WO2020148817A1 - 通信装置、第2通信装置、及び通信システム - Google Patents

通信装置、第2通信装置、及び通信システム Download PDF

Info

Publication number
WO2020148817A1
WO2020148817A1 PCT/JP2019/001010 JP2019001010W WO2020148817A1 WO 2020148817 A1 WO2020148817 A1 WO 2020148817A1 JP 2019001010 W JP2019001010 W JP 2019001010W WO 2020148817 A1 WO2020148817 A1 WO 2020148817A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
random access
communication device
information
access procedure
Prior art date
Application number
PCT/JP2019/001010
Other languages
English (en)
French (fr)
Inventor
太田好明
河▲崎▼義博
大出高義
青木信久
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2019/001010 priority Critical patent/WO2020148817A1/ja
Priority to CN201980088740.6A priority patent/CN113273300B/zh
Priority to JP2020566368A priority patent/JP7488471B2/ja
Priority to EP19909793.2A priority patent/EP3914024A4/en
Publication of WO2020148817A1 publication Critical patent/WO2020148817A1/ja
Priority to US17/367,934 priority patent/US20210337603A1/en
Priority to JP2024038364A priority patent/JP2024060051A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information

Definitions

  • the present invention relates to a communication device, a second communication device, and a communication system.
  • the traffic of mobile terminals (smartphones and future phones) occupy most of the resources of the communication network. Also, the traffic used by mobile terminals tends to continue to grow.
  • communication networks are required to support services with various requirements in line with the development of IoT (Internet of things) services (for example, monitoring systems for transportation systems, smart meters, devices, etc.).
  • IoT Internet of things
  • 4G fourth generation mobile communication
  • NR New Radio
  • Non-Patent Documents 13 to 39 a technical study is underway in a working group of 3GPP (for example, TSG-RANWG1, TSG-RANWG2, etc.), and the first version was released in December 2017 ( Non-Patent Documents 13 to 39).
  • eMBB Enhanced Mobile BroadBand
  • Massive MTC Machine Type Communications
  • URLLC Ultra-Reliable and Low Low Latency Communication
  • 3GPP TS 36.133 V15.3.0 (2018-06) 3GPP TS 36.211 V15.2.0 (2018-06) 3GPP TS 36.212 V15.2.1 (2018-07) 3GPP TS 36.213 V15.2.0 (2018-06) 3GPP TS 36.300 V15.2.0 (2018-06) 3GPP TS 36.321 V15.2.0 (2018-07) 3GPP TS 36.322 V15.1.0 (2018-07) 3GPP TS 36.323 V15.0.0 (2018-07) 3GPP TS 36.331 V15.2.2 (2018-06) 3GPP TS 36.413 V15.2.0 (2018-06) 3GPP TS 36.423 V15.2.0 (2018-06) 3GPP TS 36.425 V15.0.0 (2018-06) 3GPP TS 37.340 V15.2.0 (2018-06) 3GPP TS 38.201 V15.0.0 (2017-12) 3GPP TS 38.202 V15.2.0 (2018-06
  • the disclosed technology is to provide a communication device, a second communication device, and a communication system that reduce the delay time until data signal transmission.
  • a communication device that implements a random access procedure, the transmitting unit capable of transmitting a first signal that is a signal of the random access procedure and a second signal that is not a signal of the random access procedure; And a control unit capable of performing control for transmitting control information related to the second signal by including the first information transmitted by the signal in the second signal.
  • FIG. 1 is a diagram illustrating a configuration example of a base station device.
  • FIG. 2 is a diagram showing a configuration example of the communication system 10.
  • FIG. 3 is a sequence showing an example of a non-contention type random access procedure.
  • FIG. 4 is a sequence showing an example of a contention-based random access procedure.
  • FIG. 5 is a diagram showing a configuration example of the base station device 200.
  • FIG. 6 is a diagram showing a configuration example of the terminal device 100.
  • FIG. 7 is a diagram showing an example of a sequence of a data transmission process in which the base station device 200 transmits data.
  • FIG. 8 is a diagram showing an example of comparison of sequences until completion of data transmission between the first method of FIG. 3 and the contention-type random access procedure of FIG.
  • FIG. 9 is a diagram showing an example of the PDSCH format (first format).
  • FIG. 10 is a diagram showing an example of the PDSCH format (second format).
  • FIG. 11 is a diagram showing an example of the PDSCH format (third format).
  • FIG. 12 is a diagram showing an example of the PDSCH format (fourth format).
  • FIG. 1 is a diagram showing a configuration example of the base station device 20.
  • the base station device 20 is, for example, a communication device, a transmission side communication device, and a transmission side device.
  • the base station device 20 transmits a first signal, a second signal, and control information (control signal) to a transmission partner device (not shown).
  • the base station device 20 has a transmitter 21 and a controller 22.
  • the transmission unit 21 and the control unit 22 are constructed, for example, by a computer or processor included in the base station device 20 loading and executing a program.
  • the base station device 20 executes a random access procedure when transmitting data to the transmission partner device.
  • the random access procedure is a procedure for establishing a wireless connection in the wireless communication performed between the base station device 20 and the transmission partner device, and when establishing synchronization at the time of generation of a data signal to be transmitted or at the time of handover. To be executed.
  • the base station device 20 is a device that transmits data.
  • the base station device 20 transmits the first signal and the second signal.
  • the base station device 20 transmits control information related to the second signal to be transmitted.
  • the first signal is a signal used by the base station device 20 in the random access procedure and includes the first information.
  • the first information is information used for establishing a wireless connection in the random access procedure, and includes, for example, information for identifying the partner communication device.
  • the second signal is a signal that is not used in the random access procedure and is, for example, a signal for transmitting data.
  • the control information related to the second signal is, for example, information indicating the type of information included in the second signal.
  • the base station device 20 includes that the second signal includes the first information in the control information related to the second signal, and transmits the control information related to the second signal.
  • the transmitter 21 can transmit the first signal and the second signal.
  • the transmission unit 21 receives, for example, the first signal and the second signal generated by the control unit 22, and transmits the first signal and the second signal to the transmission partner device.
  • the control unit 22 can include the first information when generating the second signal. Then, the control unit 22 can transmit the control information (for example, indicating that the first information is included) related to the second signal to the transmission partner device.
  • the control information for example, indicating that the first information is included
  • the base station device 20 includes the first information used in the random access procedure in the second signal and transmits the second signal to the transmission partner device.
  • the base station device 20 can omit part or all of the random access procedure (or can perform data transmission in parallel with the random access procedure, or start data communication in an asynchronous state). The data can be sent faster.
  • the second embodiment may be regarded as an example in which the first embodiment is embodied.
  • the base station apparatus of the first embodiment may be regarded as equivalent to the base station apparatus 200 of this embodiment.
  • FIG. 2 is a diagram showing a configuration example of the communication system 10.
  • the communication system 10 includes a terminal device 100 and a base station device 200.
  • the communication system 10 is, for example, a 5G-compliant wireless communication system.
  • the base station device 200 is, for example, a gNodeB in 5G.
  • the terminal device 100 is a device that communicates with the base station device 200 or another communication device via the base station device 200, and is, for example, a mobile communication terminal such as a smartphone or a tablet terminal.
  • the base station device 200 and the terminal device 100 may establish a wireless connection by a random access procedure when transmitting data from the base station device 200 to the terminal device 100, for example.
  • RACH Random Access Channel
  • RACH Random Access Procedure
  • RACH includes information called a preamble as information for the base station device to identify the radio signal transmitted by the terminal device 100. Based on this information, the base station device 200 identifies the terminal device 100.
  • Random access procedures include, for example, contention-based random access procedures (Contention-Based Random-Access Procedure) and non-contention-based random access procedures (Non-contention-Based Random-Access Procedure).
  • FIG. 3 is a sequence showing an example of a non-contention type random access procedure.
  • the base station device 200 transmits the dedicated preamble assigned to the terminal device 100 by Random Access Preamble assignment (message 0) (S11).
  • the terminal device 100 Upon receiving the message 0, the terminal device 100 transmits a Random access Preamble (message 1) to the base station device 200 by RACH (S12).
  • the base station device 200 Upon receiving the message 1, the base station device 200 transmits a Random Access Response (message 2) that is a response signal of the message 1 to the terminal device 100 together with a synchronization signal for uplink communication, transmission permission, and the like (S13).
  • the base station device 200 uses the wireless resource established by the random access procedure and transmits data to the terminal device 100 (S14).
  • the terminal device 100 succeeds in receiving the data, the terminal device 100 returns to the base station device 200 with an ACK (ACKnowledgement) signal because the uplink has transitioned to the synchronized state (S15).
  • ACK acknowledgement
  • FIG. 4 is a sequence showing an example of a competitive random access procedure.
  • the terminal device 100 transmits the randomly selected preamble to the base station device 200 with a Random access Preamble (message 1) (S21).
  • the base station device 200 transmits a Random Access Response (message 2), which is a response to the message 1, to the terminal device 100 together with a synchronization signal for uplink communication, transmission permission, and the like (S22).
  • the terminal device 100 Upon receiving the message 2, the terminal device 100 transmits a Scheduled Transmission (message 3) including the valid terminal device identifier and the like to the base station device 200 (S23).
  • the base station device 200 transmits Contention Resolution (message 4) to the terminal device 100 (S24).
  • the base station apparatus 200 may include a shared preamble in the message 0 in addition to the individual preamble described above. is there.
  • the shared preamble for example, the terminal device 100 selects the preamble and transmits the message 3 after receiving the message 2. Then, the message 4 is received from the base station device 200, and a transition is made to the synchronized state.
  • FIG. 5 is a diagram showing a configuration example of the base station device 200.
  • the base station device 200 is, for example, a communication device, a transmission side communication device, and a transmission side device.
  • the base station device 200 includes a CPU (Central Processing Unit) 210, a storage 220, a memory 230 such as a DRAM (Dynamic Random Access Memory), a NIC (Network Interface Card) 240, and an RF (Radio Frequency) circuit 250.
  • the base station device 200 is, for example, a transmission device that transmits data to the terminal device 100.
  • the storage 220 is an auxiliary storage device such as a flash memory, an HDD (Hard Disk Drive), or an SSD (Solid State Drive) that stores programs and data.
  • the storage 220 stores a communication control program 221 and a header format 222.
  • the header format 222 is an area for storing a PDSCH (Physical Downlink Shared Channel) format pattern described below.
  • the base station device 200 selects an appropriate PDSCH format from the header format 222.
  • the memory 230 is an area for loading the programs stored in the storage 220.
  • the memory 230 is also used as an area in which the program stores data.
  • the NIC 240 is a network interface that connects to a network (not shown) such as the Internet or an intranet.
  • the base station device 200 communicates with a communication device connected to the network via the NIC 240.
  • the RF circuit 250 is a device that wirelessly connects to the terminal device 100.
  • the RF circuit 250 has, for example, an antenna 251.
  • the CPU 210 is a processor or a computer that loads a program stored in the storage 220 into the memory 230, executes the loaded program, and realizes each process.
  • the communication control process is a process of controlling wireless communication with the terminal device 100.
  • the CPU 210 executes the first system module 2211 included in the communication control program 221, thereby constructing a transmission unit, a control unit, and a reception unit, and performing first system processing.
  • the first system process is a process of transmitting data by the first system described below, and is, for example, a process performed when data addressed to the terminal device 100 is generated.
  • the base station device 200 selects a method for transmitting data according to, for example, the type of data or the wireless state, and when the first method is selected, performs the first method process.
  • FIG. 6 is a diagram showing a configuration example of the terminal device 100.
  • the terminal device 100 is, for example, a second communication device, a receiving communication device, and a transmission partner device.
  • the terminal device 100 includes a CPU 110, a storage 120, a memory 130 such as a DRAM, and an RF circuit 150.
  • the terminal device 100 is, for example, a receiving device that receives data from the base station device 200.
  • the storage 120 is an auxiliary storage device such as a flash memory, HDD, or SSD that stores programs and data.
  • the storage 120 stores a communication program 121 and a header format 122.
  • the header format 122 stores, for example, the same information as the header format 222 stored in the base station device 200.
  • the memory 130 is an area for loading a program stored in the storage 120.
  • the memory 130 is also used as an area in which the program stores data.
  • the RF circuit 150 is a device that wirelessly connects to the base station device 200.
  • the RF circuit 150 has an antenna 151, for example.
  • the CPU 110 is a processor or a computer that loads a program stored in the storage 120 into the memory 130, executes the loaded program, and realizes each process.
  • the CPU 110 By executing the communication program 121, the CPU 110 constructs a signal reception unit and a reception control unit and performs communication processing.
  • the communication process is a process of performing wireless communication with the base station device 200.
  • the CPU 110 executes the first system reception module 1211 included in the communication program 121, thereby constructing a signal reception unit and a reception control unit and performing a first system reception process.
  • the first method reception process is a process of receiving data by the first method described below.
  • the terminal device 100 recognizes that data is transmitted using the first method in the PDCCH (Physical Downlink Control Channel), for example, the first method reception process is performed to receive the data in the first method. can do.
  • PDCCH Physical Downlink Control Channel
  • FIG. 7 is a diagram showing an example of a sequence of a data transmission process in which the base station device 200 transmits data.
  • the base station device 200 can transmit data by the following data transmission process, in addition to transmitting data by using the random access procedure described above.
  • the PDSCH order is defined and the method using the PDSCH order is called the first method. The first method will be described below.
  • Data to be transmitted to the terminal device 100 is generated in the base station device 200 (S31).
  • the base station device 200 transmits a message including the fact that it is PDSCH order by PDCCH (Physical Downlink Control Channel) (S32).
  • PDCCH Physical Downlink Control Channel
  • the DCI format for PDSCH for example, DCI format1_0 or DCI format1_1 can be used.
  • the terminal device 100 receives the fact that it is PDSCH order, and recognizes that data 0 and data to the terminal device 100 are transmitted by PDSCH.
  • the base station device 200 transmits data 0 and data to the terminal device 100 to the terminal device 100 by PDSCH (S33).
  • the base station device 100 sets the Random Access Preamble (message 0) as an ACK (ACKnowledgement) indicating that the data addressed to the own device is properly received. Send to 200.
  • FIG. 8 is a diagram showing an example of comparison of sequences until completion of data transmission between the first method of FIG. 3 and the contention-based random access procedure of FIG.
  • FIG. 8 is a diagram showing an example of data transmission in the first method on the left and the contention-based access procedure on the right.
  • the transmission of data is completed at the reception timing of the next Random Access Preamble (message 1) when the data is generated in the base station device 200 and is early after the data is generated.
  • the contention-based random access procedure data transmission and ACK reception occur at least after the reception timing of RandomAccessPreamble (message 1), so compared to the first method, data transmission for time T1 Delayed completion.
  • a competitive random access procedure that uses unlicensed bands (which can also be described as unlicensed bands or dark licensed bands), if carrier sense occurs during the transmission of each message, the delay until the transmission is completed will take an even longer time.
  • the communication device such as the base station device or terminal device performs carrier sense, and there is no signal (or data) in the unlicensed band (predetermined reception It is necessary to confirm that it is less than or equal to the power) before transmitting. Therefore, if the number of message exchanges is large, the number of carrier senses is also large, and accordingly, the delay until the transmission is completed (the number of carrier senses) becomes large.
  • FIG. 9 is a diagram showing an example of the PDSCH format (first format).
  • the first to fifth bits of octet 1 are composed of the R field.
  • the 6 bits from the 6th bit of octet 1 to the 3rd bit of octet 2 are composed of Random Access Preamble.
  • the Random Access Preamble indicates the number (identification number) of the Random Access Preamble. For example, all 0 indicates shared, and all other than 0 indicates individual.
  • one bit of the fourth bit of octet 2 is composed of UL (UpLink)/SUL (Supplemental UpLink) index.
  • the UL/SUL index indicates whether or not to use SUL when Random Access Preamble is not 0 and SUL (for example, uplink-only carrier) is set in the cell.
  • 6 bits from the 5th bit of octet 2 to the 2nd bit of octet 3 are composed of SS/PBCH index.
  • the SS/PBCH indicator is used to determine the RACH configured resource for PRACH transmission.
  • PRACH Mask indicates whether to mask the SS/PBCH index.
  • the first format consists of reserved bits from the 7th bit of octet 3 to the 8th bit of octet 4.
  • the octet 5 and later of the first format is composed of the data part.
  • the terminal device 100 that has received the PDSCH in the first format uses the Random Access Preamble received in the first format as an ACK indicating that data has been normally received in the PDSCH, and uses the Random Access Preamble ( The third signal) is transmitted.
  • the base station device 200 determines that the ACK is received by receiving the Random Access Preamble corresponding to the Random Access Preamble transmitted in the first format.
  • the terminal device 100 does not transmit the Random Access Preamble when the PDSCH cannot normally receive the data (for example, when there is an error or when the PDSCH cannot be received).
  • the base station apparatus 200 does not receive the Random Access Preamble corresponding to the Random Access Preamble transmitted in the first format within the predetermined time, and thus NACK indicating that the terminal apparatus 100 has not successfully received the data on the PDSCH. (Negative ACKnowledgement: Negative acknowledgment) is received.
  • the first format is a format in which DCI Format1_0 is ported to the PDSCH format on the assumption that it becomes byte-aligned.
  • FIG. 10 is a diagram showing an example of the PDSCH format (second format).
  • the second format is a format in which some or all of the R field and reserved bits of the first format are omitted.
  • 6 bits from the 1st bit to the 6th bit of octet 1 are composed of Random Access Preamble.
  • one bit of the 7th bit of octet 1 is composed of UL/SUL index.
  • 6 bits from the 8th bit of octet 1 to the 5th bit of octet 2 are configured by the SS/PBCH index.
  • the second to eighth bits of octet 3 are reserved bits.
  • the octet 4 and later of the second format is composed of the data part.
  • ACK and NACK from the terminal device 100 is the same as in the first format.
  • FIG. 11 is a diagram showing an example of the PDSCH format (third format).
  • the third format is a format in which 6 bits from the 7th bit of octet 3 to the 4th bit of octet 4 in the first format are replaced with a Random Access Preamble.
  • 6-bit Random Access Preamble (2nd information) from the 7th bit of octet 3 of the 3rd format to the 4th bit of octet 4 is defined as the number (identification number) of the Random Access Preamble for NACK.
  • the terminal device 100 that has received the PDSCH in the third format configures the Random Access Preamble that configures from the sixth bit of octet 1 to the third bit of octet 2 of the third format as an ACK indicating that the PDSCH has received the data.
  • the base station apparatus 200 determines that the ACK has been received by receiving the Random Access Preamble corresponding to the Random Access Preamble that constitutes the 6th bit of the octet 1 to the 3rd bit of the octet 2 of the third format.
  • the terminal device 100 configures the Random Access Preamble (NACK defined for the 7th bit of the octet 3 to the 4th bit of the octet 4 of the third format). Random Access Preamble) is used to transmit the Random Access Preamble to the base station device 200. The base station device 200 determines that the NACK has been received by receiving the Random Access Preamble defined for NACK.
  • FIG. 12 is a diagram showing an example of the PDSCH format (fourth format).
  • the fourth format is a format in which some or all of the R field and reserved bits of the third format are omitted.
  • the fourth format has the same configuration as the second format from the first bit of octet 1 to the first bit of octet 3.
  • 6 bits from the 2nd bit to the 7th bit of octet 3 are composed of Random Access Preamble (for NACK).
  • the 8th bit of octet 3 consists of reserved bits.
  • the octet 4 and later of the second format is composed of the data part.
  • data can be transmitted from octet 4 and wireless resources can be used efficiently.
  • ACK and NACK from the terminal device 100 is the same as in the third format.
  • the base station device 200 selects a data transmission method from a plurality of methods including the first method described above.
  • the base station device 200 selects a data transmission method according to the type of data to be transmitted to the terminal device 100, for example.
  • the base station apparatus 200 selects the first method when the allowable delay time of data to be transmitted to the terminal apparatus 100, such as URLLC data, is smaller than a predetermined value.
  • the base station device 200 selects a data transmission method according to, for example, the wireless state.
  • the base station apparatus 200 selects the first method when the state of the radio resource for transmitting PDSCH is good above a predetermined value (for example, the frame error rate is below a predetermined value, the transmission or reception power is above a predetermined value, etc.). To do.
  • the base station device 200 can appropriately select the first method, and can suppress the data transmission delay.
  • the terminal device 100 transmits ACK or NACK using a relatively high-quality channel such as PUCCH (Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel
  • the terminal device 100 uses the Random Access Preamble transmitted by RACH and transmits ACK or NACK. Therefore, in the base station apparatus 200, the reception quality of ACK or NACK may deteriorate.
  • the terminal device 100 may repeat the transmission of the Random Access Preamble multiple times in order to improve the probability that the ACK or NACK in the first method will reach the base station device 200. Either the base station apparatus 200 or the terminal apparatus 100 may determine whether or not the repeated transmission is performed and the number of repetitions. Further, the presence/absence of execution of repeated transmission and the number of repetitions may be determined according to the wireless state and the past or present transmission success rate.
  • the terminal device 100 and the base station device 200 may correspond to only one of the first to fourth formats, or may correspond to a combination of two or more, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

ランダムアクセス手順を実施する通信装置であって、前記ランダムアクセス手順の信号である第1の信号と、前記ランダムアクセス手順の信号ではない第2の信号と、を送信できる送信部と、前記第1の信号で送信される第1の情報を前記第2の信号に含め、前記第2の信号に関連する制御情報を送信する制御を実施できる制御部と、を有する。

Description

通信装置、第2通信装置、及び通信システム
 本発明は、通信装置、第2通信装置、及び通信システムに関する。
 現在の通信ネットワークは、モバイル端末(スマートフォンやフューチャーホン)のトラフィックが通信ネットワークのリソースの大半を占めている。また、モバイル端末が使用するトラフィックは、今後も拡大していく傾向にある。
 一方で、通信ネットワークは、IoT(Internet of things)サービス(例えば、交通システム、スマートメータ、装置等の監視システム)の展開にあわせて、多様な要求条件を持つサービスに対応することが求められている。そのため、第5世代移動体通信(5Gまたは、NR(New Radio))の通信規格では、第4世代移動体通信(4G)の標準技術(例えば、非特許文献1~12)に加えて、さらなる高データ信号レート化、大容量化、低遅延化を実現する技術が求められている。なお、第5世代通信規格については、3GPPの作業部会(例えば、TSG-RAN WG1、TSG-RAN WG2等)で技術検討が進められており、2017年12月に、初版がリリースされている(非特許文献13~39)。
 上述した多種多様なサービスに対応するため、5Gにおいては、eMBB(Enhanced Mobile BroadBand)、Massive MTC(Machine Type Communications)、およびURLLC(Ultra-Reliable and Low Latency Communication)に分類される多くのユースケースのサポートを想定している。
 5Gに関する技術については、以下の先行技術文献に記載されている。
3GPP TS 36.133 V15.3.0(2018-06) 3GPP TS 36.211 V15.2.0(2018-06) 3GPP TS 36.212 V15.2.1(2018-07) 3GPP TS 36.213 V15.2.0(2018-06) 3GPP TS 36.300 V15.2.0(2018-06) 3GPP TS 36.321 V15.2.0(2018-07) 3GPP TS 36.322 V15.1.0(2018-07) 3GPP TS 36.323 V15.0.0(2018-07) 3GPP TS 36.331 V15.2.2(2018-06) 3GPP TS 36.413 V15.2.0(2018-06) 3GPP TS 36.423 V15.2.0(2018-06) 3GPP TS 36.425 V15.0.0(2018-06) 3GPP TS 37.340 V15.2.0(2018-06) 3GPP TS 38.201 V15.0.0(2017-12) 3GPP TS 38.202 V15.2.0(2018-06) 3GPP TS 38.211 V15.2.0(2018-06) 3GPP TS 38.212 V15.2.0(2018-06) 3GPP TS 38.213 V15.2.0(2018-06) 3GPP TS 38.214 V15.2.0(2018-06) 3GPP TS 38.215 V15.2.0(2018-06) 3GPP TS 38.300 V15.2.0(2018-06) 3GPP TS 38.321 V15.2.0(2018-06) 3GPP TS 38.322 V15.2.0(2018-06) 3GPP TS 38.323 V15.2.0(2018-06) 3GPP TS 38.331 V15.2.1(2018-06) 3GPP TS 38.401 V15.2.0(2018-06) 3GPP TS 38.410 V15.0.0(2018-06) 3GPP TS 38.413 V15.0.0(2018-06) 3GPP TS 38.420 V15.0.0(2018-06) 3GPP TS 38.423 V15.0.0(2018-06) 3GPP TS 38.470 V15.2.0(2018-06) 3GPP TS 38.473 V15.2.1(2018-07) 3GPP TR 38.801 V14.0.0(2017-03) 3GPP TR 38.802 V14.2.0(2017-09) 3GPP TR 38.803 V14.2.0(2017-09) 3GPP TR 38.804 V14.0.0(2017-03) 3GPP TR 38.900 V15.0.0(2018-06) 3GPP TR 38.912 V15.0.0(2018-06) 3GPP TR 38.913 V15.0.0(2018-06)
 無線通信システムにおいて、データ信号通信の遅延時間を低減することが要求されている。例えば、5Gで想定されているURLLCのサービスに対応できるような遅延時間が要求される場合がある。そのため、例えば、端末装置と基地局装置との同期が取れない状況においてデータ信号が発生した場合においても、データ信号送信までの遅延時間の低減が要求される。
 開示の技術は、データ信号送信までの遅延時間を低減する通信装置、第2通信装置、及び通信システムを提供することにある。
 ランダムアクセス手順を実施する通信装置であって、前記ランダムアクセス手順の信号である第1の信号と、前記ランダムアクセス手順の信号ではない第2の信号と、を送信できる送信部と、前記第1の信号で送信される第1の情報を前記第2の信号に含め、前記第2の信号に関連する制御情報を送信する制御を実施できる制御部と、を有する。
 一開示は、データ信号送信までの遅延量を低減することができる。
図1は、基地局装置の構成例を示す図である。 図2は、通信システム10の構成例を示す図である。 図3は、非競合型ランダムアクセス手順の例を示すシーケンスである。 図4は、競合型ランダムアクセス手順の例を示すシーケンスである。 図5は、基地局装置200の構成例を示す図である。 図6は、端末装置100の構成例を示す図である。 図7は、基地局装置200がデータを送信するデータ送信処理のシーケンスの例を示す図である。 図8は、図3の第1方式と、図4の競合型ランダムアクセス手順との、データ送信完了までのシーケンスの比較の例を示す図である。 図9は、PDSCHフォーマット(第1フォーマット)の例を示す図である。 図10は、PDSCHフォーマット(第2フォーマット)の例を示す図である。 図11は、PDSCHフォーマット(第3フォーマット)の例を示す図である。 図12は、PDSCHフォーマット(第4フォーマット)の例を示す図である。
 以下、本実施の形態について図面を参照して詳細に説明する。本明細書における課題及び実施例は一例であり、本願の権利範囲を限定するものではない。特に、記載の表現が異なっていたとしても、技術的に同等であれば、異なる表現であっても本願の技術を適用可能であり、権利範囲を限定するものではない。
 [第1の実施の形態]
 最初に第1の実施の形態について説明する。
 図1は、基地局装置20の構成例を示す図である。基地局装置20は、例えば、通信装置及び送信側通信装置、及び送信側装置である。基地局装置20は、送信相手装置(図示しない)に、第1の信号、第2の信号、及ぶ制御情報(制御信号)を送信する。
 基地局装置20は、送信部21と制御部22を有する。送信部21及び制御部22は、例えば、基地局装置20が有するコンピュータやプロセッサが、プログラムをロードし、実行することで構築される。
 基地局装置20は、送信相手装置にデータを送信するとき、ランダムアクセス手順を実行する。ランダムアクセス手順は、基地局装置20と送信相手装置との間で実行される無線通信における、無線接続を確立する手順であり、送信するデータ信号の発生時や、ハンドオーバ時の同期を確立する場合に実行される。
 基地局装置20は、データを送信する装置である。基地局装置20は、第1の信号及び第2の信号を送信する。また、基地局装置20は、送信する第2の信号に関連する制御情報を送信する。
 第1の信号は、基地局装置20がランダムアクセス手順で使用する信号であって、第1の情報を含む。第1の情報は、ランダムアクセス手順において無線接続を確立するために使用する情報であって、例えば、相手通信装置を識別するための情報などを含む。
 第2の信号は、ランダムアクセス手順には使用しない信号であって、例えば、データを送信するための信号である。
 第2の信号に関連する制御情報は、例えば、第2の信号に含まれる情報の種別を示す情報である。基地局装置20は、例えば、第2の信号に第1の情報が含まれていることを第2の信号に関連する制御情報に含め、第2の信号に関連する制御情報を送信する。
 送信部21は、第1の信号及び第2の信号を送信することができる。送信部21は、例えば、制御部22が生成する第1の信号及び第2の信号を受け取り、送信相手装置に第1の信号及び第2の信号を送信する。
 制御部22は、第2の信号を生成するとき、第1の情報を含ませることができる。そして、制御部22は、第2の信号に関連する制御情報(例えば、第1の情報が含まれることを示す)を、送信相手装置に送信することができる。
 第1の実施の形態において、基地局装置20は、ランダムアクセス手順において使用する第1の情報を、第2の信号に含め、送信相手装置に送信する。これにより、基地局装置20は、ランダムアクセス手順の一部又は全部を省略することができ(または、ランダムアクセス手順と並行してデータ送信ができ、または、非同期状態でのデータ通信を開始することができ)、データをより早く送信することができる。
 [第2の実施の形態]
 次に、第2の実施の形態について説明する。第2の実施の形態は,第1の実施の形態を具象化した実施例として捉えてもよい。例えば,第1の実施例の基地局装置は本実施例の基地局装置200と等価として捉えてもよい。
 <通信システムの構成例>
 図2は、通信システム10の構成例を示す図である。通信システム10は、端末装置100及び基地局装置200を有する。通信システム10は、例えば、5Gに準拠した無線通信の通信システムである。この場合、基地局装置200は、例えば、5GにおけるgNodeBである。また、端末装置100は、基地局装置200と、あるいは基地局装置200を介して他の通信装置と通信を行う装置であって、例えば、スマートフォンやタブレット端末などの移動体通信端末である。
 通信システム10において、基地局装置200と端末装置100は、例えば、基地局装置200から端末装置100にデータを送信するとき、ランダムアクセス手順により無線接続を確立する場合がある。
 通信システム10では、ランダムアクセス手順のためのチャネルが用意されている。3GPPにおいては、これをランダムアクセスチャネル(RACH:Random Access Channel)と呼び、RACHによる通信開始手順をランダムアクセス手順(Random Access Procedure)と呼ぶ。RACHには、端末装置100が送信した無線信号を基地局装置が識別するための情報として、プリアンブルと呼ばれる情報が含まる。この情報により、基地局装置200は端末装置100を識別する。
 ランダムアクセス手順は、例えば、競合型ランダムアクセス手順(Contention Based Random Access Procedure)と、非競合型ランダムアクセス手順(Non-contention Based Random Access Procedure)がある。
 図3は、非競合型ランダムアクセス手順の例を示すシーケンスである。基地局装置200は、端末装置100に割り当てた個別プリアンブルを、Random Access Preamble assignment(メッセージ0)で送信する(S11)。端末装置100は、メッセージ0を受信すると、Random access Preamble(メッセージ1)をRACHで基地局装置200に送信する(S12)。基地局装置200は、メッセージ1を受信すると、上り通信のための同期信号や送信許可などと共にメッセージ1の応答信号であるRandom Access Response(メッセージ2)を、端末装置100に送信する(S13)。
 基地局装置200は、ランダムアクセス手順で確立した無線リソースを使用し、データを端末装置100に送信する(S14)。端末装置100は、データの受信に成功すると、上りは同期状態に遷移しているため、基地局装置200にACK(ACKnowledgement:肯定応答)信号を返信する(S15)。
 図4は、競合型ランダムアクセス手順の例を示すシーケンスである。端末装置100は、ランダムに選択したプリアンブルを、Random access Preamble(メッセージ1)で基地局装置200に送信する(S21)。基地局装置200は、上り通信のための同期信号や送信許可などと共にメッセージ1の応答であるRandom Access Response(メッセージ2)を端末装置100に送信する(S22)。端末装置100は、メッセージ2を受信すると、有効な端末装置の識別子等を含むScheduled Transmission(メッセージ3)を、基地局装置200に送信する(S23)。基地局装置200は、メッセージ3を受信すると、Contention Resolution(メッセージ4)を、端末装置100に送信する(S24)。
 また、基地局装置200がトリガとなるランダムアクセス手順(例えば、非競合型ランダムアクセス手順)においては、基地局装置200は、メッセージ0に、個別上述した個別プリアンブル以外に、共有プリアンブルを含める場合がある。共有プリアンブルを含む場合、例えば、端末装置100は、プリアンブルを選択し、メッセージ2の受信後にメッセージ3を送信する。そして、基地局装置200からメッセージ4を受信し、同期状態に遷移する。
 <基地局装置の構成例>
 図5は、基地局装置200の構成例を示す図である。基地局装置200は、例えば、通信装置及び送信側通信装置、及び送信側装置である。基地局装置200は、CPU(Central Processing Unit)210、ストレージ220、DRAM(Dynamic Random Access Memory)などのメモリ230、NIC(Network Interface Card)240、及びRF(Radio Frequency)回路250を有する。基地局装置200は、例えば、データを端末装置100に送信する、送信装置である。
 ストレージ220は、プログラムやデータを記憶する、フラッシュメモリ、HDD(Hard Disk Drive)、又はSSD(Solid State Drive)などの補助記憶装置である。ストレージ220は、通信制御プログラム221、及びヘッダフォーマット222を記憶する。
 ヘッダフォーマット222は、以下に説明するPDSCH(Physical Downlink Shared Channel)のフォーマットのパターンを記憶する領域である。基地局装置200は、ヘッダフォーマット222から、適切なPDSCHのフォーマットを選択する。
 メモリ230は、ストレージ220に記憶されているプログラムをロードする領域である。また、メモリ230は、プログラムがデータを記憶する領域としても使用される。
 NIC240は、インターネットやイントラネットなどのネットワーク(図示しない)と接続するネットワークインターフェースである。基地局装置200は、NIC240を介して、ネットワークに接続する通信装置と通信する。
 RF回路250は、端末装置100と無線接続する装置である。RF回路250は、例えば、アンテナ251を有する。
 CPU210は、ストレージ220に記憶されているプログラムを、メモリ230にロードし、ロードしたプログラムを実行し、各処理を実現するプロセッサ又はコンピュータである。
 CPU210は、通信制御プログラム221を実行することで、送信部、制御部、及び受信部を構築し、通信制御処理を行う。通信制御処理は、端末装置100との間の無線通信を制御する処理である。
 CPU210は、通信制御プログラム221が有する第1方式モジュール2211を実行することで、送信部、制御部、及び受信部を構築し、第1方式処理を行う。第1方式処理は、以下に説明する第1方式でデータを送信する処理であり、例えば、端末装置100宛てのデータが発生した時に行われる処理である。基地局装置200は、例えば、データの種別や無線の状態に応じて、データを送信する方式を選択し、第1方式を選択したとき、第1方式処理を行う。
 <端末装置の構成例>
 図6は、端末装置100の構成例を示す図である。端末装置100は、例えば、第2通信装置、受信側通信装置、及び送信相手装置である。端末装置100は、CPU110、ストレージ120、DRAMなどのメモリ130、及びRF回路150を有する。端末装置100は、例えば、データを基地局装置200から受信する、受信装置である。
 ストレージ120は、プログラムやデータを記憶する、フラッシュメモリ、HDD、又はSSDなどの補助記憶装置である。ストレージ120は、通信プログラム121及びヘッダフォーマット122を記憶する。ヘッダフォーマット122は、例えば、基地局装置200が記憶するヘッダフォーマット222と同様の情報を記憶する。
 メモリ130は、ストレージ120に記憶されているプログラムをロードする領域である。また、メモリ130は、プログラムがデータを記憶する領域としても使用される。
 RF回路150は、基地局装置200と無線接続する装置である。RF回路150は、例えば、アンテナ151を有する。
 CPU110は、ストレージ120に記憶されているプログラムを、メモリ130にロードし、ロードしたプログラムを実行し、各処理を実現するプロセッサ又はコンピュータである。
 CPU110は、通信プログラム121を実行することで、信号受信部及び受信制御部を構築し、通信処理を行う。通信処理は、基地局装置200との間の無線通信を行う処理である。
 CPU110は、通信プログラム121が有する第1方式受信モジュール1211を実行することで、信号受信部及び受信制御部を構築し、第1方式受信処理を行う。第1方式受信処理は、以下に説明する第1方式でデータを受信する処理である。端末装置100は、例えば、PDCCH(Physical Downlink Control Channel)で第1方式を使用してデータが送信されることを認識した場合、第1方式受信処理を行うことで、第1方式でデータを受信することができる。
 <データ送信処理>
 図7は、基地局装置200がデータを送信するデータ送信処理のシーケンスの例を示す図である。第2の実施の形態において、基地局装置200は、上述したランダムアクセス手順を用いてデータを送信する以外に、以下のデータ送信処理でデータを送信することができる。第2の実施の形態においては、PDSCH orderを規定し、PDSCH orderを用いた方式を、第1方式と呼ぶ。以下、第1方式について説明する。
 基地局装置200において、端末装置100に送信するデータが発生する(S31)。基地局装置200は、PDSCH orderである旨を含むメッセージを、PDCCH(Physical Downlink Control Channel)で送信する(S32)。なお、PDCCHのフォーマットは、例えば、PDSCH用のDCI format(例えば、DCI format1_0またはDCI format1_1) を用いることができる。端末装置100は、PDSCH orderである旨を受信し、PDSCHでデータ0及び端末装置100へのデータが送信されることを認識する。
 そして、基地局装置200は、PDSCHでデータ0及び端末装置100へのデータを、端末装置100に送信する(S33)。
 端末装置100は、PDSCHでデータ0及び自装置宛てのデータを受信すると、Random Access Preamble(メッセージ0)を、自装置宛てのデータを適正に受信したことを示すACK(ACKnowledgement)として、基地局装置200に送信する。
 図8は、図3の第1方式と、図4の競合型ランダムアクセス手順との、データ送信完了までのシーケンスの比較の例を示す図である。図8は、左が第1方式、右が競合型アクセス手順でのデータ送信の例を示す図である。
 第1方式では、基地局装置200においてデータが発生してから、早い場合は次のRandom Access Preamble(メッセージ1)の受信タイミングで、データの送信が完了する。一方、競合型ランダムアクセス手順においては、少なくともRandom Access Preamble(メッセージ1)の受信タイミングの後、データの送信及びACKの受信が発生するため、第1方式と比較して、時間T1だけデータの送信完了が遅延する。また、免許不要帯域(非ライセンス帯域または暗ライセンスバンドと記載もできる)を用いた競合型ランダムアクセス手順において、各メッセージの送信時にキャリアセンスが発生する場合、送信完了までの遅延は、さらに大きな時間となる。免許不要帯域を用いて信号(メッセージまたはデータ)を送信する際、基地局装置や端末装置等の通信装置は、キャリアセンスを行い、当該免許不要帯域に信号(またはデータ)がない(所定の受信電力以下)ことを確認して送信する必要がある。そのため、メッセージのやり取りの回数が多いと、キャリアセンスの回数も多くなるため、その分(キャリアセンスの回数分)送信完了までの遅延が大きくなる。
 <メッセージフォーマット>
 <1.第1フォーマット>
 第1方式におけるPDSCHのメッセージフォーマットの例について説明する。
 図9は、PDSCHフォーマット(第1フォーマット)の例を示す図である。第1フォーマットは、オクテット1の第1ビットから第5ビットが、Rフィールドで構成される。
 第1フォーマットは、オクテット1の第6ビットからオクテット2の第3ビットまでの6ビットが、Random Access Preambleで構成される。Random Access Preambleは、Random Access Preambleの番号(識別番号)を示し、例えば、オール0は共有であることを示し、オール0以外の場合は個別であること示す。
 第1フォーマットは、オクテット2の第4ビットの1ビットが、UL(UpLink)/SUL(SupplementalUpLink)指標で構成される。UL/SUL指標は、Random Access Preambleが0でないとき、セルにSUL(例えば、上り専用のキャリア)が設定されている場合、SULを使用するか否かを示す。
 第1フォーマットは、オクテット2の第5ビットからオクテット3の第2ビットまでの6ビットが、SS/PBCH指標で構成される。SS/PBCH指標は、PRACH送信のためのRACH設定するリソースを決定するために使用される。
 第1フォーマットは、オクテット3の第3ビットから第6ビットまでの4ビットが、PRACH Maskで構成される。PRACH Maskは、SS/PBCH指標をマスクするか否かを示す。
 第1フォーマットは、オクテット3の第7ビットからオクテット4の第8ビットまでがリザーブビットで構成される。
 さらに、第1フォーマットのオクテット5以降は、データ部で構成される。
 第1フォーマットでPDSCHを受信した端末装置100は、当該PDSCHでデータを正常に受信したことを示すACKとして、第1フォーマットで受信したRandom Access Preambleを使用し、基地局装置200にRandom Access Preamble(第3の信号)を送信する。基地局装置200は、第1フォーマットで送信したRandom Access Preambleに対応するRandom Access Preambleを受信することで、ACKを受信したと判定する。
 一方、端末装置100は、当該PDSCHでデータを正常に受信できなかった場合(例えば、エラーが存在する場合やPDSCHを受信できない場合)、Random Access Preambleを送信しない。基地局装置200は、所定時間内に第1フォーマットで送信したRandom Access Preambleに対応するRandom Access Preambleを受信しないことで、端末装置100が当該PDSCHでデータを正常に受信できなかったことを示すNACK(Negative ACKnowledgement:否定応答)を受信したと判定する。
 なお、第1フォーマットは、バイトアラインになるという前提で、DCI Format1_0を、PDSCHのフォーマットに移植したフォーマットである。
 <2.第2フォーマット>
 図10は、PDSCHフォーマット(第2フォーマット)の例を示す図である。第2フォーマットは、第1フォーマットのRフィールドやリザーブビットの一部又は全部を省略したフォーマットである。
 第2フォーマットは、オクテット1の第1ビットから第6ビットまでの6ビットが、Random Access Preambleで構成される。
 第2フォーマットは、オクテット1の第7ビットの1ビットが、UL/SUL指標で構成される。
 第2フォーマットは、オクテット1の第8ビットからオクテット2の第5ビットまでの6ビットが、SS/PBCH指標で構成される。
 第2フォーマットは、オクテット2の第6ビットからオクテット3の第1ビットまでの4ビットが、PRACH Maskで構成される。
 第2フォーマットは、オクテット3の第2ビットから第8ビットまでが、リザーブビットで構成される。
 さらに、第2フォーマットのオクテット4以降は、データ部で構成される。
 図10に示すように、Rフィールドやリザーブビットの一部又は全部を省力することで、オクテット4からデータを送信することができ、無線リソースを効率的に使用することができる。
 なお、端末装置100からのACK及びNACKの動作については、第1フォーマットと同様である。
 <3.第3フォーマット>
 図11は、PDSCHフォーマット(第3フォーマット)の例を示す図である。第3フォーマットは、第1フォーマットにおけるオクテット3の第7ビットからオクテット4の第4ビットまでの6ビットを、Random Access Preambleに代替したフォーマットである。
 第3フォーマットのオクテット3の第7ビットからオクテット4の第4ビットまでの6ビットのRandom Access Preamble(第2の情報)は、NACK用のRandom Access Preambleの番号(識別番号)として定義される。
 第3フォーマットでPDSCHを受信した端末装置100は、当該PDSCHでデータを受信したことを示すACKとして、第3フォーマットのオクテット1の第6ビットからオクテット2の第3ビットまでを構成するRandom Access Preambleを使用し、基地局装置200にRandom Access Preambleを送信する。基地局装置200は、第3フォーマットのオクテット1の第6ビットからオクテット2の第3ビットまでを構成するRandom Access Preambleに対応するRandom Access Preambleを受信することで、ACKを受信したと判定する。
 一方、端末装置100は、当該PDSCHでデータを適切に受信できなかった場合、第3フォーマットのオクテット3の第7ビットからオクテット4の第4ビットまでを構成するRandom Access Preamble(NACK用に定義されたRandom Access Preamble)を使用し、基地局装置200にRandom Access Preambleを送信する。基地局装置200は、NACK用に定義されたRandom Access Preambleを受信することで、NACKを受信したと判定する。
 <4.第4フォーマット>
 図12は、PDSCHフォーマット(第4フォーマット)の例を示す図である。第4フォーマットは、第3フォーマットのRフィールドやリザーブビットの一部又は全部を省略したフォーマットである。
 第4フォーマットは、オクテット1の第1ビットからオクテット3の第1ビットまでは、第2フォーマットと同様の構成である。
 第4フォーマットは、オクテット3の第2ビットから第7ビットまでの6ビットが、Random Access Preamble(NACK用)で構成される。
 第4フォーマットは、オクテット3の第8ビットが、リザーブビットで構成される。
 さらに、第2フォーマットのオクテット4以降は、データ部で構成される。
 図12に示すように、Rフィールドやリザーブビットの一部又は全部を省力することで、オクテット4からデータを送信することができ、無線リソースを効率的に使用することができる。
 なお、端末装置100からのACK及びNACKの動作については、第3フォーマットと同様である。
 <データ送信方式の選択>
 基地局装置200は、端末装置100にデータを送信するとき、上述した第1方式を含む複数の方式から、データ送信方式を選択する。
 基地局装置200は、例えば、端末装置100に送信するデータの種別に応じて、データ送信方式を選択する。基地局装置200は、URLLCのデータなど、端末装置100に送信するデータの許容遅延時間が所定値より小さい場合、第1方式を選択する。
 また、基地局装置200は、例えば、無線の状態に応じて、データ送信方式を選択する。基地局装置200は、PDSCHを送信する無線リソースの状態が所定値以上に良好である場合(例えば、フレームエラーレートが所定値以下、送信又は受信電力が所定値以上など)、第1方式を選択する。
 これにより、基地局装置200は、適切に第1方式を選択することができ、データの送信遅延を抑制することができる。
 <端末装置におけるACK/NACK送信>
 端末装置100は、第1方式以外では、例えば、PUCCH (Physical Uplink Control Channel)など、比較的高品質なチャネルを使用してACK又はNACKを送信する。しかし、端末装置100は、第1方式では、RACHで送信するRandom Access Preambleを使用し、ACK又はNACKを送信する。そのため、基地局装置200において、ACK又はNACKの受信品質が低下する場合がある。
 端末装置100は、第1方式でのACK又はNACKが基地局装置200に到達する確率を向上させるため、Random Access Preambleの送信を複数回繰り返してもよい。繰り返し送信の実行の有無や、繰り返し回数については、基地局装置200及び端末装置100のどちらが決定してもよい。また、繰り返し送信の実行の有無や、繰り返し回数については、無線の状態や過去又は現在の送信成功率に応じて決定されてもよい。
 [その他の実施の形態]
 各実施の形態は、それぞれ組み合わせてもよい。
 端末装置100及び基地局装置200は、例えば、第1フォーマットから第4フォーマットのうち、いずれか1つのフォーマットのみに対応してもよいし、2以上の組み合わせに対応してもよい。
10   :通信システム
20   :基地局装置
21   :送信部
22   :制御部
100  :端末装置
110  :CPU
120  :ストレージ
121  :通信プログラム
1211 :第1方式受信モジュール
130  :メモリ
150  :RF回路
151  :アンテナ
200  :基地局装置
210  :CPU
220  :ストレージ
221  :通信制御プログラム
2211 :第1方式モジュール
222  :ヘッダフォーマット
230  :メモリ
250  :RF回路
251  :アンテナ

Claims (11)

  1.  ランダムアクセス手順を実施する通信装置であって、
     前記ランダムアクセス手順の信号である第1の信号と、前記ランダムアクセス手順の信号ではない第2の信号と、を送信できる送信部と、
     前記第1の信号で送信される第1の情報を前記第2の信号に含め、前記第2の信号に関連する制御情報を送信する制御を実施できる制御部と、
     を有する通信装置。
  2.  前記第1の信号は、Random Access Preamble assignmentであり、
     前記第2の信号は、PDSCH(Physical Downlink Shared Channel)であり、
     前記第1の情報は、Random Access Preambleの識別番号を含む、
     請求項1記載の通信装置。
  3.  さらに、送信相手装置が送信した前記ランダムアクセス手順の応答信号である第3の信号を、前記第2の信号を前記送信相手装置が正常に受信したことを示す肯定応答として受信する受信部と、
     を有する請求項1記載の通信装置。
  4.  前記制御部は、前記送信相手装置が前記第2の信号を正常に受信できなかったことを示す否定応答に対応する第2の情報を、前記第2の信号に含め送信し、
     前記受信部は、前記第3の信号が前記第2の情報に関連する場合、前記第3の信号を前記否定応答として受信する
     を有する請求項3記載の通信装置。
  5.  前記第3の信号は、Random Access Preambleであり、
     請求項3記載の通信装置。
  6.  前記第3の信号は、Random Access Preambleであり、
     前記第2の情報は、前記第1の情報に含まれるRandom Access Preambleの識別番号とは異なるRandom Access Preambleの識別番号を含む
     請求項4記載の通信装置。
  7.  前記第2の情報は、前記第2の信号の否定応答に対応するRandom Access Preambleを示す情報を含む
     請求項4に記載の通信装置。
  8.  ランダムアクセス手順を実施する第2通信装置であって、
     送信側装置が送信する、前記ランダムアクセス手順の信号である第1の信号と、前記ランダムアクセス手順の信号ではない第2の信号と、を受信できる信号受信部と、
     前記送信側装置が前記第1の信号で送信される第1の情報を含む前記第2の信号を送信するときに送信する、前記第2の信号に関連する制御情報を受信し、前記第2の信号に前記第1の情報が含まれることを認識することができる受信制御部と、
     を有する第2通信装置。
  9.  前記受信制御部は、前記第1の情報が含まれる前記第2の信号を正常に受信したとき、前記ランダムアクセス手順の応答信号である第3の信号を送信する
     請求項8記載の第2通信装置。
  10.  さらに、前記送信側装置は、前記第2通信装置が前記第2の信号を正常に受信できなかったことを示す否定応答に対応する第2の情報を、前記第2の信号に含め送信し、
     前記受信制御部は、前記第1の情報が含まれる前記第2の信号を正常に受信できないとき、前記第3の信号に前記第2の情報が含め送信する、
     請求項9記載の第2通信装置。
  11.  ランダムアクセス手順を実施する送信側通信装置と受信側通信装置を有する通信システムであって、
     前記送信側通信装置は、
      前記ランダムアクセス手順の信号である第1の信号と、前記ランダムアクセス手順の信号ではない第2の信号と、を送信できる送信部と、
      前記第1の信号で送信される第1の情報を前記第2の信号に含め、前記第2の信号に関連する制御情報を送信する制御を実施できる制御部と、を有し、
     前記受信側通信装置は、
      前記送信側通信装置が送信する、前記第1の信号と前記第2の信号を受信できる信号受信部と、
      前記送信側通信装置が送信する前記第2の信号に関連する制御情報を受信し、前記第2の信号に前記第1の情報が含まれることを認識することができる受信制御部と、を有する、
     通信システム。
PCT/JP2019/001010 2019-01-16 2019-01-16 通信装置、第2通信装置、及び通信システム WO2020148817A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2019/001010 WO2020148817A1 (ja) 2019-01-16 2019-01-16 通信装置、第2通信装置、及び通信システム
CN201980088740.6A CN113273300B (zh) 2019-01-16 2019-01-16 通信装置、第2通信装置以及通信系统
JP2020566368A JP7488471B2 (ja) 2019-01-16 2019-01-16 通信装置、第2通信装置、及び通信システム
EP19909793.2A EP3914024A4 (en) 2019-01-16 2019-01-16 COMMUNICATION DEVICE, SECOND COMMUNICATION DEVICE AND COMMUNICATION SYSTEM
US17/367,934 US20210337603A1 (en) 2019-01-16 2021-07-06 Communication device, second communication device, and communication system
JP2024038364A JP2024060051A (ja) 2019-01-16 2024-03-12 通信装置、第2通信装置、及び通信システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/001010 WO2020148817A1 (ja) 2019-01-16 2019-01-16 通信装置、第2通信装置、及び通信システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/367,934 Continuation US20210337603A1 (en) 2019-01-16 2021-07-06 Communication device, second communication device, and communication system

Publications (1)

Publication Number Publication Date
WO2020148817A1 true WO2020148817A1 (ja) 2020-07-23

Family

ID=71613096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001010 WO2020148817A1 (ja) 2019-01-16 2019-01-16 通信装置、第2通信装置、及び通信システム

Country Status (5)

Country Link
US (1) US20210337603A1 (ja)
EP (1) EP3914024A4 (ja)
JP (2) JP7488471B2 (ja)
CN (1) CN113273300B (ja)
WO (1) WO2020148817A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010098707A (ja) * 2008-09-16 2010-04-30 Sharp Corp 基地局装置、及び移動局装置
WO2017195721A1 (ja) * 2016-05-10 2017-11-16 株式会社Nttドコモ ユーザ端末及び無線通信方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110105140A1 (en) * 2009-11-04 2011-05-05 Electronics And Telecommunications Research Institute Apparatus and method for connection setup of component carrier in mobile communication system of carrier aggregation environment
EP2693662B1 (en) * 2011-03-29 2019-05-08 LG Electronics Inc. Method for user equipment transmitting/receiving data in wireless communication system and apparatus for same
CN102325382B (zh) * 2011-06-30 2016-01-20 电信科学技术研究院 随机接入方法和设备
KR20130097586A (ko) * 2012-02-24 2013-09-03 주식회사 팬택 다중 요소 반송파 시스템에서 랜덤 액세스 절차의 수행 장치 및 방법
JP6944881B2 (ja) * 2016-01-15 2021-10-06 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
US10728886B2 (en) * 2016-06-24 2020-07-28 Apple Inc. Communication device and method for decoding data from a network
CN108235444B (zh) * 2016-12-12 2021-09-10 北京三星通信技术研究有限公司 随机接入的方法及基站设备、用户设备
US11785660B2 (en) * 2017-08-11 2023-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Early data retransmission of message 3
EP3701762A1 (en) * 2017-10-27 2020-09-02 Telefonaktiebolaget LM Ericsson (publ) Contention-free random access with multiple ssb
JP2020102752A (ja) * 2018-12-21 2020-07-02 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010098707A (ja) * 2008-09-16 2010-04-30 Sharp Corp 基地局装置、及び移動局装置
WO2017195721A1 (ja) * 2016-05-10 2017-11-16 株式会社Nttドコモ ユーザ端末及び無線通信方法

Non-Patent Citations (33)

* Cited by examiner, † Cited by third party
Title
3GPP TS 36.133, June 2018 (2018-06-01)
3GPP TS 36.211, June 2018 (2018-06-01)
3GPP TS 36.212, July 2018 (2018-07-01)
3GPP TS 36.213, June 2018 (2018-06-01)
3GPP TS 36.300, June 2018 (2018-06-01)
3GPP TS 36.321, July 2018 (2018-07-01)
3GPP TS 36.322, July 2018 (2018-07-01)
3GPP TS 36.323, July 2018 (2018-07-01)
3GPP TS 36.331, June 2018 (2018-06-01)
3GPP TS 36.413, June 2018 (2018-06-01)
3GPP TS 36.423, June 2018 (2018-06-01)
3GPP TS 36.425, June 2018 (2018-06-01)
3GPP TS 37.340, June 2018 (2018-06-01)
3GPP TS 38.201, December 2017 (2017-12-01)
3GPP TS 38.202, June 2018 (2018-06-01)
3GPP TS 38.211, June 2018 (2018-06-01)
3GPP TS 38.212, June 2018 (2018-06-01)
3GPP TS 38.213, June 2018 (2018-06-01)
3GPP TS 38.214, June 2018 (2018-06-01)
3GPP TS 38.215, June 2018 (2018-06-01)
3GPP TS 38.300, June 2018 (2018-06-01)
3GPP TS 38.321, June 2018 (2018-06-01)
3GPP TS 38.322, June 2018 (2018-06-01)
3GPP TS 38.323, June 2018 (2018-06-01)
3GPP TS 38.331, June 2018 (2018-06-01)
3GPP TS 38.401, June 2018 (2018-06-01)
3GPP TS 38.410, June 2018 (2018-06-01)
3GPP TS 38.413, June 2018 (2018-06-01)
3GPP TS 38.420, June 2018 (2018-06-01)
3GPP TS 38.423, June 2018 (2018-06-01)
3GPP TS 38.470, June 2018 (2018-06-01)
INTERDIGITAL: "2-Step RACH Procedure", 3GPP TSG-RAN WG2 #103BIS R2-1814008, 27 September 2018 (2018-09-27), XP051523471 *
See also references of EP3914024A4

Also Published As

Publication number Publication date
JP2024060051A (ja) 2024-05-01
US20210337603A1 (en) 2021-10-28
CN113273300B (zh) 2023-10-31
EP3914024A1 (en) 2021-11-24
JP7488471B2 (ja) 2024-05-22
CN113273300A (zh) 2021-08-17
JPWO2020148817A1 (ja) 2021-10-21
EP3914024A4 (en) 2022-01-19

Similar Documents

Publication Publication Date Title
US20230328796A1 (en) Random access method, device, and equipment
KR20200036797A (ko) 무선통신 시스템에서 랜덤 액세스 방법 및 장치
US11800557B2 (en) Transport block size for contention free random access in random access procedure
US10455589B2 (en) Apparatus and method for random access in wireless communication system
US11864240B2 (en) Telecommunications apparatus and methods
US20130272241A1 (en) Wireless communication system, receiving device, transmitting device, and wireless communication method
EP2874339B1 (en) Method and device for transmitting uplink control information
US20210219350A1 (en) Random access method and communications apparatus
CN110771249A (zh) 信息传输方法以及装置、随机接入方法以及装置、通信系统
WO2020248259A1 (zh) 随机接入方法、终端设备和网络设备
US20170135132A1 (en) Method, system and apparatus
US11134378B2 (en) Data transmission method and apparatus
US20210298071A1 (en) Base station apparatus, terminal apparatus, and communication system
JP7348183B2 (ja) ランダムアクセスプリアンブルの伝送方法及び端末装置
WO2020148817A1 (ja) 通信装置、第2通信装置、及び通信システム
WO2022151384A1 (zh) 信息指示方法、装置、设备及存储介质
WO2020166179A1 (ja) 端末及び通信方法
US11849490B2 (en) Communication device, second communication device, communication system, and communication method
JP7277539B2 (ja) Harq再送信を処理するデバイス
US11395350B2 (en) Random access method, terminal device, and network device
JP7456551B2 (ja) 信号の送受信方法、装置及び通信システム
JP7347664B2 (ja) 無線通信方法、装置及びシステム
JP7089188B2 (ja) 基地局装置、端末装置、通信方法、及び無線通信システム
KR101766840B1 (ko) 이동 통신 시스템에서 저지연을 위한 랜덤 액세스 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909793

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020566368

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019909793

Country of ref document: EP

Effective date: 20210816