WO2020148941A1 - 期待値計算による発電量精密予測法、期待値計算による発電量精密予測システムおよび期待値計算による発電量精密予測プログラム - Google Patents

期待値計算による発電量精密予測法、期待値計算による発電量精密予測システムおよび期待値計算による発電量精密予測プログラム Download PDF

Info

Publication number
WO2020148941A1
WO2020148941A1 PCT/JP2019/036017 JP2019036017W WO2020148941A1 WO 2020148941 A1 WO2020148941 A1 WO 2020148941A1 JP 2019036017 W JP2019036017 W JP 2019036017W WO 2020148941 A1 WO2020148941 A1 WO 2020148941A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
power generation
solar radiation
expected value
power
Prior art date
Application number
PCT/JP2019/036017
Other languages
English (en)
French (fr)
Inventor
高橋 秀幸
堀内 良雄
Original Assignee
株式会社ヒデ・ハウジング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヒデ・ハウジング filed Critical 株式会社ヒデ・ハウジング
Priority to CN201980003901.7A priority Critical patent/CN111602156B/zh
Priority to US16/623,704 priority patent/US10998725B2/en
Publication of WO2020148941A1 publication Critical patent/WO2020148941A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/004Generation forecast, e.g. methods or systems for forecasting future energy generation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/02Reservations, e.g. for tickets, services or events
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2639Energy management, use maximum of cheap power, keep peak load low
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the present invention relates to a power generation precision prediction method by expected value calculation, a power generation precision prediction system by expected value calculation, and a power generation precision prediction program by expected value calculation.
  • the amount of power generation which represents the trading power, is affected by meteorological factors. Therefore, from the viewpoint of the profitability evaluation of the solar power generation system, precise prediction of the power generation amount is considered as one of the important issues.
  • the amount of power generated by the solar power generation system is determined in a composite manner by meteorological and electronic engineering factors.
  • the meteorological factors include the influence of the weather on the amount of solar radiation and the influence of the aerosol on the amount of solar radiation.
  • the electronic factor includes a power generation characteristic corresponding to a solar panel and the like, and an output characteristic corresponding to an inverter device and the like.
  • the calculated total solar radiation amount in fine weather at the latest future time based on the current time and the actual measurement of the solar power generation amount in the latest past time interval from the current time to the latest past time It is characterized in that the predicted power generation amount at the latest future time is calculated based on the latest coefficient calculated from the value.
  • the total amount of solar radiation is determined from the average value of the amount of solar radiation, and the amount of power generation is predicted based on the power generation efficiency of the power generator and the total amount. Therefore, the peak cut loss due to the output characteristic is not accurately calculated, and it is difficult to accurately predict the power generation amount.
  • the present invention has been made in view of the above circumstances, and it is an issue to be solved to accurately predict the power generation amount of a natural energy power generation device affected by peak cut loss.
  • the present invention is a power generation precision prediction method by expected value calculation, based on the solar radiation amount data, a solar radiation amount analysis step of determining the solar radiation amount and the solar radiation amount appearance probability for each unit time, ,
  • the power generation amount is determined based on the solar radiation amount
  • the power generation amount prediction step of determining the power generation amount expected value based on the power generation amount per unit time corresponding to the solar radiation amount and the solar radiation amount appearance probability is executed by the computer processor.
  • the power generation characteristic data indicating the amount of solar radiation and the power generation efficiency required to obtain the minimum output power
  • the output characteristic data indicating the capacity and the output efficiency such that the excess amount becomes the peak cut loss
  • the first amount of solar radiation that is zero and the first amount of solar radiation that is the amount of solar radiation required to obtain the minimum output power, and the second amount of power generation that is the capacity are determined, and the capacity is satisfied.
  • the second amount of solar radiation which is the amount of solar radiation, is determined based on the second amount of power generation and the power generation efficiency, and when the amount of solar radiation is less than the first amount of solar radiation, the first amount of power generation is determined as the amount of solar power generation, and the amount of solar radiation is determined. Is greater than the second amount of solar radiation, the second amount of power generation is determined as the amount of power generation.
  • the present invention simplifies the amount of solar radiation affected by meteorological factors consisting of multiple factors on the basis of stochastic interpretation, and provides accurate power generation based on calculation for each amount of solar radiation.
  • the forecast can be realized.
  • the present invention further simplifies the statistical data of the amount of solar radiation required for calculation of the amount of power generation, and further reduces the database load including data reference and data storage. Play.
  • the present invention can realize the calculation in the case of the amount of power generation in which the meteorological factor and the electronic factor are combinedly taken into consideration.
  • the present invention has a further technical effect that the power generation amount can be uniquely determined as a predetermined value based on the amount of solar radiation, and the calculation cost related to the power generation amount prediction can be reduced. Play. Further, with such a configuration, the present invention can dynamically set the predetermined value of the power generation amount based on the performance of the power generation device including the solar panel and the performance of the output device including the power conditioner. Further, with such a configuration, the present invention further standardizes registration data in the database required for power generation prediction, and further reduces the database load including data reference and data storage. Play.
  • the present invention can dynamically set the predetermined value of the power generation amount based on the performance of the power generation device including the solar panel and the performance of the output device including the power conditioner. Further, with such a configuration, the registration data in the database required for power generation prediction is standardized, and the database load including data reference and data storage can be reduced, which is a further technical effect.
  • the present invention is a power generation precision prediction system by expected value calculation, based on the solar radiation amount data, a solar radiation amount analysis means for determining the solar radiation amount and the solar radiation amount appearance probability for each unit time
  • a power generation amount prediction unit that determines a power generation amount based on the solar radiation amount, based on the power generation amount and a solar radiation amount appearance probability corresponding to the solar radiation amount for each unit time, and,
  • the power generation amount prediction means uses power generation characteristic data indicating the amount of solar radiation and power generation efficiency required to obtain the minimum output power, and output characteristic data indicating the capacity and the output efficiency such that the excess amount becomes a peak cut loss.
  • the second amount of solar radiation which is the amount of solar radiation, is determined based on the second amount of power generation and the power generation efficiency, and when the amount of solar radiation is less than the first amount of solar radiation, the first amount of power generation is determined as the amount of solar power generation, and the amount of solar radiation is determined. Is greater than the second amount of solar radiation, the second amount of power generation is determined as the amount of power generation.
  • the present invention is a power generation precision prediction program by expected value calculation, the computer, based on the solar radiation amount data, the solar radiation amount for determining the solar radiation amount and the solar radiation amount appearance probability per unit time Analyzing means, determines the amount of power generation based on the amount of solar radiation, based on the amount of power generated per unit time corresponding to the amount of solar radiation and the probability of appearance of solar radiation amount, the amount of power generation prediction means for determining the expected amount of power generation, and function as
  • the power generation amount prediction means is based on power generation characteristic data showing the amount of solar radiation and power generation efficiency required to obtain the minimum output power, and output characteristic data showing the capacity and the output efficiency such that the excess amount becomes a peak cut loss.
  • a first amount of solar radiation that is zero to obtain the first amount of power generation and a minimum output power, and a second amount of power generation that is the capacity are determined, and when the capacity is satisfied,
  • the second amount of solar radiation which is the amount of solar radiation, is determined based on the second amount of power generation and power generation efficiency.
  • the first amount of power generation is determined as the amount of solar power generation
  • the amount of solar radiation is When it exceeds the second amount of solar radiation, the second amount of power generation is determined as the amount of power generation.
  • the present invention it is possible to realize a precise prediction of the amount of power generation by the expected value calculation based on the calculation when the solar radiation appearance probability for each unit time is used.
  • system 1 is a power generation precision prediction system based on expected value calculation.
  • the program 2001 in this embodiment is preferably recorded in a non-transitory recording medium and is installed in the computer device 2 by using the recording medium.
  • the function related to the system 1 is realized in an application including the program 2001 stored in the computer device 2 by using the computer resources of the computer device 2.
  • the application is implemented in the form of installed software or cloud software.
  • FIG. 1 shows a functional block diagram of a system 1 according to an embodiment of the present invention.
  • the system 1 includes a computer device 2, a power generation device 3, and an output device 4.
  • the computer device 2 includes an input unit 21, a display unit 22, a management unit 23, a solar radiation amount analysis unit 24, a power generation amount prediction unit 25, and a profitability evaluation unit 26.
  • the system 1 may not include at least one of the power generation device 3 and the output device 4.
  • the functions and effects achieved by the input unit 21, the display unit 22, the management unit 23, the solar radiation amount analysis unit 24, the power generation amount prediction unit 25, and the profitability evaluation unit 26 in the present embodiment are respectively input step,
  • the same functions and effects as the display step, management step, solar radiation amount analysis step, power generation amount prediction step, and profitability evaluation step are the same.
  • the input means 21 is used for input processing related to the system 1.
  • the input unit 21 is used, for example, for input processing of the solar radiation amount data D10, the power generation characteristic data D20, the output characteristic data D30, and the facility investment data D40.
  • the data input and processed by the input means 21 is stored in the database DB of the computer device 2.
  • the input means 21 may be configured to perform input processing in the plurality of computer devices 2 via the network NW and the application programming interface.
  • the display means 22 is used for display processing according to the system 1.
  • the display unit 22 displays various types of data stored in the database DB, including the data input by the input unit 21. Further, the display unit 22 may be configured to display the user interface for the input processing.
  • the display process according to the present embodiment may be performed by a plurality of computer devices 2 collaborating with each other based on an object-oriented script language such as the Javascript (registered trademark) language.
  • the management unit 23 stores the data input by the input unit 21, the data determined by the solar radiation amount analysis unit 24, the data determined by the power generation amount prediction unit 25, and the data determined by the profitability evaluation unit 26. At least one is stored in the database DB.
  • the database DB in this embodiment is constructed in the form of a relational database, a column type database, or a key/value store.
  • the data in the database DB in the present embodiment may be encrypted based on the one-way function.
  • the database DB in this embodiment may be accessible via the network NW. Further, the database DB may take the form of a distributed database including a plurality of auxiliary storage devices 203.
  • the solar radiation amount analysis means 24 determines the solar radiation amount and the solar radiation amount appearance probability based on the solar radiation amount data D10.
  • the solar radiation amount in the present embodiment preferably refers to the total solar radiation amount, and may be in the range of the total solar radiation amount.
  • the solar radiation amount appearance probability in this embodiment refers to the appearance probability of the solar radiation amount per unit time.
  • the power generation amount prediction means 25 determines the power generation amount based on the amount of solar radiation, and determines the power generation amount expected value based on the power generation amount and the probability of occurrence of solar radiation amount.
  • the power generation amount is determined based on the power generation efficiency included in the power generation characteristic data D20 and the light intensity corresponding to the amount of solar radiation.
  • the power generation amount prediction means 25 determines the first power generation amount as the power generation amount when the solar radiation amount is less than the first solar radiation amount.
  • the power generation amount prediction means 25 determines the second power generation amount as the power generation amount when the solar radiation amount exceeds the second solar radiation amount.
  • the power generation amount prediction means 25 at least based on the power generation efficiency included in the power generation characteristic data D20 and the output efficiency and capacity included in the output characteristic data D30, the first solar radiation amount and the first power generation amount. And a second amount of solar radiation and a second amount of power generation.
  • the power generation characteristic data D20 in this embodiment includes at least power generation efficiency and temperature characteristic data thereof.
  • the output characteristic data D30 in this embodiment includes at least output efficiency, its temperature characteristic data, and capacity.
  • the output efficiency includes information related to the output loss coefficient and the minimum output power.
  • the capacity in this embodiment refers to the peak cut line P0.
  • the profitability evaluation means 26 determines the profitability by using the arithmetic unit 201 based on the equipment investment data D40 and the expected power generation amount.
  • the facility investment data D40 includes the unit price of the power generation device including the power generation device 3, the unit price of the output device including the output device 4, the number of power generation devices including the power generation device 3, the number of output devices including the output device 4, and the power generation. Includes the land price related to the installation location of the device and the power selling price.
  • the profitability evaluation means 26 determines the amount of investment using the arithmetic unit 201 based on the capital investment data D40, and determines the income using the arithmetic unit 201 based on the capital investment data D40 and the expected power generation amount. ..
  • the profitability evaluation means 26 determines the yield based on the investment amount and the income, and determines the profitability including the profitability index and the internal rate of return. The profitability is determined for each overload ratio of the power generation device and the output device, and is stored in the database DB.
  • the profitability evaluation means 26 may determine the yield, the profitability index, or the overload rate at which the internal rate of return is maximized as the recommended overload rate and store it in the database DB. The various information determined by the profitability evaluation means 26 is displayed on the display means 22.
  • FIG. 1 shows a hardware configuration diagram of a system 1 according to the embodiment of the present invention.
  • the computer device 2 includes a calculation device 201, a main storage device 202, an auxiliary storage device 203, an input device 204, a display device 205, a communication device 206, and a bus interface for interconnection.
  • the power generation device 3 includes a photoelectric conversion device 301 and a communication device 302.
  • the output device 4 includes a power conversion device 401 and a communication device 402. At this time, the power generation device 3 and the output device 4 are electrically connected.
  • the arithmetic unit 201 includes a processor capable of executing an instruction set.
  • the main storage device 202 includes a volatile memory, an example of which is RAM.
  • the computer device 2 may be provided with the SoC including the arithmetic device 201 and the main storage device 202.
  • the SoC may be configured to include a coprocessor including an integrated circuit optimized for a specific purpose including coding and machine learning.
  • the auxiliary storage device 203 is used as a database DB which is a storage destination of various data related to the system 1.
  • the auxiliary storage device 203 includes a non-volatile memory.
  • a nonvolatile memory a hard disk drive may be used in addition to a semiconductor memory such as a flash memory, and the recording method thereof is not limited.
  • the auxiliary storage device 203 stores an operating system (OS 2002) and device drivers corresponding to at least one of the input device 204, the display device 205, and the communication device 206.
  • OS 2002 operating system
  • the input device 204 is used by the user to perform the input process performed by the input means 21.
  • the input device 204 includes a keyboard or a touch panel, and its input method is not limited.
  • the display device 205 is used for display processing performed by the display means 22.
  • the display device 205 includes a video memory that stores a frame buffer for display processing, and a display. It should be noted that the display driving method in the present embodiment is not limited.
  • the communication devices 206, 302 and 402 are used to perform communication processing in the network NW via at least one of wireless WAN, LAN and PAN.
  • the communication process is based on a wired communication standard or a wireless communication standard.
  • the computer device 2 in the present embodiment may be configured without the input device 204 and the display device 205. Further, a plurality of computer devices 2 may cooperate to realize at least a part of the functions of the system 1.
  • the photoelectric conversion device 301 includes at least a power generation unit and a support unit.
  • the power generation unit converts solar energy into electric energy based on the photovoltaic effect, and the semiconductor material thereof is not limited.
  • the support part is used at least for supporting the power generation part, and its material is not limited. Further, the photoelectric conversion device 301 may have a configuration having a measuring unit for measuring the total solar radiation.
  • the power conversion device 401 includes at least a conversion unit and a support unit.
  • the converter includes at least an inverter element for converting DC power into AC power.
  • the support part is used at least for supporting the power generation part, and its material is not limited.
  • the communication device 302 is used to transmit at least the amount of power generated by the power generation device 3 and the actually measured amount of solar radiation measured by the measurement unit to the computer device 2.
  • the communication device 402 is used to transmit at least information regarding the amount of power generation as the DC power supplied from the power generation device 3 and information regarding the AC power converted by the conversion unit to the computer device 2. ..
  • the network NW in this embodiment uses TCP/IP as a communication protocol, for example.
  • the network NW can use a CATV line, a mobile communication network, an aviation communication network, or a satellite communication network, and there is no limitation on the type.
  • FIG. 2 shows a processing flowchart relating to determination of the expected value of power generation amount in the present embodiment.
  • step S10 input processing or designation of the solar radiation amount data D10, the power generation characteristic data D20, and the output characteristic data D30 is performed by the input means 21 (step S10).
  • the management unit 23 performs a reference process of the data.
  • the input unit 21 may input or process the geographic data, and the solar radiation amount data D10 corresponding to the geographic data may be referred to in the database DB.
  • the management means 23 determines/designates the power generation characteristic data D20 based on the data transmitted from the power generation device 3 to the computer device 2.
  • the management unit 23 may determine/designate the output characteristic data D30 based on the data transmitted from the output device 4 to the computer device 2.
  • step S10 input processing or designation of unit time and calculation target time is performed by the input means 21 (steps S20 and S30).
  • the unit time in the present embodiment indicates the amount of time range that is the target of power generation prediction.
  • the calculation target time indicates a time period that is a target of power generation amount prediction.
  • the unit time indicates a length of time such as one hour, and the calculation target time indicates a date and time such as 1:00 pm on January 1.
  • the solar radiation amount analysis means 24 determines the solar radiation amount appearance probability distribution including the solar radiation amount and the solar radiation amount appearance probability based on the input processing or the designated solar radiation amount data D10, the unit time, and the calculation target time (step S40).
  • the power generation amount prediction means 25 performs calculation in the case of power generation amount based on the solar radiation amount appearance probability distribution determined by the solar radiation amount analysis means 24.
  • the power generation amount is determined as the first power generation amount (step S60A).
  • the first power generation amount is preferably zero.
  • the amount of solar radiation when the amount of power generation that satisfies the first amount of power generation is obtained is determined as the first amount of solar radiation.
  • the amount of solar radiation required to obtain the minimum output power indicated by the output characteristic data D30 is determined based on the power generation characteristic data D20.
  • the 1st solar radiation amount may be uniquely determined in the aspect of input processing.
  • the power generation amount is the solar radiation amount and the input process or the designated power generation. It is determined based on the power generation efficiency in the characteristic data D20 (step S60B).
  • the power generation amount is determined as the second power generation amount (step S60C).
  • the second power generation amount is preferably the capacity included in the input process or designated output characteristic data D30. Further, it is preferable that the amount of solar radiation that satisfies the capacity and is sufficient to generate power is determined as the second amount of solar radiation.
  • the excess power generation amount related to the second power generation amount in the present embodiment refers to the peak cut loss.
  • the second amount of solar radiation is determined based on the second amount of power generation and the power generation efficiency in the power generation characteristic data D20.
  • the first solar radiation amount may be uniquely determined in a mode of input processing.
  • the power generation amount prediction means 25 determines the sum of products of the power generation amount obtained by the case calculation and the solar radiation amount appearance probability in the case calculation as the power generation amount expected value (step S70).
  • the present embodiment an example of calculation is shown for three types, but the number of types of case calculation is not limited.
  • step S80 when the calculation target time is changed (updated) (Yes in step S80), the process transitions to the state immediately before step S30.
  • step S80 When the calculation target time is not changed (updated) (No (N) in step S80), the process ends.
  • FIG. 4 illustrates a processing flow chart of power generation amount prediction in the conventional method.
  • the process flow chart does not include a process step related to determination of a solar radiation amount appearance probability distribution and a process step related to case calculation. Since the case calculation (step S60A) and the case calculation (step S60C) in FIG. 2 are not included, it is not dependent on the amount of solar radiation, and it is not possible to preferably consider the case where the power generation amount uniquely reaches a predetermined amount. Have.
  • the present invention can solve the problem and realize accurate prediction of the amount of power generation.
  • FIG. 3 is a graph showing the power generation amount prediction result.
  • the numerical value of the power generation amount corresponding to the vertical axis of the graph shows an example.
  • the power generation amount prediction result may be displayed on the display unit 22.
  • the average power generation amount transition P1 and the expected power generation amount transition P2 are respectively the prediction result based on the process flowchart (FIG. 2) relating to the determination of the expected power generation amount and the power generation amount prediction in the conventional method.
  • the prediction result based on the process flowchart (FIG. 4) is shown.
  • the power generation characteristic data D20 and the output characteristic data D30 used in the calculation example (FIG. 3) of the power generation amount average value transition P1 and the power generation amount expected value transition P2 are the same.
  • the expected power generation amount may be calculated using a mathematical model as an approximate expression based on the probability distribution of solar radiation appearance.
  • the mathematical model is preferably based on one or more probability density functions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • Power Engineering (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • General Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Development Economics (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Automation & Control Theory (AREA)
  • Public Health (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Photovoltaic Devices (AREA)

Abstract

ピークカットロスの影響を受ける自然エネルギー発電装置の発電量を精密に予測することを解決すべき課題とする。 日射量データに基づき、単位時間毎の日射量および日射量出現確率を決定する日射量分析ステップと、前記日射量に基づき発電量を決定し、前記日射量に対応する単位時間毎の前記発電量および日射量出現確率に基づき、発電量期待値を決定する発電量予測ステップと、をコンピュータのプロセッサに実行させ、前記発電量予測ステップは、最低出力電力を得るために要される前記日射量および発電効率を示す発電特性データ、および、超過分がピークカットロスとなるような容量と出力効率とを示す出力特性データに基づき、ゼロである第1の発電量および前記最低出力電力を得るために要される前記日射量である第1の日射量と、前記容量である第2の発電量と、を決定し、前記容量を満たす場合の前記日射量である第2の日射量を前記第2の発電量および発電効率に基づき決定し、前記日射量が前記第1の日射量を下回る場合、前記第1の発電量を前記発電量として決定し、前記日射量が前記第2の日射量を上回る場合、前記第2の発電量を前記発電量として決定することを特徴とする。

Description

期待値計算による発電量精密予測法、期待値計算による発電量精密予測システムおよび期待値計算による発電量精密予測プログラム
 本発明は、期待値計算による発電量精密予測法、期待値計算による発電量精密予測システムおよび期待値計算による発電量精密予測プログラムに関する。
 自然エネルギー発電装置の1つである太陽光発電システムでは、売買電力を示す発電量が気象学的因子に影響される。よって、太陽光発電システムの収益性評価の観点から、発電量の精密予測が、重要な課題の1つとして、考えられている。
 太陽光発電システムにおける発電量は、気象学的因子ならびに電子工学的因子により、複合的に決定される。ここでの気象学的因子とは、天候による日射量への影響と、エアロゾルによる日射量への影響とを、含む。また、電子工学的因子は、太陽光パネル等に対応する発電特性と、インバータ装置等に対応する出力特性とを、含む。
 特許文献1に記載の発明では、現在時刻を基準とする直近の未来時刻における快晴時の計算全天日射量と、現在時刻から直近の過去時刻までの直近過去時間間隔における太陽光発電量の実測値から算出された直近係数とに基づいて、前記直近の未来時刻における予測発電量を算出することを特徴としている。
特開2017-127140号公報
 しかしながら、特許文献1に記載の、未来時刻における予測発電量は、直近係数の平均値に基づき算出されるため、日射量の不確定性を含む気象学的因子と、太陽光発電装置の電気特性を含む電子工学的因子と、が複合的に考慮された場合計算に基づく精密な発電量計算は、困難である。
 従来手法では、日射量の平均値から日射量の総量を決定し、発電装置の発電効率と当該総量とに基づき、発電量予測が行われる。そのため、出力特性に起因するピークカットロスは正確に計算されず、発電量の精密予測は困難である。
 本発明は、上記のような実情に鑑みてなされたものであり、ピークカットロスの影響を受ける自然エネルギー発電装置の発電量を精密に予測することを解決すべき課題とする。
 上記課題を解決するために、本発明は、期待値計算による発電量精密予測法であって、日射量データに基づき、単位時間毎の日射量および日射量出現確率を決定する日射量分析ステップと、日射量に基づき発電量を決定し、日射量に対応する単位時間毎の発電量および日射量出現確率に基づき、発電量期待値を決定する発電量予測ステップと、をコンピュータのプロセッサに実行させ、発電量予測ステップは、最低出力電力を得るために要される日射量および発電効率を示す発電特性データ、および、超過分がピークカットロスとなるような容量と出力効率とを示す出力特性データに基づき、ゼロである第1の発電量および最低出力電力を得るために要される日射量である第1の日射量と、容量である第2の発電量と、を決定し、容量を満たす場合の日射量である第2の日射量を第2の発電量および発電効率に基づき決定し、日射量が第1の日射量を下回る場合、第1の発電量を発電量として決定し、日射量が第2の日射量を上回る場合、第2の発電量を発電量として決定することを特徴とする。
 このような構成とすることで、本発明は、複数の因子からなる気象学的因子に影響される日射量を、確率的解釈に基づき単純化し、日射量毎の場合計算に基づく発電量の精密予測を、実現できる。また、このような構成とすることで、本発明は、発電量の計算に必要な日射量の統計データを簡素化し、データ参照およびデータ格納を含むデータベース負荷を軽減できる、という更なる技術的効果を奏する。また、このような構成とすることで、本発明は、気象学的因子ならびに電子工学的因子を複合的に考慮した、発電量の場合計算を実現できる。また、このような構成とすることで、本発明は、日射量に基づき、発電量を所定値として一意的に決定でき、発電量予測に係る計算コストを軽減できる、という更なる技術的効果を奏する。また、このような構成とすることで、本発明は、太陽光パネルを含む発電装置の性能と、パワーコンディショナーを含む出力装置の性能とに基づき、発電量の所定値を動的に設定できる。また、このような構成とすることで、本発明は、発電量予測に要されるデータベースへの登録データが標準化され、データ参照およびデータ格納を含むデータベース負荷を軽減できる、という更なる技術的効果を奏する。また、このような構成とすることで、本発明は、太陽光パネルを含む発電装置の性能と、パワーコンディショナーを含む出力装置の性能とに基づき、発電量の所定値を動的に設定できる。また、このような構成とすることで、発電量予測に要されるデータベースへの登録データが標準化され、データ参照およびデータ格納を含むデータベース負荷を軽減できる、という更なる技術的効果を奏する。
 上記課題を解決するために、本発明は、期待値計算による発電量精密予測システムであって、日射量データに基づき、単位時間毎の日射量および日射量出現確率を決定する日射量分析手段と、前記日射量に基づき発電量を決定し、前記日射量に対応する単位時間毎の前記発電量および日射量出現確率に基づき、発電量期待値を決定する発電量予測手段と、を有し、前記発電量予測手段は、最低出力電力を得るために要される日射量および発電効率を示す発電特性データ、および、超過分がピークカットロスとなるような容量と出力効率とを示す出力特性データに基づき、ゼロである第1の発電量および最低出力電力を得るために要される日射量である第1の日射量と、容量である第2の発電量と、を決定し、容量を満たす場合の日射量である第2の日射量を第2の発電量および発電効率に基づき決定し、日射量が第1の日射量を下回る場合、第1の発電量を発電量として決定し、日射量が第2の日射量を上回る場合、第2の発電量を発電量として決定することを特徴とする。
 上記課題を解決するために、本発明は、期待値計算による発電量精密予測プログラムであって、コンピュータを、日射量データに基づき、単位時間毎の日射量および日射量出現確率を決定する日射量分析手段と、日射量に基づき発電量を決定し、日射量に対応する単位時間毎の発電量および日射量出現確率に基づき、発電量期待値を決定する発電量予測手段と、として機能させ、発電量予測手段は、最低出力電力を得るために要される日射量および発電効率を示す発電特性データ、および、超過分がピークカットロスとなるような容量と出力効率とを示す出力特性データに基づき、ゼロである第1の発電量および最低出力電力を得るために要される日射量である第1の日射量と、容量である第2の発電量と、を決定し、容量を満たす場合の日射量である第2の日射量を第2の発電量および発電効率に基づき決定し、日射量が第1の日射量を下回る場合、第1の発電量を発電量として決定し、日射量が第2の日射量を上回る場合、第2の発電量を発電量として決定することを特徴とする。
 本発明は、単位時間毎の日射量出現確率を用いた場合計算に基づく期待値計算により、発電量の精密予測を実現できる。
本発明の実施形態に係るハードウェア構成図および機能ブロック図である。 本発明の実施形態に係る処理フローチャートである。 本発明の実施形態に係る発電量予測結果を示すグラフ図である。 従来の発電量予測法に係る処理フローチャートである。
 以下、図面を用いて、本発明に係るシステム1について説明する。なお、以下に示す実施形態は本発明の一例であり、本発明を以下の実施形態に限定するものではなく、様々な構成を採用することもできる。また、当該システム1は、期待値計算による発電量精密予測システムである。
 本実施形態では、システム1の構成、動作などについて説明するが、同様の構成の方法、プログラム、記録媒体なども、同様の作用効果を奏する。
 本実施形態におけるプログラム2001は、好ましくは、非一過性の記録媒体に記録され、当該記録媒体を用いることでコンピュータ装置2に導入される。
 システム1に係る機能は、コンピュータ装置2に格納されたプログラム2001を含むアプリケーションにおいて、当該コンピュータ装置2の計算機資源を用いて実現される。当該アプリケーションは、インストール型ソフトウェア、もしくは、クラウド型ソフトウェアの態様で実現される。
 図1は、本発明の実施形態に係るシステム1の機能ブロック図を示す。
 システム1は、コンピュータ装置2、発電装置3および出力装置4を備える。コンピュータ装置2は、入力手段21、表示手段22、管理手段23、日射量分析手段24、発電量予測手段25、および、収益性評価手段26を有する。なお、システム1は、発電装置3および出力装置4の少なくとも一方を、備えなくてもよい。
 本実施形態における入力手段21、表示手段22、管理手段23、日射量分析手段24、発電量予測手段25、および、収益性評価手段26に係る機能ならびに発揮される効果は、それぞれ、入力ステップ、表示ステップ、管理ステップ、日射量分析ステップ、発電量予測ステップ、および、収益性評価ステップに係る機能ならびに発揮される効果と、同様である。
 入力手段21は、システム1に係る入力処理のために用いられる。入力手段21は、例として、日射量データD10、発電特性データD20、出力特性データD30および設備投資データD40の入力処理のために用いられる。本実施形態では、入力手段21により入力処理されたデータは、コンピュータ装置2におけるデータベースDBに格納される。
 入力手段21は、複数のコンピュータ装置2において、ネットワークNWおよびアプリケーションプログラミングインターフェースを介して入力処理を行う構成としてもよい。
 表示手段22は、システム1に係る表示処理のために用いられる。表示手段22は、一例として、入力手段21により入力処理されたデータを含む、データベースDBに格納された各種データを、表示処理する。また、表示手段22は、当該入力処理のための、ユーザインタフェースを、表示処理する構成としてもよい。なお、本実施形態における表示処理は、JavaScript(登録商標)言語を一例とするオブジェクト指向スクリプト言語に基づき複数のコンピュータ装置2が協調することで、行われてもよい。
 管理手段23は、入力手段21により入力処理されるデータ、日射量分析手段24により決定されるデータ、発電量予測手段25により決定されるデータ、および、収益性評価手段26により決定されるデータの少なくとも1つを、データベースDBに格納する。
 本実施形態におけるデータベースDBは、リレーショナルデータベース、カラム型データベース、もしくは、キーバリューストアの態様で構築される。なお、本実施形態における、データベースDBにおけるデータは、一方向性関数に基づき、暗号化されてもよい。
 本実施形態におけるデータベースDBは、ネットワークNWを介してアクセス可能である構成としてもよい。また、データベースDBは、複数の補助記憶装置203からなる分散型データベースの態様をとってもよい。
 日射量分析手段24は、日射量データD10に基づき、日射量および日射量出現確率を決定する。本実施形態における日射量は、好ましくは、全天日射量を指し、当該全天日射量の範囲としてもよい。本実施形態における日射量出現確率は、単位時間における当該日射量の出現確率を指す。
 発電量予測手段25は、日射量に基づき発電量を決定し、発電量および日射量出現確率に基づき発電量期待値を決定する。当該発電量は、発電特性データD20に含まれる発電効率および日射量に対応する光強度に基づき決定される。
 発電量予測手段25は、日射量が第1の日射量を下回る場合、第1の発電量を、発電量として決定する。発電量予測手段25は、日射量が第2の日射量を上回る場合、第2の発電量を、発電量として決定する。このとき、発電量予測手段25は、少なくとも、発電特性データD20に含まれる発電効率と、出力特性データD30に含まれる出力効率および容量と、に基づき、第1の日射量および第1の発電量と、第2の日射量および第2の発電量と、を決定する。
 本実施形態における発電特性データD20は、少なくとも、発電効率と、その温度特性データと、を含む。
 本実施形態における出力特性データD30は、少なくとも、出力効率と、その温度特性データと、容量と、を含む。当該出力効率には、出力に係る損失係数と、最低出力電力と、に係る情報が含まれる。本実施形態における容量とは、ピークカットラインP0を、指す。
 収益性評価手段26は、設備投資データD40と、発電量期待値と、に基づき、演算装置201を用いて、収益性を決定する。このとき、設備投資データD40は、発電装置3を含む発電装置の単価、出力装置4を含む出力装置の単価、発電装置3を含む発電装置の数量、出力装置4を含む出力装置の数量、発電装置の設置場所に係る土地価格、および、売電価格を含む。
 収益性評価手段26は、設備投資データD40に基づき、演算装置201を用いて、投資額を決定し、設備投資データD40および発電量期待値に基づき、演算装置201を用いて、収入を決定する。収益性評価手段26は、当該投資額および収入に基づき、利回を決定し、収益性指数および内部収益率を含む収益性を、決定する。なお、当該収益性は、発電装置および出力装置に係る過積載率毎に決定され、データベースDBに格納される。
 収益性評価手段26は、利回、収益性指数または内部収益率が最大化される過積載率を、推奨過積載率として決定し、データベースDBに格納してもよい。収益性評価手段26により決定される各種情報は、表示手段22により、表示処理される。
 図1は、本発明の実施形態に係るシステム1のハードウェア構成図を示す。
 コンピュータ装置2は、演算装置201と、主記憶装置202と、補助記憶装置203と、入力装置204と、表示装置205と、通信装置206と、相互接続のためのバスインタフェースと、を備える。
 発電装置3は、光電変換装置301と、通信装置302と、を備える。出力装置4は、電力変換装置401と、通信装置402と、を備える。このとき、発電装置3および出力装置4は、電気的に接続されている。
 演算装置201は、命令セットを実行可能なプロセッサを備える。
 主記憶装置202は、RAMを一例とする揮発性メモリを備える。
 本実施形態では、演算装置201および主記憶装置202を備えるSoCが、コンピュータ装置2に備えられてもよい。当該SoCには、符号化や機械学習を含む特定用途に最適化された集積回路を含むコプロセッサが、備えられる構成としてもよい。
 補助記憶装置203は、システム1に係る各種データの格納先であるデータベースDBとして用いられる。補助記憶装置203は、不揮発性メモリを備える。当該不揮発性メモリには、フラッシュメモリを一例とする半導体メモリの他に、ハードディスクドライブが用いられてもよく、その記録方式に、制限はない。
 補助記憶装置203には、プログラム2001の他に、オペレーティングシステム(OS2002)と、入力装置204、表示装置205および通信装置206の少なくとも1つに対応するデバイスドライバと、が記憶される。
 入力装置204は、入力手段21により行われる入力処理をユーザが行うために用いられる。入力装置204は、キーボードもしくはタッチパネルを備え、その入力方式に、制限はない。
 表示装置205は、表示手段22により行われる表示処理のために用いられる。表示装置205は、表示処理に係るフレームバッファを記憶するビデオメモリと、ディスプレイと、を備える。なお、本実施形態におけるディスプレイの駆動方式に、制限はない。
 通信装置206、302および402は、無線WAN、LANおよびPANの少なくとも1つを介し、ネットワークNWにおける通信処理を行うために用いられる。当該通信処理は、有線通信規格もしくは無線通信規格に基づく。
 本実施形態におけるコンピュータ装置2は、入力装置204および表示装置205を備えない構成としてもよい。また、複数のコンピュータ装置2が協調して、システム1に係る機能の少なくとも一部を、実現する構成としてもよい。
 光電変換装置301は、少なくとも、発電部と、支持部と、を備える。当該発電部は、光起電力効果に基づき、太陽光エネルギーを電気エネルギーに変換し、その半導体材料に、制限はない。当該支持部は、少なくとも、当該発電部の支持のために用いられ、その材料に、制限はない。また、光電変換装置301は、全天日射量を測定するための、測定部を有する構成としてもよい。
 電力変換装置401は、少なくとも、変換部と、支持部と、を備える。当該変換部は、直流電力を交流電力に変換するためのインバータ素子を、少なくとも備える。インバータ素子の半導体材料に制限はない。当該支持部は、少なくとも、当該発電部の支持のために用いられ、その材料に、制限はない。
 通信装置302は、少なくとも、発電装置3における発電量、測定部において測定された実測日射量を、コンピュータ装置2へ送信するために、用いられる。
 通信装置402は、少なくとも、発電装置3から供給された直流電力としての発電量に係る情報、および、変換部において変換された交流電力に係る情報を、コンピュータ装置2へ送信するために、用いられる。
 本実施形態におけるネットワークNWは、例えば、通信プロトコルにTCP/IPを用いる。なお、ネットワークNWは、CATV回線や、移動体通信網、航空通信網、衛星通信網を利用でき、その種別に、制限はない。
 図2は、本実施形態における発電量期待値の決定に係る処理フローチャートを示す。
 本実施形態では、まず、初期設定として、日射量データD10、発電特性データD20および出力特性データD30の入力処理または指定が、入力手段21により、行われる(ステップS10)。このとき、データベースDBにおいて既に格納されているデータが指定される場合、管理手段23は、当該データの参照処理を行う。当該ステップでは、入力手段21により地理データが入力処理または指定され、当該地理データに対応する日射量データD10がデータベースDBにおいて参照される構成としてもよい。
 管理手段23は、発電装置3からコンピュータ装置2へ送信されたデータに基づき、発電特性データD20を決定/指定する。管理手段23は、出力装置4からコンピュータ装置2へ送信されたデータに基づき、出力特性データD30を決定/指定してもよい。
 ステップS10が完了した後は、単位時間および計算対象時間の入力処理または指定が、入力手段21により、行われる(ステップS20、S30)。本実施形態における単位時間は、発電量予測の対象となる時間範囲の多寡を、示す。また、計算対象時間は、発電量予測の対象となる時間帯を、示す。具体的には、単位時間は、1時間などの時間の長さを示し、計算対象時間は、1月1日の午後1時などの日時を示す。
 日射量分析手段24は、入力処理または指定された日射量データD10、単位時間および計算対象時間に基づき、日射量および日射量出現確率を含む、日射量出現確率分布を決定する(ステップS40)。
 発電量予測手段25は、日射量分析手段24により決定された日射量出現確率分布に基づき、発電量の場合計算を行う。
 日射量出現確率分布に含まれる日射量が、第1の日射量を下回る場合(ステップS50、条件C1)、発電量は、第1の発電量として決定される(ステップS60A)。このとき、当該第1の発電量は、好ましくは、ゼロである。このとき、当該第1の発電量を満たす発電量が得られる場合の日射量が、当該第1の日射量として決定される。具体的には、出力特性データD30が示す最低出力電力を得るために要される日射量を、発電特性データD20に基づき決定する。なお、本実施形態では、第1の日射量は、入力処理する態様で、一意的に決定されてもよい。
 日射量出現確率分布に含まれる日射量が、第1の日射量以上かつ第2の日射量以下である場合(ステップS50、条件C2)、発電量は、日射量および入力処理または指定された発電特性データD20における発電効率に基づき、決定される(ステップS60B)。
 日射量出現確率分布に含まれる日射量が、第2の日射量を上回る場合(ステップS50、条件C3)、発電量は、第2の発電量として決定される(ステップS60C)。このとき、当該第2の発電量は、好ましくは、入力処理または指定された出力特性データD30に含まれる容量である。また、当該容量を満たす、発電量が得られる場合の日射量が、当該第2の日射量として、決定される構成が好ましい。本実施形態における第2の発電量に係る超過分の発電量は、ピークカットロスを、指す。このとき、第2の日射量は、第2の発電量と発電特性データD20における発電効率に基づき、決定される。なお、本実施形態では、第の日射量は、入力処理する態様で、一意的に決定されてもよい。
 発電量予測手段25は、場合計算によって得られた発電量および当該場合計算における日射量出現確率の積の総和を、発電量期待値として決定する(ステップS70)。なお、本実施形態では、3種の場合計算の例を示したが、場合計算の種数に、制限はない。
 最後に、計算対象時間の変更(更新)を行う場合(ステップS80でYes(Y))、処理は、ステップS30の直前の状態へ遷移する。計算対象時間の変更(更新)を行わない場合(ステップS80でNo(N))、処理は終了される。
 図4は、従来手法における発電量予測の処理フローチャートを図示している。当該処理フローチャートは、日射量出現確率分布の決定に係る処理ステップと、場合計算に係る処理ステップとが、含まれていない。図2における場合計算(ステップS60A)および場合計算(ステップS60C)が含まれていないため、日射量に依存せず、発電量が一意的に所定量になる場合を好適に考慮できない、という問題点を有する。本発明は、当該問題点を解消し、発電量の精密予測を実現できる。
 図3は、発電量予測結果を示すグラフ図である。当該グラフ図の縦軸に対応する発電量の数値は一例を示している。なお、当該発電量予測結果は、表示手段22により、表示処理される構成としてもよい。
 図3に示すとおり、発電量平均値推移P1および発電量期待値推移P2は、それぞれ、発電量期待値の決定に係る処理フローチャート(図2)に基づく予測結果と、従来手法における発電量予測の処理フローチャート(図4)に基づく予測結果と、を示している。なお、発電量平均値推移P1および発電量期待値推移P2の算出例(図3)において用いられた、発電特性データD20および出力特性データD30は、同一である。
 図3に示すとおり、従来手法における発電量予測(P1に対応)では予測結果がピークカットラインP0近傍となる時間帯が現れるのに対し、本発明の手法(P2に対応)ではピークカットラインP0を下回る時間帯が現れる。これは、前述のとおり、本発明の手法では、日射量に依存せず発電量が一意的に所定量になる場合が考慮された期待値計算が行われるためである。具体的には、本発明の手法は、ピークカットラインP0を瞬間的に上回る場合を、確率論的に逐次考慮しているため、ピークカット分を除去した発電量を精密に予測することができる。
 なお、本実施形態では、日射量出現確率分布に基づく近似式としての数理モデルを用いて、発電量期待値が計算されてもよい。当該数理モデルは、好ましくは、1以上の確率密度関数に基づく。
1 システム
2 コンピュータ装置
3 発電装置
4 出力装置
21 入力手段
22 表示手段
23 管理手段
24 日射量分析手段
25 発電量予測手段
26 収益性評価手段
201 演算装置
202 主記憶装置
203 補助記憶装置
204 入力装置
205 表示装置
206 通信装置
301 光電変換装置
302 通信装置
401 電力変換装置
402 通信装置
2001 プログラム
2002 OS
C1、C2、C3 条件
DB データベース
D10 日射量データ
D20 発電特性データ
D30 出力特性データ
D40 設備投資データ
NW ネットワーク
P0 ピークカットライン
P1 発電量平均値推移
P2 発電量期待値推移
S10、S20、S30、S40、S50、S60A、S60B、S60C、S70、S
80 ステップ
 

Claims (3)

  1.  期待値計算による発電量精密予測法であって、
     日射量データに基づき、単位時間毎の日射量および日射量出現確率を決定する日射量分析ステップと、
     前記日射量に基づき発電量を決定し、前記日射量に対応する単位時間毎の前記発電量および日射量出現確率に基づき、発電量期待値を決定する発電量予測ステップと、
     をコンピュータのプロセッサに実行させ、
     前記発電量予測ステップは、最低出力電力を得るために要される前記日射量および発電効率を示す発電特性データ、および、超過分がピークカットロスとなるような容量と出力効率とを示す出力特性データに基づき、ゼロである第1の発電量および前記最低出力電力を得るために要される前記日射量である第1の日射量と、前記容量である第2の発電量と、を決定し、前記容量を満たす場合の前記日射量である第2の日射量を前記第2の発電量および発電効率に基づき決定し、前記日射量が前記第1の日射量を下回る場合、前記第1の発電量を前記発電量として決定し、前記日射量が前記第2の日射量を上回る場合、前記第2の発電量を前記発電量として決定する、
     期待値計算による発電量精密予測法。
  2.  期待値計算による発電量精密予測システムであって、
     日射量データに基づき、単位時間毎の日射量および日射量出現確率を決定する日射量分析手段と、
     前記日射量に基づき発電量を決定し、前記日射量に対応する単位時間毎の前記発電量および日射量出現確率に基づき、発電量期待値を決定する発電量予測手段と、を有し、
     前記発電量予測手段は、最低出力電力を得るために要される前記日射量および発電効率を示す発電特性データ、および、超過分がピークカットロスとなるような容量と出力効率とを示す出力特性データに基づき、ゼロである第1の発電量および前記最低出力電力を得るために要される前記日射量である第1の日射量と、前記容量である第2の発電量と、を決定し、前記容量を満たす場合の前記日射量である第2の日射量を前記第2の発電量および発電効率に基づき決定し、前記日射量が前記第1の日射量を下回る場合、前記第1の発電量を前記発電量として決定し、前記日射量が前記第2の日射量を上回る場合、前記第2の発電量を前記発電量として決定する、
     期待値計算による発電量精密予測システム。
  3.  期待値計算による発電量精密予測プログラムであって、
     コンピュータを、
     日射量データに基づき、単位時間毎の日射量および日射量出現確率を決定する日射量分析手段と、
     前記日射量に基づき発電量を決定し、前記日射量に対応する単位時間毎の前記発電量および日射量出現確率に基づき、発電量期待値を決定する発電量予測手段と、として機能させ、
     前記発電量予測手段は、最低出力電力を得るために要される前記日射量および発電効率を示す発電特性データ、および、超過分がピークカットロスとなるような容量と出力効率とを示す出力特性データに基づき、ゼロである第1の発電量および前記最低出力電力を得るために要される前記日射量である第1の日射量と、前記容量である第2の発電量と、を決定し、前記容量を満たす場合の前記日射量である第2の日射量を前記第2の発電量および発電効率に基づき決定し、前記日射量が前記第1の日射量を下回る場合、前記第1の発電量を前記発電量として決定し、前記日射量が前記第2の日射量を上回る場合、前記第2の発電量を前記発電量として決定する、
     期待値計算による発電量精密予測プログラム。

     
PCT/JP2019/036017 2019-01-18 2019-09-13 期待値計算による発電量精密予測法、期待値計算による発電量精密予測システムおよび期待値計算による発電量精密予測プログラム WO2020148941A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980003901.7A CN111602156B (zh) 2019-01-18 2019-09-13 根据期望值计算的发电量精密预测法、根据期望值计算的发电量精密预测系统及根据期望值计算的发电量精密预测程序
US16/623,704 US10998725B2 (en) 2019-01-18 2019-09-13 Electric power generation prediction method based on expected value calculation, electric power generation prediction system based on expected value calculation, and electric power generation prediction program product based on expected value calculation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-006478 2019-01-18
JP2019006478A JP6562491B1 (ja) 2019-01-18 2019-01-18 期待値計算による発電量精密予測法、期待値計算による発電量精密予測システムおよび期待値計算による発電量精密予測プログラム

Publications (1)

Publication Number Publication Date
WO2020148941A1 true WO2020148941A1 (ja) 2020-07-23

Family

ID=67695600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036017 WO2020148941A1 (ja) 2019-01-18 2019-09-13 期待値計算による発電量精密予測法、期待値計算による発電量精密予測システムおよび期待値計算による発電量精密予測プログラム

Country Status (4)

Country Link
US (1) US10998725B2 (ja)
JP (1) JP6562491B1 (ja)
CN (1) CN111602156B (ja)
WO (1) WO2020148941A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111260147A (zh) * 2020-02-07 2020-06-09 河北工程大学 发电量预测方法、装置及终端设备
CN114336580A (zh) * 2022-03-09 2022-04-12 安徽中科海奥电气股份有限公司 直流并网太阳能光伏组件的控制方法
CN116993327B (zh) * 2023-09-26 2023-12-15 国网安徽省电力有限公司经济技术研究院 用于变电站的缺陷定位系统及其方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304402A (ja) * 2005-04-15 2006-11-02 Nippon Telegr & Teleph Corp <Ntt> 分散型エネルギーシステムの制御装置、制御方法、プログラム、および記録媒体
WO2013042213A1 (ja) * 2011-09-20 2013-03-28 富士通株式会社 計算機、計算機システム、および探索プログラム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036820A (ja) 2011-08-05 2013-02-21 Fuji Electric Co Ltd 日射量予測装置、プログラム
JP5746098B2 (ja) 2012-06-11 2015-07-08 トヨタ自動車株式会社 自然エネルギーを利用した発電システムの劣化診断装置
JP5940922B2 (ja) 2012-07-12 2016-06-29 トヨタ自動車株式会社 自然エネルギー量予測装置
JP5977272B2 (ja) 2014-01-21 2016-08-24 関西電力株式会社 日射強度推定装置、日射強度推定システム及び日射強度推定方法
JP6355491B2 (ja) 2014-09-05 2018-07-11 関西電力株式会社 日射計性能低下状態推定装置、日射計性能低下状態推定システム及び日射計性能低下状態推定方法
CN105023070A (zh) 2015-08-12 2015-11-04 河海大学常州校区 一种光伏系统输出功率预测方法
JP6552928B2 (ja) 2015-09-11 2019-07-31 株式会社東芝 気象予測装置、気象予測方法およびプログラム
CN106557828A (zh) * 2015-09-30 2017-04-05 中国电力科学研究院 一种长时间尺度光伏出力时间序列建模方法和装置
US10103548B2 (en) 2015-10-23 2018-10-16 Fujitsu Limited Operating a solar power generating system
US11217995B2 (en) * 2015-11-26 2022-01-04 Mitsubishi Electric Corporation Power-distribution-system management apparatus, power-distribution-system management system, and power-generation-amount estimating method
JP6720544B2 (ja) 2016-01-14 2020-07-08 株式会社大林組 太陽光発電量予測方法及び太陽光発電量予測装置、並びに太陽光発電量予測システム
US10732319B2 (en) * 2017-08-30 2020-08-04 International Business Machines Corporation Forecasting solar power output
CN107732970B (zh) 2017-11-10 2020-03-17 国网甘肃省电力公司经济技术研究院 一种新能源并网电力系统的静态安全概率评估方法
CN108960491A (zh) * 2018-06-15 2018-12-07 常州瑞信电子科技有限公司 基于rbf神经网络的光伏发电量预测方法
US11651311B2 (en) * 2018-09-20 2023-05-16 Itron Inc. Techniques for forecasting solar power generation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304402A (ja) * 2005-04-15 2006-11-02 Nippon Telegr & Teleph Corp <Ntt> 分散型エネルギーシステムの制御装置、制御方法、プログラム、および記録媒体
WO2013042213A1 (ja) * 2011-09-20 2013-03-28 富士通株式会社 計算機、計算機システム、および探索プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOSHIO NAKAO; TSUYOSHI TANIGUCHI: "Optimal Operation Planning for Renewable Energy Management Based on Large-scale Simulation", FUJITSU: TECHNICAL INFORMATION MAGAZINE, vol. 65, no. 2, 1 March 2014 (2014-03-01), JP, pages 28 - 33, XP009522569 *

Also Published As

Publication number Publication date
JP6562491B1 (ja) 2019-08-21
US20200389026A1 (en) 2020-12-10
US10998725B2 (en) 2021-05-04
CN111602156A (zh) 2020-08-28
CN111602156B (zh) 2021-07-30
JP2020115722A (ja) 2020-07-30

Similar Documents

Publication Publication Date Title
WO2020148941A1 (ja) 期待値計算による発電量精密予測法、期待値計算による発電量精密予測システムおよび期待値計算による発電量精密予測プログラム
Lew et al. Value of wind power forecasting
Pinson et al. From probabilistic forecasts to statistical scenarios of short‐term wind power production
Zhang et al. Conditional value at risk‐based stochastic unit commitment considering the uncertainty of wind power generation
US11784489B2 (en) Supply and demand adjustment monitoring device of power grid and supply and demand adjustment monitoring method for power grid
US20170317495A1 (en) Forecasting net load in a distributed utility grid
CN112285807B (zh) 一种气象信息预测方法及装置
US20120253532A1 (en) Systems and methods for forecasting electrical load
US11070058B2 (en) Forecasting net load in a distributed utility grid
JP2010249608A (ja) 太陽光発電状況予測装置及びシステム
CN114596693A (zh) 用于能源监控和管理的方法、系统、介质和程序产品
JP7010674B2 (ja) 電力需要予測装置、電力需要予測方法およびプログラム
WO2022168357A1 (ja) 発電量管理システム及び発電量管理方法
CN116937569A (zh) 光伏发电智能储能方法、装置及电子设备
CN113852204B (zh) 一种基于数字孪生的变电站三维全景监视系统及方法
Song et al. Dynamic thermal line rating model of conductor based on prediction of meteorological parameters
CN112801374B (zh) 模型训练方法、用电负荷预测方法、装置及设备
CN115952921A (zh) 一种光伏能源功率预测方法、装置、电子设备及存储介质
de Jong et al. Impact of correlated infeeds on risk-based power system security assessment
JP6552077B1 (ja) 日射量正規化統計解析システム、日射量正規化統計解析法および日射量正規化統計解析プログラム
JP6290717B2 (ja) 電力管理装置
JP7079663B2 (ja) 電力需要予測システム、学習装置及び電力需要予測方法
JP6552076B1 (ja) 日射量出現確率分布解析法、日射量出現確率分布解析システムおよび日射量出現確率分布解析プログラム
CN111178780A (zh) 运维策略的设置方法、装置、存储介质及电子设备
JP2015064816A (ja) エネルギー削減量予測方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19910538

Country of ref document: EP

Kind code of ref document: A1