WO2020147765A1 - 快速切换静态转换开关的方法、装置、存储介质和终端设备 - Google Patents

快速切换静态转换开关的方法、装置、存储介质和终端设备 Download PDF

Info

Publication number
WO2020147765A1
WO2020147765A1 PCT/CN2020/072358 CN2020072358W WO2020147765A1 WO 2020147765 A1 WO2020147765 A1 WO 2020147765A1 CN 2020072358 W CN2020072358 W CN 2020072358W WO 2020147765 A1 WO2020147765 A1 WO 2020147765A1
Authority
WO
WIPO (PCT)
Prior art keywords
triac
power supply
switching
voltage drop
transfer switch
Prior art date
Application number
PCT/CN2020/072358
Other languages
English (en)
French (fr)
Inventor
于飞舟
Original Assignee
艾思得电子香港有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艾思得电子香港有限公司 filed Critical 艾思得电子香港有限公司
Priority to EP20742093.6A priority Critical patent/EP3799256A4/en
Publication of WO2020147765A1 publication Critical patent/WO2020147765A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/263Arrangements for using multiple switchable power supplies, e.g. battery and AC
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/30Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Definitions

  • the present invention relates to the field of computer technology, in particular to a method, device, storage medium and terminal equipment for quickly switching a static transfer switch.
  • the Static Transfer Switch is mainly used for power supply switching between two power supply sources, and provides an automatic transfer switch for the power supply.
  • STS Static Transfer Switch
  • the output load is connected to the working power supply.
  • the power quality of the duty cycle of the working power supply becomes unacceptable or meets the conversion standard, the output load will be automatically transferred to the backup power supply. It is also possible to perform load transfer via external commands.
  • the commonly used static transfer switch is generally composed of SCR (Silicon Controlled Rectifier) connected in reverse parallel, as shown in Figure 1.
  • A is the input terminal
  • K is the output terminal
  • G is the gate control terminal.
  • the static transfer switch of Figure 1 can be used to construct single-pole, double-pole, 3-pole, 4-pole or even more pole STS.
  • a unipolar STS can be shown in Figure 2-1
  • a bipolar STS can be shown in Figure 2-2
  • a 3-pole STS can be shown in Figure 2-3
  • a 4-pole STS can be shown in Figure 2- 4 shown.
  • DUTY SUPPLY is the working power supply
  • STAND BY SUPPLY is the backup power supply
  • OUTPUT is the port that outputs the power to the load.
  • the Make Before Break (MBB) mechanism can be used to switch the two power supplies in the two synchronized power supplies.
  • the backup power supply can be switched on before the working power supply is completely turned off, or the working power supply can be switched on before the backup power supply is completely switched off.
  • the output terminal of the transfer switch can always supply power to the load.
  • a delay is required before turning on the backup power source to avoid a short circuit between the two power sources with different potentials. This delay is usually between 8 and 10 ms for the device to ensure that the working power supply is completely turned off before the standby power supply is turned on.
  • BBM Break Before Make
  • some existing methods generally are: to confirm the closing of the duty cycle switch by detecting the holding current of the SCR. This can reduce the delay time to 5-6ms.
  • the holding current of the SCR can be less than 100 mA.
  • the current detection value of electrical noise is generally about 100mA or above.
  • the holding current is too close to the current detection value of electrical noise, which affects the holding current. Detection accuracy. Therefore, the detected electrical noise may be mistaken as a holding current, and the BBM mechanism is still executed at this time, resulting in shutdown of the power supply.
  • the power supply shutdown in this case will affect the operation of the load equipment.
  • the embodiments of the present invention provide a method, a device, a storage medium, and a terminal device for switching a static transfer switch, so as to solve or alleviate one or more technical problems in the prior art.
  • an embodiment of the present invention provides a method for switching a static transfer switch, including:
  • embodiments of the present invention provide a circuit for switching a static transfer switch, including a control circuit and at least one set of triac; the output end of the triac is used to connect to a load; The input end of one triac in the triac group is used to connect to the working power supply, and the input end of the other triac is used to connect to the standby power supply; the control circuit includes a voltage detection end and Drive signal terminal; the voltage detection terminal is respectively connected to the input terminal and the output terminal of the triac, and is used to detect the voltage drop between the input terminal and the output terminal of the triac; The driving signal terminal is connected with the gate of the triac, and is used to output a driving signal to drive the triac to work.
  • embodiments of the present invention provide a device for switching a static transfer switch, including:
  • the detection switching module is used to detect whether the working power supply or the backup power supply meets the power switching conditions; wherein the working power supply and the backup power supply are respectively connected to the load through a triac; and the voltage detection module is removed and used for when When it is detected that the working power supply or the backup power supply meets the power switching condition, remove the driving signal used to drive the current output power to the load of the triac to work, and detect the voltage drop of the triac;
  • the conduction module is used for when the voltage drop of the triac is not within the voltage drop range of the conducting state of the triac, outputting a drive signal to the triac paired with the triac.
  • the bidirectional thyristor switch in the closed state is turned on.
  • the function of the device can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure for switching the static transfer switch includes a processor and a memory.
  • the device for switching the static transfer switch executes the above-mentioned program for switching the static transfer switch, and the processor is configured to execute The program stored in the memory.
  • the device for switching the static transfer switch may further include a communication interface, and the device for switching the static transfer switch communicates with other equipment or a communication network.
  • an embodiment of the present invention also provides a computer-readable storage medium, which includes computer software instructions used in the device for switching a static transfer switch, including a program for executing the above-mentioned method for switching a static transfer switch.
  • the embodiment of the present invention confirms the closed state of the switch by detecting the turn-on voltage of the bidirectional thyristor switch, which can greatly reduce the delay time of switching the power supply and avoid the erroneous turn-off situation during the current detection process.
  • Fig. 1 is a schematic diagram of an embodiment of a static transfer switch provided by the present invention
  • Figure 2-1 is a schematic diagram of an embodiment of a unipolar static transfer switch provided by the present invention.
  • Figure 2-3 is a schematic diagram of an embodiment of the three-pole static transfer switch provided by the present invention.
  • Figures 2-4 are schematic diagrams of an embodiment of the four-pole static transfer switch provided by the present invention.
  • FIG. 3 is a schematic flowchart of an embodiment of a method for switching a static transfer switch provided by the present invention
  • FIG. 4 is a schematic diagram of an embodiment of a circuit for switching a static transfer switch provided by the present invention.
  • FIG. 5 is a schematic structural diagram of an embodiment of a device for switching a static transfer switch provided by the present invention.
  • Fig. 6 is a schematic structural diagram of an embodiment of a terminal device provided by the present invention.
  • an embodiment of the present invention provides a method for switching a static switch.
  • This embodiment can be executed by a control circuit to control the power switch of the static switch.
  • This embodiment includes step S100 to step S400, which are specifically as follows:
  • S100 Detect whether the working power supply or the backup power supply meets the power switching conditions; wherein, the working power supply and the backup power supply are respectively connected to the load through a triac.
  • the static switch system includes a pair of paired triacs.
  • the static switch system includes two pairs of paired triacs.
  • When power is supplied to the load there are at most two bidirectional silicon inputs and outputs in a conducting state, which can be called a bipolar STS.
  • the static switch system includes three pairs of bidirectional thyristor switches.
  • When power is supplied to the load there are three pairs of paired input and output terminals that are in a conducting state, and there are at most three bidirectional silicon input and output. Both terminals are in a conducting state, which can be called a three-pole STS.
  • Other more extreme STS can be deduced by analogy. Therefore, this embodiment can be applied to multiple groups of triacs.
  • One of the paired triacs is connected to the working power source, and the other is connected to the standby power source.
  • Satisfying the power switching conditions may include unacceptable quality of the duty cycle of the working power supply or the backup power supply, and an external command to switch the current working power supply to the backup power supply or the current power supply backup power to the working power supply.
  • the drive signal is output to the triac in the off state that is paired with the triac to Turn on the triac in the off state.
  • the working power source and the standby power source are alternating current.
  • the phases of the two power sources are different, the levels of the working power source and the standby power source at the same time are usually different.
  • a mechanism of breaking and closing is adopted. That is, first disconnect the current power supply, and then start the paired power supply.
  • the closed or open state of the triac is controlled by removing or providing a driving signal.
  • the power switching command that the control circuit can receive will remove the driving signal used to drive the current output power to the load of the triac. For example, if the current power supply to the load is a working power source, the driving signal of the triac connected to the working power source is removed.
  • the current power supply to the load is a backup power supply, and the drive signal of the triac connected to the backup power supply is removed.
  • the PN-PN junction of the triac Due to the semiconductor structure characteristics of the PN-PN junction of the triac, for the PN-PN junction that is turned on, since the power supply still has a current output, even if the drive signal is removed, the PN-PN junction cannot be activated immediately Cut off (turn off). When the current flow of the PN-PN junction stops, the triac is turned off. At this time, the voltage drop across the triac is no longer in the on-state voltage drop range. Therefore, by detecting the voltage drop of the triac, it can be accurately judged whether the triac is turned off.
  • the thyristor switch makes the two-way thyristor switch in the conducting state. Ensure continuous power supply on the load side to achieve non-interrupted switching effects. Moreover, the short circuit of the two power supplies can be avoided by adopting the mechanism of breaking before making.
  • the triac When detecting the voltage drop of the triac, once the detected voltage drop is not within the range of 0.8V and 2.5V, the triac can be confirmed to be off, and the paired triac is immediately turned on. It can be considered that there is no delay time between the two. Even if there is, the processing time is within microseconds.
  • the control circuit can complete the switching process in one millisecond to ensure continuous power storage on the load side and achieve an uninterrupted power switching effect.
  • an embodiment of the present invention provides a circuit for switching a static transfer switch, which includes a control circuit CONTROL CIRCUIT and at least one set of triacs; a set of triacs includes two triacs.
  • the output terminals of the two triacs of the triac are used to connect to the load; the output of one triac in the triac
  • the input terminal is used for connection with the working power supply, and the input terminal of the other triac is used for the backup power connection.
  • the connection relationship of other triac groups can be deduced by analogy.
  • the control circuit includes multiple sets of voltage detection terminals and drive signal terminals. Any group of ports can be used to connect to a group of triac groups.
  • a set of voltage detection terminals and driving signal terminals includes two voltage detection terminals and four driving signal terminals. Among them, the two voltage detection terminals respectively detect the voltage drop of the triac connected to the working power supply and the voltage drop of the triac connected to the standby power supply. When measuring the time voltage drop, the voltage detection terminal is respectively connected with the input terminal and the output terminal of the bidirectional thyristor switch. That is, the voltage drop between the input terminal and the output terminal of the triac can be detected.
  • the four drive signal terminals are respectively connected to the four gates in the triac group, and the ports output drive signals to drive the triac to work.
  • the control circuit can remove the bidirectional power supply on each pole (POLE1, 2, 3, 4 ⁇ ) connected to the working power source.
  • the driving signal of the thyristor switch is used to send a turn-off command to the duty cycle triac. Due to the structural characteristics of the PN-PN junction of the bidirectional thyristor switch, the removal of the drive signal can not immediately turn off the triac. When no more current flows in the triac, that is, when the current drops to a certain threshold, the triac is turned off. At the same time, the voltage at both ends of the triac no longer maintains the on-state voltage.
  • the control circuit continuously detects the voltage drop of the triac to confirm that it is turned off. Immediately afterwards, once it is confirmed that the triac is turned off, a drive signal is sent to the matched triac connected to the backup power supply to enable the triac to provide backup power to the load. This ensures continuous current on the load side and avoids short circuits between the two power supplies.
  • an embodiment of the present invention provides a device for switching a static transfer switch, including:
  • the detection switching module 100 is used to detect whether the working power supply or the backup power supply meets the power switching conditions; wherein the working power supply and the backup power supply are respectively connected to the load through a triac; and the voltage detection module 200 is removed to use When it is detected that the working power supply or the backup power supply meets the power switching condition, the driving signal used to drive the triac that currently outputs the power to the load is removed, and the voltage drop of the triac is detected And the power supply conduction module 300, which is used to output a driving signal to the triac when the voltage drop of the triac is not within the range of the voltage drop in the on-state of the triac The switch paired with the off-state triac, so that the off-state triac is turned on.
  • the on-state voltage drop range is comprised between 0.8V and 2.5V.
  • the paired triac group includes multiple groups.
  • the function of the device can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure for switching the static transfer switch includes a processor and a memory, the device for switching the static transfer switch executes the program for switching the static transfer switch in the first aspect, and the processor is configured It is used to execute the program stored in the memory.
  • the device for switching the static transfer switch may further include a communication interface, and the device for switching the static transfer switch communicates with other equipment or a communication network.
  • the embodiment of the present invention also provides a terminal device for switching a static transfer switch.
  • the device includes a memory 21 and a processor 22.
  • the memory 21 stores a computer program that can be run on the processor 22.
  • the processor 22 executes the computer program, the method for switching the static transfer switch in the foregoing embodiment is implemented.
  • the number of the memory 21 and the processor 22 may be one or more.
  • the equipment also includes:
  • the communication interface 23 is used for communication between the processor 22 and external devices.
  • the memory 21 may include a high-speed RAM memory, and may also include a non-volatile memory (non-volatile memory), for example, at least one disk memory.
  • the bus may be an industry standard architecture (ISA, Industry Standard Architecture) bus, a peripheral device interconnection (PCI, Peripheral Component) bus, or an extended industry standard architecture (EISA, Extended Industry Standard Component) bus, etc.
  • ISA Industry Standard Architecture
  • PCI peripheral device interconnection
  • EISA Extended Industry Standard Component
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only a thick line is used in FIG. 6, but it does not mean that there is only one bus or one type of bus.
  • the memory 21, the processor 22, and the communication interface 23 are integrated on one chip, the memory 21, the processor 22, and the communication interface 23 can communicate with each other through internal interfaces.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present invention, the meaning of “plurality” is two or more, unless otherwise specifically limited.
  • a "computer-readable medium” can be any device that can contain, store, communicate, propagate, or transmit a program for use by an instruction execution system, device, or device or in combination with these instruction execution systems, devices, or devices.
  • the computer-readable medium in the embodiment of the present invention may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the two. More specific examples of computer-readable storage media include at least (non-exhaustive list) the following: electrical connections (electronic devices) with one or more wiring, portable computer disk cases (magnetic devices), random access memory (RAM ), read only memory (ROM), erasable and editable read only memory (EPROM or flash memory), fiber optic devices, and portable read only memory (CDROM).
  • the computer-readable storage medium may even be paper or other suitable medium on which the program can be printed, because it can be used for example by optically scanning the paper or other medium, and then editing, interpreting, or other suitable means when necessary. Process to obtain the program electronically and then store it in the computer memory.
  • a computer-readable signal medium may include a data signal propagated in a baseband or as a part of a carrier wave, and a computer-readable program code is carried therein.
  • This propagated data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer-readable signal medium may also be any computer-readable medium other than the computer-readable storage medium.
  • the computer-readable medium may send, propagate, or transmit a program for use in an instruction execution system, input method, or device or in combination with it .
  • the program code contained on the computer-readable medium can be transmitted by any suitable medium, including but not limited to: wireless, wire, optical cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • each part of the present invention may be implemented by hardware, software, firmware, or a combination thereof.
  • multiple steps or methods can be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a logic gate circuit for implementing a logic function on a data signal
  • PGA programmable gate arrays
  • FPGA field programmable gate arrays
  • a person of ordinary skill in the art can understand that all or part of the steps carried in the method of the foregoing embodiments can be implemented by a program instructing related hardware to complete the program.
  • the program can be stored in a computer-readable storage medium. When executed, it includes one of the steps of the method embodiment or a combination thereof.
  • each embodiment of the present invention may be integrated into one processing module, or each unit may exist alone physically, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. If the integrated module is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer-readable storage medium.
  • the storage medium can be a read-only memory, a magnetic disk or an optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Electronic Switches (AREA)

Abstract

本发明提出一种切换静态转换开关的方法、装置、存储介质和终端设备,其中,所述方法包括:检测工作电源或备用电源是否满足电源切换条件;其中,所述工作电源和所述备用电源分别通过双向可控硅开关与负载连接;当检测到所述工作电源或备用电源满足电源切换条件时,移除用于驱动当前输出电源给负载的双向可控硅开关工作的驱动信号,并检测所述双向可控硅开关的压降;当所述双向可控硅开关的压降不在所述双向可控硅开关的导通状态压降范围内时,输出驱动信号给与所述双向可控硅开关配对的处于关闭状态的双向可控硅开关,以使所述处于关闭状态的双向可控硅开关导通。采用本发明,可以在避免两供电电源短路的情况下,快速切换静态转换开关,且切换准确。

Description

快速切换静态转换开关的方法、装置、存储介质和终端设备 技术领域
本发明涉及计算机技术领域,尤其涉及一种快速切换静态转换开关的方法、装置、存储介质和终端设备。
背景技术
静态转换开关(Static Transfer Switch,STS)主要用于两路供电电源的供电切换,为电源提供自动转换开关。在正常工作状态下,当工作电源的占空比的电能质量可接受以及不满足转换标准时,输出负载与工作电源连接。当工作电源的占空比的电能质量变得不可接受或者满足转换标准时,输出负载将自动转移到备用电源。也可以通地外部命令执行负载转移。
常用的静态转换开关一般由反向并联连接的SCR(Silicon Controlled Rectifier,可控硅)构成,可以如图1所示。其中,A为输入端,K为输出端,G为栅极控制端。可以根据具体应用,利用图1的静态转换开关构建单极、双极、3极、4极甚至更多极的STS。其中,单极的STS可以如图2-1所示,双极的STS可以如图2-2所示,3极的STS可以如图2-3所示,4极的STS可以如图2-4所示。其中,DUTY SUPPLY为工作电源,STAND BY SUPPLY为备用电源,OUTPUT为输出电源给负载的端口。
为了实现电源切换过程中,无中断地为负载供电,可以在同步的两个电源中采用先合后断(Make Before Break,MBB)机制对两电源进行切换。如此,可以在工作电源完全关闭之前接通备用电源,或者在备用电源完全关闭之前接通工作电源。在这种情况下,转换开关的输出端可以一直供电给负载。当两个电源是不同步的情况下,在接通备用电源之前需要延迟以避免两个具有不同电位的电源之间的短路。该延迟通常设备为8~10ms之间,以确保在接通备用电源之前完全关闭工作电源。但是实现这样的延迟,在切换电源的过程中需要调用先断后合(Break Before Make,BBM)机制。
为了减少不同步的电源切换过程的延迟时间,现有的一些做法,一般是:通过检测SCR的保持电流,以确认占空比开关的关闭。如此可以将延迟时间减少到5~6ms。但是,对于导通电流为数百或数千安培的SCR,SCR的保持电流可以低于100mA。在高电流的应用情况下,电噪声的电流检测值一般在100mA左右或以上,则在检测低值的保持电流的过程中,由于保持电流与电噪声的电流检测值过于相近,影响保持电流的检测准确程度。因此,会存在将检测到的电噪声误以为是保持电流,此时仍然执行BBM机制,导致供电关断。但是,需要指出的是,在这情况下的供电关断会影响负载设备的工作。
发明内容
本发明实施例提供一种切换静态转换开关的方法、装置、存储介质和终端设备,以解决或缓解现有技术中的以上一个或多个技术问题。
第一方面,本发明实施例提供了一种切换静态转换开关的方法,包括:
检测工作电源或备用电源是否满足电源切换条件;其中,所述工作电源和所述备用电源分别通过双向可控硅开关与负载连接;当检测到所述工作电源或备用电源满足电源切换条件时,移除用于驱动当前输出电源给负载的双向可控硅开关工作的驱动信号,并检测所述双向可控硅开关的压降;当所述双向可控硅开关的压降不在所述双向可控硅开关的导通状态压降范围内时,输出驱动信号给与所述双向可控硅开关配对的处于关闭状态的双向可控硅开关,以使所述处于关闭状态的双向可控硅开关导通。
本发明实施例在第二方面提供一种切换静态转换开关的电路,包括控制电路和至少一组双向可控硅开关组;所述双向可控硅开关组的输出端用于与负载连接;所述双向可控硅开关组中的一个双向可控硅开关的输入端用于与工作电源连接,另一个双向可控硅开关的输入端用于备用电源连接;所述控制电路包括电压检测端和驱动信号端;所述电压检测端分别与所述双向可控硅开关的输入端、输出端连接,用于检测所述双向可控硅开关的输入端与输出端之间的压降;所述驱动信号端与所述双向可控硅开关的栅极连接,用于输出驱动信号以驱动所述双向可控硅开关工作。
本发明实施例在第三方面提供一种切换静态转换开关的装置,包括:
检测切换模块,用于检测工作电源或备用电源是否满足电源切换条件;其中,所述工作电源和所述备用电源分别通过双向可控硅开关与负载连接;移除与电压检测模块,用于当检测到所述工作电源或备用电源满足电源切换条件时,移除用于驱动当前输出电源给负载的双向可控硅开关工作的驱动信号,并检测所述双向可控硅开关的压降;供电导通模块,用于当所述双向可控硅开关的压降不在所述双向可控硅开关的导通状态压降范围内时,输出驱动信号给与所述双向可控硅开关配对的处于关闭状态的双向可控硅开关,以使所述处于关闭状态的双向可控硅开关导通。
所述装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,切换静态转换开关的结构中包括处理器和存储器,所述存储器用于切换静态转换开关的装置执行上述切换静态转换开关的程序,所述处理器被配置为用于执行所述存储器中存储的程序。所述切换静态转换开关的装置还可以包括通信接口,用于切换静态转换开关的装置与其他设备或通信网络通信。
第四方面,本发明实施例还提供一种计算机可读存储介质,用于切换静态转换开关的装置所用的计算机软件指令,其中包括用于执行上述切换静态转换开关的方法所涉及的程序。
上述技术方案中的任意一个技术方案具有如下优点或有益效果:
本发明实施例通过检测双向可控硅开关的导通电压来确认开关的关闭状态,可以大大减少切换电源的延迟时间,并且避免电流检测过程出现的误关断情况。
上述概述仅仅是为了说明书的目的,并不意图以任何方式进行限制。除上述描述的示意性的方面、实施方式和特征之外,通过参考附图和以下的详细描述,本发明进一步的方面、实施方式和特征将会是容易明白的。
附图说明
在附图中,除非另外规定,否则贯穿多个附图相同的附图标记表示相同或 相似的部件或元素。这些附图不一定是按照比例绘制的。应该理解,这些附图仅描绘了根据本发明公开的一些实施方式,而不应将其视为是对本发明范围的限制。
图1是本发明提供的静态转换开关的一个实施例的示意图;
图2-1是本发明提供的单极静态转换开关的一个实施例的示意图;
图2-2是本发明提供的双极静态转换开关的一个实施例的示意图;
图2-3是本发明提供的三极静态转换开关的一个实施例的示意图;
图2-4是本发明提供的四极静态转换开关的一个实施例的示意图;
图3是本发明提供的切换静态转换开关的方法的一个实施例的流程示意图;
图4是本发明提供的切换静态转换开关的电路的一个实施例的示意图;
图5是本发明提供的切换静态转换开关的装置的一个实施例的结构示意图;
图6是本发明提供的终端设备的一个实施例的结构示意图。
具体实施方式
在下文中,仅简单地描述了某些示例性实施例。正如本领域技术人员可认识到的那样,在不脱离本发明的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,附图和描述被认为本质上是示例性的而非限制性的。
请参阅图3,本发明实施例提供了一种切换静态切换开关的方法。本实施例可由控制电路执行,控制静态切换开关的电源切换。本实施例包括步骤S100至步骤S400,具体如下:
S100,检测工作电源或备用电源是否满足电源切换条件;其中,工作电源和备用电源分别通过双向可控硅开关与负载连接。
如图2-1至图2-4所示,静态切换开关系统包括一组配对的双向可控硅开关,供电给负载时,只有一个双向可向硅的输入端和一个输出端处于导通工作状态,其可称为单极STS。静态切换开关系统包括两组配对的双向可控硅开关,供电给负载时,最多存在两个双向可向硅的输入端和输出端处于导通工作状态,其可称为双极STS。静态切换开关系统包括三组配对的双向可控硅开关,代电给负载时,存在三组配对的输入端和输出端处于导通工作状态,最多存在三个 双向可向硅的输入端和输出端均处于导通工作状态,其可称三极STS。其他更多极的STS可以此类推。因此,本实施例可以应用于多组的双向可控硅开关中。
一组配对的双向可控硅中的其中一者与工作电源连接,另一者与备用电源连接。
满足电源切换条件可以包括工作电源或备用电源的占空比质量不可接受、外部命令将当前供电的工作电源切换为备用电源或将当前供电的备用电源切换为工作电源等。
S200,当检测到工作电源或备用电源满足电源切换条件时,移除用于驱动当前输出电源给负载的双向可控硅开关工作的驱动信号,并检测双向可控硅开关的压降。
S300,当双向可控硅开关的压降不在双向可控硅开关的导通状态压降范围内时,输出驱动信号给与双向可控硅开关配对的处于关闭状态的双向可控硅开关,以使处于关闭状态的双向可控硅开关导通。
可选地,工作电源与备用电源为交流电。当两电源的相位不同时,则工作电源与备用电源同一时间的电平通常是不相同的。此时,如果在切换电源过程中采用先合后断的机制,则会出现短路的情况。因此,本实施例为了避免两电源短路,采用先断后合的机制。即,先断开当前供电,后启动配对的供电。
在本实施例中通过移除或提供驱动信号来控制双向可控硅开关的闭合或打开状态。当检测到工作电源或备用电源满足电源切换条件时,控制电路可以接收到的电源切换命令,则移除用于驱动当前输出电源给负载的双向可控硅开关工作的驱动信号。例如,当前供电给负载的电源为工作电源,则移除与工作电源连接的双向可控硅开关的驱动信号。当前供电给负载的电源为备用电源,则移除与备用电源连接的双向可控硅开关的驱动信号。由于双向可控硅开关的PN-PN结的半导体结构特性,对于导通的PN-PN结来说,由于供电的电源仍有电流输出,即使移除了驱动信号也不能立即使PN-PN结截止(关断)。当PN-PN结的电流流动停止时,双向可控硅开关关断。此时,双向可控硅开关两端的压降不再处于导通状态压降范围。因此,通过检测双向可控硅开关的压降,可以准确地判断此双向可控硅开关是否关断,一旦检测到供电的双向可控硅开关关 断,则立马输出驱动信号给配对的双向可控硅开关,使此双向可控硅开关处于导通状态。确保负载侧的连续电源,实现无中断切换效果。而且采用先断后合的机制可以避免两电源短路。
对于不同额值的双向可控硅开关,由于其均为PN-PN结的结构,处于导通状态的压降范围是固定,通常处于0.8V和2.5V之间。因此本实施例的适用于所有的静态转换开关系统。
在检测双向可控硅开关的压降时,一旦检测压降不在0.8V和2.5V之间的范围内,双向可控硅开关可以确认为关断,配对的双向可控硅开关立即接通,则两者之间可以认为没有延迟时间,即使有也是微秒级以内的处理时间,控制电路可以在一毫秒以完成切换过程,以确保存负载侧的连续电源,实现无中断电源的切换效果。
参见图4,本发明实施例提供一种切换静态转换开关的电路,包括控制电路CONTROL CIRCUIT和至少一组双向可控硅开关组;一组双向可控硅开关包括两个双向可控硅开关。
以一组双向可控硅开关组为例,双向可控硅开关组两个双向可控硅开关的输出端均用于与负载连接;双向可控硅开关组中的一个双向可控硅开关的输入端用于与工作电源连接,另一个双向可控硅开关的输入端用于备用电源连接。对于其他双向可控硅开关组的连接关系可以此类推。
控制电路包括多组的电压检测端和驱动信号端。任一组端口可以用于与一组双向可控硅开关组连接。一组电压检测端和驱动信号端包括两个电压检测端和四个驱动信号端。其中,两个电压检测端分别检测与工作电源连接的双向可控硅开关的压降、与备用电源连接的双向控硅开关的压降。测时压降时,电压检测端分别与双向可控硅开关的输入端、输出端连接。即可以检测双向可控硅开关的输入端与输出端之间的压降。四个驱动信号端分别与双向可控硅开关组内的四个栅极连接,该端口输出驱动信号驱动双向可控硅开关工作。
以图4为例,每当静态转换开关满足工作电源切换为备用电源的切换条件时,控制电路通过去除与工作电源连接的每个极(POLE1、2、3、4···)上双向可控硅开关的驱动信号,以向占空比的双向可控硅发送关闭的命令。由于双 向可控硅开关的PN-PN结的结构特性,驱动信号的移除也不能立即关断双向可控硅开关。当此双向可控硅开关没有更多的电流流动时,即电流降至一定的阈值时,双向可控硅开关关断。与此同时,双向可控硅开关的两端电压不再保持导通状态的电压。控制电路在作用于双向可控硅开关的驱动信号移除后,持续检测双向可控硅开关的压降,以确认其关断为止。紧接着,一旦确认双向可控硅开关关断后,发送驱动信号给配对的与备用电源连接的双向可控硅开关,以使此双向可控硅开关导能,提供备用电源给负载。从而确保负载侧的连续电流,并且可以避免两电源发生短路的情况。
参见图5,本发明实施例提供一种切换静态转换开关的装置,包括:
检测切换模块100,用于检测工作电源或备用电源是否满足电源切换条件;其中,所述工作电源和所述备用电源分别通过双向可控硅开关与负载连接;移除与电压检测模块200,用于当检测到所述工作电源或备用电源满足电源切换条件时,移除用于驱动当前输出电源给负载的双向可控硅开关工作的驱动信号,并检测所述双向可控硅开关的压降;以及供电导通模块300,用于当所述双向可控硅开关的压降不在所述双向可控硅开关的导通状态压降范围内时,输出驱动信号给与所述双向可控硅开关配对的处于关闭状态的双向可控硅开关,以使所述处于关闭状态的双向可控硅开关导通。
在一种可能的实现方式中,所述导通状态压降范围包括在0.8V和2.5V之间。
在一种可能的实现方式中,配对的双向可控硅开关组包括多组。
所述装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,切换静态转换开关的结构中包括处理器和存储器,所述存储器用于切换静态转换开关的装置执行上述第一方面中切换静态转换开关的程序,所述处理器被配置为用于执行所述存储器中存储的程序。所述切换静态转换开关的装置还可以包括通信接口,用于切换静态转换开关的装置与其他设备或通信网络通信。
本发明实施例还提供一种切换静态转换开关的终端设备,如图6所示,该 设备包括:存储器21和处理器22,存储器21内存储有可在处理器22上的计算机程序。处理器22执行计算机程序时实现上述实施例中的切换静态转换开关的方法。存储器21和处理器22的数量可以为一个或多个。
该设备还包括:
通信接口23,用于处理器22与外部设备之间的通信。
存储器21可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
如果存储器21、处理器22和通信接口23独立实现,则存储器21、处理器22和通信接口23可以通过总线相互连接并完成相互间的通信。总线可以是工业标准体系结构(ISA,Industry Standard Architecture)总线、外部设备互连(PCI,Peripheral Component)总线或扩展工业标准体系结构(EISA,Extended Industry Standard Component)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图6中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
可选的,在具体实现上,如果存储器21、处理器22及通信接口23集成在一块芯片上,则存储器21、处理器22及通信接口23可以通过内部接口完成相互间的通信。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,“计算机可读介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。
本发明实施例的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质的更具体的示例至少(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式只读存储器(CDROM)。另外,计算机可读存储介质甚至可以是可在其上打印程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得程序,然后将其存储在计算机存储器中。
在本发明实施例中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机 可读介质,该计算机可读介质可以发送、传播或者传输用于指令执行系统、输入法或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成的程序,该程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读存储介质中。存储介质可以是只读存储器,磁盘或光盘等。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到其各种变化或替换,这些都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (9)

  1. 一种切换静态转换开关的方法,其特征在于,包括:
    检测工作电源或备用电源是否满足电源切换条件;其中,所述工作电源和所述备用电源分别通过双向可控硅开关与负载连接;
    当检测到所述工作电源或备用电源满足电源切换条件时,移除用于驱动当前输出电源给负载的双向可控硅开关工作的驱动信号,并检测所述双向可控硅开关的压降;
    当所述双向可控硅开关的压降不在所述双向可控硅开关的导通状态压降范围内时,输出驱动信号给与所述双向可控硅开关配对的处于关闭状态的双向可控硅开关,以使所述处于关闭状态的双向可控硅开关导通。
  2. 如权利要求1所述的静态转换开关的方法,其特征在于,所述导通状态压降范围包括在0.8V和2.5V之间。
  3. 如权利要求1所述的切换静态转换开关的方法,其特征在于,配对的双向可控硅开关组包括多组。
  4. 一种切换静态转换开关的电路,其特征在于,包括控制电路和至少一组双向可控硅开关组;
    所述双向可控硅开关组的输出端用于与负载连接;所述双向可控硅开关组中的一个双向可控硅开关的输入端用于与工作电源连接,另一个双向可控硅开关的输入端用于备用电源连接;
    所述控制电路包括电压检测端和驱动信号端;所述电压检测端分别与所述双向可控硅开关的输入端、输出端连接,用于检测所述双向可控硅开关的输入端与输出端之间的压降;所述驱动信号端与所述双向可控硅开关的栅极连接,用于输出驱动信号以驱动所述双向可控硅开关工作。
  5. 一种切换静态转换开关的装置,其特征在于,包括:
    检测切换模块,用于检测工作电源或备用电源是否满足电源切换条件;其中,所述工作电源和所述备用电源分别通过双向可控硅开关与负载连接;
    移除与电压检测模块,用于当检测到所述工作电源或备用电源满足电源切换条件时,移除用于驱动当前输出电源给负载的双向可控硅开关工作的驱动信号,并检测所述双向可控硅开关的压降;
    供电导通模块,用于当所述双向可控硅开关的压降不在所述双向可控硅开关的导通状态压降范围内时,输出驱动信号给与所述双向可控硅开关配对的处于关闭状态的双向可控硅开关,以使所述处于关闭状态的双向可控硅开关导通。
  6. 如权利要求1所述的静态转换开关的装置,其特征在于,所述导通状态压降范围包括在0.8V和2.5V之间。
  7. 如权利要求1所述的切换静态转换开关的装置,其特征在于,配对的双向可控硅开关组包括多组。
  8. 一种实现切换静态转换开关的终端设备,其特征在于,所述终端设备包括:
    一个或多个处理器;
    存储装置,用于存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现如权利要求1-3中任一所述的切换静态转换开关的方法。
  9. 一种计算机可读存储介质,其存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-4中任一所述的切换静态转换开关的方法。
PCT/CN2020/072358 2019-01-18 2020-01-16 快速切换静态转换开关的方法、装置、存储介质和终端设备 WO2020147765A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20742093.6A EP3799256A4 (en) 2019-01-18 2020-01-16 STATIC TRANSFER SWITCH QUICK SWITCHING METHOD AND APPARATUS, STORAGE MEDIA AND TERMINAL DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
HK19100978A HK1257786A2 (zh) 2019-01-18 2019-01-18 快速切換靜態轉換開關的方法、裝置、存儲介質和終端設備
HK19100978.5 2019-01-18

Publications (1)

Publication Number Publication Date
WO2020147765A1 true WO2020147765A1 (zh) 2020-07-23

Family

ID=68465554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072358 WO2020147765A1 (zh) 2019-01-18 2020-01-16 快速切换静态转换开关的方法、装置、存储介质和终端设备

Country Status (4)

Country Link
EP (1) EP3799256A4 (zh)
CN (1) CN111463886B (zh)
HK (1) HK1257786A2 (zh)
WO (1) WO2020147765A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112366701A (zh) * 2020-11-04 2021-02-12 合肥联信电源有限公司 一种静态开关的并联方法
CN112803462A (zh) * 2021-03-05 2021-05-14 上海电气集团股份有限公司 基于储能变流器的静态转换开关强制关断方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HK1257786A2 (zh) * 2019-01-18 2019-10-25 Astrid Electronics Hk Ltd 快速切換靜態轉換開關的方法、裝置、存儲介質和終端設備

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210685A (en) * 1985-03-08 1993-05-11 Westinghouse Electric Corp. Uninterruptible power supply system and load transfer static switch for such a system
CN1553554A (zh) * 2003-06-05 2004-12-08 中兴通讯股份有限公司 一种用于实现不间断电源系统切换控制的静态开关装置
CN106253461A (zh) * 2016-08-24 2016-12-21 青岛艾迪森科技股份有限公司 新型静态开关及其控制方法
CN107332339A (zh) * 2016-04-28 2017-11-07 鸿富锦精密电子(天津)有限公司 供电切换电路及装置
HK1257786A2 (zh) * 2019-01-18 2019-10-25 Astrid Electronics Hk Ltd 快速切換靜態轉換開關的方法、裝置、存儲介質和終端設備

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8232679B2 (en) * 2003-02-25 2012-07-31 Eaton Corporation Uninterruptible power supplies with converter operation conditioned upon static switch commutation and methods of operation thereof
KR101079900B1 (ko) * 2007-10-31 2011-11-04 주식회사 케이티 선택스위치 장치, 이를 이용한 전원공급장치 및 그 스위칭 방법
CN102856975A (zh) * 2012-09-11 2013-01-02 广州供电局有限公司 备用电源自动投入系统
CN107222029B (zh) * 2017-08-04 2023-05-16 南方电网电力科技股份有限公司 组合式模块化移动储能系统
CN207382062U (zh) * 2017-08-04 2018-05-18 广东电网有限责任公司电力科学研究院 组合式模块化移动储能系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210685A (en) * 1985-03-08 1993-05-11 Westinghouse Electric Corp. Uninterruptible power supply system and load transfer static switch for such a system
CN1553554A (zh) * 2003-06-05 2004-12-08 中兴通讯股份有限公司 一种用于实现不间断电源系统切换控制的静态开关装置
CN107332339A (zh) * 2016-04-28 2017-11-07 鸿富锦精密电子(天津)有限公司 供电切换电路及装置
CN106253461A (zh) * 2016-08-24 2016-12-21 青岛艾迪森科技股份有限公司 新型静态开关及其控制方法
HK1257786A2 (zh) * 2019-01-18 2019-10-25 Astrid Electronics Hk Ltd 快速切換靜態轉換開關的方法、裝置、存儲介質和終端設備

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3799256A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112366701A (zh) * 2020-11-04 2021-02-12 合肥联信电源有限公司 一种静态开关的并联方法
CN112366701B (zh) * 2020-11-04 2024-05-10 合肥联信电源有限公司 一种静态开关的并联方法
CN112803462A (zh) * 2021-03-05 2021-05-14 上海电气集团股份有限公司 基于储能变流器的静态转换开关强制关断方法

Also Published As

Publication number Publication date
CN111463886A (zh) 2020-07-28
CN111463886B (zh) 2022-03-08
EP3799256A1 (en) 2021-03-31
EP3799256A4 (en) 2023-05-31
HK1257786A2 (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
WO2020147765A1 (zh) 快速切换静态转换开关的方法、装置、存储介质和终端设备
CN101728866B (zh) 一种实现电源倒换的装置与方法
EP3287905B1 (en) Circuit, method and apparatus for usb interface sharing
WO2017118433A1 (zh) 电池充放电方法及电路
US10951425B2 (en) Power supply method, device, and power supply system
US10468972B2 (en) Power converter including a plurality of converter cells connected in multiple series
CN107210739B (zh) 用于控制并联的功率半导体开关的方法和设备
CN109062392A (zh) 一种自动切换服务器板卡供电的设备、方法及系统
WO2023024846A1 (zh) 开关切换时长确定方法、时序控制方法、装置及供电系统
CN104834246B (zh) 汽车控制器和应用于汽车控制器的状态同步方法
CN212304726U (zh) 一种过流保护电路、装置及电机驱动器
CN107147432A (zh) 一种检测nfc启动的移动终端及其实现方法、存储装置
CN105515787A (zh) 网络端口及以太网装置
CN105990900B (zh) 备用电源控制电路及使用其的备用电源供应系统
CN110008069A (zh) 电源切换控制电路及控制方法
CN106026359A (zh) 双电源自动切换控制方法
CN112542880A (zh) 单输入冗余电源模块的输入电源切换电路、系统和方法
CN109417286B (zh) 一种伺服驱动器的检测电路及伺服驱动器
CN105391273B (zh) 一种柜台设备的电源控制器
CN212660103U (zh) 隔离电路及开关电源
CN103762714A (zh) 一种用于实现多个电源系统切换控制的开关装置
CN107566131B (zh) Pse多路自动切换芯片
CN111610437A (zh) 动态制动电路、基于该电路的状态检测和故障处理方法
EP4329144A1 (en) Hybrid fast transfer switch and method for fast switching between power supplies by using same
CN104242269B (zh) 配电系统和供电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20742093

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020742093

Country of ref document: EP

Effective date: 20201223

NENP Non-entry into the national phase

Ref country code: DE