WO2020148943A1 - Rocker arm - Google Patents

Rocker arm Download PDF

Info

Publication number
WO2020148943A1
WO2020148943A1 PCT/JP2019/037216 JP2019037216W WO2020148943A1 WO 2020148943 A1 WO2020148943 A1 WO 2020148943A1 JP 2019037216 W JP2019037216 W JP 2019037216W WO 2020148943 A1 WO2020148943 A1 WO 2020148943A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
rocker arm
housing
rotating shaft
roller
Prior art date
Application number
PCT/JP2019/037216
Other languages
French (fr)
Japanese (ja)
Inventor
琢麻 中川
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2020148943A1 publication Critical patent/WO2020148943A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/44Needle bearings
    • F16C19/46Needle bearings with one row or needles

Definitions

  • the present invention relates to a rocker arm used for a valve train of an internal combustion engine.
  • the rocker arm has a roller that serves as a cam follower and a housing that supports the roller.
  • the housing has a pair of axial holes that rotatably support each end of the roller.
  • the roller rotates about the rotation axis.
  • Hooking portions that restrain the movement of the rotating shaft in the thrust direction are formed at both ends of the roller (see Japanese Patent Laid-Open No. 2016-90006).
  • both ends of the roller protrude from the housing H and press the ends in the thrust direction.
  • each end of the roller is deformed so as to project outward in the radial direction intersecting the axial direction, and the hooking portion F is formed.
  • the hooking portion F is formed by a surface inclined with respect to the rotation axis of the rotation shaft S.
  • the rotation axis S rotates with the rotation of the roller. At that time, when the inclined surface of the hook portion F contacts the shaft hole end edge portion H1 of the housing H, the contact becomes a line contact. Therefore, the contact pressure becomes high, and seizure or wear may occur at the contact portion.
  • An object of the present disclosure is to provide a rocker arm that has a housing that supports a roller that serves as a cam follower, and that causes less seizure or wear at the contact portion between the rotation shaft of the roller and the housing.
  • the rocker arm has a housing and a roller that is a cam follower supported by the housing by a rotating shaft.
  • the housing includes a pair of outer surfaces that are arranged opposite to each other and each have an axial hole formed therein.
  • the rotary shaft penetrates the pair of shaft holes and is rotatably supported by the housing.
  • the roller is supported by the rotating shaft between the pair of outer surfaces of the housing.
  • the rotary shaft has both ends protruding from the housing through the shaft hole. Flange portions for restricting the movement of the rotary shaft in the thrust direction with respect to the shaft hole are formed at both ends.
  • Each flange portion is provided with a flat surface capable of making surface contact with each outer surface of the housing.
  • the rotary shaft including the flange portion is composed of a plurality of parts coupled to each other. The connecting part of the plurality of parts is located at a part excluding the part penetrating the shaft hole of the rotating shaft.
  • the rocker arm of the present disclosure relates to both the inner fulcrum type and the outer fulcrum type.
  • the inner fulcrum type has a fulcrum at the center of the housing, and the housing tilts about the fulcrum.
  • the housing has a power point on one end side, and a cam follower is provided at the power point.
  • the operating point is provided on the other end side of the housing, and the valve is connected to the operating point.
  • the outer fulcrum type has a force point at the center of the housing.
  • the housing has a fulcrum on one end side and an action point on the other end side.
  • the plurality of parts forming the rotating shaft are joined by press fitting, screw fastening, bonding, welding, or the like.
  • the rotary shaft that has a flange that can make surface contact with the outer surface of the housing is attached to the housing by passing through the shaft hole of the housing and then combining multiple parts that make up the rotary shaft.
  • the flat surface of the flange portion is in contact with the outer surface of the housing.
  • the contact area between the rotary shaft and the housing is wide, and is wider than that in the form of linear contact, for example.
  • the pressure per unit area at the contact portion is reduced, and seizure or wear at the contact portion can be suppressed.
  • the connecting part of the plurality of parts is located at a part excluding the part penetrating the shaft hole of the rotating shaft. Therefore, the part that penetrates the shaft hole of the rotary shaft is configured by only one part. As a result, it is possible to easily manage the amount of thermal expansion due to frictional heat at the site.
  • the rotating shaft is pierced by each shaft hole with a gap with respect to the hole wall of each shaft hole. Therefore, the rotating shaft floats with respect to the hole wall of the shaft hole. Therefore, the rotary shaft can smoothly rotate with respect to the shaft hole, and the rotational resistance of the roller can be suppressed.
  • the roller is supported with respect to the rotating shaft via a plurality of needle bearings. Therefore, the roller can smoothly rotate with respect to the rotating shaft, and the rotational resistance of the roller can be suppressed. Thus, power loss due to rotation of the camshaft can be suppressed. Since the rotating shaft rotates, the contact position between the outer peripheral surface of the rotating shaft and each needle bearing can be changed with the rotation of the rotating shaft. As a result, it is possible to suppress the formation of indentations on the outer peripheral surface of the rotating shaft due to the contact pressure generated when the contact position does not change.
  • the flange portion is a member separate from the shaft body of the rotating shaft and is attached to the outer peripheral surface or the end surface of the shaft body.
  • the flange portion is attached to the shaft body by fitting the end portion of the rotary shaft into the hollow portion of the annular flange portion.
  • the flange portion is attached to the shaft body by connecting the end face of the rotary shaft to the plate-shaped flange portion.
  • the shaft body that is inserted into the shaft hole consists of only one part. Therefore, the shapes of the shaft body and the shaft hole, which are determined in consideration of the amount of thermal expansion, are easily determined.
  • the rotating shaft includes a first shaft member including a part of the shaft body and one of the flange portions, and a first shaft member including the remaining part of the shaft body and another one of the flange portions.
  • a biaxial member is provided. The first shaft member and the second shaft member are connected at a position between the pair of outer surfaces of the housing.
  • the connecting portion between the first shaft member and the second shaft member is positioned so as to avoid the portion penetrating the shaft hole of the rotary shaft.
  • the part that penetrates the shaft hole of the rotating shaft can be configured by only one part. Therefore, the shapes of the shaft body and the shaft hole, which are determined in consideration of the amount of thermal expansion, are easily determined.
  • FIG. 3 is a vertical cross-sectional view of a valve train mechanism portion of an internal combustion engine to which a rocker arm according to the first embodiment is applied. It is an enlarged front view of 1st Embodiment.
  • FIG. 3 is an enlarged plan view of the first embodiment.
  • FIG. 4 is an enlarged view taken along the line IV-IV of FIG.
  • FIG. 5 is an enlarged cross-sectional view taken along the line VV of FIG. It is a partially expanded view of the bearing of FIG. It is sectional drawing corresponding to FIG. 5 which shows 2nd Embodiment. It is sectional drawing corresponding to FIG. 5 which shows 3rd Embodiment. It is sectional drawing corresponding to FIG. 4 which shows 4th Embodiment. It is sectional drawing corresponding to FIG. 4 which shows 5th Embodiment. It is a partially enlarged view of a prior art example.
  • the rocker arm 1 is provided between the cam 4 and the intake valve 3.
  • the cam 4 is rotated by a cam shaft (not shown).
  • the rocker arm 1 converts the operation of the cam 4 into the opening/closing operation of the intake valve 3.
  • the rocker arm 1 includes a roller 30 serving as a cam follower at the center of the housing 10.
  • a swinging fulcrum 11 is provided at the first end of the housing 10 so as to cover the tip of the pivot 2 and to be swingably supported.
  • a valve contact portion 12 that contacts the base end of the intake valve 3 is provided. These are configured on the cylinder head 5.
  • a mechanism for opening and closing the intake valve 3 is shown, but a mechanism for an exhaust valve (not shown) is similarly configured.
  • a cavity 15 for housing the roller 30 is formed between both ends of the housing 10.
  • the cavity 15 is defined by a pair of side walls 13 connecting the first end and the second end of the housing 10 and the left and right ends of the first end and the second end.
  • the pair of side walls 13 oppose each other, and a shaft hole 14 is formed in each of the side walls 13 (see FIG. 5 ).
  • the rotary shaft 20 serving as the shaft center of the roller 30 is rotatably inserted into the shaft hole 14.
  • a shaft body (corresponding to the rotating shaft) 21 of the rotating shaft 20 is pierced with a play in the shaft hole 14 and is floatingly supported. Therefore, the rotary shaft 20 is rotatable with respect to the side wall 13.
  • the roller 30 is configured to include a plurality of needle bearings 32 between the outer ring 31 and the rotary shaft 20. Therefore, the outer ring 31 of the roller 30 is influenced by the rotation of the cam 4 and rotates together. As a result, the sliding resistance with the cam 4 is suppressed. That is, the rotation resistance of the roller 30 can be suppressed, and the power loss due to the rotation of the camshaft can be suppressed.
  • the roller 30 constantly receives the pressing force of the cam 4, as shown by the arrow in FIG. Therefore, if the rotary shaft 20 does not rotate and the positional relationship between the needle bearing 32 and the rotary shaft 20 does not change, the indentation due to the contact of the needle bearing 32 with the surface of the rotary shaft 20 is indicated by a black dot in FIG. 21d is formed and the needle bearing 32 becomes difficult to roll.
  • the rotary shaft 20 since the rotary shaft 20 is rotatable with respect to the side wall 13 of the housing 10 as described above, it is difficult or impossible to make the indentations.
  • the shaft body 21 of the rotary shaft 20 is supported in a floating manner with respect to the shaft hole 14 of the side wall 13.
  • flange portions 22 and 23 for restricting the movement of the shaft body 21 in the thrust direction are provided at both ends of the shaft body 21.
  • the flange portions 22 and 23 are annular components that are separate members from the shaft body 21.
  • the shaft body 21 and the flange portions 22 and 23 are formed so that the end portions of the shaft body 21 can be fitted into the hollow portions of the annular flange portions 22 and 23 as shown in FIG.
  • the coupling between the shaft body 21 and the flange portions 22 and 23 is performed at the boundary between the two. Therefore, the shaft main body 21 is inserted into the center of the roller 30 inserted in the cavity 15 of the housing 10, and the flange portions 22 and 23 are press-fitted into the both ends of the shaft main body 21 from the both outsides of the shaft main body 21. Unify. In this way, the roller 30 is rotatably supported by the housing 10. Thus, the outer peripheral surface 21c of the shaft body 21 and the flange portions 22 and 23 contact each other.
  • the outer side surface 13a of the side wall 13 of the housing 10 and the inner side surfaces (flat surfaces) 22a and 23a of the flange portions 22 and 23 are arranged so as to face each other. Therefore, even if the outer side surface 13a of the side wall 13 and the inner side surfaces 22a and 23a of the flange portions 22 and 23 come into contact with each other while the rotating shaft 20 is rotating, they are in surface contact with each other, unlike the line contact in the prior art.
  • the contact pressure does not increase, and the occurrence of seizure or wear at the contact portion can be suppressed.
  • the shaft main body 21 and the flange portions 22 and 23 are coupled to each other at both ends of the shaft main body 21, and the portion penetrating the shaft hole 14 of the shaft main body 21 is composed of only one part. Therefore, even if the relevant portion of the shaft main body 21 expands due to frictional heat associated with rotation, it is easier to manage the amount of thermal expansion than in the case where a plurality of parts are involved. Therefore, since the management of the amount of thermal expansion does not go well, the outer peripheral surface 21c of the shaft main body 21 does not easily contact the inner peripheral surface of the shaft hole 14 or does not contact it. Thus, the problem that the rotational resistance of the shaft body 21 increases can be avoided.
  • FIG. 7 shows the second embodiment.
  • the rotary shaft 20 of the first embodiment is composed of three parts.
  • the rotating shaft 40 of the second embodiment is composed of two parts as shown in FIG. There is no difference in the other configuration between the two, and the repetitive description of the same part will be omitted.
  • one of the flange portions 42 and 44 provided at both ends of the shaft body 41 is integrally formed with the shaft body 41.
  • the other flange portion 42 is joined to the end portion of the shaft body 41 by press fitting as in the case of the first embodiment. Therefore, according to the second embodiment, the number of parts constituting the rotary shaft 40 can be reduced, and the productivity can be improved.
  • FIG. 8 shows a third embodiment.
  • the rotary shaft 20 of the first embodiment is composed of three parts.
  • the rotating shaft 45 of the third embodiment is composed of two parts as shown in FIG. Further, the coupling of the two parts is arranged in the middle of the shaft main body, that is, at a portion supporting the roller 30. There is no difference in the other configuration between the two, and the repetitive description of the same part will be omitted.
  • the rotary shaft 45 of the third embodiment is composed of two parts, a shaft main body female part (first shaft member) 25 and a shaft main body male part (second shaft member) 26.
  • the shaft body female portion 25 and the shaft body male portion 26 are integrally provided with flange portions 27 and 28, respectively.
  • the shaft main body female portion 25 has a recessed portion 25a at the axial center position in the portion supporting the roller 30.
  • the shaft main body male portion 26 has a convex portion 26 a at the axial center position in the portion supporting the roller 30.
  • the roller 30 is installed between the pair of side walls 13.
  • the shaft body female portion 25 is inserted into the shaft hole 14 from the outside of the shaft hole 14 of the one side wall 13.
  • the shaft main body male portion 26 is inserted into the shaft hole 14 from the outside of the shaft hole 14 of the other side wall 13.
  • the convex portion 26a is press-fitted into the concave portion 25a to engage the shaft body female portion 25 and the shaft body male portion 26.
  • the roller 30 is supported by the rotating shaft 45 with respect to the housing 10.
  • the rocker arm 1 is assembled by connecting the two parts of the shaft body female portion 25 and the shaft body male portion 26. Therefore, the productivity of the rocker arm 1 can be improved.
  • various structures can be adopted in addition to the above structure.
  • FIG. 9 shows a fourth embodiment.
  • the rocker arm 1 of the first embodiment has a roller 30 including a needle bearing.
  • the rocker arm 1 of the fourth embodiment has a double roller type roller 35. There is no difference in the other configuration between the two, and the repetitive description of the same part will be omitted.
  • the roller 35 is composed of an outer ring 33 and an inner ring 34.
  • Grease is applied between the inner peripheral surface of the outer ring 33 and the outer peripheral surface of the inner ring 34, and between the inner peripheral surface of the inner ring 34 and the outer peripheral surface of the shaft body 21.
  • the outer ring 33 can smoothly rotate with respect to the inner ring 34, and the inner ring 34 can smoothly rotate with respect to the shaft body 21.
  • the outer ring 33 is rotated smoothly following the rotation of the cam 4.
  • the rest of the configuration is the same as that of the first embodiment, and a repeated description will be omitted.
  • FIG. 10 shows a fifth embodiment.
  • the rotary shaft 20 of the first embodiment has a shaft body 21 and annular flange portions 22 and 23.
  • the shaft main body 21 and the flange portions 22 and 23 are connected so that the outer peripheral surfaces 21c of the respective end portions of the shaft main body 21 come into contact with the inner peripheral surfaces of the flange portions 22 and 23.
  • the rotating shaft 46 shown in FIG. 10 has a cylindrical shaft body 47 and disk-shaped flange portions 48 and 49.
  • the inner surface of the flange portion 48 is attached to the one end surface 47a of the shaft body 47 with an adhesive or the like.
  • the inner surface of the flange portion 49 is attached to the other end surface 47b of the shaft body 47 with an adhesive or the like.
  • the rotating shaft described above is rotatably supported in the shaft hole of the housing. That is, the rotary shaft is floatingly supported with respect to the housing with a gap between the rotary shaft and the shaft hole.
  • a member that reduces frictional resistance between the rotating shaft and the shaft hole may be interposed between the rotating shaft and the shaft hole to facilitate rotation of the rotating shaft relative to the shaft hole.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Sliding-Contact Bearings (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

A rocker arm (1) has a roller (30) that serves as a cam-follower supported on a housing (10) by a rotation shaft (20). The rotation shaft (20) has both ends (21a and 21b) that protrude from the housing (10) via a shaft hole (14) of the housing (10). Flange parts (22 and 23) that restrict movement of the rotation shaft (20) in a thrust direction with respect to the shaft hole (14) are formed at the both ends (21a and 21b), respectively. The flange parts (22 and 23) are provided with planes (22a and 23a) capable of being brought into surface-contact with respective outer surfaces (13a) of the housing (10), respectively. The rotation shaft (20) including the flange parts (22 and 23) is constituted by a plurality of components connected to each other. Connected portions of the plurality of components are portions other than portions penetrating the shaft hole (14) of the rotation shaft (20).

Description

ロッカアームRocker arm
 本発明は、内燃機関の動弁系に用いられるロッカアームに関する。 The present invention relates to a rocker arm used for a valve train of an internal combustion engine.
 一般的に、ロッカアームは、カムフォロワとなるローラと、ローラを支持するハウジングを有する。例えば、ハウジングはローラの各端部を回転自在に支持する一対の軸孔を有する。ローラは、回転軸を中心に回転する。ローラの両端部には、回転軸のスラスト方向への移動を拘束する掛止部が形成される(特開2016-90006号公報参照)。図11のように、ローラの両端部がそれぞれハウジングHから突出し、各端部をスラスト方向から圧迫する。これによりローラの各端部が軸方向と交差する径方向外側に張り出すように変形されて掛止部Fが形成される。掛止部Fは、回転軸Sの回転軸線に対して傾斜した面にて形成される。 Generally, the rocker arm has a roller that serves as a cam follower and a housing that supports the roller. For example, the housing has a pair of axial holes that rotatably support each end of the roller. The roller rotates about the rotation axis. Hooking portions that restrain the movement of the rotating shaft in the thrust direction are formed at both ends of the roller (see Japanese Patent Laid-Open No. 2016-90006). As shown in FIG. 11, both ends of the roller protrude from the housing H and press the ends in the thrust direction. As a result, each end of the roller is deformed so as to project outward in the radial direction intersecting the axial direction, and the hooking portion F is formed. The hooking portion F is formed by a surface inclined with respect to the rotation axis of the rotation shaft S.
 回転軸Sは、ローラの回転に伴って回転する。そのとき、掛止部Fの傾斜面がハウジングHの軸孔端縁部H1に接触すると、その接触は線接触となる。そのため、接触圧は高くなり、接触部分での焼き付きや摩耗が発生する恐れがある。 The rotation axis S rotates with the rotation of the roller. At that time, when the inclined surface of the hook portion F contacts the shaft hole end edge portion H1 of the housing H, the contact becomes a line contact. Therefore, the contact pressure becomes high, and seizure or wear may occur at the contact portion.
 本開示の課題は、カムフォロワとなるローラを支持するハウジングを有し、ローラの回転軸とハウジングの接触部分において焼き付きや摩耗の発生の少ないロッカアームを提供することである。 An object of the present disclosure is to provide a rocker arm that has a housing that supports a roller that serves as a cam follower, and that causes less seizure or wear at the contact portion between the rotation shaft of the roller and the housing.
 本開示の1つの特徴によると、ロッカアームは、ハウジングと、回転軸によってハウジングに支持されるカムフォロワであるローラを有する。ハウジングは、対向配置されかつそれぞれに軸孔が形成された一対の外側面を備える。回転軸は、一対の軸孔に貫通してハウジングに回転自在に支持される。ローラは、回転軸によってハウジングの一対の外側面の間において支持される。回転軸は、軸孔を通ってハウジングから突出する両端部を有する。両端部のそれぞれに回転軸の軸孔に対するスラスト方向への移動を拘束するフランジ部が形成される。各フランジ部は、ハウジングの各外側面に面接触可能な平面を備える。フランジ部を含む回転軸は、互いに結合された複数の部品により構成される。複数の部品の結合箇所が回転軸の軸孔を貫通する部位を除く部位に位置する。 According to one feature of the present disclosure, the rocker arm has a housing and a roller that is a cam follower supported by the housing by a rotating shaft. The housing includes a pair of outer surfaces that are arranged opposite to each other and each have an axial hole formed therein. The rotary shaft penetrates the pair of shaft holes and is rotatably supported by the housing. The roller is supported by the rotating shaft between the pair of outer surfaces of the housing. The rotary shaft has both ends protruding from the housing through the shaft hole. Flange portions for restricting the movement of the rotary shaft in the thrust direction with respect to the shaft hole are formed at both ends. Each flange portion is provided with a flat surface capable of making surface contact with each outer surface of the housing. The rotary shaft including the flange portion is composed of a plurality of parts coupled to each other. The connecting part of the plurality of parts is located at a part excluding the part penetrating the shaft hole of the rotating shaft.
 本開示のロッカアームは、内支点タイプと外支点タイプの両方に関係する。内支点タイプでは、ハウジングの中心に支点を有し、ハウジングが支点を中心に傾動する。ハウジングの一端側に力点を有し、力点にカムフォロワが設けられる。ハウジングの他端側に作用点を有し、作用点にバルブが連結される。外支点タイプでは、ハウジングの中心に力点を有する。ハウジングの一端側に支点を有し、他端側に作用点を有する。回転軸を形成する複数の部品は、圧入、ねじ締結、接着、溶接などによって結合される。 The rocker arm of the present disclosure relates to both the inner fulcrum type and the outer fulcrum type. The inner fulcrum type has a fulcrum at the center of the housing, and the housing tilts about the fulcrum. The housing has a power point on one end side, and a cam follower is provided at the power point. The operating point is provided on the other end side of the housing, and the valve is connected to the operating point. The outer fulcrum type has a force point at the center of the housing. The housing has a fulcrum on one end side and an action point on the other end side. The plurality of parts forming the rotating shaft are joined by press fitting, screw fastening, bonding, welding, or the like.
 ハウジングの外側面に対して面接触可能なフランジ部を持った回転軸は、ハウジングの軸孔に貫通させた後に、回転軸を構成する複数の部品を結合させることで、ハウジングに取付けられる。フランジ部は、ハウジングの外側面に対して平面が面接する。これにより回転軸とハウジングが接触する面積が広く、例えば線状に接触する形態に比べて広い。その結果、接触部分における単位面積当たりの圧力が小さくなり、接触部分における焼き付きや摩耗の発生を抑制できる。複数の部品の結合箇所が回転軸の軸孔を貫通する部位を除く部位に位置する。そのため、回転軸の軸孔を貫通する部位が一部品のみで構成される。その結果、当該部位における摩擦熱による熱膨張量の管理を容易にできる。  The rotary shaft that has a flange that can make surface contact with the outer surface of the housing is attached to the housing by passing through the shaft hole of the housing and then combining multiple parts that make up the rotary shaft. The flat surface of the flange portion is in contact with the outer surface of the housing. As a result, the contact area between the rotary shaft and the housing is wide, and is wider than that in the form of linear contact, for example. As a result, the pressure per unit area at the contact portion is reduced, and seizure or wear at the contact portion can be suppressed. The connecting part of the plurality of parts is located at a part excluding the part penetrating the shaft hole of the rotating shaft. Therefore, the part that penetrates the shaft hole of the rotary shaft is configured by only one part. As a result, it is possible to easily manage the amount of thermal expansion due to frictional heat at the site.
 本開示の他の特徴によると、回転軸は、各軸孔の孔壁に対して隙間を有して各軸孔に貫通される。したがって回転軸は、軸孔の孔壁に対して浮動する。そのため回転軸は、軸孔に対して円滑に回転でき、ローラの回転抵抗を抑制できる。 According to another feature of the present disclosure, the rotating shaft is pierced by each shaft hole with a gap with respect to the hole wall of each shaft hole. Therefore, the rotating shaft floats with respect to the hole wall of the shaft hole. Therefore, the rotary shaft can smoothly rotate with respect to the shaft hole, and the rotational resistance of the roller can be suppressed.
 本開示の他の特徴によると、ローラは、回転軸に対して複数のニードルベアリングを介して支持される。したがってローラは、回転軸に対して円滑に回転可能で、ローラの回転抵抗を抑制できる。かくしてカムシャフトの回転に伴う動力損失を抑制できる。回転軸が回転するため、回転軸の外周面と個々のニードルベアリングとの接触位置を回転軸の回転と共に変化させることができる。その結果、接触位置が変化しない場合に生じる接触圧による回転軸外周面の圧痕の形成を抑制できる。 According to another feature of the present disclosure, the roller is supported with respect to the rotating shaft via a plurality of needle bearings. Therefore, the roller can smoothly rotate with respect to the rotating shaft, and the rotational resistance of the roller can be suppressed. Thus, power loss due to rotation of the camshaft can be suppressed. Since the rotating shaft rotates, the contact position between the outer peripheral surface of the rotating shaft and each needle bearing can be changed with the rotation of the rotating shaft. As a result, it is possible to suppress the formation of indentations on the outer peripheral surface of the rotating shaft due to the contact pressure generated when the contact position does not change.
 本開示の他の特徴によると、フランジ部は、回転軸の軸本体と別部材であって、軸本体の外周面または端面に取付けられる。例えば、環状のフランジ部の中空部に回転軸の端部が嵌合されることで、軸本体にフランジ部が取付けられる。あるいは板状のフランジ部に回転軸の端面が結合されることで、軸本体にフランジ部が取付けられる。 According to another feature of the present disclosure, the flange portion is a member separate from the shaft body of the rotating shaft and is attached to the outer peripheral surface or the end surface of the shaft body. For example, the flange portion is attached to the shaft body by fitting the end portion of the rotary shaft into the hollow portion of the annular flange portion. Alternatively, the flange portion is attached to the shaft body by connecting the end face of the rotary shaft to the plate-shaped flange portion.
 したがって軸孔に挿通される軸本体は、一部品のみで構成される。したがって熱膨張量を考慮して決定される軸本体と軸孔の形状が容易に決定される。 Therefore, the shaft body that is inserted into the shaft hole consists of only one part. Therefore, the shapes of the shaft body and the shaft hole, which are determined in consideration of the amount of thermal expansion, are easily determined.
 本開示の他の特徴によると、回転軸は、軸本体の一部とフランジ部の1つを備える第1軸部材と、軸本体の残りの一部とフランジ部の他の1つを備える第2軸部材を備える。第1軸部材と第2軸部材がハウジングの一対の外側面の間の位置において連結される。 According to another feature of the present disclosure, the rotating shaft includes a first shaft member including a part of the shaft body and one of the flange portions, and a first shaft member including the remaining part of the shaft body and another one of the flange portions. A biaxial member is provided. The first shaft member and the second shaft member are connected at a position between the pair of outer surfaces of the housing.
 したがって第1軸部材と第2軸部材の連結部分は、回転軸の軸孔を貫通する部位を避けて位置する。換言すると回転軸の軸孔を貫通する部位を一部品のみで構成することができる。したがって熱膨張量を考慮して決定される軸本体と軸孔の形状が容易に決定される。 Therefore, the connecting portion between the first shaft member and the second shaft member is positioned so as to avoid the portion penetrating the shaft hole of the rotary shaft. In other words, the part that penetrates the shaft hole of the rotating shaft can be configured by only one part. Therefore, the shapes of the shaft body and the shaft hole, which are determined in consideration of the amount of thermal expansion, are easily determined.
第1実施形態としてのロッカアームが適用された内燃機関の動弁機構部分の縦断面図である。FIG. 3 is a vertical cross-sectional view of a valve train mechanism portion of an internal combustion engine to which a rocker arm according to the first embodiment is applied. 第1実施形態の拡大正面図である。It is an enlarged front view of 1st Embodiment. 第1実施形態の拡大平面図である。FIG. 3 is an enlarged plan view of the first embodiment. 図3のIV-IV線断面矢視拡大図である。FIG. 4 is an enlarged view taken along the line IV-IV of FIG. 図2のV-V線断面矢視拡大図である。FIG. 5 is an enlarged cross-sectional view taken along the line VV of FIG. 図4のベアリングの一部拡大図である。It is a partially expanded view of the bearing of FIG. 第2実施形態を示す図5に対応する断面図である。It is sectional drawing corresponding to FIG. 5 which shows 2nd Embodiment. 第3実施形態を示す図5に対応する断面図である。It is sectional drawing corresponding to FIG. 5 which shows 3rd Embodiment. 第4実施形態を示す図4に対応する断面図である。It is sectional drawing corresponding to FIG. 4 which shows 4th Embodiment. 第5実施形態を示す図4に対応する断面図である。It is sectional drawing corresponding to FIG. 4 which shows 5th Embodiment. 従来例の一部拡大図である。It is a partially enlarged view of a prior art example.
 図1に示すように、ロッカアーム1は、カム4と吸気バルブ3の間に設けられる。カム4はカムシャフト(図示略)により回転する。ロッカアーム1は、カム4の動作を吸気バルブ3の開閉動作に変換する。ロッカアーム1は、ハウジング10の中心にカムフォロワとなるローラ30を備える。ハウジング10の第一端部には、ピボット2の先端に被せられて揺動自在に支持される揺動支点部11が設けられる。ハウジング10の第2端部には、吸気バルブ3の基端部に当接されるバルブ当接部12が設けられる。これらはシリンダヘッド5上に構成される。ここでは、吸気バルブ3を開閉動作させる機構を示しているが、排気バルブ(図示略)に対する機構も同様に構成される。 As shown in FIG. 1, the rocker arm 1 is provided between the cam 4 and the intake valve 3. The cam 4 is rotated by a cam shaft (not shown). The rocker arm 1 converts the operation of the cam 4 into the opening/closing operation of the intake valve 3. The rocker arm 1 includes a roller 30 serving as a cam follower at the center of the housing 10. A swinging fulcrum 11 is provided at the first end of the housing 10 so as to cover the tip of the pivot 2 and to be swingably supported. At the second end of the housing 10, a valve contact portion 12 that contacts the base end of the intake valve 3 is provided. These are configured on the cylinder head 5. Here, a mechanism for opening and closing the intake valve 3 is shown, but a mechanism for an exhaust valve (not shown) is similarly configured.
 図2,3に示すように、ハウジング10の両端間には、ローラ30を収容するための空洞15が形成される。空洞15は、ハウジング10の第1端部と第2端部、および第1端部と第2端部の左右端を連結する一対の側壁13によって画定される。一対の側壁13は、相互に対向し、側壁13のそれぞれに軸孔14が形成される(図5参照)。軸孔14にローラ30の軸心となる回転軸20が回転可能に挿入される。回転軸20の軸本体(回転軸に相当)21は、軸孔14に対して遊びを持って貫通されて浮動支持される。そのため、回転軸20は側壁13に対して回転自在とされる。 As shown in FIGS. 2 and 3, a cavity 15 for housing the roller 30 is formed between both ends of the housing 10. The cavity 15 is defined by a pair of side walls 13 connecting the first end and the second end of the housing 10 and the left and right ends of the first end and the second end. The pair of side walls 13 oppose each other, and a shaft hole 14 is formed in each of the side walls 13 (see FIG. 5 ). The rotary shaft 20 serving as the shaft center of the roller 30 is rotatably inserted into the shaft hole 14. A shaft body (corresponding to the rotating shaft) 21 of the rotating shaft 20 is pierced with a play in the shaft hole 14 and is floatingly supported. Therefore, the rotary shaft 20 is rotatable with respect to the side wall 13.
 図4に示すように、ローラ30は、外輪31と回転軸20との間に複数のニードルベアリング32を備えた構成とされる。そのため、ローラ30の外輪31は、カム4の回転に影響されて連れ回りすることになる。それによりカム4との摺動抵抗を抑制するようにされる。即ち、ローラ30の回転抵抗を抑制することができ、カムシャフトの回転に伴う動力損失を抑制できる。 As shown in FIG. 4, the roller 30 is configured to include a plurality of needle bearings 32 between the outer ring 31 and the rotary shaft 20. Therefore, the outer ring 31 of the roller 30 is influenced by the rotation of the cam 4 and rotates together. As a result, the sliding resistance with the cam 4 is suppressed. That is, the rotation resistance of the roller 30 can be suppressed, and the power loss due to the rotation of the camshaft can be suppressed.
 ローラ30は、図6の矢印で示すように、カム4による押圧力を常時受けている。そのため、仮に回転軸20が回転せず、ニードルベアリング32と回転軸20との位置関係が変わらないとすると、図6に黒点で示すように回転軸20の表面にニードルベアリング32の当接による圧痕21dが出来て、ニードルベアリング32が転がり難くなる問題が生じる。しかし、本実施形態の場合、上述のように回転軸20はハウジング10の側壁13に対して回転自在とされるため、上記圧痕が出来難い、あるいは出来ることはない。 The roller 30 constantly receives the pressing force of the cam 4, as shown by the arrow in FIG. Therefore, if the rotary shaft 20 does not rotate and the positional relationship between the needle bearing 32 and the rotary shaft 20 does not change, the indentation due to the contact of the needle bearing 32 with the surface of the rotary shaft 20 is indicated by a black dot in FIG. 21d is formed and the needle bearing 32 becomes difficult to roll. However, in the case of the present embodiment, since the rotary shaft 20 is rotatable with respect to the side wall 13 of the housing 10 as described above, it is difficult or impossible to make the indentations.
 図5に示すように、回転軸20の軸本体21は、側壁13の軸孔14に対して浮動支持される。軸本体21の軸孔14による支持状態を維持するため、軸本体21の両端には、軸本体21のスラスト方向への移動を拘束するためのフランジ部22、23が設けられている。図2、3、5のように、フランジ部22、23は、軸本体21とは別部材の環状部品とされる。軸本体21とフランジ部22、23は、図5のように環状のフランジ部22、23の中空部に軸本体21の端部を嵌合可能に形成される。即ち、軸本体21とフランジ部22、23との結合は、両者の境界部で行われている。そのため、ハウジング10の空洞15内に挿入された状態のローラ30の中心に軸本体21を挿入して、軸本体21の両端にフランジ部22、23を、軸本体21の両端外側から圧入して一体化する。このようにしてローラ30がハウジング10に対して回転自在に支持される。かくして軸本体21の外周面21cとフランジ部22、23が当接する。 As shown in FIG. 5, the shaft body 21 of the rotary shaft 20 is supported in a floating manner with respect to the shaft hole 14 of the side wall 13. In order to maintain the support state of the shaft body 21 by the shaft hole 14, flange portions 22 and 23 for restricting the movement of the shaft body 21 in the thrust direction are provided at both ends of the shaft body 21. As shown in FIGS. 2, 3, and 5, the flange portions 22 and 23 are annular components that are separate members from the shaft body 21. The shaft body 21 and the flange portions 22 and 23 are formed so that the end portions of the shaft body 21 can be fitted into the hollow portions of the annular flange portions 22 and 23 as shown in FIG. That is, the coupling between the shaft body 21 and the flange portions 22 and 23 is performed at the boundary between the two. Therefore, the shaft main body 21 is inserted into the center of the roller 30 inserted in the cavity 15 of the housing 10, and the flange portions 22 and 23 are press-fitted into the both ends of the shaft main body 21 from the both outsides of the shaft main body 21. Unify. In this way, the roller 30 is rotatably supported by the housing 10. Thus, the outer peripheral surface 21c of the shaft body 21 and the flange portions 22 and 23 contact each other.
 図5のように、ハウジング10の側壁13の外側面13aとフランジ部22、23の内側面(平面)22a、23aは、互いに平面同士で対向配置される。そのため、回転軸20が回転する状態で、側壁13の外側面13aとフランジ部22、23の内側面22a、23aとが当接しても、両者は面接触となり、従来技術における線接触のように接触圧が高くなることはなく、接触部分での焼き付きや摩耗の発生を抑制できる。 As shown in FIG. 5, the outer side surface 13a of the side wall 13 of the housing 10 and the inner side surfaces (flat surfaces) 22a and 23a of the flange portions 22 and 23 are arranged so as to face each other. Therefore, even if the outer side surface 13a of the side wall 13 and the inner side surfaces 22a and 23a of the flange portions 22 and 23 come into contact with each other while the rotating shaft 20 is rotating, they are in surface contact with each other, unlike the line contact in the prior art. The contact pressure does not increase, and the occurrence of seizure or wear at the contact portion can be suppressed.
 また、軸本体21とフランジ部22、23との結合を、軸本体21の両端部で行い、軸本体21の軸孔14を貫通する部位は、一部品のみで構成される。そのため、軸本体21の当該部位が回転に伴う摩擦熱により膨張しても、複数部品が係わっている場合に比べて熱膨張量の管理は容易である。したがって熱膨張量の管理がうまくいかないため軸本体21の外周面21cが軸孔14の内周面に当接し難い、あるいは当接しない。かくして軸本体21の回転抵抗が増大する問題を回避できる。 Further, the shaft main body 21 and the flange portions 22 and 23 are coupled to each other at both ends of the shaft main body 21, and the portion penetrating the shaft hole 14 of the shaft main body 21 is composed of only one part. Therefore, even if the relevant portion of the shaft main body 21 expands due to frictional heat associated with rotation, it is easier to manage the amount of thermal expansion than in the case where a plurality of parts are involved. Therefore, since the management of the amount of thermal expansion does not go well, the outer peripheral surface 21c of the shaft main body 21 does not easily contact the inner peripheral surface of the shaft hole 14 or does not contact it. Thus, the problem that the rotational resistance of the shaft body 21 increases can be avoided.
 図7は、第2実施形態を示す。図5に示すように第1実施形態の回転軸20は、3部品で構成される。これに対して第2実施形態の回転軸40は、図7に示すように2部品で構成される。その他の構成は、両者間で違いはなく、同一部分についての再度の説明は省略する。 FIG. 7 shows the second embodiment. As shown in FIG. 5, the rotary shaft 20 of the first embodiment is composed of three parts. On the other hand, the rotating shaft 40 of the second embodiment is composed of two parts as shown in FIG. There is no difference in the other configuration between the two, and the repetitive description of the same part will be omitted.
 第2実施形態の回転軸40は、軸本体41の両端に設けられるフランジ部42,44のうち、一方のフランジ部44は軸本体41と一体に形成される。他方のフランジ部42は、第1実施形態の場合と同様、圧入にて軸本体41の端部に結合される。そのため、第2実施形態によれば、回転軸40を構成する部品点数を少なくすることができ、生産性を高めることができる。 In the rotating shaft 40 according to the second embodiment, one of the flange portions 42 and 44 provided at both ends of the shaft body 41 is integrally formed with the shaft body 41. The other flange portion 42 is joined to the end portion of the shaft body 41 by press fitting as in the case of the first embodiment. Therefore, according to the second embodiment, the number of parts constituting the rotary shaft 40 can be reduced, and the productivity can be improved.
 図8は、第3実施形態を示す。図5に示すように第1実施形態の回転軸20は、3部品で構成される。これに対して第3実施形態の回転軸45は、図8に示すように2部品で構成される。また、2部品の結合は、軸本体の途中、すなわちローラ30を支持する部位に配置する。その他の構成は、両者間で違いはなく、同一部分についての再度の説明は省略する。 FIG. 8 shows a third embodiment. As shown in FIG. 5, the rotary shaft 20 of the first embodiment is composed of three parts. On the other hand, the rotating shaft 45 of the third embodiment is composed of two parts as shown in FIG. Further, the coupling of the two parts is arranged in the middle of the shaft main body, that is, at a portion supporting the roller 30. There is no difference in the other configuration between the two, and the repetitive description of the same part will be omitted.
 第3実施形態の回転軸45は、軸本体雌部(第1軸部材)25と軸本体雄部(第2軸部材)26の2部品により構成される。軸本体雌部25と軸本体雄部26は、それぞれフランジ部27、28を一体に備える。軸本体雌部25は、ローラ30を支持する部位における軸心位置において凹陥部25aを有する。軸本体雄部26は、ローラ30を支持する部位における軸心位置において凸部26aを有する。凸部26aが凹陥部25aに嵌合することで、軸本体雌部25と軸本体雄部26が結合される。 The rotary shaft 45 of the third embodiment is composed of two parts, a shaft main body female part (first shaft member) 25 and a shaft main body male part (second shaft member) 26. The shaft body female portion 25 and the shaft body male portion 26 are integrally provided with flange portions 27 and 28, respectively. The shaft main body female portion 25 has a recessed portion 25a at the axial center position in the portion supporting the roller 30. The shaft main body male portion 26 has a convex portion 26 a at the axial center position in the portion supporting the roller 30. By fitting the convex portion 26a into the concave portion 25a, the shaft body female portion 25 and the shaft body male portion 26 are coupled.
 図8に示すように、ロッカアーム1を組付ける際は、先ず、一対の側壁13の間にローラ30を設置する。その状態で1つの側壁13の軸孔14の外側から軸本体雌部25を軸孔14に挿入する。他の側壁13の軸孔14の外側から軸本体雄部26を軸孔14に挿入する。凹陥部25aに凸部26aを圧入して軸本体雌部25と軸本体雄部26を係合させる。これによりローラ30が回転軸45によってハウジング10に対して支持される。この構成によると、軸本体雌部25と軸本体雄部26の2部品を結合することで、ロッカアーム1が組付けられる。そのためロッカアーム1の生産性を高めることができる。軸本体雌部25と軸本体雄部26の結合構造は、上記構造の他に、各種構造が採用可能である。 As shown in FIG. 8, when the rocker arm 1 is assembled, first, the roller 30 is installed between the pair of side walls 13. In this state, the shaft body female portion 25 is inserted into the shaft hole 14 from the outside of the shaft hole 14 of the one side wall 13. The shaft main body male portion 26 is inserted into the shaft hole 14 from the outside of the shaft hole 14 of the other side wall 13. The convex portion 26a is press-fitted into the concave portion 25a to engage the shaft body female portion 25 and the shaft body male portion 26. As a result, the roller 30 is supported by the rotating shaft 45 with respect to the housing 10. According to this configuration, the rocker arm 1 is assembled by connecting the two parts of the shaft body female portion 25 and the shaft body male portion 26. Therefore, the productivity of the rocker arm 1 can be improved. As the coupling structure of the shaft main body female part 25 and the shaft main body male part 26, various structures can be adopted in addition to the above structure.
 図9は、第4実施形態を示す。図4に示すように第1実施形態のロッカアーム1は、ニードルベアリングを含むローラ30を有する。これに対して第4実施形態のロッカアーム1は、ダブルローラタイプのローラ35を有する。その他の構成は、両者間で違いはなく、同一部分についての再度の説明は省略する。 FIG. 9 shows a fourth embodiment. As shown in FIG. 4, the rocker arm 1 of the first embodiment has a roller 30 including a needle bearing. On the other hand, the rocker arm 1 of the fourth embodiment has a double roller type roller 35. There is no difference in the other configuration between the two, and the repetitive description of the same part will be omitted.
 図9に示すようにローラ35は、外輪33と内輪34とにより構成される。外輪33の内周面と内輪34の外周面との間、並びに内輪34の内周面と軸本体21の外周面との間には、グリースが塗付される。これにより外輪33が内輪34に対して円滑に回転でき、内輪34が軸本体21に対して円滑に回転できる。かくして外輪33がカム4の回転に追随して円滑に回転されるようにされる。他の構成は、第1実施形態と同一であり、再度の説明は省略する。 As shown in FIG. 9, the roller 35 is composed of an outer ring 33 and an inner ring 34. Grease is applied between the inner peripheral surface of the outer ring 33 and the outer peripheral surface of the inner ring 34, and between the inner peripheral surface of the inner ring 34 and the outer peripheral surface of the shaft body 21. As a result, the outer ring 33 can smoothly rotate with respect to the inner ring 34, and the inner ring 34 can smoothly rotate with respect to the shaft body 21. Thus, the outer ring 33 is rotated smoothly following the rotation of the cam 4. The rest of the configuration is the same as that of the first embodiment, and a repeated description will be omitted.
 図10は、第5実施形態を示す。図5に示すように第1実施形態の回転軸20は、軸本体21と環状のフランジ部22、23を有する。フランジ部22、23の内周面に軸本体21の各端部の外周面21cが当接するように軸本体21とフランジ部22、23が連結される。一方、図10に示す回転軸46は、円柱状の軸本体47と円盤状のフランジ部48,49を有する。軸本体47の一端面47aにフランジ部48の内側面が接着剤等により取付けられる。軸本体47の他端面47bにフランジ部49の内側面が接着剤等により取付けられる。 FIG. 10 shows a fifth embodiment. As shown in FIG. 5, the rotary shaft 20 of the first embodiment has a shaft body 21 and annular flange portions 22 and 23. The shaft main body 21 and the flange portions 22 and 23 are connected so that the outer peripheral surfaces 21c of the respective end portions of the shaft main body 21 come into contact with the inner peripheral surfaces of the flange portions 22 and 23. On the other hand, the rotating shaft 46 shown in FIG. 10 has a cylindrical shaft body 47 and disk-shaped flange portions 48 and 49. The inner surface of the flange portion 48 is attached to the one end surface 47a of the shaft body 47 with an adhesive or the like. The inner surface of the flange portion 49 is attached to the other end surface 47b of the shaft body 47 with an adhesive or the like.
 以上、特定の実施形態について説明したが、本発明は、それらの外観、構成に限定されず、種々の変更、追加、削除が可能である。例えば、上述した回転軸は、ハウジングの軸孔に対して回転自在に支持される。すなわち回転軸と軸孔の間に隙間を有して、回転軸がハウジングに対して浮動支持される。この構成に代えて、回転軸と軸孔との間に両者間の摩擦抵抗を低減する部材を挟んで、回転軸を軸孔に対して回転し易くする構造としてもよい。 The specific embodiments have been described above, but the present invention is not limited to those appearances and configurations, and various changes, additions, and deletions are possible. For example, the rotating shaft described above is rotatably supported in the shaft hole of the housing. That is, the rotary shaft is floatingly supported with respect to the housing with a gap between the rotary shaft and the shaft hole. Instead of this configuration, a member that reduces frictional resistance between the rotating shaft and the shaft hole may be interposed between the rotating shaft and the shaft hole to facilitate rotation of the rotating shaft relative to the shaft hole.

Claims (6)

  1.  ロッカアームであって、
     対向配置されかつそれぞれに軸孔が形成された一対の外側面を備えるハウジングと、
     一対の前記軸孔に貫通して前記ハウジングに回転自在に支持される回転軸と、
     前記回転軸によって前記ハウジングの前記一対の外側面の間において支持されるカムフォロワであるローラを有し、
     前記回転軸は、前記軸孔を通って前記ハウジングから突出する両端部を有し、前記両端部のそれぞれに前記回転軸の前記軸孔に対するスラスト方向への移動を拘束するフランジ部が形成され、
     前記各フランジ部は、前記ハウジングの前記各外側面に面接触可能な平面を備え、
     前記フランジ部を含む前記回転軸は、互いに結合された複数の部品により構成され、
     前記複数の部品の結合箇所が前記回転軸の前記軸孔を貫通する部位を除く部位に位置するロッカアーム。
    It’s a rocker arm,
    A housing provided with a pair of outer surfaces that are arranged to face each other and each have an axial hole formed therein;
    A rotary shaft that penetrates through the pair of shaft holes and is rotatably supported by the housing;
    A roller that is a cam follower supported between the pair of outer surfaces of the housing by the rotating shaft,
    The rotating shaft has both end portions protruding from the housing through the shaft hole, and a flange portion for restraining movement of the rotating shaft in the thrust direction with respect to the shaft hole is formed at each of the both end portions,
    Each of the flange portions includes a flat surface capable of making surface contact with each of the outer side surfaces of the housing,
    The rotating shaft including the flange portion is composed of a plurality of parts coupled to each other,
    A rocker arm in which a connecting portion of the plurality of components is located at a portion excluding a portion that penetrates the shaft hole of the rotating shaft.
  2.  請求項1に記載のロッカアームにおいて、
     前記回転軸は、前記各軸孔の孔壁に対して隙間を有して前記各軸孔に貫通されるロッカアーム。
    The rocker arm according to claim 1,
    The rotation shaft is a rocker arm that penetrates through the shaft holes with a gap between the shaft walls of the shaft holes.
  3.  請求項1又は2に記載のロッカアームにおいて、
     前記ローラは、前記回転軸に対して複数のニードルベアリングを介して支持されるロッカアーム。
    The rocker arm according to claim 1 or 2,
    The roller is a rocker arm supported by a plurality of needle bearings with respect to the rotation shaft.
  4.  請求項1~3のいずれか1つに記載のロッカアームにおいて、
     前記フランジ部は、前記回転軸の軸本体と別部材であって、前記軸本体の外周面または端面に取付けられるロッカアーム。
    The rocker arm according to any one of claims 1 to 3,
    The flange portion is a rocker arm that is a member separate from the shaft body of the rotating shaft and is attached to an outer peripheral surface or an end surface of the shaft body.
  5.  請求項1~3のいずれか1つに記載のロッカアームにおいて、
     前記回転軸は、軸本体の一部と前記フランジ部の1つを備える第1軸部材と、前記軸本体の残りの一部と前記フランジ部の他の1つを備える第2軸部材を備え、
     前記第1軸部材と前記第2軸部材が前記ハウジングの前記一対の外側面の間の位置において連結されるロッカアーム。
    The rocker arm according to any one of claims 1 to 3,
    The rotating shaft includes a first shaft member including a part of a shaft body and one of the flange portions, and a second shaft member including a remaining part of the shaft body and another one of the flange portions. ,
    A rocker arm in which the first shaft member and the second shaft member are connected at a position between the pair of outer surfaces of the housing.
  6.  請求項1~5のいずれか1つに記載のロッカアームにおいて、
     前記ローラは、前記ハウジングの前記一対の外側面の間に位置し、かつ前記回転軸に支持されるロッカアーム。
    The rocker arm according to any one of claims 1 to 5,
    The roller is a rocker arm that is located between the pair of outer surfaces of the housing and is supported by the rotating shaft.
PCT/JP2019/037216 2019-01-15 2019-09-24 Rocker arm WO2020148943A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-004244 2019-01-15
JP2019004244A JP7059943B2 (en) 2019-01-15 2019-01-15 Rocker arm

Publications (1)

Publication Number Publication Date
WO2020148943A1 true WO2020148943A1 (en) 2020-07-23

Family

ID=71614082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037216 WO2020148943A1 (en) 2019-01-15 2019-09-24 Rocker arm

Country Status (2)

Country Link
JP (1) JP7059943B2 (en)
WO (1) WO2020148943A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20160885A1 (en) * 2016-02-19 2017-08-19 Getters Spa Non-porous sintered cathodes and ion vacuum pumps containing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02105502A (en) * 1988-10-14 1990-04-18 Nec Corp Variable resistor
JP2016090006A (en) * 2014-11-10 2016-05-23 株式会社オティックス Bearing device
DE102016219702A1 (en) * 2016-10-11 2018-04-12 Schaeffler Technologies AG & Co. KG Hubübertragungsbauteil with a bearing pin
WO2019013198A1 (en) * 2017-07-10 2019-01-17 株式会社ジェイテクト Cam follower device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138373A (en) 2004-11-11 2006-06-01 Jtekt Corp Bearing device and assembling method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02105502A (en) * 1988-10-14 1990-04-18 Nec Corp Variable resistor
JP2016090006A (en) * 2014-11-10 2016-05-23 株式会社オティックス Bearing device
DE102016219702A1 (en) * 2016-10-11 2018-04-12 Schaeffler Technologies AG & Co. KG Hubübertragungsbauteil with a bearing pin
WO2019013198A1 (en) * 2017-07-10 2019-01-17 株式会社ジェイテクト Cam follower device

Also Published As

Publication number Publication date
JP7059943B2 (en) 2022-04-26
JP2020112115A (en) 2020-07-27

Similar Documents

Publication Publication Date Title
JP5808343B2 (en) Cam follower for operating gas exchange valve
US7137895B2 (en) Tripod type constant velocity joint
JP2006322581A (en) Divided cage and divided type bearing provided with it
JP2011208631A (en) Tappet roller bearing
WO2020148943A1 (en) Rocker arm
JPS63235735A (en) Roller synchronizing type one-way clutch
JP2007247814A (en) Split type rolling bearing
JP4031614B2 (en) Foil gas bearing
JP2007120591A (en) Cam follower and roller follower
JP3643351B2 (en) Rocker arm support device
JP2008261391A (en) Tripod type constant velocity universal joint
JP4788630B2 (en) Rolling bearing device
JPH10339323A (en) Slide bearing and motor
US8573170B2 (en) Rocker arm assembly with integrated support pin anti-inversion feature
JPH0444289Y2 (en)
JP2008039055A (en) Bearing device for supporting roller
WO2019013198A1 (en) Cam follower device
WO2015033409A1 (en) Cam clutch
JP2003247617A (en) Friction roller type transmission
JP2003056601A (en) One-way clutch
JP6026242B2 (en) Rocker arm
JPH072675U (en) Split type shaft seal
JP2010014176A (en) Shaft for engine, camshaft and crankshaft
JP2009014179A (en) Tripod-type constant velocity universal joint
JP2017186995A (en) Rocker arm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19910752

Country of ref document: EP

Kind code of ref document: A1