WO2020148099A1 - Procédé servant à fournir une zone d'intégrité à une estimation de paramètres - Google Patents

Procédé servant à fournir une zone d'intégrité à une estimation de paramètres Download PDF

Info

Publication number
WO2020148099A1
WO2020148099A1 PCT/EP2020/050019 EP2020050019W WO2020148099A1 WO 2020148099 A1 WO2020148099 A1 WO 2020148099A1 EP 2020050019 W EP2020050019 W EP 2020050019W WO 2020148099 A1 WO2020148099 A1 WO 2020148099A1
Authority
WO
WIPO (PCT)
Prior art keywords
integrity
motor vehicle
area
information
parameter
Prior art date
Application number
PCT/EP2020/050019
Other languages
German (de)
English (en)
Inventor
Thomas FRIEDERICHS
Jens Strobel
Michael Baus
Marco Limberger
Thomas Ulrich
Sebastian ROITH
Mohamed Ben Tahar
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to KR1020217025396A priority Critical patent/KR20210108484A/ko
Priority to CN202080009614.XA priority patent/CN113302452A/zh
Publication of WO2020148099A1 publication Critical patent/WO2020148099A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/20Integrity monitoring, fault detection or fault isolation of space segment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network

Definitions

  • the invention relates to a method for providing an integrity area of a parameter estimate, a computer program, a machine-readable storage medium and a control device for a motor vehicle.
  • the invention is particularly suitable for use in autonomous driving.
  • the autonomous vehicle usually has sensors, such as inertial sensors, wheel sensors,
  • the vehicle can estimate its own position.
  • information about its (expected) estimation accuracy is also output for a determined own position.
  • the confidence of the determined own position can be represented by a so-called “Protection Level” (short: "PL").
  • the PL can describe a statistical error limit, the calculation of which is generally based on statistical considerations and, if necessary, additionally on a suitable coordination of the estimation algorithms.
  • a method for providing an integrity area of a parameter estimate is proposed, the integrity area describing the area in which an estimated parameter with a
  • the minimum probability is, the method comprising at least the following steps:
  • Steps a), b) and c) are carried out in particular in the order given.
  • the solution proposed here advantageously allows the integrity area to be made available depending on the direction, in particular depending on or in relation to the orientation or orientation of a motor vehicle (for which, for or in which the parameter estimation is carried out).
  • the alignment or orientation here means in particular the alignment and / or orientation in a global coordinate system. This is particularly noticeable
  • the integrity area describes the area in which an estimated
  • the estimated parameter (value) basically describes an (individual, in particular momentary) estimation result of the parameter estimation.
  • the integrity area describes the area in which a real or actual value of an estimated one Parameter with a minimum probability.
  • Integrity area can also be referred to as the so-called “protection level”.
  • the minimum probability is usually a predefined minimum probability.
  • The is preferably
  • Minimum probability 90% particularly preferably 95% or even 99%.
  • the range of integrity is preferably a protection level.
  • the protection level usually describes the (spatial, in particular two- or three-dimensional) area in which an estimated parameter (value) with a minimum probability (actually) lies.
  • the estimated parameter (value) basically describes an (individual, in particular momentary) estimation result of the parameter estimation. In other words, this means in particular that the protection level describes the area in which a real or actual value of an estimated parameter with a
  • the minimum probability is.
  • a protection level describes in particular a confidence interval or a (spatial) confidence range, in which the true value of an estimated parameter can be compared with a
  • the estimated value of the parameter is usually in the middle or the center of the confidence interval or confidence range.
  • the minimum probability with which a real or actual value of an estimated parameter is actually in a protection level is still much higher than with "usual" integrity areas.
  • the minimum probability here is usually over 99.99%, particularly preferably over 99.999% or even over 99.9999%.
  • the minimum probability at the protection level can also not be expressed in percent but in possible errors in a certain time interval.
  • a protection level can, for example, be defined so that the parameter in question is outside the protection level at most once every 10 years.
  • the protection level can be, for example, either as a unitless probability or as a rate, i.e. as
  • step a at least one piece of integrity information is ascertained, in particular via the parameter estimate or an estimated one
  • a covariance matrix or at least one value from a covariance matrix for the parameter estimation and / or from the parameter estimation can be determined.
  • values are read from a covariance matrix.
  • the covariance matrix can be determined, for example, by a filter model, such as a Kalman filter, and in this connection can result, for example, from the parameter estimation carried out using the filter model.
  • Sensor data of the sensors of the motor vehicle which are also mentioned here, can be supplied to the filter model as input data.
  • state-describing functions are fundamentally conceivable, in particular so-called “state observers”, for example extensive fuzzy methods or the like.
  • step b) the at least one piece of integrity information determined in step a) is evaluated.
  • a matrix such as a covariance matrix
  • the integrity area is provided by outputting at least two pieces of information that describe a non-rotationally invariant (geometric) shape.
  • the non-rotationally invariant (geometric) shape can be, for example, an ellipse, a rectangle, a diamond or the like. It is preferably an ellipse. If necessary, a rectangle can be derived from the ellipse.
  • the at least two pieces of information may e.g. are (support) vectors that span and / or (unambiguously) define the non-rotationally invariant (geometric) shape.
  • the ellipse can become an ellipsoid and the rectangle a cuboid.
  • a hyperellipsoid is also conceivable, for example.
  • the estimated parameter is a driving operation parameter of a motor vehicle.
  • the driving operation parameter is usually a safety-critical or safety-relevant parameter of the ferry operation a motor vehicle. It is preferably the
  • a driving operation parameter is used here in particular
  • the driving operation parameter helps at least to describe an own movement and / or own position of a motor vehicle.
  • the driving operation parameter can be, for example, an (own) position, an (own) speed, (own) acceleration or a position (or orientation) of the motor vehicle.
  • the driving operation parameter is preferably a self-position of the motor vehicle.
  • the range of integrity is also preferably determined in real time or
  • the method is preferably used to provide an integrity area that describes the integrity of an estimate of a vehicle's own position.
  • the method can (thus) for example provide a
  • Integrity range serve a position estimate of a vehicle position.
  • the integrity area can describe the area in which an estimated own position of a vehicle with a minimum probability (actually) lies. Alternatively or cumulatively to the estimation of the vehicle's own position, the method can also be used to estimate the
  • Own speed, orientation, own movement or the like of the vehicle can be used.
  • step a) the at least one piece of integrity information based on data from at least one sensor is determined, which is preferably arranged in or on a motor vehicle. The determination of the
  • Integrity information based at least also on GNSS (global navigation satellite system) data (and for example additional GNSS correction data or data comprising both GNSS position data and GNSS correction data) of a GNSS sensor of a motor vehicle.
  • the integrity information can be determined at least on the basis of data from an environment sensor of a motor vehicle.
  • the environment sensor can be, for example, a camera, a RADAR sensor, a LIDAR sensor and / or an ultrasonic sensor.
  • a covariance matrix be evaluated in step b).
  • the covariance matrix usually contains the uncertainties of the state parameters determined by the system, as well as their correlations with each other. These uncertainties (variances and covariances) form the so-called "second central moment in statistics" and represent the individual matrix elements. The resulting one
  • Covariance matrix is symmetrical and has as many rows as there are columns. In the case of a two-dimensional position determination, the
  • Covariance matrix also two-dimensional. That means it has two rows and two columns (a total of 4 matrix elements).
  • the covariance is preferably evaluated such that an ellipse is determined from it.
  • mathematical methods such as solving the eigenvalue problem of the matrix and setting up the characteristic polynomial of the matrix and zeroing this polynomial, the
  • the individual matrix elements are used as input parameters for this.
  • the eigenvalues then calculated represent the length of the two semiaxes of an ellipse, which initially only represents a pure error ellipse.
  • the associated eigenvectors of the matrix can be determined for the specific eigenvalues of the matrix. Using this
  • Eigenvectors can determine an angle that is the orientation of the ellipse within a defined coordinate system. So you can first evaluate the following output parameters from the covariance matrix: The eigenvalues of the matrix, the eigenvectors associated with the eigenvalues and / or the orientation angle with respect to a fixedly defined one
  • the factor by which it is “inflated” can be determined, for example, by means of quantile tables from the associated statistical probability distributions.
  • the at least two pieces of information output in step c) form an ellipse
  • this at least two pieces of information can be, for example, two eigenvectors.
  • the ellipse can be arranged so that the estimated parameter lies in its center. Furthermore, the ellipse can be oriented so that it lies in a horizontal plane.
  • the integrity area is preferably a horizontal integrity area.
  • the ellipse can also be an ellipse that lies in a horizontal plane.
  • a further or different non-rotation-invariant shape can also be determined, which is then provided in step c).
  • a box or a rectangle can be determined that surrounds or envelops the ellipse.
  • step c) at least one further item of information is output, which is an orientation angle of the non-rotation-invariant shape with respect to a
  • the orientation angle can be based in particular on the eigenvectors of the
  • Covariance matrix can be determined.
  • the non-rotationally invariant form is in one
  • a confidence area be provided as the integrity area.
  • the confidence range can be provided, for example, by scaling the integrity range.
  • the (geometric) shape provided in step c) generally describes and / or surrounds the area of integrity. This (geometric) shape can also be scaled (in particular enlarged), for example by
  • Confidence area In particular, as described above, a confidence ellipse can be provided in this way.
  • a computer program for performing a method presented here is proposed.
  • this relates in particular to a computer program (product) comprising commands which, when the program is executed by a computer, cause the computer to carry out a method described here.
  • the machine-readable storage medium is usually a computer-readable data carrier.
  • a control device for a motor vehicle is proposed, the control device for carrying out a here
  • control unit can Have memory on which a program for executing the method is stored. Furthermore, the control device can have a processor that can access the memory and execute the program.
  • the method serves to provide an integrity area 1, 11 of a parameter estimate, the integrity area describing the area in which an estimated parameter with a minimum probability lies.
  • step 110 at least one piece of integrity information is determined in accordance with step a).
  • step 120 the at least one piece of integrity information determined in step a) is evaluated in accordance with step b).
  • step 130 according to step c), the integrity area is provided by outputting at least two Information 2, 3, 12, 13, which describe a non-rotationally invariant form 5, 15.
  • FIG. 2 schematically shows an exemplary illustration of the method proposed here.
  • the reference symbols are used uniformly, so that reference can be made in full to the preceding explanations, in particular for FIG. 1.
  • FIG. 2 An integrity area 1 around a motor vehicle 30 is shown in FIG. 2.
  • This integrity area 1 has, for example, the shape of an ellipse 5.
  • This ellipse 5 lies here, for example, in a horizontal plane.
  • At least two pieces of information 2, 3 are available for clamping the ellipse 5.
  • the information 2 is here, for example, the main axis of the ellipse 5 and the information 3 is, for example, the minor axis 3 of the ellipse 5.
  • an orientation angle 4 of the ellipse 5, in particular the main axis 2 of the ellipse 5, relative to a motor vehicle coordinate system 31 of the motor vehicle 30 is determined and provided as information.
  • the non-rotationally invariant shape of the integrity area 1 thus allows it to be made available as a function of or in relation to the direction of travel 32 of the motor vehicle 30. This can contribute to improving the determination of the own position of motor vehicle 30, in particular when cornering. This represents, in particular, a noticeable improvement over areas of integrity which only describe a circle 40 over a radius 41.
  • FIG. 2 also illustrates a possible, further non-rotationally invariant form that describes the integrity area 11.
  • This is a box 15.
  • the box 15 can be described by way of example using two pieces of information 12, 13.
  • the information 12 exemplifies the (maximum) deviation along the direction of travel 32 and the information 13 exemplifies the (maximum) deviation transverse to the direction of travel 32.
  • FIG. 3 schematically shows a motor vehicle 30 with a control device 20 proposed here.
  • the control device 20 is set up to carry out a method presented here.
  • the motor vehicle 30 also has a sensor 33 which can transmit data to the control device 20.
  • the solution presented here can be summarized in particular as follows:
  • the so-called protection level is a critical factor for safety concepts in the field of autonomous driving.
  • the protection level describes a confidence range in which the actual position of an object whose position is to be determined is very likely. The possibility that the actual position is outside the protection level is extremely low. This high level of safety is essential for applications in the field of autonomous driving.
  • This determined presumed position is usually in the center of the protection level.
  • applications in the area e.g. the
  • Position determination in one level the protection level is usually described as a circle in one level.
  • a circle as a protection level has the advantage that it can be described with just one parameter (the radius).
  • the radius is not very precise.
  • the circle is just a very rough assumption of the uncertainty of the particular position.
  • much more precise assessments are often possible in certain directions in the plane.
  • the directions in which these more precise assessments are possible often coincide with the directions in which exact vehicle positions must be known for applications in autonomous driving. For example, it is very important for autonomous driving to know exactly what uncertainty exists when determining the position perpendicular to the direction of travel. An uncertainty in determining the position parallel to the direction of travel, on the other hand, is often more acceptable.
  • the available data often make it more precise in the direction perpendicular to the direction of travel
  • Coordinate system for example in a body coordinate system of the
  • Coordinate system is possible with a matrix transformation. This approach is not possible with the classic definition of the protection level (specified with a radius), for example used in the aerospace sector, and is also not necessary because it is circular or spherical
  • Integrity area can not be aligned.
  • Vehicle coordinate system arranged ellipse described. Then uncertainties in different spatial directions can be mapped well relative to the vehicle.
  • the protection level described here can therefore differentiate between a motor vehicle longitudinal direction uncertainty and a transverse direction uncertainty transverse to the vehicle longitudinal direction.
  • a further rotation can take place relative to the vehicle coordinate system, for example the
  • All - apart from one or more scaling factors - necessary parameters to describe the ellipse of the protection level can be from one
  • Covariance matrix with components in a diagonal axis of the matrix as well as further components linking these components can be found in the further cutouts of the matrix.
  • the components in the diagonal of the matrix primarily describe the extent of the elliptical protection level.
  • the other components in the cutouts of the matrix describe in particular the rotation of the ellipse.
  • the matrix can transform into a
  • Motor vehicle coordinate system are converted so that only the components in the axis diagonal exist (then called main components), the other components of the matrix becoming zero.

Abstract

L'invention concerne un procédé servant à fournir une zone d'intégrité (1, 1) à une estimation de paramètres. La zone d'intégrité décrit la zone, dans laquelle se trouve un paramètre estimé présentant une probabilité minimale. Le procédé comprend au moins des étapes suivantes consistant à : a) déterminer au moins une information d'intégrité ; b) évaluer l'information ou les informations d'intégrité déterminées lors de l'étape a) ; c) fournir la zone d'intégrité en émettant au moins deux informations (2, 3, 12, 13), qui décrivent une forme non invariante en rotation (5, 15).
PCT/EP2020/050019 2019-01-16 2020-01-02 Procédé servant à fournir une zone d'intégrité à une estimation de paramètres WO2020148099A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217025396A KR20210108484A (ko) 2019-01-16 2020-01-02 파라미터 추정의 무결성 범위의 제공 방법
CN202080009614.XA CN113302452A (zh) 2019-01-16 2020-01-02 用于提供参数估计的完整性范围的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019200423.7 2019-01-16
DE102019200423.7A DE102019200423A1 (de) 2019-01-16 2019-01-16 Verfahren zum Bereitstellen eines Integritätsbereichs einer Parameterschätzung

Publications (1)

Publication Number Publication Date
WO2020148099A1 true WO2020148099A1 (fr) 2020-07-23

Family

ID=69063813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/050019 WO2020148099A1 (fr) 2019-01-16 2020-01-02 Procédé servant à fournir une zone d'intégrité à une estimation de paramètres

Country Status (4)

Country Link
KR (1) KR20210108484A (fr)
CN (1) CN113302452A (fr)
DE (1) DE102019200423A1 (fr)
WO (1) WO2020148099A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020212042A1 (de) * 2020-09-24 2022-03-24 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Bereitstellen von Informationen über die Verlässlichkeit einer Parameterschätzung eines Parameters für den Betrieb eines Fahrzeugs

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2101148A1 (fr) * 2008-03-11 2009-09-16 GMV Aerospace and Defence S.A. Procédé de cartographie correspondant avec une intégrité garantie

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016212195A1 (de) * 2016-07-05 2018-01-11 Robert Bosch Gmbh Verfahren zum Durchführen eines automatischen Eingriffs in die Fahrzeugführung eines Fahrzeugs
DE102016212326A1 (de) * 2016-07-06 2018-01-11 Robert Bosch Gmbh Verfahren zur Verarbeitung von Sensordaten für eine Position und/oder Orientierung eines Fahrzeugs
KR101738384B1 (ko) * 2016-12-01 2017-05-22 한국해양과학기술원 Dgnss 측정 위치의 무결성 검사 시스템 및 이를 이용한 무결성 검사방법
CN108519104B (zh) * 2018-02-11 2020-12-18 北京航天控制仪器研究所 三参数椭圆概率误差描述导航落点精度的估计方法及系统
CN108548537B (zh) * 2018-02-11 2020-09-18 北京航天控制仪器研究所 六参数椭球概率误差描述导航落点精度的估计方法及系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2101148A1 (fr) * 2008-03-11 2009-09-16 GMV Aerospace and Defence S.A. Procédé de cartographie correspondant avec une intégrité garantie

Also Published As

Publication number Publication date
DE102019200423A1 (de) 2020-07-16
KR20210108484A (ko) 2021-09-02
CN113302452A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
DE102017118401B4 (de) Verfahren und system zum durchführen eines autonomen betriebs eines fahrzeugs
DE102017105305A1 (de) Verfahren zur automatischen bestimmung einer sensorstellung
DE112014001807T5 (de) Integrierte Gefälle- und Neigungsschätzung unter Verwendung einer Trägheitsmessvorrichtung mit drei Achsen
DE112017004803T5 (de) Schätzvorrichtung für axiale Fehlausrichtung
WO2018087257A1 (fr) Estimation d'une position propre
DE102018207421A1 (de) Verfahren und System zum Ermitteln einer erwarteten Vorrichtungskontur
WO2020169374A1 (fr) Procédé pour valider des fonctions automatisées d'un véhicule
EP3117183B1 (fr) Méthode et dispositif pour déterminer des données de navigation
DE102014211164A1 (de) Verfahren und System zur Anpassung eines Navigationssystems
DE102018205430A1 (de) Verfahren zur satellitengestützten Ermittlung einer Fahrzeugposition
WO2020126795A1 (fr) Procédé pour déterminer de manière adaptative un domaine d'intégrité d'une estimation de paramètre
WO2020148099A1 (fr) Procédé servant à fournir une zone d'intégrité à une estimation de paramètres
EP3155454B1 (fr) Procédé et système d'adaptation d'un système de navigation
DE102019201914A1 (de) Trajektoriebestimmung für Landmaschinen unter Verwendung von Rasterkarten
DE102018128535A1 (de) Trainieren eines künstlichen neuronalen Netzwerks mit durch Sensoren eines Fahrzeugs erfassten Daten
DE102018222166A1 (de) Verfahren zum Ermitteln eines Integritätsbereichs
DE102021125773A1 (de) Verfahren zum gleichzeitigen schätzen von bewegung und form eines zielfahrzeugs mittels eines vorverteilungsmodells eines tracklets
WO2019096670A1 (fr) Procédé et dispositif servant à déterminer une position pour un véhicule hautement automatisé
DE102017201886B3 (de) Verfahren zur Ermittlung einer Genauigkeitsinformation eines Positionsvektors
WO2019219356A1 (fr) Procédé et système de positionnement pour la transformation d'une position d'un véhicule
DE102019132151A1 (de) Verfahren zum Kalibrieren eines Umfeldsensors eines Fahrzeugs anhand von Daten eines Referenz-Umfeldsensors unter Berücksichtigung von Belegungskarten, Recheneinrichtung sowie Sensorsystem
DE102020212042A1 (de) Verfahren zum Bereitstellen von Informationen über die Verlässlichkeit einer Parameterschätzung eines Parameters für den Betrieb eines Fahrzeugs
EP3404364B1 (fr) Procédé d'estimation d'un état d'une plateforme mobile
DE102021122432A1 (de) Eigenposition-Schätzverfahren
WO2018041426A1 (fr) Procédé, dispositif, programme informatique et produit-programme informatique pour détecter un rétrécissement d'une voie de circulation d'un véhicule

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20700036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217025396

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20700036

Country of ref document: EP

Kind code of ref document: A1