WO2020149176A1 - Substrate processing method and substrate processing system - Google Patents

Substrate processing method and substrate processing system Download PDF

Info

Publication number
WO2020149176A1
WO2020149176A1 PCT/JP2020/000197 JP2020000197W WO2020149176A1 WO 2020149176 A1 WO2020149176 A1 WO 2020149176A1 JP 2020000197 W JP2020000197 W JP 2020000197W WO 2020149176 A1 WO2020149176 A1 WO 2020149176A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating film
plasma
coating
film
unit
Prior art date
Application number
PCT/JP2020/000197
Other languages
French (fr)
Japanese (ja)
Inventor
久志 源島
村松 誠
寛之 藤井
大和 戸根川
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2020149176A1 publication Critical patent/WO2020149176A1/en

Links

Images

Definitions

  • the present disclosure relates to a substrate processing method and a substrate processing system.
  • Patent Document 1 discloses a method for forming a silicon nitride thin film (silicon nitride film) in which perhydropolysilazane or a modified product thereof is applied on a substrate and then baked at a temperature of 600° C. or higher under vacuum. ..
  • the present disclosure provides a substrate processing method and a substrate processing system capable of improving the quality of a silicon nitride film formed from a coating film containing a polysilazane compound.
  • a substrate processing method is to apply a polysilazane composition to a substrate to form a coating film, remove a solvent in the coating film, and remove the solvent from the coating film. , Performing plasma treatment with plasma of an inert gas and heat treating the coating film subjected to the plasma treatment.
  • a substrate processing method and a substrate processing system capable of improving the quality of a silicon nitride film formed from a coating film containing a polysilazane compound.
  • FIG. 1 is a schematic diagram illustrating a schematic configuration of a substrate processing system.
  • FIG. 2 is a schematic diagram illustrating the internal configuration of the coating and developing apparatus.
  • FIG. 3 is a schematic view illustrating the configuration of the coating unit.
  • FIG. 4 is a schematic view illustrating the configuration of the heat treatment unit.
  • FIG. 5 is a schematic diagram illustrating the configuration of the plasma processing apparatus.
  • FIG. 6 is a flowchart showing an example of a procedure for forming a silicon nitride film.
  • FIG. 7A is a graph showing the component analysis result when the plasma treatment is not performed.
  • FIG. 7B is a graph showing the component analysis result when the plasma treatment is performed.
  • FIG. 8A is a graph showing the component analysis result when the plasma treatment is not performed.
  • FIG. 7A is a graph showing the component analysis result when the plasma treatment is not performed.
  • FIG. 8B is a graph showing the result of component analysis when plasma processing is performed.
  • FIG. 9A and FIG. 9B are graphs showing another component analysis result when the plasma treatment is not performed.
  • FIG. 10A and FIG. 10B are graphs showing another component analysis result when plasma processing is performed.
  • FIG. 11 is a graph showing the measurement results of the film thickness in Examples and Comparative Examples.
  • FIG. 12 is a graph showing the evaluation results of the refractive index in Examples and Comparative Examples.
  • FIG. 13 is a graph showing an example of the analysis result of the density of the coating film before and after the plasma treatment.
  • FIG. 14 is a graph showing the evaluation results of etching rates in the examples and comparative examples.
  • FIG. 15 is a graph showing the evaluation results of etching rates in the examples and comparative examples.
  • FIG. 16A is a graph showing the measurement result of the film thickness when the type of plasma is changed.
  • FIG. 16B is a graph showing the measurement results of the refractive index when the type of plasma is changed.
  • FIG. 17 is a schematic diagram illustrating the configuration of the plasma processing apparatus.
  • FIG. 18 is a graph showing the measurement results of film thickness in Examples.
  • FIG. 19 is a graph showing the evaluation results of the refractive index in the examples.
  • FIG. 20 is a graph showing the evaluation results of etching rates in Examples and Comparative Examples.
  • FIG. 21 is a schematic view illustrating the configuration of the coating unit.
  • FIG. 22 is a graph showing the result of component analysis when atmosphere control is performed.
  • FIG. 23 is a graph showing the evaluation result of the etching rate in the example.
  • the substrate processing system 1 is a system for forming an insulating film, a photosensitive film, exposing the photosensitive film, and developing the photosensitive film on a substrate.
  • the substrate to be processed is, for example, a semiconductor wafer W.
  • the substrate processing system 1 forms a silicon nitride film (SiN film) as an insulating film on the wafer W.
  • the substrate processing system 1 applies the polysilazane composition to the wafer W to form a coating film, and forms the silicon nitride film by subjecting the coating film to the processing described later.
  • the photosensitive film is, for example, a resist film.
  • the substrate processing system 1 includes a coating/developing apparatus 2, an exposure apparatus 3, a plasma processing apparatus 10, and a control apparatus 100.
  • the exposure device 3 is a device that exposes a resist film (photosensitive film) formed on the wafer W (substrate). Specifically, the exposure apparatus 3 irradiates the exposed portion of the resist film with energy rays by a method such as liquid immersion exposure.
  • the coating/developing apparatus 2 applies a part of the process of forming an insulating film of the polysilazane composition on the surface of the wafer W and the resist (chemical solution) on the surface of the wafer W (substrate) before the exposure process by the exposure device 3. A process of applying to form a resist film is performed. In addition, the coating/developing device 2 performs a developing process for the resist film after the exposure process.
  • the coating/developing apparatus 2 includes a carrier block 4, a processing block 5, and an interface block 6.
  • the carrier block 4 introduces the wafer W into the coating/developing apparatus 2 and guides the wafer W from the coating/developing apparatus 2.
  • the carrier block 4 can support a plurality of carriers C for the wafer W, and has a built-in transfer device A1 including a transfer arm.
  • the carrier C accommodates a plurality of circular wafers W, for example.
  • the transfer device A1 takes out the wafer W from the carrier C, transfers the wafer W to the processing block 5, receives the wafer W from the processing block 5, and returns the wafer W into the carrier C.
  • the processing block 5 has a plurality of processing modules 11, 12, 13, and 14.
  • the processing module 11 includes a coating unit U1, a heat treatment unit U2, and a transfer device A3 that transfers the wafer W to these units.
  • the processing module 11 performs a part of the processing of forming an insulating coating on the surface of the wafer W by the coating unit U1 and the heat treatment unit U2.
  • the coating unit U1 coats a processing liquid for forming an insulating coating on the wafer W to form a coating film.
  • the heat treatment unit U2 performs various heat treatments associated with the formation of the insulating coating. Specifically, the heat treatment unit U2 removes the solvent in the coating film by heating the coating film formed by coating the treatment liquid. In this case, the heat treatment unit U2 functions as a solvent removal unit. Further, the heat treatment unit U2 performs heat treatment for heating the coating film from which the solvent has been removed and which has been subjected to the plasma treatment described later by the plasma treatment device 10. In this case, the heat treatment unit U2 functions as a heat treatment unit.
  • the processing module 12 includes a coating unit U1, a heat treatment unit U2, and a transfer device A3 that transfers a wafer W to these units.
  • the processing module 12 forms a resist film by the coating unit U1 and the heat treatment unit U2.
  • the coating unit U1 coats a resist on the insulating coating as a treatment liquid for forming the coating.
  • the heat treatment unit U2 performs various heat treatments associated with the formation of the coating. As a result, a resist film is formed on the surface of the wafer W.
  • the processing module 13 includes a coating unit U1, a heat treatment unit U2, and a transfer device A3 that transfers a wafer W to these units.
  • the processing module 13 forms an upper layer film on the resist film by the coating unit U1 and the heat treatment unit U2.
  • the coating unit U1 coats the processing liquid for forming the upper layer film on the resist film.
  • the heat treatment unit U2 performs various heat treatments associated with the formation of the upper layer film.
  • the processing module 14 develops the exposed resist film by the coating unit U1 and the heat treatment unit U2.
  • the coating unit U1 of the processing module 14 coats the surface of the exposed wafer W with the developing solution and then rinses it off with the rinse solution to develop the resist film.
  • the heat treatment unit U2 performs various heat treatments associated with the development processing. Specific examples of heat treatment associated with the development treatment include heat treatment before the development treatment (PEB: Post Exposure Bake) and heat treatment after the development treatment (PB: Post Bake).
  • a shelf unit U10 is provided on the carrier block 4 side in the processing block 5.
  • the shelf unit U10 is divided into a plurality of cells arranged in the vertical direction.
  • a transfer device A7 including a lifting arm is provided near the shelf unit U10. The transfer device A7 moves the wafer W up and down between the cells of the shelf unit U10.
  • a shelf unit U11 is provided on the interface block 6 side in the processing block 5.
  • the shelf unit U11 is divided into a plurality of cells arranged in the vertical direction.
  • the interface block 6 transfers the wafer W to and from the exposure apparatus 3.
  • the interface block 6 has a built-in transfer device A8 including a transfer arm and is connected to the exposure device 3.
  • the transfer device A8 transfers the wafer W arranged on the shelf unit U11 to the exposure device 3.
  • the transfer device A8 receives the wafer W from the exposure device 3 and returns it to the shelf unit U11.
  • the coating unit U1 includes a rotation holding unit 20 and a liquid supply unit 30.
  • the rotation holding unit 20 has a rotation unit 21, a shaft 22, and a holding unit 23.
  • the rotating unit 21 operates based on the operation signal from the control device 100 to rotate the shaft 22.
  • the rotation unit 21 is, for example, a rotation actuator.
  • the holding portion 23 is provided at the tip of the shaft 22.
  • the wafer W is placed on the holding unit 23.
  • the holding unit 23 holds the wafer W substantially horizontally, for example, by suction. That is, the rotation holding unit 20 rotates the wafer W around the central axis (rotation axis) perpendicular to the front surface Wa of the wafer W with the posture of the wafer W substantially horizontal. In the example of FIG. 3, the rotation holding unit 20 rotates the wafer W counterclockwise as viewed from above at a predetermined rotation speed.
  • the liquid supply unit 30 is configured to supply the processing liquid L1 to the front surface Wa of the wafer W.
  • the processing liquid L1 is the coating liquid L for forming the insulating coating.
  • the processing liquid L1 is a resist liquid for forming a resist film.
  • the processing liquid L1 is a coating liquid for forming the upper layer film.
  • the processing liquid L1 is a developing solution.
  • the coating liquid L for forming the insulating film is a polysilazane composition that is a material for the silicon nitride film. That is, the coating unit U1 of the processing module 11 coats the front surface Wa of the wafer W with the polysilazane composition to form the coating film AF on the wafer W.
  • this polysilazane composition a conventionally known arbitrary polysilazane compound dissolved in a solvent can be used.
  • the polysilazane compound is not particularly limited and can be arbitrarily selected as long as the effects shown in the present disclosure are not impaired.
  • the polysilazane compound may be either an inorganic compound or an organic compound.
  • Examples of the polysilazane compound include those composed of a combination of units represented by the following general formulas (Ia) to (Ic): (In the formula, m1 to m3 are numbers representing the degree of polymerization.)
  • As the polysilazane compound those having a styrene-equivalent weight average molecular weight of 700 to 30,000 may be used among the above combinations.
  • examples of other polysilazane compounds include, for example, mainly the compound represented by the general formula (II):
  • R 1 , R 2 and R 3 are each independently a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, or a group other than these groups which is directly bonded to silicon such as a fluoroalkyl group.
  • examples thereof include polysilazane compounds having a skeleton composed of the structural unit and having a number average molecular weight of about 100 to 50,000 or modified products thereof. These polysilazane compounds may be used in combination of two or more kinds.
  • the polysilazane composition used in the present disclosure contains a solvent capable of dissolving the above polysilazane compound.
  • a solvent capable of dissolving the above polysilazane compound.
  • Such a solvent is not particularly limited as long as it can dissolve the above polysilazane compound, but specific examples of the solvent include the following: (A) Aromatic compounds such as benzene, toluene, xylene, ethylbenzene, diethylbenzene, trimethylbenzene, triethylbenzene, etc.
  • These solvents may be appropriately mixed in two or more kinds in order to adjust the evaporation rate of the solvent, reduce the harmfulness to the human body, or adjust the solubility of each component.
  • the polysilazane composition may contain other additive components as needed.
  • examples of such components include a catalyst that accelerates the reaction such as a crosslinking accelerator that accelerates the crosslinking reaction of polysilazane, a viscosity modifier for adjusting the viscosity of the composition, and the like.
  • a phosphorus compound such as tris(trimethylsilyl)phosphate may be contained for the purpose of gettering effect of sodium.
  • the content of each of the above components changes depending on the coating conditions and heating conditions (heat treatment conditions).
  • the concentration of the polysilazane compound contained in the polysilazane composition is arbitrary.
  • the content of various additives other than the polysilazane compound varies depending on the kind of the additive and the like, but the amount added to the polysilazane compound may be, for example, 0.001 to 40% by weight. Alternatively, the added amount may be 0.005 to 30% by weight. Alternatively, the added amount may be 0.01 to 20% by weight.
  • the liquid supply unit 30 shown in FIG. 3 includes a liquid source 31, a pump 32, a valve 33, a nozzle 34, and a pipe 35.
  • the liquid source 31 functions as a supply source of the processing liquid L1.
  • the pump 32 operates based on the operation signal from the control device 100, sucks the processing liquid L1 from the liquid source 31, and sends it to the nozzle 34 via the pipe 35 and the valve 33.
  • the nozzle 34 is arranged above the wafer W so that the ejection port faces the front surface Wa of the wafer W.
  • the nozzle 34 can discharge the processing liquid L1 sent from the pump 32 onto the front surface Wa of the wafer W.
  • the pipe 35 connects the liquid source 31, the pump 32, the valve 33, and the nozzle 34 in order from the upstream side.
  • the heat treatment unit U2 includes a heating plate 44, a chamber 40, a plurality of support pins 46, and a gas supply unit 50.
  • the hot plate 44 includes a heater 45.
  • the heating plate 44 supports the wafer W to be heat-treated (object to remove the solvent) and heats the supported wafer W.
  • the heat plate 44 is formed in a substantially disc shape as an example.
  • the diameter of the heating plate 44 may be larger than the diameter of the wafer W.
  • the heat plate 44 may be made of a metal having a high thermal conductivity, such as aluminum, silver, or copper.
  • the heater 45 raises the temperature of the heating plate 44.
  • the heater 45 may be composed of a resistance heating element.
  • the heater 45 generates heat when a current according to an instruction from the control device 100 flows through the heater 45. Then, the heat from the heater 45 is transferred to raise the temperature of the heating plate 44.
  • the chamber 40 forms a heat treatment space for heat treatment.
  • the chamber 40 includes an upper chamber 41 and a lower chamber 42.
  • the upper chamber 41 is connected to a driving unit (not shown), and moves in the vertical direction with respect to the lower chamber 42.
  • the upper chamber 41 includes a top plate facing the wafer W on the hot plate 44, and a sidewall surrounding the wafer W on the hot plate 44.
  • the lower chamber 42 includes a holding portion 43 and holds a hot plate 44.
  • the support pins 46 are pins that support the wafer W from below.
  • the support pin 46 extends in the vertical direction so as to penetrate the heating plate 44.
  • the plurality of support pins 46 may be arranged at equal intervals in the circumferential direction around the center of the heating plate 44.
  • the drive unit 47 moves the support pin 46 up and down according to an instruction from the control device 100.
  • the drive unit 47 is, for example, a lift actuator.
  • the gas supply unit 50 is configured to supply gas into the chamber 40 (heat treatment space).
  • the gas supply unit 50 supplies nitrogen gas into the chamber 40.
  • the gas supply unit 50 includes a gas supply source 53, a valve 52, and a pipe 54.
  • the gas supply source 53 functions as a gas supply source.
  • the valve 52 switches between an open state and a closed state according to an instruction from the control device 100.
  • the gas supply source 53 sends out gas into the chamber 40 (heat treatment space) through the pipe 54 when the valve 52 is in the open state.
  • the plasma processing apparatus 10 performs plasma processing on a film containing a polysilazane compound formed by applying the polysilazane composition to the wafer W.
  • the plasma processing apparatus 10 may perform plasma processing on a coating film formed by coating the wafer W with the polysilazane composition, and plasma processing may be performed on the coating film from which the solvent has been removed by the heat treatment unit U2. May be given.
  • to perform plasma treatment means that at least the front surface Wa of the wafer W is in contact with the plasma gas in a container containing a gas in a plasma state (hereinafter referred to as “plasma gas”).
  • plasma gas a gas in a plasma state
  • the plasma processing apparatus 10 is connected to the coating/developing apparatus 2 via the transport mechanism 19 (see FIG. 2).
  • the transfer mechanism 19 transfers the wafer W between the coating/developing apparatus 2 and the plasma processing apparatus 10.
  • the plasma processing apparatus 10 is, for example, a parallel plate type apparatus. As shown in FIG. 5, the plasma processing apparatus 10 includes a processing container 68, a mounting table 60, a top plate section 70, a power supply section 80, and an exhaust section 90.
  • the processing container 68 has conductivity and is formed in a substantially cylindrical shape.
  • a ground wire 69 is electrically connected to the processing container 68, and the processing container 68 is grounded.
  • the mounting table 60 is provided in the processing container 68 and supports the wafer W to be processed.
  • the mounting table 60 includes a substantially disc-shaped electrostatic chuck 61 and a substantially annular focus ring 62.
  • the electrostatic chuck 61 is a substantially disk-shaped member, and is formed, for example, by sandwiching an electrostatic chuck electrode between a pair of ceramics.
  • a susceptor 63 as a lower electrode is provided on the lower surface of the electrostatic chuck 61.
  • the susceptor 63 is formed of a metal such as aluminum into a substantially disc shape.
  • a support base 64 is provided at the bottom of the processing container 68 via an insulating plate 65, and the susceptor 63 is supported on the upper surface of the support base 64. Electrodes (not shown) are provided inside the electrostatic chuck 61, and the wafer W is adsorbed and held on the electrostatic chuck 61 by the electrostatic force generated by applying a DC voltage to the electrode.
  • the focus ring 62 for improving the uniformity of the plasma processing is made of, for example, conductive silicon, and is arranged on the upper surface of the susceptor 63 and on the outer peripheral portion of the electrostatic chuck 61.
  • the outer surfaces of the susceptor 63 and the support base 64 are covered with a cylindrical member 66 made of, for example, quartz.
  • a coolant passage (not shown) through which a coolant flows is provided inside the support base 64, and the temperature of the wafer W held by the electrostatic chuck 61 is controlled by controlling the temperature of the coolant. It
  • the power supply unit 80 includes high frequency power supplies 81 and 83 and matching units 82 and 84.
  • a high frequency power supply 81 for supplying high frequency power to generate plasma is electrically connected to the susceptor 63 via a matching unit 82.
  • the high frequency power supply 81 is configured to output high frequency power having a frequency of 27 to 100 MHz, for example. Further, the internal impedance of the high frequency power supply 81 and the load impedance are matched by the matching device 82.
  • the susceptor 63 is electrically connected to a high frequency power source 83 for supplying ions to the wafer W by supplying high frequency power to the susceptor 63 and applying a bias to the wafer W through a matching unit 84.
  • the high frequency power supply 83 is configured to output high frequency power having a frequency of 400 kHz to 13.56 MHz, for example.
  • the matching unit 84 matches the internal impedance of the high frequency power source 83 and the load impedance.
  • the high frequency power supplies 81 and 83 and the matching devices 82 and 84 are connected to the control device 100, and their operations are controlled by the control device 100.
  • a top plate portion 70 is arranged above the mounting table 60 (upper part of the processing container 68).
  • the top plate portion 70 includes an upper electrode 73 and a gas diffusion chamber 76.
  • the upper electrode 73 is supported on the upper portion of the processing container 68 via the conductive holding member 71. Therefore, the upper electrode 73 is grounded via the holding member 71 and the processing container 68.
  • the upper electrode 73 is composed of an electrode plate 74 that forms a surface facing the wafer W held by the electrostatic chuck 61, and an electrode support 75 that supports the electrode plate 74 from above.
  • the electrode plate 74 is made of a low-resistance conductor or semiconductor with little Joule heat.
  • the electrode support 75 is made of a conductor.
  • a gas diffusion chamber 76 formed in a substantially disc shape is provided in the central portion inside the electrode support 75.
  • a plurality of gas discharge holes 77 for supplying a processing gas into the processing container 68 are formed in the lower portion of the electrode plate 74 and the electrode support body 75 so as to penetrate through the lower portions of the electrode plate 74 and the electrode support body 75. ing.
  • a gas supply pipe 78 is connected to the gas diffusion chamber 76.
  • a gas supply source 79 is connected to the gas supply pipe 78 as shown in FIG. 5, and the gas supply source 79 supplies the processing gas to the gas diffusion chamber 76 via the gas supply pipe 78.
  • the processing gas supplied to the gas diffusion chamber 76 is introduced into the processing container 68 through the gas discharge hole 77.
  • the processing gas supplied from the gas supply source 79 contains an inert gas.
  • a rare gas for example, argon gas
  • an ammonia (NH 3 ) gas or a nitrogen gas
  • a gas containing no oxygen component may be used.
  • a gas containing nitrogen and hydrogen may be used, a gas containing ammonia may be used, or a gas containing nitrogen, hydrogen and ammonia may be used.
  • the flow rate of the nitrogen component may be 50 mL/min to 500 mL/min and the flow rate of the hydrogen component may be 50 mL/min to 500 mL/min at the reference temperature.
  • the ratio of the hydrogen component to the nitrogen component may be approximately equal to 1.
  • the plasma processing apparatus 10 uses the plasma of the inert gas as the plasma gas to perform the plasma processing on the coating film of the wafer W.
  • the plasma of the inert gas is a plasma gas obtained by deriving a processing gas containing the inert gas.
  • An exhaust unit 90 is arranged below the processing container 68.
  • the exhaust unit 90 includes an exhaust port 91, an exhaust chamber 92, an exhaust pipe 93, and an exhaust device 94.
  • An exhaust port 91 is provided on the bottom surface of the processing container 68.
  • An exhaust chamber 92 is formed below the exhaust port 91, and an exhaust device 94 is connected to the exhaust chamber 92 via an exhaust pipe 93. Therefore, by driving the exhaust device 94, the inside of the processing container 68 can be exhausted through the exhaust port 91 and the inside of the processing container can be depressurized to a predetermined vacuum degree.
  • the controller 100 controls the substrate processing system 1 partially or wholly.
  • the control device 100 is composed of one or a plurality of control computers.
  • the control device 100 includes a circuit including one or more processors, a memory, a storage, a timer, and an input/output port.
  • the storage includes a computer-readable storage medium such as a hard disk.
  • the storage medium stores a program for causing the control device 100 to execute a substrate processing procedure described later.
  • the storage medium may be a removable medium such as a non-volatile semiconductor memory, a magnetic disk or an optical disk.
  • the memory temporarily stores the program loaded from the storage medium of the storage and the calculation result by the processor.
  • the processor executes the above program in cooperation with the memory.
  • the timer measures the elapsed time by counting, for example, a reference pulse having a constant cycle.
  • the input/output port inputs/outputs an electric signal to/from a unit or device to be controlled according to a command from the processor.
  • the control device 100 controls the substrate processing system 1 so as to execute the substrate processing including the formation of the insulating film in the following procedure.
  • the control device 100 controls the transfer device A1 so as to transfer the wafer W in the carrier C on which the insulating film has not been formed to the shelf unit U10, and arranges this wafer W in the cell for the processing module 11.
  • the transport device A7 is controlled.
  • control device 100 controls the transfer device A3 so as to transfer the wafer W of the shelf unit U10 to the coating unit U1 in the processing module 11. Then, the control device 100 controls the coating unit U1 so as to coat the front surface Wa of the wafer W with the polysilazane composition (step S01).
  • step S01 for example, the control device 100 controls the rotation holding unit 20 to hold the wafer W in the holding unit 23 and rotate the wafer W at a predetermined rotation speed.
  • the rotation speed at this time may be, for example, about 0 rpm to 5000 rpm (for example, 450 rpm to 1000 rpm) at the time of coating and about 50 rpm to 5000 rpm at the time of drying.
  • the control device 100 controls the pump 32 and the valve 33 to discharge the polysilazane composition (coating liquid L) from the nozzle 34 onto the front surface Wa of the wafer W.
  • the coating film AF is formed on the front surface Wa of the wafer W.
  • the control device 100 rotates the wafer W for about 10 seconds to 60 seconds at the above-described number of rotations, and performs control so that the coating film AF having a film thickness of about 10 nm to 1000 nm is formed.
  • the control device 100 controls the transfer device A3 to transfer the wafer W on which the coating film AF of the polysilazane composition is formed to the heat treatment unit U2 in the processing module 11.
  • step S02 controls the heat treatment unit U2 so as to remove the solvent contained in the coating film AF (step S02).
  • the controller 100 stores the wafer W in the heat treatment space in the chamber 40, and heats the wafer W for a predetermined time in the air atmosphere or the atmosphere with a small oxygen component (for example, nitrogen atmosphere).
  • the heat treatment unit U2 is controlled as described above.
  • the controller 100 sets the valve 52 to the open state and controls the heat treatment unit U2 so as to send the nitrogen gas from the gas supply source 53 into the heat treatment space.
  • the control device 100 keeps the valve 52 in the closed state.
  • the controller 100 controls the hot plate 44 so that the temperature is suitable for removing the solvent in the coating film AF by adjusting the current value to the heater 45 in the hot plate 44.
  • the temperature for heating the wafer W may be about 80° C. to 170° C. (150° C. as an example) in the air atmosphere.
  • the heating temperature may be about 100° C. to 220° C. (200° C. as an example) in a nitrogen atmosphere.
  • the time for heating the wafer W (heating time) may be about 120 seconds to 240 seconds (180 seconds as an example) in the air atmosphere and the nitrogen atmosphere.
  • the control device 100 opens the chamber 40 and removes the solvent in the coating film AF to form a wafer (hereinafter, referred to as “coating film AR”).
  • the support pin 46 (driving unit 47) and the transfer device A3 are controlled so that W is returned to the shelf unit U10. Then, the control device 100 controls the transfer device A1 so that the wafer W is accommodated in the carrier C.
  • the control device 100 controls the transfer mechanism 19 so as to transfer the wafer W housed in the carrier C and containing the coating film AR to the plasma processing device 10. Then, the control device 100 controls the plasma processing device 10 so that the coating film AR is subjected to plasma processing by plasma of an inert gas (step S03).
  • step S03 first, the wafer W is placed on the electrostatic chuck 61 so that the coating film AR faces upward. Then, the control device 100 controls the plasma processing device 10 so that an inert gas (for example, a gas containing nitrogen and hydrogen) is supplied from the gas supply source 79 into the processing container 68 as a processing gas for generating plasma. ..
  • an inert gas for example, a gas containing nitrogen and hydrogen
  • the control device 100 controls the power supply unit 80 so that the high frequency power supply 81 and the high frequency power supply 83 continuously apply the high frequency power to the susceptor 63 which is the lower electrode.
  • a high frequency electric field is formed between the upper electrode 73 and the electrostatic chuck 61.
  • plasma of the inert gas is generated in the processing container 68, and the coating film AR is subjected to plasma processing by the plasma.
  • the control device 100 maintains the state in which the wafer W is housed in the processing container 68 while generating plasma of an inert gas so that the coating film AR is subjected to plasma processing for a predetermined time.
  • the time for performing the plasma treatment may be, for example, about 30 seconds to 120 seconds (60 seconds as an example).
  • the control device 100 applies the wafer W including the film (hereinafter, referred to as “coating film AP”) formed by performing the plasma treatment to the coating film AR to the coating/developing device 2 (carrier).
  • the transport mechanism 19 is controlled to transport to block 4).
  • the control device 100 controls the transfer device A1 so as to transfer the wafer W containing the coating film AP in the carrier C to the shelf unit U10, and transfers the wafer W so as to be arranged in the cell for the processing module 11.
  • Control device A7 controls the transfer device A3 to transfer the wafer W containing the coating film AP to the thermal processing unit U2 in the processing module 11.
  • step S04 controls the heat treatment unit U2 in the processing module 11 so that the coating film AP is subjected to the heat treatment (step S04).
  • step S04 for example, the control device 100 stores the wafer W including the coating film AP in the heat treatment space in the chamber 40, and the wafer W is added to the wafer W under an air atmosphere or an atmosphere with a small oxygen component (for example, a nitrogen atmosphere).
  • the heat treatment unit U2 is controlled to perform heat treatment for a predetermined time.
  • the control device 100 sets the valve 52 to the open state and controls the heat treatment unit U2 so as to send the nitrogen gas from the gas supply source 53 into the heat treatment space.
  • the controller 100 controls the hot plate 44 so that the temperature is suitable for the heat treatment of the coating film AP by adjusting the current value to the heater 45 in the hot plate 44.
  • the temperature (heating temperature) for heating the wafer W including the coating film AP may be higher than the heating temperature for removing the solvent in step S02.
  • the heating temperature of the wafer W including the coating film AP may be about 250° C. to 550° C.
  • the heating temperature of the wafer W including the coating film AP may be about 400° C. to 500° C. (450° C. as an example).
  • the time (heating time) for heating the wafer W including the coating film AP may be about 1 minute to 300 minutes.
  • the insulating film is formed from the coating film AF of the polysilazane composition coated on the wafer W by the series of processes described above.
  • the control device 100 opens the chamber 40, controls the transfer device A3 so as to return the wafer W containing the insulating film to the shelf unit U10, and uses the wafer W for the processing module 12.
  • the transfer device A7 is controlled so that the transfer device A7 is placed in the cell.
  • control device 100 controls the transfer device A3 to transfer the wafer W of the shelf unit U10 to the coating unit U1 and the heat treatment unit U2 in the processing module 12. Further, the control device 100 controls the coating unit U1 and the heat treatment unit U2 so as to form a resist film on the insulating coating of the wafer W. After that, the control device 100 controls the transfer device A3 so as to return the wafer W to the shelf unit U10, and further controls the transfer device A7 so as to arrange the wafer W in the cell for the processing module 13.
  • control device 100 controls the transfer device A3 so as to transfer the wafer W of the shelf unit U10 to each unit in the processing module 13. Further, the control device 100 controls the coating unit U1 and the heat treatment unit U2 so as to form an upper layer film on the resist film of the wafer W. After that, the control device 100 controls the transfer device A3 so as to transfer the wafer W to the shelf unit U11.
  • control device 100 controls the transfer device A8 so that the wafer W accommodated in the shelf unit U11 is sent to the exposure device 3. Then, in the exposure apparatus 3, the resist film formed on the wafer W is exposed. After that, the control device 100 receives the wafer W that has been subjected to the exposure processing from the exposure device 3, and controls the transfer device A8 to arrange the wafer W in the cell for the processing module 14 in the shelf unit U11.
  • control device 100 controls the transfer device A3 to transfer the wafer W of the shelf unit U11 to the heat treatment unit U2 in the processing module 14. Then, the control device 100 controls the heat treatment unit U2 so as to subject the resist film of the wafer W to the heat treatment before development. Next, the control device 100 controls the coating unit U1 and the heat treatment unit U2 so that the resist film of the wafer W which has been subjected to the heat treatment before the development by the heat treatment unit U2 is subjected to the development treatment and the heat treatment after the development treatment. After that, the control device 100 controls the transfer device A3 to return the wafer W to the shelf unit U10, and controls the transfer devices A7 and A1 to return the wafer W into the carrier C. This completes the substrate processing procedure including the formation of the insulating coating.
  • FT-IR FT-IR
  • a compound composed of —(SiH 2 NH)— as a basic unit was used as the polysilazane compound contained in the polysilazane composition applied in step S01.
  • dibutyl ether was used as the solvent contained in the polysilazane composition.
  • a plasma processing was performed for 60 seconds using a gas containing hydrogen as a nitrogen gas as a processing gas for generating plasma of an inert gas.
  • the heat treatment temperature was set to 450° C. in a nitrogen atmosphere.
  • substrate by the same procedure as the above except not performing the heat processing of step S04 was prepared.
  • FT-IR Fourier transform infrared spectroscopy
  • FIG. 7A and FIG. 8A show analysis results when the plasma treatment is not performed.
  • FIG. 7B and FIG. 8B show the analysis results when the plasma treatment is performed.
  • the wave number respectively show the infrared absorption spectrum in the range is 4000cm -1 ⁇ 1500cm -1.
  • the wave number respectively show the infrared absorption spectrum in the range is 1500cm -1 ⁇ 400cm -1.
  • the vertical axis shows the absorbance.
  • the result in the case where the heat treatment in step S04 is not performed is shown as "no heat treatment”.
  • the results when the heat treatment time (heating time) in step S04 is 3 minutes, 10 minutes, and 150 minutes are shown as “3 min”, “10 min”, and “150 min”.
  • Si-H in the membrane of the analyte (silicon - hydrogen) if the bond is included, increase in absorbance in the vicinity of a wave number of 2200 cm -1 ⁇ 2100 cm -1 (peak) appears. From the results of comparison between FIG. 7A and FIG. 7B, it can be seen that “Si—H” bonds in the film are reduced by performing the plasma treatment in step S03.
  • the plasma treatment reduces the “Si—H” bonds and the “Si—O” bonds and relatively increases the “Si—N” bonds in the film.
  • the increase in the absorbance at a wave number of around 1100 cm ⁇ 1 in FIGS. 8A and 8B is considered to be due to the components of the natural oxide film of silicon existing in the wafer W in advance.
  • FIG. 9A, FIG. 9B, FIG. 10A, and FIG. 10B show analysis results (component ratios) of components in the film by X-ray photoelectron spectroscopy (XPS). Shown in.
  • the conditions of various treatments for forming the insulating coating to be analyzed by X-ray photoelectron spectroscopy were the same as those for the analysis by Fourier transform infrared spectroscopy, and the heat treatment time in step S04 was 150 minutes.
  • 9(a) and 9(b) show the analysis results when the plasma treatment of step S03 was not performed.
  • FIGS. 10A and 10B show the analysis results when the plasma treatment of step S03 is performed.
  • FIG. 9A is the component ratio in the film after the processing of steps S01 and S02 is performed
  • the analysis result of FIG. 9B is the processing of steps S01, S02, and S04.
  • FIG. 9A and FIG. 9B show the change of the component by performing step S04.
  • the analysis result of FIG. 10A is the component ratio in the film after the processing of steps S01 to S03 is performed
  • the analysis result of FIG. 10B is the processing of steps S01 to S04. It is the component ratio in the film afterward. That is, FIG. 10A and FIG. 10B show changes in the components due to performing step S04.
  • the horizontal axis represents the sputtering time (minutes) according to the depth of the wafer W including the film (distance from the surface of the wafer W), and the vertical axis represents each component (element).
  • the ratio (%) is shown.
  • the Si component ratio approaches 100%, but the portion where the Si component ratio is 100% is the Si substrate existing under the film. Is shown (a part which is not a film).
  • the component ratio in the film in which steps S01 to S03 have been performed is represented by formula (3).
  • the component ratio in the film subjected to the processing of steps S01 to S04 is represented by the equation (4).
  • the proportion of nitrogen in the case of performing the plasma treatment is higher than that in the case of not performing the plasma treatment (equation (2)).
  • Table 1 shows the composition ratio (number ratio of elements) of silicon, nitrogen, oxygen, and hydrogen in the polysilazane compound as the comparison target, and the insulating coating after the plasma processing (after the processing of steps S01 to S03) as the analysis target.
  • 3 shows the component ratio (element number ratio) of each element in FIG.
  • the component ratio of each element in the polysilazane compound is obtained from the chemical formula of the polysilazane compound contained in the polysilazane composition used for forming the coating film. From the results in Table 1, it can be seen that the proportion of hydrogen is reduced by performing the plasma treatment. That is, it is estimated that a part of hydrogen in the coating film is lost by performing the plasma treatment. Further, it can be seen that the proportion of oxygen in the coating film does not change much depending on the presence or absence of plasma treatment.
  • the polysilazane composition is applied to the wafer W to form the coating film AF, the solvent in the coating film AF is removed, and the coating film with the solvent removed ( The coating film AR) is subjected to plasma treatment with plasma of an inert gas, and heat treatment of the plasma-treated coating film (coating film AP) is included. That is, in the substrate processing method according to the above-described embodiment, the film containing the polysilazane compound formed by applying the polysilazane composition to the substrate is subjected to plasma processing using plasma of an inert gas.
  • the quality of the insulating film formed by the polysilazane composition can be improved by performing the plasma treatment with the plasma of the inert gas as compared with the case where the plasma treatment is not performed. it can.
  • the insulating coating obtained through the plasma treatment has a high refractive index and an improved etching resistance.
  • the hydrogen element in the insulating film is reduced and the “Si—N” bond is increased, so that the portion where the interatomic distance between Si and N in the film is reduced is increased, so that the density of the insulating film is high.
  • the refractive index of the insulating coating is increased and the etching resistance is improved.
  • the silicon nitride film is often formed by using CVD from the viewpoint of quality. Since the above-described substrate processing method can obtain a silicon nitride film having a quality similar to that of the silicon nitride film formed by CVD, it may be replaced with a method of forming a silicon nitride film from a coating solution of a polysilazane composition instead of CVD. It will be possible. Since the processing time from the coating film of the polysilazane composition to the formation of the insulating film can be shorter than the time required for the film formation by CVD, the substrate processing throughput can be improved by replacing CVD with the present substrate processing method. It is possible to improve.
  • the film formation temperature is generally about 500°C to 800°C.
  • a high temperature for example, 600° C. or higher
  • cost may increase and throughput may decrease.
  • the plasma-treated coating film is heat-treated at a relatively low temperature of 550° C. or lower.
  • the quality of the silicon nitride film is improved by performing the plasma treatment regardless of whether the heat treatment is performed at a low temperature or not.
  • the heat treatment unit U2 heats the wafer W including the coating film AF, whereby the solvent in the coating film AF is removed.
  • the unit that performs the heat treatment and the solvent removal in step S04 can be shared, and the substrate processing system 1 can be simplified.
  • the heat treatment unit U2 heats the coating film AF in a nitrogen atmosphere, so that the solvent in the coating film AF is removed.
  • the formation of an oxide film on the surface of the coating film AF is suppressed as compared with the case where heating for removing the solvent is performed in the air atmosphere, so that the quality as an insulating coating is improved.
  • the inert gas used for the plasma treatment is a gas containing nitrogen.
  • the plasma treatment increases the refractive index of the insulating coating, but may reduce the film thickness.
  • the reduction of the film thickness is suppressed, so that both the securing of the film thickness and the increase of the refractive index of the insulating coating can be achieved.
  • the processing gas used to generate the plasma of nitrogen gas contains hydrogen.
  • the nitrogen gas since the nitrogen gas is turned into plasma by hydrogen, it is possible to perform the plasma treatment more efficiently.
  • the refractive index may be higher than that when plasma treatment is performed using nitrogen gas plasma in the case of not containing hydrogen.
  • the insulating coatings according to Examples 1 to 4 were formed by the following procedure. First, in the coating unit U1 of the processing module 11, the polysilazane composition (coating liquid L) was supplied to the front surface Wa of the wafer W to form the coating film AF. At this time, the wafer W was rotated at 1000 rpm for 20 seconds to form a coating film AF having a film thickness of 50 nm. In order to obtain the insulating coatings of Examples 1 to 4, as the polysilazane compound contained in the polysilazane composition, a compound composed of —(SiH 2 NH)— as a basic unit was used. In addition, dibutyl ether was used as the solvent contained in the polysilazane composition.
  • the wafer W was heated in the atmosphere to remove the solvent in the coating film AF.
  • the heating temperature (the temperature of the heating plate 44) was set to 150° C.
  • the coating film AF was heated for 180 seconds to form the coating film AR (the coating film from which the solvent was removed).
  • the coating film AR was subjected to plasma processing.
  • a plasma of nitrogen gas is generated using a processing gas containing nitrogen and hydrogen, and the wafer W is held in the plasma processing apparatus 10 (processing container 68) in a state where the plasma is generated for 60 seconds, whereby the coating film is formed.
  • AP coating film subjected to plasma treatment
  • the heat treatment is performed on the wafer W on which the coating film AP corresponding to the first embodiment is formed in a nitrogen atmosphere to form the insulating coatings according to the second to fourth embodiments.
  • the insulating film of Example 2 was obtained by performing a heat treatment for 3 minutes on the coating film AP.
  • the insulating film of Example 3 was obtained by performing heat treatment on the coating film AP for 10 minutes.
  • the coating film AP was heat-treated for 150 minutes to obtain an insulating coating film of Example 4.
  • Example 5 The insulating coating according to Example 5 was formed in the same manner as the insulating coating according to Example 1, except that the wafer W was heated in the nitrogen atmosphere in the heat treatment unit U2 of the processing module 11. When the wafer W was heated to remove the solvent, the heating temperature (temperature of the heating plate 44) was set to 200° C., and the coating film AF was heated for 180 seconds. As a result, the insulating coating according to Example 5 was obtained.
  • the heat treatment is performed on the wafer W on which the coating film AP corresponding to the fifth embodiment is formed in the heat treatment unit U2 of the processing module 11 in the nitrogen atmosphere, thereby performing the heat treatment.
  • An insulating film according to Nos. 6 to 8 was formed. That is, specifically, the insulating film of Example 6 was obtained by performing a heat treatment for 3 minutes on the coating film AP. Further, the insulating film of Example 7 was obtained by performing heat treatment on the coating film AP for 10 minutes. Further, the coating film AP was heat-treated for 150 minutes to obtain an insulating coating of Example 8.
  • Comparative Examples 1 to 4 An insulating coating film according to Comparative Example 1 was formed in the same manner as the insulating coating film according to Example 1 except that the plasma treatment was not performed on the coating film AR.
  • the wafer W on which the coating film AP corresponding to Comparative Example 1 was formed was heated in a nitrogen atmosphere, so that the Comparative Example An insulating film according to Nos. 2 to 4 was formed.
  • the heat treatment times for the coating film AP when forming the insulating coatings of Comparative Examples 2 to 4 were 3 minutes, 10 minutes, and 150 minutes, respectively.
  • Comparative Examples 5-8 An insulating coating film according to Comparative Example 5 was formed in the same manner as the insulating coating film according to Example 5 except that the plasma treatment was not performed on the coating film AR.
  • the wafer W on which the coating film AP corresponding to Comparative Example 5 was formed was subjected to the heat treatment in the nitrogen atmosphere, and thus the Comparative Example An insulating film according to Nos. 6 to 8 was formed.
  • the heat treatment times for the coating film AP when forming the insulating coatings of Comparative Examples 6 to 8 were 3 minutes, 10 minutes, and 150 minutes, respectively.
  • a silicon nitride film was formed by CVD.
  • DCS diichlorosilane
  • ammonia were used as raw material gases.
  • the thickness of the insulating coating film of Reference Example 1 was set to 50 nm.
  • the coating film AR (the coating film from which the solvent has been removed) is irradiated with ultraviolet rays (UV) having an energy of 10000 mJ in the depressurized processing space.
  • UV ultraviolet rays
  • Table 2 shows the conditions for forming the insulating coating according to the above-mentioned examples, comparative examples, and reference examples.
  • the film thickness [nm] of each of the insulating coatings of Examples 1, 4, 5, 8 and Comparative Examples 1, 4, 5, 8 was measured.
  • the film thickness was measured by a spectroscopic ellipsometry method using a film measuring device (model Aleris8350; manufactured by KLA Tencor). Further, a substantially central position of the insulating coating in a top view was selected as a measurement location, and the film thickness at the measurement location was measured.
  • FIG. 11 shows the measurement results of these film thicknesses. From the measurement result of FIG. 11, it was confirmed that the film thickness was reduced by the plasma treatment regardless of the presence or absence of the heat treatment after the plasma treatment.
  • the refractive index of each of the insulating coatings of Examples 1, 4, 5, 8 and Comparative Examples 1, 4, 5, 8 and Reference Examples 1, 2 was measured.
  • the refractive index the refractive index for light with a wavelength of 633 nm was measured.
  • the refractive index was measured by a spectroscopic ellipsometry method using a film measuring device (type Aleris8350; manufactured by KLA Tencor). Further, a substantially central position of the insulating coating in a top view was selected as a measurement location, and the refractive index at the measurement location was measured. Utilizing the tendency that the refractive index increases as the density of the insulating coating increases, the density of the insulating coating is evaluated using the refractive index as an index.
  • FIG. 12 shows the measurement results of the refractive indexes of the insulating coatings of Examples 1, 4, 5, 8 and Comparative Examples 1, 4, 5, 8 and Reference Examples 1 and 2. From the measurement results of FIG. 12, whether the plasma treatment is performed in comparison with the case where the plasma treatment is not performed regardless of whether the wafer W is heated in the air atmosphere or the nitrogen atmosphere when the wafer W is heated to remove the solvent. It was confirmed that the refractive index was increased in the case. That is, it was confirmed that the density of the insulating coating was improved when the plasma treatment was performed. Furthermore, it was confirmed that when the plasma treatment was performed, an insulating coating film having a refractive index similar to that of the silicon nitride film (Reference Example 1) formed by CVD was obtained.
  • the same degree of refractive index as in the case of performing film formation by CVD may not be obtained. confirmed. It was confirmed that the refractive index is slightly higher when the heating condition for removing the solvent in step S02 (atmosphere in the heating space) is nitrogen than when it is the atmosphere.
  • FIG. 13 shows the measurement results of the density (film density) [g/cm 3 ] of the insulating film using the X-ray reflectance method (XRR: X-Ray Reflectometry).
  • XRR X-ray Reflectance method
  • the thickness of the coating film AP was set to 50 nm, and the heat treatment in step S02 was performed at a heating temperature of 150° C. for 180 seconds in the air atmosphere. Further, in the plasma processing in step S03, a processing gas containing nitrogen and hydrogen was used.
  • the film density of the coating film AR is 1.44 in almost the entire thickness direction of the film, whereas the film density of the coating film AP is 2.47, 2.34 in order from the surface (0 nm). It was 1.95 and 1.63, which were confirmed to be higher than the film density of the coating film AR.
  • FIG. 14 shows the etching rate evaluation results for the insulating coatings of Examples 1 to 4, Comparative Examples 1 to 4, and Reference Examples 1 and 2.
  • FIG. 15 shows the etching rate evaluation results for the insulating coatings of Examples 5 to 8, Comparative Examples 5 to 8 and Reference Examples 1 and 2. From the evaluation results of FIGS. 14 and 15, it can be seen that the insulating coatings of Comparative Examples 1 to 8 have almost the same etching resistance as the silicon oxide film. That is, it is understood that the insulating coatings of Comparative Examples 1 to 8 are substantially silicon oxide films.
  • the insulating coatings of Examples 1 to 4 have a lower etching rate than the insulating coatings of Comparative Examples 1 to 4, and the insulating coatings of Examples 5 to 8 are more etched than the insulating coatings of Comparative Examples 5 to 8. You can see that the rate is low. That is, it was confirmed that the insulating coatings of Examples 1 to 8 (insulating coatings subjected to plasma treatment) had improved etching resistance as compared with insulating coatings not subjected to plasma treatment.
  • the insulating coatings of Examples 1 to 8 could obtain an etching rate comparable to that of the insulating coating formed by CVD.
  • the ultraviolet irradiation was performed instead of the plasma treatment (the insulating coating of Reference Example 2), the same etching rate as when the film was formed by CVD was not obtained.
  • the etching rate evaluation result under the present conditions did not largely depend on the heating condition (atmosphere of the heating space) for removing the solvent in step S02.
  • the film thickness and the refractive index of the insulating film were measured by changing the type of processing gas in plasma processing (hereinafter referred to as "type of plasma").
  • 16(a) and 16(b) show the measurement results of the film thickness and the refractive index when the type of plasma is changed.
  • the type of plasma measurement using a processing gas containing nitrogen and hydrogen represented by “N 2 H 2 ”, a gas containing argon represented by “Ar”, and a gas containing nitrogen represented by “N 2 ”is performed. went.
  • the ratios of nitrogen and hydrogen contained in the processing gas containing nitrogen and hydrogen were set to the same level.
  • “Wo_Tre” indicates the measurement result when the plasma treatment is not performed.
  • the processing is performed under the same conditions except for the type of plasma.
  • the specific configuration of the substrate processing system is not limited to the configuration of the substrate processing system 1 illustrated above.
  • the substrate processing system includes a coating unit for coating the substrate with the polysilazane composition, a unit for removing the solvent in the coating film, a plasma processing apparatus for performing plasma processing on the coating film from which the solvent has been removed, and a plasma processing unit. Any unit may be used as long as it has a heat treatment unit for heat-treating the coating film.
  • the plasma processing apparatus 10 may be provided in the coating/developing apparatus 2.
  • the plasma processing apparatus 10 may be provided in the processing module 11 or the interface block 6.
  • the substrate processing system 1 may include a plasma processing apparatus 10A shown in FIG. 17 instead of the plasma processing apparatus 10.
  • the plasma processing apparatus 10A is different from the plasma processing apparatus 10 in that the number of wafers W that can be plasma-processed at substantially the same timing, a method of generating plasma gas, and that heat treatment can be performed in parallel with the plasma processing. ..
  • the plasma processing apparatus 10A includes a wafer boat 110, a processing container 120, a plasma gas supply unit 130 (plasma processing unit), a heating gas supply unit 160 (heat treatment unit), and an exhaust unit 170. Have and. Each element of the plasma processing apparatus 10A is controlled by the control device 100.
  • the wafer boat 110 holds a plurality of wafers W.
  • the wafer boat 110 is configured so that, for example, about 20 to 150 wafers W can be placed.
  • the wafer boat 110 holds the plurality of wafers W in a state where the front surfaces Wa of the plurality of wafers W are horizontal and arranged in the vertical direction with a space provided therebetween.
  • the wafer boat 110 is made of a metal material such as aluminum.
  • the processing container 120 accommodates the wafer boat 110 that holds a plurality of wafers W.
  • the processing container 120 forms a processing space for performing plasma processing by the plasma processing apparatus 10A.
  • the processing container 120 is formed, for example, so as to extend in the vertical direction and has a cylindrical shape.
  • An opening for loading and unloading the wafer boat 110 may be formed at the lower end of the processing container 120, and a lid that can be opened and closed may be provided at the opening.
  • the processing container 120 is made of a metal material such as aluminum.
  • the processing container 120 is grounded via a ground wire.
  • the plasma gas supply unit 130 generates plasma gas and supplies the plasma gas to the processing space in the processing container 120. Since the plasma film is supplied to the processing space to perform the plasma processing on the coating film of each wafer W, the plasma gas supply unit 130 performs the plasma processing on the coating film of the wafer W. Function as.
  • the plasma gas supply unit 130 has a rectification unit 140 and a plasma gas generation unit 150.
  • the rectification unit 140 supplies the plasma gas generated by the plasma gas generation unit 150 to the processing space inside the processing container 120.
  • the rectification unit 140 includes an expansion unit 141 and a plurality of rectification plates 142.
  • the expansion part 141 is provided on one side wall of the processing container 120 and is formed so as to project outward from the side wall.
  • the vertical length of the expansion portion 141 is set so as to cover substantially the entire vertical length of the wafer boat 110.
  • the plurality of straightening vanes 142 are provided in the opening formed in the sidewall of the processing container 120.
  • Each of the plurality of rectifying plates 142 is horizontally arranged, and the plurality of rectifying plates 142 rectifies the flow of the plasma gas in the expansion portion 141 into a laminar flow state to supply the plasma gas into the processing container 120. To be done.
  • the plasma gas generation unit 150 includes a pipe 151, a microwave generation source 152, and a gas introduction unit 153.
  • One end of the pipe 151 is connected to the space inside the expansion section 141 via a gas hole 154 provided on the outer wall of the expansion section 141.
  • the microwave generation source 152 is connected in the middle of the pipe 151 via the waveguide 155.
  • the gas introduction unit 153 is connected to the other end of the pipe 151 and is configured to be able to be introduced into the pipe 151 while controlling the flow rate of the processing gas.
  • the processing gas introduced into the pipe 151 is converted into plasma by the microwaves from the microwave generation source 152, and the generated plasma gas is supplied into the expanded portion 141 through the gas holes 154.
  • the frequency of the microwave generated by the microwave generation source 152 is, for example, 2.45 GHz, but is not limited to this, and another frequency, for example, 400 MHz may be used.
  • a gas containing an inert gas may be used as the processing gas.
  • the heating gas supply unit 160 supplies the heated gas to the processing space inside the processing container 120. Since the heated gas is supplied to the processing space in the processing container 120 to heat the coating film of each wafer W, the heating gas supply unit 160 functions as a heat treatment unit that heat-treats the coating film of the wafer W. ..
  • the heating gas supply unit 160 supplies, for example, a heated inert gas to the processing space in the processing container 120.
  • a heated inert gas for example, nitrogen gas is used.
  • the heating gas supply unit 160 has a dispersion nozzle 161, a gas heater 162, and a gas passage 163.
  • the dispersion nozzle 161 is formed so as to extend in the vertical direction, and is arranged inside the processing container 120 with respect to the flow regulating plate 142.
  • a gas passage 163 having a gas heater 162 provided in the middle thereof is connected to the dispersion nozzle 161.
  • the gas heater 162 heats the inert gas from the gas supply source and supplies the heated inert gas to the dispersion nozzle 161.
  • the gas heater 162 heats the inert gas to 400° C. to 1000° C., for example.
  • the gas heater 162 may heat the inert gas to 450° C.
  • a plurality of gas holes 161A are formed in the dispersion nozzle 161 at predetermined intervals. By horizontally injecting the inert gas through the plurality of gas holes 161A, the dispersion nozzle 161 supplies the inert gas toward the center of the processing container 120.
  • the exhaust unit 170 discharges the gas in the processing space inside the processing container 120 to the outside.
  • the evacuation unit 170 evacuates the inside of the processing container 120 through an exhaust port formed on the outer wall of the processing container 120 facing the expanded portion 141, and the processing space in the processing container 120 is evacuated to a predetermined vacuum pressure. It is designed to be maintained.
  • the plasma processing apparatus 10 performs the plasma processing on the coating film of one wafer W, whereas the plasma processing apparatus 10 performs plasma processing on the coating film of each of the plurality of wafers W at substantially the same timing. It is possible to perform processing. Further, in the plasma processing apparatus 10A, the plasma processing apparatus 10 generates the plasma gas in the processing space by the pair of electrodes sandwiching the wafer W, whereas the plasma processing apparatus 10A generates the plasma gas in a place different from the processing space. The generated plasma gas is supplied to the processing space.
  • steps S01 to S04 shown in FIG. 6 may be executed. Since the plasma processing apparatus 10A can perform the heat treatment and the plasma treatment, the plasma processing in step S03 and the heat treatment in step S04 may be performed in the plasma processing apparatus 10A. Since the plasma processing apparatus 10A can perform the thermal processing and the plasma processing in parallel, the control apparatus 100 causes the plasma processing apparatus 10A to perform the thermal processing of step S04 in a period overlapping at least a part of the execution period of step S03. It may be executed. For example, the control device 100 may heat the coating film by supplying the heated gas to the heating gas supply unit 160 during a period that overlaps with at least a part of the execution period of the plasma processing by the plasma gas supply unit 130. Good.
  • heat-treating the plasma-treated coating film includes heating the coating film in a period that overlaps with at least a part of the plasma treatment execution period for the solvent-free coating film. Be done.
  • the control device 100 performs plasma treatment on the coating film by the plasma gas supply unit 130, stops the supply of the plasma gas from the plasma gas supply unit 130, and then heats the coating film by the heating gas supply unit 160. May be.
  • heat treatment of the plasma-treated coating film (coating film AP) is performed by removing the solvent from the coating film (coating film AP). Heating the coating film during a period that overlaps at least part of the execution period of the plasma treatment on the coating film AR). Also in this case, the quality of the insulating coating can be improved. Further, since the execution periods of the plasma treatment and the heat treatment overlap at least partially, the throughput can be improved.
  • the plasma treatment it is possible to accelerate the crosslinking reaction by heating by heat treatment while cutting the “Si—H” bond and the “N—H” bond contained in the polysilazane compound. Therefore, the silicon nitride film can be formed more efficiently.
  • the plasma processing apparatus 10 since the plasma gas is generated while the wafer W is sandwiched between the pair of electrodes, it is possible to cause the coating film on the wafer W to react with the accelerated ions. Therefore, plasma processing can be performed at a lower temperature than that of the plasma processing apparatus 10A.
  • the type of processing gas for generating plasma is not limited as compared with the plasma processing apparatus 10. From the above, either the plasma processing apparatus 10 or the plasma processing apparatus 10A may be selected depending on the heatable temperature at the stage of forming the insulating coating.
  • Example 9 Using the substrate processing system 1 including the plasma processing apparatus 10, the insulating coating according to Example 9 was formed by the following procedure. First, in the coating unit U1 of the processing module 11, the polysilazane composition (coating liquid L) was supplied to the front surface Wa of the wafer W to form the coating film AF. At this time, the wafer W was rotated at 1000 rpm for 20 seconds to form a coating film AF having a film thickness of 45 nm. In order to obtain the insulating coatings of Examples 9 and 10, as the polysilazane compound contained in the polysilazane composition, a compound composed of —(SiH 2 NH)— as a basic unit was used. In addition, dibutyl ether was used as the solvent contained in the polysilazane composition.
  • the wafer W was heated in the atmosphere to remove the solvent in the coating film AF.
  • the heating temperature (the temperature of the heating plate 44) was set to 150° C.
  • the coating film AF was heated for 180 seconds to form the coating film AR (the coating film from which the solvent was removed).
  • the coating film AR was subjected to plasma processing.
  • a plasma of nitrogen gas is generated using a processing gas containing nitrogen and hydrogen, and the wafer W is held in the plasma processing apparatus 10 (processing container 68) in a state where the plasma is generated for 60 seconds, whereby the coating film is formed.
  • AP coating film subjected to plasma treatment
  • Example 10 Further, in the heat treatment unit U2 of the processing module 11, the wafer W on which the coating film AP corresponding to Example 9 was formed was subjected to heat treatment to form the insulating coating according to Example 10. Specifically, the coating film AP was heat-treated at a temperature of 450° C. for 150 minutes in a nitrogen atmosphere to obtain an insulating coating film of Example 10.
  • Example 11 Using the substrate processing system 1 including the plasma processing apparatus 10A, the insulating coating according to Example 11 was formed by the following procedure. First, in the coating unit U1 of the processing module 11, the polysilazane composition (coating liquid L) was supplied to the front surface Wa of the wafer W to form the coating film AF. At this time, the wafer W was rotated at a rotation speed of 1000 rpm for 20 seconds to form a coating film AF having a film thickness of 48 nm. In order to obtain the insulating coating film of Example 11, a compound composed of —(SiH 2 NH)— as a basic unit was used as the polysilazane compound contained in the polysilazane composition. In addition, dibutyl ether was used as the solvent contained in the polysilazane composition.
  • the wafer W was heated in the atmosphere to remove the solvent in the coating film AF.
  • the heating temperature (the temperature of the heating plate 44) was set to 150° C.
  • the coating film AF was heated for 180 seconds to form the coating film AR (the coating film from which the solvent was removed).
  • the plasma processing apparatus 10A the plasma-treated coating film was heated while the plasma treatment was performed on the coating film AR.
  • a plasma gas was generated using a processing gas containing ammonia, and the plasma gas was supplied into the processing container 120.
  • nitrogen gas heated to 630° C. was supplied into the processing container 120.
  • Example 12 In the plasma processing apparatus 10A, a plasma gas was generated using a processing gas containing hydrogen and nitrogen, and the plasma gas was supplied into the processing container 120. The insulating coating according to the above was formed.
  • Comparative Example 9 In the plasma processing apparatus 10A, the insulation according to Comparative Example 9 was performed in the same manner as the insulation coating according to Example 11 except that the nitrogen gas heated to 630° C. was supplied into the processing container 120 without supplying the plasma gas. A film was formed.
  • the film thickness [nm] of each of the insulating coatings of Examples 9 to 12 was measured.
  • the film thickness [nm] of the coating film before the removal of the solvent for forming the insulating coating, the plasma treatment, and the heat treatment was also measured.
  • the film thickness was measured by a spectroscopic ellipsometry method using a film measuring device (model Aleris8350; manufactured by KLA Tencor). Further, a substantially central position of the insulating coating in a top view was selected as a measurement location, and the film thickness at the measurement location was measured.
  • FIG. 18 shows the measurement results of these film thicknesses.
  • Before treatment indicates the thickness of the coating film before treatment
  • “after treatment” indicates the thickness of the insulating film. From the measurement results of FIG. 18, even when the plasma treatment and the heat treatment are performed in the plasma treatment apparatus 10A, as in the case where the plasma treatment apparatus 10 performs the plasma treatment and the heat treatment unit U2 performs the heat treatment, the film thickness It was confirmed that it was thin.
  • the refractive index of each insulating coating of Examples 9 to 12 was measured.
  • the refractive index the refractive index for light with a wavelength of 633 nm was measured.
  • the refractive index of the coating film before the treatment was also measured.
  • the refractive index was measured by a spectroscopic ellipsometry method using a film measuring device (type Aleris8350; manufactured by KLA Tencor). Further, a substantially central position of the insulating coating in a top view was selected as a measurement location, and the refractive index at the measurement location was measured. Utilizing the tendency that the refractive index increases as the density of the insulating coating increases, the density of the insulating coating is evaluated using the refractive index as an index.
  • FIG. 19 shows the measurement results of the refractive index of each insulating coating of Examples 9 to 12. From the measurement result of FIG. 19, it was confirmed that the refractive index was increased, that is, the density was improved by performing the solvent removal, the plasma treatment, and the heat treatment. Even when the plasma processing apparatus 10A performs the plasma processing and the heat treatment, the density is improved as in the case where the plasma processing apparatus 10 performs the plasma treatment and the heat treatment unit U2 performs the heat treatment. confirmed.
  • etching rate in wet etching was measured for each of the insulating coatings of Examples 11 and 12 and Comparative Example 9. Specifically, when a 0.5 wt% diluted hydrofluoric acid solution (Diluted HydroFluoric acid: DHF) is used as the etching solution, the amount (thickness) etched per minute is the edging rate [nm/min]. Evaluated as. Dilute hydrofluoric acid has a function of dissolving a silicon oxide film, and the lower the etching rate is, the more difficult it is for the insulating film to be scraped during wet etching (higher etching resistance).
  • DHF Diluted HydroFluoric acid
  • FIG. 20 shows the etching rate evaluation results for the insulating coatings of Examples 11 and 12 and Comparative Example 9. From the evaluation results of FIG. 20, it was confirmed that the etching rates of the insulating coatings of Examples 11 and 12 which had been subjected to the plasma treatment were lower than those of Comparative Example 9 which was not subjected to the plasma treatment. Further, the etching rate of the insulating coating of Example 11 using the processing gas containing ammonia when generating the plasma gas is further lower than that of Example 12 using the processing gas containing hydrogen and nitrogen. was confirmed.
  • the atmosphere control of the heat treatment space is performed during the solvent removal in step S02 and the heat treatment in step S04, but the atmosphere control may be performed in the case of performing other processing.
  • the substrate processing system 1 may control the atmosphere of the processing space when applying the polysilazane composition to the wafer W.
  • the processing module 11 may have a coating unit U101 (coating unit) shown in FIG. 21, instead of the coating unit U1.
  • the coating unit U101 is different from the coating unit U1 in that it further includes a housing 240 and a gas supply unit 250.
  • the housing 240 houses the wafer W held by the rotation holding unit 20 and the nozzle 34 of the liquid supply unit 30.
  • a transfer port for the wafer W may be provided in the housing 240, and a shutter that can be opened and closed may be provided at the transfer port.
  • the housing 240 forms a coating processing space for performing coating processing.
  • the gas supply unit 250 is configured to supply gas into the housing 240 (coating processing space).
  • the gas supply unit 250 supplies nitrogen gas into the housing 240.
  • the concentration of oxygen in the housing 240 may be maintained at 150 ppm or less, 100 ppm or less, or 50 ppm or less, for example. May be maintained at.
  • the gas supply unit 250 includes a gas supply source 253, a valve 252, and a pipe 254.
  • the gas supply source 253 functions as a gas supply source.
  • the valve 252 switches between an open state and a closed state according to an instruction from the control device 100.
  • the gas supply source 253 sends out gas into the housing 240 (coating processing space) via the pipe 254 when the valve 252 is in the open state.
  • the coating unit U101 forms the coating film AF (coating film before solvent removal) by coating the wafer W with the polysilazane composition in a nitrogen atmosphere.
  • the coating unit U101 may have a gas supply unit that supplies a gas such as nitrogen gas to a space in the liquid supply unit 30 where the polysilazane composition (coating liquid L) is exposed to the outside air. ..
  • step S01 of applying the polysilazane composition to the front surface Wa of the wafer W the control device 100 sets the valve 252 to the open state and applies the nitrogen gas from the gas supply source 253 into the application processing space.
  • the unit U101 may be controlled.
  • the control device 100 rotates the wafer W by the rotation holding unit 20 in the nitrogen atmosphere in which the nitrogen gas is supplied by the gas supply unit 250 into the coating processing space, while the liquid supply unit 30 supplies the polysilazane composition to the wafer W. It may be supplied to the surface Wa.
  • the gas supply unit 50 supplies nitrogen gas or the like to the heat treatment space to control the atmosphere.
  • the concentration of oxygen in the chamber 40 may be maintained at 150 ppm or less, may be maintained at 100 ppm or less, and may be 50 ppm. May be maintained below.
  • Atmosphere control may be performed when the wafer W is transferred, other than the coating process and the heat treatment.
  • the processing module 11 has, for example, a gas supply unit that is formed between the coating unit U101 (coating unit U1) and the thermal processing unit U2 and that supplies a gas such as nitrogen gas to a transfer space for transferring the wafer W. May be.
  • the control device 100 causes the transfer space in the processing module 11 to supply nitrogen gas by the gas supply unit. May be.
  • FIG. 22 shows the analysis results (oxygen component ratio) in the coating film when the atmosphere was controlled under various conditions.
  • the component ratio was analyzed using X-ray photoelectron spectroscopy (XPS: X-ray Photoelectron Spectroscopy).
  • FIG. 22 shows a legend of Conditions 1 to 5 which are various conditions of atmosphere control. “Coat” indicates the atmospheric condition of the processing space in forming the coating film in step S01, and “Transfer” indicates the transfer space of the transfer space when the wafer W is transferred to the heat treatment unit U2 after forming the coating film in step S01. Atmosphere conditions are shown, and “Bake” shows the atmosphere conditions of the processing space in the solvent removal in step S02. "N2" indicates that the treatment was performed under a nitrogen atmosphere, and "Air” indicates that the treatment was performed under an air atmosphere.
  • XPS X-ray Photoelectron Spectroscopy
  • the composition ratio of oxygen at the sputtering time of 2 minutes is shown in the coating film after the coating of the coating liquid L, the removal of the solvent, the plasma treatment, and the heat treatment of steps S01 to S04.
  • the processing is performed under the same conditions except for the atmosphere control. Comparing the results of Conditions 1 to 4 with the results of Condition 5, by performing the treatment under a nitrogen atmosphere in at least one of the application of the coating liquid L in step S01 and the removal of the solvent in step S02, the oxygen content can be increased. It can be seen that is decreasing. Comparing the results of Conditions 1 to 3 with the results of Condition 4, it can be seen that, in the application of the coating liquid L in step S01, the oxygen content is further reduced by performing the treatment in a nitrogen atmosphere.
  • applying the polysilazane composition to the wafer W means applying the polysilazane composition to the wafer W in a nitrogen atmosphere. Contains. In this case, the reaction between the polysilazane compound and oxygen is suppressed during the formation of the coating film of the polysilazane composition, and the increase of the oxygen content in the coating film can be suppressed.
  • Example 13 An insulating coating film according to Example 13 was formed in the same manner as the insulating coating film according to Example 11 except that the coating liquid L was applied in step S01 under a nitrogen atmosphere.
  • etching rate in wet etching was measured for each of the insulating coatings of Examples 11 and 13. Specifically, when a 0.25 wt% dilute hydrofluoric acid solution (Diluted HydroFluoric acid: DHF) is used as the etching solution, the amount (thickness) etched per minute is the edging rate [nm/min]. Evaluated as.
  • DHF Diluted HydroFluoric acid
  • FIG. 23 shows the etching rate evaluation results for the insulating coatings of Examples 11 and 13. From the evaluation results of FIG. 20, the etching rate of the insulating coating of Example 13 in which the coating liquid L was applied in a nitrogen atmosphere was lower than that in Example 11 in which the coating liquid L was applied in the air atmosphere. Was confirmed.
  • the timing of forming the silicon nitride film from the coating film of the polysilazane composition is not limited to before the formation of the resist film.
  • the substrate processing system 1 may form a silicon nitride film from a coating film of the polysilazane composition after the photosensitive film is exposed and developed by the coating/developing device 2.
  • the substrate processing system 1 may form a silicon nitride film from the coating film of the polysilazane composition on the surface Wa of the wafer W that has been subjected to the plasma etching process after forming the resist pattern.
  • the silicon nitride film may be formed from the coating film of the polysilazane composition on the wafer W at any position.
  • An insulating coating may be formed on the front surface Wa of the wafer W by performing the processing of steps S01 to S04 on the wafer W having a concavo-convex pattern (for example, a resist pattern) formed on the front surface Wa. It is considered that when the film is formed by applying the coating liquid, the filling into the recess is performed without problems (without generating voids), as compared with the case where the film is formed by CVD. Since the above-described substrate processing method can achieve the same quality as that of the silicon nitride film formed by CVD, the substrate processing method is applied to the wafer W having the unevenness on the surface Wa from the viewpoint of embedding the film in the recess. It is even more useful to do so.
  • the insulating coating formed from the coating film of the polysilazane composition may be used for any purpose.
  • the insulating coating may be formed as a hard mask (sacrificial film) when etching is performed, or the insulating coating may be formed as a permanent film remaining in a semiconductor product formed from the wafer W.
  • the heating time in the heat treatment of step S04 affects the film stress (stress) that the coating film receives.
  • the magnitude of the film stress changes according to the heating time in the heat treatment of step S04.
  • the heating temperature (for example, the temperature of the heating plate or the temperature of the heating nitrogen gas) in the heat treatment of step S04 also affects the film stress (stress) that the coating film receives.
  • the magnitude of the film stress changes according to the heating temperature in the heat treatment of step S04.
  • the film stress applied to the coating film can be adjusted by adjusting the heating temperature in the heat treatment of step S04.
  • the heating for removing the solvent in step S02 and the heat treatment in step S04 may be performed by different heat treatment units.
  • the solvent removal in step S02 may be performed by a method other than heating.
  • the substrate processing system 1 may remove the solvent from the coating film AF by placing the wafer W on which the coating film AF is formed in a decompression device having a processing space in which the pressure is reduced.
  • the substrate to be processed is not limited to a semiconductor wafer, and may be, for example, a glass substrate, a mask substrate, an FPD (Flat Panel Display), or the like.
  • a substrate processing method is to apply a polysilazane composition to a substrate to form a coating film, remove a solvent in the coating film, and remove the solvent from the coating film. , Performing plasma treatment with plasma of an inert gas and heat treating the coating film subjected to the plasma treatment.
  • the coating film from which the solvent has been removed is subjected to plasma treatment using plasma of an inert gas, whereby the refractive index of the insulating coating obtained is increased and the etching resistance is improved. That is, it is possible to improve the quality of the silicon nitride film formed from the coating film containing the polysilazane compound.
  • removing the solvent in the coating film may include heating the coating film.
  • a unit for heating for removing a solvent and a unit for performing heat treatment after plasma treatment can be shared, and an apparatus (system) for performing substrate treatment can be simplified.
  • heating the coating film may include heating the coating film under a nitrogen atmosphere. In this case, it is possible to prevent the surface of the coating film from reacting with oxygen during heating for removing the solvent, and to suppress the formation of an oxide film on the surface of the coating film.
  • Example 4 In the substrate processing method of any of Examples 1 to 3, the inert gas may contain nitrogen. In this case, it is possible to achieve both securing the film thickness of the insulating coating and increasing the refractive index.
  • the processing gas for generating plasma may contain hydrogen.
  • the plasma of the inert gas is promoted by hydrogen, the plasma treatment can be performed more efficiently.
  • applying the polysilazane composition to the substrate may include applying the polysilazane composition to the substrate under a nitrogen atmosphere.
  • the reaction between the polysilazane compound and oxygen is suppressed during the formation of the coating film of the polysilazane composition, and the increase of the oxygen content in the coating film can be suppressed.
  • the heat treatment of the coating film may include heating the coating film during a period that overlaps with at least a part of the execution period of the plasma treatment on the coating film.
  • the plasma treatment and the heat treatment are at least partially overlapped in the execution period, so that the throughput can be improved.
  • Example 8 In a substrate processing method according to another aspect of the present disclosure, a film containing a polysilazane compound formed by applying a polysilazane composition to a substrate is subjected to plasma processing using plasma of an inert gas. In this case, similarly to the above, it is possible to improve the quality of the silicon nitride film formed from the coating film containing the polysilazane compound.
  • a substrate processing system is a coating unit that coats a substrate with a polysilazane composition to form a coating film, a solvent removal unit that removes a solvent in the coating film, and a coating solution from which the solvent has been removed.
  • a plasma processing unit that performs plasma processing on the film with an inert gas plasma and a heat treatment unit that heat-treats the plasma-treated coating film are provided.
  • the solvent removal unit may remove the solvent in the coating film by heating the coating film.
  • the unit that constitutes the solvent removal unit and the heat treatment unit may simplify the substrate processing system.
  • the solvent removal unit may remove the solvent in the coating film by heating the coating film in a nitrogen atmosphere. In this case, it is possible to prevent the surface of the coating film from reacting with oxygen during heating for removing the solvent, and to suppress the formation of an oxide film on the surface of the coating film.
  • the inert gas may include nitrogen. In this case, it is possible to achieve both securing the film thickness of the insulating coating and increasing the refractive index.
  • the processing gas for generating the plasma may include hydrogen.
  • the plasma treatment can be performed more efficiently.
  • Example 14 In the substrate processing system of any of Examples 9 to 13, the coating section may form a coating film by coating the substrate with the polysilazane composition under a nitrogen atmosphere. In this case, the reaction between the polysilazane compound and oxygen is suppressed during the formation of the coating film of the polysilazane composition, and the increase of the oxygen content in the coating film can be suppressed.
  • Example 15 In the substrate processing system of any one of Examples 9 to 14, the heat treatment section may heat the coating film during a period that overlaps at least a part of the execution period of the plasma treatment by the plasma treatment section. In this case, the plasma treatment and the heat treatment are at least partially overlapped in the execution period, so that the throughput can be improved.
  • the above embodiment includes the following configurations.
  • (Appendix 1) Applying a polysilazane composition to a substrate to form a coating film; Removing the solvent in the coating film, Subjecting the coating film from which the solvent has been removed to plasma treatment with plasma of an inert gas;
  • a substrate processing method including.
  • (Appendix 2) A coating section for coating the substrate with the polysilazane composition to form a coating film;
  • a plasma processing unit that performs plasma processing using plasma of an inert gas on the coating film from which the solvent has been removed,
  • a substrate processing system comprising:
  • Substrate processing system 2... Coating/developing apparatus, 10, 10A... Plasma processing apparatus, U1, U101... Coating unit, U2... Heat treatment unit, W... Wafer.

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

A substrate processing method according to one aspect of the present disclosure comprises: a step for forming a coating film by applying a polysilazane composition to a substrate; a step for removing a solvent from the coating film; a step for subjecting the coating film, from which the solvent has been removed, to a plasma processing that is performed by means of a plasma of an inert gas; and a step for subjecting the coating film, which has been subjected to the plasma processing, to a heat treatment.

Description

基板処理方法及び基板処理システムSubstrate processing method and substrate processing system
 本開示は、基板処理方法及び基板処理システムに関する。 The present disclosure relates to a substrate processing method and a substrate processing system.
 特許文献1には、ペルヒドロポリシラザン又はその変性物等を基材上に塗布した後、真空下に600℃以上の温度で焼成する窒化珪素薄膜(シリコン窒化膜)の形成方法が開示されている。 Patent Document 1 discloses a method for forming a silicon nitride thin film (silicon nitride film) in which perhydropolysilazane or a modified product thereof is applied on a substrate and then baked at a temperature of 600° C. or higher under vacuum. ..
特開平10-194873号公報Japanese Patent Laid-Open No. 10-194873
 本開示は、ポリシラザン化合物が含まれる塗布膜から形成されたシリコン窒化膜の品質を向上させることが可能な基板処理方法及び基板処理システムを提供する。 The present disclosure provides a substrate processing method and a substrate processing system capable of improving the quality of a silicon nitride film formed from a coating film containing a polysilazane compound.
 本開示の一側面に係る基板処理方法は、ポリシラザン組成物を基板に塗布して塗布膜を形成することと、塗布膜内の溶媒を除去することと、溶媒が除去された塗布膜に対して、不活性ガスのプラズマによるプラズマ処理を施すことと、プラズマ処理が施された塗布膜を熱処理することと、を含む。 A substrate processing method according to one aspect of the present disclosure is to apply a polysilazane composition to a substrate to form a coating film, remove a solvent in the coating film, and remove the solvent from the coating film. , Performing plasma treatment with plasma of an inert gas and heat treating the coating film subjected to the plasma treatment.
 本開示によれば、ポリシラザン化合物が含まれる塗布膜から形成されたシリコン窒化膜の品質を向上させることが可能な基板処理方法及び基板処理システムが提供される。 According to the present disclosure, there is provided a substrate processing method and a substrate processing system capable of improving the quality of a silicon nitride film formed from a coating film containing a polysilazane compound.
図1は、基板処理システムの概略構成を例示する模式図である。FIG. 1 is a schematic diagram illustrating a schematic configuration of a substrate processing system. 図2は、塗布現像装置の内部構成を例示する模式図である。FIG. 2 is a schematic diagram illustrating the internal configuration of the coating and developing apparatus. 図3は、塗布ユニットの構成を例示する模式図である。FIG. 3 is a schematic view illustrating the configuration of the coating unit. 図4は、熱処理ユニットの構成を例示する模式図である。FIG. 4 is a schematic view illustrating the configuration of the heat treatment unit. 図5は、プラズマ処理装置の構成を例示する模式図である。FIG. 5 is a schematic diagram illustrating the configuration of the plasma processing apparatus. 図6は、シリコン窒化膜の形成手順の一例を示すフローチャートである。FIG. 6 is a flowchart showing an example of a procedure for forming a silicon nitride film. 図7(a)は、プラズマ処理を行わなかった場合の成分分析結果を示すグラフである。図7(b)は、プラズマ処理を行った場合の成分分析結果を示すグラフである。FIG. 7A is a graph showing the component analysis result when the plasma treatment is not performed. FIG. 7B is a graph showing the component analysis result when the plasma treatment is performed. 図8(a)は、プラズマ処理を行わなかった場合の成分分析結果を示すグラフである。図8(b)は、プラズマ処理を行った場合の成分分析結果を示すグラフである。FIG. 8A is a graph showing the component analysis result when the plasma treatment is not performed. FIG. 8B is a graph showing the result of component analysis when plasma processing is performed. 図9(a)及び図9(b)は、プラズマ処理を行わなかった場合の別の成分分析結果を示すグラフである。FIG. 9A and FIG. 9B are graphs showing another component analysis result when the plasma treatment is not performed. 図10(a)及び図10(b)は、プラズマ処理を行った場合の別の成分分析結果を示すグラフである。FIG. 10A and FIG. 10B are graphs showing another component analysis result when plasma processing is performed. 図11は、実施例及び比較例における膜厚の測定結果を示すグラフである。FIG. 11 is a graph showing the measurement results of the film thickness in Examples and Comparative Examples. 図12は、実施例及び比較例における屈折率の評価結果を示すグラフである。FIG. 12 is a graph showing the evaluation results of the refractive index in Examples and Comparative Examples. 図13は、プラズマ処理前後の塗布膜における密度の分析結果の一例を示すグラフである。FIG. 13 is a graph showing an example of the analysis result of the density of the coating film before and after the plasma treatment. 図14は、実施例及び比較例におけるエッチングレートの評価結果を示すグラフである。FIG. 14 is a graph showing the evaluation results of etching rates in the examples and comparative examples. 図15は、実施例及び比較例におけるエッチングレートの評価結果を示すグラフである。FIG. 15 is a graph showing the evaluation results of etching rates in the examples and comparative examples. 図16(a)は、プラズマの種類を変えた場合における膜厚の測定結果を示すグラフである。図16(b)は、プラズマの種類を変えた場合における屈折率の測定結果を示すグラフである。FIG. 16A is a graph showing the measurement result of the film thickness when the type of plasma is changed. FIG. 16B is a graph showing the measurement results of the refractive index when the type of plasma is changed. 図17は、プラズマ処理装置の構成を例示する模式図である。FIG. 17 is a schematic diagram illustrating the configuration of the plasma processing apparatus. 図18は、実施例における膜厚の測定結果を示すグラフである。FIG. 18 is a graph showing the measurement results of film thickness in Examples. 図19は、実施例における屈折率の評価結果を示すグラフである。FIG. 19 is a graph showing the evaluation results of the refractive index in the examples. 図20は、実施例及び比較例におけるエッチングレートの評価結果を示すグラフである。FIG. 20 is a graph showing the evaluation results of etching rates in Examples and Comparative Examples. 図21は、塗布ユニットの構成を例示する模式図である。FIG. 21 is a schematic view illustrating the configuration of the coating unit. 図22は、雰囲気制御を行った場合の成分分析結果を示すグラフである。FIG. 22 is a graph showing the result of component analysis when atmosphere control is performed. 図23は、実施例におけるエッチングレートの評価結果を示すグラフである。FIG. 23 is a graph showing the evaluation result of the etching rate in the example.
 以下、種々の例示的実施形態について説明する。説明において、同一要素又は同一機能を有する要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, various exemplary embodiments will be described. In the description, the same elements or elements having the same function will be denoted by the same reference symbols, without redundant description.
[基板処理システム]
 まず、図1及び図2を参照して基板処理システム1の概略構成を説明する。基板処理システム1は、基板に対し、絶縁被膜の形成、感光性被膜の形成、当該感光性被膜の露光、及び当該感光性被膜の現像を施すシステムである。処理対象の基板は、例えば半導体のウェハWである。基板処理システム1は、絶縁被膜としてシリコン窒化膜(SiN膜)をウェハW上に形成する。具体的には、基板処理システム1は、ポリシラザン組成物をウェハWに塗布して塗布膜を形成し、当該塗布膜に後述の処理を施すことでシリコン窒化膜を形成する。感光性被膜は、例えばレジスト膜である。基板処理システム1は、塗布・現像装置2と、露光装置3と、プラズマ処理装置10と、制御装置100とを備える。露光装置3は、ウェハW(基板)上に形成されたレジスト膜(感光性被膜)を露光する装置である。具体的には、露光装置3は、液浸露光等の方法によりレジスト膜の露光対象部分にエネルギー線を照射する。塗布・現像装置2は、露光装置3による露光処理の前に、ウェハWの表面にポリシラザン組成物による絶縁被膜を形成する処理の一部、及びウェハW(基板)の表面にレジスト(薬液)を塗布してレジスト膜を形成する処理を行う。また、塗布・現像装置2は、露光処理後にレジスト膜の現像処理を行う。
[Substrate processing system]
First, a schematic configuration of the substrate processing system 1 will be described with reference to FIGS. 1 and 2. The substrate processing system 1 is a system for forming an insulating film, a photosensitive film, exposing the photosensitive film, and developing the photosensitive film on a substrate. The substrate to be processed is, for example, a semiconductor wafer W. The substrate processing system 1 forms a silicon nitride film (SiN film) as an insulating film on the wafer W. Specifically, the substrate processing system 1 applies the polysilazane composition to the wafer W to form a coating film, and forms the silicon nitride film by subjecting the coating film to the processing described later. The photosensitive film is, for example, a resist film. The substrate processing system 1 includes a coating/developing apparatus 2, an exposure apparatus 3, a plasma processing apparatus 10, and a control apparatus 100. The exposure device 3 is a device that exposes a resist film (photosensitive film) formed on the wafer W (substrate). Specifically, the exposure apparatus 3 irradiates the exposed portion of the resist film with energy rays by a method such as liquid immersion exposure. The coating/developing apparatus 2 applies a part of the process of forming an insulating film of the polysilazane composition on the surface of the wafer W and the resist (chemical solution) on the surface of the wafer W (substrate) before the exposure process by the exposure device 3. A process of applying to form a resist film is performed. In addition, the coating/developing device 2 performs a developing process for the resist film after the exposure process.
(塗布・現像装置)
 図1及び図2に示されるように、塗布・現像装置2は、キャリアブロック4と、処理ブロック5と、インタフェースブロック6とを備える。
(Coating/developing device)
As shown in FIGS. 1 and 2, the coating/developing apparatus 2 includes a carrier block 4, a processing block 5, and an interface block 6.
 キャリアブロック4は、塗布・現像装置2内へのウェハWの導入及び塗布・現像装置2内からのウェハWの導出を行う。例えばキャリアブロック4は、ウェハW用の複数のキャリアCを支持可能であり、受け渡しアームを含む搬送装置A1を内蔵している。キャリアCは、例えば円形の複数枚のウェハWを収容する。搬送装置A1は、キャリアCからウェハWを取り出して処理ブロック5に渡し、処理ブロック5からウェハWを受け取ってキャリアC内に戻す。処理ブロック5は、複数の処理モジュール11,12,13,14を有する。 The carrier block 4 introduces the wafer W into the coating/developing apparatus 2 and guides the wafer W from the coating/developing apparatus 2. For example, the carrier block 4 can support a plurality of carriers C for the wafer W, and has a built-in transfer device A1 including a transfer arm. The carrier C accommodates a plurality of circular wafers W, for example. The transfer device A1 takes out the wafer W from the carrier C, transfers the wafer W to the processing block 5, receives the wafer W from the processing block 5, and returns the wafer W into the carrier C. The processing block 5 has a plurality of processing modules 11, 12, 13, and 14.
 処理モジュール11は、塗布ユニットU1と、熱処理ユニットU2と、これらのユニットにウェハWを搬送する搬送装置A3とを内蔵している。処理モジュール11は、塗布ユニットU1及び熱処理ユニットU2により、ウェハWの表面上に絶縁被膜を形成する処理の一部を行う。塗布ユニットU1(塗布部)は、絶縁被膜形成用の処理液をウェハW上に塗布して塗布膜を形成する。熱処理ユニットU2は、絶縁被膜の形成に伴う各種熱処理を行う。具体的には、熱処理ユニットU2は、処理液が塗布されて形成された塗布膜を加熱することで、塗布膜内の溶媒を除去する。この場合、熱処理ユニットU2は、溶媒除去部として機能する。また、熱処理ユニットU2は、溶媒が除去され、プラズマ処理装置10によって後述するプラズマ処理が施された塗布膜を加熱する熱処理を行う。この場合、熱処理ユニットU2は、熱処理部として機能する。 The processing module 11 includes a coating unit U1, a heat treatment unit U2, and a transfer device A3 that transfers the wafer W to these units. The processing module 11 performs a part of the processing of forming an insulating coating on the surface of the wafer W by the coating unit U1 and the heat treatment unit U2. The coating unit U1 (coating unit) coats a processing liquid for forming an insulating coating on the wafer W to form a coating film. The heat treatment unit U2 performs various heat treatments associated with the formation of the insulating coating. Specifically, the heat treatment unit U2 removes the solvent in the coating film by heating the coating film formed by coating the treatment liquid. In this case, the heat treatment unit U2 functions as a solvent removal unit. Further, the heat treatment unit U2 performs heat treatment for heating the coating film from which the solvent has been removed and which has been subjected to the plasma treatment described later by the plasma treatment device 10. In this case, the heat treatment unit U2 functions as a heat treatment unit.
 処理モジュール12は、塗布ユニットU1と、熱処理ユニットU2と、これらのユニットにウェハWを搬送する搬送装置A3とを内蔵している。処理モジュール12は、塗布ユニットU1及び熱処理ユニットU2によりレジスト膜を形成する。塗布ユニットU1は、被膜形成用の処理液として、レジストを絶縁被膜の上に塗布する。熱処理ユニットU2は、被膜の形成に伴う各種熱処理を行う。これにより、ウェハWの表面にレジスト膜が形成される。 The processing module 12 includes a coating unit U1, a heat treatment unit U2, and a transfer device A3 that transfers a wafer W to these units. The processing module 12 forms a resist film by the coating unit U1 and the heat treatment unit U2. The coating unit U1 coats a resist on the insulating coating as a treatment liquid for forming the coating. The heat treatment unit U2 performs various heat treatments associated with the formation of the coating. As a result, a resist film is formed on the surface of the wafer W.
 処理モジュール13は、塗布ユニットU1と、熱処理ユニットU2と、これらのユニットにウェハWを搬送する搬送装置A3とを内蔵している。処理モジュール13は、塗布ユニットU1及び熱処理ユニットU2によりレジスト膜上に上層膜を形成する。塗布ユニットU1は、上層膜形成用の処理液をレジスト膜の上に塗布する。熱処理ユニットU2は、上層膜の形成に伴う各種熱処理を行う。 The processing module 13 includes a coating unit U1, a heat treatment unit U2, and a transfer device A3 that transfers a wafer W to these units. The processing module 13 forms an upper layer film on the resist film by the coating unit U1 and the heat treatment unit U2. The coating unit U1 coats the processing liquid for forming the upper layer film on the resist film. The heat treatment unit U2 performs various heat treatments associated with the formation of the upper layer film.
 処理モジュール14は、塗布ユニットU1及び熱処理ユニットU2により、露光後のレジスト膜の現像処理を行う。処理モジュール14の塗布ユニットU1は、露光済みのウェハWの表面上に現像液を塗布した後、これをリンス液により洗い流すことで、レジスト膜の現像処理を行う。熱処理ユニットU2は、現像処理に伴う各種熱処理を行う。現像処理に伴う熱処理の具体例としては、現像処理前の加熱処理(PEB:Post Exposure Bake)、現像処理後の加熱処理(PB:Post Bake)等が挙げられる。 The processing module 14 develops the exposed resist film by the coating unit U1 and the heat treatment unit U2. The coating unit U1 of the processing module 14 coats the surface of the exposed wafer W with the developing solution and then rinses it off with the rinse solution to develop the resist film. The heat treatment unit U2 performs various heat treatments associated with the development processing. Specific examples of heat treatment associated with the development treatment include heat treatment before the development treatment (PEB: Post Exposure Bake) and heat treatment after the development treatment (PB: Post Bake).
 処理ブロック5内におけるキャリアブロック4側には棚ユニットU10が設けられている。棚ユニットU10は、上下方向に並ぶ複数のセルに区画されている。棚ユニットU10の近傍には昇降アームを含む搬送装置A7が設けられている。搬送装置A7は、棚ユニットU10のセル同士の間でウェハWを昇降させる。 A shelf unit U10 is provided on the carrier block 4 side in the processing block 5. The shelf unit U10 is divided into a plurality of cells arranged in the vertical direction. A transfer device A7 including a lifting arm is provided near the shelf unit U10. The transfer device A7 moves the wafer W up and down between the cells of the shelf unit U10.
 処理ブロック5内におけるインタフェースブロック6側には棚ユニットU11が設けられている。棚ユニットU11は、上下方向に並ぶ複数のセルに区画されている。 A shelf unit U11 is provided on the interface block 6 side in the processing block 5. The shelf unit U11 is divided into a plurality of cells arranged in the vertical direction.
 インタフェースブロック6は、露光装置3との間でウェハWの受け渡しを行う。例えばインタフェースブロック6は、受け渡しアームを含む搬送装置A8を内蔵しており、露光装置3に接続される。搬送装置A8は、棚ユニットU11に配置されたウェハWを露光装置3に渡す。搬送装置A8は、露光装置3からウェハWを受け取って棚ユニットU11に戻す。 The interface block 6 transfers the wafer W to and from the exposure apparatus 3. For example, the interface block 6 has a built-in transfer device A8 including a transfer arm and is connected to the exposure device 3. The transfer device A8 transfers the wafer W arranged on the shelf unit U11 to the exposure device 3. The transfer device A8 receives the wafer W from the exposure device 3 and returns it to the shelf unit U11.
(塗布ユニット)
 続いて、図3を参照して、塗布ユニットU1の一例について、さらに詳しく説明する。図3に示されるように、塗布ユニットU1は、回転保持部20と、液供給部30とを備える。
(Coating unit)
Subsequently, an example of the coating unit U1 will be described in more detail with reference to FIG. As shown in FIG. 3, the coating unit U1 includes a rotation holding unit 20 and a liquid supply unit 30.
 回転保持部20は、回転部21と、シャフト22と、保持部23とを有する。回転部21は、制御装置100からの動作信号に基づいて動作し、シャフト22を回転させる。回転部21は、例えば回転アクチュエータである。保持部23は、シャフト22の先端部に設けられている。保持部23上にはウェハWが配置される。保持部23は、例えば吸着等によりウェハWを略水平に保持する。すなわち、回転保持部20は、ウェハWの姿勢が略水平の状態で、ウェハWの表面Waに対して垂直な中心軸(回転軸)周りでウェハWを回転させる。図3の例では、回転保持部20は、上方から見て反時計回りにウェハWを所定の回転数で回転させる。 The rotation holding unit 20 has a rotation unit 21, a shaft 22, and a holding unit 23. The rotating unit 21 operates based on the operation signal from the control device 100 to rotate the shaft 22. The rotation unit 21 is, for example, a rotation actuator. The holding portion 23 is provided at the tip of the shaft 22. The wafer W is placed on the holding unit 23. The holding unit 23 holds the wafer W substantially horizontally, for example, by suction. That is, the rotation holding unit 20 rotates the wafer W around the central axis (rotation axis) perpendicular to the front surface Wa of the wafer W with the posture of the wafer W substantially horizontal. In the example of FIG. 3, the rotation holding unit 20 rotates the wafer W counterclockwise as viewed from above at a predetermined rotation speed.
 液供給部30は、ウェハWの表面Waに処理液L1を供給するように構成されている。処理モジュール11において、処理液L1は、絶縁被膜を形成するための塗布液Lである。処理モジュール12において、処理液L1は、レジスト膜を形成するためのレジスト液である。処理モジュール13において、処理液L1は、上層膜を形成するための塗布液である。処理モジュール14において、処理液L1は現像液である。 The liquid supply unit 30 is configured to supply the processing liquid L1 to the front surface Wa of the wafer W. In the processing module 11, the processing liquid L1 is the coating liquid L for forming the insulating coating. In the processing module 12, the processing liquid L1 is a resist liquid for forming a resist film. In the processing module 13, the processing liquid L1 is a coating liquid for forming the upper layer film. In the processing module 14, the processing liquid L1 is a developing solution.
 絶縁被膜を形成するための塗布液Lは、シリコン窒化膜の材料となるポリシラザン組成物である。すなわち、処理モジュール11の塗布ユニットU1は、ウェハWの表面Waにポリシラザン組成物を塗布することで、当該ウェハW上に塗布膜AFを形成する。このポリシラザン組成物としては、従来知られている任意のポリシラザン化合物を溶媒に溶解させたものを用いることができる。 The coating liquid L for forming the insulating film is a polysilazane composition that is a material for the silicon nitride film. That is, the coating unit U1 of the processing module 11 coats the front surface Wa of the wafer W with the polysilazane composition to form the coating film AF on the wafer W. As this polysilazane composition, a conventionally known arbitrary polysilazane compound dissolved in a solvent can be used.
 ポリシラザン化合物は特に限定されず、本開示で示される効果を損なわない限り任意に選択することができる。ポリシラザン化合物は、無機化合物あるいは有機化合物のいずれであってもよい。ポリシラザン化合物として、例えば下記一般式(Ia)~(Ic)で表される単位の組み合わせを含んで構成されるものが挙げられる:
Figure JPOXMLDOC01-appb-C000001
(式中、m1~m3は重合度を表す数である。)
 なお、ポリシラザン化合物として、上記組合せのうちスチレン換算重量平均分子量が700~30,000であるものが用いられてもよい。
The polysilazane compound is not particularly limited and can be arbitrarily selected as long as the effects shown in the present disclosure are not impaired. The polysilazane compound may be either an inorganic compound or an organic compound. Examples of the polysilazane compound include those composed of a combination of units represented by the following general formulas (Ia) to (Ic):
Figure JPOXMLDOC01-appb-C000001
(In the formula, m1 to m3 are numbers representing the degree of polymerization.)
As the polysilazane compound, those having a styrene-equivalent weight average molecular weight of 700 to 30,000 may be used among the above combinations.
 また、他のポリシラザン化合物の例として、例えば、主として一般式(II):
Figure JPOXMLDOC01-appb-C000002
(式中、R、RおよびRは、それぞれ独立に水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、もしくはこれらの基以外でフルオロアルキル基等のケイ素に直結する基が炭素である基、アルキルシリル基、アルキルアミノ基又はアルコキシ基を表す。但し、R、R及びRの少なくとも1つは水素原子であり、nは重合度を表す数である)で表される構造単位からなる骨格を有する数平均分子量が約100~50,000のポリシラザン化合物又はその変性物が挙げられる。これらのポリシラザン化合物は2種類以上を組み合わせて用いることもできる。
In addition, examples of other polysilazane compounds include, for example, mainly the compound represented by the general formula (II):
Figure JPOXMLDOC01-appb-C000002
(In the formula, R 1 , R 2 and R 3 are each independently a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, or a group other than these groups which is directly bonded to silicon such as a fluoroalkyl group. Represents a group which is carbon, an alkylsilyl group, an alkylamino group or an alkoxy group, provided that at least one of R 1 , R 2 and R 3 is a hydrogen atom, and n is a number representing the degree of polymerization. Examples thereof include polysilazane compounds having a skeleton composed of the structural unit and having a number average molecular weight of about 100 to 50,000 or modified products thereof. These polysilazane compounds may be used in combination of two or more kinds.
 本開示に用いられるポリシラザン組成物は、上記のポリシラザン化合物を溶解し得る溶媒を含んでいる。このような溶媒としては、上記のポリシラザン化合物を溶解し得るものであれば特に限定されるものではないが、溶媒の具体例としては、次のものが挙げられる:
(a)芳香族化合物、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、トリメチルベンゼン、トリエチルベンゼン等、(b)飽和炭化水素化合物、例えばn-ペンタン、i-ペンタン、n-ヘキサン、i-ヘキサン、n-ヘプタン、i-ヘプタン、n-オクタン、i-オクタン、n-ノナン、i-ノナン、n-デカン、i-デカン等、(c)脂環式炭化水素化合物、例えばエチルシクロヘキサン、メチルシクロヘキサン、シクロヘキサン、シクロヘキセン、p-メンタン、デカヒドロナフタレン、ジペンテン、リモネン等、(d)エーテル類、例えばジプロピルエーテル、ジブチルエーテル、ジエチルエーテル、メチルターシャリーブチルエーテル(以下、MTBEという)、アニソール等、及び(e)ケトン類、例えばメチルイソブチルケトン(以下、MIBKという)等。これらのうち、(b)飽和炭化水素化合物、(c)脂環式炭化水素化合物、(d)エーテル類、及び(e)ケトン類のうちいずれか1種が溶媒として用いられてもよい。
The polysilazane composition used in the present disclosure contains a solvent capable of dissolving the above polysilazane compound. Such a solvent is not particularly limited as long as it can dissolve the above polysilazane compound, but specific examples of the solvent include the following:
(A) Aromatic compounds such as benzene, toluene, xylene, ethylbenzene, diethylbenzene, trimethylbenzene, triethylbenzene, etc. (b) Saturated hydrocarbon compounds such as n-pentane, i-pentane, n-hexane, i-hexane , N-heptane, i-heptane, n-octane, i-octane, n-nonane, i-nonane, n-decane, i-decane, etc., (c) alicyclic hydrocarbon compounds such as ethylcyclohexane, methylcyclohexane , Cyclohexane, cyclohexene, p-menthane, decahydronaphthalene, dipentene, limonene, etc., (d) ethers such as dipropyl ether, dibutyl ether, diethyl ether, methyl tertiary butyl ether (hereinafter referred to as MTBE), anisole, and the like, and (E) Ketones such as methyl isobutyl ketone (hereinafter referred to as MIBK). Of these, any one of (b) saturated hydrocarbon compound, (c) alicyclic hydrocarbon compound, (d) ether, and (e) ketone may be used as a solvent.
 これらの溶媒は、溶剤の蒸発速度の調整のため、人体への有害性を低くするため、あるいは各成分の溶解性の調製のために、適宜2種以上混合したものであってもよい。 -These solvents may be appropriately mixed in two or more kinds in order to adjust the evaporation rate of the solvent, reduce the harmfulness to the human body, or adjust the solubility of each component.
 ポリシラザン組成物は、必要に応じてその他の添加剤成分を含有していてもよい。そのような成分として、例えばポリシラザンの架橋反応を促進する架橋促進剤等の反応を促進させる触媒、組成物の粘度を調製するための粘度調整剤などが挙げられる。また、ナトリウムのゲッタリング効果などを目的に、リン化合物、例えばトリス(トリメチルシリル)フォスフェート等、が含まれていてもよい。 The polysilazane composition may contain other additive components as needed. Examples of such components include a catalyst that accelerates the reaction such as a crosslinking accelerator that accelerates the crosslinking reaction of polysilazane, a viscosity modifier for adjusting the viscosity of the composition, and the like. In addition, a phosphorus compound such as tris(trimethylsilyl)phosphate may be contained for the purpose of gettering effect of sodium.
 また、上述した各成分の含有量は、塗布条件や加熱条件(熱処理条件)などによって変化する。また、ポリシラザン組成物に含まれるポリシラザン化合物の濃度は、任意である。さらに、ポリシラザン化合物以外の各種添加剤の含有量は、添加剤の種類などによって変化するが、ポリシラザン化合物に対する添加量が、一例として0.001~40重量%であってもよい。あるいは、添加量は、0.005~30重量%であってもよい。又は、添加量は、0.01~20重量%であってもよい。 Also, the content of each of the above components changes depending on the coating conditions and heating conditions (heat treatment conditions). Moreover, the concentration of the polysilazane compound contained in the polysilazane composition is arbitrary. Further, the content of various additives other than the polysilazane compound varies depending on the kind of the additive and the like, but the amount added to the polysilazane compound may be, for example, 0.001 to 40% by weight. Alternatively, the added amount may be 0.005 to 30% by weight. Alternatively, the added amount may be 0.01 to 20% by weight.
 図3に示される液供給部30は、液源31と、ポンプ32と、バルブ33と、ノズル34と、配管35とを備える。液源31は、処理液L1の供給源として機能する。ポンプ32は、制御装置100からの動作信号に基づいて動作し、液源31から処理液L1を吸引し、配管35及びバルブ33を介してノズル34に送り出す。 The liquid supply unit 30 shown in FIG. 3 includes a liquid source 31, a pump 32, a valve 33, a nozzle 34, and a pipe 35. The liquid source 31 functions as a supply source of the processing liquid L1. The pump 32 operates based on the operation signal from the control device 100, sucks the processing liquid L1 from the liquid source 31, and sends it to the nozzle 34 via the pipe 35 and the valve 33.
 ノズル34は、吐出口がウェハWの表面Waに向かうようにウェハWの上方に配置されている。ノズル34は、ポンプ32から送り出された処理液L1を、ウェハWの表面Waに吐出可能である。配管35は、上流側から順に、液源31、ポンプ32、バルブ33及びノズル34を接続している。 The nozzle 34 is arranged above the wafer W so that the ejection port faces the front surface Wa of the wafer W. The nozzle 34 can discharge the processing liquid L1 sent from the pump 32 onto the front surface Wa of the wafer W. The pipe 35 connects the liquid source 31, the pump 32, the valve 33, and the nozzle 34 in order from the upstream side.
(熱処理ユニット)
 続いて、図4を参照して、熱処理ユニットU2の一例について、さらに詳しく説明する。図4に示されるように、熱処理ユニットU2は、熱板44と、チャンバ40と、複数の支持ピン46と、ガス供給部50とを備える。
(Heat treatment unit)
Subsequently, an example of the heat treatment unit U2 will be described in more detail with reference to FIG. As shown in FIG. 4, the heat treatment unit U2 includes a heating plate 44, a chamber 40, a plurality of support pins 46, and a gas supply unit 50.
 熱板44は、ヒータ45を含む。熱板44は、熱処理対象(溶媒除去を行う対象)のウェハWを支持し、支持している当該ウェハWを加熱する。熱板44は、一例として略円板状に形成されている。熱板44の直径は、ウェハWの直径よりも大きくてもよい。熱板44は、熱伝導率の高いアルミ、銀、又は銅等の金属によって構成されてもよい。ヒータ45は、熱板44の温度を上昇させる。ヒータ45は、抵抗発熱体により構成されていてもよい。ヒータ45に対して制御装置100からの指示に応じた電流が流れることにより、ヒータ45は発熱する。そして、ヒータ45からの熱が伝熱して、熱板44の温度が上昇する。 The hot plate 44 includes a heater 45. The heating plate 44 supports the wafer W to be heat-treated (object to remove the solvent) and heats the supported wafer W. The heat plate 44 is formed in a substantially disc shape as an example. The diameter of the heating plate 44 may be larger than the diameter of the wafer W. The heat plate 44 may be made of a metal having a high thermal conductivity, such as aluminum, silver, or copper. The heater 45 raises the temperature of the heating plate 44. The heater 45 may be composed of a resistance heating element. The heater 45 generates heat when a current according to an instruction from the control device 100 flows through the heater 45. Then, the heat from the heater 45 is transferred to raise the temperature of the heating plate 44.
 チャンバ40は、熱処理を行う熱処理空間を形成する。チャンバ40は、上チャンバ41と、下チャンバ42とを備える。上チャンバ41は、駆動部(不図示)に接続されており、下チャンバ42に対して上下方向に移動する。上チャンバ41は、熱板44上のウェハWと対向する天板と、熱板44上のウェハWを囲む側壁とを含む。下チャンバ42は、保持部43を含んでおり、熱板44を保持している。 The chamber 40 forms a heat treatment space for heat treatment. The chamber 40 includes an upper chamber 41 and a lower chamber 42. The upper chamber 41 is connected to a driving unit (not shown), and moves in the vertical direction with respect to the lower chamber 42. The upper chamber 41 includes a top plate facing the wafer W on the hot plate 44, and a sidewall surrounding the wafer W on the hot plate 44. The lower chamber 42 includes a holding portion 43 and holds a hot plate 44.
 支持ピン46は、ウェハWを下方から支持するピンである。支持ピン46は、熱板44を貫通するように上下方向に延びている。複数の支持ピン46は、熱板44の中心周りの周方向において互いに等間隔に配置されていてもよい。駆動部47は、制御装置100の指示に応じて支持ピン46を昇降させる。駆動部47は、例えば昇降アクチュエータである。 The support pins 46 are pins that support the wafer W from below. The support pin 46 extends in the vertical direction so as to penetrate the heating plate 44. The plurality of support pins 46 may be arranged at equal intervals in the circumferential direction around the center of the heating plate 44. The drive unit 47 moves the support pin 46 up and down according to an instruction from the control device 100. The drive unit 47 is, for example, a lift actuator.
 ガス供給部50は、チャンバ40内(熱処理空間)にガスを供給するように構成されている。例えば、ガス供給部50は、チャンバ40内に窒素ガスを供給する。ガス供給部50は、ガス供給源53と、バルブ52と、配管54とを備える。ガス供給源53は、ガスの供給源として機能する。バルブ52は、制御装置100の指示に応じて開状態と閉状態とに切り替わる。ガス供給源53は、バルブ52が開状態であるときに、配管54を介してチャンバ40内(熱処理空間)にガスを送り出す。 The gas supply unit 50 is configured to supply gas into the chamber 40 (heat treatment space). For example, the gas supply unit 50 supplies nitrogen gas into the chamber 40. The gas supply unit 50 includes a gas supply source 53, a valve 52, and a pipe 54. The gas supply source 53 functions as a gas supply source. The valve 52 switches between an open state and a closed state according to an instruction from the control device 100. The gas supply source 53 sends out gas into the chamber 40 (heat treatment space) through the pipe 54 when the valve 52 is in the open state.
(プラズマ処理装置)
 続いて、図5を参照して、プラズマ処理装置10(プラズマ処理部)の一例について、さらに詳しく説明する。プラズマ処理装置10は、ポリシラザン組成物をウェハWに塗布することで形成されたポリシラザン化合物を含む膜に対してプラズマ処理を施す。例えば、プラズマ処理装置10は、ポリシラザン組成物をウェハWに塗布して形成された塗布膜に対してプラズマ処理を施してもよく、熱処理ユニットU2により溶媒が除去された塗布膜に対してプラズマ処理を施してもよい。なお、本明細書における「プラズマ処理を施す」とは、プラズマ状態となったガス(以下、「プラズマガス」という。)が収容された容器内に、少なくともウェハWの表面Waがプラズマガスに接するようにウェハWを所定時間置くことをいう。
(Plasma processing device)
Subsequently, an example of the plasma processing apparatus 10 (plasma processing unit) will be described in more detail with reference to FIG. The plasma processing apparatus 10 performs plasma processing on a film containing a polysilazane compound formed by applying the polysilazane composition to the wafer W. For example, the plasma processing apparatus 10 may perform plasma processing on a coating film formed by coating the wafer W with the polysilazane composition, and plasma processing may be performed on the coating film from which the solvent has been removed by the heat treatment unit U2. May be given. In the present specification, “to perform plasma treatment” means that at least the front surface Wa of the wafer W is in contact with the plasma gas in a container containing a gas in a plasma state (hereinafter referred to as “plasma gas”). Thus, the wafer W is placed for a predetermined time.
 プラズマ処理装置10は、搬送機構19を介して塗布・現像装置2に接続されている(図2参照)。搬送機構19は、塗布・現像装置2とプラズマ処理装置10との間でウェハWを搬送する。プラズマ処理装置10は、例えば平行平板型の装置である。図5に示されるように、プラズマ処理装置10は、処理容器68と、載置台60と、天板部70と、電源部80と、排気部90とを備える。 The plasma processing apparatus 10 is connected to the coating/developing apparatus 2 via the transport mechanism 19 (see FIG. 2). The transfer mechanism 19 transfers the wafer W between the coating/developing apparatus 2 and the plasma processing apparatus 10. The plasma processing apparatus 10 is, for example, a parallel plate type apparatus. As shown in FIG. 5, the plasma processing apparatus 10 includes a processing container 68, a mounting table 60, a top plate section 70, a power supply section 80, and an exhaust section 90.
 処理容器68は、導電性を有しており、略円筒状に形成されている。処理容器68には、接地線69が電気的に接続されており、処理容器68は接地されている。 The processing container 68 has conductivity and is formed in a substantially cylindrical shape. A ground wire 69 is electrically connected to the processing container 68, and the processing container 68 is grounded.
 載置台60は、処理容器68内に設けられ、処理対象のウェハWを支持する。載置台60は、略円板状の静電チャック61と、略円環状のフォーカスリング62とを備える。静電チャック61は、略円板状の部材であり、例えば一対のセラミックの間に静電チャック用の電極を挟みこんで形成されている。 The mounting table 60 is provided in the processing container 68 and supports the wafer W to be processed. The mounting table 60 includes a substantially disc-shaped electrostatic chuck 61 and a substantially annular focus ring 62. The electrostatic chuck 61 is a substantially disk-shaped member, and is formed, for example, by sandwiching an electrostatic chuck electrode between a pair of ceramics.
 静電チャック61の下面には下部電極としてのサセプタ63が設けられている。サセプタ63は、例えばアルミニウム等の金属により略円板状に形成されている。処理容器68の底部には、絶縁板65を介して支持台64が設けられ、サセプタ63は、この支持台64の上面に支持されている。静電チャック61の内部には電極(図示せず)が設けられており、当該電極に直流電圧を印加することにより生じる静電気力でウェハWが静電チャック61に吸着保持される。 A susceptor 63 as a lower electrode is provided on the lower surface of the electrostatic chuck 61. The susceptor 63 is formed of a metal such as aluminum into a substantially disc shape. A support base 64 is provided at the bottom of the processing container 68 via an insulating plate 65, and the susceptor 63 is supported on the upper surface of the support base 64. Electrodes (not shown) are provided inside the electrostatic chuck 61, and the wafer W is adsorbed and held on the electrostatic chuck 61 by the electrostatic force generated by applying a DC voltage to the electrode.
 プラズマ処理の均一性を向上させるためのフォーカスリング62は、例えば導電性のシリコンにより形成されており、サセプタ63の上面であって静電チャック61の外周部に配置されている。サセプタ63及び支持台64の外側面は、例えば石英からなる円筒部材66により覆われている。支持台64の内部には、冷媒が流れる冷媒流路(図示せず)が設けられており、冷媒の温度を制御することにより、静電チャック61で保持されているウェハWの温度が制御される。 The focus ring 62 for improving the uniformity of the plasma processing is made of, for example, conductive silicon, and is arranged on the upper surface of the susceptor 63 and on the outer peripheral portion of the electrostatic chuck 61. The outer surfaces of the susceptor 63 and the support base 64 are covered with a cylindrical member 66 made of, for example, quartz. A coolant passage (not shown) through which a coolant flows is provided inside the support base 64, and the temperature of the wafer W held by the electrostatic chuck 61 is controlled by controlling the temperature of the coolant. It
 電源部80は、高周波電源81,83と、整合器82,84とを備える。サセプタ63には、高周波電力を供給してプラズマを生成するための高周波電源81が、整合器82を介して電気的に接続されている。高周波電源81は、例えば27~100MHzの周波数の高周波電力を出力するように構成されている。また、高周波電源81の内部インピーダンスと負荷インピーダンスは、整合器82によりマッチングされる。 The power supply unit 80 includes high frequency power supplies 81 and 83 and matching units 82 and 84. A high frequency power supply 81 for supplying high frequency power to generate plasma is electrically connected to the susceptor 63 via a matching unit 82. The high frequency power supply 81 is configured to output high frequency power having a frequency of 27 to 100 MHz, for example. Further, the internal impedance of the high frequency power supply 81 and the load impedance are matched by the matching device 82.
 また、サセプタ63には、当該サセプタ63に高周波電力を供給してウェハWにバイアスを印加することでウェハWにイオンを引き込むための高周波電源83が、整合器84を介して電気的に接続されている。高周波電源83は、例えば400kHz~13.56MHzの周波数の高周波電力を出力するように構成されている。整合器84は、整合器82と同様に、高周波電源83の内部インピーダンスと負荷インピーダンスをマッチングさせるものである。これら高周波電源81,83、及び整合器82,84は、制御装置100に接続されており、これらの動作は制御装置100により制御される。 Further, the susceptor 63 is electrically connected to a high frequency power source 83 for supplying ions to the wafer W by supplying high frequency power to the susceptor 63 and applying a bias to the wafer W through a matching unit 84. ing. The high frequency power supply 83 is configured to output high frequency power having a frequency of 400 kHz to 13.56 MHz, for example. Like the matching unit 82, the matching unit 84 matches the internal impedance of the high frequency power source 83 and the load impedance. The high frequency power supplies 81 and 83 and the matching devices 82 and 84 are connected to the control device 100, and their operations are controlled by the control device 100.
 載置台60の上方(処理容器68の上部)には、天板部70が配置されている。天板部70は、上部電極73と、ガス拡散室76とを備える。下部電極であるサセプタ63の上方には、上部電極73がサセプタ63に対向して平行に設けられている。上部電極73は、導電性の保持部材71を介して処理容器68の上部に支持されている。したがって、上部電極73は、保持部材71及び処理容器68を介して接地されている。 A top plate portion 70 is arranged above the mounting table 60 (upper part of the processing container 68). The top plate portion 70 includes an upper electrode 73 and a gas diffusion chamber 76. Above the susceptor 63, which is a lower electrode, an upper electrode 73 is provided in parallel to face the susceptor 63. The upper electrode 73 is supported on the upper portion of the processing container 68 via the conductive holding member 71. Therefore, the upper electrode 73 is grounded via the holding member 71 and the processing container 68.
 上部電極73は、静電チャック61に保持されたウェハWと対向面を形成する電極板74と、当該電極板74を上方から支持する電極支持体75とにより構成されている。電極板74は、ジュール熱の少ない低抵抗の導電体又は半導体により構成されている。また、電極支持体75は導電体により構成されている。電極支持体75内部の中央部には、略円板状に形成されたガス拡散室76が設けられている。電極板74及び電極支持体75の下部には、処理容器68の内部に処理ガスを供給する複数のガス吐出孔77が、当該電極板74及び電極支持体75の下部を貫通するように形成されている。 The upper electrode 73 is composed of an electrode plate 74 that forms a surface facing the wafer W held by the electrostatic chuck 61, and an electrode support 75 that supports the electrode plate 74 from above. The electrode plate 74 is made of a low-resistance conductor or semiconductor with little Joule heat. The electrode support 75 is made of a conductor. A gas diffusion chamber 76 formed in a substantially disc shape is provided in the central portion inside the electrode support 75. A plurality of gas discharge holes 77 for supplying a processing gas into the processing container 68 are formed in the lower portion of the electrode plate 74 and the electrode support body 75 so as to penetrate through the lower portions of the electrode plate 74 and the electrode support body 75. ing.
 ガス拡散室76には、ガス供給管78が接続されている。ガス供給管78には、図5に示すようにガス供給源79が接続されており、ガス供給源79は、ガス供給管78を介してガス拡散室76に処理ガスを供給する。ガス拡散室76に供給された処理ガスは、ガス吐出孔77を通じて処理容器68内に導入される。ガス供給源79から供給される処理ガスは、不活性ガスを含んでいる。不活性ガスとして、希ガス(例えばアルゴンガス)、アンモニア(NH)ガス又は窒素ガスが挙げられる。不活性ガスのうち、酸素成分を含まないガスが用いられてもよい。 A gas supply pipe 78 is connected to the gas diffusion chamber 76. A gas supply source 79 is connected to the gas supply pipe 78 as shown in FIG. 5, and the gas supply source 79 supplies the processing gas to the gas diffusion chamber 76 via the gas supply pipe 78. The processing gas supplied to the gas diffusion chamber 76 is introduced into the processing container 68 through the gas discharge hole 77. The processing gas supplied from the gas supply source 79 contains an inert gas. As the inert gas, a rare gas (for example, argon gas), an ammonia (NH 3 ) gas, or a nitrogen gas can be used. Of the inert gases, a gas containing no oxygen component may be used.
 ガス供給源79から供給される処理ガスの一例として、窒素と水素とを含むガスが用いられてもよく、アンモニアを含むガスが用いられてもよく、窒素、水素、及びアンモニアを含むガスが用いられてもよい。例えば、窒素及び水素を含む処理ガスが用いられる場合、基準温度において窒素成分の流量が50mL/min~500mL/minであり、水素成分の流量が50mL/min~500mL/minであってもよい。この場合、窒素成分に対する水素成分の比が1に略等しくてもよい。処理ガスに水素が含まれる場合、窒素のラジカルが形成されやすくなる(窒素ガス等から剥離されやすくなる)。以上のように、プラズマ処理装置10は、プラズマガスとして不活性ガスのプラズマを用いて、ウェハWの塗布膜に対してプラズマ処理を施す。なお、不活性ガスのプラズマとは、不活性ガスを含む処理ガスに由来して得られるプラズマガスである。 As an example of the processing gas supplied from the gas supply source 79, a gas containing nitrogen and hydrogen may be used, a gas containing ammonia may be used, or a gas containing nitrogen, hydrogen and ammonia may be used. You may be asked. For example, when a processing gas containing nitrogen and hydrogen is used, the flow rate of the nitrogen component may be 50 mL/min to 500 mL/min and the flow rate of the hydrogen component may be 50 mL/min to 500 mL/min at the reference temperature. In this case, the ratio of the hydrogen component to the nitrogen component may be approximately equal to 1. When the process gas contains hydrogen, nitrogen radicals are likely to be formed (being easily separated from the nitrogen gas or the like). As described above, the plasma processing apparatus 10 uses the plasma of the inert gas as the plasma gas to perform the plasma processing on the coating film of the wafer W. The plasma of the inert gas is a plasma gas obtained by deriving a processing gas containing the inert gas.
 処理容器68の下方には、排気部90が配置されている。排気部90は、排気口91と、排気室92と、排気管93と、排気装置94とを備える。処理容器68の底面には排気口91が設けられている。排気口91の下方には、排気室92が形成されており、当該排気室92には排気管93を介して排気装置94が接続されている。したがって、排気装置94を駆動することにより、排気口91を介して処理容器68内を排気し、処理容器内を所定の真空度まで減圧することができる。 An exhaust unit 90 is arranged below the processing container 68. The exhaust unit 90 includes an exhaust port 91, an exhaust chamber 92, an exhaust pipe 93, and an exhaust device 94. An exhaust port 91 is provided on the bottom surface of the processing container 68. An exhaust chamber 92 is formed below the exhaust port 91, and an exhaust device 94 is connected to the exhaust chamber 92 via an exhaust pipe 93. Therefore, by driving the exhaust device 94, the inside of the processing container 68 can be exhausted through the exhaust port 91 and the inside of the processing container can be depressurized to a predetermined vacuum degree.
(制御装置)
 制御装置100は、基板処理システム1を部分的又は全体的に制御する。制御装置100は、一つ又は複数の制御用コンピュータにより構成される。例えば制御装置100は、一つ又は複数のプロセッサ、メモリ、ストレージ、タイマー、及び入出力ポートによって構成される回路を備える。ストレージは、例えばハードディスク等、コンピュータによって読み取り可能な記憶媒体を有する。記憶媒体は、後述の基板処理手順を制御装置100に実行させるためのプログラムを記憶している。記憶媒体は、不揮発性の半導体メモリ、磁気ディスク及び光ディスク等の取り出し可能な媒体であってもよい。メモリは、ストレージの記憶媒体からロードしたプログラム及びプロセッサによる演算結果を一時的に記憶する。プロセッサは、メモリと協働して上記プログラムを実行する。タイマーは、例えば一定周期の基準パルスをカウントすることで経過時間を計測する。入出力ポートは、プロセッサからの指令に従って、制御対象のユニット又は装置との間で電気信号の入出力を行う。
(Control device)
The controller 100 controls the substrate processing system 1 partially or wholly. The control device 100 is composed of one or a plurality of control computers. For example, the control device 100 includes a circuit including one or more processors, a memory, a storage, a timer, and an input/output port. The storage includes a computer-readable storage medium such as a hard disk. The storage medium stores a program for causing the control device 100 to execute a substrate processing procedure described later. The storage medium may be a removable medium such as a non-volatile semiconductor memory, a magnetic disk or an optical disk. The memory temporarily stores the program loaded from the storage medium of the storage and the calculation result by the processor. The processor executes the above program in cooperation with the memory. The timer measures the elapsed time by counting, for example, a reference pulse having a constant cycle. The input/output port inputs/outputs an electric signal to/from a unit or device to be controlled according to a command from the processor.
[基板処理方法]
 続いて、基板処理方法の一例として、図6に示される絶縁被膜の形成手順を含む基板処理手順について説明する。例えば、制御装置100は、以下の手順で絶縁被膜の形成を含む基板処理を実行するように基板処理システム1を制御する。まず制御装置100は、キャリアC内の絶縁被膜が形成される前のウェハWを棚ユニットU10に搬送するように搬送装置A1を制御し、このウェハWを処理モジュール11用のセルに配置するように搬送装置A7を制御する。
[Substrate processing method]
Next, as an example of the substrate processing method, a substrate processing procedure including a procedure for forming an insulating film shown in FIG. 6 will be described. For example, the control device 100 controls the substrate processing system 1 so as to execute the substrate processing including the formation of the insulating film in the following procedure. First, the control device 100 controls the transfer device A1 so as to transfer the wafer W in the carrier C on which the insulating film has not been formed to the shelf unit U10, and arranges this wafer W in the cell for the processing module 11. The transport device A7 is controlled.
 次に制御装置100は、棚ユニットU10のウェハWを処理モジュール11内の塗布ユニットU1に搬送するように搬送装置A3を制御する。そして、制御装置100は、ウェハWの表面Waにポリシラザン組成物を塗布するように塗布ユニットU1を制御する(ステップS01)。ステップS01では、例えば制御装置100が、回転保持部20を制御して、ウェハWを保持部23に保持させると共に、所定の回転数でウェハWを回転させる。このときの回転数は、例えば、塗布時において0rpm~5000rpm程度(一例として450rpm~1000rpm)、乾燥時において50rpm~5000rpm程度であってもよい。 Next, the control device 100 controls the transfer device A3 so as to transfer the wafer W of the shelf unit U10 to the coating unit U1 in the processing module 11. Then, the control device 100 controls the coating unit U1 so as to coat the front surface Wa of the wafer W with the polysilazane composition (step S01). In step S01, for example, the control device 100 controls the rotation holding unit 20 to hold the wafer W in the holding unit 23 and rotate the wafer W at a predetermined rotation speed. The rotation speed at this time may be, for example, about 0 rpm to 5000 rpm (for example, 450 rpm to 1000 rpm) at the time of coating and about 50 rpm to 5000 rpm at the time of drying.
 この状態で、制御装置100は、ポンプ32及びバルブ33を制御して、ウェハWの表面Waに対してノズル34からポリシラザン組成物(塗布液L)を吐出させる。これにより、塗布膜AFがウェハWの表面Waに形成される。例えば、制御装置100は、上述の回転数にてウェハWを10秒~60秒程度回転させ、膜厚が10nm~1000nm程度の塗布膜AFが形成されるように制御を行う。そして、制御装置100は、ポリシラザン組成物による塗布膜AFが形成されたウェハWを処理モジュール11内の熱処理ユニットU2に搬送するように搬送装置A3を制御する。 In this state, the control device 100 controls the pump 32 and the valve 33 to discharge the polysilazane composition (coating liquid L) from the nozzle 34 onto the front surface Wa of the wafer W. As a result, the coating film AF is formed on the front surface Wa of the wafer W. For example, the control device 100 rotates the wafer W for about 10 seconds to 60 seconds at the above-described number of rotations, and performs control so that the coating film AF having a film thickness of about 10 nm to 1000 nm is formed. Then, the control device 100 controls the transfer device A3 to transfer the wafer W on which the coating film AF of the polysilazane composition is formed to the heat treatment unit U2 in the processing module 11.
 次に、制御装置100は、塗布膜AFに含まれる溶媒を除去するように熱処理ユニットU2を制御する(ステップS02)。ステップS02では、例えば制御装置100が、ウェハWをチャンバ40内の熱処理空間に収容し、大気雰囲気下又は酸素成分が少ない雰囲気下(例えば窒素雰囲気下)において、所定時間、当該ウェハWを加熱するように熱処理ユニットU2を制御する。窒素雰囲気下でウェハWを加熱する場合には、制御装置100が、バルブ52を開状態に設定して、ガス供給源53から熱処理空間内に窒素ガスを送り出すように熱処理ユニットU2を制御する。大気雰囲気下でウェハWを加熱する場合には、制御装置100が、バルブ52の状態を閉状態に維持しておく。 Next, the controller 100 controls the heat treatment unit U2 so as to remove the solvent contained in the coating film AF (step S02). In step S02, for example, the controller 100 stores the wafer W in the heat treatment space in the chamber 40, and heats the wafer W for a predetermined time in the air atmosphere or the atmosphere with a small oxygen component (for example, nitrogen atmosphere). The heat treatment unit U2 is controlled as described above. When the wafer W is heated in a nitrogen atmosphere, the controller 100 sets the valve 52 to the open state and controls the heat treatment unit U2 so as to send the nitrogen gas from the gas supply source 53 into the heat treatment space. When heating the wafer W in the air atmosphere, the control device 100 keeps the valve 52 in the closed state.
 制御装置100は、熱板44内のヒータ45への電流値を調整することで、塗布膜AF内の溶媒を除去するのに適した温度となるように熱板44を制御する。ウェハWを加熱する温度(加熱温度)は、大気雰囲気下では、80℃~170℃程度(一例として150℃)であってもよい。加熱温度は、窒素雰囲気下では、100℃~220℃程度(一例として200℃)であってもよい。また、ウェハWを加熱する時間(加熱時間)は、大気雰囲気下及び窒素雰囲気下において、120秒~240秒程度(一例として180秒)であってもよい。所定の加熱時間が経過した後、制御装置100は、チャンバ40を開放させ、塗布膜AF内の溶媒が除去されることで形成された膜(以下、「塗布膜AR」という。)を含むウェハWを、棚ユニットU10に戻すように支持ピン46(駆動部47)及び搬送装置A3を制御する。そして、制御装置100は、当該ウェハWをキャリアC内に収容するように搬送装置A1を制御する。 The controller 100 controls the hot plate 44 so that the temperature is suitable for removing the solvent in the coating film AF by adjusting the current value to the heater 45 in the hot plate 44. The temperature for heating the wafer W (heating temperature) may be about 80° C. to 170° C. (150° C. as an example) in the air atmosphere. The heating temperature may be about 100° C. to 220° C. (200° C. as an example) in a nitrogen atmosphere. The time for heating the wafer W (heating time) may be about 120 seconds to 240 seconds (180 seconds as an example) in the air atmosphere and the nitrogen atmosphere. After a lapse of a predetermined heating time, the control device 100 opens the chamber 40 and removes the solvent in the coating film AF to form a wafer (hereinafter, referred to as “coating film AR”). The support pin 46 (driving unit 47) and the transfer device A3 are controlled so that W is returned to the shelf unit U10. Then, the control device 100 controls the transfer device A1 so that the wafer W is accommodated in the carrier C.
 次に制御装置100は、キャリアC内に収容されており、塗布膜ARを含むウェハWを、プラズマ処理装置10に搬送するように搬送機構19を制御する。そして、制御装置100は、塗布膜ARに対して、不活性ガスのプラズマによるプラズマ処理を施すようにプラズマ処理装置10を制御する(ステップS03)。ステップS03では、まず、塗布膜ARが上方を向くように、ウェハWが静電チャック61に載置される。そして、制御装置100は、ガス供給源79から処理容器68内にプラズマ生成用の処理ガスとして不活性ガス(例えば窒素及び水素を含むガス)が供給されるように、プラズマ処理装置10を制御する。 Next, the control device 100 controls the transfer mechanism 19 so as to transfer the wafer W housed in the carrier C and containing the coating film AR to the plasma processing device 10. Then, the control device 100 controls the plasma processing device 10 so that the coating film AR is subjected to plasma processing by plasma of an inert gas (step S03). In step S03, first, the wafer W is placed on the electrostatic chuck 61 so that the coating film AR faces upward. Then, the control device 100 controls the plasma processing device 10 so that an inert gas (for example, a gas containing nitrogen and hydrogen) is supplied from the gas supply source 79 into the processing container 68 as a processing gas for generating plasma. ..
 その後、制御装置100は、高周波電源81と高周波電源83とにより、下部電極であるサセプタ63に高周波電力が連続的に印加されるように、電源部80を制御する。これにより、上部電極73と静電チャック61との間において、高周波電界が形成される。高周波電界が形成されることで、処理容器68内に不活性ガスのプラズマが発生し、当該プラズマにより塗布膜ARに対してプラズマ処理が施される。制御装置100は、所定時間、塗布膜ARに対してプラズマ処理が施されるように、不活性ガスのプラズマを発生させつつ、ウェハWを処理容器68内に収容した状態を維持する。プラズマ処理を施す時間は、例えば、30秒~120秒程度(一例として60秒)であってもよい。 After that, the control device 100 controls the power supply unit 80 so that the high frequency power supply 81 and the high frequency power supply 83 continuously apply the high frequency power to the susceptor 63 which is the lower electrode. As a result, a high frequency electric field is formed between the upper electrode 73 and the electrostatic chuck 61. By forming the high frequency electric field, plasma of the inert gas is generated in the processing container 68, and the coating film AR is subjected to plasma processing by the plasma. The control device 100 maintains the state in which the wafer W is housed in the processing container 68 while generating plasma of an inert gas so that the coating film AR is subjected to plasma processing for a predetermined time. The time for performing the plasma treatment may be, for example, about 30 seconds to 120 seconds (60 seconds as an example).
 次に、制御装置100は、塗布膜ARに対してプラズマ処理が施されることで形成される膜(以下、「塗布膜AP」という。)を含むウェハWを、塗布・現像装置2(キャリアブロック4)に搬送するように搬送機構19を制御する。そして、制御装置100は、キャリアC内の塗布膜APを含むウェハWを棚ユニットU10に搬送するように搬送装置A1を制御し、このウェハWを処理モジュール11用のセルに配置するように搬送装置A7を制御する。その後、制御装置100は、塗布膜APを含むウェハWを処理モジュール11内の熱処理ユニットU2に搬送するように搬送装置A3を制御する。 Next, the control device 100 applies the wafer W including the film (hereinafter, referred to as “coating film AP”) formed by performing the plasma treatment to the coating film AR to the coating/developing device 2 (carrier). The transport mechanism 19 is controlled to transport to block 4). Then, the control device 100 controls the transfer device A1 so as to transfer the wafer W containing the coating film AP in the carrier C to the shelf unit U10, and transfers the wafer W so as to be arranged in the cell for the processing module 11. Control device A7. After that, the control device 100 controls the transfer device A3 to transfer the wafer W containing the coating film AP to the thermal processing unit U2 in the processing module 11.
 次に、制御装置100は、塗布膜APに対して加熱処理が施されるように、処理モジュール11内の熱処理ユニットU2を制御する(ステップS04)。ステップS04では、例えば制御装置100が、塗布膜APを含むウェハWをチャンバ40内の熱処理空間に収容し、大気雰囲気下又は酸素成分が少ない雰囲気下(例えば窒素雰囲気下)において、当該ウェハWに所定時間熱処理を施すように熱処理ユニットU2を制御する。制御装置100は、窒素雰囲気下で熱処理を施す場合、バルブ52を開状態に設定して、ガス供給源53から熱処理空間内に窒素ガスを送り出すように熱処理ユニットU2を制御する。 Next, the control device 100 controls the heat treatment unit U2 in the processing module 11 so that the coating film AP is subjected to the heat treatment (step S04). In step S04, for example, the control device 100 stores the wafer W including the coating film AP in the heat treatment space in the chamber 40, and the wafer W is added to the wafer W under an air atmosphere or an atmosphere with a small oxygen component (for example, a nitrogen atmosphere). The heat treatment unit U2 is controlled to perform heat treatment for a predetermined time. When performing the heat treatment in a nitrogen atmosphere, the control device 100 sets the valve 52 to the open state and controls the heat treatment unit U2 so as to send the nitrogen gas from the gas supply source 53 into the heat treatment space.
 制御装置100は、熱板44内のヒータ45への電流値を調整することで、塗布膜APに対する熱処理に適した温度となるように熱板44を制御する。塗布膜APを含むウェハWを加熱する温度(加熱温度)は、ステップS02における溶媒除去のための加熱温度よりも高くてもよい。例えば、塗布膜APを含むウェハWの加熱温度は、250℃~550℃程度であってもよい。あるいは、塗布膜APを含むウェハWの加熱温度は、400℃~500℃程度(一例として450℃)であってもよい。また、塗布膜APを含むウェハWを加熱する時間(加熱時間)は、1分~300分程度であってもよい。 The controller 100 controls the hot plate 44 so that the temperature is suitable for the heat treatment of the coating film AP by adjusting the current value to the heater 45 in the hot plate 44. The temperature (heating temperature) for heating the wafer W including the coating film AP may be higher than the heating temperature for removing the solvent in step S02. For example, the heating temperature of the wafer W including the coating film AP may be about 250° C. to 550° C. Alternatively, the heating temperature of the wafer W including the coating film AP may be about 400° C. to 500° C. (450° C. as an example). Further, the time (heating time) for heating the wafer W including the coating film AP may be about 1 minute to 300 minutes.
 上述の一連の処理により、ウェハW上に塗布されたポリシラザン組成物による塗布膜AFから絶縁被膜が形成される。所定の加熱時間が経過した後、制御装置100は、チャンバ40を開放させ、絶縁被膜を含むウェハWを、棚ユニットU10に戻すように搬送装置A3を制御し、このウェハWを処理モジュール12用のセルに配置するように搬送装置A7を制御する。 The insulating film is formed from the coating film AF of the polysilazane composition coated on the wafer W by the series of processes described above. After the elapse of a predetermined heating time, the control device 100 opens the chamber 40, controls the transfer device A3 so as to return the wafer W containing the insulating film to the shelf unit U10, and uses the wafer W for the processing module 12. The transfer device A7 is controlled so that the transfer device A7 is placed in the cell.
 次に、制御装置100は、棚ユニットU10のウェハWを処理モジュール12内の塗布ユニットU1及び熱処理ユニットU2に搬送するように搬送装置A3を制御する。また、制御装置100は、このウェハWの絶縁被膜上にレジスト膜を形成するように塗布ユニットU1及び熱処理ユニットU2を制御する。その後、制御装置100は、ウェハWを棚ユニットU10に戻すように搬送装置A3を制御し、さらに、このウェハWを処理モジュール13用のセルに配置するように搬送装置A7を制御する。 Next, the control device 100 controls the transfer device A3 to transfer the wafer W of the shelf unit U10 to the coating unit U1 and the heat treatment unit U2 in the processing module 12. Further, the control device 100 controls the coating unit U1 and the heat treatment unit U2 so as to form a resist film on the insulating coating of the wafer W. After that, the control device 100 controls the transfer device A3 so as to return the wafer W to the shelf unit U10, and further controls the transfer device A7 so as to arrange the wafer W in the cell for the processing module 13.
 次に、制御装置100は、棚ユニットU10のウェハWを処理モジュール13内の各ユニットに搬送するように搬送装置A3を制御する。また、制御装置100は、このウェハWのレジスト膜上に上層膜を形成するように塗布ユニットU1及び熱処理ユニットU2を制御する。その後、制御装置100は、ウェハWを棚ユニットU11に搬送するように搬送装置A3を制御する。 Next, the control device 100 controls the transfer device A3 so as to transfer the wafer W of the shelf unit U10 to each unit in the processing module 13. Further, the control device 100 controls the coating unit U1 and the heat treatment unit U2 so as to form an upper layer film on the resist film of the wafer W. After that, the control device 100 controls the transfer device A3 so as to transfer the wafer W to the shelf unit U11.
 次に、制御装置100は、棚ユニットU11に収容されたウェハWを露光装置3に送り出すように搬送装置A8を制御する。そして、露光装置3において、ウェハWに形成されたレジスト膜に露光処理が施される。その後制御装置100は、露光処理が施されたウェハWを露光装置3から受け入れて、当該ウェハWを棚ユニットU11における処理モジュール14用のセルに配置するように搬送装置A8を制御する。 Next, the control device 100 controls the transfer device A8 so that the wafer W accommodated in the shelf unit U11 is sent to the exposure device 3. Then, in the exposure apparatus 3, the resist film formed on the wafer W is exposed. After that, the control device 100 receives the wafer W that has been subjected to the exposure processing from the exposure device 3, and controls the transfer device A8 to arrange the wafer W in the cell for the processing module 14 in the shelf unit U11.
 次に制御装置100は、棚ユニットU11のウェハWを処理モジュール14内の熱処理ユニットU2に搬送するように搬送装置A3を制御する。そして、制御装置100は、ウェハWのレジスト膜に現像前の熱処理を施すように熱処理ユニットU2を制御する。次に、制御装置100は、熱処理ユニットU2により現像前の熱処理が施されたウェハWのレジスト膜に現像処理、及び現像処理後の熱処理を施すように塗布ユニットU1及び熱処理ユニットU2を制御する。その後、制御装置100は、ウェハWを棚ユニットU10に戻すように搬送装置A3を制御し、このウェハWをキャリアC内に戻すように搬送装置A7及び搬送装置A1を制御する。以上で絶縁被膜の形成を含む基板処理手順が完了する。 Next, the control device 100 controls the transfer device A3 to transfer the wafer W of the shelf unit U11 to the heat treatment unit U2 in the processing module 14. Then, the control device 100 controls the heat treatment unit U2 so as to subject the resist film of the wafer W to the heat treatment before development. Next, the control device 100 controls the coating unit U1 and the heat treatment unit U2 so that the resist film of the wafer W which has been subjected to the heat treatment before the development by the heat treatment unit U2 is subjected to the development treatment and the heat treatment after the development treatment. After that, the control device 100 controls the transfer device A3 to return the wafer W to the shelf unit U10, and controls the transfer devices A7 and A1 to return the wafer W into the carrier C. This completes the substrate processing procedure including the formation of the insulating coating.
[成分分析結果]
 続いて、上記の基板処理方法で成膜された絶縁被膜に含まれる成分の分析結果を説明する。
[Results of component analysis]
Next, the analysis results of the components contained in the insulating film formed by the above substrate processing method will be described.
(FT-IR)
 分析対象の絶縁被膜を得るために、ステップS01において塗布されるポリシラザン組成物に含まれるポリシラザン化合物として、-(SiHNH)-を基本単位として構成されている化合物を用いた。また、ポリシラザン組成物に含まれる溶媒として、ジブチルエーテルを用いた。上記のポリシラザン組成物をSi基板に対して塗布することで、基板上に膜厚が50nm程度である塗布膜AFを形成した。ステップS02における加熱処理では、窒素雰囲気下において、加熱温度を200℃に設定し、加熱時間を180秒とした。ステップS03におけるプラズマ処理では、不活性ガスのプラズマを生成するための処理ガスとして、窒素ガスに水素を含むガスを用いて、60秒間プラズマ処理を行った。ステップS04における熱処理では、窒素雰囲気下において、熱処理の温度を450℃に設定した。なお、ステップS04の熱処理を行わないこと以外は上記と同じ手順により、比較用の絶縁被膜を基板上に形成したものを準備した。
(FT-IR)
In order to obtain the insulating coating to be analyzed, a compound composed of —(SiH 2 NH)— as a basic unit was used as the polysilazane compound contained in the polysilazane composition applied in step S01. In addition, dibutyl ether was used as the solvent contained in the polysilazane composition. By applying the above polysilazane composition to a Si substrate, a coating film AF having a film thickness of about 50 nm was formed on the substrate. In the heat treatment in step S02, the heating temperature was set to 200° C. and the heating time was set to 180 seconds in a nitrogen atmosphere. In the plasma processing in step S03, a plasma processing was performed for 60 seconds using a gas containing hydrogen as a nitrogen gas as a processing gas for generating plasma of an inert gas. In the heat treatment in step S04, the heat treatment temperature was set to 450° C. in a nitrogen atmosphere. In addition, the thing which formed the insulating film for comparison on the board|substrate by the same procedure as the above except not performing the heat processing of step S04 was prepared.
 フーリエ変換赤外分光法(FT-IR:Fourier Transform Infrared Spectroscopy)による絶縁被膜の分析結果に係る赤外吸収スペクトルを図7(a)、図7(b)、図8(a)、及び図8(b)に示す。この分析では、プラズマ処理による影響を評価するために、プラズマ処理を施した場合、及びプラズマ処理を施さなかった場合に得られた絶縁被膜(比較用)を分析した。図7(a)及び図8(a)では、プラズマ処理を施さなかった場合の分析結果を示している。図7(b)及び図8(b)では、プラズマ処理を施した場合の分析結果を示している。図7(a)及び図7(b)では、それぞれ波数が4000cm-1~1500cm-1である範囲の赤外吸収スペクトルを示している。また、図8(a)及び図8(b)では、それぞれ波数が1500cm-1~400cm-1である範囲の赤外吸収スペクトルを示している。それぞれ、縦軸は吸光度を示している。なお、これらの分析結果において、「熱処理なし」として、ステップS04における熱処理を行わなかった場合の結果を示している。また、「3min」,「10min」,「150min」として、ステップS04における熱処理の時間(加熱時間)が3分,10分,150分である場合の結果を示している。 Infrared absorption spectra relating to the analysis results of the insulating coating by Fourier transform infrared spectroscopy (FT-IR) are shown in FIG. 7A, FIG. 7B, FIG. 8A, and FIG. It shows in (b). In this analysis, in order to evaluate the effect of the plasma treatment, the insulating coatings (for comparison) obtained with the plasma treatment and without the plasma treatment were analyzed. FIG. 7A and FIG. 8A show analysis results when the plasma treatment is not performed. FIG. 7B and FIG. 8B show the analysis results when the plasma treatment is performed. In FIGS. 7 (a) and 7 (b), the wave number, respectively show the infrared absorption spectrum in the range is 4000cm -1 ~ 1500cm -1. Further, in FIG. 8 (a) and FIG. 8 (b), the wave number respectively show the infrared absorption spectrum in the range is 1500cm -1 ~ 400cm -1. The vertical axis shows the absorbance. In addition, in these analysis results, the result in the case where the heat treatment in step S04 is not performed is shown as "no heat treatment". In addition, the results when the heat treatment time (heating time) in step S04 is 3 minutes, 10 minutes, and 150 minutes are shown as “3 min”, “10 min”, and “150 min”.
 分析対象の膜内に「Si-H」(シリコン-水素)結合が含まれている場合、波数2200cm-1~2100cm-1付近に吸光度の上昇(ピーク)が現れる。図7(a)と図7(b)とを比較した結果から、ステップS03におけるプラズマ処理を施すことで、膜内の「Si-H」結合が減少していることがわかる。 "Si-H" in the membrane of the analyte (silicon - hydrogen) if the bond is included, increase in absorbance in the vicinity of a wave number of 2200 cm -1 ~ 2100 cm -1 (peak) appears. From the results of comparison between FIG. 7A and FIG. 7B, it can be seen that “Si—H” bonds in the film are reduced by performing the plasma treatment in step S03.
 分析対象の膜内に「Si-O」(シリコン-酸素)結合が含まれている場合、波数1000cm-1~900cm-1付近に吸光度の上昇(ピーク)が現れる。また、分析対象の膜内に「Si-N」(シリコン-窒素)結合が含まれている場合、波数900cm-1~800cm-1付近に吸光度の上昇(ピーク)が現れる。図8(a)と図8(b)とを比較した結果(特に、150min同士を比較した結果)から、ステップS03におけるプラズマ処理を施すことで、膜内の「Si-N」結合の変動は少ないが、膜内の「Si-O」結合が減少していることがわかる。 When the film to be analyzed contains a “Si—O” (silicon-oxygen) bond, an increase in absorbance (peak) appears near the wave number of 1000 cm −1 to 900 cm −1 . Also, "Si-N" to the analyte in the membrane (silicon - nitrogen) When a bond is included, increase in absorbance in the vicinity of a wave number of 900 cm -1 ~ 800 cm -1 (peak) appears. From the result of comparison between FIG. 8A and FIG. 8B (particularly, the result of comparison between 150 min), the fluctuation of the “Si—N” bond in the film can be confirmed by performing the plasma treatment in step S03. It can be seen that the number of “Si—O” bonds in the film is reduced, though it is small.
 以上のように、プラズマ処理によって、「Si-H」結合及び「Si-O」結合が減少し、膜内において「Si-N」結合が相対的に増加していることがわかる。なお、図8(a)及び図8(b)における波数が1100cm-1付近の吸光度の上昇は、ウェハW内に予め存在するシリコンの自然酸化膜の成分に由来するものであると考えられる。 As described above, it is understood that the plasma treatment reduces the “Si—H” bonds and the “Si—O” bonds and relatively increases the “Si—N” bonds in the film. It should be noted that the increase in the absorbance at a wave number of around 1100 cm −1 in FIGS. 8A and 8B is considered to be due to the components of the natural oxide film of silicon existing in the wafer W in advance.
(XPS)
 X線光電子分光(XPS:X-ray Photoelectron Spectroscopy)による膜内の成分の分析結果(成分比)を図9(a)、図9(b)、図10(a)、及び図10(b)に示す。X線光電子分光による分析対象の絶縁被膜を形成するための各種処理の条件は、フーリエ変換赤外分光法による分析と同様であり、ステップS04における熱処理の時間は、150分とした。図9(a)及び図9(b)では、ステップS03のプラズマ処理を行わなかった場合の分析結果を示している。また、図10(a)及び図10(b)には、ステップS03のプラズマ処理を行った場合の分析結果を示している。また、図9(a)の分析結果は、ステップS01,S02の処理が行われた後の膜内の成分比であり、図9(b)の分析結果は、ステップS01,S02,S04の処理が行われた後の膜内の成分比である。すなわち、図9(a)及び図9(b)では、ステップS04を行うことによる成分の変化を示している。図10(a)の分析結果は、ステップS01~S03の処理が行われた後の膜内の成分比であり、図10(b)の分析結果は、ステップS01~S04の処理が行われた後の膜内の成分比である。すなわち、図10(a)及び図10(b)では、ステップS04を行うことによる成分の変化を示している。これらの分析結果において、横軸は、膜を含むウェハWの深さ(ウェハWの表面からの距離)に応じたスパッタリング時間(分)を示しており、縦軸は、各成分(元素)の割合(%)を示している。なお、各分析結果において、スパッタリング時間が5分程度を越えると、Siの成分比が100%に近づいているが、Siの成分比が100%である部分は、膜の下に存在するSi基板であること(膜ではない部分)を示している。
(XPS)
FIG. 9A, FIG. 9B, FIG. 10A, and FIG. 10B show analysis results (component ratios) of components in the film by X-ray photoelectron spectroscopy (XPS). Shown in. The conditions of various treatments for forming the insulating coating to be analyzed by X-ray photoelectron spectroscopy were the same as those for the analysis by Fourier transform infrared spectroscopy, and the heat treatment time in step S04 was 150 minutes. 9(a) and 9(b) show the analysis results when the plasma treatment of step S03 was not performed. Further, FIGS. 10A and 10B show the analysis results when the plasma treatment of step S03 is performed. The analysis result of FIG. 9A is the component ratio in the film after the processing of steps S01 and S02 is performed, and the analysis result of FIG. 9B is the processing of steps S01, S02, and S04. Is the ratio of components in the film after That is, FIG. 9A and FIG. 9B show the change of the component by performing step S04. The analysis result of FIG. 10A is the component ratio in the film after the processing of steps S01 to S03 is performed, and the analysis result of FIG. 10B is the processing of steps S01 to S04. It is the component ratio in the film afterward. That is, FIG. 10A and FIG. 10B show changes in the components due to performing step S04. In these analysis results, the horizontal axis represents the sputtering time (minutes) according to the depth of the wafer W including the film (distance from the surface of the wafer W), and the vertical axis represents each component (element). The ratio (%) is shown. In each analysis result, when the sputtering time exceeds about 5 minutes, the Si component ratio approaches 100%, but the portion where the Si component ratio is 100% is the Si substrate existing under the film. Is shown (a part which is not a film).
 図9(a)の分析結果から、ステップS01,S02の処理が行われた膜内における成分比は式(1)で示される。また、図9(b)の分析結果から、ステップS01,S02,S04の処理が行われた膜内における成分比は、式(2)で示される。式(1),(2)の結果から、プラズマ処理を施さない場合、熱処理を行った後には、絶縁被膜は酸素リッチな(他の成分に比べて酸素が多い)状態となっている。
   Si:N:O=0.5:0.3:0.2     (1)
   Si:N:O=0.4:0.15:0.45     (2)
From the analysis result of FIG. 9A, the component ratio in the film subjected to the processing of steps S01 and S02 is represented by formula (1). Further, based on the analysis result of FIG. 9B, the component ratio in the film subjected to the processing of steps S01, S02, and S04 is expressed by equation (2). From the results of the equations (1) and (2), when the plasma treatment is not performed, the insulating coating is in the oxygen rich state (more oxygen than other components) after the heat treatment.
Si:N:O=0.5:0.3:0.2 (1)
Si:N:O=0.4:0.15:0.45 (2)
 図10(a)の分析結果から、ステップS01~S03が行われた膜内における成分比は、式(3)で示される。また、図10(b)の分析結果から、ステップS01~S04の処理が行われた膜内における成分比は、式(4)で示される。式(3),(4)の結果から、プラズマ処理を施した場合、熱処理を行った後には、絶縁被膜は窒素リッチな(シリコンを除き酸素に比べて窒素が多い)状態が維持されている。また、プラズマ処理を行わなかった場合(式(2))と比べて、プラズマ処理を行った場合の窒素の割合が大きいことが、これらの分析結果からわかる。
   Si:N:O=0.53:0.4:0.07     (3)
   Si:N:O=0.53:0.4:0.07     (4)
From the analysis result of FIG. 10A, the component ratio in the film in which steps S01 to S03 have been performed is represented by formula (3). Further, from the analysis result of FIG. 10B, the component ratio in the film subjected to the processing of steps S01 to S04 is represented by the equation (4). From the results of the equations (3) and (4), when the plasma treatment is performed, the insulating coating is maintained in a nitrogen-rich state (there is more nitrogen than oxygen except for silicon) after the heat treatment. .. Further, it can be seen from these analysis results that the proportion of nitrogen in the case of performing the plasma treatment is higher than that in the case of not performing the plasma treatment (equation (2)).
Si:N:O=0.53:0.4:0.07 (3)
Si:N:O=0.53:0.4:0.07 (4)
(RBS+HFS)
 次に、ラザフォード後方散乱分析(RBS:Rutherford Backscattering Spectrometry)及び水素前方散乱分析(HFS:Hydrogen Forward Scattering)を併用した、Si,N,O,Hの成分比(元素数比)の分析結果について説明する。ステップS02における加熱処理を除きフーリエ変換赤外分光法による分析と同様の条件で、分析対象の絶縁被膜を基板上に形成した。ただし、ステップS04の熱処理を行う前の塗布膜(上述の塗布膜APに対応する膜)について、RBS及びHFSに係る分析を行った。ステップS02における加熱処理では、大気雰囲気下において加熱温度を150℃に設定し、加熱時間を180秒とした。表1には、比較対象としてのポリシラザン化合物における、シリコン、窒素、酸素、及び水素の成分比(元素数比)と、分析対象としてのプラズマ処理後(ステップS01~S03の処理後)の絶縁被膜における各元素の成分比(元素数比)を示している。ポリシラザン化合物における各元素の成分比は、塗布膜の形成に使用したポリシラザン組成物に含まれるポリシラザン化合物の化学式から求めたものである。表1の結果から、プラズマ処理を施すことで水素の割合が減少していることがわかる。すなわち、プラズマ処理を施すことにより塗布膜中の水素の一部が失われていると推定される。また、塗布膜中の酸素の割合はプラズマ処理の有無によりあまり変化していないことがわかる。
Figure JPOXMLDOC01-appb-T000003
(RBS+HFS)
Next, the analysis results of the component ratios (number ratio of elements) of Si, N, O, and H using Rutherford Backscattering Spectrometry (RBS) and Hydrogen Forward Scattering (HFS) will be explained. To do. An insulating coating to be analyzed was formed on the substrate under the same conditions as the analysis by Fourier transform infrared spectroscopy except for the heat treatment in step S02. However, the RBS and HFS analyzes were performed on the coating film (the film corresponding to the coating film AP described above) before the heat treatment in step S04. In the heat treatment in step S02, the heating temperature was set to 150° C. and the heating time was 180 seconds in the air atmosphere. Table 1 shows the composition ratio (number ratio of elements) of silicon, nitrogen, oxygen, and hydrogen in the polysilazane compound as the comparison target, and the insulating coating after the plasma processing (after the processing of steps S01 to S03) as the analysis target. 3 shows the component ratio (element number ratio) of each element in FIG. The component ratio of each element in the polysilazane compound is obtained from the chemical formula of the polysilazane compound contained in the polysilazane composition used for forming the coating film. From the results in Table 1, it can be seen that the proportion of hydrogen is reduced by performing the plasma treatment. That is, it is estimated that a part of hydrogen in the coating film is lost by performing the plasma treatment. Further, it can be seen that the proportion of oxygen in the coating film does not change much depending on the presence or absence of plasma treatment.
Figure JPOXMLDOC01-appb-T000003
[作用]
 以上の実施形態に係る基板処理方法では、ポリシラザン組成物をウェハWに塗布して塗布膜AFを形成することと、塗布膜AF内の溶媒を除去することと、溶媒が除去された塗布膜(塗布膜AR)に対して、不活性ガスのプラズマによるプラズマ処理を施すことと、プラズマ処理が施された塗布膜(塗布膜AP)を熱処理することと、が含まれる。すなわち、上記実施形態に係る基板処理方法は、ポリシラザン組成物を基板に塗布することで形成されたポリシラザン化合物を含む膜に対して、不活性ガスのプラズマによるプラズマ処理を施す。
[Action]
In the substrate processing method according to the above-described embodiment, the polysilazane composition is applied to the wafer W to form the coating film AF, the solvent in the coating film AF is removed, and the coating film with the solvent removed ( The coating film AR) is subjected to plasma treatment with plasma of an inert gas, and heat treatment of the plasma-treated coating film (coating film AP) is included. That is, in the substrate processing method according to the above-described embodiment, the film containing the polysilazane compound formed by applying the polysilazane composition to the substrate is subjected to plasma processing using plasma of an inert gas.
 この基板処理方法により形成された絶縁被膜では、ポリシラザン組成物による塗布膜に対して、不活性ガスのプラズマによるプラズマ処理を施すことで、プラズマ処理を施さない場合と比べて品質を向上させることができる。具体的には、プラズマ処理を経て得られた絶縁被膜は、屈折率が高くなり、エッチング耐性が向上する。 In the insulating coating formed by this substrate processing method, the quality of the insulating film formed by the polysilazane composition can be improved by performing the plasma treatment with the plasma of the inert gas as compared with the case where the plasma treatment is not performed. it can. Specifically, the insulating coating obtained through the plasma treatment has a high refractive index and an improved etching resistance.
 上述の基板処理方法では、CVD(chemical vapor deposition)によって形成されたシリコン窒化膜と同程度の品質(屈折率及びエッチングレート)を実現することができる。これは、ポリシラザン組成物による塗布膜に対して、プラズマ処理が施されることで、ポリシラザン化合物に含まれる「Si-H」結合及び「N-H」結合が切断されて、SiとNとの架橋反応が進み、「Si-N」結合が増加しているためと推察される。これらの現象が起きていることは、図7~図10に示される膜内の成分分析結果からも予想される。また、絶縁被膜内の水素元素が減少し、「Si-N」結合が増加することで、膜内のSiとNとの原子間距離が小さくなる部分が増えることで、絶縁被膜の密度も高くなると予想される。この結果、絶縁被膜の屈折率が高くなり、エッチング耐性が向上すると考えられる。 With the above substrate processing method, it is possible to achieve the same quality (refractive index and etching rate) as a silicon nitride film formed by CVD (chemical vapor deposition). This is because when the coating film of the polysilazane composition is subjected to the plasma treatment, the “Si—H” bond and the “N—H” bond contained in the polysilazane compound are broken, and Si and N are separated from each other. It is speculated that the crosslinking reaction proceeds and the number of “Si—N” bonds increases. The occurrence of these phenomena is expected from the results of component analysis in the film shown in FIGS. 7 to 10. In addition, the hydrogen element in the insulating film is reduced and the “Si—N” bond is increased, so that the portion where the interatomic distance between Si and N in the film is reduced is increased, so that the density of the insulating film is high. Expected to be. As a result, it is considered that the refractive index of the insulating coating is increased and the etching resistance is improved.
 従来は、シリコン窒化膜の形成は、品質の観点からCVDを用いて行われていることが多い。上述の基板処理方法では、CVDによるシリコン窒化膜と同程度の品質を有するシリコン窒化膜が得られるので、CVDに代えて、ポリシラザン組成物による塗布液からシリコン窒化膜を形成する方法に置き換えることが可能となる。ポリシラザン組成物による塗布膜から絶縁被膜を形成するまでの処理時間は、CVDによる成膜に必要な時間よりも短くすることができるので、CVDから本基板処理方法に置き換えることで基板処理のスループットを向上させることが可能となる。 Conventionally, the silicon nitride film is often formed by using CVD from the viewpoint of quality. Since the above-described substrate processing method can obtain a silicon nitride film having a quality similar to that of the silicon nitride film formed by CVD, it may be replaced with a method of forming a silicon nitride film from a coating solution of a polysilazane composition instead of CVD. It will be possible. Since the processing time from the coating film of the polysilazane composition to the formation of the insulating film can be shorter than the time required for the film formation by CVD, the substrate processing throughput can be improved by replacing CVD with the present substrate processing method. It is possible to improve.
 CVDによるシリコン窒化膜の形成において、成膜温度は一般的に500℃~800℃程度である。熱処理を高温(例えば600℃以上)で行う場合、コスト増加、スループットの低下が懸念される。また、ウェハWに形成される各種配線、半導体領域の品質の観点から、熱処理を高温下で行うことを避け、低温での熱処理が必要となる場合がある。上述の基板処理方法では、プラズマ処理が施された塗布膜に対して、比較的低温である550℃以下にて、熱処理が行われる。以上の実施形態に係る基板処理方法では、熱処理が低温であっても、あるいは、熱処理が行われなくても、プラズマ処理が施されることで、シリコン窒化膜の品質が向上する。 In forming a silicon nitride film by CVD, the film formation temperature is generally about 500°C to 800°C. When the heat treatment is performed at a high temperature (for example, 600° C. or higher), there is a concern that cost may increase and throughput may decrease. Further, from the viewpoint of various wirings formed on the wafer W and the quality of the semiconductor region, it may be necessary to avoid the heat treatment at a high temperature and perform the heat treatment at a low temperature. In the substrate processing method described above, the plasma-treated coating film is heat-treated at a relatively low temperature of 550° C. or lower. In the substrate processing method according to the above embodiment, the quality of the silicon nitride film is improved by performing the plasma treatment regardless of whether the heat treatment is performed at a low temperature or not.
 以上の実施形態では、熱処理ユニットU2が塗布膜AFを含むウェハWを加熱することで、塗布膜AF内の溶媒が除去される。この場合、ステップS04における熱処理と溶媒除去とを行うユニットを共用化することができ、基板処理システム1を簡略化することが可能となる。 In the above embodiment, the heat treatment unit U2 heats the wafer W including the coating film AF, whereby the solvent in the coating film AF is removed. In this case, the unit that performs the heat treatment and the solvent removal in step S04 can be shared, and the substrate processing system 1 can be simplified.
 以上の実施形態では、熱処理ユニットU2が窒素雰囲気下で塗布膜AFを加熱することで、塗布膜AF内の溶媒が除去される。この場合、大気雰囲気下で溶媒除去のための加熱を行うときと比べて、塗布膜AFの表面における酸化膜の形成が抑制されるため、絶縁被膜としての品質が向上する。 In the above embodiments, the heat treatment unit U2 heats the coating film AF in a nitrogen atmosphere, so that the solvent in the coating film AF is removed. In this case, the formation of an oxide film on the surface of the coating film AF is suppressed as compared with the case where heating for removing the solvent is performed in the air atmosphere, so that the quality as an insulating coating is improved.
 以上の実施形態では、プラズマ処理に用いられる不活性ガスは、窒素を含むガスである。プラズマ処理を施すことで、絶縁被膜の屈折率は高まるが、膜厚が小さくなってしまうおそれがある。これに対して、窒素を含む不活性ガスのプラズマを用いることで、膜厚の低下が抑制されるため、膜厚の確保と絶縁被膜の屈折率を高めることの両立が図られる。 In the above embodiment, the inert gas used for the plasma treatment is a gas containing nitrogen. The plasma treatment increases the refractive index of the insulating coating, but may reduce the film thickness. On the other hand, by using the plasma of the inert gas containing nitrogen, the reduction of the film thickness is suppressed, so that both the securing of the film thickness and the increase of the refractive index of the insulating coating can be achieved.
 以上の実施形態では、窒素ガスのプラズマの生成に用いられる処理ガスは、水素を含んでいる。この場合、窒素ガスのプラズマ化が水素により促進されるので、より効率的にプラズマ処理を行うことが可能となる。また、水素を含まない場合の窒素ガスのプラズマによりプラズマ処理を施すときと比べて、屈折率が高くなり得る。 In the above embodiment, the processing gas used to generate the plasma of nitrogen gas contains hydrogen. In this case, since the nitrogen gas is turned into plasma by hydrogen, it is possible to perform the plasma treatment more efficiently. In addition, the refractive index may be higher than that when plasma treatment is performed using nitrogen gas plasma in the case of not containing hydrogen.
[実施例]
 以下に、実施例を挙げて上記実施形態を具体的に説明するが、本開示の範囲はこれらに限定されるものではない。
[Example]
The above embodiments will be specifically described below with reference to Examples, but the scope of the present disclosure is not limited thereto.
(実施例1~4)
 上記の実施形態に係る基板処理システム1を用いて、以下の手順により実施例1~4に係る絶縁被膜を形成した。まず、処理モジュール11の塗布ユニットU1において、ウェハWの表面Waにポリシラザン組成物(塗布液L)を供給し、塗布膜AFを形成した。このとき、回転数1000rpmにてウェハWを20秒間回転させ、膜厚50nmの塗布膜AFを形成した。実施例1~4の絶縁被膜を得るために、ポリシラザン組成物に含まれるポリシラザン化合物として、-(SiHNH)-を基本単位として構成されている化合物を用いた。またポリシラザン組成物に含まれる溶媒として、ジブチルエーテルを用いた。
(Examples 1 to 4)
Using the substrate processing system 1 according to the above embodiment, the insulating coatings according to Examples 1 to 4 were formed by the following procedure. First, in the coating unit U1 of the processing module 11, the polysilazane composition (coating liquid L) was supplied to the front surface Wa of the wafer W to form the coating film AF. At this time, the wafer W was rotated at 1000 rpm for 20 seconds to form a coating film AF having a film thickness of 50 nm. In order to obtain the insulating coatings of Examples 1 to 4, as the polysilazane compound contained in the polysilazane composition, a compound composed of —(SiH 2 NH)— as a basic unit was used. In addition, dibutyl ether was used as the solvent contained in the polysilazane composition.
 次に、処理モジュール11の熱処理ユニットU2において、塗布膜AF内の溶媒を除去するために、大気雰囲気下でウェハWを加熱した。このとき、加熱温度(熱板44の温度)を150℃に設定し、塗布膜AFを180秒間加熱することで、塗布膜AR(溶媒が除去された塗布膜)を形成した。次に、プラズマ処理装置10において、塗布膜ARに対してプラズマ処理を施した。このとき、窒素及び水素を含む処理ガスを用いて窒素ガスのプラズマを発生させ、プラズマが発生した状態のプラズマ処理装置10(処理容器68)内にウェハWを60秒間保持することで、塗布膜AP(プラズマ処理が施された塗布膜)を形成した。以上の手順により、実施例1に係る絶縁被膜を得た。 Next, in the heat treatment unit U2 of the processing module 11, the wafer W was heated in the atmosphere to remove the solvent in the coating film AF. At this time, the heating temperature (the temperature of the heating plate 44) was set to 150° C., and the coating film AF was heated for 180 seconds to form the coating film AR (the coating film from which the solvent was removed). Next, in the plasma processing apparatus 10, the coating film AR was subjected to plasma processing. At this time, a plasma of nitrogen gas is generated using a processing gas containing nitrogen and hydrogen, and the wafer W is held in the plasma processing apparatus 10 (processing container 68) in a state where the plasma is generated for 60 seconds, whereby the coating film is formed. AP (coating film subjected to plasma treatment) was formed. The insulating coating according to Example 1 was obtained by the above procedure.
 また、処理モジュール11の熱処理ユニットU2において、窒素雰囲気下で実施例1に対応する塗布膜APが形成されたウェハWに対して熱処理を行うことで、実施例2~4に係る絶縁被膜を形成した。具体的には、塗布膜APに対して3分間の熱処理を行うことで実施例2の絶縁被膜を得た。また、塗布膜APに対して10分間の熱処理を行うことで実施例3の絶縁被膜を得た。また、塗布膜APに対して150分間の熱処理を行うことで実施例4の絶縁被膜を得た。 Further, in the heat treatment unit U2 of the processing module 11, the heat treatment is performed on the wafer W on which the coating film AP corresponding to the first embodiment is formed in a nitrogen atmosphere to form the insulating coatings according to the second to fourth embodiments. did. Specifically, the insulating film of Example 2 was obtained by performing a heat treatment for 3 minutes on the coating film AP. Further, the insulating film of Example 3 was obtained by performing heat treatment on the coating film AP for 10 minutes. Further, the coating film AP was heat-treated for 150 minutes to obtain an insulating coating film of Example 4.
(実施例5~8)
 処理モジュール11の熱処理ユニットU2において窒素雰囲気下でウェハWを加熱した点以外は、実施例1に係る絶縁被膜と同様にして実施例5に係る絶縁被膜を形成した。溶媒除去のためにウェハWを加熱した際には、加熱温度(熱板44の温度)を200℃に設定し、塗布膜AFを180秒間加熱した。これにより、実施例5に係る絶縁被膜を得た。
(Examples 5 to 8)
The insulating coating according to Example 5 was formed in the same manner as the insulating coating according to Example 1, except that the wafer W was heated in the nitrogen atmosphere in the heat treatment unit U2 of the processing module 11. When the wafer W was heated to remove the solvent, the heating temperature (temperature of the heating plate 44) was set to 200° C., and the coating film AF was heated for 180 seconds. As a result, the insulating coating according to Example 5 was obtained.
 また、実施例2~4と同様に、処理モジュール11の熱処理ユニットU2において、窒素雰囲気下で実施例5に対応する塗布膜APが形成されたウェハWに対して熱処理を行うことで、実施例6~8に係る絶縁被膜を形成した。すなわち、具体的には、塗布膜APに対して3分間の熱処理を行うことで実施例6の絶縁被膜を得た。また、塗布膜APに対して10分間の熱処理を行うことで実施例7の絶縁被膜を得た。また、塗布膜APに対して150分間の熱処理を行うことで実施例8の絶縁被膜を得た。 Further, similar to the second to fourth embodiments, the heat treatment is performed on the wafer W on which the coating film AP corresponding to the fifth embodiment is formed in the heat treatment unit U2 of the processing module 11 in the nitrogen atmosphere, thereby performing the heat treatment. An insulating film according to Nos. 6 to 8 was formed. That is, specifically, the insulating film of Example 6 was obtained by performing a heat treatment for 3 minutes on the coating film AP. Further, the insulating film of Example 7 was obtained by performing heat treatment on the coating film AP for 10 minutes. Further, the coating film AP was heat-treated for 150 minutes to obtain an insulating coating of Example 8.
(比較例1~4)
 塗布膜ARに対するプラズマ処理を行わなかった点以外は、実施例1に係る絶縁被膜と同様にして、比較例1に係る絶縁被膜を形成した。また、実施例2~4と同様に、処理モジュール11の熱処理ユニットU2において、窒素雰囲気下で比較例1に対応する塗布膜APが形成されたウェハWに対して熱処理を行うことで、比較例2~4に係る絶縁被膜を形成した。比較例2~4の絶縁被膜を形成する際の塗布膜APに対する熱処理時間は、それぞれ、3分間、10分間、150分間であった。
(Comparative Examples 1 to 4)
An insulating coating film according to Comparative Example 1 was formed in the same manner as the insulating coating film according to Example 1 except that the plasma treatment was not performed on the coating film AR. In addition, as in Examples 2 to 4, in the thermal processing unit U2 of the processing module 11, the wafer W on which the coating film AP corresponding to Comparative Example 1 was formed was heated in a nitrogen atmosphere, so that the Comparative Example An insulating film according to Nos. 2 to 4 was formed. The heat treatment times for the coating film AP when forming the insulating coatings of Comparative Examples 2 to 4 were 3 minutes, 10 minutes, and 150 minutes, respectively.
(比較例5~8)
 塗布膜ARに対するプラズマ処理を行わなかった点以外は、実施例5に係る絶縁被膜と同様にして、比較例5に係る絶縁被膜を形成した。また、実施例6~8と同様に、処理モジュール11の熱処理ユニットU2において、窒素雰囲気下で比較例5に対応する塗布膜APが形成されたウェハWに対して熱処理を行うことで、比較例6~8に係る絶縁被膜を形成した。比較例6~8の絶縁被膜を形成する際の塗布膜APに対する熱処理時間は、それぞれ、3分間、10分間、150分間であった。
(Comparative Examples 5-8)
An insulating coating film according to Comparative Example 5 was formed in the same manner as the insulating coating film according to Example 5 except that the plasma treatment was not performed on the coating film AR. In addition, as in Examples 6 to 8, in the heat treatment unit U2 of the processing module 11, the wafer W on which the coating film AP corresponding to Comparative Example 5 was formed was subjected to the heat treatment in the nitrogen atmosphere, and thus the Comparative Example An insulating film according to Nos. 6 to 8 was formed. The heat treatment times for the coating film AP when forming the insulating coatings of Comparative Examples 6 to 8 were 3 minutes, 10 minutes, and 150 minutes, respectively.
(参考例1,2)
 参考例1に係る絶縁被膜として、CVDによりシリコン窒化膜を形成した。参考例1の絶縁被膜を形成する際に、原料のガスとしてDCS(ジクロロシラン)及びアンモニアを用いた。また、参考例1の絶縁被膜の膜厚は、50nmとした。また、実施例4の絶縁被膜の形成でのプラズマ処理に代えて、減圧された処理空間内において10000mJのエネルギーを有する紫外線(UV)を塗布膜AR(溶媒が除去された塗布膜)に照射することで、参考例2に係る絶縁被膜を形成した。
(Reference examples 1 and 2)
As the insulating film according to Reference Example 1, a silicon nitride film was formed by CVD. When forming the insulating coating of Reference Example 1, DCS (dichlorosilane) and ammonia were used as raw material gases. The thickness of the insulating coating film of Reference Example 1 was set to 50 nm. Further, instead of the plasma treatment in forming the insulating coating of Example 4, the coating film AR (the coating film from which the solvent has been removed) is irradiated with ultraviolet rays (UV) having an energy of 10000 mJ in the depressurized processing space. Thus, the insulating coating film according to Reference Example 2 was formed.
 上記の実施例、比較例、及び参考例に係る絶縁被膜の形成条件を表2に示す。
Figure JPOXMLDOC01-appb-T000004
Table 2 shows the conditions for forming the insulating coating according to the above-mentioned examples, comparative examples, and reference examples.
Figure JPOXMLDOC01-appb-T000004
(膜厚の測定結果)
 実施例1,4,5,8及び比較例1,4,5,8のそれぞれの絶縁被膜について、膜厚[nm]を測定した。膜厚の測定は、膜計測装置(型式Aleris8350;KLA Tencor社製)を用いて分光エリプソメトリー法により行った。また、測定箇所として絶縁被膜の上面視における略中心位置を選択し、当該測定箇所の膜厚を測定した。図11には、これらの膜厚の測定結果が示されている。図11の測定結果から、プラズマ処理後の熱処理の有無にかかわらず、プラズマ処理によって膜厚が薄くなっていることが確認された。
(Measurement result of film thickness)
The film thickness [nm] of each of the insulating coatings of Examples 1, 4, 5, 8 and Comparative Examples 1, 4, 5, 8 was measured. The film thickness was measured by a spectroscopic ellipsometry method using a film measuring device (model Aleris8350; manufactured by KLA Tencor). Further, a substantially central position of the insulating coating in a top view was selected as a measurement location, and the film thickness at the measurement location was measured. FIG. 11 shows the measurement results of these film thicknesses. From the measurement result of FIG. 11, it was confirmed that the film thickness was reduced by the plasma treatment regardless of the presence or absence of the heat treatment after the plasma treatment.
(屈折率の測定結果)
 実施例1,4,5,8、比較例1,4,5,8、及び参考例1,2のそれぞれの絶縁被膜について、屈折率を測定した。屈折率として、波長が633nmである光に対する屈折率を測定した。屈折率の測定は、膜計測装置(型式Aleris8350;KLA Tencor社製)を用いて分光エリプソメトリー法により行った。また、測定箇所として絶縁被膜の上面視における略中心位置を選択し、当該測定箇所の屈折率を測定した。絶縁被膜の密度が高いほど、屈折率が大きくなる傾向を利用して、屈折率を指標として絶縁被膜の密度を評価した。
(Results of refractive index measurement)
The refractive index of each of the insulating coatings of Examples 1, 4, 5, 8 and Comparative Examples 1, 4, 5, 8 and Reference Examples 1, 2 was measured. As the refractive index, the refractive index for light with a wavelength of 633 nm was measured. The refractive index was measured by a spectroscopic ellipsometry method using a film measuring device (type Aleris8350; manufactured by KLA Tencor). Further, a substantially central position of the insulating coating in a top view was selected as a measurement location, and the refractive index at the measurement location was measured. Utilizing the tendency that the refractive index increases as the density of the insulating coating increases, the density of the insulating coating is evaluated using the refractive index as an index.
 図12には、実施例1,4,5,8、比較例1,4,5,8、及び参考例1,2のそれぞれの絶縁被膜における屈折率の測定結果が示されている。図12の測定結果から、溶媒の除去を行うためのウェハWの加熱時に大気雰囲気下であるか、窒素雰囲気下であるかにかかわらず、プラズマ処理を施さない場合に比べて、プラズマ処理を施した場合に屈折率が大きくなることが確認された。すなわち、プラズマ処理を施した場合に、絶縁被膜の密度が向上していることが確認された。さらに、プラズマ処理を施した場合に、CVDによって形成されたシリコン窒化膜(参考例1)と同程度の屈折率を有する絶縁被膜が得られていることが確認された。一方、プラズマ処理に代えて、紫外線を照射した場合(参考例2)には、CVDによる膜形成を行った場合(プラズマ処理を施した場合)と同程度の屈折率が得られていないことが確認された。ステップS02における溶媒除去のための加熱条件(加熱空間内の雰囲気)が大気である場合に比べて、窒素である場合に、屈折率が多少大きくなることが確認された。 FIG. 12 shows the measurement results of the refractive indexes of the insulating coatings of Examples 1, 4, 5, 8 and Comparative Examples 1, 4, 5, 8 and Reference Examples 1 and 2. From the measurement results of FIG. 12, whether the plasma treatment is performed in comparison with the case where the plasma treatment is not performed regardless of whether the wafer W is heated in the air atmosphere or the nitrogen atmosphere when the wafer W is heated to remove the solvent. It was confirmed that the refractive index was increased in the case. That is, it was confirmed that the density of the insulating coating was improved when the plasma treatment was performed. Furthermore, it was confirmed that when the plasma treatment was performed, an insulating coating film having a refractive index similar to that of the silicon nitride film (Reference Example 1) formed by CVD was obtained. On the other hand, in the case of irradiating with ultraviolet rays instead of the plasma treatment (Reference Example 2), the same degree of refractive index as in the case of performing film formation by CVD (when performing plasma treatment) may not be obtained. confirmed. It was confirmed that the refractive index is slightly higher when the heating condition for removing the solvent in step S02 (atmosphere in the heating space) is nitrogen than when it is the atmosphere.
(絶縁被膜の密度の測定結果)
 図13には、X線反射率法(XRR:X-Ray Reflectometry)を用いた絶縁被膜の密度(膜密度)[g/cm]の測定結果が示されている。図13における「PSZ→Bake→N2H2 Plasma」は、ステップS01~S03の処理が行われて形成された塗布膜AP(プラズマ処理が施された塗布膜)における膜密度の分析結果を示している。「PSZ→Bake」は、ステップS01,S02の処理が行われて形成された塗布膜AR(溶媒が除去された塗布膜)における膜密度の分析結果を示している。分析対象に係る膜を形成する際には、塗布膜APの膜厚を50nmとし、ステップS02における加熱処理を、大気雰囲気下において150℃の加熱温度で180秒間行った。また、ステップS03におけるプラズマ処理では、窒素及び水素を含む処理ガスを用いた。塗布膜ARにおける膜密度は、膜の厚さ方向の略全体において、1.44であるのに対して、塗布膜APにおける膜密度は、表面(0nm)から順に2.47、2.34、1.95、1.63であり、塗布膜ARの膜密度よりも大きくなっていることが確認された。
(Measurement result of the density of the insulating film)
FIG. 13 shows the measurement results of the density (film density) [g/cm 3 ] of the insulating film using the X-ray reflectance method (XRR: X-Ray Reflectometry). “PSZ→Bake→N 2 H 2 Plasma” in FIG. 13 indicates the analysis result of the film density of the coating film AP (coating film subjected to the plasma treatment) formed by performing the processing of steps S01 to S03. ing. “PSZ→Bake” indicates the analysis result of the film density of the coating film AR (coating film from which the solvent has been removed) formed by performing the processing of steps S01 and S02. When forming the film to be analyzed, the thickness of the coating film AP was set to 50 nm, and the heat treatment in step S02 was performed at a heating temperature of 150° C. for 180 seconds in the air atmosphere. Further, in the plasma processing in step S03, a processing gas containing nitrogen and hydrogen was used. The film density of the coating film AR is 1.44 in almost the entire thickness direction of the film, whereas the film density of the coating film AP is 2.47, 2.34 in order from the surface (0 nm). It was 1.95 and 1.63, which were confirmed to be higher than the film density of the coating film AR.
(エッチングレートの測定結果)
 実施例1~8、比較例1~8、及び参考例1,2の絶縁被膜それぞれについて、エッチングレートを測定した。具体的には、オクタフルオロシクロブタン(C)、アルゴン(Ar)、及び酸素(O)を含むガスを用いてエッチングを行った場合において、SiOから構成される膜(酸化シリコン膜)のエッチング量に対する絶縁被膜のエッチング量の比をエッチングレートとして算出して評価した。エッチングレートが低いほど、シリコン酸化膜のエッチング時において当該絶縁被膜は削られにくい(エッチング耐性が高い)ことを示している。
(Measurement result of etching rate)
The etching rates of the insulating coatings of Examples 1 to 8, Comparative Examples 1 to 8 and Reference Examples 1 and 2 were measured. Specifically, when etching is performed using a gas containing octafluorocyclobutane (C 4 F 8 ), argon (Ar), and oxygen (O 2 ), a film composed of SiO 2 (silicon oxide film) The ratio of the etching amount of the insulating film to the etching amount of the above) was calculated as an etching rate and evaluated. It is shown that the lower the etching rate, the more difficult the insulating coating is to be etched (higher etching resistance) during the etching of the silicon oxide film.
 図14には、実施例1~4、比較例1~4、及び参考例1,2の絶縁被膜それぞれについて、エッチングレートの評価結果が示されている。図15には、実施例5~8、比較例5~8、及び参考例1,2の絶縁被膜それぞれについて、エッチングレートの評価結果が示されている。図14及び図15の評価結果から、比較例1~8の絶縁被膜は、ほぼ酸化シリコン膜と同程度のエッチング耐性しか有していないことがわかる。すなわち、比較例1~8の絶縁被膜は、実質的な酸化シリコン膜であることがわかる。一方、実施例1~4の絶縁被膜は、比較例1~4の絶縁被膜に比べてエッチングレートが低く、実施例5~8の絶縁被膜は、比較例5~8の絶縁被膜に比べてエッチングレートが低いことがわかる。すなわち、実施例1~8の絶縁被膜(プラズマ処理を施した絶縁被膜)では、プラズマ処理が施されていない絶縁被膜に比べて、エッチング耐性が向上していることが確認された。 FIG. 14 shows the etching rate evaluation results for the insulating coatings of Examples 1 to 4, Comparative Examples 1 to 4, and Reference Examples 1 and 2. FIG. 15 shows the etching rate evaluation results for the insulating coatings of Examples 5 to 8, Comparative Examples 5 to 8 and Reference Examples 1 and 2. From the evaluation results of FIGS. 14 and 15, it can be seen that the insulating coatings of Comparative Examples 1 to 8 have almost the same etching resistance as the silicon oxide film. That is, it is understood that the insulating coatings of Comparative Examples 1 to 8 are substantially silicon oxide films. On the other hand, the insulating coatings of Examples 1 to 4 have a lower etching rate than the insulating coatings of Comparative Examples 1 to 4, and the insulating coatings of Examples 5 to 8 are more etched than the insulating coatings of Comparative Examples 5 to 8. You can see that the rate is low. That is, it was confirmed that the insulating coatings of Examples 1 to 8 (insulating coatings subjected to plasma treatment) had improved etching resistance as compared with insulating coatings not subjected to plasma treatment.
 また、実施例1~8(特に、実施例4,8)の絶縁被膜では、CVDにより形成された絶縁被膜と同程度のエッチングレートが得られることが確認された。一方、プラズマ処理に代えて紫外線照射を行った場合(参考例2の絶縁被膜)では、CVDによる膜形成を行った場合と同程度のエッチングレートが得られていないことが確認された。また、本条件によるエッチングレートの評価結果では、ステップS02における溶媒除去のための加熱時の条件(加熱空間の雰囲気)に大きく依存していないことが確認された。 Also, it was confirmed that the insulating coatings of Examples 1 to 8 (in particular, Examples 4 and 8) could obtain an etching rate comparable to that of the insulating coating formed by CVD. On the other hand, it was confirmed that when the ultraviolet irradiation was performed instead of the plasma treatment (the insulating coating of Reference Example 2), the same etching rate as when the film was formed by CVD was not obtained. In addition, it was confirmed that the etching rate evaluation result under the present conditions did not largely depend on the heating condition (atmosphere of the heating space) for removing the solvent in step S02.
(処理ガスの種類を変更した場合の膜厚及び屈折率の測定結果)
 プラズマ処理における処理ガスの種類(以下、「プラズマの種類」という。)を変えて、絶縁被膜の膜厚及び屈折率を測定した。図16(a)及び図16(b)には、プラズマの種類を変えた場合における膜厚及び屈折率の測定結果がそれぞれ示されている。プラズマの種類として、「N」で示される窒素及び水素を含む処理ガス、「Ar」で示されるアルゴンを含むガス、及び「N」で示される窒素を含むガスを用いた測定を行った。窒素及び水素を含む処理ガスに含まれる窒素と水素との割合は、同程度とした。なお、「wo_Tre」は、プラズマ処理を施さない場合の測定結果を示している。また、プラズマの種類以外の条件は、全て同一の条件で処理が行われている。
(Measurement results of film thickness and refractive index when the type of processing gas is changed)
The film thickness and the refractive index of the insulating film were measured by changing the type of processing gas in plasma processing (hereinafter referred to as "type of plasma"). 16(a) and 16(b) show the measurement results of the film thickness and the refractive index when the type of plasma is changed. As the type of plasma, measurement using a processing gas containing nitrogen and hydrogen represented by “N 2 H 2 ”, a gas containing argon represented by “Ar”, and a gas containing nitrogen represented by “N 2 ”is performed. went. The ratios of nitrogen and hydrogen contained in the processing gas containing nitrogen and hydrogen were set to the same level. “Wo_Tre” indicates the measurement result when the plasma treatment is not performed. The processing is performed under the same conditions except for the type of plasma.
 図16(a)の測定結果から、窒素を含むガスと、窒素及び水素を含むガスとに比べて、アルゴンを含むガスを用いた場合に膜厚がより減少することが確認された。図16(b)の測定結果から、いずれのプラズマの種類であっても、プラズマ処理を施さない場合に比べて、屈折率が高くなること(密度が高くなること)が確認された。また、窒素を含むガスに比べて、窒素及び水素を含むガス又はアルゴンを含むガスを用いた場合に屈折率が高くなることが確認された。 From the measurement result of FIG. 16A, it was confirmed that the film thickness was further reduced when the gas containing argon was used, as compared with the gas containing nitrogen and the gas containing nitrogen and hydrogen. From the measurement result of FIG. 16B, it was confirmed that the refractive index was higher (the density was higher) regardless of the type of plasma as compared with the case where the plasma treatment was not performed. It was also confirmed that the refractive index was higher when a gas containing nitrogen and hydrogen or a gas containing argon was used, as compared with a gas containing nitrogen.
[変形例]
 上記で開示された実施形態は全ての点において例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
[Modification]
The embodiments disclosed above are to be considered in all respects as illustrative and not restrictive. The above-described embodiments may be omitted, replaced, or modified in various forms without departing from the scope and spirit of the appended claims.
 基板処理システムの具体的な構成は、以上に例示した基板処理システム1の構成に限られない。基板処理システムは、ポリシラザン組成物を基板に塗布する塗布ユニット、塗布膜内の溶媒を除去するユニット、溶媒が除去された塗布膜に対してプラズマ処理を施すプラズマ処理装置、及びプラズマ処理が施された塗布膜を熱処理する熱処理ユニットを備えていればどのようなものであってもよい。例えば、プラズマ処理装置10は、塗布・現像装置2内に設けられてもよい。具体的には、プラズマ処理装置10が、処理モジュール11内又はインタフェースブロック6内に設けられてもよい。 The specific configuration of the substrate processing system is not limited to the configuration of the substrate processing system 1 illustrated above. The substrate processing system includes a coating unit for coating the substrate with the polysilazane composition, a unit for removing the solvent in the coating film, a plasma processing apparatus for performing plasma processing on the coating film from which the solvent has been removed, and a plasma processing unit. Any unit may be used as long as it has a heat treatment unit for heat-treating the coating film. For example, the plasma processing apparatus 10 may be provided in the coating/developing apparatus 2. Specifically, the plasma processing apparatus 10 may be provided in the processing module 11 or the interface block 6.
[プラズマ処理装置の別の例]
 基板処理システム1は、プラズマ処理装置10に代えて、図17に示されるプラズマ処理装置10Aを備えていてもよい。プラズマ処理装置10Aは、略同一のタイミングでプラズマ処理が可能なウェハWの枚数、プラズマガスの発生方法、及びプラズマ処理と並行して熱処理を行うことが可能な点でプラズマ処理装置10と相違する。図17に示されるように、プラズマ処理装置10Aは、ウェハボート110と、処理容器120と、プラズマガス供給部130(プラズマ処理部)と、加熱ガス供給部160(熱処理部)と、排気部170とを有する。プラズマ処理装置10Aの各要素は、制御装置100により制御される。
[Another example of plasma processing apparatus]
The substrate processing system 1 may include a plasma processing apparatus 10A shown in FIG. 17 instead of the plasma processing apparatus 10. The plasma processing apparatus 10A is different from the plasma processing apparatus 10 in that the number of wafers W that can be plasma-processed at substantially the same timing, a method of generating plasma gas, and that heat treatment can be performed in parallel with the plasma processing. .. As shown in FIG. 17, the plasma processing apparatus 10A includes a wafer boat 110, a processing container 120, a plasma gas supply unit 130 (plasma processing unit), a heating gas supply unit 160 (heat treatment unit), and an exhaust unit 170. Have and. Each element of the plasma processing apparatus 10A is controlled by the control device 100.
 ウェハボート110は、複数のウェハWを保持する。ウェハボート110は、例えば、20~150枚程度のウェハWが載置可能に構成されている。ウェハボート110は、複数のウェハWそれぞれの表面Waを水平にした状態で、且つ上下方向に間隔を設けて並べた状態で当該複数のウェハWを保持する。ウェハボート110は、例えばアルミニウム等の金属材料により構成されている。 The wafer boat 110 holds a plurality of wafers W. The wafer boat 110 is configured so that, for example, about 20 to 150 wafers W can be placed. The wafer boat 110 holds the plurality of wafers W in a state where the front surfaces Wa of the plurality of wafers W are horizontal and arranged in the vertical direction with a space provided therebetween. The wafer boat 110 is made of a metal material such as aluminum.
 処理容器120は、複数のウェハWを保持した状態のウェハボート110を収容する。処理容器120は、プラズマ処理装置10Aによるプラズマ処理を行うための処理空間を形成する。処理容器120は、例えば、上下方向に沿って延びるように形成され、円筒状に形成されている。なお、処理容器120の下端に、ウェハボート110を搬入出するための開口部が形成されていてもよく、当該開口部に開閉可能な蓋体が設けられてもよい。処理容器120は、例えばアルミニウム等の金属材料により構成されている。処理容器120は接地線を介して接地されている。 The processing container 120 accommodates the wafer boat 110 that holds a plurality of wafers W. The processing container 120 forms a processing space for performing plasma processing by the plasma processing apparatus 10A. The processing container 120 is formed, for example, so as to extend in the vertical direction and has a cylindrical shape. An opening for loading and unloading the wafer boat 110 may be formed at the lower end of the processing container 120, and a lid that can be opened and closed may be provided at the opening. The processing container 120 is made of a metal material such as aluminum. The processing container 120 is grounded via a ground wire.
 プラズマガス供給部130は、プラズマガスを生成し、当該プラズマガスを処理容器120内の処理空間に供給する。プラズマガスが上記処理空間内に供給されることで各ウェハWの塗布膜にプラズマ処理が施されるので、プラズマガス供給部130は、ウェハWの塗布膜に対してプラズマ処理を施すプラズマ処理部として機能する。プラズマガス供給部130は、整流部140と、プラズマガス発生部150とを有する。整流部140は、プラズマガス発生部150が生成したプラズマガスを処理容器120内の処理空間に供給する。 The plasma gas supply unit 130 generates plasma gas and supplies the plasma gas to the processing space in the processing container 120. Since the plasma film is supplied to the processing space to perform the plasma processing on the coating film of each wafer W, the plasma gas supply unit 130 performs the plasma processing on the coating film of the wafer W. Function as. The plasma gas supply unit 130 has a rectification unit 140 and a plasma gas generation unit 150. The rectification unit 140 supplies the plasma gas generated by the plasma gas generation unit 150 to the processing space inside the processing container 120.
 整流部140は、拡張部141と、複数の整流板142とを含む。拡張部141は、処理容器120の一側壁に設けられ、当該側壁から外側に突出するように形成されている。拡張部141の上下方向の長さは、ウェハボート110の上下方向の略全体の長さをカバーできる程度に設定されている。複数の整流板142は、処理容器120の上記側壁に形成された開口部に設けられている。複数の整流板142それぞれは水平に配置されており、複数の整流板142により、拡張部141内のプラズマガスの流れが層流状態に整流された状態で、処理容器120内にプラズマガスが供給される。 The rectification unit 140 includes an expansion unit 141 and a plurality of rectification plates 142. The expansion part 141 is provided on one side wall of the processing container 120 and is formed so as to project outward from the side wall. The vertical length of the expansion portion 141 is set so as to cover substantially the entire vertical length of the wafer boat 110. The plurality of straightening vanes 142 are provided in the opening formed in the sidewall of the processing container 120. Each of the plurality of rectifying plates 142 is horizontally arranged, and the plurality of rectifying plates 142 rectifies the flow of the plasma gas in the expansion portion 141 into a laminar flow state to supply the plasma gas into the processing container 120. To be done.
 プラズマガス発生部150は、配管151と、マイクロ波発生源152と、ガス導入部153とを含む。配管151の一端は、拡張部141の外壁に設けられたガス穴154を介して拡張部141内の空間に接続されている。マイクロ波発生源152は、導波管155を介して、配管151の途中に接続されている。ガス導入部153は、配管151の他端に接続されており、処理ガスを流量制御しつつ配管151に導入可能に構成されている。配管151に導入された処理ガスは、マイクロ波発生源152からのマイクロ波によってプラズマ化され、発生したプラズマガスがガス穴154より拡張部141内に供給される。 The plasma gas generation unit 150 includes a pipe 151, a microwave generation source 152, and a gas introduction unit 153. One end of the pipe 151 is connected to the space inside the expansion section 141 via a gas hole 154 provided on the outer wall of the expansion section 141. The microwave generation source 152 is connected in the middle of the pipe 151 via the waveguide 155. The gas introduction unit 153 is connected to the other end of the pipe 151 and is configured to be able to be introduced into the pipe 151 while controlling the flow rate of the processing gas. The processing gas introduced into the pipe 151 is converted into plasma by the microwaves from the microwave generation source 152, and the generated plasma gas is supplied into the expanded portion 141 through the gas holes 154.
 マイクロ波発生源152によるマイクロ波の周波数としては、例えば2.45GHzが用いられるが、これに限定されず、他の周波数、例えば400MHzが用いられるようにしてもよい。処理ガスとしては、プラズマ処理装置10と同様に、不活性ガスを含むガスが用いられてもよい。 The frequency of the microwave generated by the microwave generation source 152 is, for example, 2.45 GHz, but is not limited to this, and another frequency, for example, 400 MHz may be used. As with the plasma processing apparatus 10, a gas containing an inert gas may be used as the processing gas.
 加熱ガス供給部160は、加熱したガスを処理容器120内の処理空間に供給する。加熱したガスが処理容器120内の処理空間に供給されることによって、各ウェハWの塗布膜が加熱されるので、加熱ガス供給部160は、ウェハWの塗布膜を熱処理する熱処理部として機能する。加熱ガス供給部160は、例えば、加熱した状態の不活性ガスを処理容器120内の処理空間に供給する。加熱ガス供給部160により供給される不活性ガスとして、例えば、窒素ガスが用いられる。 The heating gas supply unit 160 supplies the heated gas to the processing space inside the processing container 120. Since the heated gas is supplied to the processing space in the processing container 120 to heat the coating film of each wafer W, the heating gas supply unit 160 functions as a heat treatment unit that heat-treats the coating film of the wafer W. .. The heating gas supply unit 160 supplies, for example, a heated inert gas to the processing space in the processing container 120. As the inert gas supplied by the heating gas supply unit 160, for example, nitrogen gas is used.
 加熱ガス供給部160は、分散ノズル161と、気体加熱器162と、ガス通路163とを有する。分散ノズル161は、上下方向に沿って延びるように形成されており、整流板142よりも処理容器120内の内側に配置されている。分散ノズル161には、途中に気体加熱器162が設けられたガス通路163が接続されている。気体加熱器162は、ガス供給源からの不活性ガスを加熱して、加熱された不活性ガスを分散ノズル161に供給する。気体加熱器162は、一例として400℃~1000℃に不活性ガスを加熱する。気体加熱器162は、450℃~850℃に不活性ガスを加熱してもよく、500℃~800℃に不活性ガスを加熱してもよい。分散ノズル161には、複数のガス孔161Aが所定の間隔を隔てて形成されている。複数のガス孔161Aから水平に不活性ガスが噴射されることにより、分散ノズル161は、不活性ガスを処理容器120の中心に向けて供給する。 The heating gas supply unit 160 has a dispersion nozzle 161, a gas heater 162, and a gas passage 163. The dispersion nozzle 161 is formed so as to extend in the vertical direction, and is arranged inside the processing container 120 with respect to the flow regulating plate 142. A gas passage 163 having a gas heater 162 provided in the middle thereof is connected to the dispersion nozzle 161. The gas heater 162 heats the inert gas from the gas supply source and supplies the heated inert gas to the dispersion nozzle 161. The gas heater 162 heats the inert gas to 400° C. to 1000° C., for example. The gas heater 162 may heat the inert gas to 450° C. to 850° C., or may heat the inert gas to 500° C. to 800° C. A plurality of gas holes 161A are formed in the dispersion nozzle 161 at predetermined intervals. By horizontally injecting the inert gas through the plurality of gas holes 161A, the dispersion nozzle 161 supplies the inert gas toward the center of the processing container 120.
 排気部170は、処理容器120内の処理空間内の気体を外部に排出する。例えば、排気部170は、処理容器120の拡張部141と対向する外壁に形成された排気口を介して処理容器120内を真空引きすると共に、処理容器120内の処理空間を所定の真空圧に維持できるように構成されている。 The exhaust unit 170 discharges the gas in the processing space inside the processing container 120 to the outside. For example, the evacuation unit 170 evacuates the inside of the processing container 120 through an exhaust port formed on the outer wall of the processing container 120 facing the expanded portion 141, and the processing space in the processing container 120 is evacuated to a predetermined vacuum pressure. It is designed to be maintained.
 上述したプラズマ処理装置10Aでは、プラズマ処理装置10が一枚のウェハWの塗布膜に対してプラズマ処理を施すのに対して、複数のウェハWそれぞれの塗布膜に対して略同一のタイミングでプラズマ処理を施すことが可能である。また、プラズマ処理装置10Aは、プラズマ処理装置10がウェハWを挟む一対の電極により処理空間内でプラズマガスを生成するのに対して、処理空間とは別の場所でプラズマガスを生成し、生成したプラズマガスを処理空間に供給する。 In the plasma processing apparatus 10A described above, the plasma processing apparatus 10 performs the plasma processing on the coating film of one wafer W, whereas the plasma processing apparatus 10 performs plasma processing on the coating film of each of the plurality of wafers W at substantially the same timing. It is possible to perform processing. Further, in the plasma processing apparatus 10A, the plasma processing apparatus 10 generates the plasma gas in the processing space by the pair of electrodes sandwiching the wafer W, whereas the plasma processing apparatus 10A generates the plasma gas in a place different from the processing space. The generated plasma gas is supplied to the processing space.
 プラズマ処理装置10Aを備える基板処理システム1での基板処理方法においても、図6に示されるステップS01~ステップS04が実行されてもよい。プラズマ処理装置10Aは、熱処理及びプラズマ処理を行うことができるので、ステップS03のプラズマ処理と、ステップS04の熱処理とが、プラズマ処理装置10Aにおいて行われてもよい。プラズマ処理装置10Aは、熱処理及びプラズマ処理を並行して行うことができるので、制御装置100は、ステップS03の実行期間の少なくとも一部と重複する期間において、プラズマ処理装置10AにステップS04の熱処理を実行させてもよい。制御装置100は、例えば、プラズマガス供給部130による上記プラズマ処理の実行期間の少なくとも一部と重複する期間において、加熱ガス供給部160に加熱したガスを供給させることで塗布膜を加熱させてもよい。 Also in the substrate processing method in the substrate processing system 1 including the plasma processing apparatus 10A, steps S01 to S04 shown in FIG. 6 may be executed. Since the plasma processing apparatus 10A can perform the heat treatment and the plasma treatment, the plasma processing in step S03 and the heat treatment in step S04 may be performed in the plasma processing apparatus 10A. Since the plasma processing apparatus 10A can perform the thermal processing and the plasma processing in parallel, the control apparatus 100 causes the plasma processing apparatus 10A to perform the thermal processing of step S04 in a period overlapping at least a part of the execution period of step S03. It may be executed. For example, the control device 100 may heat the coating film by supplying the heated gas to the heating gas supply unit 160 during a period that overlaps with at least a part of the execution period of the plasma processing by the plasma gas supply unit 130. Good.
 ステップS03のプラズマ処理と、ステップS04の熱処理とが、少なくとも部分的に重複するタイミングで実行される場合でも、塗布膜に対するプラズマ処理が進行しつつ当該塗布膜が加熱されるので、プラズマ処理が施された塗布膜に対して熱処理が行われる。このように、プラズマ処理が施された塗布膜を熱処理することには、溶媒が除去された塗布膜に対するプラズマ処理の実行期間の少なくとも一部と重複する期間において、塗布膜を加熱することが含まれる。なお、制御装置100は、プラズマガス供給部130により塗布膜に対してプラズマ処理を施し、プラズマガス供給部130からのプラズマガスの供給を停止した後に、加熱ガス供給部160により塗布膜を加熱させてもよい。 Even when the plasma treatment of step S03 and the heat treatment of step S04 are performed at timings at least partially overlapping with each other, the plasma treatment of the coating film is performed while the plasma treatment of the coating film proceeds, so that the plasma treatment is performed. A heat treatment is performed on the applied coating film. Thus, heat-treating the plasma-treated coating film includes heating the coating film in a period that overlaps with at least a part of the plasma treatment execution period for the solvent-free coating film. Be done. The control device 100 performs plasma treatment on the coating film by the plasma gas supply unit 130, stops the supply of the plasma gas from the plasma gas supply unit 130, and then heats the coating film by the heating gas supply unit 160. May be.
 以上に例示したプラズマ処理装置10Aを備える基板処理システム1において実行される基板処理方法では、プラズマ処理が施された塗布膜(塗布膜AP)を熱処理することは、溶媒が除去された塗布膜(塗布膜AR)に対するプラズマ処理の実行期間の少なくとも一部と重複する期間において、塗布膜を加熱することを含む。この場合も、絶縁被膜の品質を向上させることができる。また、プラズマ処理と熱処理との実行期間が少なくとも部分的に重複するので、スループットの向上を図ることができる。プラズマ処理を施すことで、ポリシラザン化合物に含まれる「Si-H」結合及び「N-H」結合を切断しつつ、熱処理により加熱して架橋反応を促進することができる。そのため、より効率的にシリコン窒化膜を形成することが可能となる。 In the substrate processing method executed in the substrate processing system 1 including the plasma processing apparatus 10A illustrated above, heat treatment of the plasma-treated coating film (coating film AP) is performed by removing the solvent from the coating film (coating film AP). Heating the coating film during a period that overlaps at least part of the execution period of the plasma treatment on the coating film AR). Also in this case, the quality of the insulating coating can be improved. Further, since the execution periods of the plasma treatment and the heat treatment overlap at least partially, the throughput can be improved. By performing the plasma treatment, it is possible to accelerate the crosslinking reaction by heating by heat treatment while cutting the “Si—H” bond and the “N—H” bond contained in the polysilazane compound. Therefore, the silicon nitride film can be formed more efficiently.
 プラズマ処理装置10では、ウェハWを一対の電極で挟んだ状態でプラズマガスを発生させるので、ウェハW上の塗布膜に対して、加速されたイオンにより反応を起こさせることができる。そのため、プラズマ処理装置10Aに比べて低温でのプラズマ処理が可能となる。一方、プラズマ処理装置10Aでは、処理空間とは別の領域でプラズマを発生させるので、プラズマ処理装置10に比べて、プラズマを発生させる処理ガスの種類が限定されない。以上のことから、絶縁被膜を形成する段階における加熱可能な温度に応じて、プラズマ処理装置10又はプラズマ処理装置10Aのいずれを用いるかを選択してもよい。 In the plasma processing apparatus 10, since the plasma gas is generated while the wafer W is sandwiched between the pair of electrodes, it is possible to cause the coating film on the wafer W to react with the accelerated ions. Therefore, plasma processing can be performed at a lower temperature than that of the plasma processing apparatus 10A. On the other hand, in the plasma processing apparatus 10A, since plasma is generated in a region different from the processing space, the type of processing gas for generating plasma is not limited as compared with the plasma processing apparatus 10. From the above, either the plasma processing apparatus 10 or the plasma processing apparatus 10A may be selected depending on the heatable temperature at the stage of forming the insulating coating.
[実施例]
 続いて、図18~図20を参照して、プラズマ処理装置10Aを用いた場合も含めた実施例について説明する。
[Example]
Next, with reference to FIGS. 18 to 20, an embodiment including the case where the plasma processing apparatus 10A is used will be described.
(実施例9)
 プラズマ処理装置10を備える基板処理システム1を用いて、以下の手順により実施例9に係る絶縁被膜を形成した。まず、処理モジュール11の塗布ユニットU1において、ウェハWの表面Waにポリシラザン組成物(塗布液L)を供給し、塗布膜AFを形成した。このとき、回転数1000rpmにてウェハWを20秒間回転させ、膜厚45nmの塗布膜AFを形成した。実施例9,10の絶縁被膜を得るために、ポリシラザン組成物に含まれるポリシラザン化合物として、-(SiHNH)-を基本単位として構成されている化合物を用いた。またポリシラザン組成物に含まれる溶媒として、ジブチルエーテルを用いた。
(Example 9)
Using the substrate processing system 1 including the plasma processing apparatus 10, the insulating coating according to Example 9 was formed by the following procedure. First, in the coating unit U1 of the processing module 11, the polysilazane composition (coating liquid L) was supplied to the front surface Wa of the wafer W to form the coating film AF. At this time, the wafer W was rotated at 1000 rpm for 20 seconds to form a coating film AF having a film thickness of 45 nm. In order to obtain the insulating coatings of Examples 9 and 10, as the polysilazane compound contained in the polysilazane composition, a compound composed of —(SiH 2 NH)— as a basic unit was used. In addition, dibutyl ether was used as the solvent contained in the polysilazane composition.
 次に、処理モジュール11の熱処理ユニットU2において、塗布膜AF内の溶媒を除去するために、大気雰囲気下でウェハWを加熱した。このとき、加熱温度(熱板44の温度)を150℃に設定し、塗布膜AFを180秒間加熱することで、塗布膜AR(溶媒が除去された塗布膜)を形成した。次に、プラズマ処理装置10において、塗布膜ARに対してプラズマ処理を施した。このとき、窒素及び水素を含む処理ガスを用いて窒素ガスのプラズマを発生させ、プラズマが発生した状態のプラズマ処理装置10(処理容器68)内にウェハWを60秒間保持することで、塗布膜AP(プラズマ処理が施された塗布膜)を形成した。以上の手順により、実施例9に係る絶縁被膜を得た。 Next, in the heat treatment unit U2 of the processing module 11, the wafer W was heated in the atmosphere to remove the solvent in the coating film AF. At this time, the heating temperature (the temperature of the heating plate 44) was set to 150° C., and the coating film AF was heated for 180 seconds to form the coating film AR (the coating film from which the solvent was removed). Next, in the plasma processing apparatus 10, the coating film AR was subjected to plasma processing. At this time, a plasma of nitrogen gas is generated using a processing gas containing nitrogen and hydrogen, and the wafer W is held in the plasma processing apparatus 10 (processing container 68) in a state where the plasma is generated for 60 seconds, whereby the coating film is formed. AP (coating film subjected to plasma treatment) was formed. The insulating coating according to Example 9 was obtained by the above procedure.
(実施例10)
 また、処理モジュール11の熱処理ユニットU2において、実施例9に対応する塗布膜APが形成されたウェハWに対して熱処理を行うことで、実施例10に係る絶縁被膜を形成した。具体的には、塗布膜APに対して、窒素雰囲気下で450℃の温度にて150分間の熱処理を行うことで実施例10の絶縁被膜を得た。
(Example 10)
Further, in the heat treatment unit U2 of the processing module 11, the wafer W on which the coating film AP corresponding to Example 9 was formed was subjected to heat treatment to form the insulating coating according to Example 10. Specifically, the coating film AP was heat-treated at a temperature of 450° C. for 150 minutes in a nitrogen atmosphere to obtain an insulating coating film of Example 10.
(実施例11)
 プラズマ処理装置10Aを備える基板処理システム1を用いて、以下の手順により実施例11に係る絶縁被膜を形成した。まず、処理モジュール11の塗布ユニットU1において、ウェハWの表面Waにポリシラザン組成物(塗布液L)を供給し、塗布膜AFを形成した。このとき、回転数1000rpmにてウェハWを20秒間回転させ、膜厚48nmの塗布膜AFを形成した。実施例11の絶縁被膜を得るために、ポリシラザン組成物に含まれるポリシラザン化合物として、-(SiHNH)-を基本単位として構成されている化合物を用いた。またポリシラザン組成物に含まれる溶媒として、ジブチルエーテルを用いた。
(Example 11)
Using the substrate processing system 1 including the plasma processing apparatus 10A, the insulating coating according to Example 11 was formed by the following procedure. First, in the coating unit U1 of the processing module 11, the polysilazane composition (coating liquid L) was supplied to the front surface Wa of the wafer W to form the coating film AF. At this time, the wafer W was rotated at a rotation speed of 1000 rpm for 20 seconds to form a coating film AF having a film thickness of 48 nm. In order to obtain the insulating coating film of Example 11, a compound composed of —(SiH 2 NH)— as a basic unit was used as the polysilazane compound contained in the polysilazane composition. In addition, dibutyl ether was used as the solvent contained in the polysilazane composition.
 次に、処理モジュール11の熱処理ユニットU2において、塗布膜AF内の溶媒を除去するために、大気雰囲気下でウェハWを加熱した。このとき、加熱温度(熱板44の温度)を150℃に設定し、塗布膜AFを180秒間加熱することで、塗布膜AR(溶媒が除去された塗布膜)を形成した。次に、プラズマ処理装置10Aにおいて、塗布膜ARに対してプラズマ処理を施しつつ、プラズマ処理が施されている塗布膜を加熱した。このとき、プラズマ処理装置10Aにおいて、アンモニアを含む処理ガスを用いてプラズマガスを発生させ、プラズマガスを処理容器120内に供給した。プラズマガスに加えて、630℃に加熱した窒素ガスを処理容器120内に供給した。処理容器120内にウェハWを600秒間保持することで、プラズマ処理及び熱処理が施された塗布膜を形成した。以上の手順により、実施例11に係る絶縁被膜を得た。 Next, in the heat treatment unit U2 of the processing module 11, the wafer W was heated in the atmosphere to remove the solvent in the coating film AF. At this time, the heating temperature (the temperature of the heating plate 44) was set to 150° C., and the coating film AF was heated for 180 seconds to form the coating film AR (the coating film from which the solvent was removed). Next, in the plasma processing apparatus 10A, the plasma-treated coating film was heated while the plasma treatment was performed on the coating film AR. At this time, in the plasma processing apparatus 10A, a plasma gas was generated using a processing gas containing ammonia, and the plasma gas was supplied into the processing container 120. In addition to the plasma gas, nitrogen gas heated to 630° C. was supplied into the processing container 120. By holding the wafer W in the processing container 120 for 600 seconds, a coating film subjected to plasma processing and heat treatment was formed. The insulating coating according to Example 11 was obtained by the above procedure.
(実施例12)
 プラズマ処理装置10Aにおいて、水素及び窒素を含む処理ガスを用いてプラズマガスを発生させ、プラズマガスを処理容器120内に供給した点以外は、実施例11に係る絶縁被膜と同様にして実施例12に係る絶縁被膜を形成した。
(Example 12)
In the plasma processing apparatus 10A, a plasma gas was generated using a processing gas containing hydrogen and nitrogen, and the plasma gas was supplied into the processing container 120. The insulating coating according to the above was formed.
(比較例9)
 プラズマ処理装置10Aにおいて、プラズマガスを供給することなく、630℃に加熱した窒素ガスを処理容器120内に供給した点以外は、実施例11に係る絶縁被膜と同様にして比較例9に係る絶縁被膜を形成した。
(Comparative Example 9)
In the plasma processing apparatus 10A, the insulation according to Comparative Example 9 was performed in the same manner as the insulation coating according to Example 11 except that the nitrogen gas heated to 630° C. was supplied into the processing container 120 without supplying the plasma gas. A film was formed.
(膜厚の測定結果)
 実施例9~12のそれぞれの絶縁被膜について、膜厚[nm]を測定した。絶縁被膜を形成するための溶媒除去、プラズマ処理、及び熱処理が行われる前の塗布膜(以下、「処理前の塗布膜」という。)の膜厚[nm]も測定した。膜厚の測定は、膜計測装置(型式Aleris8350;KLA Tencor社製)を用いて分光エリプソメトリー法により行った。また、測定箇所として絶縁被膜の上面視における略中心位置を選択し、当該測定箇所の膜厚を測定した。図18には、これらの膜厚の測定結果が示されている。「処理前」が処理前の塗布膜の膜厚を示しており、「処理後」が絶縁被膜の膜厚を示している。図18の測定結果から、プラズマ処理装置10Aにおいてプラズマ処理と熱処理とを行った場合でも、プラズマ処理装置10でプラズマ処理を行い、且つ熱処理ユニットU2で熱処理を行った場合と同様に、膜厚が薄くなっていることが確認された。
(Measurement result of film thickness)
The film thickness [nm] of each of the insulating coatings of Examples 9 to 12 was measured. The film thickness [nm] of the coating film before the removal of the solvent for forming the insulating coating, the plasma treatment, and the heat treatment (hereinafter, referred to as “pre-treatment coating film”) was also measured. The film thickness was measured by a spectroscopic ellipsometry method using a film measuring device (model Aleris8350; manufactured by KLA Tencor). Further, a substantially central position of the insulating coating in a top view was selected as a measurement location, and the film thickness at the measurement location was measured. FIG. 18 shows the measurement results of these film thicknesses. “Before treatment” indicates the thickness of the coating film before treatment, and “after treatment” indicates the thickness of the insulating film. From the measurement results of FIG. 18, even when the plasma treatment and the heat treatment are performed in the plasma treatment apparatus 10A, as in the case where the plasma treatment apparatus 10 performs the plasma treatment and the heat treatment unit U2 performs the heat treatment, the film thickness It was confirmed that it was thin.
(屈折率の測定結果)
 実施例9~12のそれぞれの絶縁被膜について、屈折率を測定した。屈折率として、波長が633nmである光に対する屈折率を測定した。実施例9~12のそれぞれについて、処理前の塗布膜の屈折率も測定した。屈折率の測定は、膜計測装置(型式Aleris8350;KLA Tencor社製)を用いて分光エリプソメトリー法により行った。また、測定箇所として絶縁被膜の上面視における略中心位置を選択し、当該測定箇所の屈折率を測定した。絶縁被膜の密度が高いほど、屈折率が大きくなる傾向を利用して、屈折率を指標として絶縁被膜の密度を評価した。
(Results of refractive index measurement)
The refractive index of each insulating coating of Examples 9 to 12 was measured. As the refractive index, the refractive index for light with a wavelength of 633 nm was measured. For each of Examples 9 to 12, the refractive index of the coating film before the treatment was also measured. The refractive index was measured by a spectroscopic ellipsometry method using a film measuring device (type Aleris8350; manufactured by KLA Tencor). Further, a substantially central position of the insulating coating in a top view was selected as a measurement location, and the refractive index at the measurement location was measured. Utilizing the tendency that the refractive index increases as the density of the insulating coating increases, the density of the insulating coating is evaluated using the refractive index as an index.
 図19には、実施例9~12のそれぞれの絶縁被膜における屈折率の測定結果が示されている。図19の測定結果から、溶媒除去、プラズマ処理、及び熱処理を行うことによって、屈折率が大きくなること、すなわち、密度が向上していることが確認された。また、プラズマ処理装置10Aにおいてプラズマ処理と熱処理とを行った場合でも、プラズマ処理装置10でプラズマ処理を行い、且つ熱処理ユニットU2で熱処理を行った場合と同様に、密度が向上していることが確認された。 FIG. 19 shows the measurement results of the refractive index of each insulating coating of Examples 9 to 12. From the measurement result of FIG. 19, it was confirmed that the refractive index was increased, that is, the density was improved by performing the solvent removal, the plasma treatment, and the heat treatment. Even when the plasma processing apparatus 10A performs the plasma processing and the heat treatment, the density is improved as in the case where the plasma processing apparatus 10 performs the plasma treatment and the heat treatment unit U2 performs the heat treatment. confirmed.
(エッチングレートの測定結果)
 実施例11,12及び比較例9の絶縁被膜それぞれについて、ウェットエッチングでのエッチングレートを測定した。具体的には、エッチング液として、0.5wt%の希フッ酸溶液(Diluted HydroFluoric acid:DHF)を用いた場合において、1分間にエッチングされる量(厚さ)をエッジングレート[nm/min]として評価した。希フッ酸は、シリコン酸化膜を溶解する機能を有しており、エッチングレートが低いほど、ウェットエッチングする際に絶縁被膜が削られにくい(エッチング耐性が高い)ことを示している。
(Measurement result of etching rate)
The etching rate in wet etching was measured for each of the insulating coatings of Examples 11 and 12 and Comparative Example 9. Specifically, when a 0.5 wt% diluted hydrofluoric acid solution (Diluted HydroFluoric acid: DHF) is used as the etching solution, the amount (thickness) etched per minute is the edging rate [nm/min]. Evaluated as. Dilute hydrofluoric acid has a function of dissolving a silicon oxide film, and the lower the etching rate is, the more difficult it is for the insulating film to be scraped during wet etching (higher etching resistance).
 図20には、実施例11,12、及び比較例9の絶縁被膜それぞれについて、エッチングレートの評価結果が示されている。図20の評価結果から、プラズマ処理を施した実施例11,12の絶縁被膜のエッチングレートが、プラズマ処理を施していない比較例9に比べて低下していることが確認された。また、プラズマガスを発生させる際にアンモニアを含む処理ガスを用いた実施例11の絶縁被膜のエッチングレートが、水素と窒素を含む処理ガスを用いた実施例12に比べて更に低下していることが確認された。 FIG. 20 shows the etching rate evaluation results for the insulating coatings of Examples 11 and 12 and Comparative Example 9. From the evaluation results of FIG. 20, it was confirmed that the etching rates of the insulating coatings of Examples 11 and 12 which had been subjected to the plasma treatment were lower than those of Comparative Example 9 which was not subjected to the plasma treatment. Further, the etching rate of the insulating coating of Example 11 using the processing gas containing ammonia when generating the plasma gas is further lower than that of Example 12 using the processing gas containing hydrogen and nitrogen. Was confirmed.
[雰囲気制御の別の例について]
 上述した実施形態では、ステップS02の溶媒除去及びステップS04の熱処理の際に、熱処理空間の雰囲気制御が行われるが、他の処理を行う場合についても雰囲気制御が行われてもよい。例えば、基板処理システム1は、ポリシラザン組成物をウェハWに塗布する際に処理空間の雰囲気制御を行ってもよい。一例として、処理モジュール11は、塗布ユニットU1に代えて、図21に示される塗布ユニットU101(塗布部)を有していてもよい。塗布ユニットU101は、筐体240と、ガス供給部250とを更に有する点において塗布ユニットU1と相違する。
[Another example of atmosphere control]
In the above-described embodiment, the atmosphere control of the heat treatment space is performed during the solvent removal in step S02 and the heat treatment in step S04, but the atmosphere control may be performed in the case of performing other processing. For example, the substrate processing system 1 may control the atmosphere of the processing space when applying the polysilazane composition to the wafer W. As an example, the processing module 11 may have a coating unit U101 (coating unit) shown in FIG. 21, instead of the coating unit U1. The coating unit U101 is different from the coating unit U1 in that it further includes a housing 240 and a gas supply unit 250.
 筐体240は、回転保持部20に保持されたウェハWと、液供給部30のノズル34とを収容する。筐体240には、ウェハWの搬入口が設けられ、当該搬入口に開閉可能なシャッターが設けられてもよい。筐体240は、塗布処理を行う塗布処理空間を形成する。 The housing 240 houses the wafer W held by the rotation holding unit 20 and the nozzle 34 of the liquid supply unit 30. A transfer port for the wafer W may be provided in the housing 240, and a shutter that can be opened and closed may be provided at the transfer port. The housing 240 forms a coating processing space for performing coating processing.
 ガス供給部250は、筐体240内(塗布処理空間)にガスを供給するように構成されている。例えば、ガス供給部250は、筐体240内に窒素ガスを供給する。ガス供給部250により窒素ガス等のガスが供給されることで、一例として、筐体240内の酸素の濃度が、150ppm以下に維持されてもよく、100ppm以下に維持されてもよく、50ppm以下に維持されてもよい。 The gas supply unit 250 is configured to supply gas into the housing 240 (coating processing space). For example, the gas supply unit 250 supplies nitrogen gas into the housing 240. By supplying a gas such as nitrogen gas from the gas supply unit 250, the concentration of oxygen in the housing 240 may be maintained at 150 ppm or less, 100 ppm or less, or 50 ppm or less, for example. May be maintained at.
 ガス供給部250は、ガス供給源253と、バルブ252と、配管254とを備える。ガス供給源253は、ガスの供給源として機能する。バルブ252は、制御装置100の指示に応じて開状態と閉状態とに切り替わる。ガス供給源253は、バルブ252が開状態であるときに、配管254を介して筐体240内(塗布処理空間)にガスを送り出す。以上のように、塗布ユニットU101は、窒素雰囲気下でポリシラザン組成物をウェハWに塗布することで塗布膜AF(溶媒除去が行われる前の塗布膜)を形成する。 The gas supply unit 250 includes a gas supply source 253, a valve 252, and a pipe 254. The gas supply source 253 functions as a gas supply source. The valve 252 switches between an open state and a closed state according to an instruction from the control device 100. The gas supply source 253 sends out gas into the housing 240 (coating processing space) via the pipe 254 when the valve 252 is in the open state. As described above, the coating unit U101 forms the coating film AF (coating film before solvent removal) by coating the wafer W with the polysilazane composition in a nitrogen atmosphere.
 なお、塗布ユニットU101(塗布ユニットU1)は、液供給部30においてポリシラザン組成物(塗布液L)が外気に晒される空間に、窒素ガス等のガスを供給するガス供給部を有してもよい。 The coating unit U101 (coating unit U1) may have a gas supply unit that supplies a gas such as nitrogen gas to a space in the liquid supply unit 30 where the polysilazane composition (coating liquid L) is exposed to the outside air. ..
 ウェハWの表面Waにポリシラザン組成物を塗布するステップS01の処理において、制御装置100は、バルブ252を開状態に設定して、ガス供給源253から塗布処理空間内に窒素ガスを送り出すように塗布ユニットU101を制御してもよい。制御装置100は、塗布処理空間内に窒素ガスをガス供給部250により供給させた窒素雰囲気下で、回転保持部20によりウェハWを回転させつつ、液供給部30によりポリシラザン組成物をウェハWの表面Waに供給させてもよい。 In the process of step S01 of applying the polysilazane composition to the front surface Wa of the wafer W, the control device 100 sets the valve 252 to the open state and applies the nitrogen gas from the gas supply source 253 into the application processing space. The unit U101 may be controlled. The control device 100 rotates the wafer W by the rotation holding unit 20 in the nitrogen atmosphere in which the nitrogen gas is supplied by the gas supply unit 250 into the coating processing space, while the liquid supply unit 30 supplies the polysilazane composition to the wafer W. It may be supplied to the surface Wa.
 図4に例示した熱処理ユニットU2においても、塗布ユニットU101と同様に、ガス供給部50により窒素ガス等が熱処理空間に供給されることで雰囲気制御が行われる。ガス供給部50によりチャンバ40内に窒素ガス等が供給されることで、一例として、チャンバ40内の酸素の濃度が、150ppm以下に維持されてもよく、100ppm以下に維持されてもよく、50ppm以下に維持されてもよい。 In the heat treatment unit U2 illustrated in FIG. 4, as in the coating unit U101, the gas supply unit 50 supplies nitrogen gas or the like to the heat treatment space to control the atmosphere. By supplying nitrogen gas or the like into the chamber 40 by the gas supply unit 50, for example, the concentration of oxygen in the chamber 40 may be maintained at 150 ppm or less, may be maintained at 100 ppm or less, and may be 50 ppm. May be maintained below.
 塗布処理及び熱処理以外にも、ウェハWを搬送する際に雰囲気制御が行われてもよい。処理モジュール11は、例えば、塗布ユニットU101(塗布ユニットU1)と熱処理ユニットU2との間に形成され、ウェハWを搬送するための搬送空間に窒素ガス等のガスを供給するガス供給部を有してもよい。制御装置100は、ポリシラザン組成物による塗布膜AFが形成されたウェハWを処理モジュール11内の熱処理ユニットU2に搬送する際に、処理モジュール11内の搬送空間にガス供給部により窒素ガスを供給させてもよい。 Atmosphere control may be performed when the wafer W is transferred, other than the coating process and the heat treatment. The processing module 11 has, for example, a gas supply unit that is formed between the coating unit U101 (coating unit U1) and the thermal processing unit U2 and that supplies a gas such as nitrogen gas to a transfer space for transferring the wafer W. May be. When the wafer W on which the coating film AF of the polysilazane composition is formed is transferred to the heat treatment unit U2 in the processing module 11, the control device 100 causes the transfer space in the processing module 11 to supply nitrogen gas by the gas supply unit. May be.
 図22は、雰囲気制御を各種条件で行った場合の塗布膜内の分析結果(酸素の成分比)を示している。成分比は、X線光電子分光(XPS:X-ray Photoelectron Spectroscopy)を用いて分析した。図22には、雰囲気制御の各種条件である条件1~5の凡例が示されている。「Coat」は、ステップS01の塗布膜形成における処理空間の雰囲気条件を示しており、「Transfer」は、ステップS01での塗布膜形成後に、熱処理ユニットU2にウェハWを搬送する際の搬送空間の雰囲気条件を示しており、「Bake」は、ステップS02での溶媒除去における処理空間の雰囲気条件を示している。「N2」は、窒素雰囲気下で処理が行われたことを示しており、「Air」は、大気雰囲気下で処理が行われたことを示している。 FIG. 22 shows the analysis results (oxygen component ratio) in the coating film when the atmosphere was controlled under various conditions. The component ratio was analyzed using X-ray photoelectron spectroscopy (XPS: X-ray Photoelectron Spectroscopy). FIG. 22 shows a legend of Conditions 1 to 5 which are various conditions of atmosphere control. “Coat” indicates the atmospheric condition of the processing space in forming the coating film in step S01, and “Transfer” indicates the transfer space of the transfer space when the wafer W is transferred to the heat treatment unit U2 after forming the coating film in step S01. Atmosphere conditions are shown, and "Bake" shows the atmosphere conditions of the processing space in the solvent removal in step S02. "N2" indicates that the treatment was performed under a nitrogen atmosphere, and "Air" indicates that the treatment was performed under an air atmosphere.
 図22では、ステップS01~ステップS04までの塗布液Lの塗布、溶媒除去、プラズマ処理、及び熱処理が行われた後の塗布膜において、スパッタリング時間が2分での酸素の成分比が示されている。雰囲気制御以外の条件は、全て同じ条件で処理が行われている。条件1~4の結果と条件5の結果とを比較すると、ステップS01の塗布液Lの塗布、又はステップS02の溶媒除去の少なくとも一方において、窒素雰囲気下で処理を行うことで、酸素の含有量が減少していることがわかる。条件1~3の結果と条件4の結果とを比較すると、ステップS01の塗布液Lの塗布において、窒素雰囲気下で処理を行うことで、酸素の含有量がより減少していることがわかる。条件1,2の結果と条件3の結果とを比較すると、ステップS01での塗布液Lの塗布に加えて、ステップS02の溶媒除去においても窒素雰囲気下で処理を行うことで、酸素の含有量が更に減少していることがわかる。条件1の結果と条件2の結果とを比較すると、搬送空間を窒素雰囲気とすることで酸素の含有量が更に減少していることがわかる。 In FIG. 22, the composition ratio of oxygen at the sputtering time of 2 minutes is shown in the coating film after the coating of the coating liquid L, the removal of the solvent, the plasma treatment, and the heat treatment of steps S01 to S04. There is. The processing is performed under the same conditions except for the atmosphere control. Comparing the results of Conditions 1 to 4 with the results of Condition 5, by performing the treatment under a nitrogen atmosphere in at least one of the application of the coating liquid L in step S01 and the removal of the solvent in step S02, the oxygen content can be increased. It can be seen that is decreasing. Comparing the results of Conditions 1 to 3 with the results of Condition 4, it can be seen that, in the application of the coating liquid L in step S01, the oxygen content is further reduced by performing the treatment in a nitrogen atmosphere. Comparing the results of Conditions 1 and 2 with the results of Condition 3, in addition to the application of the coating liquid L in step S01, the removal of the solvent in step S02 is performed under a nitrogen atmosphere, whereby the oxygen content is increased. It can be seen that is further reduced. Comparing the results of Condition 1 with the results of Condition 2, it can be seen that the oxygen content is further reduced by setting the transfer space to be a nitrogen atmosphere.
 以上に例示したプラズマ処理装置10Aを備える基板処理システム1において実行される基板処理方法では、ポリシラザン組成物をウェハWに塗布することは、窒素雰囲気下でポリシラザン組成物をウェハWに塗布することを含んでいる。この場合、ポリシラザン組成物による塗布膜の形成時に、ポリシラザン化合物と酸素との反応が抑えられ、塗布膜内において酸素の含有量の増加を抑制することができる。 In the substrate processing method executed in the substrate processing system 1 including the plasma processing apparatus 10A illustrated above, applying the polysilazane composition to the wafer W means applying the polysilazane composition to the wafer W in a nitrogen atmosphere. Contains. In this case, the reaction between the polysilazane compound and oxygen is suppressed during the formation of the coating film of the polysilazane composition, and the increase of the oxygen content in the coating film can be suppressed.
 続いて、図23を参照して、塗布ユニットU101及びプラズマ処理装置10Aを用いた場合の実施例について説明する。 Next, an embodiment in which the coating unit U101 and the plasma processing apparatus 10A are used will be described with reference to FIG.
(実施例13)
 ステップS01における塗布液Lの塗布を窒素雰囲気下で行ったこと以外は、実施例11に係る絶縁被膜と同様にして実施例13に係る絶縁被膜を形成した。
(Example 13)
An insulating coating film according to Example 13 was formed in the same manner as the insulating coating film according to Example 11 except that the coating liquid L was applied in step S01 under a nitrogen atmosphere.
(エッチングレートの測定結果)
 実施例11,13の絶縁被膜それぞれについて、ウェットエッチングでのエッチングレートを測定した。具体的には、エッチング液として、0.25wt%の希フッ酸溶液(Diluted HydroFluoric acid:DHF)を用いた場合において、1分間にエッチングされる量(厚さ)をエッジングレート[nm/min]として評価した。
(Measurement result of etching rate)
The etching rate in wet etching was measured for each of the insulating coatings of Examples 11 and 13. Specifically, when a 0.25 wt% dilute hydrofluoric acid solution (Diluted HydroFluoric acid: DHF) is used as the etching solution, the amount (thickness) etched per minute is the edging rate [nm/min]. Evaluated as.
 図23には、実施例11,13の絶縁被膜それぞれについて、エッチングレートの評価結果が示されている。図20の評価結果から、窒素雰囲気下で塗布液Lの塗布を行った実施例13の絶縁被膜のエッチングレートが、大気雰囲気下で塗布液Lの塗布を行った実施例11に比べて低下していることが確認された。 FIG. 23 shows the etching rate evaluation results for the insulating coatings of Examples 11 and 13. From the evaluation results of FIG. 20, the etching rate of the insulating coating of Example 13 in which the coating liquid L was applied in a nitrogen atmosphere was lower than that in Example 11 in which the coating liquid L was applied in the air atmosphere. Was confirmed.
[その他]
 ポリシラザン組成物による塗布膜からシリコン窒化膜を形成するタイミングは、レジスト膜の形成前に限られない。基板処理システム1は、塗布・現像装置2による感光性被膜の露光、現像を行った後に、ポリシラザン組成物による塗布膜からシリコン窒化膜を形成してもよい。例えば、基板処理システム1は、レジストパターン形成後にプラズマエッチング処理が行われたウェハWの表面Waに、ポリシラザン組成物による塗布膜からシリコン窒化膜を形成してもよい。ポリシラザン組成物による塗布膜からシリコン窒化膜を形成する箇所は、ウェハW上であれば、いずれで箇所であってもよい。
[Other]
The timing of forming the silicon nitride film from the coating film of the polysilazane composition is not limited to before the formation of the resist film. The substrate processing system 1 may form a silicon nitride film from a coating film of the polysilazane composition after the photosensitive film is exposed and developed by the coating/developing device 2. For example, the substrate processing system 1 may form a silicon nitride film from the coating film of the polysilazane composition on the surface Wa of the wafer W that has been subjected to the plasma etching process after forming the resist pattern. The silicon nitride film may be formed from the coating film of the polysilazane composition on the wafer W at any position.
 表面Waに凹凸パターン(例えば、レジストパターン)が形成されているウェハWに対して、ステップS01~S04の処理が施されることで、ウェハWの表面Waに絶縁被膜が形成されてもよい。CVDによる膜形成を行う場合に比べて、塗布液を塗布することにより膜形成を行った場合、凹部への埋め込みが問題なく(ボイドを発生させることなく)行われると考えられる。上述の基板処理方法では、CVDによるシリコン窒化膜と同程度の品質を実現できるので、凹部への膜の埋め込みの観点から、表面Waに凹凸が形成されているウェハWに上記基板処理方法を適用することは更に有用である。 An insulating coating may be formed on the front surface Wa of the wafer W by performing the processing of steps S01 to S04 on the wafer W having a concavo-convex pattern (for example, a resist pattern) formed on the front surface Wa. It is considered that when the film is formed by applying the coating liquid, the filling into the recess is performed without problems (without generating voids), as compared with the case where the film is formed by CVD. Since the above-described substrate processing method can achieve the same quality as that of the silicon nitride film formed by CVD, the substrate processing method is applied to the wafer W having the unevenness on the surface Wa from the viewpoint of embedding the film in the recess. It is even more useful to do so.
 ポリシラザン組成物による塗布膜から形成される絶縁被膜は、いずれの用途で用いられてもよい。例えば、エッチングを行う際のハードマスク(犠牲膜)として、上記絶縁被膜が形成されてもよく、ウェハWから形成される半導体製品に残る永久膜として、上記絶縁被膜が形成されてもよい。 The insulating coating formed from the coating film of the polysilazane composition may be used for any purpose. For example, the insulating coating may be formed as a hard mask (sacrificial film) when etching is performed, or the insulating coating may be formed as a permanent film remaining in a semiconductor product formed from the wafer W.
 ステップS04の熱処理における加熱時間は、塗布膜が受ける膜ストレス(応力)に影響する。上記膜ストレスの大きさは、ステップS04の熱処理における加熱時間に応じて変化する。一方、図12、図14、及び図15に示される実施例1~8の評価結果から、加熱時間によって、塗布膜の品質(屈折率及びエッチングレート)に大きな変化は見られていない。そのため、ステップS04の熱処理での加熱時間を調節することで、塗布膜にかかる膜ストレスを調節することが可能となる。 The heating time in the heat treatment of step S04 affects the film stress (stress) that the coating film receives. The magnitude of the film stress changes according to the heating time in the heat treatment of step S04. On the other hand, from the evaluation results of Examples 1 to 8 shown in FIGS. 12, 14, and 15, there is no significant change in the quality (refractive index and etching rate) of the coating film depending on the heating time. Therefore, it is possible to adjust the film stress applied to the coating film by adjusting the heating time in the heat treatment of step S04.
 ステップS04の熱処理における加熱温度(例えば、熱板の温度、又は加熱用の窒素ガスの温度)も、塗布膜が受ける膜ストレス(応力)に影響する。上記膜ストレスの大きさは、ステップS04の熱処理における加熱温度に応じて変化する。一方、加熱温度を変化させても、塗布膜の品質(エッチングレート及び屈折率)に大きな変化は見られない。そのため、ステップS04の熱処理での加熱温度を調節することで、塗布膜にかかる膜ストレスを調節することが可能となる。 The heating temperature (for example, the temperature of the heating plate or the temperature of the heating nitrogen gas) in the heat treatment of step S04 also affects the film stress (stress) that the coating film receives. The magnitude of the film stress changes according to the heating temperature in the heat treatment of step S04. On the other hand, even if the heating temperature is changed, the quality of the coating film (etching rate and refractive index) does not change significantly. Therefore, the film stress applied to the coating film can be adjusted by adjusting the heating temperature in the heat treatment of step S04.
 ステップS02における溶媒除去のための加熱と、ステップS04における熱処理とは、互いに異なる熱処理ユニットによって行われてもよい。ステップS02における溶媒除去は、加熱以外の方法により行われてもよい。例えば、基板処理システム1は、圧力が低下した処理空間を有する減圧装置内に、塗布膜AFが形成されたウェハWを置くことによって、塗布膜AF内から溶媒を除去してもよい。 The heating for removing the solvent in step S02 and the heat treatment in step S04 may be performed by different heat treatment units. The solvent removal in step S02 may be performed by a method other than heating. For example, the substrate processing system 1 may remove the solvent from the coating film AF by placing the wafer W on which the coating film AF is formed in a decompression device having a processing space in which the pressure is reduced.
 処理対象の基板は半導体ウェハに限られず、例えばガラス基板、マスク基板、FPD(Flat Panel Display)などであってもよい。 The substrate to be processed is not limited to a semiconductor wafer, and may be, for example, a glass substrate, a mask substrate, an FPD (Flat Panel Display), or the like.
[例示]
 例1.本開示の一側面に係る基板処理方法は、ポリシラザン組成物を基板に塗布して塗布膜を形成することと、塗布膜内の溶媒を除去することと、溶媒が除去された塗布膜に対して、不活性ガスのプラズマによるプラズマ処理を施すことと、プラズマ処理が施された塗布膜を熱処理することと、を含む。この基板処理方法では、溶媒が除去された塗布膜に対して、不活性ガスのプラズマによるプラズマ処理を施すことで、得られる絶縁被膜の屈折率が高くなり、エッチング耐性が向上する。すなわち、ポリシラザン化合物が含まれる塗布膜から形成されたシリコン窒化膜の品質を向上させることが可能となる。
[Example]
Example 1. A substrate processing method according to one aspect of the present disclosure is to apply a polysilazane composition to a substrate to form a coating film, remove a solvent in the coating film, and remove the solvent from the coating film. , Performing plasma treatment with plasma of an inert gas and heat treating the coating film subjected to the plasma treatment. In this substrate processing method, the coating film from which the solvent has been removed is subjected to plasma treatment using plasma of an inert gas, whereby the refractive index of the insulating coating obtained is increased and the etching resistance is improved. That is, it is possible to improve the quality of the silicon nitride film formed from the coating film containing the polysilazane compound.
 例2.例1の基板処理方法において、塗布膜内の溶媒を除去することは、塗布膜を加熱することを含んでいてもよい。例えば溶媒除去のための加熱とプラズマ処理後の熱処理を行うためのユニットを共用化することができ、基板処理を行うための装置(システム)を簡略化することが可能となる。 Example 2. In the substrate processing method of Example 1, removing the solvent in the coating film may include heating the coating film. For example, a unit for heating for removing a solvent and a unit for performing heat treatment after plasma treatment can be shared, and an apparatus (system) for performing substrate treatment can be simplified.
 例3.例2の基板処理方法において、塗布膜を加熱することは、窒素雰囲気下で当該塗布膜を加熱することを含んでいてもよい。この場合、溶媒除去のための加熱時に塗布膜表面が酸素と反応してしまうことが抑えられ、塗布膜の表面における酸化膜の形成が抑制される。 Example 3. In the substrate processing method of Example 2, heating the coating film may include heating the coating film under a nitrogen atmosphere. In this case, it is possible to prevent the surface of the coating film from reacting with oxygen during heating for removing the solvent, and to suppress the formation of an oxide film on the surface of the coating film.
 例4.例1~例3のいずれかの基板処理方法において、不活性ガスは窒素を含んでいてもよい。この場合、絶縁被膜の膜厚の確保と屈折率を高めることとの両立を図ることが可能となる。 Example 4. In the substrate processing method of any of Examples 1 to 3, the inert gas may contain nitrogen. In this case, it is possible to achieve both securing the film thickness of the insulating coating and increasing the refractive index.
 例5.例4の基板処理方法において、プラズマを生成するための処理ガスは水素を含んでいてもよい。この場合、不活性ガスのプラズマ化が水素によって促進されるので、より効率的にプラズマ処理を行うことが可能となる。 Example 5. In the substrate processing method of Example 4, the processing gas for generating plasma may contain hydrogen. In this case, since the plasma of the inert gas is promoted by hydrogen, the plasma treatment can be performed more efficiently.
 例6.例1~5の基板処理方法において、ポリシラザン組成物を基板に塗布することは、窒素雰囲気下でポリシラザン組成物を基板に塗布することを含んでいてもよい。この場合、ポリシラザン組成物による塗布膜の形成時に、ポリシラザン化合物と酸素との反応が抑えられ、塗布膜内において酸素の含有量の増加を抑制することができる。 Example 6. In the substrate processing methods of Examples 1 to 5, applying the polysilazane composition to the substrate may include applying the polysilazane composition to the substrate under a nitrogen atmosphere. In this case, the reaction between the polysilazane compound and oxygen is suppressed during the formation of the coating film of the polysilazane composition, and the increase of the oxygen content in the coating film can be suppressed.
 例7.例1~6の基板処理方法において、塗布膜を熱処理することは、塗布膜に対するプラズマ処理の実行期間の少なくとも一部と重複する期間において、塗布膜を加熱することを含んでいてもよい。この場合、プラズマ処理と熱処理との実行期間が少なくとも部分的に重複するので、スループットの向上を図ることができる。 Example 7. In the substrate processing methods of Examples 1 to 6, the heat treatment of the coating film may include heating the coating film during a period that overlaps with at least a part of the execution period of the plasma treatment on the coating film. In this case, the plasma treatment and the heat treatment are at least partially overlapped in the execution period, so that the throughput can be improved.
 例8.本開示の他の側面に係る基板処理方法は、ポリシラザン組成物を基板に塗布することで形成されたポリシラザン化合物を含む膜に対して、不活性ガスのプラズマによるプラズマ処理を施す。この場合、上述と同様に、ポリシラザン化合物が含まれる塗布膜から形成されたシリコン窒化膜の品質を向上させることが可能となる。 Example 8. In a substrate processing method according to another aspect of the present disclosure, a film containing a polysilazane compound formed by applying a polysilazane composition to a substrate is subjected to plasma processing using plasma of an inert gas. In this case, similarly to the above, it is possible to improve the quality of the silicon nitride film formed from the coating film containing the polysilazane compound.
 例9.本開示の他の側面に係る基板処理システムは、ポリシラザン組成物を基板に塗布して塗布膜を形成する塗布部と、塗布膜内の溶媒を除去する溶媒除去部と、溶媒が除去された塗布膜に対して、不活性ガスのプラズマによるプラズマ処理を施すプラズマ処理部と、プラズマ処理が施された塗布膜を熱処理する熱処理部と、を備える。この構成では、上述と同様に、ポリシラザン化合物が含まれる塗布膜から形成されたシリコン窒化膜の品質を向上させることが可能となる。 Example 9. A substrate processing system according to another aspect of the present disclosure is a coating unit that coats a substrate with a polysilazane composition to form a coating film, a solvent removal unit that removes a solvent in the coating film, and a coating solution from which the solvent has been removed. A plasma processing unit that performs plasma processing on the film with an inert gas plasma and a heat treatment unit that heat-treats the plasma-treated coating film are provided. With this configuration, similarly to the above, it becomes possible to improve the quality of the silicon nitride film formed from the coating film containing the polysilazane compound.
 例10.例9の基板処理システムにおいて、溶媒除去部は、塗布膜を加熱することによって塗布膜内の溶媒を除去してもよい。例えば溶媒除去部と熱処理部を構成するユニットを共用化することができ、基板処理システムを簡略化することが可能となる。 Example 10. In the substrate processing system of Example 9, the solvent removal unit may remove the solvent in the coating film by heating the coating film. For example, it is possible to share the unit that constitutes the solvent removal unit and the heat treatment unit, and it is possible to simplify the substrate processing system.
 例11.例10の基板処理システムにおいて、溶媒除去部は、窒素雰囲気下で塗布膜を加熱することによって塗布膜内の溶媒を除去してもよい。この場合、溶媒除去のための加熱時に塗布膜表面が酸素と反応してしまうことが抑えられ、塗布膜の表面における酸化膜の形成が抑制される。 Example 11. In the substrate processing system of Example 10, the solvent removal unit may remove the solvent in the coating film by heating the coating film in a nitrogen atmosphere. In this case, it is possible to prevent the surface of the coating film from reacting with oxygen during heating for removing the solvent, and to suppress the formation of an oxide film on the surface of the coating film.
 例12.例9~例11のいずれかの基板処理システムにおいて、不活性ガスは窒素を含んでいてもよい。この場合、絶縁被膜の膜厚の確保と屈折率を高めることとの両立を図ることが可能となる。 Example 12. In the substrate processing system of any of Examples 9-11, the inert gas may include nitrogen. In this case, it is possible to achieve both securing the film thickness of the insulating coating and increasing the refractive index.
 例13.例12の基板処理システムにおいて、プラズマを生成するための処理ガスは水素を含んでいてもよい。この場合、不活性ガスのプラズマ化が水素によって促進されるので、より効率的にプラズマ処理を行うことが可能となる。 Example 13. In the substrate processing system of Example 12, the processing gas for generating the plasma may include hydrogen. In this case, since the plasma of the inert gas is promoted by hydrogen, the plasma treatment can be performed more efficiently.
 例14.例9~13のいずれかの基板処理システムにおいて、塗布部は、窒素雰囲気下でポリシラザン組成物を基板に塗布することで塗布膜を形成してもよい。この場合、ポリシラザン組成物による塗布膜の形成時に、ポリシラザン化合物と酸素との反応が抑えられ、塗布膜内において酸素の含有量の増加を抑制することができる。 Example 14. In the substrate processing system of any of Examples 9 to 13, the coating section may form a coating film by coating the substrate with the polysilazane composition under a nitrogen atmosphere. In this case, the reaction between the polysilazane compound and oxygen is suppressed during the formation of the coating film of the polysilazane composition, and the increase of the oxygen content in the coating film can be suppressed.
 例15.例9~14のいずれかの基板処理システムにおいて、熱処理部は、プラズマ処理部によるプラズマ処理の実行期間の少なくとも一部と重複する期間において、塗布膜を加熱してもよい。この場合、プラズマ処理と熱処理との実行期間が少なくとも部分的に重複するので、スループットの向上を図ることができる。 Example 15. In the substrate processing system of any one of Examples 9 to 14, the heat treatment section may heat the coating film during a period that overlaps at least a part of the execution period of the plasma treatment by the plasma treatment section. In this case, the plasma treatment and the heat treatment are at least partially overlapped in the execution period, so that the throughput can be improved.
 なお、上記実施形態は、以下の構成を含んでいる。 The above embodiment includes the following configurations.
(付記1)
 ポリシラザン組成物を基板に塗布して塗布膜を形成することと、
 前記塗布膜内の溶媒を除去することと、
 溶媒が除去された前記塗布膜に対して、不活性ガスのプラズマによるプラズマ処理を施すことと、
を含む基板処理方法。
(付記2)
 ポリシラザン組成物を基板に塗布して塗布膜を形成する塗布部と、
 前記塗布膜内の溶媒を除去する溶媒除去部と、
 溶媒が除去された前記塗布膜に対して、不活性ガスのプラズマを用いてプラズマ処理を施すプラズマ処理部と、
を備える基板処理システム。
(Appendix 1)
Applying a polysilazane composition to a substrate to form a coating film;
Removing the solvent in the coating film,
Subjecting the coating film from which the solvent has been removed to plasma treatment with plasma of an inert gas;
A substrate processing method including.
(Appendix 2)
A coating section for coating the substrate with the polysilazane composition to form a coating film;
A solvent removal unit for removing the solvent in the coating film,
A plasma processing unit that performs plasma processing using plasma of an inert gas on the coating film from which the solvent has been removed,
A substrate processing system comprising:
 1…基板処理システム、2…塗布・現像装置、10,10A…プラズマ処理装置、U1,U101…塗布ユニット、U2…熱処理ユニット、W…ウェハ。 1... Substrate processing system, 2... Coating/developing apparatus, 10, 10A... Plasma processing apparatus, U1, U101... Coating unit, U2... Heat treatment unit, W... Wafer.

Claims (15)

  1.  ポリシラザン組成物を基板に塗布して塗布膜を形成することと、
     前記塗布膜内の溶媒を除去することと、
     溶媒が除去された前記塗布膜に対して、不活性ガスのプラズマによるプラズマ処理を施すことと、
     前記プラズマ処理が施された前記塗布膜を熱処理することと、
    を含む基板処理方法。
    Applying a polysilazane composition to a substrate to form a coating film;
    Removing the solvent in the coating film,
    Subjecting the coating film from which the solvent has been removed to plasma treatment with plasma of an inert gas;
    Heat-treating the coating film subjected to the plasma treatment,
    A substrate processing method including.
  2.  前記塗布膜内の溶媒を除去することは、前記塗布膜を加熱することを含む、請求項1に記載の基板処理方法。 The substrate processing method according to claim 1, wherein removing the solvent in the coating film includes heating the coating film.
  3.  前記塗布膜を加熱することは、窒素雰囲気下で当該塗布膜を加熱することを含む、請求項2に記載の基板処理方法。 The substrate processing method according to claim 2, wherein heating the coating film includes heating the coating film under a nitrogen atmosphere.
  4.  前記不活性ガスは窒素を含む、請求項1~3のいずれか一項に記載の基板処理方法。 The substrate processing method according to claim 1, wherein the inert gas contains nitrogen.
  5.  前記プラズマを生成するための処理ガスは水素を含む、請求項4に記載の基板処理方法。 The substrate processing method according to claim 4, wherein the processing gas for generating the plasma contains hydrogen.
  6.  前記ポリシラザン組成物を前記基板に塗布することは、窒素雰囲気下で前記ポリシラザン組成物を前記基板に塗布することを含む、請求項1~5のいずれか一項に記載の基板処理方法。 The substrate processing method according to any one of claims 1 to 5, wherein applying the polysilazane composition to the substrate includes applying the polysilazane composition to the substrate under a nitrogen atmosphere.
  7.  前記塗布膜を熱処理することは、前記塗布膜に対する前記プラズマ処理の実行期間の少なくとも一部と重複する期間において、前記塗布膜を加熱することを含む、請求項1~6のいずれか一項に記載の基板処理方法。 7. The heat treatment of the coating film includes heating the coating film in a period overlapping with at least a part of an execution period of the plasma treatment of the coating film. The substrate processing method described.
  8.  ポリシラザン組成物を基板に塗布することで形成されたポリシラザン化合物を含む膜に対して、不活性ガスのプラズマによるプラズマ処理を施す基板処理方法。 A substrate treatment method in which a film containing a polysilazane compound formed by applying a polysilazane composition to the substrate is subjected to plasma treatment by plasma of an inert gas.
  9.  ポリシラザン組成物を基板に塗布して塗布膜を形成する塗布部と、
     前記塗布膜内の溶媒を除去する溶媒除去部と、
     溶媒が除去された前記塗布膜に対して、不活性ガスのプラズマによるプラズマ処理を施すプラズマ処理部と、
     前記プラズマ処理が施された前記塗布膜を熱処理する熱処理部と、
    を備える基板処理システム。
    A coating section for coating the substrate with the polysilazane composition to form a coating film;
    A solvent removal unit for removing the solvent in the coating film,
    The coating film from which the solvent has been removed, a plasma processing unit that performs plasma processing using plasma of an inert gas,
    A heat treatment unit for heat treating the coating film subjected to the plasma treatment;
    A substrate processing system comprising:
  10.  前記溶媒除去部は、前記塗布膜を加熱することによって前記塗布膜内の溶媒を除去する、請求項9に記載の基板処理システム。 The substrate processing system according to claim 9, wherein the solvent removal unit removes the solvent in the coating film by heating the coating film.
  11.  前記溶媒除去部は、窒素雰囲気下で前記塗布膜を加熱することによって前記塗布膜内の溶媒を除去する、請求項10に記載の基板処理システム。 The substrate processing system according to claim 10, wherein the solvent removal unit removes the solvent in the coating film by heating the coating film in a nitrogen atmosphere.
  12.  前記不活性ガスは窒素を含む、請求項9~11のいずれか一項に記載の基板処理システム。 The substrate processing system according to any one of claims 9 to 11, wherein the inert gas contains nitrogen.
  13.  前記プラズマを生成するための処理ガスは水素を含む、請求項12に記載の基板処理システム。 The substrate processing system according to claim 12, wherein the processing gas for generating the plasma contains hydrogen.
  14.  前記塗布部は、窒素雰囲気下で前記ポリシラザン組成物を前記基板に塗布することで前記塗布膜を形成する、請求項9~13のいずれか一項に記載の基板処理システム。 The substrate processing system according to any one of claims 9 to 13, wherein the coating unit forms the coating film by coating the substrate with the polysilazane composition under a nitrogen atmosphere.
  15.  前記熱処理部は、前記プラズマ処理部による前記プラズマ処理の実行期間の少なくとも一部と重複する期間において、前記塗布膜を加熱する、請求項9~14のいずれか一項に記載の基板処理システム。 The substrate processing system according to any one of claims 9 to 14, wherein the heat treatment unit heats the coating film in a period that overlaps at least a part of an execution period of the plasma treatment by the plasma treatment unit.
PCT/JP2020/000197 2019-01-16 2020-01-07 Substrate processing method and substrate processing system WO2020149176A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019005041 2019-01-16
JP2019-005041 2019-03-11

Publications (1)

Publication Number Publication Date
WO2020149176A1 true WO2020149176A1 (en) 2020-07-23

Family

ID=71613859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000197 WO2020149176A1 (en) 2019-01-16 2020-01-07 Substrate processing method and substrate processing system

Country Status (2)

Country Link
TW (1) TW202101590A (en)
WO (1) WO2020149176A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079382A (en) * 1996-09-05 1998-03-24 Hitachi Ltd Method of forming sio2 film having si-f coupling and semiconductor device
JP2015028196A (en) * 2013-07-30 2015-02-12 三井化学株式会社 Method of producing laminate
JP2016022593A (en) * 2014-07-16 2016-02-08 コニカミノルタ株式会社 Gas barrier film and method for producing the same, and electronic device using the same
WO2017090573A1 (en) * 2015-11-24 2017-06-01 コニカミノルタ株式会社 Device for forming thin film encapsulation layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079382A (en) * 1996-09-05 1998-03-24 Hitachi Ltd Method of forming sio2 film having si-f coupling and semiconductor device
JP2015028196A (en) * 2013-07-30 2015-02-12 三井化学株式会社 Method of producing laminate
JP2016022593A (en) * 2014-07-16 2016-02-08 コニカミノルタ株式会社 Gas barrier film and method for producing the same, and electronic device using the same
WO2017090573A1 (en) * 2015-11-24 2017-06-01 コニカミノルタ株式会社 Device for forming thin film encapsulation layer

Also Published As

Publication number Publication date
TW202101590A (en) 2021-01-01

Similar Documents

Publication Publication Date Title
US11343884B2 (en) Method and apparatus for microwave treatment of dielectric films
KR101568748B1 (en) Production method for semiconductor device, production device for semiconductor device, and storage medium
JP6592012B2 (en) Batch curing chamber with gas distribution and individual pumping
KR20220127795A (en) Methods for depositing silicon oxide
CN107393809A (en) Use the method for PECVD depositing conformals and the encapsulated layer of low wet etch rate
JP2017034245A (en) Method for integrating halide-containing ald film on sensitive materials
JP3666751B2 (en) Insulating film forming method and insulating film forming system
JP2007088454A (en) Method and system for forming layer having controllable spatial variation
TW201515138A (en) Variable frequency microwave (VFM) processes and applications in semiconductor thin film fabrications
JP2011109086A (en) System and method for converting at least part of membrane into silicon oxide, and/or for improving membranous quality using ultraviolet curing in vaporous atmosphere, and for highly densifying film using ultraviolet curing in ammonic atmosphere
WO2009036249A1 (en) Method for curing a dielectric film
WO2009111473A2 (en) Method for curing a porous low dielectric constant dielectric film
KR20150119293A (en) Semiconductor device manufacturing method, substrate processing device, and recording medium
KR20160019371A (en) Low-k dielectric film formation
WO2020149176A1 (en) Substrate processing method and substrate processing system
JP3913638B2 (en) Heat treatment method and heat treatment apparatus
TW202218048A (en) Reducing intralevel capacitance in semiconductor devices
US20090226695A1 (en) Method for treating a dielectric film with infrared radiation
JP3225331B2 (en) Method of forming SOG film and ozone treatment apparatus
TW201619428A (en) Low-k oxide deposition by hydrolysis and condensation
US20070141843A1 (en) Substrate peripheral film-removing apparatus and substrate peripheral film-removing method
US20240120193A1 (en) Carbon replenishment of silicon-containing material
KR20170132671A (en) Technique to deposit sidewall passivation for high aspect ratio cylinder etch
JP4446602B2 (en) Method for treating a semiconductor substrate
TWI837045B (en) Batch curing chamber with gas distribution and individual pumping

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20740887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20740887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP