the range of 100 m/min. When the line speed is 1 m/min or more, productivity can be secured, or damage to the acrylic resin film can be suppressed, and a polarizing plate excellent in durability can be manufactured. Further, when the line speed is 500 m/min or less, the ultraviolet curable adhesive is sufficiently cured, and the ultraviolet curable adhesive layer having a desired hardness and excellent adhesiveness can be formed.
 〔機能性層〕
 本発明に係るアクリル樹脂フィルムには、機能性層として、反射防止層、光散乱層、ハードコート層、及び帯電防止層等を設けることができる。
[Functional layer]
The acrylic resin film according to the present invention may be provided with an antireflection layer, a light scattering layer, a hard coat layer, an antistatic layer and the like as functional layers.
 〈反射防止層〉
 偏光板の、液晶セルと反対側に配置される透明保護膜には反射防止層などの機能性膜を設けることが好ましい。アクリル樹脂フィルム上に少なくとも光散乱層と低屈折率層がこの順で積層した反射防止層、又はアクリル樹脂フィルム上に中屈折率層、高屈折率層、低屈折率層がこの順で積層した反射防止層が好適に用いられる。
<Antireflection layer>
It is preferable to provide a functional film such as an antireflection layer on the transparent protective film disposed on the opposite side of the polarizing plate from the liquid crystal cell. An antireflection layer in which at least a light scattering layer and a low refractive index layer are laminated in this order on an acrylic resin film, or a middle refractive index layer, a high refractive index layer, and a low refractive index layer are laminated in this order on an acrylic resin film. An antireflection layer is preferably used.
 (光散乱層と低屈折率層を設けた反射防止層)
 光散乱層にはマット粒子が分散しているのが好ましく、光散乱層のマット粒子以外の部分の素材の屈折率は1.50~2.00の範囲にあることが好ましく、低屈折率層の屈折率は1.35~1.49の範囲にあることが好ましい。光散乱層は、防眩性とハードコート性を兼ね備えていてもよく、1層でもよいし、複数層、例えば2層~4層で構成されていてもよい。
(Antireflection layer provided with a light scattering layer and a low refractive index layer)
Matt particles are preferably dispersed in the light-scattering layer, and the material other than the mat particles in the light-scattering layer preferably has a refractive index in the range of 1.50 to 2.00. The refractive index of is preferably in the range of 1.35 to 1.49. The light scattering layer may have both an antiglare property and a hard coat property, and may be a single layer or may be composed of a plurality of layers, for example, 2 to 4 layers.
 反射防止層は、その表面凹凸形状として、中心線平均粗さRaが0.08~0.40μm、10点平均粗さRzがRaの10倍以下、平均山谷距離Smが1~100μm、凹凸最深部からの凸部高さの標準偏差が0.5μm以下、中心線を基準とした平均山谷距離Smの標準偏差が20μm以下、傾斜角0~5度の面が10%以上となるように設計することで、十分な防眩性と目視での均一なマット感が達成され、好ましい。 The surface roughness of the antireflection layer is such that the center line average roughness Ra is 0.08 to 0.40 μm, the 10-point average roughness Rz is 10 times or less than Ra, the average peak-valley distance Sm is 1 to 100 μm, and the maximum unevenness is Designed so that the standard deviation of the height of the convex portion from the portion is 0.5 μm or less, the standard deviation of the average peak-valley distance Sm with respect to the center line is 20 μm or less, and the surface with an inclination angle of 0 to 5 degrees is 10% or more. By doing so, sufficient antiglare properties and a uniform matt feeling by visual observation can be achieved, which is preferable.
 また、C光源下での反射光の色味がa値-2~2、b値-3~3、380~780nmの範囲内での反射率の最小値と最大値の比0.5~0.99であることで、反射光の色味がニュートラルとなり、好ましい。またC光源下での透過光のb値が0~3とすることで、表示装置に適用した際の白表示の黄色味が低減され、好ましい。 In addition, the ratio of the minimum value and the maximum value of the reflectance within the range of a * value −2 to 2, b * value −3 to 380 to 780 nm under the C light source is 0.5. When the ratio is up to 0.99, the tint of the reflected light becomes neutral, which is preferable. Further, by setting the b * value of the transmitted light under the C light source to be 0 to 3, the yellow tint of white display when applied to a display device is reduced, which is preferable.
 また、面光源上と反射防止フィルムの間に120×40μmの格子を挿入してフィルム上で輝度分布を測定した際の輝度分布の標準偏差が20以下であると、高精細パネルに本発明に係るアクリル樹脂フィルムを適用したときのギラツキが低減され、好ましい。 Further, when a 120×40 μm grating is inserted between the surface light source and the antireflection film to measure the luminance distribution on the film, the standard deviation of the luminance distribution is 20 or less. Glitter when the acrylic resin film is applied is reduced, which is preferable.
 反射防止層は、その光学特性として、鏡面反射率2.5%以下、透過率90%以上、60度光沢度70%以下とすることで、外光の反射を抑制でき、視認性が向上するため好ましい。特に鏡面反射率は1%以下がより好ましく、0.5%以下であることが最も好ましい。ヘイズ20~50%、内部ヘイズ/全ヘイズ値(比)が0.3~1、光散乱層までのヘイズ値から低屈折率層を形成後のヘイズ値の低下が15%以内、くし幅0.5mmにおける透過像鮮明度20~50%、垂直透過光/垂直から2度傾斜方向の透過率比が1.5~5.0とすることで、高精細LCDパネル上でのギラツキ防止、文字等のボケの低減が達成され、好ましい。 The optical properties of the antireflection layer are such that the specular reflectance is 2.5% or less, the transmittance is 90% or more, and the 60 degree glossiness is 70% or less, whereby the reflection of external light can be suppressed and the visibility is improved. Therefore, it is preferable. In particular, the specular reflectance is more preferably 1% or less, and most preferably 0.5% or less. Haze 20 to 50%, internal haze/total haze value (ratio) of 0.3 to 1, reduction of haze value after formation of the low refractive index layer within 15% from the haze value up to the light scattering layer, comb width 0 20% to 50% transmitted image clarity at 0.5 mm, and 1.5 to 5.0 transmittance ratio in the direction of vertical transmitted light/2° tilt from vertical to prevent glare on high-definition LCD panels It is preferable because reduction of blurring is achieved.
 (低屈折率層)
 反射防止フィルムの低屈折率層の屈折率は、1.20~1.49の範囲が好ましく、より好ましくは1.30~1.44の範囲にある。さらに、低屈折率層は下記数式を満たすことが低反射率化の点で好ましい。
(Low refractive index layer)
The refractive index of the low refractive index layer of the antireflection film is preferably in the range of 1.20 to 1.49, more preferably 1.30 to 1.44. Furthermore, it is preferable that the low refractive index layer satisfy the following formula from the viewpoint of lowering the reflectance.
 (m/4)×0.7<n1d1<(m/4)×1.3
 式中、mは正の奇数であり、n1は低屈折率層の屈折率であり、そして、d1は低屈折率層の膜厚(nm)である。また、λは波長であり、500~550nmの範囲の値である。
(M/4)×0.7<n1d1<(m/4)×1.3
In the formula, m is a positive odd number, n1 is the refractive index of the low refractive index layer, and d1 is the film thickness (nm) of the low refractive index layer. Further, λ is a wavelength, which is a value in the range of 500 to 550 nm.
 低屈折率層を形成する素材について以下に説明する。 The materials for forming the low refractive index layer will be described below.
 低屈折率層には、低屈折率バインダーとして、含フッ素ポリマーを含むことが好ましい。フッ素ポリマーとしては動摩擦係数0.03~0.20、水に対する接触角90~120°、純水の滑落角が70°以下の熱又は電離放射線により架橋する含フッ素ポリマーが好ましい。反射防止フィルムを画像表示装置に装着した時、市販の接着テープとの剥離力が低いほどシールやメモを貼り付けた後に剥がれやすくなり好ましく、500gf以下が好ましく、300gf以下がより好ましく、100gf以下が最も好ましい。 The low refractive index layer preferably contains a fluoropolymer as a low refractive index binder. As the fluoropolymer, a fluoropolymer having a dynamic friction coefficient of 0.03 to 0.20, a contact angle to water of 90 to 120°, and a sliding angle of pure water of 70° or less and which is crosslinked by heat or ionizing radiation is preferable. When the antireflection film is attached to the image display device, the lower the peeling force from the commercially available adhesive tape is, the easier it is to peel off after sticking a seal or a memo, preferably 500 gf or less, more preferably 300 gf or less, more preferably 100 gf or less. Most preferred.
 また、微小硬度計で測定した表面硬度が高いほど、傷がつき難く、0.3GPa以上が好ましく、0.5GPa以上がより好ましい。 Further, the higher the surface hardness measured with a micro hardness meter, the more difficult it is to be scratched, 0.3 GPa or more is preferable, and 0.5 GPa or more is more preferable.
 低屈折率層に用いられる含フッ素ポリマーとしてはパーフルオロアルキル基含有シラン化合物(例えば(ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシル)トリエトキシシラン)の加水分解、脱水縮合物の他、含フッ素モノマー単位と架橋反応性付与のための構成単位を構成成分とする含フッ素共重合体が挙げられる。 Examples of the fluoropolymer used in the low refractive index layer include hydrolysis and dehydration condensation products of perfluoroalkyl group-containing silane compounds (eg (heptadecafluoro-1,1,2,2-tetrahydrodecyl)triethoxysilane). And a fluorine-containing copolymer containing a fluorine-containing monomer unit and a constitutional unit for imparting crosslinking reactivity as constitutional components.
 含フッ素モノマーの具体例としては、例えばフルオロオレフィン類(例えばフルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、パーフルオロオクチルエチレン、ヘキサフルオロプロピレン、パーフルオロ-2,2-ジメチル-1,3-ジオキソール等)、(メタ)アクリル酸の部分又は完全フッ素化アルキルエステル誘導体類(例えばビスコート6FM(大阪有機化学製)やM-2020(ダイキン製)等)、完全又は部分フッ素化ビニルエーテル類等が挙げられるが、好ましくはパーフルオロオレフィン類であり、屈折率、溶解性、透明性、入手性等の観点から特に好ましくはヘキサフルオロプロピレンである。 Specific examples of the fluorine-containing monomer include, for example, fluoroolefins (eg, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, perfluorooctylethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3-dioxole, etc. ), partially or fully fluorinated alkyl ester derivatives of (meth)acrylic acid (for example, biscoat 6FM (manufactured by Osaka Organic Chemical Co., Ltd.) and M-2020 (manufactured by Daikin)), fully or partially fluorinated vinyl ethers, and the like. Of these, perfluoroolefins are preferable, and hexafluoropropylene is particularly preferable from the viewpoints of refractive index, solubility, transparency, availability, and the like.
 架橋反応性付与のための構成単位としてはグリシジル(メタ)アクリレート、グリシジルビニルエーテルのように分子内にあらかじめ自己架橋性官能基を有するモノマーの重合によって得られる構成単位、カルボキシ基やヒドロキシ基、アミノ基、スルホ基等を有するモノマー(例えば(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、マレイン酸、クロトン酸等)の重合によって得られる構成単位、これらの構成単位に高分子反応によって(メタ)アクリルロイル基等の架橋反応性基を導入した構成単位(例えばヒドロキシ基に対してアクリル酸クロリドを作用させる等の手法で導入できる)が挙げられる。 As the constitutional unit for imparting cross-linking reactivity, glycidyl (meth)acrylate, a constitutional unit obtained by polymerization of a monomer having a self-crosslinking functional group in the molecule such as glycidyl vinyl ether, a carboxy group, a hydroxy group, an amino group , A monomer having a sulfo group and the like (for example, (meth)acrylic acid, methylol (meth)acrylate, hydroxyalkyl (meth)acrylate, allyl acrylate, hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, maleic acid, crotonic acid, etc.) Structural units, and structural units in which a cross-linking reactive group such as a (meth)acryloyl group is introduced into these structural units by a polymer reaction (for example, it can be introduced by a method of causing acrylic acid chloride to act on a hydroxy group) Is mentioned.
 また上記含フッ素モノマー単位、架橋反応性付与のための構成単位以外に溶剤への溶解性、皮膜の透明性等の観点から適宜フッ素原子を含有しないモノマーを共重合することもできる。併用可能なモノマー単位には特に限定はなく、例えばオレフィン類(エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等)、アクリル酸エステル類(アクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸2-エチルヘキシル)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート等)、スチレン誘導体(スチレン、ジビニルベンゼン、ビニルトルエン、α-メチルスチレン等)、ビニルエーテル類(メチルビニルエーテル、エチルビニルエーテル、シクロヘキシルビニルエーテル等)、ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、ケイ皮酸ビニル等)、アクリルアミド類(N-tert-ブチルアクリルアミド、N-シクロヘキシルアクリルアミド等)、メタクリルアミド類、アクリロニトリル誘導体等を挙げることができる。上記のポリマーに対しては特開平10-25388号及び特開平10-147739号各公報に記載のごとく適宜硬化剤を併用しても良い。 In addition to the above-mentioned fluorine-containing monomer unit and the constitutional unit for imparting cross-linking reactivity, a monomer not containing a fluorine atom can be appropriately copolymerized from the viewpoints of solubility in a solvent, transparency of a film and the like. The monomer unit that can be used in combination is not particularly limited, and examples thereof include olefins (ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride, etc.), acrylic acid esters (methyl acrylate, methyl acrylate, ethyl acrylate, acrylic acid 2 -Ethylhexyl), methacrylic acid esters (methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylene glycol dimethacrylate, etc.), styrene derivatives (styrene, divinylbenzene, vinyltoluene, α-methylstyrene, etc.), vinyl ethers (methyl Vinyl ether, ethyl vinyl ether, cyclohexyl vinyl ether, etc.), vinyl esters (vinyl acetate, vinyl propionate, vinyl cinnamate etc.), acrylamides (N-tert-butyl acrylamide, N-cyclohexyl acrylamide etc.), methacrylamides, acrylonitrile Examples thereof include derivatives. A curing agent may be appropriately used in combination with the above polymer as described in JP-A-10-25388 and JP-A-10-147739.
 (光散乱層)
 光散乱層は、一般に表面散乱及び/又は内部散乱による光拡散性と、フィルムの耐擦傷性を向上するためのハードコート性をフィルムに寄与する目的で形成される。したがって、一般にハードコート性を付与するためのバインダー、光拡散性を付与するためのマット粒子、及び必要に応じて高屈折率化、架橋収縮防止、高強度化のための無機フィラーを含んで形成される。光散乱層の膜厚は、ハードコート性を付与する観点並びにカールの発生及び脆性の悪化の抑制の観点から、1~10μmの範囲が好ましく、1.2~6μmの範囲がより好ましい。
(Light scattering layer)
The light-scattering layer is generally formed for the purpose of contributing to the film a light-diffusing property due to surface scattering and/or internal scattering, and a hard coat property for improving scratch resistance of the film. Therefore, in general, a binder for imparting hard coat properties, matte particles for imparting light diffusivity, and optionally an inorganic filler for increasing the refractive index, preventing cross-linking shrinkage, and increasing the strength are formed. To be done. The thickness of the light-scattering layer is preferably from 1 to 10 μm, more preferably from 1.2 to 6 μm, from the viewpoint of imparting a hard coat property and suppressing curling and deterioration of brittleness.
 散乱層のバインダーとしては、飽和炭化水素鎖又はポリエーテル鎖を主鎖として有するポリマーであることが好ましく、飽和炭化水素鎖を主鎖として有するポリマーであることがさらに好ましい。また、バインダーポリマーは架橋構造を有することが好ましい。飽和炭化水素鎖を主鎖として有するバインダーポリマーとしては、エチレン性不飽和モノマーの重合体が好ましい。飽和炭化水素鎖を主鎖として有し、かつ架橋構造を有するバインダーポリマーとしては、二個以上のエチレン性不飽和基を有するモノマーの(共)重合体が好ましい。バインダーポリマーを高屈折率にするには、このモノマーの構造中に芳香族環や、フッ素以外のハロゲン原子、硫黄原子、リン原子、及び窒素原子から選ばれた少なくとも1種の原子を含むものを選択することもできる。 The binder for the scattering layer is preferably a polymer having a saturated hydrocarbon chain or a polyether chain as the main chain, and more preferably a polymer having a saturated hydrocarbon chain as the main chain. Further, the binder polymer preferably has a crosslinked structure. The binder polymer having a saturated hydrocarbon chain as the main chain is preferably a polymer of ethylenically unsaturated monomers. As the binder polymer having a saturated hydrocarbon chain as a main chain and having a crosslinked structure, a (co)polymer of a monomer having two or more ethylenically unsaturated groups is preferable. In order to make the binder polymer have a high refractive index, one having an aromatic ring or at least one atom selected from a halogen atom other than fluorine, a sulfur atom, a phosphorus atom, and a nitrogen atom in the structure of this monomer is used. You can also choose.
 二個以上のエチレン性不飽和基を有するモノマーとしては、多価アルコールと(メタ)アクリル酸とのエステル(例、エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、1,4-シクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート)、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3-シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、上記のエチレンオキシド変性体、ビニルベンゼン及びその誘導体(例、1,4-ジビニルベンゼン、4-ビニル安息香酸-2-アクリロイルエチルエステル、1,4-ジビニルシクロヘキサノン)、ビニルスルホン(例、ジビニルスルホン)、アクリルアミド(例、メチレンビスアクリルアミド)及びメタクリルアミドが挙げられる。上記モノマーは2種以上併用してもよい。 Examples of the monomer having two or more ethylenically unsaturated groups include esters of polyhydric alcohol and (meth)acrylic acid (eg, ethylene glycol di(meth)acrylate, butanediol di(meth)acrylate, hexanediol di( (Meth)acrylate, 1,4-cyclohexanediacrylate, pentaerythritol tetra(meth)acrylate), pentaerythritol tri(meth)acrylate, trimethylolpropane tri(meth)acrylate, trimethylolethane tri(meth)acrylate, dipentaerythritol Tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, pentaerythritol hexa(meth)acrylate, 1,2,3-cyclohexanetetramethacrylate, polyurethane polyacrylate, polyester polyacrylate) , Above-mentioned ethylene oxide modified products, vinylbenzene and its derivatives (eg 1,4-divinylbenzene, 4-vinylbenzoic acid-2-acryloylethyl ester, 1,4-divinylcyclohexanone), vinyl sulfone (eg divinyl sulfone) , Acrylamide (eg methylenebisacrylamide) and methacrylamide. Two or more of the above monomers may be used in combination.
 高屈折率モノマーの具体例としては、ビス(4-メタクリロイルチオフェニル)スルフィド、ビニルナフタレン、ビニルフェニルスルフィド、4-メタクリロキシフェニル-4′-メトキシフェニルチオエーテル等が挙げられる。これらのモノマーも2種以上併用してもよい。 Specific examples of the high refractive index monomer include bis(4-methacryloylthiophenyl)sulfide, vinylnaphthalene, vinylphenyl sulfide, 4-methacryloxyphenyl-4′-methoxyphenylthioether and the like. Two or more kinds of these monomers may be used in combination.
 これらのエチレン性不飽和基を有するモノマーの重合は、光ラジカル開始剤又は熱ラジカル開始剤の存在下、電離放射線の照射又は加熱により行うことができる。 The polymerization of these ethylenically unsaturated group-containing monomers can be carried out by irradiation with ionizing radiation or heating in the presence of a photoradical initiator or a thermal radical initiator.
 したがって、エチレン性不飽和基を有するモノマー、光ラジカル開始剤又は熱ラジカル開始剤、マット粒子及び無機フィラーを含有する塗液を調製し、該塗液を透明支持体上に塗布後電離放射線又は熱による重合反応により硬化して反射防止膜を形成することができる。これらの光ラジカル開始剤等は公知のものを使用することができる。 Therefore, a coating liquid containing a monomer having an ethylenically unsaturated group, a photo radical initiator or a thermal radical initiator, mat particles and an inorganic filler is prepared, and the coating liquid is applied on a transparent support after ionizing radiation or heat. It is possible to form an antireflection film by being cured by the polymerization reaction of. Known photo-radical initiators and the like can be used.
 ポリエーテルを主鎖として有するポリマーは、多官能エポシキシ化合物の開環重合体が好ましい。多官能エポシキ化合物の開環重合は、光酸発生剤又は熱酸発生剤の存在下、電離放射線の照射又は加熱により行うことができる。 The polymer having a polyether as the main chain is preferably a ring-opening polymer of a polyfunctional epoxy compound. The ring-opening polymerization of the polyfunctional epoxy compound can be carried out by irradiation with ionizing radiation or heating in the presence of a photo-acid generator or a thermal-acid generator.
 したがって、多官能エポシキシ化合物、光酸発生剤又は熱酸発生剤、マット粒子及び無機フィラーを含有する塗液を調製し、該塗液を透明支持体上に塗布後電離放射線又は熱による重合反応により硬化して反射防止膜を形成することができる。 Therefore, a coating solution containing a polyfunctional epoxy compound, a photoacid generator or a thermal acid generator, mat particles and an inorganic filler is prepared, and the coating solution is applied on a transparent support by a polymerization reaction by ionizing radiation or heat. It can be cured to form an antireflection film.
 2個以上のエチレン性不飽和基を有するモノマーの代わりに又はそれに加えて、架橋性官能基を有するモノマーを用いてポリマー中に架橋性官能基を導入し、この架橋性官能基の反応により、架橋構造をバインダーポリマーに導入してもよい。 Instead of or in addition to the monomer having two or more ethylenically unsaturated groups, a monomer having a crosslinkable functional group is used to introduce a crosslinkable functional group into the polymer, and by the reaction of the crosslinkable functional group, A crosslinked structure may be introduced into the binder polymer.
 架橋性官能基の例には、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシ基、メチロール基及び活性メチレン基が含まれる。ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステル及びウレタン、テトラメトキシシランのような金属アルコキシドも、架橋構造を導入するためのモノマーとして利用できる。ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。すなわち、本発明において架橋性官能基は、すぐには反応を示すものではなくとも、分解した結果反応性を示すものであってもよい。 Examples of the crosslinkable functional group include an isocyanate group, an epoxy group, an aziridine group, an oxazoline group, an aldehyde group, a carbonyl group, a hydrazine group, a carboxy group, a methylol group and an active methylene group. Vinyl sulfonic acid, acid anhydride, cyanoacrylate derivative, melamine, etherified methylol, ester and urethane, and metal alkoxide such as tetramethoxysilane can also be used as a monomer for introducing a crosslinked structure. You may use the functional group which shows a crosslinkability as a result of a decomposition reaction like a block isocyanate group. That is, in the present invention, the crosslinkable functional group may be one that does not immediately show a reaction but shows reactivity as a result of decomposition.
 これら架橋性官能基を有するバインダーポリマーは塗布後、加熱することによって架橋構造を形成することができる。 A crosslinked structure can be formed by heating the binder polymer having these crosslinkable functional groups after coating.
 光散乱層には、防眩性付与の目的で、フィラー粒子より大きく、平均粒径が1~10μmの範囲、好ましくは1.5~7.0μmの範囲のマット粒子、例えば無機化合物の粒子又は樹脂粒子が含有されることが好ましい。 For the purpose of imparting antiglare properties, the light scattering layer has matting particles larger than the filler particles and having an average particle size in the range of 1 to 10 μm, preferably 1.5 to 7.0 μm, such as inorganic compound particles or It is preferable that resin particles are contained.
 上記マット粒子の具体例としては、例えばシリカ粒子、TiO粒子等の無機化合物の粒子;アクリル粒子、架橋アクリル粒子、ポリスチレン粒子、架橋スチレン粒子、メラミン樹脂粒子、ベンゾグアナミン樹脂粒子等の樹脂粒子が好ましく挙げられる。中でも架橋スチレン粒子、架橋アクリル粒子、架橋アクリルスチレン粒子、シリカ粒子が好ましい。マット粒子の形状は、球状又は不定形のいずれも使用できる。 Specific examples of the matte particles include particles of inorganic compounds such as silica particles and TiO 2 particles; resin particles such as acrylic particles, crosslinked acrylic particles, polystyrene particles, crosslinked styrene particles, melamine resin particles, and benzoguanamine resin particles. Can be mentioned. Of these, crosslinked styrene particles, crosslinked acrylic particles, crosslinked acrylic styrene particles, and silica particles are preferable. The shape of the matte particles may be either spherical or amorphous.
 また、粒子径の異なる2種以上のマット粒子を併用して用いてもよい。より大きな粒子径のマット粒子で防眩性を付与し、より小さな粒子径のマット粒子で別の光学特性を付与することが可能である。 Also, two or more kinds of matte particles having different particle sizes may be used in combination. It is possible to impart antiglare properties with matte particles having a larger particle size and impart other optical properties with matt particles having a smaller particle size.
 さらに、上記マット粒子の粒子径分布としては単分散であることが最も好ましく、各粒子の粒子径は、それぞれ同一に近ければ近いほど良い。例えば平均粒子径よりも20%以上粒子径が大きな粒子を粗大粒子と規定した場合には、この粗大粒子の割合は全粒子数の1%以下であることが好ましく、より好ましくは0.1%以下であり、さらに好ましくは0.01%以下である。このような粒子径分布を持つマット粒子は通常の合成反応後に、分級によって得られ、分級の回数を上げることやその程度を強くすることにより、より好ましい分布の微粒子を得ることができる。 Furthermore, the particle size distribution of the above matte particles is most preferably monodisperse, and the closer the particle sizes of the particles are, the better. For example, when a particle having a particle diameter larger than the average particle diameter by 20% or more is defined as a coarse particle, the proportion of the coarse particle is preferably 1% or less of the total number of particles, more preferably 0.1%. It is below, and more preferably 0.01% or below. The matte particles having such a particle size distribution are obtained by classification after a normal synthesis reaction, and fine particles having a more preferable distribution can be obtained by increasing the number of classifications or increasing the degree of classification.
 上記マット粒子は、形成された光散乱層のマット粒子量が好ましくは10~1000mg/mの範囲、より好ましくは100~700mg/mの範囲となるように光散乱層に含有される。マット粒子の粒度分布はコールターカウンター法により測定し、測定された分布を粒子数分布に換算する。 The matte particles are contained in the light-scattering layer such that the amount of matte particles in the formed light-scattering layer is preferably in the range of 10 to 1000 mg/m 2 , and more preferably 100 to 700 mg/m 2 . The particle size distribution of matte particles is measured by the Coulter counter method, and the measured distribution is converted into a particle number distribution.
 光散乱層には、層の屈折率を高めるために、上記のマット粒子に加えて、チタン、ジルコニウム、アルミニウム、インジウム、亜鉛、スズ、アンチモンのうちより選ばれる少なくとも1種の金属の酸化物からなり、平均粒径が0.2μm以下、好ましくは0.1μm以下、より好ましくは0.06μm以下である無機フィラーが含有されることが好ましい。 In order to increase the refractive index of the layer, the light-scattering layer contains, in addition to the matte particles described above, an oxide of at least one metal selected from titanium, zirconium, aluminum, indium, zinc, tin, and antimony. Therefore, it is preferable to contain an inorganic filler having an average particle diameter of 0.2 μm or less, preferably 0.1 μm or less, more preferably 0.06 μm or less.
 また逆に、マット粒子との屈折率差を大きくするために、高屈折率マット粒子を用いた光散乱層では層の屈折率を低目に保つためにケイ素の酸化物を用いることも好ましい。好ましい粒径は前述の無機フィラーと同じである。 On the contrary, in order to increase the refractive index difference with the matte particles, it is also preferable to use a silicon oxide in the light scattering layer using the high refractive index matte particles in order to keep the refractive index of the layer low. The preferable particle size is the same as the above-mentioned inorganic filler.
 光散乱層に用いられる無機フィラーの具体例としては、TiO、ZrO、Al、In、ZnO、SnO、Sb、ITOとSiO等が挙げられる。TiO及びZrOが高屈折率化の点で特に好ましい。該無機フィラーは表面をシランカップリング処理又はチタンカップリング処理されることも好ましく、フィラー表面にバインダー種と反応できる官能基を有する表面処理剤が好ましく用いられる。これらの無機フィラーの添加量は、光散乱層の全質量の10~90%の範囲であることが好ましく、より好ましくは20~80%の範囲であり、特に好ましくは30~75%の範囲である。なお、このようなフィラーは、粒径が光の波長よりも十分小さいために散乱が生じず、バインダーポリマーに該フィラーが分散した分散体は光学的に均一な物質として振舞う。 Specific examples of the inorganic filler used in the light scattering layer include TiO 2 , ZrO 2 , Al 2 O 3 , In 2 O 3 , ZnO, SnO 2 , Sb 2 O 3 , ITO and SiO 2 . TiO 2 and ZrO 2 are particularly preferable in terms of increasing the refractive index. The surface of the inorganic filler is also preferably subjected to a silane coupling treatment or a titanium coupling treatment, and a surface treating agent having a functional group capable of reacting with a binder species on the filler surface is preferably used. The addition amount of these inorganic fillers is preferably in the range of 10 to 90% of the total mass of the light scattering layer, more preferably in the range of 20 to 80%, and particularly preferably in the range of 30 to 75%. is there. In addition, since such a filler has a particle diameter sufficiently smaller than the wavelength of light, scattering does not occur, and a dispersion in which the filler is dispersed in a binder polymer behaves as an optically uniform substance.
 光散乱層のバインダー及び無機フィラーの混合物のバルクの屈折率は、1.48~2.00の範囲であることが好ましく、より好ましくは1.50~1.80の範囲である。屈折率を上記範囲とするには、バインダー及び無機フィラーの種類及び量割合を適宜選択すればよい。どのように選択するかは、あらかじめ実験的に容易に知ることができる。 The bulk refractive index of the mixture of the binder and the inorganic filler in the light scattering layer is preferably in the range of 1.48 to 2.00, more preferably 1.50 to 1.80. In order to make the refractive index within the above range, the kind and the ratio of the amount of the binder and the inorganic filler may be appropriately selected. How to select can be easily known in advance experimentally.
 光散乱層は、特に塗布むら、乾燥むら、点欠陥等の面状均一性を確保するために、フッ素系、シリコーン系のいずれかの界面活性剤、又はその両者を防眩層形成用の塗布組成物中に含有することが好ましい。特にフッ素系の界面活性剤は、より少ない添加量において、反射防止フィルムの塗布むら、乾燥むら、点欠陥等の面状故障を改良する効果が現れるため、好ましく用いられる。面状均一性を高めつつ、高速塗布適性を持たせることにより生産性を高めることが目的である。 The light-scattering layer is coated with a fluorine-based or silicone-based surfactant, or both of them for forming an antiglare layer in order to ensure surface uniformity such as coating unevenness, drying unevenness, and point defects. It is preferably contained in the composition. In particular, a fluorine-based surfactant is preferably used because the effect of improving surface defects such as coating unevenness, drying unevenness, point defects and the like of the antireflection film appears with a smaller addition amount. The purpose is to improve productivity by imparting suitability for high speed coating while improving surface uniformity.
 〈中屈折率層、高屈折率層、低屈折率層がこの順で積層した反射防止層〉
 フィルム上に少なくとも中屈折率層、高屈折率層、低屈折率層(最外層)の順序の層構成から成る反射防止膜は、以下の関係を満足する屈折率を有する様に設計されることが好ましい。高屈折率層の屈折率>中屈折率層の屈折率>透明支持体の屈折率>低屈折率層の屈折率。また、透明支持体と中屈折率層の間に、ハードコート層を設けてもよい。さらには、中屈折率ハードコート層、高屈折率層及び低屈折率層からなってもよい(例えば、特開平8-122504号公報、同8-110401号公報、同10-300902号公報、特開2002-243906号公報、特開2000-111706号公報等参照)。また、各層に他の機能を付与させてもよく、例えば、防汚性の低屈折率層、帯電防止性の高屈折率層としたもの(例、特開平10-206603号公報、特開2002-243906号公報等)等が挙げられる。
<Antireflection layer in which a medium refractive index layer, a high refractive index layer, and a low refractive index layer are laminated in this order>
An antireflection film consisting of at least a medium-refractive-index layer, a high-refractive-index layer, and a low-refractive-index layer (outermost layer) on the film must be designed to have a refractive index that satisfies the following relationships. Is preferred. High refractive index layer refractive index> Medium refractive index layer refractive index> Transparent support refractive index> Low refractive index layer refractive index. Further, a hard coat layer may be provided between the transparent support and the medium refractive index layer. Further, it may be composed of a medium-refractive index hard coat layer, a high-refractive index layer and a low-refractive index layer (for example, JP-A-8-122504, JP-A-8-110401, JP-A-10-300902, and Unexamined Japanese Patent Publication No. 2002-243906, Japanese Unexamined Patent Publication No. 2000-111706, etc.). Further, other functions may be imparted to each layer, for example, a low-refractive index layer having an antifouling property and a high-refractive index layer having an antistatic property (eg, JP-A-10-206603, JP-A-2002-2002). No. 243906, etc.) and the like.
 反射防止膜のヘイズは、5%以下あることが好ましく、3%以下がさらに好ましい。また膜の強度は、JIS K5400に従う鉛筆硬度試験でH以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。 The haze of the antireflection film is preferably 5% or less, more preferably 3% or less. Further, the strength of the film is preferably H or more, more preferably 2H or more, and most preferably 3H or more in a pencil hardness test according to JIS K5400.
 (高屈折率層及び中屈折率層)
 反射防止膜の高い屈折率を有する層は、平均粒径100nm以下の高屈折率の無機化合物超微粒子及びマトリックスバインダーを少なくとも含有する硬化性膜から成ることが好ましい。
(High refractive index layer and medium refractive index layer)
The layer having a high refractive index of the antireflection film is preferably composed of a curable film containing at least an inorganic compound ultrafine particle having a high refractive index having an average particle diameter of 100 nm or less and a matrix binder.
 高屈折率の無機化合物微粒子としては、屈折率1.65以上の無機化合物等が挙げられ、好ましくは屈折率1.9以上のものが挙げられる。例えば、Ti、Zn、Sb、Sn、Zr、Ce、Ta、La、In等の酸化物、これらの金属原子を含む複合酸化物等が挙げられる。 Examples of the high-refractive-index inorganic compound fine particles include inorganic compounds having a refractive index of 1.65 or more, and preferably those having a refractive index of 1.9 or more. Examples thereof include oxides of Ti, Zn, Sb, Sn, Zr, Ce, Ta, La, In and the like, and complex oxides containing these metal atoms.
 このような超微粒子とするには、粒子表面が表面処理剤で処理されること(例えば、シランカップリング剤等:特開平11-295503号公報、同11-153703号公報、特開2000-9908、アニオン性化合物或は有機金属カップリング剤:特開2001-310432号公報等)、高屈折率粒子をコアとしたコア・シェル構造とすること(:特開2001-166104、同2001-310432号公報等)、特定の分散剤併用(例、特開平11-153703号公報、米国特許第6210858号明細書等)等を挙げることができる。 In order to obtain such ultrafine particles, the surface of the particles should be treated with a surface treatment agent (for example, silane coupling agent, etc.: JP-A-11-295503, JP-A-11-153703, JP-A-2000-9908). , An anionic compound or an organometallic coupling agent: JP-A-2001-310432, etc.), and a core-shell structure having high refractive index particles as a core (: JP-A-2001-166104 and 2001-310432). Gazette), a specific dispersant combination (eg, JP-A No. 11-153703, US Pat. No. 6,210,858, etc.) and the like.
 マトリックスを形成する材料としては、従来公知の熱可塑性樹脂、硬化性樹脂皮膜等が挙げられる。 As the material for forming the matrix, conventionally known thermoplastic resins, curable resin films, etc. may be mentioned.
 さらに、ラジカル重合性及び/又はカチオン重合性の重合性基を少なくとも2個有する多官能性化合物含有組成物と、加水分解性基を有する有機金属化合物及びその部分縮合体を含有する組成物とから選ばれる少なくとも1種の組成物が好ましい。例えば、特開2000-47004号公報、同2001-315242号公報、同2001-31871号公報、同2001-296401号公報等に記載の組成物が挙げられる。 Furthermore, from a polyfunctional compound-containing composition having at least two radically polymerizable and/or cationically polymerizable polymerizable groups, and a composition containing an organometallic compound having a hydrolyzable group and a partial condensate thereof At least one composition selected is preferred. For example, the compositions described in JP-A Nos. 2000-47004, 2001-315242, 2001-31871, 2001-296401, etc. may be mentioned.
 また、金属アルコキドの加水分解縮合物から得られるコロイド状金属酸化物と金属アルコキシド組成物から得られる硬化性膜も好ましい。例えば、特開2001-293818号公報等に記載されている。 A curable film obtained from a colloidal metal oxide obtained from a hydrolyzed condensate of metal alkoxide and a metal alkoxide composition is also preferable. For example, it is described in Japanese Patent Laid-Open No. 2001-293818.
 高屈折率層の屈折率は、-般に1.70~2.20の範囲である。高屈折率層の厚さは、5nm~10μmの範囲であることが好ましく、10nm~1μmの範囲であることがさらに好ましい。中屈折率層の屈折率は、低屈折率層の屈折率と高屈折率層の屈折率との間の値となるように調整する。中屈折率層の屈折率は、1.50~1.70の範囲であることが好ましい。また、厚さは5nm~10μmの範囲であることが好ましく、10nm~1μmの範囲であることがさらに好ましい。 The refractive index of the high refractive index layer is generally in the range of 1.70 to 2.20. The thickness of the high refractive index layer is preferably in the range of 5 nm to 10 μm, more preferably 10 nm to 1 μm. The refractive index of the medium refractive index layer is adjusted to be a value between the refractive index of the low refractive index layer and the refractive index of the high refractive index layer. The refractive index of the medium refractive index layer is preferably in the range of 1.50 to 1.70. The thickness is preferably in the range of 5 nm to 10 μm, more preferably 10 nm to 1 μm.
 (低屈折率層)
 前記構成においては、低屈折率層は、高屈折率層の上に順次積層して成る。低屈折率層の屈折率は1.20~1.55の範囲であることが好ましく、より好ましくは1.30~1.50の範囲である。
(Low refractive index layer)
In the above structure, the low refractive index layer is sequentially laminated on the high refractive index layer. The refractive index of the low refractive index layer is preferably in the range of 1.20 to 1.55, more preferably 1.30 to 1.50.
 耐擦傷性、防汚性を有する最外層として構築することが好ましい。耐擦傷性を大きく向上させる手段として表面への滑り性付与が有効で、従来公知のシリコーンの導入、フッ素の導入等から成る薄膜層の手段を適用できる。 It is preferable to build it as the outermost layer having scratch resistance and antifouling property. As a means for greatly improving the scratch resistance, it is effective to impart slipperiness to the surface, and conventionally known means for forming a thin film layer such as introduction of silicone and introduction of fluorine can be applied.
 含フッ素化合物の屈折率は1.35~1.50の範囲であることが好ましい。より好ましくは1.36~1.47の範囲である。また、含フッ素化合物はフッ素原子を35~80質量%の範囲で含む架橋性若しくは重合性の官能基を含む化合物が好ましい。例えば、特開平9-222503号公報明細書段落番号[0018]~[0026]、同11-38202号公報明細書段落番号[0019]~[0030]、特開2001-40284号公報明細書段落番号[0027]~[0028]、特開2000-284102号公報等に記載の化合物が挙げられる。 The refractive index of the fluorine-containing compound is preferably in the range of 1.35 to 1.50. The range is more preferably 1.36 to 1.47. Further, the fluorine-containing compound is preferably a compound containing a fluorine atom in the range of 35 to 80 mass% and having a crosslinkable or polymerizable functional group. For example, paragraph numbers [0018] to [0026] in JP-A-9-222503, paragraph numbers [0019] to [0030] in JP-A No. 11-38202, paragraph numbers in JP-A-2001-40284. The compounds described in [0027] to [0028] and JP-A No. 2000-284102 are mentioned.
 シリコーン化合物としてはポリシロキサン構造を有する化合物であり、高分子鎖中に硬化性官能基又は重合性官能基を含有して、膜中で橋かけ構造を有するものが好ましい。例えば、反応性シリコーン(例、サイラプレーン(チッソ(株)製等)、両末端にシラノール基含有のポリシロキサン(特開平11-258403号公報等)等が挙げられる。 The silicone compound is a compound having a polysiloxane structure, and a compound having a curable functional group or a polymerizable functional group in the polymer chain and having a crosslinked structure in the film is preferable. Examples thereof include reactive silicones (eg, Silaplane (manufactured by Chisso Corp.), polysiloxanes containing silanol groups at both ends (JP-A-11-258403, etc.), and the like.
 架橋又は重合性基を有する含フッ素及び/又はシロキサンのポリマーの架橋又は重合反応は、重合開始剤、増感剤等を含有する最外層を形成するための塗布組成物を塗布と同時又は塗布後に光照射や加熱することにより実施することが好ましい。 The fluorine-containing and/or siloxane polymer having a crosslinkable or polymerizable group is crosslinked or polymerized at the same time as or after the application of the coating composition for forming the outermost layer containing a polymerization initiator, a sensitizer and the like. It is preferably carried out by irradiation with light or heating.
 また、シランカップリング剤等の有機金属化合物と特定のフッ素含有炭化水素基含有のシランカップリング剤とを触媒共存下に縮合反応で硬化するゾルゲル硬化膜も好ましい。 Also preferred is a sol-gel cured film in which an organometallic compound such as a silane coupling agent and a silane coupling agent containing a specific fluorine-containing hydrocarbon group are cured by a condensation reaction in the presence of a catalyst.
 例えば、ポリフルオロアルキル基含有シラン化合物又はその部分加水分解縮合物(特開昭58-142958号公報、同58-147483号公報、同58-147484号公報、特開平9-157582号公報、同11-106704号公報記載等記載の化合物)、フッ素含有長鎖基であるポリ「パーフルオロアルキルエーテル」基を含有するシリル化合物(特開2000-117902号公報、同2001-48590号公報、同2002-53804号公報記載の化合物等)等が挙げられる。 For example, a polyfluoroalkyl group-containing silane compound or a partial hydrolysis-condensation product thereof (JP-A-58-142958, JP-A-58-147483, JP-A-58-147484, JP-A-9-157582 and JP-A-9-157582). -106704, etc.), a silyl compound containing a poly "perfluoroalkyl ether" group, which is a long-chain fluorine-containing group (JP-A-2000-117902, 2001-48590 and 2002-). Compounds described in Japanese Patent No. 53804) and the like.
 低屈折率層は、上記以外の添加剤として充填剤(例えば、二酸化ケイ素(シリカ)、含フッ素粒子(フッ化マグネシウム、フッ化カルシウム、フッ化バリウム)等の一次粒子平均径が1~150nmの低屈折率無機化合物、特開平11-3820号公報の段落番号[0020]~[0038]に記載の有機微粒子等)、シランカップリング剤、滑り剤、界面活性剤等を含有することができる。 The low refractive index layer has a primary particle average diameter of 1 to 150 nm as an additive other than the above, such as a filler (eg, silicon dioxide (silica), fluorine-containing particles (magnesium fluoride, calcium fluoride, barium fluoride)). A low refractive index inorganic compound, organic fine particles described in paragraph Nos. [0020] to [0038] of JP-A No. 11-3820, etc.), a silane coupling agent, a slipping agent, a surfactant and the like can be contained.
 低屈折率層が最外層の下層に位置する場合、低屈折率層は気相法(真空蒸着法、スパッタリング法、イオンプレーティング法、プラズマCVD法等)により形成されても良い。安価に製造できる点で、塗布法が好ましい。低屈折率層の膜厚は、30~200nmの範囲であることが好ましく、50~150nmの範囲であることがさらに好ましく、60~120nmの範囲であることが最も好ましい。 When the low refractive index layer is located below the outermost layer, the low refractive index layer may be formed by a vapor phase method (vacuum vapor deposition method, sputtering method, ion plating method, plasma CVD method, etc.). The coating method is preferable because it can be manufactured at low cost. The thickness of the low refractive index layer is preferably in the range of 30 to 200 nm, more preferably in the range of 50 to 150 nm, and most preferably in the range of 60 to 120 nm.
 〈反射防止層の他の層〉
 さらに、ハードコート層、前方散乱層、プライマー層、帯電防止層、下塗り層や保護層等を設けてもよい。
<Other layers of antireflection layer>
Further, a hard coat layer, a forward scattering layer, a primer layer, an antistatic layer, an undercoat layer or a protective layer may be provided.
 (ハードコート層)
 ハードコート層は、反射防止層を設けた透明保護膜に物理強度を付与するために、通常透明支持体の表面に設ける。特に、透明支持体と前記高屈折率層の間に設けることが好ましい。ハードコート層は、光及び/又は熱の硬化性化合物の架橋反応、又は、重合反応により形成されることが好ましい。硬化性官能基としては、光重合性官能基が好ましく、また加水分解性官能基含有の有機金属化合物は有機アルコキシシリル化合物が好ましい。
(Hard coat layer)
The hard coat layer is usually provided on the surface of the transparent support in order to impart physical strength to the transparent protective film provided with the antireflection layer. In particular, it is preferably provided between the transparent support and the high refractive index layer. The hard coat layer is preferably formed by a crosslinking reaction or a polymerization reaction of a light and/or heat curable compound. The curable functional group is preferably a photopolymerizable functional group, and the hydrolyzable functional group-containing organometallic compound is preferably an organic alkoxysilyl compound.
 これらの化合物の具体例としては、高屈折率層で例示したと同様のものが挙げられる。ハードコート層の具体的な構成組成物としては、例えば、特開2002-144913号公報、同2000-9908号公報、国際公開第00/46617号等記載のものが挙げられる。 Specific examples of these compounds include the same as those exemplified for the high refractive index layer. Specific examples of the constituent composition of the hard coat layer include those described in JP-A Nos. 2002-144913, 2000-9908, and WO 00/46617.
 高屈折率層はハードコート層を兼ねることができる。このような場合、高屈折率層で記載した手法を用いて微粒子を微細に分散してハードコート層に含有させて形成することが好ましい。 The high refractive index layer can double as a hard coat layer. In such a case, it is preferable that fine particles are finely dispersed by using the method described for the high refractive index layer and contained in the hard coat layer.
 ハードコート層は、平均粒径0.2~10μmの範囲の粒子を含有させて防眩機能(アンチグレア機能)を付与した防眩層(後述)を兼ねることもできる。 The hard coat layer can also serve as an antiglare layer (described later) in which particles having an average particle size of 0.2 to 10 μm are contained to impart an antiglare function (antiglare function).
 ハードコート層の膜厚は用途により適切に設計することができる。ハードコート層の膜厚は、0.2~10μmの範囲であることが好ましく、より好ましくは0.5~7μmの範囲である。 The thickness of the hard coat layer can be designed appropriately according to the application. The thickness of the hard coat layer is preferably in the range of 0.2 to 10 μm, more preferably 0.5 to 7 μm.
 ハードコート層の強度は、JIS K5400に従う鉛筆硬度試験で、H以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。また、JIS K5400に従うテーバー試験で、試験前後の試験片の摩耗量が少ないほど好ましい。 The strength of the hard coat layer is preferably H or more, more preferably 2H or more, and most preferably 3H or more in a pencil hardness test according to JIS K5400. Also, in the Taber test according to JIS K5400, it is preferable that the wear amount of the test piece before and after the test is small.
 (帯電防止層)
 帯電防止層を設ける場合には体積抵抗率が10-8Ω・cm-3以下の導電性を付与することが好ましい。吸湿性物質や水溶性無機塩、ある種の界面活性剤、カチオンポリマー、アニオンポリマー、コロイダルシリカ等の使用により10-8Ω・cm-3の体積抵抗率の付与は可能であるが、温湿度依存性が大きく、低湿では十分な導電性を確保できない問題がある。そのため、導電性層素材としては金属酸化物が好ましい。金属酸化物のうち着色していないものを導電性層素材として用いるとフィルム全体の着色が抑えられ好ましい。着色のない金属酸化物を形成する金属としてZn、Ti、Al、In、Si、Mg、Ba、Mo、W、又はVをあげることができ、これを主成分とした金属酸化物を用いることが好ましい。具体的な例としては、ZnO、TiO、SnO、Al、In、SiO、MgO、BaO、MoO、V等、又はこれらの複合酸化物がよく、特にZnO、TiO、及びSnOが好ましい。異種原子を含む例としては、例えばZnOに対してはAl、In等の添加物、SnOに対してはSb、Nb、ハロゲン元素等の添加、またTiOに対してはNb、TA等の添加が効果的である。さらにまた、特公昭59-6235号公報に記載のごとく、他の結晶性金属粒子又は繊維状物(例えば酸化チタン)に上記の金属酸化物を付着させた素材を使用しても良い。なお、体積抵抗値と表面抵抗値は別の物性値であり単純に比較することはできないが、体積抵抗値で10-8Ω・cm-3以下の導電性を確保するためには、該導電層がおおむね10-10Ω/□以下の表面抵抗値を有していればよくさらに好ましくは10-8Ω/□である。
(Antistatic layer)
When the antistatic layer is provided, it is preferable to impart conductivity with a volume resistivity of 10 −8 Ω·cm −3 or less. A volume resistivity of 10 −8 Ω·cm −3 can be provided by using hygroscopic substances, water-soluble inorganic salts, certain surfactants, cationic polymers, anionic polymers, colloidal silica, etc. There is a problem that it is highly dependent and sufficient conductivity cannot be ensured at low humidity. Therefore, a metal oxide is preferable as the conductive layer material. It is preferable to use an uncolored metal oxide as the material for the conductive layer because the coloring of the entire film can be suppressed. Zn, Ti, Al, In, Si, Mg, Ba, Mo, W, or V can be given as a metal forming the uncolored metal oxide, and a metal oxide containing this as a main component can be used. preferable. As a specific example, ZnO, TiO 2 , SnO 2 , Al 2 O 3 , In 2 O 3 , SiO 2 , MgO, BaO, MoO 3 , V 2 O 5, etc., or a composite oxide of these is preferable. Particularly, ZnO, TiO 2 , and SnO 2 are preferable. Examples of containing different kinds of atoms include, for example, additives such as Al and In for ZnO, addition of Sb, Nb, halogen elements and the like for SnO 2 , and addition of Nb, TA, etc. for TiO 2 . Addition is effective. Furthermore, as described in JP-B-59-6235, a material in which the above metal oxide is attached to other crystalline metal particles or fibrous substances (for example, titanium oxide) may be used. Note that the volume resistance value and the surface resistance value are different physical property values and cannot be simply compared, but in order to secure the conductivity of 10 −8 Ω·cm −3 or less in terms of the volume resistance value, It suffices that the layer has a surface resistance value of approximately 10 −10 Ω/□ or less, and more preferably 10 −8 Ω/□.
 (2)液晶表示装置
 上記本発明に係るアクリル樹脂フィルムを貼合した偏光板を液晶表示装置に用いることによって、種々の視認性に優れた液晶表示装置を作製することができる。
(2) Liquid crystal display device By using the polarizing plate to which the acrylic resin film according to the present invention is attached for a liquid crystal display device, various liquid crystal display devices having excellent visibility can be manufactured.
 前記偏光板は、STN、TN、OCB、HAN、VA(MVA、PVA)、IPS、OCBなどの各種駆動方式の液晶表示装置に用いることができる。好ましくはVA(MVA、PVA)型液晶表示装置である。 The polarizing plate can be used for liquid crystal display devices of various driving systems such as STN, TN, OCB, HAN, VA (MVA, PVA), IPS, OCB. A VA (MVA, PVA) type liquid crystal display device is preferable.
 液晶表示装置には、通常視認側の偏光板とバックライト側の偏光板の2枚の偏光板が用いられるが、本発明に係るアクリル樹脂フィルムを具備した偏光板を両方の偏光板として用いることも好ましく、片側の偏光板として用いることも好ましい。特に本発明に係るアクリル樹脂フィルムを具備した偏光板は外部環境に直接触れる視認側の偏光板として用いることが好ましく、その際は、セルロースアシレートフィルム等の位相差フィルムを液晶セル側に配置することが好ましい。 A liquid crystal display device usually uses two polarizing plates, a polarizing plate on the viewing side and a polarizing plate on the backlight side. However, a polarizing plate provided with the acrylic resin film according to the present invention is used as both polarizing plates. Is also preferable, and it is also preferable to use it as a polarizing plate on one side. In particular, the polarizing plate provided with the acrylic resin film according to the present invention is preferably used as a polarizing plate on the visible side that directly contacts the external environment, in which case a retardation film such as a cellulose acylate film is arranged on the liquid crystal cell side. It is preferable.
 また、バックライト側の偏光板は本発明に係るアクリル樹脂フィルムを具備しない偏光板を用いることもでき、その場合は偏光子の両面を、例えば市販のセルロースアシレートフィルム(例えば、コニカミノルタタックKC8UX、KC5UX、KC4UX、KC8UCR3、KC4SR、KC4BR、KC4CR、KC4DR、KC4FR、KC4KR、KC8UY、KC6UY、KC4UY、KC4UE、KC8UE、KC8UY-HA、KC2UA、KC4UA、KC6UA、KC2UAH、KC4UAH、KC6UAH、以上コニカミノルタ(株)製、フジタックT40UZ、フジタックT60UZ、フジタックT80UZ、フジタックTD80UL、フジタックTD60UL、フジタックTD40UL、フジタックR02、フジタックR06、以上富士フイルム(株)製等)を貼合した偏光板が好ましく用いられる。 The polarizing plate on the backlight side may be a polarizing plate that does not include the acrylic resin film according to the present invention. In that case, both surfaces of the polarizer may be coated with, for example, a commercially available cellulose acylate film (for example, Konica Minolta Tuck KC8UX). , KC5UX, KC4UX, KC8UCR3, KC4SR, KC4BR, KC4CR, KC4DR, KC4FR, KC4KR, KC8UY, KC6UY, KC4UY, KC4UE, KC8UE, KC8UY-HA, KC2UA, KC4UA, KC6UA, KC2UAH, KC4UAH, KC6UAH, or Konica Minolta (strain ), Fujitac T40UZ, Fujitac T60UZ, Fujitac T80UZ, Fujitac TD80UL, Fujitac TD60UL, Fujitac TD40UL, Fujitac R02, Fujitac R06, Fujifilm (manufactured by Fuji Film Co., Ltd., etc.) are preferably used.
 また、バックライト側の偏光板として、偏光子の液晶セル側に本発明に係るアクリル樹脂フィルムを用い、反対側の面に上記市販のセルロースアシレートフィルム、ポリエステルフィルム、アクリルフィルム、又はポリカーボネートフィルムを貼合した偏光板も好ましく用いることができる。 Further, as the polarizing plate on the backlight side, the acrylic resin film according to the present invention is used on the liquid crystal cell side of the polarizer, and the commercially available cellulose acylate film, polyester film, acrylic film, or polycarbonate film on the opposite side. A laminated polarizing plate can also be preferably used.
 前記偏光板を用いることで、特に画面が30型以上の大画面の液晶表示装置であっても、表示むら、正面コントラストなど視認性に優れた液晶表示装置を得ることができる。 By using the polarizing plate, it is possible to obtain a liquid crystal display device having excellent visibility such as display unevenness and front contrast even if the screen is a large-screen liquid crystal display device having a size of 30 inches or more.
 (3)有機エレクトロルミネッセンス表示装置及び素子
 本発明に係るアクリル樹脂フィルムを具備した偏光板は、液晶表示装置以外にも有機エレクトロルミネッセンス表示装置にも好ましく用いることができる。例えば、本発明の環状ポリオレフィンフィルムを前述した搬送方向に対して斜方45°方向に延伸して、搬送方向に吸収軸を有する偏光子と、ロール・to・ロールで貼合することによって円偏光板を作製し、当該円偏光板を有機エレクトロルミネッセンス表示装置に用いると、視認性の高い表示装置を得ることができる。
(3) Organic Electroluminescence Display Device and Element The polarizing plate provided with the acrylic resin film according to the present invention can be preferably used for an organic electroluminescence display device as well as a liquid crystal display device. For example, the cyclic polyolefin film of the present invention is stretched obliquely at 45° with respect to the transport direction described above, and is laminated with a polarizer having an absorption axis in the transport direction by roll-to-roll to form a circularly polarized light. When a plate is produced and the circularly polarizing plate is used for an organic electroluminescence display device, a display device with high visibility can be obtained.
 また、本発明に係るアクリル樹脂フィルムは、有機エレクトロルミネッセンス素子のフレキシブル基板として用いることも好ましく、その場合は後述するガスバリアー性フィルムとして適用することが好ましい。 Also, the acrylic resin film according to the present invention is preferably used as a flexible substrate of an organic electroluminescence element, and in that case, it is preferably applied as a gas barrier film described later.
 有機EL素子の具体的な層構成、部材及び製造方法等については、特開2011-238355号公報、特開2013-077585号公報、特開2013-187090号公報、特開2013-229202号公報、特開2013-232320号公報、特開2014-026853号公報のそれぞれに詳述されており参照できる。 Regarding the specific layer structure, members, manufacturing method, and the like of the organic EL element, JP 2011-238355 A, JP 2013-077585 A, JP 2013-187090 A, JP 2013-229202 A, See JP-A-2013-232320 and JP-A-2014-026853 for details, which can be referred to.
 (4)ガスバリアー性フィルム
 本発明に係るアクリル樹脂フィルムの表面に、無機物、有機物の被膜又はその両者のハイブリッド被膜を形成して、ガスバリアー性フィルムとして用いることが好ましい。
(4) Gas Barrier Film It is preferred to form a film of an inorganic material or an organic material or a hybrid film of both of them on the surface of the acrylic resin film according to the present invention to use as a gas barrier film.
 ガスバリアー性は、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%)が0.01g/(m・24h)以下のガスバリアー層を有するフィルムであることが好ましく、さらには、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/(m・24h・atm)以下、水蒸気透過度が、1×10-5g/(m・24h)以下の高ガスバリアー性を有するフィルムであることが好ましい。 The gas barrier property is a water vapor permeability (25±0.5° C., relative humidity (90±2)%) of 0.01 g/(m 2 ·24 h) measured by a method according to JIS K 7129-1992. The film having the following gas barrier layer is preferable, and further, the oxygen permeability measured by a method according to JIS K 7126-1987 is 1×10 −3 ml/(m 2 ·24 h·atm). Hereafter, it is preferable that the film has a high gas barrier property with a water vapor permeability of 1×10 −5 g/(m 2 ·24 h) or less.
 本発明に適用可能なガスバリアー層の形成方法としては、特に限定されないが、例えば、スパッタリング法(例えば、マグネトロンカソードスパッタリング、平板マグネトロンスパッタリング、2極AC平板マグネトロンスパッタリング、2極AC回転マグネトロンスパッタリングなど)、蒸着法(例えば、抵抗加熱蒸着、電子ビーム蒸着、イオンビーム蒸着、プラズマ支援蒸着など)、熱CVD法、触媒化学気相成長法(Cat-CVD)、容量結合プラズマCVD法(CCP-CVD)、光CVD法、プラズマCVD法(PE-CVD)、エピタキシャル成長法、原子層成長法、反応性スパッタ法等の化学蒸着法等が挙げられる。 The method for forming the gas barrier layer applicable to the present invention is not particularly limited, but for example, a sputtering method (eg, magnetron cathode sputtering, flat plate magnetron sputtering, 2-pole AC flat plate magnetron sputtering, 2-pole AC rotary magnetron sputtering, etc.). , Evaporation method (eg resistance heating evaporation, electron beam evaporation, ion beam evaporation, plasma assisted evaporation, etc.), thermal CVD method, catalytic chemical vapor deposition method (Cat-CVD), capacitive coupling plasma CVD method (CCP-CVD) Examples include chemical vapor deposition methods such as photo-CVD method, plasma CVD method (PE-CVD), epitaxial growth method, atomic layer growth method, and reactive sputtering method.
 また、無機ガスバリアー層は、有機ポリマーを含む有機層を含んでいてもよい。すなわち、無機ガスバリアー層は、無機材料を含む無機層と有機層との積層体であってもよい。 Also, the inorganic gas barrier layer may include an organic layer containing an organic polymer. That is, the inorganic gas barrier layer may be a laminate of an inorganic layer containing an inorganic material and an organic layer.
 有機層は、例えば、有機モノマー又は有機オリゴマーを樹脂基板に塗布し、層を形成し、続いて、例えば、電子ビーム装置、UV光源、放電装置、又はその他の好適な装置を使用して重合及び必要に応じて架橋することにより形成することができる。また、例えば、フラッシュ蒸発及び放射線架橋可能な有機モノマー又は有機オリゴマーを蒸着した後、有機モノマー又は有機オリゴマーからポリマーを形成することによっても形成することができる。コーティング効率は、樹脂基板を冷却することにより改善され得る。 The organic layer is formed, for example, by coating an organic monomer or organic oligomer on a resin substrate to form a layer, followed by polymerization and polymerization using, for example, an electron beam device, a UV light source, a discharge device, or other suitable device. It can be formed by crosslinking if necessary. It can also be formed, for example, by depositing an organic monomer or organic oligomer capable of flash evaporation and radiation crosslinking and then forming a polymer from the organic monomer or oligomer. The coating efficiency can be improved by cooling the resin substrate.
 有機モノマー又は有機オリゴマーの塗布方法としては、例えば、ロールコーティング(例えば、グラビアロールコーティング)、スプレーコーティング(例えば、静電スプレーコーティング)等が挙げられる。また、無機層と有機層との積層体の例としては、例えば、国際公開第2012/003198号、国際公開第2011/013341号に記載の積層体などが挙げられる。 Examples of the method for applying the organic monomer or organic oligomer include roll coating (for example, gravure roll coating) and spray coating (for example, electrostatic spray coating). In addition, examples of the laminate of the inorganic layer and the organic layer include the laminates described in International Publication No. 2012/003198 and International Publication No. 2011/013341.
 無機層と有機層との積層体である場合、各層の厚さは同じでもよいし、異なっていてもよい。無機層の層厚は、好ましくは3~1000nmの範囲内、より好ましくは10~300nmの範囲内である。有機層の層厚は、好ましくは100nm~100μmの範囲内、より好ましくは1~50μmの範囲内である。 In the case of a laminate of an inorganic layer and an organic layer, the thickness of each layer may be the same or different. The layer thickness of the inorganic layer is preferably in the range of 3 to 1000 nm, more preferably in the range of 10 to 300 nm. The layer thickness of the organic layer is preferably in the range of 100 nm to 100 μm, more preferably in the range of 1 to 50 μm.
 さらに、ポリシラザン、オルトケイ酸テトラエチル(TEOS)などの無機前駆体を含む塗布液を支持体上にウェットコーティングした後、真空紫外光の照射などにより改質処理を行い、無機ガスバリアー層を形成する方法や、樹脂基板への金属めっき、金属箔と樹脂基板とを接着させる等のフィルム金属化技術などによっても、無機ガスバリアー層は形成される。 Furthermore, a method of forming an inorganic gas barrier layer by performing wet coating on a support with a coating solution containing an inorganic precursor such as polysilazane or tetraethyl orthosilicate (TEOS), and then performing modification treatment by irradiating vacuum ultraviolet light or the like. The inorganic gas barrier layer is also formed by a film metallization technique such as metal plating on a resin substrate or bonding a metal foil to a resin substrate.
 無機層と有機層との積層体である場合、各層の厚さは同じでもよいし、異なっていてもよい。無機層の層厚は、好ましくは3~1000nmの範囲内、より好ましくは10~300nmの範囲内である。有機層の層厚は、好ましくは100nm~100μmの範囲内、より好ましくは1~50μmの範囲内である。 In the case of a laminate of an inorganic layer and an organic layer, the thickness of each layer may be the same or different. The layer thickness of the inorganic layer is preferably in the range of 3 to 1000 nm, more preferably in the range of 10 to 300 nm. The layer thickness of the organic layer is preferably in the range of 100 nm to 100 μm, more preferably in the range of 1 to 50 μm.
 さらに、ポリシラザン、オルトケイ酸テトラエチル(TEOS)などの無機前駆体を含む塗布液を支持体上にウェットコーティングした後、真空紫外光の照射などにより改質処理を行い、無機ガスバリアー層を形成する方法や、樹脂基板への金属めっき、金属箔と樹脂基板とを接着させる等のフィルム金属化技術などによっても、無機ガスバリアー層は形成される。 Further, a method of forming an inorganic gas barrier layer by performing wet coating on a support with a coating solution containing an inorganic precursor such as polysilazane or tetraethyl orthosilicate (TEOS), and then performing modification treatment by irradiating vacuum ultraviolet light or the like. The inorganic gas barrier layer is also formed by a film metallization technique such as metal plating on a resin substrate or bonding a metal foil and a resin substrate.
 以下、プラズマCVD法を用いて形成される無機ガスバリアー層について、その一例を説明する。 An example of the inorganic gas barrier layer formed using the plasma CVD method will be described below.
 無機ガスバリアー層は、生産性の観点から、ロール・to・ロール方式で本発明に係るアクリル樹脂フィルムの表面上に形成することが好ましい。また、このようなプラズマCVD法により無機ガスバリアー層を製造する際に用いることが可能な装置としては、特に制限されないが、少なくとも一対の成膜ローラーと、プラズマ電源とを備え、かつ一対の成膜ローラー間において放電することが可能な構成となっている装置であることが好ましく、例えば、図41に示す製造装置を用いた場合には、プラズマCVD法を利用しながらロールtoロール方式で製造することも可能となる。 From the viewpoint of productivity, the inorganic gas barrier layer is preferably formed on the surface of the acrylic resin film according to the present invention by a roll-to-roll method. Further, the apparatus that can be used when manufacturing the inorganic gas barrier layer by such a plasma CVD method is not particularly limited, but it is provided with at least a pair of film forming rollers and a plasma power source, and a pair of forming rollers. It is preferable that the apparatus has a structure capable of discharging between the film rollers. For example, when the manufacturing apparatus shown in FIG. 41 is used, the manufacturing is performed by the roll-to-roll method while using the plasma CVD method. It is also possible to do.
 以下、図41を参照しながら、プラズマCVD法による無機ガスバリアー層の形成方法について、より詳細に説明する。なお、図41は、無機ガスバリアー層を製造するために好適に利用することが可能な製造装置の一例を示す模式図である。 Hereinafter, the method of forming the inorganic gas barrier layer by the plasma CVD method will be described in more detail with reference to FIG. 41. FIG. 41 is a schematic diagram showing an example of a manufacturing apparatus that can be suitably used for manufacturing an inorganic gas barrier layer.
 図41に示す製造装置C31は、送出しローラーC32と、搬送ローラーC33、C34、C35及びC36と、成膜ローラーC39及びC40と、ガス供給管C41と、プラズマ発生用電源C42と、成膜ローラーC39及びC40の内部に設置された磁場発生装置C43及びC44と、巻取りローラーC45とを備えている。 The manufacturing apparatus C31 shown in FIG. 41 includes a delivery roller C32, transport rollers C33, C34, C35 and C36, film forming rollers C39 and C40, a gas supply pipe C41, a plasma generating power source C42, and a film forming roller. The magnetic field generator C43 and C44 installed inside C39 and C40, and the winding roller C45 are provided.
 また、このような製造装置C31においては、少なくとも成膜ローラーC39及びC40と、ガス供給管C41と、プラズマ発生用電源C42と、磁場発生装置C43及びC44とが図示を省略した真空チャンバー内に配置されている。 Further, in such a manufacturing apparatus C31, at least the film forming rollers C39 and C40, the gas supply pipe C41, the plasma generating power source C42, and the magnetic field generating apparatuses C43 and C44 are arranged in a vacuum chamber (not shown). Has been done.
 さらに、このような製造装置C31において、真空チャンバーは図示を省略した真空ポンプに接続されており、かかる真空ポンプにより真空チャンバー内の圧力を適宜調整することが可能となっている。 Further, in such a manufacturing apparatus C31, the vacuum chamber is connected to a vacuum pump (not shown), and the pressure inside the vacuum chamber can be appropriately adjusted by the vacuum pump.
 このような製造装置C31においては、一対の成膜ローラー(成膜ローラーC39及びC40)を一対の対向電極として機能させることが可能となるように、各成膜ローラーがそれぞれプラズマ発生用電源C42に接続されている。そのため、このような製造装置C31においては、プラズマ発生用電源C42により電力を供給することにより、成膜ローラーC39と成膜ローラーC40との間の空間に放電することが可能であり、これにより成膜ローラーC39と成膜ローラーC40との間の空間にプラズマを発生させることができる。 In such a manufacturing apparatus C31, each film forming roller is connected to the plasma generating power source C42 so that the pair of film forming rollers (film forming rollers C39 and C40) can function as a pair of opposing electrodes. It is connected. Therefore, in such a manufacturing apparatus C31, by supplying electric power from the plasma generation power source C42, it is possible to discharge into the space between the film forming roller C39 and the film forming roller C40, and thereby, Plasma can be generated in the space between the film roller C39 and the film formation roller C40.
 なお、このように、成膜ローラーC39と成膜ローラーC40とを電極としても利用する場合には、電極としても利用可能なようにその材質や設計を適宜変更すればよい。 When the film-forming roller C39 and the film-forming roller C40 are also used as electrodes in this way, the material and design thereof may be appropriately changed so that they can also be used as electrodes.
 また、このような製造装置C31においては、一対の成膜ローラー(成膜ローラーC39及びC40)は、その中心軸が同一平面上において略平行となるようにして配置することが好ましい。このようにして、一対の成膜ローラー(成膜ローラーC39及びC40)を配置することにより、成膜レートを倍にできる。 Further, in such a manufacturing apparatus C31, it is preferable that the pair of film forming rollers (film forming rollers C39 and C40) are arranged such that their central axes are substantially parallel on the same plane. By thus disposing the pair of film forming rollers (film forming rollers C39 and C40), the film forming rate can be doubled.
 そして、このような製造装置C31によれば、CVD法により樹脂基板C2の表面上に無機ガスバリアー層C4(乾式ガスバリアー層)を形成することが可能であり、成膜ローラーC39上において樹脂基板C2の表面上に無機ガスバリアー層成分を堆積させつつ、さらに成膜ローラーC40上においても樹脂基板C2の表面上に無機ガスバリアー層成分を堆積させることもできるため、樹脂基板C2の表面上に無機ガスバリアー層C4を効率よく形成することができる。 Then, according to such a manufacturing apparatus C31, it is possible to form the inorganic gas barrier layer C4 (dry gas barrier layer) on the surface of the resin substrate C2 by the CVD method, and the resin substrate is formed on the film forming roller C39. Since it is possible to deposit the inorganic gas barrier layer component on the surface of C2 and further deposit the inorganic gas barrier layer component on the surface of the resin substrate C2 also on the film forming roller C40, it is possible to deposit the inorganic gas barrier layer component on the surface of the resin substrate C2. The inorganic gas barrier layer C4 can be efficiently formed.
 成膜ローラーC39及びC40の内部には、成膜ローラーが回転しても回転しないようにして固定された磁場発生装置C43及びC44がそれぞれ設けられている。 Inside the film forming rollers C39 and C40, magnetic field generators C43 and C44, which are fixed so as not to rotate even if the film forming rollers rotate, are provided, respectively.
 成膜ローラーC39及びC40にそれぞれ設けられた磁場発生装置C43及びC44は、一方の成膜ローラーC39に設けられた磁場発生装置C43と他方の成膜ローラーC40に設けられた磁場発生装置C44との間で磁力線がまたがらず、それぞれの磁場発生装置C43及びC44がほぼ閉じた磁気回路を形成するように磁極を配置することが好ましい。このような磁場発生装置C43及びC44を設けることにより、各成膜ローラーC39及びC40の対向側表面付近に磁力線が膨らんだ磁場の形成を促進することができ、その膨出部にプラズマが収束されやすくなるため、成膜効率を向上させることができる点で優れている。 The magnetic field generators C43 and C44 provided on the film forming rollers C39 and C40 respectively include a magnetic field generator C43 provided on one film forming roller C39 and a magnetic field generator C44 provided on the other film forming roller C40. It is preferable to arrange the magnetic poles so that the magnetic lines of force do not cross each other and the respective magnetic field generators C43 and C44 form a substantially closed magnetic circuit. By providing such magnetic field generators C43 and C44, it is possible to promote the formation of a magnetic field in which the lines of magnetic force swell near the opposing surfaces of the film forming rollers C39 and C40, and the plasma is converged on the swelling portion. Since it becomes easier, it is excellent in that the film forming efficiency can be improved.
 また、成膜ローラーC39及びC40にそれぞれ設けられた磁場発生装置C43及びC44は、それぞれローラー軸方向に長いレーストラック状の磁極を備え、一方の磁場発生装置C43と他方の磁場発生装置C44とは向かい合う磁極が同一極性となるように磁極を配置することが好ましい。このような磁場発生装置C43及びC44を設けることにより、それぞれの磁場発生装置C43及びC44について、磁力線が対向するローラー側の磁場発生装置にまたがることなく、ローラー軸の長さ方向に沿って対向空間(放電領域)に面したローラー表面付近にレーストラック状の磁場を容易に形成することができ、その磁場にプラズマを収束させることができため、ローラー幅方向に沿って巻き掛けられた幅広の樹脂基板C2を用いて効率的に蒸着膜である無機ガスバリアー層C4を形成することができる点で優れている。 The magnetic field generators C43 and C44 provided on the film forming rollers C39 and C40, respectively, are provided with racetrack-shaped magnetic poles that are long in the roller axis direction, and one magnetic field generator C43 and the other magnetic field generator C44 are separated from each other. It is preferable to arrange the magnetic poles so that the magnetic poles facing each other have the same polarity. By providing such magnetic field generators C43 and C44, the magnetic field generators C43 and C44 do not straddle the magnetic field generators on the roller side where the lines of magnetic force face each other, and the opposing space is provided along the length direction of the roller shaft. A racetrack-shaped magnetic field can be easily formed near the roller surface facing the (discharge area), and the plasma can be converged to the magnetic field, so that a wide resin wrapped along the roller width direction. It is excellent in that the inorganic gas barrier layer C4, which is a vapor deposition film, can be efficiently formed using the substrate C2.
 成膜ローラーC39及びC40としては適宜公知のローラーを用いることができる。このような成膜ローラーC39及びC40としては、より効率よく薄膜を形成することができるという観点から、直径が同一のものを使うことが好ましい。 As the film forming rollers C39 and C40, known rollers can be appropriately used. It is preferable to use the film forming rollers C39 and C40 having the same diameter from the viewpoint that a thin film can be formed more efficiently.
 また、このような成膜ローラーC39及びC40の直径としては、放電条件、チャンバーのスペース等の観点から、直径が300~1000mmφの範囲内、特に300~700mmφの範囲内であることが好ましい。成膜ローラーの直径が300mmφ以上であれば、プラズマ放電空間が小さくなることがないため生産性の劣化もなく、短時間でプラズマ放電の全熱量が樹脂基板C2にかかることを回避できることから、樹脂基板C2へのダメージを軽減でき好ましい。一方、成膜ローラーの直径が1000mmφ以下であれば、プラズマ放電空間の均一性等も含めて装置設計上、実用性を保持することができるため好ましい。 The diameters of the film forming rollers C39 and C40 are preferably in the range of 300 to 1000 mmφ, and particularly preferably in the range of 300 to 700 mmφ from the viewpoint of discharge conditions, chamber space and the like. When the diameter of the film forming roller is 300 mmφ or more, the plasma discharge space does not become small, the productivity is not deteriorated, and it is possible to avoid that the total heat of plasma discharge is applied to the resin substrate C2 in a short time. This is preferable because damage to the substrate C2 can be reduced. On the other hand, if the diameter of the film forming roller is 1000 mmφ or less, it is preferable because the practicality can be maintained in the device design including the uniformity of the plasma discharge space.
 このような製造装置C31においては、樹脂基板C2の表面がそれぞれ対向するように、一対の成膜ローラー(成膜ローラーC39及びC40)上に、樹脂基板C2が配置されている。このようにして樹脂基板C2を配置することにより、成膜ローラーC39と成膜ローラーC40との間の対向空間に放電を行ってプラズマを発生させる際に、一対の成膜ローラー間に存在する樹脂基板C2のそれぞれの表面を同時に成膜することが可能となる。 In such a manufacturing apparatus C31, the resin substrate C2 is arranged on the pair of film forming rollers (film forming rollers C39 and C40) such that the surfaces of the resin substrate C2 face each other. By arranging the resin substrate C2 in this way, the resin existing between the pair of film-forming rollers when the discharge is generated in the facing space between the film-forming roller C39 and the film-forming roller C40 to generate plasma. It is possible to simultaneously form films on the respective surfaces of the substrate C2.
 すなわち、このような製造装置C31によれば、プラズマCVD法により、成膜ローラーC39上にて樹脂基板C2の表面上に無機ガスバリアー層成分を堆積させ、さらに成膜ローラーC40上にて無機ガスバリアー層成分を堆積させることができるため、樹脂基板C2の表面上に無機ガスバリアー層C4を効率よく形成することが可能となる。 That is, according to such a manufacturing apparatus C31, the inorganic gas barrier layer component is deposited on the surface of the resin substrate C2 on the film forming roller C39 by the plasma CVD method, and further the inorganic gas barrier layer component is deposited on the film forming roller C40. Since the barrier layer component can be deposited, the inorganic gas barrier layer C4 can be efficiently formed on the surface of the resin substrate C2.
 このような製造装置C31に用いる送出しローラーC32及び搬送ローラーC33~C36としては、適宜公知のローラーを用いることができる。また、巻取りローラーC45としても、樹脂基板C2上に無機ガスバリアー層C4を形成した封止基板C1を巻き取ることが可能なものであればよく、特に制限されず、適宜公知のローラーを用いることができる。 As the feed roller C32 and the transport rollers C33 to C36 used in such a manufacturing apparatus C31, known rollers can be appropriately used. Further, the winding roller C45 is not particularly limited as long as it can wind up the sealing substrate C1 in which the inorganic gas barrier layer C4 is formed on the resin substrate C2, and a known roller is appropriately used. be able to.
 また、ガス供給管C41及び真空ポンプ(図示略)としては、原料ガス等を所定の速度で供給又は排出することが可能なものを適宜用いることができる。 Further, as the gas supply pipe C41 and the vacuum pump (not shown), those capable of supplying or discharging the raw material gas or the like at a predetermined speed can be appropriately used.
 また、ガス供給手段であるガス供給管C41は、成膜ローラーC39と成膜ローラーC40との間の対向空間(放電領域;成膜ゾーン)の一方に設けることが好ましく、真空排気手段である真空ポンプは、対向空間の他方に設けることが好ましい。このようにガス供給手段であるガス供給管C41と、真空排気手段である真空ポンプを配置することにより、成膜ローラーC39と成膜ローラーC40との間の対向空間に効率よく成膜ガスを供給することができ、成膜効率を向上させることができる点で優れている。 Further, the gas supply pipe C41, which is a gas supply means, is preferably provided in one of the facing spaces (discharge area; film formation zone) between the film formation roller C39 and the film formation roller C40. The pump is preferably provided in the other of the facing spaces. By disposing the gas supply pipe C41 which is the gas supply means and the vacuum pump which is the vacuum exhaustion means in this way, the film formation gas is efficiently supplied to the facing space between the film formation roller C39 and the film formation roller C40. And is excellent in that the film formation efficiency can be improved.
 さらに、プラズマ発生用電源C42としては、適宜公知のプラズマ発生装置の電源を用いることができる。このようなプラズマ発生用電源C42は、これに接続された成膜ローラーC39と成膜ローラーC40とに電力を供給して、これらを放電のための対向電極として利用することを可能とする。このようなプラズマ発生用電源C42としては、より効率よくプラズマCVDを実施することが可能となることから、一対の成膜ローラーの極性を交互に反転させることが可能なもの(交流電源など)を利用することが好ましい。 Further, as the plasma generation power source C42, a power source of a known plasma generator can be appropriately used. The plasma generating power source C42 as described above supplies electric power to the film forming roller C39 and the film forming roller C40 connected thereto, and makes it possible to use these as a counter electrode for discharging. As such a plasma generation power supply C42, a power supply capable of alternately reversing the polarities of the pair of film forming rollers (such as an AC power supply) because plasma CVD can be performed more efficiently. It is preferable to use.
 また、このようなプラズマ発生用電源C42としては、より効率よくプラズマCVDを実施することが可能となることから、印加電力を100W~10kWの範囲内とすることができ、かつ交流の周波数を50Hz~500kHzとすることが可能なものであることがより好ましい。 Further, as the plasma generating power source C42, it is possible to more efficiently perform plasma CVD, so that the applied power can be within the range of 100 W to 10 kW and the frequency of the alternating current is 50 Hz. It is more preferable that the frequency can be set to ˜500 kHz.
 また、磁場発生装置C43及びC44としては適宜公知の磁場発生装置を用いることができる。さらに、樹脂基板C2としては、本発明で用いられる樹脂基板の他に、無機ガスバリアー層C4をあらかじめ形成させたものを用いることができる。このように、樹脂基板C2として無機ガスバリアー層C4をあらかじめ形成させたものを用いることにより、無機ガスバリアー層C4の層厚を厚くすることも可能である。 Also, as the magnetic field generators C43 and C44, a known magnetic field generator can be appropriately used. Further, as the resin substrate C2, in addition to the resin substrate used in the present invention, a substrate on which an inorganic gas barrier layer C4 is previously formed can be used. As described above, by using the resin substrate C2 on which the inorganic gas barrier layer C4 is formed in advance, it is possible to increase the thickness of the inorganic gas barrier layer C4.
 このような図41に示す製造装置C31を用いて、例えば、原料ガスの種類、プラズマ発生装置の電極ドラムの電力、真空チャンバー内の圧力、成膜ローラーC39及びC40の直径、及び樹脂基板C2の搬送速度を適宜調整することにより、無機ガスバリアー層C4を製造することができる。 Using such a manufacturing apparatus C31 shown in FIG. 41, for example, the type of raw material gas, the power of the electrode drum of the plasma generator, the pressure in the vacuum chamber, the diameters of the film forming rollers C39 and C40, and the resin substrate C2. The inorganic gas barrier layer C4 can be manufactured by appropriately adjusting the transport speed.
 すなわち、図41に示す製造装置C31を用いて、成膜ガス(原料ガス等)を真空チャンバー内に供給しつつ、一対の成膜ローラーC39及びC40間に放電を発生させることにより、成膜ガス(原料ガス等)がプラズマによって分解され、成膜ローラーC39上の樹脂基板C2の表面上及び成膜ローラーC40上の樹脂基板C2の表面上に、無機ガスバリアー層C4がプラズマCVD法により形成される。この際、成膜ローラーC39及びC40のローラー軸の長さ方向に沿って対向空間(放電領域)に面したローラー表面付近にレーストラック状の磁場が形成され、磁場にプラズマを収束させる。なお、このような成膜に際しては、樹脂基板C2が送出しローラーC32や成膜ローラーC39等により搬送されることにより、ロールtoロール方式の連続的な成膜プロセスを可能とし、樹脂基板C2の表面上に無機ガスバリアー層C4が形成される。 That is, using the manufacturing apparatus C31 shown in FIG. 41, while supplying a film forming gas (raw material gas or the like) into the vacuum chamber, a discharge is generated between the pair of film forming rollers C39 and C40, thereby forming the film forming gas. (Raw material gas and the like) is decomposed by the plasma, and the inorganic gas barrier layer C4 is formed by the plasma CVD method on the surface of the resin substrate C2 on the film forming roller C39 and on the surface of the resin substrate C2 on the film forming roller C40. It At this time, a racetrack-shaped magnetic field is formed near the roller surface facing the facing space (discharge region) along the length direction of the roller axes of the film forming rollers C39 and C40, and the plasma is converged on the magnetic field. During such film formation, the resin substrate C2 is delivered by the delivery roller C32, the film formation roller C39, or the like, which enables a continuous film formation process of a roll-to-roll system, and The inorganic gas barrier layer C4 is formed on the surface.
 ガス供給管C41から対向空間に供給される成膜ガス(原料ガス等)としては、原料ガス、反応ガス、キャリアガス、放電ガスを単独又は2種以上混合して用いることができる。無機ガスバリアー層C4の形成に用いる成膜ガス中の原料ガスとしては、形成する無機ガスバリアー層C4の材質に応じて適宜選択して使用することができる。 As the film forming gas (raw material gas, etc.) supplied from the gas supply pipe C41 to the facing space, a raw material gas, a reaction gas, a carrier gas, and a discharge gas can be used alone or in combination of two or more kinds. The raw material gas in the film forming gas used for forming the inorganic gas barrier layer C4 can be appropriately selected and used according to the material of the inorganic gas barrier layer C4 to be formed.
 このような原料ガスとしては、例えば、ケイ素を含有する有機ケイ素化合物や炭素を含有する有機化合物ガスを用いることができる。このような有機ケイ素化合物としては、例えば、ヘキサメチルジシロキサン(HMDSO)、ヘキサメチルジシラン(HMDS)、1,1,3,3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン(TMOS)、テトラエトキシシラン(TEOS)、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサンが挙げられる。これらの有機ケイ素化合物の中でも、化合物の取り扱い性及び得られる無機ガスバリアー層C4のガスバリアー性等の特性の観点から、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサンが好ましい。これらの有機ケイ素化合物は、単独でも又は2種以上を組み合わせても使用することができる。また、炭素を含有する有機化合物ガスとしては、例えば、メタン、エタン、エチレン、アセチレンを例示することができる。これら有機ケイ素化合物ガスや有機化合物ガスは、無機ガスバリアー層C4の種類に応じて適切な原料ガスが選択される。 As such a source gas, for example, an organic silicon compound containing silicon or an organic compound gas containing carbon can be used. Examples of such an organosilicon compound include hexamethyldisiloxane (HMDSO), hexamethyldisilane (HMDS), 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, and hexamethyldisilane. , Methylsilane, dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane (TMOS), tetraethoxysilane (TEOS), phenyltrimethoxysilane, methyltriethoxy Examples thereof include silane and octamethylcyclotetrasiloxane. Among these organosilicon compounds, hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoints of handling properties of the compound and gas barrier properties of the obtained inorganic gas barrier layer C4. .. These organosilicon compounds may be used alone or in combination of two or more. In addition, examples of the carbon-containing organic compound gas include methane, ethane, ethylene, and acetylene. For these organic silicon compound gas and organic compound gas, appropriate source gases are selected according to the type of the inorganic gas barrier layer C4.
 また、成膜ガスとしては、原料ガスの他に反応ガスを用いてもよい。このような反応ガスとしては、原料ガスと反応して酸化物、窒化物等の無機化合物となるガスを適宜選択して使用することができる。酸化物を形成するための反応ガスとしては、例えば、酸素、オゾンを用いることができる。また、窒化物を形成するための反応ガスとしては、例えば、窒素、アンモニアを用いることができる。これらの反応ガスは、単独でも又は2種以上を組み合わせても使用することができ、例えば、酸窒化物を形成する場合には、酸化物を形成するための反応ガスと窒化物を形成するための反応ガスとを組み合わせて使用することができる。 Further, as the film forming gas, a reaction gas may be used in addition to the source gas. As such a reaction gas, a gas which reacts with the raw material gas to become an inorganic compound such as an oxide or a nitride can be appropriately selected and used. As the reaction gas for forming the oxide, for example, oxygen or ozone can be used. Further, as the reaction gas for forming the nitride, for example, nitrogen or ammonia can be used. These reaction gases can be used alone or in combination of two or more kinds. For example, when forming an oxynitride, for forming a reaction gas for forming an oxide and a nitride. Can be used in combination.
 成膜ガスとしては、原料ガスを真空チャンバー内に供給するために、必要に応じて、キャリアガスを用いてもよい。さらに、成膜ガスとしては、プラズマ放電を発生させるために、必要に応じて、放電用ガスを用いてもよい。このようなキャリアガス及び放電用ガスとしては、適宜公知のものを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガスや水素を用いることができる。 As the film forming gas, a carrier gas may be used if necessary in order to supply the raw material gas into the vacuum chamber. Further, as the film forming gas, a discharge gas may be used, if necessary, in order to generate plasma discharge. As such carrier gas and discharge gas, known gases can be used as appropriate, and for example, rare gas such as helium, argon, neon, xenon, or hydrogen can be used.
 このような成膜ガスが原料ガスと反応ガスとを含有する場合には、原料ガスと反応ガスとの比率としては、原料ガスと反応ガスとを完全に反応させるために理論上必要となる反応ガスの量の比率よりも、反応ガスの比率を過剰にしすぎないことが好ましい。反応ガスの比率を過剰にしすぎないことで、形成される無機ガスバリアー層C4によって、優れたガスバリアー性や耐屈曲性を得ることができる点で優れている。また、成膜ガスが有機ケイ素化合物と酸素とを含有するものである場合には、成膜ガス中の有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下であることが好ましい。 When such a film-forming gas contains a source gas and a reaction gas, the ratio of the source gas and the reaction gas is the reaction theoretically required to completely react the source gas and the reaction gas. It is preferable not to make the ratio of the reaction gas too much over the ratio of the amount of gas. When the ratio of the reaction gas is not excessive, the formed inorganic gas barrier layer C4 is excellent in that excellent gas barrier properties and bending resistance can be obtained. Further, when the film forming gas contains an organosilicon compound and oxygen, it is preferably equal to or less than the theoretical oxygen amount necessary for completely oxidizing the total amount of the organosilicon compound in the film forming gas.
 以下、上記図41の装置を用いた無機ガスバリアー層C4の製造において、成膜ガスとして、原料ガスとしてのヘキサメチルジシロキサン(有機ケイ素化合物、HMDSO、(CHSiO)と、反応ガスとしての酸素(O)を含有するものとを用い、ケイ素-酸素系の薄膜を製造する場合を例に挙げて、成膜ガス中の原料ガスと反応ガスとの好適な比率等について、より詳細に説明する。 Hereinafter, in the production of the inorganic gas barrier layer C4 using the apparatus of FIG. 41, hexamethyldisiloxane (organosilicon compound, HMDSO, (CH 3 ) 6 Si 2 O) as a source gas, as a film forming gas, Regarding the preferred ratio of the source gas to the reaction gas in the film forming gas, taking as an example the case of producing a silicon-oxygen thin film by using a gas containing oxygen (O 2 ) as the reaction gas , Will be described in more detail.
 原料ガスとしてのヘキサメチルジシロキサン(HMDSO、(CHSiO)と、反応ガスとしての酸素(O)と、を含有する成膜ガスをプラズマCVDにより反応させてケイ素-酸素系の薄膜を作製する場合、その成膜ガスにより下記反応式(1)で表されるような反応が起こり、二酸化ケイ素が生成する。 A film formation gas containing hexamethyldisiloxane (HMDSO, (CH 3 ) 6 Si 2 O) as a source gas and oxygen (O 2 ) as a reaction gas is reacted by plasma CVD to produce a silicon-oxygen system. In the case of producing the thin film, the film forming gas causes a reaction represented by the following reaction formula (1) to generate silicon dioxide.
 反応式(1)
 (CHSiO+12O→6CO+9HO+2SiO
 このような反応においては、ヘキサメチルジシロキサン1モルを完全酸化するのに必要な酸素量は12モルである。そのため、成膜ガス中に、ヘキサメチルジシロキサン1モルに対して酸素を12モル以上含有させて完全に反応させた場合には、均一な二酸化ケイ素膜が形成されてしまう。
Reaction formula (1)
(CH 3 ) 6 Si 2 O+12O 2 →6CO 2 +9H 2 O+2SiO 2
In such a reaction, the amount of oxygen required to completely oxidize 1 mol of hexamethyldisiloxane is 12 mol. Therefore, when 12 moles or more of oxygen is contained in 1 mole of hexamethyldisiloxane in the deposition gas and the reaction is completed, a uniform silicon dioxide film is formed.
 そのため、本発明において、無機ガスバリアー層を形成する際には、上記反応式(1)の反応が完全に進行してしまわないように、ヘキサメチルジシロキサン1モルに対して酸素量を化学量論比の12モルより少なくすることが好ましい。 Therefore, in the present invention, when forming the inorganic gas barrier layer, a stoichiometric amount of oxygen is added to 1 mol of hexamethyldisiloxane so that the reaction of the reaction formula (1) does not proceed completely. It is preferable that the ratio is less than 12 mol.
 なお、実際のプラズマCVDチャンバー内の反応では、原料のヘキサメチルジシロキサンと反応ガスの酸素とは、ガス供給部から成膜領域へ供給されて成膜されるので、反応ガスの酸素のモル量(流量)が原料のヘキサメチルジシロキサンのモル量(流量)の12倍のモル量(流量)であったとしても、現実には完全に反応を進行させることはできず、酸素の含有量を化学量論比に比して大過剰に供給して初めて反応が完結すると考えられる(例えば、CVDにより完全酸化させて酸化ケイ素を得るために、酸素のモル量(流量)を原料のヘキサメチルジシロキサンのモル量(流量)の20倍以上程度とする場合もある。)。 In the actual reaction in the plasma CVD chamber, since hexamethyldisiloxane as a raw material and oxygen as a reaction gas are supplied to the film formation region from the gas supply unit to form a film, the molar amount of oxygen in the reaction gas is Even if the (flow rate) is 12 times the molar amount (flow rate) of the hexamethyldisiloxane as the raw material, the reaction cannot be completely progressed in reality and the oxygen content is It is considered that the reaction is completed only when a large excess is supplied compared to the stoichiometric ratio (for example, in order to completely oxidize by CVD to obtain silicon oxide, the molar amount of oxygen (flow rate) is set to hexamethyldiamine as a raw material). It may be about 20 times or more the molar amount (flow rate) of siloxane.).
 そのため、原料のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)は、化学量論比である12倍量以下(より好ましくは、10倍以下)の量であることが好ましい。このような比でヘキサメチルジシロキサン及び酸素を含有させることにより、完全に酸化されなかったヘキサメチルジシロキサン中の炭素原子や水素原子が無機ガスバリアー層中に取り込まれ、得られる封止基板において優れたガスバリアー性及び耐屈曲性を発揮させることが可能となる。 Therefore, the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of hexamethyldisiloxane as a raw material is preferably 12 times or less (more preferably 10 times or less) which is a stoichiometric ratio. .. By containing hexamethyldisiloxane and oxygen in such a ratio, carbon atoms and hydrogen atoms in hexamethyldisiloxane that have not been completely oxidized are taken into the inorganic gas barrier layer, and the resulting sealing substrate is It is possible to exhibit excellent gas barrier properties and flex resistance.
 なお、有機EL素子や太陽電池などのような透明性を必要とするデバイス用のフレキシブル基板への利用の観点から、成膜ガス中のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)の下限は、ヘキサメチルジシロキサンのモル量(流量)の0.1倍より多い量とすることが好ましく、0.5倍より多い量とすることがより好ましい。 From the viewpoint of use as a flexible substrate for devices that require transparency, such as organic EL elements and solar cells, the molar amount of oxygen relative to the molar amount (flow rate) of hexamethyldisiloxane in the film forming gas. The lower limit of (flow rate) is preferably more than 0.1 times the molar amount of hexamethyldisiloxane (flow rate), and more preferably more than 0.5 times.
 また、真空チャンバー内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができるが、0.5~50Paの範囲内とすることが好ましい。 The pressure (vacuum degree) in the vacuum chamber can be appropriately adjusted according to the type of raw material gas, etc., but is preferably in the range of 0.5 to 50 Pa.
 また、このようなプラズマCVD法において、成膜ローラーC39と成膜ローラーC40との間に放電するために、プラズマ発生用電源C42に接続された電極ドラム(成膜ローラーC39及びC40に設置されている。)に印加する電力は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるものであり一概にいえるものでないが、0.1~10kWの範囲内とすることが好ましい。このような印加電力が0.1kW以上であれば、パーティクルの発生を十分に抑制することができ、他方、10kW以下であれば、成膜時に発生する熱量を抑えることができ、成膜時の樹脂基板表面の温度が上昇するのを抑制できる。そのため、樹脂基板が熱負けすることなく、成膜時にシワが発生することを防止できる点で優れている。 Further, in such a plasma CVD method, an electrode drum (installed on the film forming rollers C39 and C40) connected to a plasma generating power source C42 in order to discharge between the film forming roller C39 and the film forming roller C40. The electric power to be applied to the electric power source) can be appropriately adjusted according to the type of raw material gas, the pressure in the vacuum chamber, etc., but it cannot be said unequivocally, but it should be within the range of 0.1 to 10 kW. Is preferred. When the applied power is 0.1 kW or more, the generation of particles can be sufficiently suppressed, and when the applied power is 10 kW or less, the amount of heat generated during film formation can be suppressed and the film formation during film formation can be suppressed. It is possible to prevent the temperature of the surface of the resin substrate from rising. Therefore, it is excellent in that the resin substrate does not lose heat and wrinkles can be prevented from being generated during film formation.
 樹脂基板C2の搬送速度(ライン速度)は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるが、0.25~100m/minの範囲内とすることが好ましく、0.5~20m/minの範囲内とすることがより好ましい。ライン速度が0.25m/min以上であれば、樹脂基板に熱に起因するシワの発生を効果的に抑制することができる。他方、100m/min以下であれば、生産性を損なうことなく、無機ガスバリアー層として十分な層厚を確保することができる点で優れている。 The transport speed (line speed) of the resin substrate C2 can be appropriately adjusted according to the type of the source gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.25 to 100 m/min, More preferably, it is within the range of 0.5 to 20 m/min. When the line speed is 0.25 m/min or more, it is possible to effectively suppress the generation of wrinkles on the resin substrate due to heat. On the other hand, when it is 100 m/min or less, it is excellent in that a layer thickness sufficient as an inorganic gas barrier layer can be secured without impairing productivity.
 上記したように、本実施形態のより好ましい態様としては、本発明に用いられる無機ガスバリアー層を、図41に示す対向ローラー電極を有するプラズマCVD装置(ロール・to・ロール方式)を用いたプラズマCVD法によって成膜することである。これは、対向ローラー電極を有するプラズマCVD装置(ロール・to・ロール方式)を用いて量産する場合に、可撓性(屈曲性)に優れ、機械的強度、特にロール・to・ロールでの搬送時の耐久性と、ガスバリアー性能とが両立する無機ガスバリアー層を効率よく製造することができるためである。このような製造装置は、太陽電池や電子部品などに使用される温度変化に対する耐久性が求められる封止基板を、安価でかつ容易に量産することができる点でも優れている。 As described above, in a more preferable aspect of the present embodiment, the inorganic gas barrier layer used in the present invention is a plasma using a plasma CVD apparatus (roll-to-roll method) having an opposed roller electrode shown in FIG. 41. The film is formed by the CVD method. This is excellent in flexibility (flexibility) when it is mass-produced by using a plasma CVD device (roll-to-roll method) having a facing roller electrode, and has mechanical strength, particularly, roll-to-roll transfer. This is because it is possible to efficiently produce an inorganic gas barrier layer that has both durability at time and gas barrier performance. Such a manufacturing apparatus is also excellent in that it is possible to mass-produce the sealing substrate, which is used in a solar cell, an electronic component, and the like, and which is required to have durability against temperature changes, at low cost and easily.
 次に、ポリシラザンを含む層を改質処理して形成される無機ガスバリアー層について、詳細に説明する。 Next, the inorganic gas barrier layer formed by modifying the layer containing polysilazane will be described in detail.
 本発明に用いられる無機ガスバリアー層の形成に用いられるポリシラザンとは、ケイ素-窒素結合を有するポリマーであり、Si-N、Si-H、N-H等の結合を有するSiO、Si、及び両方の中間固溶体SiO等のセラミック前駆体無機ポリマーであり、好ましくは下記一般式(P)で表される構造を有している。 The polysilazane used for forming the inorganic gas barrier layer used in the present invention is a polymer having a silicon-nitrogen bond, such as SiO 2 , Si 3 N having a bond such as Si—N, Si—H, N—H. 4 , and both intermediate solid solutions are ceramic precursor inorganic polymers such as SiO x N y , and preferably have a structure represented by the following general formula (P).
 一般式(P)
  -〔-Si(R)(R)-N(R)-〕
 一般式(P)中、R、R及びRは、それぞれ独立に、水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基、アルコキシ基を表す。R、R及びRは、互いに同じであっても異なるものであってもよい。
General formula (P)
-[-Si(R 1 )(R 2 )-N(R 3 )-] n-
In formula (P), R 1 , R 2 and R 3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group or an alkoxy group. R 1 , R 2 and R 3 may be the same or different from each other.
 また、上記一般式(P)において、nは、整数であり、一般式(P)で表される構造を有するポリシラザンが150~150000g/モルの数平均分子量を有するように定められることが好ましい。 In the general formula (P), n is an integer, and it is preferable that the polysilazane having the structure represented by the general formula (P) is determined so as to have a number average molecular weight of 150 to 150,000 g/mol.
 本発明では、得られる無機ガスバリアー層の膜としての緻密性の観点からは、R、R及びRの全てが水素原子であるパーヒドロポリシラザン(PHPS)が特に好ましい。 In the present invention, perhydropolysilazane (PHPS) in which all of R 1 , R 2 and R 3 are hydrogen atoms is particularly preferable from the viewpoint of the denseness of the resulting inorganic gas barrier layer as a film.
 パーヒドロポリシラザンは、直鎖構造と6及び8員環を中心とする環構造が存在した構造と推定されている。その分子量は、数平均分子量(Mn)で約600~2000程度(ポリスチレン換算)であり、液体又は固体の物質であり、分子量により異なる。 It is estimated that perhydropolysilazane has a linear structure and a ring structure centered on a 6- or 8-membered ring. Its molecular weight is about 600 to 2000 (in terms of polystyrene) in terms of number average molecular weight (Mn), it is a liquid or solid substance, and it varies depending on the molecular weight.
 ポリシラザンは有機溶媒に溶解した溶液状態で市販されており、市販品をそのままポリシラザン層形成用塗布液として使用することができる。ポリシラザン溶液の市販品としては、AZエレクトロニックマテリアルズ株式会社製のNN120-10、NN120-20、NAX120-20、NN110、NN310、NN320、NL110A、NL120A、NL120-20、NL150A、NP110、NP140、SP140等が挙げられる。 Polysilazane is marketed as a solution dissolved in an organic solvent, and a commercially available product can be used as it is as a coating solution for forming a polysilazane layer. Commercial products of the polysilazane solution include NN120-10, NN120-20, NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL120-20, NL150A, NP110, NP140, SP140 and the like manufactured by AZ Electronic Materials Co., Ltd. Are listed.
 ポリシラザンを含有する塗布液(以下、単にポリシラザン含有塗布液とも称する。)を調製するための溶媒としては、ポリシラザンを溶解できるものであれば特に制限されないが、ポリシラザンと容易に反応してしまう水及び反応性基(例えば、ヒドロキシ基、又はアミン基等)を含まず、ポリシラザンに対して不活性の有機溶媒が好ましく、非プロトン性の有機溶媒がより好ましい。 The solvent for preparing a coating solution containing polysilazane (hereinafter also simply referred to as a polysilazane-containing coating solution) is not particularly limited as long as it can dissolve polysilazane, but water and water which easily react with polysilazane An organic solvent that does not contain a reactive group (for example, a hydroxy group, an amine group, or the like) and is inert to polysilazane is preferable, and an aprotic organic solvent is more preferable.
 具体的には、ポリシラザン含有塗布液を調製するための溶媒としては、非プロトン性溶媒、例えば、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、塩化メチレン、トリクロロエタン等のハロゲン炭化水素溶媒、酢酸エチル、酢酸ブチル等のエステル類、アセトン、メチルエチルケトン等のケトン類、ジブチルエーテル、ジオキサン、テトラヒドロフラン等の脂肪族エーテル、脂環式エーテル等のエーテル類(例えば、テトラヒドロフラン、ジブチルエーテル、モノ-及びポリアルキレングリコールジアルキルエーテル(ジグライム類))などを挙げることができる。上記溶媒は、ポリシラザンの溶解度や溶媒の蒸発速度等の目的にあわせて選択され、単独で使用されても又は2種以上の混合物の形態で使用されてもよい。 Specifically, as the solvent for preparing the polysilazane-containing coating solution, an aprotic solvent, for example, pentane, hexane, cyclohexane, toluene, xylene, sorbesso, aliphatic hydrocarbons such as turbene, alicyclic hydrocarbons , Hydrocarbon solvents such as aromatic hydrocarbons, halogenated hydrocarbon solvents such as methylene chloride and trichloroethane, esters such as ethyl acetate and butyl acetate, ketones such as acetone and methyl ethyl ketone, aliphatic compounds such as dibutyl ether, dioxane and tetrahydrofuran Ethers such as ethers and alicyclic ethers (eg, tetrahydrofuran, dibutyl ether, mono- and polyalkylene glycol dialkyl ethers (diglymes)) and the like can be mentioned. The above-mentioned solvent is selected depending on the purpose such as the solubility of polysilazane and the evaporation rate of the solvent, and may be used alone or in the form of a mixture of two or more kinds.
 ポリシラザン含有塗布液におけるポリシラザンの濃度は、特に制限されず、目的とする無機ガスバリアー層の層厚や塗布液のポットライフによっても異なるが、好ましくは0.1~30質量%の範囲内、より好ましくは0.5~20質量%の範囲内、さらに好ましくは1~15質量%の範囲内である。 The concentration of the polysilazane in the polysilazane-containing coating solution is not particularly limited and varies depending on the layer thickness of the desired inorganic gas barrier layer and the pot life of the coating solution, but is preferably within the range of 0.1 to 30 mass %. It is preferably in the range of 0.5 to 20% by mass, more preferably in the range of 1 to 15% by mass.
 ポリシラザン含有塗布液は、酸化窒化ケイ素への変性を促進するために、ポリシラザンとともに触媒を含有することが好ましい。本発明に適用可能な触媒としては、塩基性触媒が好ましく、特に、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミン、N,N,N′,N′-テトラメチル-1,3-ジアミノプロパン、N,N,N′,N′-テトラメチル-1,6-ジアミノヘキサン等のアミン触媒、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒、N-複素環式化合物が挙げられる。これらのうち、アミン触媒を用いることが好ましい。この際添加する触媒の濃度としては、ポリシラザンを基準としたとき、好ましくは0.1~10質量%の範囲内、より好ましくは0.2~5質量%に範囲内、さらに好ましくは0.5~2質量%の範囲内である。触媒添加量をこの範囲内とすることで、反応の急激な進行よる過剰なシラノール形成、及び膜密度の低下、膜欠陥の増大などを避けることができる。 The polysilazane-containing coating liquid preferably contains a catalyst together with polysilazane in order to accelerate the modification into silicon oxynitride. The catalyst applicable to the present invention is preferably a basic catalyst, and particularly N,N-diethylethanolamine, N,N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N,N, Amine catalysts such as N',N'-tetramethyl-1,3-diaminopropane, N,N,N',N'-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, propion Examples thereof include Pd compounds such as acid Pd, metal catalysts such as Rh compounds such as Rh acetylacetonate, and N-heterocyclic compounds. Of these, it is preferable to use an amine catalyst. The concentration of the catalyst added at this time is preferably in the range of 0.1 to 10% by mass, more preferably in the range of 0.2 to 5% by mass, further preferably 0.5, based on polysilazane. It is in the range of up to 2% by mass. By setting the amount of the catalyst added within this range, it is possible to avoid excessive silanol formation due to the rapid progress of the reaction, decrease in film density, increase in film defects, and the like.
 ポリシラザン含有塗布液には、必要に応じて、下記に挙げる添加剤を用いることができる。例えば、セルロースエーテル類、セルロースエステル類(例えば、エチルセルロース、ニトロセルロース、セルロースアセテート、セルロースアセトブチレート等)、天然樹脂(例えば、ゴム、ロジン樹脂等)、合成樹脂(例えば、重合樹脂等)、縮合樹脂(例えば、アミノプラスト、特に尿素樹脂、メラミンホルムアルデヒド樹脂、アルキド樹脂、アクリル樹脂、ポリエステル若しくは変性ポリエステル、エポキシド、ポリイソシアネート若しくはブロック化ポリイソシアネート、ポリシロキサン等)である。 The following additives can be used in the polysilazane-containing coating liquid, if necessary. For example, cellulose ethers, cellulose esters (eg, ethyl cellulose, nitrocellulose, cellulose acetate, cellulose acetobutyrate, etc.), natural resins (eg, rubber, rosin resin, etc.), synthetic resins (eg, polymerized resins, etc.), condensation Resins (for example, aminoplast, particularly urea resin, melamine formaldehyde resin, alkyd resin, acrylic resin, polyester or modified polyester, epoxide, polyisocyanate or blocked polyisocyanate, polysiloxane, etc.).
 ポリシラザン含有塗布液を塗布する方法としては、従来公知の適切な湿式塗布方法が採用される。具体例としては、スピンコート法、ダイコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。 As a method of applying the polysilazane-containing coating liquid, a conventionally known appropriate wet coating method is adopted. Specific examples include a spin coating method, a die coating method, a roll coating method, a flow coating method, an inkjet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method. To be
 塗布厚さは、目的に応じて適切に設定され得る。例えば、塗布厚さは、乾燥後の厚さが10nm~10μm程度であることが好ましく、15nm~1μmの範囲内であることがより好ましく、20~500nmの範囲内であることがさらに好ましい。ポリシラザン層の層厚が10nm以上であれば十分なガスバリアー性を得ることができ、10μm以下であれば、ポリシラザン層形成時に安定した塗布性を得ることができ、かつ高い光線透過性を実現できる。 The coating thickness can be set appropriately according to the purpose. For example, the coating thickness after drying is preferably about 10 nm to 10 μm, more preferably 15 nm to 1 μm, and further preferably 20 to 500 nm. If the layer thickness of the polysilazane layer is 10 nm or more, sufficient gas barrier properties can be obtained, and if it is 10 μm or less, stable coating properties can be obtained when forming the polysilazane layer and high light transmittance can be realized. ..
 改質処理とは、ポリシラザン化合物の一部又は全部が、酸化ケイ素又は酸化窒化ケイ素へ転化する反応をいう。 “Reforming treatment” means a reaction in which a part or all of a polysilazane compound is converted into silicon oxide or silicon oxynitride.
 これによって、無機ガスバリアー層が全体としてガスバリアー性(水蒸気透過度が1×10-3g/(m・day)以下)を発現するに貢献できるレベルの無機薄膜を形成することができる。 As a result, it is possible to form an inorganic thin film at a level at which the inorganic gas barrier layer can contribute to exhibiting a gas barrier property (water vapor permeability of 1×10 −3 g/(m 2 ·day) or less) as a whole.
 具体的には、加熱処理、プラズマ処理、活性エネルギー線照射処理等が挙げられる。中でも、低温で改質可能であり基材種の選択の自由度が高いという観点から、活性エネルギー線照射による処理が好ましい。 Specifically, heat treatment, plasma treatment, active energy ray irradiation treatment, etc. can be mentioned. Among them, the treatment by irradiation with active energy rays is preferable from the viewpoint of being capable of being reformed at a low temperature and having a high degree of freedom in selecting the type of base material.
 (加熱処理)
 加熱処理の方法としては、例えば、ヒートブロック等の発熱体に基板を接触させ熱伝導により塗膜を加熱する方法、抵抗線等による外部ヒーターにより塗膜が載置される環境を加熱する方法、IRヒーターといった赤外領域の光を用いた方法等が挙げられるが、これらに限定されない。加熱処理を行う場合、塗膜の平滑性を維持できる方法を適宜選択すればよい。
(Heat treatment)
As the method of heat treatment, for example, a method of heating the coating film by heat conduction by contacting the substrate with a heating element such as a heat block, a method of heating the environment in which the coating film is placed by an external heater such as a resistance wire, Examples thereof include a method using light in the infrared region such as an IR heater, but are not limited thereto. When performing the heat treatment, a method capable of maintaining the smoothness of the coating film may be appropriately selected.
 塗膜を加熱する温度としては、40~250℃の範囲内が好ましく、60~150℃の範囲内がより好ましい。加熱時間としては、10秒~100時間の範囲内が好ましく、30秒~5分の範囲内が好ましい。 The temperature for heating the coating film is preferably in the range of 40 to 250°C, more preferably in the range of 60 to 150°C. The heating time is preferably in the range of 10 seconds to 100 hours, more preferably 30 seconds to 5 minutes.
 (プラズマ処理)
 本発明において、改質処理として用いることのできるプラズマ処理は、公知の方法を用いることができるが、好ましくは大気圧プラズマ処理等を挙げることができる。大気圧近傍でのプラズマCVD処理を行う大気圧プラズマCVD法は、真空下のプラズマCVD法に比べ、減圧する必要がなく生産性が高いだけでなく、プラズマ密度が高密度であるために成膜速度が速く、さらには通常のCVD法の条件に比較して、大気圧下という高圧力条件では、ガスの平均自由工程が非常に短いため、極めて均質の膜が得られる。
(Plasma treatment)
In the present invention, as the plasma treatment that can be used as the modifying treatment, a known method can be used, but preferably atmospheric pressure plasma treatment or the like can be mentioned. Compared with the plasma CVD method under vacuum, the atmospheric pressure plasma CVD method, which performs plasma CVD processing in the vicinity of atmospheric pressure, does not need to be decompressed and has high productivity. Since the mean free path of the gas is very short under a high pressure condition of atmospheric pressure as compared with the conditions of the usual CVD method, the film is extremely homogeneous as compared with the conditions of the ordinary CVD method.
 大気圧プラズマ処理の場合は、放電ガスとしては窒素ガス又は長周期型周期表の第18族原子、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これらの中でも窒素、ヘリウム、アルゴンが好ましく用いられ、特に窒素がコストも安く好ましい。 In the case of atmospheric pressure plasma treatment, nitrogen gas or a Group 18 atom of the long periodic table, specifically, helium, neon, argon, krypton, xenon, radon, etc., is used as the discharge gas. Of these, nitrogen, helium, and argon are preferably used, and nitrogen is particularly preferable because of its low cost.
 (活性エネルギー線照射処理)
 活性エネルギー線としては、例えば、赤外線、可視光線、紫外線、X線、電子線、α線、β線、γ線等が使用可能であるが、電子線又は紫外線が好ましく、紫外線がより好ましい。紫外線(紫外光と同義)によって生成されるオゾンや活性酸素原子は高い酸化能力を有しており、低温で高い緻密性と絶縁性とを有するガスバリアー層を形成することが可能である。
(Active energy ray irradiation treatment)
As the active energy ray, for example, infrared rays, visible rays, ultraviolet rays, X rays, electron rays, α rays, β rays, γ rays and the like can be used, but electron rays or ultraviolet rays are preferable, and ultraviolet rays are more preferable. Ozone and active oxygen atoms generated by ultraviolet rays (synonymous with ultraviolet light) have a high oxidizing ability, and can form a gas barrier layer having a high density and an insulating property at a low temperature.
 紫外線照射処理においては、通常使用されているいずれの紫外線発生装置を使用することも可能である。 In the ultraviolet irradiation treatment, it is possible to use any of the commonly used ultraviolet ray generators.
 本発明に用いられる無機ガスバリアー層の製造方法において、水分が取り除かれたポリシラザン化合物を含む塗膜は、紫外光照射による処理で改質される。紫外線によって生成されるオゾンや活性酸素原子は高い酸化能力を有しており、低温で高い緻密性と絶縁性を有する酸化ケイ素膜又は酸化窒化ケイ素膜を形成することが可能である。 In the method for producing an inorganic gas barrier layer used in the present invention, a coating film containing a polysilazane compound from which water has been removed is modified by a treatment by irradiation with ultraviolet light. Ozone and active oxygen atoms generated by ultraviolet rays have a high oxidizing ability, and it is possible to form a silicon oxide film or a silicon oxynitride film having a high density and an insulating property at a low temperature.
 この紫外光照射により、セラミックス化に寄与するOとHOや、紫外線吸収剤、ポリシラザン自身が励起、活性化される。そして、励起したポリシラザンのセラミックス化が促進され、得られるセラミックス膜が緻密になる。紫外光照射は、塗膜形成後であればいずれの時点で実施しても有効である。 By this ultraviolet light irradiation, O 2 and H 2 O that contribute to ceramization, the ultraviolet absorber, and polysilazane itself are excited and activated. Then, the excited polysilazane is promoted to be ceramic, and the obtained ceramic film becomes dense. Irradiation with ultraviolet light is effective at any time after the coating film is formed.
 本発明での真空紫外光照射処理には、常用されているいずれの紫外線発生装置を使用することが可能である。なお、本発明でいう紫外光とは、一般には、真空紫外光とよばれる10~200nmの波長を有する電磁波を含む紫外光をいう。 For the vacuum ultraviolet light irradiation treatment in the present invention, any commonly used ultraviolet ray generator can be used. The ultraviolet light referred to in the present invention is generally referred to as vacuum ultraviolet light, which is ultraviolet light containing electromagnetic waves having a wavelength of 10 to 200 nm.
 真空紫外光の照射は、照射される改質前のポリシラザン化合物を含む層を担持している樹脂基板がダメージを受けない範囲内で、照射強度や照射時間を設定することが好ましい。 It is preferable to set the irradiation intensity and irradiation time of the vacuum ultraviolet light irradiation within a range in which the resin substrate supporting the layer containing the polysilazane compound before modification is not damaged.
 例えば、2kW(80W/cm×25cm)のランプを用い、基材表面の強度が20~300mW/cmの範囲内、好ましくは50~200mW/cmの範囲内になるように基材-紫外線照射ランプ間の距離を設定し、0.1秒~10分間の照射を行うことができる。 For example, a 2 kW (80 W/cm×25 cm) lamp is used, and the strength of the base material surface is in the range of 20 to 300 mW/cm 2 , preferably in the range of 50 to 200 mW/cm 2 , and the base material-ultraviolet rays. By setting the distance between the irradiation lamps, irradiation can be performed for 0.1 seconds to 10 minutes.
 一般に、紫外線照射処理時の支持体の温度が150℃以上になると、樹脂フィルム等の場合には、支持体が変形したりその強度が劣化したりするなど、支持体の特性が損なわれることになる。しかしながら、アクリル樹脂等の耐熱性の高いフィルムなどの場合には、より高温での改質処理が可能である。したがって、この紫外線照射時の支持体の温度としては、一般的な上限はなく、樹脂基板の種類によって当業者が適宜設定することができる。また、紫外線照射雰囲気に特に制限はなく、空気中で実施すればよい。 In general, when the temperature of the support during the UV irradiation treatment is 150° C. or higher, in the case of a resin film or the like, the properties of the support may be impaired such as the support being deformed or its strength being deteriorated. Become. However, in the case of a film having a high heat resistance such as an acrylic resin, modification treatment at a higher temperature is possible. Therefore, there is no general upper limit to the temperature of the support at the time of this ultraviolet irradiation, and those skilled in the art can set it appropriately depending on the type of the resin substrate. Further, the ultraviolet irradiation atmosphere is not particularly limited and may be carried out in the air.
 このような紫外線の発生手段としては、例えば、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ、UV光レーザー等が挙げられるが、特に限定されない。また、発生させた紫外線を改質前のポリシラザン層に照射する際には、効率向上と均一な照射を達成する観点から、発生源からの紫外線を反射板で反射させてから改質前のポリシラザン層に照射することが望ましい。 Examples of such ultraviolet ray generating means include, but are not limited to, metal halide lamps, high pressure mercury lamps, low pressure mercury lamps, xenon arc lamps, carbon arc lamps, excimer lamps, and UV light lasers. Further, when irradiating the polysilazane layer before modification with the generated ultraviolet rays, from the viewpoint of achieving efficiency improvement and uniform irradiation, the polysilazane before modification after reflecting the ultraviolet rays from the generation source with a reflecting plate. It is desirable to irradiate the layer.
 紫外線照射は、バッチ処理にも連続処理にも適合可能であり、使用する樹脂基板の形状によって適宜選定することができる。ポリシラザン化合物を含む塗布層を有する樹脂基板が長尺フィルム状である場合には、これを搬送させながら上記のような紫外線発生源を具備した乾燥ゾーンで連続的に紫外線を照射することによりセラミックス化することができる。紫外線照射に要する時間は、使用する樹脂基板やポリシラザン化合物を含む塗布層の組成、濃度にもよるが、一般に0.1秒~10分間であり、好ましくは0.5秒~3分間である。 UV irradiation can be applied to both batch processing and continuous processing, and can be appropriately selected according to the shape of the resin substrate used. When the resin substrate having a coating layer containing a polysilazane compound is in the form of a long film, it is made into ceramics by continuously irradiating it with ultraviolet rays in a drying zone equipped with the above-mentioned ultraviolet ray source while transporting the resin substrate. can do. The time required for UV irradiation depends on the composition and concentration of the resin substrate used and the coating layer containing the polysilazane compound, but it is generally 0.1 second to 10 minutes, preferably 0.5 second to 3 minutes.
 (真空紫外線照射処理:エキシマ照射処理)
 本発明において、最も好ましい改質処理方法は、真空紫外線照射による処理(エキシマ照射処理)である。
(Vacuum UV irradiation treatment: Excimer irradiation treatment)
In the present invention, the most preferable modification treatment method is treatment by vacuum ultraviolet irradiation (excimer irradiation treatment).
 真空紫外光(VUV)照射時に、これら酸素以外のガスとしては乾燥不活性ガスを用いることが好ましく、特にコストの観点から乾燥窒素ガスを用いることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。 When vacuum ultraviolet light (VUV) irradiation is performed, it is preferable to use a dry inert gas as a gas other than oxygen, and it is particularly preferable to use dry nitrogen gas from the viewpoint of cost. The oxygen concentration can be adjusted by measuring the flow rates of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
 具体的に、本発明における改質前のポリシラザン化合物を含む層の改質処理方法は、真空紫外光照射による処理である。真空紫外光照射による処理は、ポリシラザン化合物内の原子間結合力より大きい100~200nmの光エネルギーを用い、好ましくは100~180nmの波長の光のエネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温で酸化ケイ素膜の形成を行う方法である。これに必要な真空紫外光源としては、希ガスエキシマランプが好ましく用いられる。 Specifically, the method of modifying the layer containing the polysilazane compound before modification in the present invention is a treatment by vacuum ultraviolet light irradiation. The treatment by vacuum ultraviolet light irradiation uses light energy of 100 to 200 nm, which is larger than the interatomic bonding force in the polysilazane compound, preferably light energy of a wavelength of 100 to 180 nm, and the bonding of atoms is called a photon process called a photon process. This is a method of forming a silicon oxide film at a relatively low temperature by advancing an oxidation reaction by active oxygen or ozone while directly cutting by the action of only. A rare gas excimer lamp is preferably used as the vacuum ultraviolet light source required for this.
 なお、Xe、Kr、Ar、Ne等の希ガスの原子は化学的に結合して分子を作らないため、不活性ガスと呼ばれる。しかし、放電等によりエネルギーを得た希ガスの原子(励起原子)は他の原子と結合して分子を作ることができる。希ガスがキセノンの場合には、
 e+Xe→e+Xe
 Xe+Xe+Xe→Xe +Xe
 Xe →Xe+Xe+hν(172nm)
となり、励起されたエキシマ分子であるXe が基底状態に遷移するときに172nmのエキシマ光(真空紫外光)を発光する。
Note that atoms of a rare gas such as Xe, Kr, Ar, and Ne do not chemically bond to form a molecule, and are called inert gases. However, the atoms of the rare gas (excited atoms) that have gained energy by discharge or the like can combine with other atoms to form molecules. If the noble gas is xenon,
e+Xe→e+Xe *
Xe * +Xe+Xe→Xe 2 * +Xe
Xe 2 * →Xe+Xe+hν (172 nm)
Then, when the excited excimer molecule Xe 2 * transits to the ground state, it emits excimer light (vacuum ultraviolet light) of 172 nm.
 エキシマランプの特徴としては、放射が一つの波長に集中し、必要な光以外がほとんど放射されないので効率が高いことが挙げられる。また、余分な光が放射されないので、対象物の温度を低く保つことができる。さらには、始動・再始動に時間を要さないので、瞬時の点灯点滅が可能である。  The characteristic of the excimer lamp is that the radiation is concentrated in one wavelength and almost no radiation other than the necessary light is emitted, resulting in high efficiency. Moreover, since the excess light is not emitted, the temperature of the object can be kept low. Furthermore, since it does not take time to start and restart, it is possible to turn on/blink instantaneously.
 真空紫外線照射工程において、ポリシラザン化合物を含む塗膜が受ける塗膜面での真空紫外線の照度は1mW/cm~10W/cmの範囲内であること好ましく、30~200mW/cmの範囲内であることがより好ましく、50~160mW/cmの範囲内であることさらに好ましい。1mW/cm以上であれば、十分な改質効率が得られうる。また、10W/cm以下であれば、塗膜のアブレーションが生じにくく、樹脂基板にダメージを与えにくい。 In the vacuum ultraviolet ray irradiation step, the illuminance of vacuum ultraviolet rays on the surface of the coating film which the coating film containing the polysilazane compound receives is preferably in the range of 1 mW/cm 2 to 10 W/cm 2 , and in the range of 30 to 200 mW/cm 2 . Is more preferable, and it is further preferable that it is in the range of 50 to 160 mW/cm 2 . If it is 1 mW/cm 2 or more, sufficient reforming efficiency can be obtained. Further, if it is 10 W/cm 2 or less, abrasion of the coating film is unlikely to occur and the resin substrate is less likely to be damaged.
 ポリシラザン化合物を含む層における真空紫外線の照射エネルギー量は、10~10000mJ/cmの範囲内が好ましく、100~8000mJ/cmの範囲内であることがより好ましく、200~6000mJ/cmであることがさらに好ましく、500~5000mJ/cmの範囲内であることが特に好ましい。10mJ/cm以上であれば十分な改質効率が得られ、10000mJ/cm以下であればクラックや樹脂基板の熱変形が生じにくい。 The irradiation energy of vacuum ultraviolet rays in the layer containing the polysilazane compound is preferably in the range of 10 to 10000 mJ/cm 2 , more preferably in the range of 100 to 8000 mJ/cm 2 , and more preferably 200 to 6000 mJ/cm 2 . More preferably, it is particularly preferably in the range of 500 to 5000 mJ/cm 2 . If 10 mJ / cm 2 or more sufficient reforming efficiency is obtained, 10000 mJ / cm 2 or less value, if cracks and the resin substrate thermal deformation hardly occurs in.
 また、真空紫外光(VUV)を照射する際の、酸素濃度は300~10000体積ppm(1体積%)の範囲内とすることが好ましく、さらに好ましくは、500~5000体積ppmである。このような酸素濃度の範囲内に調整することにより、酸素過多の無機ガスバリアー層の生成を防止してガスバリアー性の劣化を防止することができる。 The oxygen concentration during irradiation with vacuum ultraviolet light (VUV) is preferably in the range of 300 to 10000 volume ppm (1 volume %), and more preferably 500 to 5000 volume ppm. By adjusting the oxygen concentration within such a range, it is possible to prevent the formation of an excessive oxygen-containing inorganic gas barrier layer and prevent the deterioration of the gas barrier property.
 エキシマ発光を得るには、誘電体バリア放電を用いる方法が知られている。誘電体バリア放電とは、両電極間に誘電体(エキシマランプの場合は透明石英)を介してガス空間を配し、電極に数10kHzの高周波高電圧を印加することによりガス空間に生じる雷に似た非常に細いmicro dischargeと呼ばれる放電である。 A method using dielectric barrier discharge is known to obtain excimer light emission. Dielectric barrier discharge is a lightning generated in a gas space by arranging a gas space between both electrodes via a dielectric (transparent quartz in the case of an excimer lamp) and applying a high frequency high voltage of several 10 kHz to the electrodes. It is a very similar micro discharge called discharge.
 また、効率よくエキシマ発光を得る方法としては、誘電体バリア放電以外には無電極電界放電も知られている。無電極電界放電とは、容量性結合による放電であり、別名RF放電とも呼ばれる。ランプと電極及びその配置は、基本的には誘電体バリア放電と同じでよいが、両極間に印加される高周波は数MHzで点灯される。無電極電界放電はこのように空間的に、また時間的に一様な放電が得られる。 In addition to the dielectric barrier discharge, electrodeless electric field discharge is also known as a method of efficiently obtaining excimer light emission. Electrodeless electric field discharge is discharge by capacitive coupling, and is also called RF discharge. The lamp, the electrode, and the arrangement thereof may be basically the same as the dielectric barrier discharge, but the high frequency applied between both electrodes is turned on at several MHz. In this manner, the electrodeless electric field discharge can obtain a uniform discharge spatially and temporally.
 そして、Xeエキシマランプは、波長の短い172nmの紫外線を単一波長で放射することから発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。また、有機物の結合を解離させる波長の短い172nmの光のエネルギーは能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン化合物を含む塗布層の改質を実現できる。したがって、波長185nm、254nmの発する低圧水銀ランプやプラズマ洗浄と比べて高スループットに伴うプロセス時間の短縮や設備面積の縮小、熱によるダメージを受けやすい有機材料やプラスチック基板、樹脂フィルム等への照射を可能としている。 The Xe excimer lamp has excellent emission efficiency because it emits a short wavelength of 172 nm ultraviolet light at a single wavelength. Since this light has a large absorption coefficient of oxygen, it is possible to generate radical oxygen atomic species and ozone at a high concentration with a small amount of oxygen. Further, it is known that the energy of light having a short wavelength of 172 nm that dissociates the bond of an organic substance is high. Due to the high energy of the active oxygen and ozone and the ultraviolet radiation, the coating layer containing the polysilazane compound can be modified in a short time. Therefore, compared with low-pressure mercury lamps with wavelengths of 185 nm and 254 nm and plasma cleaning, process time is shortened due to high throughput, equipment area is reduced, and irradiation of organic materials, plastic substrates, resin films, etc., which are easily damaged by heat, is performed. It is possible.
 また、エキシマランプは光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域で単一波長のエネルギーを照射するため、照射対象物の表面温度の上昇が抑えられる特徴を有する。このため、熱の影響を受けやすいとされるポリエチレンテレフタレート等の樹脂フィルムを基材とする封止基板への照射に適している。 Also, since the excimer lamp has a high light generation efficiency, it can be turned on with low power input. In addition, since light with a long wavelength that causes a temperature rise due to light is not emitted and energy of a single wavelength is irradiated in the ultraviolet region, the surface temperature of the irradiation target is suppressed from rising. Therefore, it is suitable for irradiation of a sealing substrate having a base material of a resin film such as polyethylene terephthalate, which is considered to be easily affected by heat.
 上記の塗布によって形成される層は、ポリシラザン化合物を含む塗膜に真空紫外線を照射する工程において、ポリシラザンの少なくとも一部が改質されることで、層全体としてSiOの組成で示される酸化窒化ケイ素を含むケイ素含有膜が形成される。 The layer formed by the above coating has a composition of SiO x N y C z as a whole layer by modifying at least a part of polysilazane in the step of irradiating a coating film containing a polysilazane compound with vacuum ultraviolet rays. A silicon-containing film containing the indicated silicon oxynitride is formed.
 なお、膜組成は、XPS(X-ray Photoelectron Spectroscopy)表面分析装置を用いて、原子組成比を測定することで測定できる。また、シリコーン含有膜を切断して切断面をXPS表面分析装置で原子組成比を測定することでも測定することができる。 The film composition can be measured by measuring the atomic composition ratio using an XPS (X-ray Photoelectron Spectroscopy) surface analyzer. It can also be measured by cutting the silicone-containing film and measuring the cut surface with an XPS surface analyzer.
 また、膜密度は、目的に応じて適切に設定され得る。例えば、シリコーン含有膜の膜密度は、1.5~2.6g/cmの範囲内にあることが好ましい。この範囲内であれば、膜の緻密さが向上しガスバリアー性の劣化や、高温高湿条件下での膜の劣化を防止することができる。 Further, the film density can be appropriately set according to the purpose. For example, the film density of the silicone-containing film is preferably in the range of 1.5 to 2.6 g/cm 3 . Within this range, the denseness of the film can be improved to prevent deterioration of the gas barrier property and deterioration of the film under high temperature and high humidity conditions.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In the examples, “parts” or “%” is used, but unless otherwise specified, “parts by mass” or “% by mass” is shown.
[実施例1]
 <ゴム粒子B-1の調製>
 内容積60リットルの還流冷却器付反応器に、イオン交換水38.2リットル、ジオクチルスルホコハク酸ナトリウム111.6gを投入し、250rpmの回転数で撹拌しながら、窒素雰囲気下75℃に昇温し、酸素の影響が事実上無い状態にした。過硫酸アンモニウム(APS)0.36gを投入し、5分間撹拌後にメタクリル酸メチル(MMA)1657g、アクリル酸ブチル(BA)21.6g、及びメタクリル酸アリル(ALMA)1.68gからなるモノマー混合物(c1)を一括添加し、発熱ピークの検出後さらに20分間保持して最内硬質層の重合を完結させた。
[Example 1]
<Preparation of rubber particles B-1>
Into a reactor with a reflux condenser having an internal volume of 60 liters, 38.2 liters of ion-exchanged water and 111.6 g of sodium dioctylsulfosuccinate were charged, and the temperature was raised to 75° C. under a nitrogen atmosphere while stirring at a rotation speed of 250 rpm. , So that the effect of oxygen is virtually eliminated. 0.36 g of ammonium persulfate (APS) was added, and after stirring for 5 minutes, 1657 g of methyl methacrylate (MMA), 21.6 g of butyl acrylate (BA), and 1.68 g of allyl methacrylate (ALMA) (c1). ) Was added all at once, and after the exothermic peak was detected, it was held for another 20 minutes to complete the polymerization of the innermost hard layer.
 次に、過硫酸アンモニウム(APS)3.48gを投入し、5分間撹拌後にアクリル酸ブチル(BA)1961g、メタクリル酸メチル(MMA)346g、及びメタクリル酸アリル(ALMA)264.0gからなるモノマー混合物(a1)(BA/MMA=85/15質量比)を120分間かけて連続的に添加し、添加終了後さらに120分間保持して、軟質層の重合を完結させた。 Next, 3.48 g of ammonium persulfate (APS) was charged, and after stirring for 5 minutes, 1961 g of butyl acrylate (BA), 346 g of methyl methacrylate (MMA), and 264.0 g of allyl methacrylate (ALMA) (a monomer mixture ( a1) (BA/MMA=85/15 mass ratio) was continuously added over 120 minutes, and after the addition was completed, the mixture was kept for another 120 minutes to complete the polymerization of the soft layer.
 次に、過硫酸アンモニウム(APS)1.32gを投入し、5分間撹拌後にメタクリル酸メチル(MMA)2106g、アクリル酸ブチル(BA)201.6gからなるモノマー混合物(b1)を20分間かけて連続的に添加し、添加終了後さらに20分間保持して硬質層1の重合を完結した。 Next, 1.32 g of ammonium persulfate (APS) was added, and after stirring for 5 minutes, a monomer mixture (b1) consisting of 2106 g of methyl methacrylate (MMA) and 201.6 g of butyl acrylate (BA) was continuously added over 20 minutes. After completion of the addition, the polymerization was continued for 20 minutes to complete the polymerization of the hard layer 1.
 次いで、過硫酸アンモニウム(APS)1.32gを投入し、5分後にメタクリル酸メチル(MMA)3148g、アクリル酸ブチル(BA)201.6g、及びn-オクチルメルカプタン(n-OM)10.1gからなるモノマー混合物(b2)を20分間かけて連続的に添加し、添加終了後にさらに20分間保持した。ついで95℃に昇温し、60分間保持して、硬質層2の重合を完結させた。 Next, 1.32 g of ammonium persulfate (APS) was added, and after 5 minutes, 3148 g of methyl methacrylate (MMA), 201.6 g of butyl acrylate (BA), and 10.1 g of n-octyl mercaptan (n-OM) were added. The monomer mixture (b2) was continuously added over 20 minutes, and the addition was continued for 20 minutes after the addition was completed. Then, the temperature was raised to 95° C. and kept for 60 minutes to complete the polymerization of the hard layer 2.
 得られた重合体ラテックスを少量採取し、吸光度法により平粒子径を求めたところ、0.10μmであった。残りのラテックスを3質量%硫酸ナトリウム温水溶液中へ投入して、塩析・凝固させ、次いで、脱水・洗浄を繰り返した後、乾燥して、4層構造のアクリル粒子(ゴム粒子B-1)を得た。得られたゴム粒子B-1の平均粒子径は200nmであり、ガラス転移温度(Tg)は-30℃であった。 A small amount of the obtained polymer latex was sampled, and the average particle size was determined by the absorbance method. The average particle size was 0.10 μm. The remaining latex was put into a 3% by mass aqueous solution of sodium sulfate, salted out and coagulated, and then dehydration/washing was repeated, followed by drying, and 4-layer structure acrylic particles (rubber particles B-1). Got The obtained rubber particles B-1 had an average particle diameter of 200 nm and a glass transition temperature (Tg) of -30°C.
<光学フィルム101の作製>
 (ゴム粒子分散液の調製)
 22.6質量部のゴム粒子B-1と、400質量部のメチレンクロライドとを、ディゾルバーで50分間撹拌混合した後、マイルダー分散機(大平洋機工株式会社製)を用いて1500rpm条件下で分散し、ゴム粒子分散液を得た。その後、ゴム粒子分散液は、貯蔵タンクに6時間停滞させ、貯蔵中は常時撹拌した。
<Production of optical film 101>
(Preparation of rubber particle dispersion)
22.6 parts by mass of rubber particles B-1 and 400 parts by mass of methylene chloride were mixed by stirring with a dissolver for 50 minutes, and then dispersed under a 1500 rpm condition using a Milder disperser (manufactured by Taiheiyo Kiko Co., Ltd.). Then, a rubber particle dispersion liquid was obtained. After that, the rubber particle dispersion was stagnated in the storage tank for 6 hours, and was constantly stirred during storage.
 (ドープの調製)
 次いで、下記組成のドープを調製した。まず、加圧溶解タンクにメチレンクロライド、及びエタノールを添加した。次いで、加圧溶解タンクに、下記表IIに示すアクリル樹脂(A-1)を撹拌しながら投入した。次いで、上記調製したゴム粒子分散液を投入して、これを60℃に加熱し、撹拌しながら、完全に溶解した。加熱温度は、室温から5℃/minで昇温し、30分間で溶解した後、3℃/minで降温した。得られた溶液をろ過精度30μmのフィルターで濾過した後、ドープを得た。
(Preparation of dope)
Then, a dope having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Next, the acrylic resin (A-1) shown in Table II below was put into the pressure dissolution tank while stirring. Next, the above-prepared rubber particle dispersion liquid was added, and this was heated to 60° C. and completely dissolved while stirring. The heating temperature was increased from room temperature at 5°C/min, dissolved in 30 minutes, and then lowered at 3°C/min. The obtained solution was filtered with a filter having a filtration accuracy of 30 μm to obtain a dope.
 (ドープの組成)
 アクリル樹脂(A-1):88質量部
 メチレンクロライド:70質量部
 エタノール:50質量部
 ゴム粒子分散液:400質量部
(Dope composition)
Acrylic resin (A-1): 88 parts by mass Methylene chloride: 70 parts by mass Ethanol: 50 parts by mass Rubber particle dispersion: 400 parts by mass
 (製膜)
 次いで、無端ベルト流延装置を用い、ドープを温度31℃、1800mm幅でステンレスベルト支持体上に均一に流延した。ステンレスベルトの温度は28℃に制御した。ステンレスベルトの搬送速度は20m/minとした。
(Film formation)
Then, using an endless belt casting device, the dope was uniformly cast on a stainless belt support at a temperature of 31° C. and a width of 1800 mm. The temperature of the stainless belt was controlled at 28°C. The transport speed of the stainless belt was 20 m/min.
 ステンレスベルト支持体上で、流延(キャスト)したフィルム中の残留溶剤量が30%になるまで溶剤を蒸発させた。次いで、剥離張力128N/mで、ステンレスベルト支持体上から剥離した。剥離したフィルムを多数のローラーで搬送させながら、得られた膜状物を、テンターにて(Tg+10)℃(本例では120℃)の条件下で幅方向に1.2倍延伸した。その後、ロールで搬送しながらさらに乾燥させ、テンタークリップで挟んだ端部をレーザーカッターでスリットして巻き取り、膜厚40μmの光学フィルム101を得た。 On a stainless belt support, the solvent was evaporated until the residual solvent amount in the cast film was 30%. Then, it was peeled from the stainless belt support with a peeling tension of 128 N/m. While the peeled film was conveyed by a large number of rollers, the obtained film-like product was stretched 1.2 times in the width direction with a tenter at (Tg+10)° C. (120° C. in this example). Then, it was further dried while being conveyed by a roll, and the end portion sandwiched by the tenter clips was slit by a laser cutter and wound up to obtain an optical film 101 having a film thickness of 40 μm.
<光学フィルム102~112の作製>
 光学フィルム101の製造方法において、表II及び表IIIに示す条件に変更した以外は
同様の方法で光学フィルム102~112を作製した。
<Production of optical films 102 to 112>
Optical films 102 to 112 were produced in the same manner as in the method for producing the optical film 101 except that the conditions shown in Tables II and III were changed.
<光学フィルムの評価>
 上記光学フィルム101~112について下記の測定・評価を行った。
<透過写像性>
 スガ試験機(株)製の写像性測定器 ICM-1Tを用いて測定した。通常入射角を0度で実施するところの透過測定を、敢えて入射角を75度にした透過測定として実施した。フィルムの流れ方向と光学くし歯の方向が平行になるようにサンプルをセットした。光学くし歯の幅(ピッチ)は0.125mmであった。
 なお、試験片の透過光の光学軸に直交する光学くしを移動させて、光学軸上にくしの透過部分があるときの光量(M)とくしの遮光部分があるときの光量(m)を求め、両者の差(M-m)と和(M+m)との比率(C値(%))が、像鮮明度の尺度となる。
 C値が、70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが特に好ましい。
<Evaluation of optical film>
The following measurements and evaluations were performed on the optical films 101 to 112.
<Transparency>
It was measured using an image clarity measuring device ICM-1T manufactured by Suga Test Instruments Co., Ltd. The transmission measurement, which is normally performed at an incident angle of 0 degree, was performed as a transmission measurement at an incident angle of 75 degrees. The sample was set so that the flow direction of the film and the direction of the optical comb tooth were parallel. The width (pitch) of the optical comb teeth was 0.125 mm.
In addition, by moving the optical comb orthogonal to the optical axis of the transmitted light of the test piece, the light amount (M) when the comb transmitting portion is on the optical axis and the light amount (m) when the comb light shielding portion is present on the optical axis are obtained. The ratio (C value (%)) of the difference (M−m) between the two and the sum (M+m) is a measure of the image definition.
The C value is preferably 70% or more, more preferably 80% or more, and particularly preferably 90% or more.
<異物数の測定>
 フィルムを水平な台の上に置き、蛍光灯の光を反射させて目視にて異物を観察した。
 ○:異物の個数が、3個/m以下である。
 △:異物の個数が3個/mより多く、6個/m以下である。
 ×:異物の個数が6個/mより多い。
<Measurement of the number of foreign substances>
The film was placed on a horizontal table, the light of a fluorescent lamp was reflected, and foreign matter was visually observed.
◯: The number of foreign matters is 3/m 2 or less.
Δ: The number of foreign matters is more than 3/m 2 and 6/m 2 or less.
X: The number of foreign matters is more than 6/m 2 .
<折り曲げ性>
 得られた光学フィルムを二つに折り曲げた際に割れる頻度を評価した。○及び△を実用上問題ないレベルとする。
 ○:全く破断しない
 △:数回に1度破断することがある
 ×:必ず破断する
<Bendability>
The frequency at which the obtained optical film was broken when folded in two was evaluated. ○ and △ are set to levels at which there is no practical problem.
◯: Does not break at all Δ: May break once every several times ×: Always breaks
 以上に記載した、アクリル樹脂フィルムの製造要件及び評価結果等を表II及び表IIIに
まとめた。
The production requirements and evaluation results of the acrylic resin film described above are summarized in Tables II and III.
Figure JPOXMLDOC01-appb-T000110
Figure JPOXMLDOC01-appb-T000110
Figure JPOXMLDOC01-appb-T000111
Figure JPOXMLDOC01-appb-T000111
 表IIIに示した結果から明らかなように本発明の製造方法によって製造されたアクリル樹脂フィルムは、透過写像性が優れている上に、異物が少なくかつ折り曲げ性に優れていることが分かる。 As is clear from the results shown in Table III, it is clear that the acrylic resin film produced by the production method of the present invention has excellent transmission imageability, has few foreign matters, and is excellent in bendability.
[実施例2]
<有機マット剤1の作製>
 (種粒子の作製)
 撹拌機、温度計を備えた重合器に、脱イオン水1000gを入れ、そこへメタクリル酸メチル50g、t-ドデシルメルカプタン6gを仕込み、撹拌下に窒素置換しながら70℃まで加温した。内温を70℃に保ち、重合開始剤として過硫酸カリウム1gを溶解した脱イオン水20gを添加した後、10時間重合させた。得られたエマルジョン中の種粒子の平均粒子径は、0.05μmであった。
[Example 2]
<Preparation of organic matting agent 1>
(Preparation of seed particles)
A polymerization vessel equipped with a stirrer and a thermometer was charged with 1000 g of deionized water, charged with 50 g of methyl methacrylate and 6 g of t-dodecyl mercaptan, and heated to 70° C. under nitrogen with stirring. The internal temperature was kept at 70° C., 20 g of deionized water in which 1 g of potassium persulfate was dissolved was added as a polymerization initiator, and then polymerization was carried out for 10 hours. The average particle size of the seed particles in the obtained emulsion was 0.05 μm.
 (重合体粒子の作製)
 撹拌機、温度計を備えた重合器に、ゲル化抑制剤としてラウリル硫酸ナトリウム2.4gを溶解した脱イオン水800gを入れ、そこへ単量体混合物としてメタクリル酸メチル66g、スチレン20g及びエチレングリコールジメタクリレート64gと、重合開始剤としてアゾビスイソブチロニトリル1gとの混合液を入れた。次いで、混合液をT.Kホモミキサー(特殊機化工業社製)にて撹拌して、分散液を得た。
(Preparation of polymer particles)
A polymerization vessel equipped with a stirrer and a thermometer was charged with 800 g of deionized water in which 2.4 g of sodium lauryl sulfate was dissolved as a gelation inhibitor, and 66 g of methyl methacrylate, 20 g of styrene and ethylene glycol were added as a monomer mixture. A mixed solution of 64 g of dimethacrylate and 1 g of azobisisobutyronitrile as a polymerization initiator was added. Then, the mixed solution was mixed with T. The dispersion was obtained by stirring with a K homomixer (made by Tokushu Kika Kogyo Co., Ltd.).
 得られた分散液に、上記種粒子を含むエマルジョン60gを加え、30℃で1時間撹拌して種粒子に単量体混合物を吸収させた。次いで、吸収させた単量体混合物を、窒素気流下で50℃、5時間加温して重合させた後、室温(約25℃)まで冷却して、重合体微粒子1(有機微粒子1)と、その表面に付着したラウリル酸ナトリウム(ゲル化抑制剤)とを含む複合体1のスラリーを得た。得られた有機微粒子1の平均粒子径は、0.14μmであった。 To the obtained dispersion liquid, 60 g of the emulsion containing the seed particles was added, and the mixture was stirred at 30° C. for 1 hour to allow the seed particles to absorb the monomer mixture. Then, the absorbed monomer mixture is heated under a nitrogen stream at 50° C. for 5 hours for polymerization, and then cooled to room temperature (about 25° C.) to obtain polymer fine particles 1 (organic fine particles 1). A slurry of Complex 1 containing sodium laurate (gelling inhibitor) attached to its surface was obtained. The average particle size of the obtained organic fine particles 1 was 0.14 μm.
 (重合体粒子の集合体の作製)
 このエマルジョンを噴霧乾燥機としての坂本技研社製のスプレードライヤー(型式:アトマイザーテイクアップ方式、型番:TRS-3WK)で次の条件下にて噴霧乾燥して有機マット剤1の集合体を得た。重合体粒子の集合体の平均粒子径は、30μmであった。
 供給速度:25ml/min
 アトマイザー回転数:11000rpm
 風量:2m/min
 噴霧乾燥機のスラリー入口温度:100℃
 重合体粒子集合体出口温度:50℃
(Preparation of aggregate of polymer particles)
This emulsion was spray-dried under the following conditions with a spray dryer (model: atomizer take-up system, model number: TRS-3WK) manufactured by Sakamoto Giken Co., Ltd. as a spray dryer to obtain an aggregate of the organic matting agent 1. .. The average particle size of the aggregate of polymer particles was 30 μm.
Supply rate: 25 ml/min
Atomizer rotation speed: 11000 rpm
Air volume: 2m 3 /min
Slurry inlet temperature of spray dryer: 100°C
Polymer particle aggregate outlet temperature: 50° C.
<有機マット剤分散液の作製>
 8.0質量部の有機マット剤1と、400質量部のメチレンクロライドとを、ディゾルバーで50分間撹拌混合した後、マイルダー分散機(大平洋機工株式会社製)を用いて1500rpm条件下で分散し、有機マット剤分散液を得た。
<Preparation of organic matting agent dispersion>
8.0 parts by mass of the organic matting agent 1 and 400 parts by mass of methylene chloride were mixed by stirring with a dissolver for 50 minutes, and then dispersed under a 1500 rpm condition using a Milder disperser (manufactured by Taiheiyo Kiko Co., Ltd.). Thus, an organic matting agent dispersion liquid was obtained.
<光学フィルム201の作製>
 下記組成のドープを調製した。まず、加圧溶解タンクにメチレンクロライド、及びエタノールを添加した。次いで、加圧溶解タンクに、前記アクリル樹脂(A-1)を撹拌しながら投入した。次いで、上記調製したゴム粒子分散液、及び、添加剤1として下記例示化合物176、添加剤3として前記有機マット剤1を含む有機マット剤分散液を投入して、これを60℃に加熱し、撹拌しながら、完全に溶解した。加熱温度は、室温から5℃/minで昇温し、30分間で溶解した後、3℃/minで降温した。得られた溶液をろ過精度30μmのフィルターで濾過した後、ドープを得た。
<Production of optical film 201>
A dope having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Next, the acrylic resin (A-1) was put into the pressure dissolution tank while stirring. Next, the above-prepared rubber particle dispersion liquid and an organic matting agent dispersion liquid containing the following exemplary compound 176 as an additive 1 and the organic matting agent 1 as an additive 3 are charged and heated to 60° C., It was completely dissolved with stirring. The heating temperature was increased from room temperature at 5°C/min, dissolved in 30 minutes, and then lowered at 3°C/min. The obtained solution was filtered with a filter having a filtration accuracy of 30 μm to obtain a dope.
 (ドープの組成)
 アクリル樹脂(A-1):84質量部
 メチレンクロライド:43質量部
 エタノール:50質量部
 ゴム粒子分散液:400質量部
 添加剤1:3質量部
 有機マット剤分散液:27.8質量部
(Dope composition)
Acrylic resin (A-1): 84 parts by mass Methylene chloride: 43 parts by mass Ethanol: 50 parts by mass Rubber particle dispersion: 400 parts by mass Additive 1:3 parts by mass Organic matting agent dispersion: 27.8 parts by mass
 (製膜)
 その後、前記光学フィルム101の作製における製膜と同様にして、得られたドープを用いて、膜厚40μmの光学フィルム201を得た。
(Film formation)
Then, an optical film 201 having a thickness of 40 μm was obtained using the obtained dope in the same manner as the film formation in the production of the optical film 101.
<光学フィルム202~211の作製>
 前記光学フィルム201の作製において、添加剤1~添加剤3の種類及び添加量を下記表IVに示すとおりに変更した以外は同様にして、光学フィルム202~211を作製した。
<Production of optical films 202 to 211>
Optical films 202 to 211 were prepared in the same manner as in the production of the optical film 201 except that the types and amounts of the additives 1 to 3 were changed as shown in Table IV below.
 なお、表IVに示す各化合物は以下のとおりである。 Note that each compound shown in Table IV is as follows.
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000112
・RZ-2:C1225O-P(=O)-(OK)
・RZ-10:C1225OSONa
RZ-2: C 12 H 25 O-P(=O)-(OK) 2
RZ-10: C 12 H 25 OSO 3 Na
<凹状変形の評価>
 得られたフィルム表面のうち、金属ベルトに接していた面をレーザー顕微鏡の視野2mm×2.7mmにて20視野観察し、10μm以上の凹形状の個数を集計した。○及び△を実用上問題ないレベルとする。
〇:0~1個
△:2~5個
×:6個以上
<Evaluation of concave deformation>
Among the obtained film surfaces, the surface in contact with the metal belt was observed in 20 fields of view with a laser microscope field of view of 2 mm×2.7 mm, and the number of concave shapes of 10 μm or more was counted. ○ and △ are set to levels at which there is no practical problem.
○: 0 to 1 △: 2 to 5 ×: 6 or more
<保存性の評価>
 フィルムを1cm角に切り出し、テンター延伸方向と並行に剃刀で5mm切れ込みを入れ、ガラス板に両面テープで貼合した。ガラス板ごとフィルムを60℃90%RHと20℃90%RHの条件を2時間で往復するサイクル条件の恒温槽に保存した。100サイクル経過後に切れ込みの状態を顕微鏡観察した。○及び△を実用上問題ないレベルとする。〇:変化なし
△:切れ込みが1mm未満の範囲で進行していた
×:切れ込みが1mm以上進行していた、又は切れ込みと違う方向に亀裂が発生した
<Evaluation of storability>
The film was cut into a 1 cm square, a 5 mm cut was made with a razor in parallel with the tenter stretching direction, and the glass plate was pasted with a double-sided tape. The film together with the glass plate was stored in a constant temperature bath under the conditions of cycle of 60° C. 90% RH and 20° C. 90% RH for 2 hours. After 100 cycles, the cut state was observed under a microscope. ○ and △ are set to levels at which there is no practical problem. ◯: No change Δ: Incision progressed in a range of less than 1 mm ×: Incision progressed 1 mm or more, or a crack was generated in a direction different from the incision
Figure JPOXMLDOC01-appb-T000113
Figure JPOXMLDOC01-appb-T000113
[実施例3]
<光学フィルム301~303の作製>
 前記光学フィルム101の作製におけるゴム粒子分散液の調製において、「分散液の処方(ゴム粒子、メチレンクロライドの添加量、及びメタノールの添加有無)」と、「混合・分散機及びその条件」、「貯蔵・添加及びその条件」を下記表Vに示すとおりに変更した以外は同様にして、光学フィルム301~303を作製した。
[Example 3]
<Production of optical films 301 to 303>
In the preparation of the rubber particle dispersion in the production of the optical film 101, “prescription of dispersion (rubber particles, addition amount of methylene chloride and presence/absence of methanol)”, “mixing/dispersing machine and its conditions”, Optical films 301 to 303 were produced in the same manner except that "storage/addition and conditions thereof" were changed as shown in Table V below.
<内部ヘイズの評価>
 得られた光学フィルム(位相差フィルム)の両面にグリセリン数滴を滴下し、厚さ1.3mmのガラス板(MICRO SLIDE GLASS品番S9213、MATSUNAMI製)2枚で両側から挟んだ状態で測定したヘイズ値から、ガラス2枚の間にグリセリンを数滴滴下した状態で測定したヘイズを引いた値(%)を下記表に示した。
<Evaluation of internal haze>
Haze measured by dropping a few drops of glycerin on both sides of the obtained optical film (retardation film) and sandwiching it with two glass plates having a thickness of 1.3 mm (MICRO SLIDE GLASS product number S9213, manufactured by MATSUNAMI) from both sides. The value (%) obtained by subtracting the haze measured with a few drops of glycerin dropped between two glass plates is shown in the table below.
Figure JPOXMLDOC01-appb-T000114
Figure JPOXMLDOC01-appb-T000114
[実施例4]
 前記光学フィルム101の作製の中で、ダイス直後の流延部に幅手均一となるエアカーテンを設置し、流延直後のウェットな流延膜に対して均一な乾燥風を吹き付けた。
 ベルト部分での風速が表VIになるよう調整した。また、乾燥風を吹き付けた箇所の流延膜は、乾燥固形分に対し有機溶媒が300%となる状態であった。
 このようにして得られた光学フィルム401~404について、それぞれ幅手方向の膜厚偏差をレーザ膜厚計で0.5mmピッチ、500mm幅を走査測定した。得られた幅手方向の膜厚プロファイルをフーリエ変換で周波数単位に変換し、空間周波数1cyc/30~50mmに現れるピーク高さを相対比較した。
[Example 4]
In the production of the optical film 101, an air curtain having a uniform width was installed in the casting portion immediately after the die, and uniform dry air was blown to the wet casting film immediately after casting.
The wind speed at the belt was adjusted to be Table VI. Further, the casting film at the place where the dry air was blown was in a state where the organic solvent was 300% with respect to the dry solid content.
With respect to the optical films 401 to 404 thus obtained, the film thickness deviation in the width direction was measured by scanning with a laser film thickness meter at a pitch of 0.5 mm and a width of 500 mm. The obtained film thickness profile in the width direction was converted into frequency units by Fourier transform, and the peak heights appearing at the spatial frequency of 1 cyc/30 to 50 mm were compared with each other.
Figure JPOXMLDOC01-appb-T000115
Figure JPOXMLDOC01-appb-T000115
 前記表VIからわかるとおり、風速を0.2m/sec以下に制御することにより、30~50mm周期の膜厚変動が大幅に抑制された。 As can be seen from Table VI above, by controlling the wind speed to 0.2 m/sec or less, the film thickness fluctuation in the 30 to 50 mm cycle was significantly suppressed.
[実施例5]IRヒーター(全幅)
 光学フィルム101作製の途中、ステンレスベルト支持体上から剥離した段階で、IRヒーターを全幅に照射した。照射後は光学フィルム101と同様にテンターを通して作成し、光学フィルム501とした。
 IRヒーターは、ハイベック社製の線集光型・水冷式・中赤外線放射タイプ(エネルギー密度7W/mm、焦点距離20mm、出射波長およそ1~10μm)を選択した。フィルムの照射面はベルトに接していない面、照射距離は20mm、照射時間は3分とした。照射時のヒーターユニット表面温度は約100℃だった。
 得られた光学フィルム501と101とで、フィルムのカールを測定した。光学フィルム501はカールの発生が少なく、フィルム端部の耳立ちも小さいことが確認できた。また、作成途中テンター導入直前の状態でそれぞれのフィルムに含まれる溶媒(メチレンクロライド及びエタノール)を定量し残存率を算出した。
[Example 5] IR heater (full width)
During the production of the optical film 101, the IR heater was irradiated over the entire width at the stage of peeling from the stainless belt support. After the irradiation, an optical film 501 was prepared through a tenter like the optical film 101.
As the IR heater, a line-focusing type, water-cooling type, and mid-infrared radiation type (energy density 7 W/mm, focal length 20 mm, emission wavelength approximately 1 to 10 μm) manufactured by Hibeck Co. was selected. The irradiation surface of the film was not in contact with the belt, the irradiation distance was 20 mm, and the irradiation time was 3 minutes. The surface temperature of the heater unit at the time of irradiation was about 100°C.
The curl of the obtained optical films 501 and 101 was measured. It was confirmed that the optical film 501 had less curl and less edge at the edge of the film. Further, the solvent (methylene chloride and ethanol) contained in each film was quantified immediately before the introduction of the tenter during the production to calculate the residual rate.
<カール値の測定方法>
 作成した光学フィルムからMD方向とTD方向とそれぞれに平行に4cm角の正方形を切り出し、23℃20%の環境に一晩調湿し、水平な机上に平置きした場合の4隅の立ち上がり高さを平均してカール値とした。
<スリキズの評価方法>
 作成した光学フィルムを幅1m×長さ0.5mに切り出し、蛍光灯下の観察で長さ方向に延びるスリキズの本数を数えた。
 溶媒残存率(%)=定量された溶媒の質量/絶乾したフィルムの質量×100
 フィルムの絶乾条件は、120℃60分とした。
<Measuring method of curl value>
From the created optical film, cut out squares of 4 cm square parallel to the MD and TD directions, adjust the humidity overnight in an environment of 23°C and 20%, and stand up at four corners when placed flat on a horizontal desk. Was averaged to obtain a curl value.
<Scratch evaluation method>
The produced optical film was cut into a width of 1 m and a length of 0.5 m, and the number of scratches extending in the length direction was counted by observing under a fluorescent lamp.
Solvent residual rate (%)=mass of quantified solvent/mass of absolutely dried film×100
The film was dried at 120° C. for 60 minutes.
Figure JPOXMLDOC01-appb-T000116
Figure JPOXMLDOC01-appb-T000116
[実施例6]IRヒーター(端部のみ)
 光学フィルム101作製の途中、ステンレスベルト支持体上から剥離した段階で、IRヒーターをフィルム両端部の幅50mmにのみ照射した。照射条件は101と同様とした。照射後は101と同様にテンターを通して作成し、光学フィルム601とした。
 得られた光学フィルム601と101とで、幅方向の膜厚偏差を測定した。
[Example 6] IR heater (only at the end)
During the production of the optical film 101, at the stage of peeling from the stainless belt support, the IR heater was irradiated only to the width of 50 mm at both ends of the film. The irradiation conditions were the same as 101. After the irradiation, an optical film 601 was prepared through a tenter in the same manner as 101.
With the obtained optical films 601 and 101, the film thickness deviation in the width direction was measured.
<膜厚偏差の測定方法>
 フィルム幅手を10分割し、それぞれの区間の中心付近を膜厚測定し10点データの標準偏差値を膜厚偏差とした。
<Method of measuring film thickness deviation>
The film width was divided into 10 parts, the film thickness was measured in the vicinity of the center of each section, and the standard deviation value of 10-point data was taken as the film thickness deviation.
Figure JPOXMLDOC01-appb-T000117
Figure JPOXMLDOC01-appb-T000117
[実施例7]
 実施例1で作製した本発明の光学フィルム101、106、107、110~112を、ガスバリアー性フィルムの基材フィルム(支持体)として用いた。
[Example 7]
The optical films 101, 106, 107, 110 to 112 of the present invention produced in Example 1 were used as the base film (support) of the gas barrier film.
<ガスバリアー性フィルム1001の作製>
 (支持体)
 樹脂フィルム支持体として、実施例1で作製した光学フィルム(アクリル樹脂フィルム)101を用いた。
<Production of gas barrier film 1001>
(Support)
As the resin film support, the optical film (acrylic resin film) 101 manufactured in Example 1 was used.
 ガスバリアー性フィルムの作製は、上記支持体を20m/分の速度で搬送しながら、以下の形成方法により、片面にブリードアウト防止層、反対面に平滑層を形成した後、粘着性保護フィルムを貼合した、ロール状のガスバリアー性フィルムを得た。 The gas barrier film was produced by transporting the support at a speed of 20 m/min, forming a bleed-out prevention layer on one side and a smooth layer on the opposite side by the following forming method, and then applying an adhesive protective film. A bonded roll-shaped gas barrier film was obtained.
 (ブリードアウト防止層の形成)
 上記支持体の片面に、JSR株式会社製 UV硬化型有機/無機ハイブリッドハードコート材 OPSTAR Z7535を塗布、乾燥後の膜厚が4μmになるようにワイヤーバーで塗布した後、80℃、3分で乾燥後、空気雰囲気下、高圧水銀ランプを使用して500mJ/cmで硬化し、ブリードアウト防止層を形成した。
(Formation of bleed-out prevention layer)
UV curable organic/inorganic hybrid hard coat material OPSTAR Z7535 manufactured by JSR Corporation is applied to one surface of the support, and a wire bar is applied so that the film thickness after drying is 4 μm, and then at 80° C. for 3 minutes. After drying, it was cured at 500 mJ/cm 2 using a high pressure mercury lamp in an air atmosphere to form a bleed-out prevention layer.
 (平滑層の形成)
 続けて上記支持体の反対面に、JSR株式会社製 UV硬化型有機/無機ハイブリッドハードコート材 OPSTAR Z7501を塗布、乾燥後の膜厚が4μmになるようにワイヤーバーで塗布した後、80℃、3分で乾燥後、空気雰囲気下、高圧水銀ランプを使用して500mJ/cmで硬化し、平滑層を形成した。
 この時の最大断面高さRt(p)は18nmであった。最大断面高さRt(p)は、AFM(原子間力顕微鏡)で、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出され、極小の先端半径の触針により測定方向が30μmの区間内を多数回測定し、微細な凹凸の振幅に関する平均の粗さである。
(Formation of smooth layer)
Then, on the opposite surface of the support, UV curing type organic/inorganic hybrid hard coat material OPSTAR Z7501 manufactured by JSR Co., Ltd. was applied and then applied with a wire bar so that the film thickness after drying was 4 μm, and then at 80° C. After drying for 3 minutes, it was cured at 500 mJ/cm 2 using a high pressure mercury lamp in an air atmosphere to form a smooth layer.
The maximum sectional height Rt(p) at this time was 18 nm. The maximum cross-section height Rt(p) is calculated from the cross-sectional curve of the unevenness continuously measured by a detector having a probe with a minimum tip radius with an AFM (atomic force microscope). This is the average roughness of the amplitude of the fine irregularities, which was measured many times in the section where the measurement direction was 30 μm.
 (ガスバリアー層の作製)
 次に、上記平滑層及びブリードアウト防止層を設けたフィルムの平滑層の上に、下記ポリシラザン塗布液調製し、次いで、脱水ジブチルエーテルによる希釈することにより濃度調整して、23℃50%RH環境下で塗布した後、80℃、1分(工程中の雰囲気を露点温度10℃に調製)乾燥し、乾燥後の膜厚が150nmのポリシラザン層を作製した。
(Preparation of gas barrier layer)
Next, the following polysilazane coating solution was prepared on the smooth layer of the film provided with the smooth layer and the bleed-out prevention layer, and then the concentration was adjusted by diluting with dehydrated dibutyl ether, and the temperature was adjusted to 23° C. and 50% RH environment. After coating below, it was dried at 80° C. for 1 minute (the atmosphere in the process was adjusted to a dew point temperature of 10° C.) to prepare a polysilazane layer having a thickness of 150 nm after drying.
 (ポリシラザン塗布液)
 アクアミカ NN120-20(パーヒドロポリシラザン、AZエレクトロニックマテリアルズ(株)製、20質量%ジブチルエーテル溶液)
 (改質処理A)
 前記塗布試料を下記の条件で改質処理を行い、ガスバリアー層1層目を形成した。改質処理時の露点温度は-8℃で実施した。
(Polysilazane coating liquid)
Aquamica NN120-20 (perhydropolysilazane, AZ Electronic Materials Co., Ltd., 20 mass% dibutyl ether solution)
(Reforming treatment A)
The coating sample was subjected to a modification treatment under the following conditions to form a first gas barrier layer. The dew point temperature during the modification treatment was -8°C.
 (改質処理装置)
 株式会社 エム・ディ・コム製エキシマ照射装置MODEL:MECL-M-1-200、波長172nm、ランプ封入ガス Xe稼動ステージ上に固定した試料を以下の条件で改質処理を行った。
(Reformer)
Eximer irradiation device MODEL: MECL-M-1-200, wavelength 172 nm, lamp-filled gas manufactured by M.D.COM Co., Ltd. A sample fixed on the Xe operating stage was subjected to a modification treatment under the following conditions.
 (改質処理条件)
 エキシマ光強度 120mW/cm(172nm)
 試料と光源の距離 3mm
 ステージ加熱温度 25℃
 照射装置内の酸素濃度 1000ppm(0.1%)
 実エキシマ照射時間 5秒
 さらにその上に前記ポリシラザン化合物塗布液を脱水ジブチルエーテルによる希釈することにより濃度調整して、23℃50%RH環境下で塗布した後、80℃、1分(工程中の雰囲気を露点温度10℃に調製)乾燥し、乾燥後の膜厚が90nmになるようにポリシラザン層を作製した。
(Reforming treatment conditions)
Excimer light intensity 120 mW/cm 2 (172 nm)
Distance between sample and light source 3 mm
Stage heating temperature 25℃
Oxygen concentration in irradiation device 1000ppm (0.1%)
Actual excimer irradiation time: 5 seconds Further, the concentration of the polysilazane compound coating solution was adjusted by diluting the polysilazane compound coating solution with dehydrated dibutyl ether, followed by coating in an environment of 23° C. and 50% RH, and then at 80° C. for 1 minute (in the process The atmosphere was adjusted to a dew point temperature of 10° C.) and dried to form a polysilazane layer so that the film thickness after drying was 90 nm.
 (改質処理B)
 前記塗布2層目を塗布した試料を500mJ/cmの積算光量とステージ加熱温度(VUV照射時の基板温度)25℃で改質処理を行い、ガスバリアー層2層目を形成した。改質処理時の露点温度は-8℃で実施しガスバリアー性フィルム1001を得た。
(Reforming treatment B)
The sample coated with the second coating layer was subjected to a modification treatment at an integrated light amount of 500 mJ/cm 2 and a stage heating temperature (substrate temperature during VUV irradiation) of 25° C. to form a second gas barrier layer. The dew point temperature during the modification treatment was -8° C. to obtain a gas barrier film 1001.
 (改質処理装置)
 改質処理Aと同一。
(Reformer)
Same as modification treatment A.
 (改質処理条件)
 エキシマ光強度 120mW/cm(172nm)
 試料と光源の距離 3mm
 照射装置内の酸素濃度 1000ppm(0.1%)
 ステージ移動速度 10mm/秒の早さで試料を往復搬送
(Reforming treatment conditions)
Excimer light intensity 120 mW/cm 2 (172 nm)
Distance between sample and light source 3 mm
Oxygen concentration in irradiation device 1000ppm (0.1%)
Stage movement speed 10 mm/sec. Reciprocating sample
<ガスバリアー性フィルム1002~1006の作製》
 ガスバリアー性フィルム1001の作製において、支持体を光学フィルム106、107、110~112に変えた以外は同様にして、それぞれガスバリアー性フィルム1002~1006を作製した。
<Preparation of Gas Barrier Films 1002 to 1006>
Gas barrier films 1002 to 1006 were produced in the same manner as in the production of the gas barrier films 1001 except that the supports were changed to the optical films 106, 107 and 110 to 112, respectively.
 ≪ガスバリアー性フィルムの評価≫
 (水蒸気透過率の測定)
 〈水蒸気透過率の測定装置〉
 蒸着装置:日本電子(株)製真空蒸着装置JEE-400
 恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
 (原材料)
 水分と反応して腐食する金属:カルシウム(粒状)
 水蒸気不透過性の金属:アルミニウム(φ3~5mm、粒状)
<<Evaluation of gas barrier film>>
(Measurement of water vapor transmission rate)
<Measurement device for water vapor transmission rate>
Vapor deposition equipment: JEOL vacuum deposition equipment JEE-400
Constant temperature and constant humidity oven: Yamato Humidic Chamber IG47M
(raw materials)
Metals that react with water and corrode: Calcium (granular)
Water vapor impermeable metal: Aluminum (φ3-5mm, granular)
 (水蒸気バリアー性評価用セルの作製)
 真空蒸着装置(日本電子製真空蒸着装置 JEE-400)を用い、透明導電膜を付ける前のガスバリアー性フィルム1001~1006の各々蒸着させたい部分(12mm×12mmを9か所)以外をマスクし、金属カルシウムを蒸着させた。
 その後、真空状態のままマスクを取り去り、シート片側全面にアルミニウムをもう一つの金属蒸着源から蒸着させた。アルミニウム封止後、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下で、厚さ0.2mmの石英ガラスに封止用紫外線硬化樹脂(ナガセケムテックス製)を介してアルミニウム封止側と対面させ、紫外線を照射することで、評価用セルを作製した。
 得られた両面を封止した試料を60℃、90%RHの高温高湿下で保存し、特開2005-283561号公報記載の方法に基づき、金属カルシウムの腐食量からセル内に透過した水分量を計算した。
(Preparation of cell for water vapor barrier property evaluation)
Using a vacuum vapor deposition device (JEE-400 vacuum vapor deposition device manufactured by JEOL Ltd.), mask the gas barrier films 1001 to 1006 before attaching the transparent conductive film, except for the portions to be vapor deposited (12 mm x 12 mm at 9 locations). , Metal calcium was deposited.
Then, the mask was removed in a vacuum state, and aluminum was vapor-deposited from another metal vapor deposition source on the entire surface of one side of the sheet. After sealing with aluminum, the vacuum state is released, and immediately in a dry nitrogen gas atmosphere, quartz glass with a thickness of 0.2 mm is faced to the aluminum-sealed side via a sealing UV-curable resin (made by Nagase Chemtex). Then, the evaluation cell was produced by irradiating with ultraviolet rays.
The obtained sealed sample on both sides was stored under a high temperature and high humidity condition of 60° C. and 90% RH, and based on the method described in JP-A-2005-283561, moisture permeated into the cell from the corrosive amount of metallic calcium. The amount was calculated.
 (ランク評価)
 5:1×10-4g/m/day未満
 4:1×10-4g/m/day以上、1×10-3g/m/day未満
 3:1×10-3g/m/day以上、1×10-2g/m/day未満
 2:1×10-2g/m/day以上、1×10-1g/m/day未満
 1:1×10-1g/m/day以上
 ランク評価において、実用的な範囲は、ランク3以上である。
(Rank evaluation)
5:1×10 −4 g/m 2 /day or less 4:1×10 −4 g/m 2 /day or more, 1×10 −3 g/m 2 /day or less 3:1×10 −3 g/ m 2 /day or more and less than 1×10 −2 g/m 2 /day 2:1×10 −2 g/m 2 /day or more, less than 1×10 −1 g/m 2 /day 1:1×10 −1 g/m 2 /day or higher In the rank evaluation, the practical range is rank 3 or higher.
 (ガスバリアー性フィルムの耐熱性試験)
 作製直後のガスバリアー性フィルム1001~1006をそれぞれ、85℃環境で7日間保存後に上記と同様にして水蒸気透過率を測定して、熱による劣化(耐久性)を評価した。
(Heat resistance test of gas barrier film)
Immediately after production, the gas barrier films 1001 to 1006 were stored in an environment of 85° C. for 7 days, and the water vapor transmission rate was measured in the same manner as above to evaluate deterioration by heat (durability).
 (ガスバリアー性フィルムの耐久性試験)
 作製直後のガスバリアー性フィルム1001~1006をそれぞれ、半径10mmの曲率になるように、180度の角度で100回屈曲を繰り返した後の、ガスバリアー性の劣化(耐久性)を、上記と同様に水蒸気透過率で評価した。
 以上の評価を行ったところ、本発明の光学フィルムは、全ての評価項目についてランク3以上を示し、優れたガスバリアー性フィルムの支持体であることを確認した。
(Durability test of gas barrier film)
The deterioration (durability) of the gas barrier property after repeating 100 times bending of the gas barrier films 1001 to 1006 immediately after production at an angle of 180 degrees so as to have a radius of curvature of 10 mm is the same as above. The water vapor transmission rate was evaluated.
As a result of the above evaluations, it was confirmed that the optical film of the present invention has a rank of 3 or higher for all evaluation items and is a support for an excellent gas barrier film.
[実施例8]
 実施例1で作製した本発明の光学フィルム101、106、107、110~112をタッチパネル用の基材フィルム(支持体)として用いた。
[Example 8]
The optical films 101, 106, 107, 110 to 112 of the present invention produced in Example 1 were used as a base film (support) for a touch panel.
 (透明基板の準備)
 上記光学フィルム101、106、107、110~112の両面に、下記ハードコート層塗布液をダイコーターにより塗布し、ハードコート層となる塗膜を形成した。その塗膜を70℃で乾燥後、酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら、紫外線ランプを用い、照射部の照度が300mW/cm、照射量を0.3J/cmとして塗膜を硬化させ、さらに加熱処理ゾーンにおいて、130℃で5分間加熱処理し、透明基板1101~1106を作製した。なお、硬化後のハードコート層の膜厚は各々5μmであった。
(Preparation of transparent substrate)
The following coating solution for hard coat layer was applied to both surfaces of the optical films 101, 106, 107, 110 to 112 by a die coater to form a coating film to be a hard coat layer. The coating film was dried at 70° C., and while purging with nitrogen so that the oxygen concentration was 1.0 vol% or less, an ultraviolet lamp was used and the illuminance of the irradiation part was 300 mW/cm 2 , and the irradiation amount was 0. The coating film was cured at 3 J/cm 2 and further heat-treated at 130° C. for 5 minutes in the heat-treatment zone to produce transparent substrates 1101 to 1106. The thickness of the hard coat layer after curing was 5 μm.
 (ハードコート層塗布液の調製)
 下記の各構成材料を混合、撹拌、溶解して、ハードコート層塗布液を調製した。
(Preparation of coating liquid for hard coat layer)
The following constituent materials were mixed, stirred, and dissolved to prepare a hard coat layer coating liquid.
・ハードコート層塗布液
 ペンタエリスリトールテトラアクリレート:30質量部
 ジペンタエリスリトールヘキサアクリレート:60質量部
 ジペンタエリスリトールペンタアクリレート:50質量部
 イルガキュア184(BASFジャパン(株)製):5質量部
 イルガキュア907(BASFジャパン(株)製):5質量部
 ZX-212(フッ素-シロキサングラフトポリマー、ティーアンドケイ東華社製):5質量部
 シーホスターKEP-50(粉体のシリカ粒子、平均粒径0.47~0.61μm、日本触媒株式会社製):24.3質量部
 プロピレングリコールモノメチルエーテル:20質量部
 酢酸メチル:40質量部
 メチルエチルケトン:60質量部
Hard coat layer coating liquid Pentaerythritol tetraacrylate: 30 parts by mass Dipentaerythritol hexaacrylate: 60 parts by mass Dipentaerythritol pentaacrylate: 50 parts by mass Irgacure 184 (manufactured by BASF Japan Ltd.): 5 parts by mass Irgacure 907 (BASF) Japan Co., Ltd.: 5 parts by mass ZX-212 (fluorine-siloxane graft polymer, manufactured by T&K Toka Co., Ltd.): 5 parts by mass Seahoster KEP-50 (powdered silica particles, average particle size 0.47-0) .61 μm, manufactured by Nippon Shokubai Co., Ltd.): 24.3 parts by mass Propylene glycol monomethyl ether: 20 parts by mass Methyl acetate: 40 parts by mass Methyl ethyl ketone: 60 parts by mass
 (導電性フィルム1101の作製)
 透明基板1101の片面上に、下記化合物1を用いて中間層(膜厚25nm)を蒸着法によって形成し、これに続けて銀(Ag)からなる電極層(膜厚8nm)を蒸着法によって形成した。さらに続けて、酸化チタン(TiO)からなる表面保護層(膜厚30nm)を蒸着法によって形成した。これにより、中間層と透明導電層、表面保護層との3層構造の透明電極を有する導電性フィルム1101を作製した。
(Preparation of conductive film 1101)
On one surface of the transparent substrate 1101, an intermediate layer (film thickness 25 nm) was formed by using the following compound 1 by a vapor deposition method, and subsequently an electrode layer (film thickness 8 nm) made of silver (Ag) was formed by a vapor deposition method. did. Further subsequently, a surface protective layer (thickness 30 nm) made of titanium oxide (TiO 2 ) was formed by vapor deposition. Thus, a conductive film 1101 having a transparent electrode having a three-layer structure including the intermediate layer, the transparent conductive layer, and the surface protective layer was produced.
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000118
 この際、まず透明基板1101を市販の真空蒸着装置の基材ホルダーに固定した。また、上記化合物1をタンタル製抵抗加熱ボートに入れた。これらの基板ホルダーと加熱ボートとを真空蒸着装置の第1真空槽に取り付けた。また、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、第2真空槽内に取り付けた。さらに、タンタル製抵抗加熱ボートに酸化チタン(TiO)を入れ、第3真空槽内に取り付けた。 At this time, first, the transparent substrate 1101 was fixed to a base material holder of a commercially available vacuum vapor deposition device. Further, the above compound 1 was put in a tantalum resistance heating boat. These substrate holder and heating boat were attached to the first vacuum tank of the vacuum vapor deposition apparatus. Further, silver (Ag) was put into a resistance heating boat made of tungsten, and the boat was mounted in the second vacuum tank. Further, titanium oxide (TiO 2 ) was put into a resistance heating boat made of tantalum and mounted in the third vacuum tank.
 次に、第1真空槽を4×10-4Paまで減圧した後、各化合物の入った加熱ボートに通電して加熱し、蒸着速度0.1~0.2nm/秒で透明基板1101上に膜厚25nmの中間層を設けた。 Next, after depressurizing the first vacuum chamber to 4×10 −4 Pa, electricity is applied to the heating boat containing each compound to heat it, and the transparent substrate 1101 is vapor-deposited at a deposition rate of 0.1 to 0.2 nm/sec. An intermediate layer having a film thickness of 25 nm was provided.
 次に、中間層まで成膜した透明基板1101を真空のまま第2真空槽に移し、第2真空槽を4×10-4Paまで減圧した後、銀の入った加熱ボートを通電して加熱した。これにより、蒸着速度0.1~0.2nm/秒で膜厚8nmの銀からなる透明導電層を形成した。 Next, the transparent substrate 1101 on which the intermediate layer is formed is transferred to a second vacuum tank while keeping the vacuum, the pressure in the second vacuum tank is reduced to 4×10 −4 Pa, and then a heating boat containing silver is energized and heated. did. Thus, a transparent conductive layer made of silver and having a film thickness of 8 nm was formed at a vapor deposition rate of 0.1 to 0.2 nm/sec.
 次に、中間層、電極層を製膜した透明基板1101を真空のまま第3真空槽に移し、第3真空槽を4×10-4Paまで減圧した後、酸化チタン(TiO)の入った加熱ボートを通電して加熱した。これにより、蒸着速度0.1~0.2nm/秒で膜厚30nmの酸化チタン(TiO)からなる表面保護層を形成した。 Next, the transparent substrate 1101 on which the intermediate layer and the electrode layer are formed is transferred to a third vacuum tank while keeping the vacuum, the pressure in the third vacuum tank is reduced to 4×10 −4 Pa, and then titanium oxide (TiO 2 ) is added. The heating boat was energized and heated. As a result, a surface protective layer made of titanium oxide (TiO 2 ) having a film thickness of 30 nm was formed at a vapor deposition rate of 0.1 to 0.2 nm/sec.
 以上の工程により、中間層とこの上部の透明導電層、及び、表面保護層との積層構造からなる導電性フィルム1101を得た。 Through the above steps, a conductive film 1101 having a laminated structure of an intermediate layer, a transparent conductive layer above this, and a surface protective layer was obtained.
 なお、蒸着膜厚は、J.A.Woollam Co.Inc.製のVB-250型VASEエリプソメータで測定した。 Note that the vapor deposition film thickness is J. A. Woollam Co. Inc. VB-250 type VASE ellipsometer manufactured by K.K.
 (導電性フィルム1102~1106の作製)
 導電性フィルム1101と同様にして、光学フィルム106、107、110~112をそれぞれ用いて、導電性フィルム1102~1106を作製した。
(Production of Conductive Films 1102-1106)
In the same manner as the conductive film 1101, the conductive films 1102 to 1106 were produced by using the optical films 106, 107 and 110 to 112, respectively.
 ≪各試料の評価≫
 作製した導電性フィルム1101~1106について、耐屈曲性、干渉むら、湿熱耐久後の表比抵抗劣化を測定した。
<<Evaluation of each sample>>
With respect to the produced conductive films 1101 to 1106, flex resistance, unevenness of interference, and deterioration in specific resistance after wet heat durability were measured.
 (耐屈曲性)
 作製した導電性フィルムを、JIS K 5400に規定の方法に準じて耐屈曲性を評価した。耐屈曲性評価にあたり、導電性フィルム試料の巻き付けには直径10mmのステンレス棒を用いた。
 電極層の状態について、下記のようにランク評価を行った。
 ◎:何らの変化もなかった
 ○:僅かに変形したが、実用上問題ない
 △:電極層に微細なクラックが発生した
 ×:電極層に割れが発生した
(Flex resistance)
The bending resistance of the produced conductive film was evaluated according to the method specified in JIS K5400. A stainless rod having a diameter of 10 mm was used for winding the conductive film sample for the evaluation of flex resistance.
The rank of the electrode layer was evaluated as follows.
⊚: No change ○: Slightly deformed, but practically no problem △: Microcracks in electrode layer ×: Cracks in electrode layer
 (色むら)
 iPad(登録商標)(Apple社製 9.7インチIPS液晶のタブレット型コンピューター)のタッチパネルを外し、作製した導電性フィルムを25μmの両面接着テープ(リンテック社製 基材レステープ MO-3005C)を介し、導電層がディスプレイ面に向くように貼り合わせた。ディスプレイに白色を表示し、斜め45°より偏光サングラスを通してディスプレイ表面を観察した。
 試験の結果、下記のようにランク評価を行った。
 ◎:色むらは全く観察されなかった
 ○:僅かに色むらが見られたが、実用上問題ない
 △:色むらが見られた
 ×:非常に濃い虹状の色むらが観察された
(Color unevenness)
The touch panel of the iPad (registered trademark) (a 9.7-inch IPS liquid crystal tablet computer made by Apple Inc.) was removed, and the produced conductive film was put through a 25 μm double-sided adhesive tape (Lintec substrateless tape MO-3005C). , And the conductive layer was attached so that the conductive layer faced the display surface. White was displayed on the display, and the display surface was observed through polarized sunglasses at an angle of 45°.
As a result of the test, rank evaluation was performed as follows.
⊚: No color unevenness was observed at all ◯: Slight color unevenness was observed, but there was no problem in practical use Δ: Color unevenness was observed ×: Very dark rainbow-like color unevenness was observed
 (湿熱耐久による表面抵抗劣化)
 表面抵抗率を測定したサンプルを、温度60℃、相対湿度90%RHの環境下で300時間放置した後、任意の10点の表面比抵抗値を測定し、平均値をサンプルの湿熱耐久後の表面抵抗率とした。
 試験の結果、下記のようにランク評価を行った。
 [表面抵抗劣化]=[(湿熱耐久後の表面抵抗率)-(湿熱耐久前の表面抵抗率)]/[湿熱耐久前の表面抵抗率]としたとき、
 ◎:表面抵抗劣化が、±10%未満である
 ○:表面抵抗劣化が、±10%以上、±20%未満である
 △:表面抵抗劣化が、±20%以上、±30%未満である
 ×:表面抵抗劣化が、±30%である
 以上の評価を行ったところ、本発明の光学フィルムを用いたものは、いずれの評価も○以上であり、タッチパネル用の優れた導電性フィルムの支持体であることを確認した。
(Surface resistance deterioration due to wet heat durability)
After leaving the sample whose surface resistivity was measured for 300 hours in an environment of a temperature of 60° C. and a relative humidity of 90% RH, surface specific resistance values at arbitrary 10 points were measured, and an average value was measured after the sample was subjected to wet heat durability. The surface resistivity was used.
As a result of the test, rank evaluation was performed as follows.
When [surface resistance deterioration]=[(surface resistance after wet heat durability)-(surface resistance before wet heat durability)]/[surface resistance before wet heat durability],
⊚: Surface resistance deterioration is less than ±10% ○: Surface resistance deterioration is ±10% or more and less than ±20% △: Surface resistance deterioration is ±20% or more and less than ±30% × : Deterioration of surface resistance is ±30%. When the above evaluations were carried out, all evaluations using the optical film of the present invention were ◯ or more, and a support of an excellent conductive film for a touch panel. Was confirmed.
[実施例9]
 実施例1で作製した本発明の光学フィルム101、106、107、110~112を、それぞれフレキシブル有機エレクトロルミネッセンス素子用の基板フィルム(支持体)として用いた。
[Example 9]
Each of the optical films 101, 106, 107, and 110 to 112 of the present invention produced in Example 1 was used as a substrate film (support) for a flexible organic electroluminescence element.
 上記フィルムに、クリアハードコート層(両面)、防湿膜(両面)、透明導電膜(片面)の順にそれぞれの薄膜を形成した透明導電性フィルム1201~1206を作製した。 Transparent conductive films 1201 to 1206 were produced by forming thin films of clear hard coat layer (both sides), moisture-proof film (both sides) and transparent conductive film (one side) on the above film in this order.
 〈クリアハードコート層の作製〉
 光学フィルム101上に下記ハードコート層塗布組成物が3μmの膜厚となるように押出しコーターでコーティングし、次いで80℃に設定された乾燥部で1分間乾燥した後、120mW/cmで紫外線照射することにより形成した。
<Preparation of clear hard coat layer>
The following hard coat layer coating composition was coated on the optical film 101 with an extrusion coater so that the film thickness was 3 μm, and then dried for 1 minute in a drying section set at 80° C., and then irradiated with ultraviolet rays at 120 mW/cm 2. It was formed by doing.
 (クリアハードコート層塗布組成物)
 ジペンタエリスリトールヘキサアタリレート単量体:60質量部
 ジペンタエリスリトールヘキサアタリレート2量体:20質量部
 ジペンタエリスリトールヘキサアタリレート3量体以上の成分:20質量部
 ジメトキシベンゾフエノン:4質量部
 酢酸エチル:50質量部
 メチノレエチルケトン:50質量部
 イソプロピルアルコール:50質量部
(Clear hard coat layer coating composition)
Dipentaerythritol hexaatalylate monomer: 60 parts by mass Dipentaerythritol hexaatalylate dimer: 20 parts by mass Dipentaerythritol hexaatalylate trimer or more components: 20 parts by mass Dimethoxybenzophenone: 4 parts by mass Ethyl acetate: 50 parts by mass Ethynoleethyl ketone: 50 parts by mass Isopropyl alcohol: 50 parts by mass
 〈防湿膜の作製〉
 プラズマ放電装置としては、電極が平行平板型のものを用い、この電極間に上記基板フィルムを載置し、かつ、混合ガスを導入して薄膜形成を行った。
 なお、電極は、以下の物を用いた。200mm×200mm×2mmのステンレス板に高密度、高密着性のアルミナ溶射膜を被覆し、その後、テトラメトキシシランを酢酸エチルで希釈した溶液を塗布乾燥後、紫外線照射により硬化させ封孔処理を行い、さらにこのようにして被覆した誘電体表面を研磨し、平滑にして、表面粗さRaが5μmとなるように加工した。このように電極を作製し、アース(接地)した。一方、印加電極としては、中空の角型の純チタンパイプに対し、上記同様の誘電体を同条件にて被覆したものを複数作製し、対向する電極群とした。
<Preparation of moisture-proof film>
As a plasma discharge device, a parallel plate type electrode was used, the substrate film was placed between the electrodes, and a mixed gas was introduced to form a thin film.
The following materials were used as the electrodes. A 200 mm x 200 mm x 2 mm stainless steel plate was coated with a high-density, highly-adhesive alumina sprayed film, and then a solution of tetramethoxysilane diluted with ethyl acetate was applied and dried, and then cured by ultraviolet irradiation to perform sealing treatment. Further, the dielectric surface coated in this way was polished, smoothed, and processed to have a surface roughness Ra of 5 μm. The electrode was prepared in this manner and grounded. On the other hand, as the applying electrodes, a plurality of hollow rectangular pure titanium pipes coated with the same dielectric material as the above under the same conditions were prepared to form opposing electrode groups.
 また、プラズマ発生に用いる使用電源は日本電子(株)製高周波電源JRF-10000にて周波数13.56MHzの電圧で、かつ5W/cmの電力を供給し、電極間に以下の組成の混合ガスを流した。 Further, the power source used for plasma generation was a high frequency power source JRF-10000 manufactured by JEOL Ltd. at a frequency of 13.56 MHz and a power of 5 W/cm 2 and a mixed gas of the following composition between the electrodes. Shed.
 不活性ガス(アルゴン)99.3体積%
 反応性ガス1(水素):0.5体積%
 反応性ガス2(テトラエトキシシラン):0.3体積%
 クリアハードコート層が設けられた光学フィルム101のクリアハードコート層上に、上記反応ガス、反応条件により大気圧プラズマ処理を行い、防湿膜としてそれぞれ18nmの膜厚の酸化ケイ素膜を作製した。
Inert gas (argon) 99.3% by volume
Reactive gas 1 (hydrogen): 0.5% by volume
Reactive gas 2 (tetraethoxysilane): 0.3% by volume
On the clear hard coat layer of the optical film 101 provided with the clear hard coat layer, atmospheric pressure plasma treatment was carried out under the above reaction gas and reaction conditions to prepare a silicon oxide film having a thickness of 18 nm as a moisture-proof film.
 〈透明導電膜の作製〉
 供給電力を12W/cmに変更した以外は、防湿膜の形成と同様の大気圧ブラズマ条件で、混合ガスは下記の組成に変更したものを流し透明導電膜を作製した。
<Preparation of transparent conductive film>
A transparent conductive film was prepared by flowing a mixed gas having the following composition under the same atmospheric pressure plasma condition as that for forming the moisture-proof film, except that the power supply was changed to 12 W/cm 2 .
 不活性ガス(ヘリウム):98.69体積%
 反応性ガス1(水素):0.05体積%
 反応性ガス2(インジウムアセチルアセトナート):1.2体積%
 反応性ガス3(ジブチルスズジアセテート):0.05体積%
 反応性ガス4(テトラエトキシシラン):0.01体積%
 クリアハードコート層、酸化ケイ素層が設けられた光学フィルム101の酸化ケイ素層上に、上記反応ガス、反応条件により大気圧プラズマ処理を行い、透明導電膜としてスズドープ酸化インジウム膜(ITO膜)を作製し(厚さ110nm)、透明導電性フィルム1201とした。
Inert gas (helium): 98.69% by volume
Reactive gas 1 (hydrogen): 0.05% by volume
Reactive gas 2 (indium acetylacetonate): 1.2% by volume
Reactive gas 3 (dibutyltin diacetate): 0.05% by volume
Reactive gas 4 (tetraethoxysilane): 0.01% by volume
On the silicon oxide layer of the optical film 101 provided with the clear hard coat layer and the silicon oxide layer, atmospheric pressure plasma treatment is performed under the above reaction gas and reaction conditions to prepare a tin-doped indium oxide film (ITO film) as a transparent conductive film. (Thickness 110 nm) to obtain a transparent conductive film 1201.
<透明導電性フィルム1202~1206>
 透明導電性フィルム1201と同様にして、光学フィルムフィルム106、107、110~112を用いて透明導電性フィルム1202~1206を作製した。
 このようにして得られた透明導電性フィルム1201~1206に対し、下記の評価を行った。
<Transparent conductive film 1202-1206>
Similarly to the transparent conductive film 1201, transparent conductive films 1202 to 1206 were produced using the optical film films 106, 107 and 110 to 112.
The following evaluations were performed on the transparent conductive films 1201 to 1206 thus obtained.
 ≪評価≫
 (透過率)
 東京電色製TURBIDITY METER T2600DAで測定した。
<<Evaluation>>
(Transmittance)
It was measured with TURBIDITY METER T2600DA manufactured by Tokyo Denshoku.
 (透湿度評価)
 透湿度はJIS Z-0208に記載の条件(40℃、90%RH)で測定した。
(Water vapor permeability evaluation)
The water vapor permeability was measured under the conditions (40° C., 90% RH) described in JIS Z-0208.
 また、1時間180℃で加熱後、1時間室温で放冷するという一連の冷熟サイクルを10回行った後での測定も行った。 Also, measurements were performed after performing a series of 10 cooling-maturation cycles of heating at 180°C for 1 hour and then allowing to cool at room temperature for 1 hour.
 (比抵抗)
 JIS R-1637に従い、四端子法により求めた。なお、測定には三菱化学製ロレスター環状ポリオレフィンフィルムGP、MCP-T600を用いた。
(Specific resistance)
It was determined by the four-terminal method according to JIS R-1637. For the measurement, Mitsubishi Chemical Lorester cyclic polyolefin film GP, MCP-T600 was used.
 以上の評価を行ったところ、本発明の光学フィルムは優れた導電性フィルムの支持体であることを確認した。 After conducting the above evaluation, it was confirmed that the optical film of the present invention is an excellent conductive film support.
 〈有機EL素子の作製方法〉
 透明導電性フィルムとして前記透明導電性フィルムを用い、この上に透明導電膜(陽電極)をパターニングした。その後、中性洗剤、アセトン、エタノールを用いて超音波洗浄し、次いで煮沸エタノール中から引き上げ乾燥した。次いで、透明導電膜表面を超音波洗浄した後、真空蒸着装置でN,N-ジフェニル-m-トリル-4,4′-ジアミン-1,1′-ビフェニル(TPD)を蒸着速度0.2nm/secで55nmの厚さに蒸着し、正孔注入輸送層とした。
<Method of manufacturing organic EL element>
The transparent conductive film was used as the transparent conductive film, and a transparent conductive film (positive electrode) was patterned on the transparent conductive film. After that, ultrasonic cleaning was performed using a neutral detergent, acetone, and ethanol, and then the product was taken out from boiling ethanol and dried. Then, after ultrasonically cleaning the surface of the transparent conductive film, N,N-diphenyl-m-tolyl-4,4′-diamine-1,1′-biphenyl (TPD) was deposited at a deposition rate of 0.2 nm/in a vacuum deposition apparatus. It was vapor-deposited with a thickness of 55 nm in sec to form a hole injecting and transporting layer.
 さらに、Alq:トリス(8-キノリノラト)アルミニウムを蒸着速度0.2nm/secで50nmの厚さに蒸着して、電子注入輸送発光層とした。次いで、スパッタ装置でDCスパッタ法にて Al・Su合金(Su:10at%)をターゲットとして陰電極を200nmの厚さに製膜した。この時のスパッタガスにはArを用い、ガス圧3.5Pa、ターゲットと基板間距離(Ts)9.0cmとした。また、投入電力は1.2W/cmとした。
 最後に、SiOを200nmの厚さにスパッタして保護層として、有機EL発光素子を得た。この有機EL発光素子は、それぞれ2本ずつの平行ストライプ状陰電極と、8本の平行ストライプ状用電極を互いに直交させ、2×2mm縦横の素子単体(画素)を互いに2mmの間隔で配置し、16画素の素子としたものである。
Further, Alq 3 :tris(8-quinolinolato)aluminum was vapor-deposited at a vapor deposition rate of 0.2 nm/sec to a thickness of 50 nm to form an electron injection/transport light emitting layer. Then, a negative electrode was formed into a film with a thickness of 200 nm by a DC sputtering method using a sputtering apparatus with an Al.Su alloy (Su: 10 at%) as a target. Ar was used as the sputtering gas at this time, the gas pressure was 3.5 Pa, and the distance between the target and the substrate (Ts) was 9.0 cm. The applied power was 1.2 W/cm 2 .
Finally, SiO 2 was sputtered to a thickness of 200 nm as a protective layer to obtain an organic EL light emitting device. In this organic EL light-emitting element, two parallel stripe negative electrodes and eight parallel stripe negative electrodes are orthogonal to each other, and 2×2 mm vertical and horizontal element single elements (pixels) are arranged at an interval of 2 mm. , A 16-pixel element.
 このようにして得られた有機EL素子を9Vで駆動させたところ、本発明の光学フィルムを用いた透明導電性フィルム1201~1206は、350cd/m以上の輝度が得られた。 When the organic EL device thus obtained was driven at 9 V, the transparent conductive films 1201 to 1206 using the optical film of the present invention provided a brightness of 350 cd/m 2 or more.
 本発明によれば、ガラス転移温度が高く、また線膨張率の低い有機ELディスプレイ用、又はタッチパネル用等、優れたディスプレイ基板用透明フィルムを提供することができる。 According to the present invention, it is possible to provide an excellent transparent film for a display substrate such as an organic EL display having a high glass transition temperature and a low coefficient of linear expansion or a touch panel.
[実施例10]
 実施例1で作製した本発明の光学フィルム101、106、107、110~112を、ナノインプリント用の基材フィルム(支持体)として用いた。
[Example 10]
The optical films 101, 106, 107, 110 to 112 of the present invention produced in Example 1 were used as a base film (support) for nanoimprint.
 (レーザー干渉露光によるモールドの作製)
 石英ガラス基板(厚さ1.2mm、70mm角)にレジストをスピンコートで塗布する。レジスト材料としては、露光部分のレジストを除去するポジ型レジストを用いる。
 液浸露光光学系を用いて、レジストに微細なパターンを描画する。液浸露光光学系は、紫外線レーザー(波長266nm)を使用して、石英ガラス基板の法線方向に対する傾き15度で二つの光束を照射してレジストに第1の干渉縞を形成し、第1の露光を行う。レーザー光源としては「コヒーレント社製MBD266」が用いられる。次に、石英ガラス基板を90度回転させ、第1の干渉縞に直交する第2の干渉縞を形成して、第2の露光を行う。第1の露光と第2の露光で、干渉縞の明るい部分が交差した部分のみが残るように現像を行う。以上のプロセスで、石英ガラス基板上に、ピッチ300nm、深さ150nmのホールが規則正しく並んだレジストが形成された。ドライエッチングで石英ガラスに描画サイズ50mm角の微細なホール構造(ピッチ300nm、深さ150nm)を形成した。
(Mold fabrication by laser interference exposure)
A resist is spin-coated on a quartz glass substrate (thickness: 1.2 mm, 70 mm square). As the resist material, a positive resist that removes the resist in the exposed portion is used.
A fine pattern is drawn on the resist using the immersion exposure optical system. The immersion exposure optical system uses an ultraviolet laser (wavelength: 266 nm) to irradiate two light beams with an inclination of 15 degrees with respect to the normal direction of the quartz glass substrate to form a first interference fringe on the resist. Exposure. "MBD266 manufactured by Coherent Co." is used as the laser light source. Next, the quartz glass substrate is rotated by 90 degrees to form second interference fringes orthogonal to the first interference fringes, and second exposure is performed. In the first exposure and the second exposure, development is performed so that only the portions where the bright portions of the interference fringes cross each other remain. Through the above process, a resist in which holes having a pitch of 300 nm and a depth of 150 nm were regularly arranged was formed on the quartz glass substrate. A fine hole structure (pitch: 300 nm, depth: 150 nm) having a drawing size of 50 mm square was formed on the quartz glass by dry etching.
 (石英ガラス基板の離型処理)
 塩素系フッ素樹脂含有シランカップリング剤であるトリデカフルオロ-1,1,2,2-テトラヒドロオクチルトリクロロシラン[CF-(CF-CH-CHSiCl]で石英ガラス製のモールドを表面処理し、微細な形状表面へフッ素樹脂の化学吸着膜を生成した。
(Releasing process of quartz glass substrate)
Chlorinated fluororesin-containing silane coupling agent tridecafluoro-1,1,2,2-tetrahydrooctyltrichlorosilane [CF 3 -(CF 2 ) 5 -CH 2 -CH 2 SiCl 3 ] made of quartz glass The mold was surface-treated to form a fluororesin chemisorption film on the surface of the fine shape.
 (液状組成物の準備)
 樹脂として、ポリメチルメタクリレート(PMMA)を準備し、トルエンに溶解して液状組成物を作製した。樹脂と溶媒の質量比率を1/20(5%)とした。
(Preparation of liquid composition)
Polymethylmethacrylate (PMMA) was prepared as a resin and dissolved in toluene to prepare a liquid composition. The mass ratio of the resin and the solvent was 1/20 (5%).
 (液状組成物の塗布)
 液晶組成物をワイヤーバーにより、80μmのウェット膜厚で石英ガラス基板上に塗布した。
(Application of liquid composition)
The liquid crystal composition was applied to a quartz glass substrate with a wet film thickness of 80 μm using a wire bar.
 (フィルムの貼合)
 液状組成物を塗布後5秒以内に、光学フィルム101、106、107、110~112を、塗布した液状組成物にそれぞれ密着させて貼合した。
(Lamination of film)
Within 5 seconds after applying the liquid composition, the optical films 101, 106, 107, and 110 to 112 were adhered to and adhered to the applied liquid composition, respectively.
 (乾燥)
 液状組成物が塗布された石英ガラス基板と光学フィルムとが貼合された状態で室温で55秒乾燥させた。
(Dry)
The quartz glass substrate coated with the liquid composition and the optical film were bonded together and dried at room temperature for 55 seconds.
 (離型)
 乾燥後、フィルムを離型したところ、フィルム上にピッチ300nm、高さ150nmのピラー形状が転写された。表面を走査型顕微鏡で観察したところ、該ピッチ、高さとも優れた均一性を有していた。
(Release)
When the film was released from the mold after drying, a pillar shape having a pitch of 300 nm and a height of 150 nm was transferred onto the film. When the surface was observed with a scanning microscope, it had excellent uniformity in both the pitch and height.
 以上から、実施例1で作製した本発明の光学フィルム101、106、107、110~112は、ナノインプリント用の基材フィルム(支持体)として用いることに優れている。 From the above, the optical films 101, 106, 107, 110 to 112 of the present invention produced in Example 1 are excellent in being used as a base film (support) for nanoimprint.
[実施例11]
 実施例1で作製した本発明の光学フィルム101、106、107、110~112を、フレキシブル電子回路用の基材フィルム(支持体)として用いた。
[Example 11]
The optical films 101, 106, 107, 110 to 112 of the present invention produced in Example 1 were used as a base film (support) for flexible electronic circuits.
 (アンカー層付基板1の作製)
 〈エチレン性の不飽和基を有する重合性化合物1の合成〉
 下記の手順に従って、重合性基としてエチレン性の不飽和基を有する重合性化合物1を合成した。
 500mlの三つ口フラスコに、エチレングリコールジアセテートを20ml、ヒドロキシエチルアクリレートを7.43g、シアノエチルアクリレートを32.08g添加し、80℃に昇温した後、その中に、油溶性アゾ重合開始剤としてV-601(ジメチル-2,2′-アゾビス(2-メチルイソプロピオネート))の0.737g及びエチレングリコールジアセテートの20mlの混合液を4時間かけて滴下し、滴下終了後、さらに3時間反応させた。
(Preparation of substrate 1 with anchor layer)
<Synthesis of Polymerizable Compound 1 Having Ethylenically Unsaturated Group>
According to the following procedure, a polymerizable compound 1 having an ethylenically unsaturated group as a polymerizable group was synthesized.
To a 500 ml three-necked flask, 20 ml of ethylene glycol diacetate, 7.43 g of hydroxyethyl acrylate and 32.08 g of cyanoethyl acrylate were added, and after heating to 80° C., an oil-soluble azo polymerization initiator was added thereto. As a mixture of V-601 (dimethyl-2,2'-azobis(2-methylisopropionate)) (0.737 g) and ethylene glycol diacetate (20 ml) was added dropwise over 4 hours. Reacted for hours.
 上記反応溶液に、ジ-tert-ブチルハイドロキノンを0.32g、ネオスタンU-600(オクチル酸ビスマス、日東化成製)を1.04g、光硬化性樹脂添加剤としてカレンズAOI(アクロキシエチルイソシアネート、昭和電工(株)製)を21.87g、及びエチレングリコールジアセテートを22g添加し、55℃で6時間反応を行った。その後、反応液にメタノールを4.1g加え、さらに1.5時間反応を行った。反応終了後、水で再沈を行い、固形物を取り出し、相互作用性基としてニトリル基を有する重合性化合物1を得た。 To the above reaction solution, 0.32 g of di-tert-butylhydroquinone, 1.04 g of Neostan U-600 (bismuth octylate, manufactured by Nitto Kasei), and Karens AOI (acryloxyethyl isocyanate, Showa Showa) as a photocurable resin additive 21.87 g of Denko Co., Ltd. and 22 g of ethylene glycol diacetate were added, and the reaction was carried out at 55° C. for 6 hours. Then, 4.1 g of methanol was added to the reaction liquid, and the reaction was further performed for 1.5 hours. After completion of the reaction, reprecipitation was carried out with water and the solid substance was taken out to obtain a polymerizable compound 1 having a nitrile group as an interactive group.
 重合性化合物1は、重合性基(エチレン性の不飽和基)を含有する繰り返し単位:ニトリル基を含有する繰り返し単位=22:78(モル比)であった。また、分子量はポリスチレン換算で、Mw=8.2万(Mw/Mn=3.4)であった。 The polymerizable compound 1 was a repeating unit containing a polymerizable group (ethylenically unsaturated group):a repeating unit containing a nitrile group=22:78 (molar ratio). Moreover, the molecular weight was Mw=82,000 (Mw/Mn=3.4) in terms of polystyrene.
 〈アンカー層塗布液1の調製〉
 上記調製した重合性化合物1を10質量部と、アセトニトリルを90質量部混合して撹拌し、固形分が10質量%のアンカー層塗布液1を調製した。
<Preparation of anchor layer coating liquid 1>
10 parts by mass of the above-prepared polymerizable compound 1 and 90 parts by mass of acetonitrile were mixed and stirred to prepare an anchor layer coating liquid 1 having a solid content of 10% by mass.
 〈アンカー層1の形成〉
 基板として実施例1で作製した光学フィルム101を用い、その表面を酸素プラズマ処理した後、アンカー層塗布液1を、乾燥後の膜厚が1.0μmとなるように、スピンコート塗布方式で塗布し、80℃で30分間乾燥した。
<Formation of anchor layer 1>
The optical film 101 manufactured in Example 1 is used as a substrate, the surface thereof is subjected to oxygen plasma treatment, and then the anchor layer coating liquid 1 is applied by a spin coating method so that the film thickness after drying is 1.0 μm. And dried at 80° C. for 30 minutes.
 〈アンカー層1の硬化処理〉
 次いで、三永電機製のUV照射ランプ(型番:UVF-502S、ランプ:UXM-501MD)を用い、1.5mW/cm2の照射パワー(ウシオ電機製紫外線積算光量計UIT150-受光センサーUVD-S254で照射パワーを測定)、積算光量が500mJ/cmの条件で紫外線照射を行って、アンカー層1を硬化させた。この硬化条件を、条件Aと称す。
<Curing treatment of anchor layer 1>
Then, using a UV irradiation lamp (model number: UVF-502S, lamp: UXM-501MD) manufactured by Sanei Denki, an irradiation power of 1.5 mW/cm2 (ultraviolet integrated light meter UIT150 manufactured by USHIO INC.-light receiving sensor UVD-S254) is used. The irradiation power was measured), and the anchor layer 1 was cured by irradiating ultraviolet rays under the condition that the integrated light amount was 500 mJ/cm 2 . This curing condition is called condition A.
 上記条件Aで硬化したアンカー層1を単離し、アセトン液中で、25℃で12時間の抽出処理を行った後、処理前のアンカー層の質量をW1(g)、アセトン抽出後のアンカー層の質量をW2(g)としたとき、下式によりゲル分率を求めた。測定の結果、アンカー層1のゲル分率は93%であった。
 ゲル分率(%)=(W2/W1)×100
After the anchor layer 1 cured under the above condition A was isolated and subjected to extraction treatment in an acetone solution at 25° C. for 12 hours, the mass of the anchor layer before treatment was W1 (g), and the anchor layer after extraction with acetone. The gel fraction was calculated by the following equation, where W2 (g) was the mass of As a result of the measurement, the gel fraction of the anchor layer 1 was 93%.
Gel fraction (%)=(W2/W1)×100
《金属パターンの作製》
 〔金属パターン1の作製〕
 上記作製したアンカー層付基板1を用いて、下記の金属パターンの形成工程に従って、金属パターン1を作製した。
<<Fabrication of metal pattern>>
[Fabrication of Metal Pattern 1]
Using the above-prepared substrate 1 with an anchor layer, a metal pattern 1 was prepared according to the following metal pattern forming step.
 (金属パターンの形成工程)
 1:触媒インクの付与工程
 2:乾燥工程
 3:表面処理工程
 4:活性化工程
 5:無電解めっき工程
 6:電気めっき工程
(Metal pattern forming process)
1: Catalyst ink applying step 2: Drying step 3: Surface treatment step 4: Activation step 5: Electroless plating step 6: Electroplating step
 (1:触媒インクの付与工程)
 〈触媒インク1の調製〉
 下記の各添加剤を混合して、触媒インク1を調製した。
 無電解めっきの触媒前駆体:酢酸パラジウム:0.05質量%
 2酢酸エチレン:79.95質量%
 t-ブチルアルコール:20質量%
(1: step of applying catalyst ink)
<Preparation of catalyst ink 1>
Catalyst ink 1 was prepared by mixing the following additives.
Electroless plating catalyst precursor: Palladium acetate: 0.05% by mass
Diethylene acetate: 79.95% by mass
t-Butyl alcohol: 20% by mass
 〈触媒インク1の付与〉
 上記調製した触媒インク1を、インクジェット記録ヘッドを用いて、前記形成したアンカー層付基板1のアンカー層上に、75μm、100μm、150μm、200μmの各ライン&スペースのパターン描画を行って、試料1を作製した。
 使用したインクジェット記録ヘッドは、ピエゾ方式で4plサイズのインク液滴を吐出することが可能なコニカミノルタ社製の512Sヘッドを用いた。
<Applying catalyst ink 1>
Using the ink jet recording head, the catalyst ink 1 prepared above was drawn on the anchor layer of the formed substrate 1 with an anchor layer by pattern drawing of lines and spaces of 75 μm, 100 μm, 150 μm, and 200 μm to prepare Sample 1 Was produced.
As the inkjet recording head used, a 512S head manufactured by Konica Minolta Co., Ltd. capable of ejecting ink droplets of 4 pl size by a piezo method was used.
 (2:乾燥工程)
 上記触媒インク1を付与した後、50℃の温風を、触媒インク付与面へ10分間吹き付けて、乾燥した。
(2: Drying process)
After applying the catalyst ink 1, warm air at 50° C. was blown onto the catalyst ink application surface for 10 minutes to dry the surface.
 (3:表面処理工程)
 乾燥を行った上記試料1に対し、下記の方法に従って、表面処理方法を施した。
(3: Surface treatment process)
The dried sample 1 was subjected to a surface treatment method according to the following method.
 〈表面処理方法〉
 ノニオン性界面活性剤含有のメッキコンディショナー(商品名:PC-321、メルタック社製)の10質量%溶液に、上記試料1を60℃で、5分間浸漬させて、表面処理を施した。
 上記表面処理を施した試料1と、未処理の試料の水に対する接触角を測定した結果、表面処理により接触角が20%以上低下していることを確認した。
<Surface treatment method>
The sample 1 was immersed in a 10 mass% solution of a plating conditioner (trade name: PC-321, manufactured by Meltac Co.) containing a nonionic surfactant at 60° C. for 5 minutes to perform surface treatment.
As a result of measuring the contact angle of the surface-treated sample 1 and the untreated sample with water, it was confirmed that the contact angle was reduced by 20% or more due to the surface treatment.
 (4:活性化工程)
 次いで、表面処理を施した試料1に対し、下記の活性化液に35℃で10分間浸漬して、活性化処理を施した。
(4: Activation process)
Then, the surface-treated sample 1 was immersed in the following activation liquid at 35° C. for 10 minutes to perform the activation treatment.
 〈活性化液〉
 「反射光又は反対側の面から出射する透過光のいずれかを撮影して測定する。
 アルカップMRD2-A(上村工業社製):18ml
 アルカップMRD2-C(上村工業社製):60ml
 純水で1000mlに仕上げた。
<Activation liquid>
"Measure by photographing either the reflected light or the transmitted light emitted from the opposite surface.
Alcup MRD2-A (manufactured by Uemura Industry Co., Ltd.): 18 ml
Alcup MRD2-C (made by Uemura Industries): 60 ml
It was made up to 1000 ml with pure water.
 (5:無電解めっき工程)
 下記の無電解銅めっき溶液を、水酸化ナトリウムで、pHを13.0に調整した後、50℃の温度で、5:活性化処理を施した試料1に無電解めっき処理を行い、約0.2μmの膜厚の銅メッキ層を形成した。
(5: Electroless plating process)
After adjusting the pH of the electroless copper plating solution described below to 13.0 with sodium hydroxide, the electroless plating process was performed on the sample 1 subjected to the 5: activation process at a temperature of 50° C. to about 0. A copper plating layer having a thickness of 0.2 μm was formed.
 〈無電解銅めっき溶液〉
 メルプレートCU-5100A(メルテックス社製):60ml
 メルプレートCU-5100B(メルテックス社製):55ml
 メルプレートCU-5100C(メルテックス社製):20ml
 メルプレートCU-5100M(メルテックス社製):40ml
 純水で1000mlに仕上げた。
<Electroless copper plating solution>
Melplate CU-5100A (Meltex): 60 ml
Melplate CU-5100B (manufactured by Meltex): 55 ml
Melplate CU-5100C (Meltex): 20 ml
Melplate CU-5100M (Meltex): 40 ml
It was made up to 1000 ml with pure water.
 上記無電解銅めっき溶液は、銅濃度として2.5質量%、ホルマリン濃度が1質量%、エチレンジアミンテトラ酢酸(EDTA)濃度が2.5質量%である。 The above electroless copper plating solution has a copper concentration of 2.5% by mass, a formalin concentration of 1% by mass, and an ethylenediaminetetraacetic acid (EDTA) concentration of 2.5% by mass.
 (6:電気めっき工程)
 上記無電解めっき処理を施した試料1を電気めっき浴に浸漬し、陽極として銅板を用い、電流密度1.5A/dmで電気めっきを行い、約15μmの銅膜を形成して、金属パターン1を作製した。
(6: Electroplating process)
The sample 1 subjected to the above electroless plating treatment is immersed in an electroplating bath, a copper plate is used as an anode, and electroplating is performed at a current density of 1.5 A/dm 2 to form a copper film of about 15 μm, and a metal pattern is formed. 1 was produced.
 〈電気めっき浴の調製〉
 硫酸銅五水塩:60g
 硫酸:190g
 塩素イオン:50mg
 カッパーグリームPCM(メルテックス社製):5ml
 純水で1000mlに仕上げた。
<Preparation of electroplating bath>
Copper sulfate pentahydrate: 60 g
Sulfuric acid: 190 g
Chloride ion: 50mg
Copper Gleam PCM (Meltex): 5 ml
It was made up to 1000 ml with pure water.
 以上の工程と同様にして、光学フィルム106、107、110~112を、フレキシブル電子回路用の基材フィルム(支持体)として用いた。 Similar to the above steps, the optical films 106, 107, 110 to 112 were used as base films (supports) for flexible electronic circuits.
 《金属パターンの評価》
 上記作製した各金属パターンについて、下記の各評価を行った。
<<Evaluation of metal pattern>>
The following respective evaluations were performed on each of the metal patterns produced above.
 〔めっき品質の評価〕
 各金属パターンの無電解めっき工程まで処理を行った試料の描画した75μm、100μm、150μm、200μmのライン&スペースパターンについて目視観察し、下記の基準に従って画像品質の評価を行った。
[Evaluation of plating quality]
The line and space patterns of 75 μm, 100 μm, 150 μm, and 200 μm drawn on the sample processed to the electroless plating step of each metal pattern were visually observed, and the image quality was evaluated according to the following criteria.
 ○:無電解めっき終了後のライン&スペースパターンでは、印字部外への異常析出が無く、めっきの光沢低下やクラック等も見られず良好な品質である
 △:無電解めっき終了後のライン&スペースパターンでは、印字部外への異常析出が僅かに発生するが、めっきの光沢低下やクラック等は認められない
 ×:無電解めっき終了後のライン&スペースパターンでは、印字部外への異常析出、めっきの光沢低下、クラックの発生のいずれか一つが発生している
 実用上△以上が許容内である。
◯: In the line & space pattern after completion of electroless plating, there is no abnormal deposition outside the printed area, and there is no deterioration in plating gloss or cracks, which is of good quality. Δ: Line & space after completion of electroless plating In the space pattern, a slight amount of abnormal deposition occurs outside the printed area, but no reduction in gloss or cracks of the plating is observed. ×: In the line & space pattern after completion of electroless plating, abnormal deposition outside the printed area One of the following is the decrease in the gloss of the plating and the occurrence of cracks.
 〔高温・高湿環境下での耐久性(密着耐性)の評価〕
 上記作製した各金属パターンを、80℃、90%RHの高温・高湿環境下で7日間保存した後、直ちに、240℃、260℃のホットプレート上で加熱処理を行い、基板と銅めっきパターン間の密着性(ブリスターの発生の有無)を目視観察し、下記の基準に従って、耐久性(密着耐性)の評価を行った。
[Evaluation of durability (adhesion resistance) under high temperature and high humidity environment]
Each of the metal patterns prepared above was stored in a high temperature and high humidity environment of 80° C. and 90% RH for 7 days, and then immediately subjected to heat treatment on a hot plate of 240° C. and 260° C. to obtain a substrate and a copper plating pattern. Adhesion between them (whether or not blister was generated) was visually observed, and durability (adhesion resistance) was evaluated according to the following criteria.
 ○:ホットプレート上で260℃に加熱しても、基板と銅めっきパターン間でのブリスターの発生は認められない
 △:ホットプレート上で240℃に加熱しても、基板と銅めっきパターン間でのブリスターの発生は認められないが、260℃の加熱では、ややブリスターの発生が認められる
 ×:ホットプレート上で240℃に加熱すると、明らかに基板と銅めっきパターン間でのブリスターの発生は認められる
 上記評価を行ったところ、本発明の光学フィルム101、106、107、110~112を用いて金属パターンを作製した試料は、いずれも△~○の評価であり、優れたフレキシブル電子回路用の基材フィルム(支持体)であることが分かった。
◯: No blister is observed between the substrate and the copper plating pattern even when heated to 260° C. on the hot plate. Δ: Even when heated to 240° C. on the hot plate, between the substrate and the copper plating pattern. No blisters are observed, but some blisters are observed when heated at 260°C. x: Blistering is clearly observed between the substrate and the copper plating pattern when heated to 240°C on a hot plate. When the above-mentioned evaluation is performed, all the samples in which the metal patterns are produced using the optical films 101, 106, 107, 110 to 112 of the present invention are evaluated as Δ to ◯, and are excellent for flexible electronic circuits. It was found to be a base film (support).
[実施例12]
 実施例1で作製した本発明の光学フィルム101、106、107、110~112を偽造防止用媒体の基材フィルム(支持体)として用いた。
[Example 12]
The optical films 101, 106, 107, 110 to 112 of the present invention produced in Example 1 were used as the base film (support) of the anti-counterfeit medium.
 (配向層用塗布液AL-1の調製)
 下記の組成物を調製し、孔径30μmのポリプロピレン製フィルターで濾過して、配向層用塗布液AL-1として用いた。
(Preparation of coating liquid AL-1 for alignment layer)
The following composition was prepared, filtered through a polypropylene filter having a pore size of 30 μm, and used as coating liquid AL-1 for alignment layer.
 〈配向層用塗布液組成〉
 ポリビニルアルコール(PVA205、クラレ(株)製):3.21質量%
 ポリビニルピロリドン(Luvitec  K30、BASFジャパン(株)製):1.48質量%
 蒸留水:52.10質量%
 メタノール:43.21質量%
<Coating liquid composition for alignment layer>
Polyvinyl alcohol (PVA205, manufactured by Kuraray Co., Ltd.): 3.21% by mass
Polyvinylpyrrolidone (Luvitec K30, manufactured by BASF Japan Ltd.): 1.48% by mass
Distilled water: 52.10% by mass
Methanol: 43.21% by mass
 (配向層用塗布液AL-2の調製)
 下記の組成物を調製し、孔径30μmのポリプロピレン製フィルターで濾過して、配向層用塗布液AL-2として用いた。
(Preparation of coating liquid AL-2 for alignment layer)
The following composition was prepared, filtered through a polypropylene filter having a pore size of 30 μm, and used as an alignment layer coating liquid AL-2.
 〈配向層用塗布液AL-2組成〉
 液晶配向剤(AL-1-1):1.0質量%
 テトラヒドロフラン:99.0質量%
<Alignment layer coating liquid AL-2 composition>
Liquid crystal aligning agent (AL-1-1): 1.0% by mass
Tetrahydrofuran: 99.0 mass%
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000119
 (光学異方性層用塗布液LC-1の調製)
 下記の組成物を調製後、孔径0.2μmのポリプロピレン製フィルターで濾過して、光学異方性層用塗布液LC-1として用いた。
(Preparation of coating liquid LC-1 for optically anisotropic layer)
After the following composition was prepared, it was filtered through a polypropylene filter having a pore size of 0.2 μm and used as a coating liquid LC-1 for an optically anisotropic layer.
 LC-1-1は二つの反応性基を有する液晶化合物であり、二つの反応性基の片方はラジカル性の反応性基であるアクリル基、他方はカチオン性の反応性基であるオキセタン基である。 LC-1-1 is a liquid crystal compound having two reactive groups, one of the two reactive groups is an acrylic group which is a radical reactive group, and the other is an oxetane group which is a cationic reactive group. is there.
 〈光学異方性層用塗布液組成〉
 重合性液晶化合物(LC-1-1):32.88質量%
 水平配向剤(LC-1-2):0.05質量%
 カチオン系光重合開始剤(CPI100-P、サンアプロ株式会社製):0.66質量%
 重合制御剤(IRGANOX1076、BASFジャパン(株)製):0.07質量%
 メチルエチルケトン:46.34質量%
 シクロヘキサノン:20.00質量%
<Coating liquid composition for optically anisotropic layer>
Polymerizable liquid crystal compound (LC-1-1): 32.88% by mass
Horizontal aligning agent (LC-1-2): 0.05% by mass
Cationic photopolymerization initiator (CPI100-P, manufactured by San-Apro Ltd.): 0.66% by mass
Polymerization control agent (IRGANOX 1076, manufactured by BASF Japan Ltd.): 0.07% by mass
Methyl ethyl ketone: 46.34 mass%
Cyclohexanone: 20.00 mass%
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000120
 (光学異方性層用塗布液LC-2の調製)
 下記の組成物を調製後、孔径0.2μmのポリプロピレン製フィルターで濾過して、光学異方性層用塗布液LC-1として用いた。
(Preparation of coating liquid LC-2 for optically anisotropic layer)
After the following composition was prepared, it was filtered through a polypropylene filter having a pore size of 0.2 μm and used as a coating liquid LC-1 for an optically anisotropic layer.
 〈光学異方性層用塗布液LC-1組成〉
 ジアクリレート液晶化合物(Paliocolor LC242(商品名、BASFジャパン(株)製)):31.53質量%
 光重合開始剤(IRGACURE907(商品名、BASFジャパン(株)製)):0.99質量%
 アルキルチオキサントン(カヤキュアDETX-S(商品名、日本化薬(株)製)):0.33質量%
 フッ素系界面活性剤(メガファックF-176PF(商品名、DIC(株)製)):0.15質量%
 メチルエチルケトン:67.00質量%
<Coating liquid LC-1 composition for optically anisotropic layer>
Diacrylate liquid crystal compound (Paliocolor LC242 (trade name, manufactured by BASF Japan Ltd.)): 31.53% by mass
Photopolymerization initiator (IRGACURE907 (trade name, manufactured by BASF Japan Ltd.)): 0.99% by mass
Alkylthioxanthone (Kayacure DETX-S (trade name, manufactured by Nippon Kayaku Co., Ltd.)): 0.33% by mass
Fluorine-based surfactant (Megaface F-176PF (trade name, manufactured by DIC Corporation)): 0.15% by mass
Methyl ethyl ketone: 67.00 mass%
 (添加剤層OC-1の調製)
 下記の組成物を調製後、孔径0.2μmのポリプロピレン製フィルターで濾過して、転写接着層用塗布液OC-1として用いた。ラジカル光重合開始剤RPI-1としては2-トリクロロメチル-5-(p-スチリルスチリル)1,3,4-オキサジアゾールを用いた。下記組成はその溶液としての使用量である。
(Preparation of additive layer OC-1)
After the following composition was prepared, it was filtered through a polypropylene filter having a pore size of 0.2 μm and used as a coating liquid OC-1 for a transfer adhesive layer. 2-Trichloromethyl-5-(p-styrylstyryl) 1,3,4-oxadiazole was used as the radical photopolymerization initiator RPI-1. The following composition is the amount used as the solution.
 〈添加剤層用塗布液組成〉
 バインダー(MH-101-5、藤倉化成(株)製):7.63質量%
 ラジカル光重合開始剤(RPI-1):0.49質量%
 界面活性剤(メガファックF-176PF、DIC(株)製):0.03質量%
 メチルエチルケトン:91.85質量%
<Coating liquid composition for additive layer>
Binder (MH-101-5, manufactured by Fujikura Kasei Co., Ltd.): 7.63% by mass
Radical photopolymerization initiator (RPI-1): 0.49% by mass
Surfactant (Megafuck F-176PF, manufactured by DIC Corporation): 0.03% by mass
Methyl ethyl ketone: 91.85 mass%
 (複屈折パターン作製材料P-1の作製)
 光学フィルム101の上にアルミニウムを60nm蒸着し、反射層付き支持体を作製した。そのアルミニウムを蒸着した面上にワイヤーバーを用いて配向層用塗布液AL-1を塗布、乾燥した。乾燥膜厚は0.5μmであった。配向層をラビング処理した後、ワイヤーバーを用いて光学異方性層用塗布液LC-1を塗布、膜面温度90℃で2分間乾燥して液晶相状態とした後、空気下にて160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて紫外線を照射してその配向状態を固定化して厚さ4.5μmの光学異方性層を形成した。この際用いた紫外線の照度はUV-A領域(波長320~400nmの積算)において500mW/cm、照射量はUV-A領域において500mJ/cmであった。光学異方性層のリターデーションは400nmであり、20℃で固体のポリマーであった。最後に、光学異方性層の上に添加剤層用塗布液OC-1を塗布、乾燥して0.8μmの添加剤層を形成し、複屈折パターン作製材料P-1を作製した。
(Preparation of birefringence pattern builder P-1)
Aluminum having a thickness of 60 nm was vapor-deposited on the optical film 101 to prepare a support with a reflective layer. The coating liquid AL-1 for alignment layer was applied to the aluminum-deposited surface using a wire bar and dried. The dry film thickness was 0.5 μm. After rubbing the alignment layer, a coating liquid LC-1 for an optically anisotropic layer is applied using a wire bar and dried at a film surface temperature of 90° C. for 2 minutes to be in a liquid crystal phase state. /Cm of an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) was used to irradiate with ultraviolet rays to fix the orientation state to form an optically anisotropic layer having a thickness of 4.5 μm. The illuminance of the ultraviolet ray used at this time was 500 mW/cm 2 in the UV-A region (accumulation of wavelength 320 to 400 nm), and the irradiation amount was 500 mJ/cm 2 in the UV-A region. The retardation of the optically anisotropic layer was 400 nm, and it was a solid polymer at 20°C. Finally, the additive layer coating liquid OC-1 was applied onto the optically anisotropic layer and dried to form an additive layer having a thickness of 0.8 μm, whereby a birefringence pattern builder P-1 was prepared.
 (偽造防止媒体A:リターデーションのパターニングされた複屈折パターン)
 P-1をレーザー走査露光によるデジタル露光機(INPREX IP-3600H、富士フイルム(株)製)にて図42に示すように、0mJ/cm、8mJ/cm、25mJ/cmの露光量を用いてロール・to・ロールでパターン露光した。図中、無地で示した領域の露光量が0mJ/cm、横線で示した領域の露光量が8mJ/cm、縦線で示した領域の露光量が25mJ/cmとなるように露光した。その後、遠赤外線ヒーター連続炉を用い、ロール・to・ロールにて、膜面温度が210℃となるように20分間加熱して、複屈折パターンを有する物品P-2を作製した。物品P-2の上に偏光板(HLC-5618、サンリッツ(株)製)をかざしたところ、所定の方向でかざしたときに、物品P-2に施した複屈折パターンを確認することができた。物品P-2の上に偏光板を介して観察されるパターンの拡大図を図43に示す。図中、地のアルミ箔が銀色を呈するのに対し、格子部は紺色ないし水色、斜線部は黄色ないし橙色を呈する二色のパターンが観察される。
(Anti-counterfeit medium A: patterned birefringence pattern of retardation)
Digital exposure machine P-1 by laser scanning exposure, as shown in FIG. 42 at (INPREX IP-3600H, produced by Fujifilm Corp.), 0mJ / cm 2, 8mJ / cm 2, the exposure amount of 25 mJ / cm 2 Was used for pattern exposure by roll-to-roll. In the figure, the exposure amount is 0 mJ / cm 2 of the area indicated by solid color, exposure so that the exposure amount of the region indicated exposure region illustrated by horizontal lines 8 mJ / cm 2, a vertical line is 25 mJ / cm 2 did. Then, using a far-infrared heater continuous furnace, the film was heated for 20 minutes by a roll-to-roll method so that the film surface temperature was 210° C., to prepare an article P-2 having a birefringence pattern. When a polarizing plate (HLC-5618, manufactured by Sanritz Co., Ltd.) is held over the article P-2, the birefringence pattern applied to the article P-2 can be confirmed when held in a predetermined direction. It was An enlarged view of the pattern observed on the article P-2 through the polarizing plate is shown in FIG. In the figure, a two-color pattern is observed in which the ground aluminum foil is silvery, while the lattice is dark blue or light blue and the shaded area is yellow or orange.
 (偽造防止媒体B::光軸のパターニングされた複屈折パターン)
 光学フィルム101の上にアルミニウムを60nm蒸着した。次いで、アルミニウムの上に、ワイヤーバーを用いて配向層用塗布液AL-2を塗布、乾燥した。乾燥膜厚は0.1μmであった。
(Anti-counterfeit medium B:: Optical axis patterned birefringence pattern)
60 nm of aluminum was vapor-deposited on the optical film 101. Then, the coating liquid AL-2 for alignment layer was applied onto aluminum using a wire bar and dried. The dry film thickness was 0.1 μm.
 得られた有機膜の上に図44に示すフォトマスクAを配置し、紫外線照射器(HOYACANDEO OPTRONICS社製、商品名:EXECURE3000)より出射される紫外光より出射される光を、直線偏光板を介して、支持体に対して垂直の方向から100mW/cm(365nm)の強度で1秒間照射した。このとき、直線偏光板の吸収軸の方位角がフォトマスクの長辺に対して0°となるように偏光板を配置した。 The photomask A shown in FIG. 44 is arranged on the obtained organic film, and the light emitted from the ultraviolet light emitted from the ultraviolet irradiator (manufactured by HOYACANDEO OPTRONICS, trade name: EXECURE3000) is converted into a linear polarizing plate. The substrate was irradiated through the substrate at an intensity of 100 mW/cm 2 (365 nm) for 1 second from the direction perpendicular to the substrate. At this time, the polarizing plate was arranged so that the azimuth angle of the absorption axis of the linear polarizing plate was 0° with respect to the long side of the photomask.
 続いて、フォトマスクを図44に示すB、C、Dと順に変更し、直線偏光板の吸収軸がそれぞれフォトマスクの長辺に対して45°、90°、135°となるように偏光板を配置した上で、同様に紫外線を照射した。 Subsequently, the photomask is sequentially changed to B, C, and D shown in FIG. 44 so that the absorption axes of the linear polarization plates are 45°, 90°, and 135° with respect to the long sides of the photomask, respectively. After arranging, was similarly irradiated with ultraviolet rays.
 次いで、ワイヤーバーを用いて、光学異方性層用塗布液LC-2を塗布、膜面温度105℃で2分間乾燥して液晶相状態とした後、空気下にて160mW/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて照度400mW/cm、照射量400mJ/cmの紫外線を照射してその配向状態を固定化して厚さ0.9μmの光学異方性層を形成することで、図45の平面図に示すパターンの、偽造防止媒体Bを作製した。 Then, the coating liquid LC-2 for an optically anisotropic layer is applied using a wire bar, dried at a film surface temperature of 105° C. for 2 minutes to be in a liquid crystal phase state, and then air-cooled at 160 mW/cm 2 under air. An optically anisotropic layer having a thickness of 0.9 μm is obtained by irradiating ultraviolet rays having an illuminance of 400 mW/cm 2 and an irradiation amount of 400 mJ/cm 2 using a metal halide lamp (manufactured by Eye Graphics Co., Ltd.) to fix the alignment state. By forming, the anti-counterfeit medium B having the pattern shown in the plan view of FIG. 45 was produced.
 図45に示すように、偽造防止媒体Bの文字A212、文字B213、文字C214、背景215の遅相軸はそれぞれ、長辺に対して0°、45°、90°、135°であった。また、これらの領域のリターデーションはいずれも135nm(λ/4)であった。 As shown in FIG. 45, the slow axes of the characters A212, B213, C214, and the background 215 of the anti-counterfeit medium B were 0°, 45°, 90°, and 135° with respect to the long sides, respectively. In addition, the retardation in each of these regions was 135 nm (λ/4).
 (製造例1)
 偽造防止媒体Aを、表面改質装置MEIR-5-600(MDエキシマー社製)にて処理した。その後、UV161墨、紅、藍、黄(T&K社製)を用いて文字、及び、図柄を凸版印刷した。その後、サンカットPLシン7LK(リンテック(株)製、正面リターデーション=5nm、膜厚50μm)を用い、ドライラミネーションを行い、製造例1の偽造防止媒体を作製した。
(Production Example 1)
The anti-counterfeit medium A was treated with a surface modification device MEIR-5-600 (manufactured by MD Excimer). After that, letters and patterns were relief-printed using UV161 black ink, red, indigo, and yellow (manufactured by T&K). After that, dry lamination was performed using Suncut PL Shin 7LK (manufactured by Lintec Co., Ltd., front retardation=5 nm, film thickness 50 μm), and an anti-counterfeit medium of Production Example 1 was produced.
 (製造例2)
 偽造防止媒体Aを偽造防止媒体Bとする以外は、製造例1と同様に、製造例2の偽造防止媒体を作製した。
(Production Example 2)
An anti-counterfeit medium of Production Example 2 was produced in the same manner as in Production Example 1 except that anti-counterfeit medium A was changed to anti-counterfeit medium B.
 (製造例3)
 ラミネートフィルムとして、表面をサンドブラスト処理したサンカットPLシン7LK(リンテック(株)製、正面リターデーション=5nm、膜厚50μm)を用いる以外は、製造例1と同様に、製造例3の偽造防止媒体を作製した。
(Production Example 3)
Forgery prevention medium of Production Example 3 is the same as Production Example 1 except that a sun blasted PLSIN 7LK (manufactured by Lintec Co., Ltd., front retardation=5 nm, film thickness 50 μm) whose surface is sandblasted is used as the laminate film. Was produced.
 (製造例4)
 製造例1の偽造防止媒体の上に、LUXEL  JET  UV250GT(富士フイルム(株)製)を用い、KIインクにより、バリアブル情報を印字した。このようにして、製造例4の偽造防止媒体を作製した。
(Production Example 4)
Variable information was printed on the anti-counterfeit medium of Production Example 1 with KI ink using LUXEL JET UV250GT (manufactured by FUJIFILM Corporation). In this way, the anti-counterfeit medium of Production Example 4 was produced.
 (製造例5)
 偽造防止媒体Aを、表面改質装置MEIR-5-600(MDエキシマー社製)にて処理した。その後、LUXEL  JET  UV250GT(富士フイルム(株)製)を用い、KIインクにより印刷を行った。その後、サンカットPLシン7LK(リンテック(株)製、正面リターデーション=5nm、膜厚50μm)を用い、ドライラミネーションを行い、製造例5の偽造防止媒体を作製した。
(Production Example 5)
The anti-counterfeit medium A was treated with a surface modification device MEIR-5-600 (manufactured by MD Excimer). Then, printing was performed with KI ink using LUXEL JET UV250GT (manufactured by FUJIFILM Corporation). After that, dry lamination was performed using a sun cut PL Shin 7LK (manufactured by Lintec Co., Ltd., front retardation=5 nm, film thickness 50 μm) to prepare a forgery prevention medium of Production Example 5.
 (製造例6)
 偽造防止媒体Aを、表面改質装置MEIR-5-600(MDエキシマー社製)にて処理した。その後、UVフレキソ500墨、紅、藍、黄(T&K社製)を用いて文字、及び、図柄を凸版印刷した。その後、サンカットPLシン7LK(リンテック(株)製、正面リターデーション=5nm、膜厚50μm)を用い、ドライラミネーションを行い、製造例6の偽造防止媒体を作製した。
(Production Example 6)
The anti-counterfeit medium A was treated with a surface modification device MEIR-5-600 (manufactured by MD Excimer). Thereafter, letters and patterns were letterpress-printed using UV flexo 500 ink, red, indigo, and yellow (manufactured by T&K). After that, dry lamination was performed using a sun cut PL Shin 7LK (manufactured by Lintec Co., Ltd., front retardation=5 nm, film thickness 50 μm) to manufacture a forgery prevention medium of Production Example 6.
 (製造例7)
 偽造防止媒体Aを、表面改質装置MEIR-5-600(MDエキシマー社製)にて処理した。その後、文字、及び、図柄をスクリーン印刷した。その後、サンカットPLシン7LK(リンテック(株)製、正面リターデーション=5nm、膜厚50μm)を用い、ドライラミネーションを行い、製造例6の偽造防止媒体を作製した。
(Production Example 7)
The anti-counterfeit medium A was treated with a surface modification device MEIR-5-600 (manufactured by MD Excimer). After that, characters and designs were screen printed. After that, dry lamination was performed using a sun cut PL Shin 7LK (manufactured by Lintec Co., Ltd., front retardation=5 nm, film thickness 50 μm) to manufacture a forgery prevention medium of Production Example 6.
 (製造例8)
 ラミネートフィルムとして、KES25Nマット PLシン 7LK(リンテック(株)製、正面リターデーション=33nm、膜厚25μm)を用いる以外は、製造例1と同様に、製造例8の偽造防止媒体を作製した。
(Production Example 8)
An anti-counterfeit medium of Production Example 8 was produced in the same manner as in Production Example 1 except that KES25N Matt PL Shin 7LK (manufactured by Lintec Corporation, front retardation=33 nm, film thickness 25 μm) was used as the laminate film.
 (製造例9)
 ラミネートフィルムとして、トリアセチルセルロース(商品名:TDP、富士フイルム(株)製、正面リターデーション=1nm、膜厚60μm)に、粘着剤(商品名:Z2-25、パナック(株)製)を張り合わせたものを用いる以外は、製造例1と同様に、製造例9の偽造防止媒体を作製した。
(Production Example 9)
As a laminate film, triacetyl cellulose (trade name: TDP, manufactured by FUJIFILM Corporation, front retardation = 1 nm, film thickness 60 μm) is pasted with an adhesive (trade name: Z2-25, manufactured by Panac Co., Ltd.) An anti-counterfeit medium of Production Example 9 was produced in the same manner as in Production Example 1 except for using the above.
 同様にして、光学フィルム106、107、110~112を偽造防止用媒体の基材フィルム(支持体)として用いた。 Similarly, the optical films 106, 107, 110 to 112 were used as the base film (support) of the anti-counterfeit medium.
 製造例1~9の偽造防止媒体は、いずれも、潜像視認性に優れ、かつ、テープ密着試験や耐擦過性試験によって印刷が剥がれず、耐久性に優れていた。したがって、本発明の光学フィルムは、偽造防止用媒体の基材フィルム(支持体)として好ましく用いることができることが分かった。 Each of the anti-counterfeit media of Production Examples 1 to 9 was excellent in latent image visibility, and was excellent in durability because the print did not peel off by the tape adhesion test and the scratch resistance test. Therefore, it was found that the optical film of the present invention can be preferably used as a base film (support) of a medium for preventing forgery.
 本発明は、高耐久で強靭かつ表面及び内部において光学的乱れを起こさない均質なアクリル樹脂フィルムの製造方法に利用することができる。 The present invention can be used for a method for producing a highly durable, tough and homogeneous acrylic resin film that does not cause optical disorder on the surface and inside.
 1 溶解釜
 2 ポンプ
 3、6、12、15 濾過器
 4、13 ストックタンク
 5、14 送液ポンプ
 8、16 導管
 10 紫外線吸収剤仕込釜
 20 合流管
 21 混合機
 30 ダイ
 31 無端支持体
 32 ウェブ
 33 剥離位置
 34 テンター装置
 35 ローラー乾燥装置
 36 搬送ローラー
 37 巻取り装置
 41 仕込釜
 42 ストックタンク
 43 ポンプ
 44 濾過器
100 主濾過装置
102 限外濾過装置
103 静置タンク(ストックタンク)
104 ドープ流送管(流送管)
105 ポンプ
106 希釈用溶媒タンク
107 溶媒注入管
108 配管
110 流延ダイ
111 無端支持体
112 剥離ロール
113 開閉バルブ
114 開閉バルブ
115 開閉バルブ
116 開閉バルブ
117 開閉バルブ
118 溶媒排出管
119 溶媒再利用返送管
212 文字A
213 文字B
214 文字C
215 背景
372 デカンタ
381 粗親水溶剤タンク
382 粗疎水溶剤タンク
383、385 蒸留塔
384 親水溶剤タンク
386 疎水溶剤タンク
DESCRIPTION OF SYMBOLS 1 Melting kettle 2 Pumps 3, 6, 12, 15 Filtration machine 4, 13 Stock tank 5, 14 Liquid sending pump 8, 16 Conduit 10 Ultraviolet absorber charging pot 20 Combiner pipe 21 Mixer 30 Die 31 Endless support 32 Web 33 Peeling position 34 Tenter device 35 Roller drying device 36 Conveying roller 37 Winding device 41 Stocking pot 42 Stock tank 43 Pump 44 Filter 100 Main filtering device 102 Ultrafiltration device 103 Stationary tank (stock tank)
104 Dope flow pipe (flow pipe)
105 Pump 106 Diluting Solvent Tank 107 Solvent Injecting Pipe 108 Piping 110 Casting Die 111 Endless Support 112 Peeling Roll 113 Opening Valve 114 Opening Valve 115 Opening Valve 116 Opening Valve 117 Opening Valve 118 Solvent Discharge Pipe 119 Solvent Reuse Return Pipe 212 Letter A
213 letter B
214 letter C
215 Background 372 Decanter 381 Crude hydrophilic solvent tank 382 Crude hydrophobic solvent tank 383, 385 Distillation column 384 Hydrophilic solvent tank 386 Hydrophobic solvent tank

Claims (2)

  1.  アクリル樹脂と、ゴム粒子を含有するアクリル樹脂フィルムの製造方法であって、
     ガラス転移温度(Tg)が120~180℃の範囲内で、かつ、重量平均分子量が30万~400万のアクリル樹脂と、コア・シェル構造を有するゴム粒子とを含有するドープを調製する工程と、
     前記ドープを濾過精度が5~100μmの範囲内であるフィルターを用いて濾過してドープを調製する工程と、
     前記濾過後のドープを支持体上に流延しウェブを剥離する工程と、
     前記ウェブを乾燥する工程とを有し、かつ、
     前記アクリル樹脂フィルムに対し75度の角度で平行光線を入射し、光学くし幅を0.125mmとした条件下で測定したとき、透過写像性C値を80~100%の範囲内とするアクリル樹脂フィルムの製造方法。
    Acrylic resin, a method for producing an acrylic resin film containing rubber particles,
    A step of preparing a dope containing an acrylic resin having a glass transition temperature (Tg) in the range of 120 to 180° C. and a weight average molecular weight of 300,000 to 4,000,000 and rubber particles having a core-shell structure; ,
    Preparing a dope by filtering the dope with a filter having a filtration accuracy within the range of 5 to 100 μm;
    A step of casting the dope after filtration on a support and peeling the web,
    And a step of drying the web, and
    An acrylic resin having a transmission image clarity C value within a range of 80 to 100% when measured under the condition that a parallel light ray is incident on the acrylic resin film at an angle of 75 degrees and an optical comb width is 0.125 mm. Film manufacturing method.
  2.  前記コア・シェル構造を有するゴム粒子の含有量が、アクリル樹脂フィルムに対して、5~20質量%以内である請求項1に記載のアクリル樹脂フィルムの製造方法。 The method for producing an acrylic resin film according to claim 1, wherein the content of the rubber particles having the core-shell structure is within 5 to 20 mass% with respect to the acrylic resin film.
PCT/JP2020/000439 2019-01-15 2020-01-09 Method for producing acrylic resin film WO2020149206A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020566390A JP7371641B2 (en) 2019-01-15 2020-01-09 Acrylic resin film manufacturing method, applied product, applied product manufacturing method, gas barrier film manufacturing method, conductive film manufacturing method, organic electroluminescent element manufacturing method, and counterfeit prevention medium manufacturing method
KR1020217021760A KR20210102384A (en) 2019-01-15 2020-01-09 Manufacturing method of acrylic resin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019004477 2019-01-15
JP2019-004477 2019-03-05

Publications (1)

Publication Number Publication Date
WO2020149206A1 true WO2020149206A1 (en) 2020-07-23

Family

ID=71613878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000439 WO2020149206A1 (en) 2019-01-15 2020-01-09 Method for producing acrylic resin film

Country Status (3)

Country Link
JP (1) JP7371641B2 (en)
KR (1) KR20210102384A (en)
WO (1) WO2020149206A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113174253A (en) * 2021-04-27 2021-07-27 温州大学 Doped luminescent material independent of doping proportion and preparation method and application thereof
CN113786945A (en) * 2021-09-05 2021-12-14 广州市加杰机械设备有限公司 Automatic coating production line device and method
WO2022059465A1 (en) * 2020-09-17 2022-03-24 コニカミノルタ株式会社 Cover member, base film for cover member, and display device provided with same
WO2022153785A1 (en) * 2021-01-15 2022-07-21 コニカミノルタ株式会社 Film roll and method for manufacturing film roll

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102568164B1 (en) * 2023-03-21 2023-08-17 이종영 Upcycled Band and Manufacturing Method for Manufacturing Ratan Crafts

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003012859A (en) * 2001-06-29 2003-01-15 Konica Corp Cellulose ester film, protected film for polarizing plate and polarizing plate
WO2015098491A1 (en) * 2013-12-25 2015-07-02 コニカミノルタ株式会社 Cellulose-ester film, manufacturing method therefor, and polarizing plate
JP2016042159A (en) * 2014-08-18 2016-03-31 富士フイルム株式会社 Optical film and method for manufacturing the same, polarizing plate protective film, polarizing plate, and liquid crystal display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064732A1 (en) 2013-11-01 2015-05-07 富士フイルム株式会社 Polarizer-protecting film, dope composition, method for manufacturing polarizer-protecting film, polarizer, and liquid-crystal display

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003012859A (en) * 2001-06-29 2003-01-15 Konica Corp Cellulose ester film, protected film for polarizing plate and polarizing plate
WO2015098491A1 (en) * 2013-12-25 2015-07-02 コニカミノルタ株式会社 Cellulose-ester film, manufacturing method therefor, and polarizing plate
JP2016042159A (en) * 2014-08-18 2016-03-31 富士フイルム株式会社 Optical film and method for manufacturing the same, polarizing plate protective film, polarizing plate, and liquid crystal display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059465A1 (en) * 2020-09-17 2022-03-24 コニカミノルタ株式会社 Cover member, base film for cover member, and display device provided with same
JPWO2022059465A1 (en) * 2020-09-17 2022-03-24
JP7315110B2 (en) 2020-09-17 2023-07-26 コニカミノルタ株式会社 Foldable flexible display cover member, base film for foldable flexible display cover member, and display device provided with them
WO2022153785A1 (en) * 2021-01-15 2022-07-21 コニカミノルタ株式会社 Film roll and method for manufacturing film roll
CN113174253A (en) * 2021-04-27 2021-07-27 温州大学 Doped luminescent material independent of doping proportion and preparation method and application thereof
CN113174253B (en) * 2021-04-27 2022-05-24 温州大学 Doped luminescent material independent of doping proportion and preparation method and application thereof
CN113786945A (en) * 2021-09-05 2021-12-14 广州市加杰机械设备有限公司 Automatic coating production line device and method

Also Published As

Publication number Publication date
JPWO2020149206A1 (en) 2021-12-02
JP7371641B2 (en) 2023-10-31
KR20210102384A (en) 2021-08-19

Similar Documents

Publication Publication Date Title
JP7191795B2 (en) Cyclic polyolefin film
WO2020149206A1 (en) Method for producing acrylic resin film
TWI411512B (en) A method of manufacturing an optical film in which a concavo-convex structure is provided, an optical film, a gate grid polarizer, and a retardation film
CN101326454B (en) Process for producing polarizer, polarizer, and liquid-crystal display
US8246737B2 (en) Cellulose ester optical film, polarizing plate and liquid crystal display using the same, method of manufacturing cellulose ester optical film, and copolymer
KR20150036476A (en) Display device with touch panel
KR101431999B1 (en) CONTINUOUS POLYMER FILM PRODUCTION METHOD, POLYMER FILM, λ/4 PLATE, POLARIZING PLATE, AND LIQUID CRYSTAL DISPLAY DEVICE
WO2011114884A1 (en) Hard coat film, production method therefor, polarizing plate, and liquid crystal display device
TW200906587A (en) Method for producing optical film, optical film, polarizing plate and display
WO2012035849A1 (en) Antiglare film, antiglare film manufacturing method, polarizing plate and liquid crystal display device
WO2008041657A1 (en) Polycycloolefin resin film, process for producing the same, polarizer, and liquid-crystal display
KR101662466B1 (en) Display device with touch panel
JP7088279B2 (en) Polarizing plate, manufacturing method of polarizing plate and liquid crystal display device
KR102036468B1 (en) Release display
JP5971121B2 (en) Manufacturing method of optical film
KR20210037525A (en) Film roll and method for manufacturing the same
JP5948750B2 (en) Antiglare film, method for producing antiglare film, polarizing plate and stereoscopic image display device
US20080113121A1 (en) Cyclic polyolefin film, and polarizing plate and liquid crystal display device using the same
JP7099440B2 (en) A polarizing plate and a display device equipped with the polarizing plate.
JP6164050B2 (en) Optical film, polarizing plate, manufacturing method thereof, and image display device
JP6707852B2 (en) Method for producing polarizing plate protective film and method for producing polarizing plate
JP6048506B2 (en) Optical film
JP5891870B2 (en) Optical film and method for producing optical film
JP2012068562A (en) Image display apparatus
JP2022058558A (en) Laminate for organic el display device and organic el display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20742141

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020566390

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217021760

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20742141

Country of ref document: EP

Kind code of ref document: A1