WO2020149044A1 - パラメータ選定装置、パラメータ選定方法、およびパラメータ選定プログラム - Google Patents

パラメータ選定装置、パラメータ選定方法、およびパラメータ選定プログラム Download PDF

Info

Publication number
WO2020149044A1
WO2020149044A1 PCT/JP2019/047666 JP2019047666W WO2020149044A1 WO 2020149044 A1 WO2020149044 A1 WO 2020149044A1 JP 2019047666 W JP2019047666 W JP 2019047666W WO 2020149044 A1 WO2020149044 A1 WO 2020149044A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
object detection
unit
processing block
analysis item
Prior art date
Application number
PCT/JP2019/047666
Other languages
English (en)
French (fr)
Inventor
聡 笹谷
亮祐 三木
誠也 伊藤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN201980081428.4A priority Critical patent/CN113168696B/zh
Publication of WO2020149044A1 publication Critical patent/WO2020149044A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the present invention relates to an object detection device and an object detection method.
  • Patent Document 1 Although the parameters can be efficiently optimized by selecting the arrangement conditions of the monitoring cameras so that the monitoring without blind spots can be realized with the minimum number of cameras, the threshold used for object detection. Parameters related to etc cannot be targeted.
  • the parameters for the placement conditions of the surveillance camera are selected according to the user requirements such as surveillance, all the external parameters and internal parameters that the surveillance camera itself holds are optimized in a batch. It is not possible to pre-select parameters suitable for achieving the requirements.
  • the present invention has been made to solve the above-mentioned problems, and an object thereof is to appropriately select a parameter to be adjusted that is suitable for achieving user requirements for each measurement purpose when detecting an object from a measurement range.
  • a parameter selection device uses a parameter used in an algorithm used when an object detection device detects an object within a measurement range of a measurement device, using the algorithm.
  • the parameter influence degree calculation unit that calculates the first degree of influence on the detection accuracy of detecting the object and the analysis item for achieving the user requirement are the measurement accuracy of the object detected by the object detection device.
  • An analysis item influence degree calculation unit that calculates a second influence degree to be given, and a parameter selection unit that selects the parameter to be adjusted based on the first influence degree and the second influence degree. Is characterized by.
  • the present invention when detecting an object from the measurement range, it is possible to appropriately select a parameter to be adjusted that is suitable for achieving the user requirement for each measurement purpose.
  • FIG. 3 is a functional block diagram showing the configuration of the object detection device of Embodiment 1.
  • FIG. The figure for demonstrating the process of a process block disassembly part.
  • the functional block diagram which shows the structure of a parameter contribution rate calculation part.
  • the figure for demonstrating a user requirement The figure which shows an example of an analysis item table and a combination table.
  • 3 is a flowchart showing an object detection process of the first embodiment.
  • FIG. 6 is a functional block diagram showing the configurations of an object detection device and a parameter selection device according to a second embodiment.
  • FIG. 6 is a functional block diagram showing the configuration of a parameter selection device of a third embodiment.
  • FIG. 8 is a functional block diagram showing the configurations of an object detection device and a parameter selection device according to a fourth embodiment.
  • 3 is a hardware diagram showing a configuration of a computer that realizes the object detection device and the parameter selection device of Embodiments 1 to 4.
  • FIG. 1 is a functional block diagram showing the configuration of the object detection device of the first embodiment.
  • the object detection apparatus 1 according to the first embodiment is an apparatus that automatically selects a parameter used for detecting an object detected by a sensor using the sensor information 200 and a user requirement 201 such as a measurement purpose in a measurement device such as a sensor. is there.
  • a stereo camera is used as a sensor
  • the present invention is not limited to the stereo camera, and other sensors such as a distance sensor such as a TOF sensor and a laser radar, a monocular camera, and a surveillance camera can be used. The application of is also possible.
  • the object detection device 1 includes a processing block decomposition unit 2, a parameter contribution rate calculation unit 3, a user analysis item extraction unit 4, an analysis item contribution rate calculation unit 5, an optimization processing block determination unit 6, and a parameter selection unit. 7, a parameter adjustment unit 8, an object detection execution unit 9, and an analysis execution unit 10.
  • the adjusting unit 8 and each functional unit of the object detection executing unit 9 are realized by a sensor having an arithmetic device, a main storage device, and an external storage device, or a computer prepared separately from the sensor.
  • the processing block decomposition unit 2 decomposes the sensor-specific measurement algorithm included in the sensor information 200 into a plurality of processing blocks.
  • the parameter contribution rate calculation unit 3 determines how much the parameters used in each of the plurality of processing blocks decomposed by the processing block decomposition unit 2 affect the accuracy of the output result of the sensor-specific measurement algorithm. The contribution rate shown is calculated.
  • the user analysis item extraction unit 4 extracts, from the user requirement 201, analysis items by the sensor required by the user.
  • the analysis item contribution rate calculation unit 5 calculates the contribution rate of the analysis item to each processing block decomposed by the processing block decomposition unit 2.
  • the optimization processing block determination unit 6 determines the information of the analysis item extracted from the user requirement 201 by the user analysis item extraction unit 4 and the contribution ratio of the analysis item to each processing block calculated by the analysis item contribution ratio calculation unit 5. Based on the information, the processing block for performing the optimization processing is determined.
  • the parameter selecting unit 7 selects a parameter having a high contribution rate as a parameter to be optimized in the processing block determined to be optimized by the optimization processing block determining unit 6.
  • the parameter adjusting unit 8 adjusts the parameters selected by the parameter selecting unit 7 so that the accuracy of object detection using a sensor-specific measurement algorithm is improved.
  • the object detection execution unit 9 executes object detection with the specified parameters.
  • the analysis execution unit 10 uses the result of object detection by the object detection execution unit 9 to execute an application according to the user requirement 201.
  • FIG. 2 is a diagram for explaining the processing of the processing block disassembling unit.
  • the object detection algorithm 12 is an example of a measurement algorithm that outputs an output result 14 obtained by performing object detection processing on an input from the stereo camera 11, for example.
  • the image acquisition 12a, the distortion correction 12b, the parallax calculation 12c, the three-dimensional point group calculation 12d, and the object detection 12e are examples of each processing block into which the object detection algorithm 12 is decomposed.
  • the processing block decomposition unit 2 acquires the object detection algorithm 12 of the stereo camera 11 used for object detection from the sensor information 200 and decomposes it into a plurality of processing blocks.
  • the sensor information 200 is information that allows the details of an algorithm such as a program source for object detection to be grasped, SDK information unique to the sensor used for object detection, and parameters related to object detection.
  • FIG. 2 shows an example in which the object detection algorithm 12 of the stereo camera 11 is decomposed into a plurality of processing blocks.
  • a method of dividing the object detection algorithm 12 into a plurality of processing blocks for example, a division method related to the development of the device such as each function or class in the program source or each SDK to be used, and the knowledge and experience of the algorithm developer.
  • a division method related to the development of the device such as each function or class in the program source or each SDK to be used, and the knowledge and experience of the algorithm developer.
  • There are various methods such as a division method in which each flow chart obtained by subdividing the algorithm using an analysis tool is used as a processing block.
  • the video acquisition 12a is a process of controlling the stereo camera 11 to acquire a camera image, and parameters 13a such as a frame rate indicating the frequency of image acquisition and the resolution of the acquired image are used.
  • the distortion correction 12b is a process for removing the lens distortion peculiar to the camera from the image acquired by the image acquisition 12a.
  • the parameters 13b such as the focal length, the distortion coefficient, and the image center are used to fit the lens distortion model of Brown. There are common methods such as removing distortion.
  • the parallax calculation 12c compares the two camera images from which the lens distortion has been removed by the distortion correction 12b, sets a small area having a certain degree of difference as a small area, and calculates the parallax from the search width. Examples of methods for calculating the degree of difference in a small area include methods such as SAD (Sum of Absolute Difference) and SSD (Sum of Squared Difference).
  • the parameters 13c used in the parallax calculation 12c include the size of the small area and the maximum value of the search width (maximum search width).
  • the parameters 13d such as the installation position and the installation attitude of the stereo camera 11 are used to calculate the camera coordinates Xc and the world coordinates Xw from the image coordinates based on the following expressions (1) and (2).
  • the three-dimensional point group coordinates of the world coordinate Xw are derived by sequentially converting to.
  • the rotation matrix R indicates the installation posture of the camera, and can be calculated from the pan, tilt, and roll angles of the stereo camera 11.
  • the translation vector Xw indicates the installation position such as the camera height of the stereo camera 11.
  • the object detection 12e determines and detects an object when the shape or volume obtained by analyzing the 3D point cloud calculated by the 3D point cloud calculation 12d satisfies a certain reference value.
  • the parameters 13e used in the object detection 12e include a detection threshold value that is a constant reference value, the number of correction processes for performing noise removal for a three-dimensional point group, and the like.
  • the object detection algorithm 12 of the stereo camera 11 is divided into five processing blocks, but the number of divisions is not limited. Further, the processing contents of each processing block and the parameters used are not limited to those shown in FIG.
  • FIG. 3 is a functional block diagram showing the configuration of the parameter contribution rate calculation unit.
  • the parameter contribution ratio calculation unit 3 includes a parameter setting range determination unit 20, a measurement accuracy variation amount calculation unit 21, and a parameter contribution ratio table creation unit 22.
  • the parameter setting range determination unit 20 receives the parameters 13a to 13e used in each processing block, and determines the setting range of the parameter value for calculating the contribution rate of each of the parameters 13a to 13e.
  • the measurement accuracy variation amount calculation unit 21 calculates the measurement accuracy based on the output result 14 of the object detection output from the object detection execution unit 9 when the parameter is changed within the setting range acquired by the parameter setting range determination unit 20. Calculate the variation.
  • the parameter contribution rate table creation unit 22 creates a table showing the parameter contribution rate from the variation amount of the measurement accuracy calculated by the measurement accuracy variation amount calculation unit 21.
  • the parameter setting range determination unit 20 receives the initial value of each parameter used in each processing block decomposed by the processing block decomposition unit 2, and sets the parameter setting range used in the measurement accuracy variation calculation unit 21. Is determined for each parameter.
  • the initial value input to the parameter setting range determination unit 20 is, for example, a setting value set by the user, a specified value on the system, or an automatic estimated value by a predetermined algorithm.
  • the default values on the system by the user are used as the initial values of the parameters 13a, 13c, and 13e used in the image acquisition 12a, the parallax calculation 12c, and the object detection 12e.
  • estimated values by a predetermined algorithm are used as initial values of the parameters 13b and 13d used in the distortion correction 12b and the three-dimensional point cloud calculation 12d.
  • a method for estimating the parameter 13b a Zhang calibration method or the like is used, and as a method for estimating the parameter 13d, a method using plane information detected by the RANSAC algorithm or the like is used.
  • a method of determining the setting range from the initial value input to the parameter setting range determining unit 20 there is a method of setting a value within a predetermined range before and after the initial value as the minimum value and the maximum value.
  • the method of determining the minimum value and the maximum value may be switched depending on whether or not the user grasps the details of the object detection algorithm 12. For example, if the user knows the details of the object detection algorithm 12, the minimum value and the maximum value are determined based on past experience, and if not, it can be set from the SDK specification information and the like.
  • the parameter value may be investigated and determined. Alternatively, these two methods may be combined.
  • the method of determining the minimum value and the maximum value is not particularly limited.
  • discrete values are used as parameters included in the setting range.
  • the minimum value and the maximum value of the setting range are divided into a predetermined number to generate a parameter having a discrete value.
  • all possible values may be included in the parameter setting range.
  • the measurement accuracy fluctuation amount calculation unit 21 changes the parameter value within the setting range of each parameter input by the parameter setting range determination unit 20, and calculates the fluctuation amount of the measurement accuracy by the object detection execution unit 9.
  • the measurement accuracy the object detection accuracy when the true-valued test video is input or the evaluation index unique to the processing block is used.
  • the method of calculating the object detection accuracy is to use a test image in which the detection target is imaged and holds true value information that allows the target region to be known in advance for all frames, and to set the target value correctly with the set parameter values.
  • a value representing the ratio of the number of detected frames to the total number of frames as a percentage can be calculated as the object detection accuracy.
  • the processing block of the parallax calculation 12c for example, a random pattern whose parallax is relatively easy to calculate is used as a test image, and the evaluation index unique to the processing block is to obtain the parallax by calculating the parallax with respect to the number of pixels of the entire image.
  • the ratio of the total number of pixels of invalid parallax that cannot be obtained may be expressed as a percentage.
  • the original evaluation index of the processing block of the distortion correction 12b uses, for example, a test image with many straight lines such as floor tiles, and a straight line detection algorithm is applied to the image after the distortion correction with respect to the number of straight lines in the test image.
  • the ratio of the number of straight lines applied and detected may be expressed as a percentage.
  • FIG. 4 is a diagram illustrating an example of the variation amount of the measurement accuracy calculated by the measurement accuracy variation amount calculation unit.
  • the measurement accuracy variation amount calculation unit 21 calculates the measurement accuracy
  • the object detection accuracy and the processing block-specific evaluation are used as the measurement accuracy depending on whether or not the user can grasp the detailed algorithm of each processing block. You may switch which of the indicators is used. For example, for a processing block whose detailed algorithm can be grasped, test data suitable for evaluating the unique index of the processing block is prepared. For a processing block whose algorithm cannot be determined, test data corresponding to the object detection accuracy may be commonly used among the processing blocks whose algorithm is unknown, and the measurement accuracy may be calculated.
  • the parameter contribution rate table creation unit 22 creates the parameter contribution rate table T1 for each processing block using the variation amount of the measurement accuracy calculated by the measurement accuracy variation amount calculation unit 21.
  • the contribution rate of a parameter to a processing block is an index indicating the importance of each parameter in the processing block, and the higher the measurement accuracy used by the measurement accuracy variation calculation unit 21, the higher the importance.
  • the parameter contribution rate table creation unit 22 stores each parameter contribution rate calculated for each processing block in the parameter contribution rate table T1.
  • FIG. 5 is a diagram showing an example of the parameter contribution rate table.
  • the parameter contribution rate table T1 shown in FIG. 5 is stored in a predetermined storage unit and includes contribution rate tables T1a to T1e for each processing block.
  • the parameter contribution rate table T1 is a contribution rate table T1a that stores the contribution rate of each parameter 13a in the video acquisition 12a, a contribution rate table T1b that stores the contribution rate of each parameter 13b in the distortion correction 12b, and each parameter 13c in the parallax calculation 12c.
  • Contribution ratio table T1c storing the contribution ratio of each parameter 13d in the three-dimensional point cloud calculation 12d
  • contribution ratio table T1e storing the contribution ratio of each parameter 13e in the object detection 12e. including.
  • the parameter contribution rate is calculated by the configuration of the parameter contribution rate calculation unit 3 shown in FIG. 3, but any means that can determine the degree of influence of each parameter in the processing block on the measurement accuracy may be used. However, it is not particularly limited.
  • the user requirement 201 will be described with reference to FIG. FIG. 6 is a diagram for explaining user requirements.
  • the user requirement 201 includes list information of applications for which the user executes the object detection technique in order to achieve the main purpose.
  • FIG. 6 shows that in the measurement range 30A of the stereo camera 11 shown by the two-dimensional map 30, for each measurement area 32a, 32b set around each of the equipment 31a, 31b related to the user's main purpose, It illustrates a list 33 of applications that the user wants to execute.
  • the user requirement 201 includes the two-dimensional map 30 and the list 33.
  • the measurement area is the entire two-dimensional map 30, and it is necessary to execute an application such as motion detection for detecting a moving person in the image. ..
  • the measurement area is the entire two-dimensional map 30, and it is necessary to execute an application such as person trajectory estimation.
  • a measurement area 32a is set around the equipment 31a, and an application such as counting the number of people in the measurement area 32a or measuring the residence time is executed. It is possible to analyze the number of users and the usage time of the equipment 31a.
  • a measurement area 32b is set around the equipment 31b, and the number of people in the area for counting the number of persons existing in the measurement area 32b or
  • an application such as a person's gender determination and a carryback detection for detecting the carryback possession of a person, it is possible to analyze the ratio of men and women to the total number of people, the ratio of carryback holders, and the like.
  • the user requirement 201 in FIG. 6 is merely an example, and the present invention is not limited to this.
  • a method of creating the user requirement 201 as shown in FIG. 6, the user sets a measurement area in the two-dimensional map 30 by using a GUI or the like, and the whole measurement range or each set measurement area is set.
  • the two-dimensional map 30 and the list 33 are stored in a predetermined storage unit.
  • the main purpose is not limited to any particular one, as long as it is information on the degree of abstraction that can be grasped by the application corresponding to the measurement area or information that can be converted into information that can be grasped by the application corresponding to the measurement area.
  • FIG. 7 is a diagram showing an example of the analysis item table and the combination table.
  • FIG. 7A shows an example of an analysis item list table 40 showing a list of analysis items extracted from each processing block decomposed by the processing block decomposition unit 2.
  • FIG. 7B shows an example of a combination table 41 of applications and analysis items.
  • the analysis item list table 40 includes “object detection”, “tracking”, “position measurement”, “action recognition”, “image recognition”, “shape recognition”, and “size measurement”. There are analysis items.
  • the analysis item list table 40 and the combination table 41 are stored in a predetermined storage unit.
  • the user analysis item extraction unit 4 extracts the analysis items necessary for realizing the application required by the user from the information of the user requirement 201 and the combination table 41 created in advance.
  • the analysis item is an analysis technique (application) for acquiring necessary information in addition to the object detection when executing the application.
  • “analysis item” is “none” because “application” and “moving object detection” are functions that can be realized only by the object detection result.
  • the “application” and “dwell time measurement” use the result of object detection, and therefore, in addition to object detection, “tracking” and “object tracking” are performed to determine that the same person exists at the same position.
  • An analysis item of "position measurement” is required. In this way, the application that uses the result of object detection and the analysis item corresponding to the application can be grasped from the main purpose of the user in the user requirement 201.
  • the user analysis item extraction unit 4 refers to the combination table 41, and the “analysis item”, “position measurement” and “position measurement” and “position measurement” and “position measurement” corresponding to the “application” of “count in-area person” and “residence time measurement”, respectively. "Tracking”.
  • analysis item items other than the analysis items shown in the analysis item list table 40 of FIG. 7A may be used.
  • one analysis item may be divided into a plurality of items depending on the positional relationship between the measurement range and the sensor, accuracy, and the like. For example, in object detection, generally, when the distance from a sensor such as a camera to the target increases, the amount of information of the target decreases, or the probability that an obstacle exists between them increases, and detection accuracy decreases. For this reason, there is a method of dividing the “analysis item” “object detection” into “proximity detection” and “distant detection”.
  • FIG. 8 is a diagram showing an example of the analysis item contribution rate table.
  • FIG. 8 is an example in which the analysis item contribution rate calculation unit 5 calculates the contribution rate of the analysis item to each processing block of the distortion correction 12b and the three-dimensional point group calculation 12d.
  • the analysis item contribution rate calculation unit 5 calculates the contribution rate of the analysis item to each processing block of the distortion correction 12b and the three-dimensional point group calculation 12d.
  • the variation of the accuracy of the analysis item for each processing block obtained from the analysis result output from the analysis execution unit 10 is followed by the method of the parameter contribution rate calculation unit 3.
  • FIG. 8 it is assumed that the “analysis item” “object detection” shown in FIG. 7A is subdivided into “proximity detection” and “distant detection”.
  • the parameters are changed only in the processing block of the target for which the accuracy variation amount of the “analysis item” and the “tracking” is obtained, and the object detection and the tracking using the object detection result are performed.
  • the variation amount of the tracking accuracy by changing the parameter is calculated.
  • the tracking accuracy is, for example, how much the same person can be tracked.
  • the calculation method of the contribution rate of the analysis item to each processing block of the distortion correction 12b and the three-dimensional point group calculation 12d has been described.
  • the contribution rate of the analysis item to each processing block is similarly calculated.
  • the user analysis item extraction unit 4 registers the contribution rate of each analysis item for each processing block calculated as described above in the analysis item contribution rate table T2.
  • the analysis item contribution rate table T2 is stored in a predetermined storage unit and includes contribution rate tables T2a to T2e for each processing block.
  • the analysis item contribution ratio table T2 is a contribution ratio table T2a (not shown) that stores the contribution ratio of each analysis item in the image acquisition 12a, a contribution ratio table T2b that stores the contribution ratio of each analysis item in the distortion correction 12b, and a parallax.
  • a contribution rate table T2c (not shown) that stores the contribution rate of each analysis item in the calculation 12c, a contribution rate table T2d that stores the contribution rate of each analysis item in the three-dimensional point cloud calculation 12d, and each analysis in the object detection 12e. It includes a contribution rate table T2e (not shown) that stores the contribution rates of the items.
  • the optimization processing block determination unit 6 uses the output information of the user analysis item extraction unit 4 and the analysis item contribution rate calculation unit 5 to optimize the processing block having the largest contribution rate of the analysis item required by the user requirement 201. It is decided as a block for processing. For example, when the user requirement 201 requires only one analysis item, there is a method of selecting a processing block having the highest contribution rate to the analysis item.
  • the parameter selection unit 7 selects the parameter having the highest parameter contribution rate calculated by the parameter contribution rate calculation unit 3 in the optimization target processing block as the optimization target parameter. It should be noted that the number of parameters to be selected is not limited to one, and for example, a method may be adopted in which a threshold value of the parameter contribution rate is set in advance and all parameters having a parameter contribution rate higher than the threshold value are targeted for optimization. ..
  • the contribution rate of the analysis item of the processing block and the parameter contribution rate in the processing block are multiplied to obtain a value higher than a preset threshold value. You may use the method of making the parameter shown the optimization object.
  • the processing blocks output by the optimization processing block determination unit 6 are the distortion correction 12b and the three-dimensional point cloud calculation 12d whose tables are shown in FIGS. 5 and 8, and the “analysis item” extracted from the user requirement 201. "" is "tracking".
  • FIG. 9 is a flowchart showing the object detection process of the first embodiment.
  • the object detection processing of the first embodiment is executed by the object detection device 1 at a predetermined timing designated by the user.
  • step S11 the processing block decomposition unit 2 decomposes the sensor-specific measurement algorithm included in the sensor information 200 into a plurality of processing blocks.
  • the object detection device 1 repeats the loop processing of steps S12 to S14 for all the processing blocks obtained by the decomposition in step S11. That is, in step S12, the object detection device 1 selects one processing block obtained in step S11. Next, in step S13, the parameter contribution rate calculation unit 3 calculates the contribution rate of each parameter to the object detection algorithm 12 for the one processing block selected in step S12. Next, in step S14, the analysis item contribution rate calculation unit 5 calculates the contribution rate of each analysis item to the object detection algorithm 12 for the one processing block selected in step S12.
  • step S12 the object detection device 1 selects an unselected processing block from the processing blocks obtained in step S11, and performs the processing of steps S13 and S14 on the selected processing block. Execute. Note that when step S14 ends and there is no unselected processing block among the processing blocks obtained in step S11, the object detection device 1 shifts the processing to step S15.
  • step S15 the optimization processing block determination unit 6 contributes the analysis item extracted from the user requirement 201 by the user analysis item extraction unit 4 and each analysis item calculated by the analysis item contribution rate calculation unit 5 in step S14. Using the ratio, the processing block having the largest contribution ratio of the analysis item required by the user requirement 201 is determined as the optimization processing block for executing the optimization.
  • step S16 the parameter selecting unit 7 selects, as a parameter to be optimized, a parameter having a high contribution rate to the processing block determined to be subjected to the optimization processing by the optimization processing block determining unit 6 in step S15. ..
  • step S17 the parameter adjusting unit 8 adjusts the parameter selected in step S16 so that the object detection accuracy and the analysis accuracy corresponding to the analysis item are improved.
  • step S18 the object detection execution unit 9 executes object detection using the parameters adjusted in step S17.
  • step S19 the analysis execution unit 10 executes the application corresponding to the user requirement 201 using the result of the object detection performed by the object detection execution unit 9 in step S18 using the parameters adjusted in step S17. To do.
  • step S19 ends, the object detection device 1 ends the object detection process of the first embodiment.
  • the contribution ratio of the analysis item and the contribution ratio of the parameter to each processing block obtained by dividing the algorithm unique to the measurement device are calculated, and the adjustment target is adjusted.
  • the following parameters are selected for each user requirement 201. That is, when executing an application satisfying the user requirement 201, a processing block having a high contribution rate of analysis items required to realize this application is selected, and a parameter having a high contribution rate to the selected processing block is selected. As a result, it is possible to appropriately select parameters to be adjusted that are suitable for achieving the user requirements for each measurement purpose.
  • the object detection device 1B of the second embodiment may include only the object detection execution unit 9 and the analysis execution unit 10.
  • the parameter selection device 50B which is a separate device, includes a processing block decomposition unit 2, a parameter contribution ratio calculation unit 3, a user analysis item extraction unit 4, an analysis item contribution ratio calculation unit 5, and an optimization processing block determination unit 6. It has a parameter selection unit 7 and a parameter adjustment unit 8. Then, the object detection device 1B may perform object detection and analysis using the parameters selected and adjusted by the parameter selection device 50B, and output the object detection result information 202 and the analysis result information 203.
  • another device has a processing block decomposition unit 2, a parameter contribution ratio calculation unit 3, and an analysis item contribution ratio calculation unit 5, and this other device previously By executing these processing functions, the analysis item contribution rate information 204 and the parameter contribution rate information 205 for each processing block are acquired.
  • the parameter selection device 50C having the user analysis item extraction unit 4, the optimization processing block determination unit 6, and the parameter selection unit 7, the user requirement 201, the parameter contribution rate information 205, and the analysis item contribution rate information 204.
  • the parameter to be adjusted can be selected at high speed for each user requirement 201.
  • An object detection device similar to the object detection device 1B of the second embodiment executes object detection and analysis using the parameters selected (or selected and adjusted) by the parameter selection device 50C, and object detection result information and analysis results. Output information and.
  • FIG. 12 shows a configuration when the processing cost is taken into consideration for the configuration including the parameter selection device 50B and the object detection device 1B of the second embodiment shown in FIG.
  • the permissible processing cost acquisition unit 51 acquires the processing cost allowed for the object detection and the subsequent analysis application from the user requirement 201 and the specification information 207 of the object detection device 1D.
  • the parameter selection device control unit 52 determines the parameter selection device 50B from the processing cost information 206 when the object detection execution unit 9 and the analysis execution unit 10 are executed, and the allowable processing cost information acquired by the allowable processing cost acquisition unit 51. Each function of is controlled.
  • Examples of the input of the allowable processing cost acquisition unit 51 include the user's requirement 201 such as the amount of adjustment cost allowed locally and whether the application executed by the object detection device 1D is processed in real time or offline, and the object.
  • the fluctuation amount of the processing cost is also calculated. Then, there is a method of reflecting it in the parameter contribution rate. Alternatively, there is a method of changing the parameters based on the processing cost such as the number of processing blocks to be optimized determined by the optimization processing block determining unit 6 and the number of parameters selected by the parameter selecting unit 7. There is no particular limitation.
  • parameters that take into account the processing costs allowed by object detection and subsequent analysis applications are selected, and the processing in the object detection device 1D is made efficient according to physical resources and performance. it can.
  • ⁇ Modification> Further, by changing the parameter adjusting unit 8 shown in FIGS. 1, 10 and 12 to a function for automatically optimizing parameters, a stereo camera capable of achieving the user requirement 201 without parameter adjustment on site. It is possible to estimate 11 parameters. In a system or the like that requires a large number of sensors (such as the stereo camera 11) to be installed, the system cost can be significantly reduced.
  • the method of selecting the parameters related to the object detection technology of the stereo camera has been described, but it is not limited as long as it is a sensor that performs object detection. Furthermore, in Examples 1 to 4, since the parameter contribution rate and the analysis item contribution rate to each processing block can be calculated using the final object detection accuracy as an index, even when the sensor-specific object detection algorithm is unknown, for example, If the sensor can grasp the SDK information and the parameter specifications that can be set, the parameter to be adjusted can be selected for each user requirement. Therefore, it is possible to adapt to an object detection device using a wide variety of sensors, and it is possible to improve the versatility of the entire system.
  • the method of selecting the parameters related to the application related to the object detection technology of the sensor has been described, but the technical idea of the present invention is not limited to the object detection technology.
  • the parameter to be adjusted in the object tracking technology can be selected for each user requirement.
  • FIG. 13 is a hardware diagram showing a configuration of a computer that realizes the object detection device and the parameter selection device of the first to fourth embodiments.
  • the computer 5000 that realizes the object detection device and the parameter selection device of the first to fourth embodiments includes a computing device 5300 represented by a CPU (Central Processing Unit), a memory 5400 such as a RAM (Random Access Memory), an input device 5600 (for example, A keyboard, mouse, touch panel, etc.) and output device 5700 (eg, a video graphics card connected to an external display monitor) are interconnected through a memory controller 5500.
  • a computing device 5300 represented by a CPU (Central Processing Unit)
  • a memory 5400 such as a RAM (Random Access Memory)
  • an input device 5600 for example, A keyboard, mouse, touch panel, etc.
  • output device 5700 eg, a video graphics card connected to an external display monitor
  • a program for realizing the object detection device or the parameter selection device of the first to fourth embodiments is read from the external storage device 5800 such as SSD or HDD via the I/O (Input/Output) controller 5200.
  • the CPU 5300 and the memory 5400 cooperate with each other to implement the object detection device and the parameter selection device of the first to fourth embodiments.
  • the program for realizing the object detection device and the parameter selection device of the first to fourth embodiments may be acquired from an external computer by communication via the network interface 5100.
  • the present invention is not limited to the above-mentioned embodiments, but includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • each processing shown in the embodiments may be appropriately distributed or integrated based on the processing efficiency or the mounting efficiency.
  • 1, 1B, 1D Object detection device
  • 2 Processing block decomposition unit
  • 3 Parameter contribution rate calculation unit
  • 4 User analysis item extraction unit
  • 5 Analysis item contribution rate calculation unit
  • 6 Optimization processing block determination unit
  • 7 parameter selection unit
  • 8 parameter adjustment unit
  • 9 object detection execution unit
  • 10 analysis execution unit
  • 11 stereo camera
  • 12 object detection algorithm
  • 12a image acquisition
  • 12b distortion correction
  • 12c parallax.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)

Abstract

パラメータ選定装置50Bにおいて、パラメータ寄与率算出部3は、計測装置の計測範囲内における物体を物体検出装置1Bが検出する際に使用するアルゴリズムで用いられるパラメータが物体を検出する検出精度に与える第1の影響度を算出する。また、解析項目寄与率算出部5は、ユーザ要件を達成するための解析項目が、物体検出装置1Bによって検出された物体の計測精度に与える第2の影響度を算出する。パラメータ選定部8は、第1の影響度および第2の影響度に基づいて、調整対象とするパラメータを選定する。

Description

パラメータ選定装置、パラメータ選定方法、およびパラメータ選定プログラム
 本発明は、物体検出装置および物体検出方法に関する。
 計測装置(以下、センサという場合がある)が取得した情報によって物体を検出する物体検出技術へのニーズが高まっており、物体検出結果はユーザ要件に応じて多様なアプリケーションで活用されている。例えば、監視目的とした所定エリアへの侵入者検知や、人流や交通量解析を目的とした物体の軌跡抽出、物体数のカウントなどが例に挙げられる。センサとしては、監視カメラ、距離センサ、レーザレーダなどが多く活用されている。センサを適切な箇所に満遍なく設置できればユーザが求める物体計測および後段のアプリケーションを高精度に実現できる。
 しかし、実際にはコスト面や設置場所の環境などによって、使用するセンサ台数や物体検出の性能などが限定され、期待された計測精度が出ない場面が多々ある。そのような場面では、技術者などが現地に赴き、精度を維持するためにセンサの設置位置や姿勢、画角、物体検出に使用する閾値などのパラメータを、時間をかけて調整する必要があった。このような状況を鑑みて、近年では、センサのパラメータを自動で最適化する技術が開発されているものの、大量のセンサのパラメータを一括に最適化するには計算コストを考慮すると現実的ではない。そこで、調整の対象となるパラメータを選定する技術への期待が高い。例えば、特許文献1では、監視カメラの最適な配置条件に関するパラメータを自動で選定し最適化している。
特開2018-128961号公報
 しかしながら、特許文献1では、必要最小限のカメラ台数にて死角の無い監視を実現できるよう監視カメラの配置条件を選定することで、効率的にパラメータを最適化できるものの、物体検出に使用する閾値などに関するパラメータを対象とすることができない。また、監視などのユーザ要件に応じて最適な監視カメラの配置条件のパラメータを選定しているが、監視カメラそのものが保持する外部パラメータと内部パラメータを全て一括で最適化しており、その中からユーザ要件の達成に適したパラメータを予め選定することができない。
 本発明は、上述の課題を解決するためになされたものであり、計測範囲から物体を検出する際、計測目的ごとのユーザ要件の達成に適した調整対象のパラメータを適切に選定することを目的とする。
 かかる課題を解決するために本発明の一例においては、パラメータ選定装置は、計測装置の計測範囲内における物体を物体検出装置が検出する際に使用するアルゴリズムで用いられるパラメータが、前記アルゴリズムを使用して前記物体を検出する検出精度に与える第1の影響度を算出するパラメータ影響度算出部と、ユーザ要件を達成するための解析項目が、前記物体検出装置によって検出された前記物体の計測精度に与える第2の影響度を算出する解析項目影響度算出部と、前記第1の影響度および前記第2の影響度に基づいて、調整対象とする前記パラメータを選定するパラメータ選定部とを有することを特徴とする。
 本発明によれば、計測範囲から物体を検出する際、計測目的ごとのユーザ要件の達成に適した調整対象のパラメータを適切に選定できる。
実施例1の物体検出装置の構成を示す機能ブロック図。 処理ブロック分解部の処理を説明するための図。 パラメータ寄与率算出部の構成を示す機能ブロック図。 計測精度変動量算出部により算出された計測精度の変動量の一例を示す図。 パラメータ寄与率テーブルの一例を示す図。 ユーザ要件を説明するための図。 解析項目テーブルおよび組み合わせテーブルの一例を示す図。 解析項目寄与率テーブルの一例を示す図。 実施例1の物体検出処理を示すフローチャート。 実施例2の物体検出装置およびパラメータ選定装置の構成を示す機能ブロック図。 実施例3のパラメータ選定装置の構成を示す機能ブロック図。 実施例4の物体検出装置およびパラメータ選定装置の構成を示す機能ブロック図。 実施例1~4の物体検出装置およびパラメータ選定装置を実現するコンピュータの構成を示すハードウェア図。
 以下図面に基づき、本発明の実施例を詳述する。以下の実施例を説明するための各図面において、同一参照番号は、同一または類似の構成あるいは処理を示し、後出の説明が省略される。また、各実施例及び各変形例は、本発明の技術思想の範囲内及び整合する範囲内でその一部又は全部を組合せることができる。
<実施例1の物体検出装置の構成>
 図1は、実施例1の物体検出装置の構成を示す機能ブロック図である。実施例1の物体検出装置1は、センサ情報200と、センサなどの計測装置での計測目的などのユーザ要件201を使用して、センサで検知した物体検出に用いるパラメータを自動で選定する装置である。なお、本実施例では、センサとしてステレオカメラを使用した場合について記載するが、ステレオカメラに限定されるものではなく、TOFセンサやレーザレーダなどの距離センサ、単眼カメラ、監視カメラなど他のセンサへの応用も可能である。
 物体検出装置1は、処理ブロック分解部2と、パラメータ寄与率算出部3と、ユーザ解析項目抽出部4と、解析項目寄与率算出部5と、最適化処理ブロック決定部6と、パラメータ選定部7と、パラメータ調整部8と、物体検出実行部9と、解析実行部10とを有する。
 なお、処理ブロック分解部2と、パラメータ寄与率算出部3と、ユーザ解析項目抽出部4と、解析項目寄与率算出部5と、最適化処理ブロック決定部6と、パラメータ選定部7と、パラメータ調整部8と、物体検出実行部9の各機能部は、演算装置、主記憶装置、および外部記憶装置を有するセンサ、あるいはセンサとは別に用意した計算機において実現される。
 処理ブロック分解部2は、センサ情報200に含まれるセンサ固有の計測アルゴリズムを複数の処理ブロックに分解する。パラメータ寄与率算出部3は、処理ブロック分解部2によって分解された複数の処理ブロックのそれぞれで使用されるパラメータがセンサ固有の計測アルゴリズムの出力結果の精度に対してどの程度の影響があるかを示す寄与率を算出する。
 ユーザ解析項目抽出部4は、ユーザ要件201から、ユーザが必要とするセンサによる解析項目を抽出する。解析項目寄与率算出部5は、処理ブロック分解部2によって分解された各処理ブロックに対する解析項目の寄与率を算出する。
 最適化処理ブロック決定部6は、ユーザ解析項目抽出部4によってユーザ要件201から抽出された解析項目の情報と、解析項目寄与率算出部5によって算出された各処理ブロックに対する解析項目の寄与率の情報とから、最適化処理を実施する処理ブロックを決定する。
 パラメータ選定部7は、最適化処理ブロック決定部6により最適化処理を実施すると決定された処理ブロックにおいて寄与率が高いパラメータを最適化対象のパラメータとして選定する。パラメータ調整部8は、パラメータ選定部7によって選定されたパラメータを、センサ固有の計測アルゴリズムを用いた物体検出などの精度が向上するように調整する。
 物体検出実行部9は、指定されたパラメータにて物体検出を実行する。解析実行部10は、物体検出実行部9による物体検出の結果を使用してユーザ要件201に応じたアプリケーションを実行する。
 以下、処理ブロック分解部2、パラメータ寄与率算出部3、ユーザ解析項目抽出部4、解析項目寄与率算出部5、最適化処理ブロック決定部6、およびパラメータ選定部7の各機能の詳細について説明する。
<処理ブロック分解部の処理>
 図2は、処理ブロック分解部の処理を説明するための図である。物体検出アルゴリズム12は、例えばステレオカメラ11からの入力に対して物体検出処理を行った出力結果14を出力する計測アルゴリズムの一例である。映像取得12a、歪み補正12b、視差算出12c、3次元点群算出12d、および物体検出12eは、物体検出アルゴリズム12が分解された各処理ブロックの一例である。
 処理ブロック分解部2は、センサ情報200から物体検出に使用するステレオカメラ11の物体検出アルゴリズム12を取得し、複数の処理ブロックに分解する。センサ情報200としては、物体検出のプログラムソースなどのアルゴリズムの詳細が把握できる情報や、物体検出に使用するセンサ独自のSDKの情報、物体検出に関連するパラメータなどである。
 図2は、ステレオカメラ11の物体検出アルゴリズム12を複数の処理ブロックに分解する一例を示す。物体検出アルゴリズム12を複数の処理ブロックに分割する方法としては、例えば、プログラムソース中の関数やクラスごと、使用するSDKごとなど、装置に開発に関連した分割方法や、アルゴリズム開発者の知見や経験、解析ツールなどを用いてアルゴリズムを細分化した各フローチャートを処理ブロックとする分割方法などの種々の手法がある。
 各処理ブロックについて説明する。映像取得12aは、ステレオカメラ11を制御してカメラ画像を取得する処理であり、画像の取得頻度を示すフレームレートや取得する画像の解像度などのパラメータ13aが使用される。歪み補正12bは、映像取得12aで取得された画像からカメラ特有のレンズ歪みを取り除く処理であり、例えば焦点距離や歪み係数、画像中心といったパラメータ13bを使用し、Brownのレンズ歪みモデルにフィッティングして歪みを取り除くなどの一般的な方法がある。
 視差算出12cは、歪み補正12bでレンズ歪みを除去した2枚のカメラ画像を比較して相違度が最小となる一定の大きさの領域を小領域とし、その探索幅から視差を算出する。小領域の相違度を計算する方法としては、例えば、SAD(Sum of Absolute Difference)やSSD(Sum of Squared Difference)などの方法がある。視差算出12cで使用されるパラメータ13cとしては、小領域のサイズや探索幅の最大値(最大探索幅)などである。
 3次元点群算出12dでは、ステレオカメラ11の設置位置や設置姿勢などのパラメータ13dを用いて、下記式(1)および式(2)をもとに、画像座標からカメラ座標Xc、世界座標Xwと順に変換することで、世界座標Xwの3次元点群座標を導出する。下記式(2)において、回転行列Rは、カメラの設置姿勢を示し、ステレオカメラ11のパン、チルト、およびロールの角度から算出できる。また、下記式(2)において、並進ベクトルXwは、ステレオカメラ11のカメラ高さなどの設置位置を示す。
Figure JPOXMLDOC01-appb-M000001
ただし、
(u,v):画像座標、(u0,v0):画像中心、b:基線長、f:焦点距離、d:視差、pit:ピッチ
Figure JPOXMLDOC01-appb-M000002
ただし、R:回転行列、t:並進ベクトル
 物体検出12eは、3次元点群算出12dで算出された3次元点群を解析して求めた形状や体積などが一定の基準値を満たす場合に物体として判断して検出する。物体検出12eにて使用されるパラメータ13eとしては、一定の基準値である検出閾値や3次元点群に対するノイズ除去などを実施する補正処理回数などがある。
 なお、本実施例では、ステレオカメラ11の物体検出アルゴリズム12を5つの処理ブロックに分割したが、分割数が限定されるものではない。また、各処理ブロックの処理内容や使用するパラメータも図2に示すものに限定されるものではない。
<パラメータ寄与率算出部の構成>
 図3は、パラメータ寄与率算出部の構成を示す機能ブロック図である。パラメータ寄与率算出部3は、パラメータ設定範囲決定部20と、計測精度変動量算出部21と、パラメータ寄与率テーブル作成部22とを有する。
 パラメータ設定範囲決定部20は、各処理ブロックにて使用されるパラメータ13a~13eを受け取り、各パラメータ13a~13eの寄与率を算出するパラメータ値の設定範囲を決定する。計測精度変動量算出部21は、パラメータ設定範囲決定部20で取得した設定範囲にてパラメータを変化させた際、物体検出実行部9から出力される物体検出の出力結果14に基づいて計測精度の変動量を算出する。パラメータ寄与率テーブル作成部22は、計測精度変動量算出部21で算出した計測制度の変動量からパラメータ寄与率を示すテーブルを作成する。
 以下、各機能について説明する。パラメータ設定範囲決定部20は、処理ブロック分解部2によって分解された各処理ブロックにて使用されるそれぞれのパラメータの初期値を入力とし、計測精度変動量算出部21にて使用するパラメータの設定範囲をパラメータごとに決定する。パラメータ設定範囲決定部20に入力される初期値としては、例えば、ユーザによる設定値あるいはシステム上での規定値や、所定のアルゴリズムでの自動推定値などがある。
 本実施例では、映像取得12a、視差算出12c、および物体検出12eで使用されるパラメータ13a、13c、13eの初期値として、ユーザによるシステム上での規定値を使用する。また、歪み補正12bおよび3次元点群算出12dで使用されるパラメータ13b、13dの初期値として、所定のアルゴリズムによる推定値を使用する。例えば、パラメータ13bの推定方法としては、Zhangのキャリブレーション手法などを利用し、パラメータ13dの推定方法としては、RANSACアルゴリズムにより検出した平面情報を用いた手法などを利用する方法がある。
 また、パラメータ設定範囲決定部20に入力された初期値から設定範囲を決定する方法としては、初期値の前後の所定範囲内の値を最小値および最大値とする方法などがある。ここで、最小値および最大値を決定する方法は、ユーザが物体検出アルゴリズム12の詳細を把握しているいか否かに応じて、切り替えてもよい。例えば、ユーザが物体検出アルゴリズム12の詳細を把握している場合は、過去の経験などを踏まえて最小値および最大値を決定し、把握していない場合は、SDKの仕様情報などから設定可能なパラメータ値を調査し決定してもよい。あるいは、これら両者の方法を組み合わせてもよい。最小値および最大値を決定する方法は、特に限定されるものではない。
 また、本実施例では、設定範囲に含まれるパラメータとして離散的な値を使用する。例えば、連続的なパラメータである場合には、設定範囲の最小値と最大値の間を所定数に分割して、離散的な値のパラメータを生成する。離散的なパラメータの場合は、取り得る全ての値をパラメータの設定範囲に含めるなどしてもよい。
 計測精度変動量算出部21は、パラメータ設定範囲決定部20により入力された各パラメータの設定範囲内にてパラメータ値を変化させて、物体検出実行部9による計測精度の変動量を算出する。本実施例では、計測精度としては真値付け済みのテスト映像を入力した際の物体検出精度あるいは処理ブロック独自の評価指標を使用する。
 物体検出精度を算出する方法としては、検出対象が撮像されておりかつ全フレームに対して予め対象の領域が分かるような真値情報を保持したテスト映像を使用し、設定したパラメータ値で正しく対象を検出したフレーム数の全フレーム数に対する割合を百分率にて表した値を物体検出精度として算出できる。
 処理ブロック独自の評価指標は、視差算出12cの処理ブロックの場合は、例えば、視差が比較的算出されやすいランダムパターンなどをテスト映像として使用し、画像全体のピクセル数に対する視差算出により視差を求めることができない無効視差のピクセル総数の割合を百分率にて表した値としてもよい。
 また、歪み補正12bの処理ブロックの独自の評価指標は、例えば、床のタイルなど直線が多いテスト映像を使用し、テスト映像中の直線数に対する、歪み補正を実施後の画像に直線検出アルゴリズムを適用し検出された直線数の割合を百分率にて表した値としてもよい。
 また、計測精度の変動量は、例えば、パラメータpの設定範囲が0≦p≦9の10個の整数値である場合、p以外の全てのパラメータ値を初期値に固定し、p=0、p=1、…p=9とした場合のテスト映像における物体検出精度を計算し、図4に示すように物体検出精度の変動量を算出することで求められる。図4は、計測精度変動量算出部により算出された計測精度の変動量の一例を示す図である。図4では、p=2で計測精度が最大値を取る例を示している。
 なお、計測精度変動量算出部21により計測精度を算出する際に、ユーザが各処理ブロックの詳細なアルゴリズムを把握できるか否かに応じて、計測精度として、物体検出精度と処理ブロック独自の評価指標のどちらを使用するか切り替えてもよい。例えば、詳細なアルゴリズムが把握できる処理ブロックについては、処理ブロックの独自指標を評価するために適したテストデータをそれぞれ用意する。アルゴリズムを把握できない処理ブロックについては、物体検出精度と対応したテストデータを、アルゴリズムを把握できない処理ブロック間で共通に使用して、計測精度を算出してもよい。
 パラメータ寄与率テーブル作成部22は、計測精度変動量算出部21で算出した計測精度の変動量を使用し、処理ブロックごとのパラメータ寄与率テーブルT1を作成する。パラメータの処理ブロックへの寄与率とは、処理ブロックにおいて各パラメータの重要性を示す指標であり、計測精度変動量算出部21にて使用した計測精度が高い程、重要性が高いと判断する。
 計測精度の変動量からパラメータ寄与率を算出する方法としては、例えば、パラメータを変動させた際の計測精度の最大値が大きい程パラメータの寄与率が高いと判定し、各パラメータの最大値を0から100の範囲に正規化した値を寄与率として使用する方法がある。または、例えば、計測精度の最小値、平均値、分散値のいずれかあるいはいずれかを組み合わせた独自の指標などを用いて正規化した値を寄与率として使用する方法などでもよい。パラメータ寄与率テーブル作成部22は、処理ブロックごとに算出した各パラメータ寄与率を、パラメータ寄与率テーブルT1に格納する。
 図5は、パラメータ寄与率テーブルの一例を示す図である。図5に示すパラメータ寄与率テーブルT1は、所定の記憶部に格納されており、処理ブロックごとの寄与率テーブルT1a~T1eを含む。パラメータ寄与率テーブルT1は、映像取得12aにおける各パラメータ13aの寄与率を格納した寄与率テーブルT1a、歪み補正12bにおける各パラメータ13bの寄与率を格納した寄与率テーブルT1b、視差算出12cにおける各パラメータ13cの寄与率を格納した寄与率テーブルT1c、3次元点群算出12dにおける各パラメータ13dの寄与率を格納した寄与率テーブルT1d、および物体検出12eにおける各パラメータ13eの寄与率を格納した寄与率テーブルT1eを含む。
 なお、本実施例では、図3に示したパラメータ寄与率算出部3の構成にてパラメータの寄与率を算出したが、処理ブロック内の各パラメータの計測精度への影響度を判定できる手段であれば、特に限定されるものではない。
<ユーザ要件>
 図6を参照して、ユーザ要件201について説明する。図6は、ユーザ要件を説明するための図である。ユーザ要件201とは、ユーザが主目的を達成するために物体検出技術を実行するアプリケーションの一覧情報を含む。
 図6は、2次元マップ30で示されるステレオカメラ11の計測範囲30Aにおいて、ユーザの主目的に関連する設備31a、31bのぞれぞれの周辺に設定される計測エリア32a、32bごとに、ユーザが実行したいアプリケーションの一覧表33を例示している。ユーザ要件201は、2次元マップ30および一覧表33を含む。
 例えば、ユーザの主目的が計測範囲30Aの全体監視である場合は、計測エリアは2次元マップ30の全体であり、画像中において移動する人物を検出する動体検知などのアプリケーションの実行が必要となる。また、ユーザの主目的が計測範囲30Aの全体の人流解析である場合は、計測エリアは2次元マップ30の全体であり、人物軌跡推定などのアプリケーションの実行が必要となる。
 また、ユーザの主目的が設備31aの利用率の把握である場合は、設備31aの周辺に計測エリア32aを設定し、計測エリア32a内の人数カウントや滞留時間計測などのアプリケーションを実行することで、設備31aの利用者数や利用時間を解析できる。また、ユーザの主目的が設備32bの利用者層の把握である場合は、設備31bの周辺に計測エリア32bを設定し、計測エリア32b内に存在する人物の数を計数するエリア内人数カウントや人の性別判定、人のキャリーバックの所持を検知するキャリーバック検知などのアプリケーションを実行することで、全体の人数に対する男女の比率やキャリーバック保持者の比率などを解析することができる。
 なお、図6のユーザ要件201は、あくまで一例を示すに過ぎず、これに限定されるものではない。また、ユーザ要件201を作成する方法としては、図6に示すように、ユーザが、GUIなどを用いて、計測エリアを2次元マップ30に設定し、計測範囲全体、あるいは設定した計測エリアごとに実行したいアプリケーションを一覧表33に登録して作成する方法がある。2次元マップ30および一覧表33は、所定の記憶部に格納される。しかし、ユーザが計測したい範囲および実行したいアプリケーションが把握できる情報および方法であれば、特に限定されない。また、主目的は、計測エリアと対応するアプリケーションが把握できる抽象度の情報である、あるいは計測エリアと対応するアプリケーションが把握できる情報に変換できる情報であればよく、特に限定されるものではない。
<解析項目テーブルおよび組み合わせテーブル>
 図7を用いてユーザ解析項目抽出部4の処理について説明する。図7は、解析項目テーブルおよび組み合わせテーブルの一例を示す図である。図7(a)は、処理ブロック分解部2によって分解された各処理ブロックから抽出する解析項目の一覧を示す解析項目一覧テーブル40の一例を示す。また、図7(b)は、アプリケーションと解析項目の組み合わせテーブル41の一例を示している。図7(a)によると、解析項目一覧テーブル40には、“物体検出”、“追跡”、“位置計測”、“行動認識”、“画像認識”、“形状把握”、および“サイズ計測”の解析項目がある。解析項目一覧テーブル40および組み合わせテーブル41は、所定の記憶部に格納される。
 ユーザ解析項目抽出部4は、ユーザ要件201の情報と予め作成した組み合わせテーブル41とから、ユーザが求めるアプリケーションを実現するために必要な解析項目を抽出する。解析項目は、アプリケーションを実行するにあたり、物体検出に加え、必要な情報を取得するための解析技術(アプリケーション)である。
 例えば、組み合わせテーブル41において、「アプリケーション」“動体検知”は、物体検出結果のみで実現可能な機能であるため、「解析項目」が“なし”である。また、例えば、「アプリケーション」“滞留時間計測”は、物体検出の結果を利用するため、物体検出に加え、同一の人物が同じ位置に存在することを判定するために物体の“追跡”および“位置計測”の解析項目が必要となる。このように、ユーザ要件201におけるユーザの主目的から、物体検出の結果を利用するアプリケーションと、アプリケーションに対応する解析項目とが把握できる。
 例えば、図6の一覧表33に示すように、ユーザ要件201において、「主目的」が“計測エリア31aの利用率把握”の場合、実行が必要な「アプリケーション」は“エリア内人数カウント”および“滞留時間計測”となる。このため、ユーザ解析項目抽出部4は、組み合わせテーブル41を参照して、“エリア内人数カウント”および“滞留時間計測”のそれぞれの「アプリケーション」に対応する「解析項目」“位置計測”および“追跡”を抽出する。
 なお、「解析項目」は、図7(a)の解析項目一覧テーブル40に示す解析項目以外のものも使用してもよい。また、1つの解析項目を計測範囲とセンサとの位置関係や精度面などから複数に分割してもよい。例えば、物体検出では、一般的にカメラなどのセンサから対象までの距離が離れると対象の情報量が少なくなる、あるいは障害物が間に存在する確率が高くなり、検出精度が低下する。このため、「解析項目」“物体検出”を、“近傍の検出”および“遠方の検出”に分割する方法がある。また、安全やセキュリティ面などから、情報粒度が所定未満および所定以上の位置情報が必要となるケースがあるため、「解析項目」“位置計測”を“大まかな位置計測”および“高精度な位置計測”に分割する方法などがある。
<解析項目寄与率テーブル>
 図8は、解析項目寄与率テーブルの一例を示す図である。図8は、解析項目寄与率算出部5によって、歪み補正12bと3次元点群算出12dの各処理ブロックに対する解析項目の寄与率を算出した一例である。各処理ブロックに対する解析項目の寄与率の算出方法としては、パラメータ寄与率算出部3の手法を踏襲し、解析実行部10から出力される解析結果から求めた処理ブロックごとの解析項目の精度の変動量を使用して寄与率を算出する方法などがある。なお、図8では、図7(a)に示す「解析項目」“物体検出”が、“近傍の検出”および“遠方の検出”に細分化されていることを前提とする。
 以下、「解析項目」“追跡”の各処理ブロックに対する寄与率を算出する方法について説明する。
 まず、“追跡”の技術を評価するための真値付け済みのテスト映像を生成する。次に、「解析項目」“追跡”の精度の変動量を求める対象の処理ブロック内のみパラメータを変化させ、物体検出および物体検出結果を用いた追跡を実施する。パラメータを変化させる方法としては、同一の処理ブロックにて使用されるパラメータの全ての組み合わせパターンを順番に使用する方法などがある。最後に、パラメータを変化させることによる追跡精度の変動量を算出する。追跡精度は、例えば同一人物をどの程度追跡できているかなどである。全処理ブロックの追跡精度の変動量と、各処理ブロックの追跡精度の変動量とを比較して、全処理ブロックの追跡精度の変動に対する各処理ブロックの追跡精度の寄与率を求めることができる。
 なお、解析項目の精度の変動量を求める際に、処理ブロックにて使用されるパラメータの組み合わせパターンを作成するとき、全てのパラメータを使用するのではなくパラメータ設定範囲決定部20(図3参照)の情報を活用する方法などにより、組み合わせ数を削減してもよい。
 また、本実施例で述べた方法以外にも、解析項目の精度に対して各処理ブロックの影響度合いを算出可能な方法であれば、特に限定されるものではない。
 以上、図8に示すように、歪み補正12bと3次元点群算出12dの各処理ブロックに対する解析項目の寄与率の算出方法を示したが、映像取得12a、視差算出12c、および物体検出12eの各処理ブロックに対する解析項目の寄与率も、同様に算出される。
 図8に示すように、ユーザ解析項目抽出部4は、上述のように算出した処理ブロックごとの各解析項目の寄与率を、解析項目寄与率テーブルT2に登録する。解析項目寄与率テーブルT2は、所定の記憶部に格納されており、処理ブロックごとの寄与率テーブルT2a~T2eを含む。解析項目寄与率テーブルT2は、映像取得12aにおける各解析項目の寄与率を格納した寄与率テーブルT2a(図示せず)、歪み補正12bにおける各解析項目の寄与率を格納した寄与率テーブルT2b、視差算出12cにおける各解析項目の寄与率を格納した寄与率テーブルT2c(図示せず)、3次元点群算出12dにおける各解析項目の寄与率を格納した寄与率テーブルT2d、および物体検出12eにおける各解析項目の寄与率を格納した寄与率テーブルT2e(図示せず)を含む。
 図1の説明に戻る。最適化処理ブロック決定部6は、ユーザ解析項目抽出部4と解析項目寄与率算出部5の出力情報を用いて、ユーザ要件201にて必要な解析項目の寄与率が最大である処理ブロックを最適化処理ブロックとして決定する。例えば、ユーザ要件201にて必要な解析項目が一つのみの場合は、該当の解析項目への寄与率が最も高い処理ブロックを選択する方法がある。
 また、複数の解析項目が必要な場合は、それぞれの寄与率を掛け合わせた値が最大となる処理ブロックを選択する方法がある。例えば、図8において“近傍の検出”と“追跡”が必要な解析項目の場合、これらの解析項目に対応する寄与率を掛け合わせた値は、歪み補正12bでは20×20=400、3次元点群算出12dでは60×30=1800となる。よって、歪み補正12bよりも3次元点群算出12dの処理ブロックが選択される。なお、最適化処理ブロック決定部6にて決定される処理ブロックは1つに限定されず、複数の処理ブロックにおいて解析項目の寄与率が同値かつ最大である場合は全ての処理ブロックを最適化の対象として判定してもよい。
 パラメータ選定部7は、最適化の対象となった処理ブロックにおいて、パラメータ寄与率算出部3によって算出されたパラメータ寄与率が最も高いパラメータを最適化対象のパラメータとして選定する。なお、選定されるパラメータは1つに限定されず、例えば予めパラメータ寄与率の閾値を設定しておき、閾値よりもパラメータ寄与率が高いパラメータを全て最適化対象とする方法を採用してもよい。
 また、最適化処理ブロック決定部6にて複数の処理ブロックが出力された場合は、処理ブロックの解析項目の寄与率と処理ブロック内のパラメータ寄与率を掛け合わせ、予め設定した閾値より高い値を示すパラメータを最適化対象とする方法を用いてもよい。
 例えば、最適化処理ブロック決定部6にて出力された処理ブロックが、図5および図8にテーブルを示す歪み補正12bおよび3次元点群算出12dであり、ユーザ要件201から抽出された「解析項目」が“追跡”の場合を説明する。歪み補正12bの“追跡”に対する解析項目の寄与率“20”を、歪み補正12bの各パラメータ寄与率に掛け合わせると、“焦点距離”が20×60=1200、“歪み係数”が20×30=600、“画像中心”が20×10=200となる。3次元点群算出12dについても同様に計算すると、“カメラ高さ”が30×60=1800、“チルト角”が30×30=900、“ロール角”が30×10=300、“スケール”が30×20=600となる。そのため、予め設定した閾値が1000の場合、歪み補正12bの“焦点距離”と3次元点群算出12dの“カメラ高さ”が最適化対象のパラメータと決定される。
<実施例1の物体検出処理>
 図9は、実施例1の物体検出処理を示すフローチャートである。実施例1の物体検出処理は、物体検出装置1により、ユーザ指示の所定タイミングで実行される。
 図9に示すように、先ず、ステップS11では、処理ブロック分解部2は、センサ情報200に含まれるセンサ独自の計測アルゴリズムを複数の処理ブロックに分解する。
 続いて、物体検出装置1は、ステップS12~S14のループ処理を、テップS11で分解して得られた全ての処理ブロックについて繰り返す。すなわち、ステップS12では、物体検出装置1は、ステップS11で得られた1つの処理ブロックを選択する。次に、ステップS13では、パラメータ寄与率算出部3は、ステップS12で選択された1つの処理ブロックについて、物体検出アルゴリズム12に対する各パラメータの寄与率を算出する。次に、ステップS14では、解析項目寄与率算出部5は、ステップS12で選択された1つの処理ブロックについて、物体検出アルゴリズム12に対する各解析項目の寄与率を算出する。
 ステップS14が終了すると、物体検出装置1は、ステップS12において、ステップS11で得られた処理ブロックのうちの未選択の処理ブロックを選択し、この選択した処理ブロックについてステップS13およびステップS14の処理を実行する。なお、ステップS14が終了し、ステップS11で得られた処理ブロックのうちに未選択の処理ブロックが存在しなくなった場合、物体検出装置1は、ステップS15に処理を移す。
 ステップS15では、最適化処理ブロック決定部6は、ユーザ解析項目抽出部4によりユーザ要件201から抽出された解析項目と、ステップS14で解析項目寄与率算出部5により算出された各解析項目の寄与率を用いて、ユーザ要件201にて必要な解析項目の寄与率が最大である処理ブロックを、最適化を実行する最適化処理ブロックとして決定する。
 続いて、ステップS16では、パラメータ選定部7は、ステップS15で最適化処理ブロック決定部6により最適化処理を実施すると決定された処理ブロックに対する寄与率が高いパラメータを最適化対象のパラメータとして選定する。
 続いて、ステップS17では、パラメータ調整部8は、物体検出精度や解析項目に対応する解析精度が向上するように、ステップS16で選定されたパラメータを調整する。
 続いて、ステップS18では、物体検出実行部9は、ステップS17で調整したパラメータを用いて物体検出を実行する。続いて、ステップS19では、解析実行部10は、ステップS17で調整したパラメータを用いて、ステップS18での物体検出実行部9による物体検出の結果を使用してユーザ要件201に応じたアプリケーションを実行する。ステップS19が終了すると、物体検出装置1は、実施例1の物体検出処理を終了する。
 上述の実施例1によれば、計測範囲から物体を検出する物体検出装置1において、計測装置独自のアルゴリズムを分割した各処理ブロックに対する解析項目の寄与率とパラメータの寄与率を算出し、調整対象となるパラメータをユーザ要件201ごとに選定する。すなわち、ユーザ要件201を充足するアプリケーションを実行する際に、このアプリケーションを実現するために必要な解析項目の寄与率が高い処理ブロックを選択し、選択した処理ブロックに対する寄与率が高いパラメータを選択することで、計測目的ごとのユーザ要件の達成に適した調整対象のパラメータを適切に選定できる。
 実施例1では、図1に示すように、各機能を一体的な物体検出装置1にて実現する構成を示した。しかし、これに限られず、図10に示すように、実施例2の物体検出装置1Bは、物体検出実行部9および解析実行部10のみを有するとしてもよい。別装置であるパラメータ選定装置50Bが、処理ブロック分解部2と、パラメータ寄与率算出部3と、ユーザ解析項目抽出部4と、解析項目寄与率算出部5と、最適化処理ブロック決定部6と、パラメータ選定部7と、パラメータ調整部8とを有する。そして、物体検出装置1Bは、パラメータ選定装置50Bにより選定および調整されたパラメータを用いて物体検出および解析を実行し、物体検出結果情報202と解析結果情報203を出力する形態であってもよい。
 さらに、実施例3では、図11に示すように、別装置が処理ブロック分解部2と、パラメータ寄与率算出部3と、解析項目寄与率算出部5とを有し、この別装置にて予めこれらの処理機能を実施して各処理ブロックに対する解析項目寄与率情報204とパラメータ寄与率情報205とを取得しておく。現地では、ユーザ解析項目抽出部4と、最適化処理ブロック決定部6と、パラメータ選定部7とを有するパラメータ選定装置50Cにて、ユーザ要件201とパラメータ寄与率情報205と解析項目寄与率情報204と入力として、調整対象となるパラメータをユーザ要件201ごとに高速に選定することができる。実施例2の物体検出装置1Bと同様の物体検出装置は、パラメータ選定装置50Cにて選定(あるいは選定および調整)されたパラメータを用いて物体検出および解析を実行し、物体検出結果情報と解析結果情報とを出力する。
 また、上述した実施例1~3において、処理コストを考慮して一連の機能を実行してもよく、この実施例を実施例4として説明する。例えば、図10に示す実施例2のパラメータ選定装置50Bおよび物体検出装置1Bを含む形態に対して処理コストを考慮した場合の構成を図12に示す。
 図12において、許容処理コスト取得部51は、ユーザ要件201や物体検出装置1Dのスペック情報207から、物体検出やその後段の解析アプリケーションにて許容される処理コストを取得する。パラメータ選定装置制御部52は、物体検出実行部9や解析実行部10を実施した際の処理コスト情報206と、許容処理コスト取得部51によって取得された許容処理コストの情報から、パラメータ選定装置50Bの各機能が制御される。
 許容処理コスト取得部51の入力例としては、現地にて許容される調整コスト量や物体検出装置1Dにて実行されるアプリケーションをリアルタイムまたはオフラインのどちららで処理するかといったユーザ要件201や、物体検出装置1Dにおいて物体検出やその他のアプリケーションが実行されるハードのCPUやメモリのスペック情報207などがあり、処理コストの単位としては処理フレームレート(ms)などが挙げられる。
 また、パラメータ選定装置制御部52の制御方法としては、パラメータ寄与率算出部3にてパラメータ寄与率を導出する際のパラメータの変化による計測精度の変動量に加えて、処理コストの変動量も算出しておき、パラメータ寄与率に反映させる方法がある。あるいは、最適化処理ブロック決定部6にて決定される最適化対象となる処理ブロック数や、パラメータ選定部7にて選定されるパラメータ数などの処理コストを踏まえてパラメータを変化させるという方法などがあり、特に限定されるものではない。
 パラメータ選定の際に、物体検出やその後段の解析アプリケーションにて許容される処理コストが考慮されたパラメータが選定されることで、物理資源や性能に応じて物体検出装置1Dでの処理を効率化できる。
<変形例>
 また、図1、図10、および図12に示すパラメータ調整部8を、パラメータを自動で最適化する機能に変更することで、現地でのパラメータ調整なしに、ユーザ要件201を達成可能なステレオカメラ11のパラメータを推定することが可能となる。大量のセンサ(ステレオカメラ11など)の設置が必要となるシステムなどでは、大幅にシステムコストを削減することができる。
 上述のように、実施例1~4では、ステレオカメラの物体検出技術に関連するパラメータの選定方法について説明したが、物体検出を実施するセンサであれば限定されるものではない。さらに、実施例1~4では、最終的な物体検出精度を指標として各処理ブロックへのパラメータ寄与率や解析項目寄与率を算出できるため、例えばセンサ独自の物体検出アルゴリズムが不明な場合においても、SDKの情報や設定可能なパラメータ仕様などが把握できるセンサであれば調整対象となるパラメータをユーザ要件ごとに選定できる。このため、多種多様なセンサを用いた物体検出装置に適応させることが可能であり、システム全体の汎用性を向上できる。
 また、実施例1~4では、センサの物体検出技術に関連するアプリケーションに関するパラメータの選定方法について説明したが、本発明の技術思想の適用対象は、物体検出技術に限定されるものではない。例えば、物体追跡技術に関連するアプリケーションをユーザ要件とした場合においても、ユーザ要件ごとに物体追跡技術において調整対象となるパラメータを選定できる。
 図13は、実施例1~4の物体検出装置およびパラメータ選定装置を実現するコンピュータの構成を示すハードウェア図である。実施例1~4の物体検出装置およびパラメータ選定装置を実現するコンピュータ5000は、CPU(Central Processing Unit)に代表される演算装置5300、RAM(Random Access Memory)などのメモリ5400、入力装置5600(例えばキーボード、マウス、タッチパネルなど)、および出力装置5700(例えば外部ディスプレイモニタに接続されたビデオグラフィックカード)が、メモリコントローラ5500を通して相互接続される。コンピュータ5000において、実施例1~4の物体検出装置もしくはパラメータ選定装置を実現するためのプログラムがI/O(Input/Output)コントローラ5200を介してSSDやHDDなどの外部記憶装置5800から読み出されて、CPU5300およびメモリ5400の協働により実行されることにより、実施例1~4の物体検出装置およびパラメータ選定装置のそれぞれが実現される。あるいは、実施例1~4の物体検出装置およびパラメータ選定装置を実現するためのプログラムは、ネットワークインターフェース5100を介した通信により外部のコンピュータから取得されてもよい。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例を含む。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加、削除、置換、統合、分散をすることが可能である。また実施例で示した各処理は、処理効率又は実装効率に基づいて適宜分散または統合してもよい。
1,1B,1D:物体検出装置、2:処理ブロック分解部、3:パラメータ寄与率算出部、4:ユーザ解析項目抽出部、5:解析項目寄与率算出部、6:最適化処理ブロック決定部、7:パラメータ選定部、8:パラメータ調整部、9:物体検出実行部、10:解析実行部、11:ステレオカメラ、12:物体検出アルゴリズム、12a:映像取得、12b:歪み補正、12c:視差算出、12d:視差算出、12c,12d:3次元点群算出、12e:物体検出、13a~13e:パラメータ、T1:パラメータ寄与率テーブル、T1a~T1e:寄与率テーブル、14:出力結果、20:パラメータ設定範囲決定部、21:計測精度変動量算出部、22:パラメータ寄与率テーブル作成部、30:2次元マップ、30A:計測範囲、31a,31b:設備、32a,32b:計測エリア、33:一覧表、40:解析項目一覧テーブル、41:組み合わせテーブル、50,50B,50C:パラメータ選定装置、51:許容処理コスト取得部、52:パラメータ選定装置制御部、200:センサ情報、201:ユーザ要件、202:物体検出結果情報、203:解析結果情報、204:解析項目寄与率情報、205:パラメータ寄与率情報、206:処理コスト情報、207:スペック情報、5000:コンピュータ、5100:ネットワークインターフェース、5200:コントローラ、5300:CPU、5400:メモリ、5500:メモリコントローラ、5600:入力装置、5700:出力装置、5800:外部記憶装置

Claims (15)

  1.  計測装置の計測範囲内における物体を物体検出装置が検出する際に使用するアルゴリズムで用いられるパラメータが、前記アルゴリズムを使用して前記物体を検出する検出精度に与える第1の影響度を算出するパラメータ影響度算出部と、
     ユーザ要件を達成するための解析項目が、前記物体検出装置によって検出された前記物体の計測精度に与える第2の影響度を算出する解析項目影響度算出部と、
     前記第1の影響度および前記第2の影響度に基づいて、調整対象とする前記パラメータを選定するパラメータ選定部と
     を有することを特徴とするパラメータ選定装置。
  2.  前記アルゴリズムを複数の処理ブロックに分解する処理ブロック分解部
     をさらに有することを特徴とする請求項1に記載のパラメータ選定装置。
  3.  前記処理ブロック分解部は、
     前記アルゴリズムの仕様情報または前記物体検出装置に関連する仕様情報をもとに、前記アルゴリズムを分割する
     ことを特徴とする請求項2に記載のパラメータ選定装置。
  4.  前記パラメータ影響度算出部は、
     前記複数の処理ブロックのそれぞれで用いられるパラメータごとに、前記アルゴリズムあるいは各前記処理ブロックに対する前記第1の影響度を算出する
     ことを特徴とする請求項2に記載のパラメータ選定装置。
  5.  前記解析項目影響度算出部は、
     前記解析項目ごとに、前記アルゴリズムあるいは各前記処理ブロックに対する前記第2の影響度を算出する
     ことを特徴とする請求項4に記載のパラメータ選定装置。
  6.  前記パラメータを変化させた場合の前記アルゴリズムの検出精度あるいは前記処理ブロックの出力結果の変動量を用いて、前記第1の影響度および前記第2の影響度を算出する
     ことを特徴とする請求項5に記載のパラメータ選定装置。
  7.  前記第2の影響度が第2の所定条件を満たす処理ブロックを最適化処理ブロックとして決定する最適化処理ブロック決定部
     をさらに有し、
     前記パラメータ選定部は、
     前記最適化処理ブロック決定部によって最適化処理ブロックと決定された処理ブロックに対する前記第1の影響度が第1の所定条件を満たすパラメータを最適化対象のパラメータとして選定する
     ことを特徴とする請求項5に記載のパラメータ選定装置。
  8.  前記パラメータ選定部によって選定されたパラメータを、前記検出精度もしくは前記解析精度が所定以上の精度となるように調整するパラメータ調整部
     をさらに有することを特徴とする請求項1に記載のパラメータ選定装置。
  9.  前記第1の影響度および前記第2の影響度は、事前に算出されるものであり、
     前記パラメータ調整部は、
     前記物体検出装置が前記物体を検出する際に、前記解析項目の情報と、事前算出しておいた前記第1の影響度および前記第2の影響度とに基づいて、前記パラメータを調整する
     ことを特徴とする請求項8に記載のパラメータ選定装置。
  10.  前記パラメータ選定部は、前記物体検出装置の処理コストに基づいて前記パラメータを選定する
     ことを特徴とする請求項1に記載のパラメータ選定装置。
  11.  ユーザの計測目的から前記解析項目を抽出するユーザ解析項目抽出部
     をさらに有することを特徴とする請求項1に記載のパラメータ選定装置。
  12.  前記解析項目は、前記アルゴリズムによる物体検出結果を利用するアプリケーションに対応する
     ことを特徴とする請求項11に記載のパラメータ選定装置。
  13.  前記計測装置は、単眼カメラ、ステレオカメラ、TOFセンサ、およびレーザレーダの何れかである
     ことを特徴とする請求項1に記載のパラメータ選定装置。
  14.  パラメータ選定装置が実行するパラメータ選定方法であって、
     計測装置の計測範囲内における物体を物体検出装置が検出する際に使用するアルゴリズムで用いられるパラメータが、前記アルゴリズムを使用して前記物体を検出する検出精度に与える第1の影響度を算出するパラメータ影響度算出ステップと、
     ユーザ要件を達成するための解析項目が、前記物体検出装置によって検出された前記物体の計測精度に与える第2の影響度を算出する解析項目影響度算出ステップと、
     前記第1の影響度および前記第2の影響度に基づいて、調整対象とする前記パラメータを選定するパラメータ選定ステップと
     を含んだことを特徴とするパラメータ選定方法。
  15.  コンピュータを、
     計測装置の計測範囲内における物体を物体検出装置が検出する際に使用するアルゴリズムで用いられるパラメータが、前記アルゴリズムを使用して前記物体を検出する検出精度に与える第1の影響度を算出するパラメータ影響度算出部と、
     ユーザ要件を達成するための解析項目が、前記物体検出装置によって検出された前記物体の計測精度に与える第2の影響度を算出する解析項目影響度算出部と、
     前記第1の影響度および前記第2の影響度に基づいて、調整対象とする前記パラメータを選定するパラメータ選定部と
     を有するパラメータ選定装置として機能させるためのパラメータ選定プログラム。
PCT/JP2019/047666 2019-01-16 2019-12-05 パラメータ選定装置、パラメータ選定方法、およびパラメータ選定プログラム WO2020149044A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980081428.4A CN113168696B (zh) 2019-01-16 2019-12-05 参数选定装置、参数选定方法以及参数选定程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-005448 2019-01-16
JP2019005448A JP7199974B2 (ja) 2019-01-16 2019-01-16 パラメータ選定装置、パラメータ選定方法、およびパラメータ選定プログラム

Publications (1)

Publication Number Publication Date
WO2020149044A1 true WO2020149044A1 (ja) 2020-07-23

Family

ID=71613780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047666 WO2020149044A1 (ja) 2019-01-16 2019-12-05 パラメータ選定装置、パラメータ選定方法、およびパラメータ選定プログラム

Country Status (3)

Country Link
JP (1) JP7199974B2 (ja)
CN (1) CN113168696B (ja)
WO (1) WO2020149044A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112634270A (zh) * 2021-03-09 2021-04-09 深圳华龙讯达信息技术股份有限公司 一种基于工业互联网的成像检测系统及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022096096A (ja) * 2020-12-17 2022-06-29 株式会社ティーアンドエス 映像配信方法及びそのためのプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005217615A (ja) * 2004-01-28 2005-08-11 Fuji Xerox Co Ltd 画像形成装置および画像形成方法
JP2008089574A (ja) * 2006-09-05 2008-04-17 Dainippon Screen Mfg Co Ltd 画像処理装置、データ処理装置、パラメータ調整方法、およびプログラム
JP2016015116A (ja) * 2014-06-12 2016-01-28 パナソニックIpマネジメント株式会社 画像認識方法、カメラシステム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006163614A (ja) * 2004-12-03 2006-06-22 Matsushita Electric Ind Co Ltd 画像処理装置、および画像処理方法
JP5006263B2 (ja) * 2008-06-03 2012-08-22 株式会社リコー 画像処理装置、プログラムおよび画像処理方法
JP5812598B2 (ja) * 2010-12-06 2015-11-17 富士通テン株式会社 物体検出装置
CN102194129B (zh) * 2011-05-13 2012-11-14 南京大学 基于车型聚类的交通流参数视频检测方法
JP6214226B2 (ja) * 2013-06-06 2017-10-18 キヤノン株式会社 画像処理装置、断層撮影装置、画像処理方法およびプログラム
CN104050661B (zh) * 2014-05-29 2016-08-31 华中科技大学 面扫描三维测量系统精度的实时调整方法
JP6188860B1 (ja) * 2016-04-13 2017-08-30 三菱電機株式会社 オブジェクト検出装置
JP6772588B2 (ja) * 2016-06-29 2020-10-21 日産自動車株式会社 物体追跡方法及び物体追跡装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005217615A (ja) * 2004-01-28 2005-08-11 Fuji Xerox Co Ltd 画像形成装置および画像形成方法
JP2008089574A (ja) * 2006-09-05 2008-04-17 Dainippon Screen Mfg Co Ltd 画像処理装置、データ処理装置、パラメータ調整方法、およびプログラム
JP2016015116A (ja) * 2014-06-12 2016-01-28 パナソニックIpマネジメント株式会社 画像認識方法、カメラシステム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112634270A (zh) * 2021-03-09 2021-04-09 深圳华龙讯达信息技术股份有限公司 一种基于工业互联网的成像检测系统及方法
CN112634270B (zh) * 2021-03-09 2021-06-04 深圳华龙讯达信息技术股份有限公司 一种基于工业互联网的成像检测系统及方法

Also Published As

Publication number Publication date
CN113168696B (zh) 2024-10-18
JP2020113202A (ja) 2020-07-27
JP7199974B2 (ja) 2023-01-06
CN113168696A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
CN101189638B (zh) 膝关节形态的特征描述方法和系统
JP6186834B2 (ja) 目標追尾装置及び目標追尾プログラム
CN110148179A (zh) 一种训练用于估计图像视差图的神经网络模型方法、装置及介质
JP7387792B2 (ja) 情報処理装置、情報処理方法及びプログラム
WO2020149044A1 (ja) パラメータ選定装置、パラメータ選定方法、およびパラメータ選定プログラム
CN113420682A (zh) 车路协同中目标检测方法、装置和路侧设备
JP6662382B2 (ja) 情報処理装置および方法、並びにプログラム
WO2022251605A1 (en) Visual and rf sensor fusion for multi-agent tracking
JP2020170252A (ja) 画像処理装置、情報処理方法及びプログラム
JP2012123631A (ja) 注目領域検出方法、注目領域検出装置、及びプログラム
JP4210292B2 (ja) 画像変化予測方法および画像変化予測装置
JP2015507736A (ja) ターゲットサイズを見積もるためのシステム及び方法
KR20210050997A (ko) 포즈 추정 방법 및 장치, 컴퓨터 판독 가능한 기록 매체 및 컴퓨터 프로그램
CN117999498A (zh) 使用对象检测的自动交叉传感器校准
WO2019116518A1 (ja) 物体検出装置及び物体検出方法
KR20190070235A (ko) 비전 기반 위치 추정 기법을 이용한 6-자유도 상대 변위 추정 방법 및 그 장치
KR102247057B1 (ko) 인공신경망을 이용한 슬라브 길이 연산 방법 및 그 장치
CN118170249A (zh) 眼动跟踪系统及对应的方法
CN117197193B (zh) 游泳速度估计方法、装置、计算机设备及存储介质
JP7524548B2 (ja) 画像処理装置、検出方法、及びプログラム
JP7369247B2 (ja) 情報処理装置、情報処理方法およびプログラム
KR102076721B1 (ko) 표적 정보 제공 장치 및 그 방법
KR102109374B1 (ko) 위치 추정 장치 및 방법
KR102434535B1 (ko) 인터랙션 검출 방법 및 그 장치
JP2018200175A (ja) 情報処理装置、情報処理方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19910469

Country of ref document: EP

Kind code of ref document: A1