WO2020147656A1 - 显示基板和显示装置 - Google Patents

显示基板和显示装置 Download PDF

Info

Publication number
WO2020147656A1
WO2020147656A1 PCT/CN2020/071396 CN2020071396W WO2020147656A1 WO 2020147656 A1 WO2020147656 A1 WO 2020147656A1 CN 2020071396 W CN2020071396 W CN 2020071396W WO 2020147656 A1 WO2020147656 A1 WO 2020147656A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
signal line
deformation
substrate
magnetic field
Prior art date
Application number
PCT/CN2020/071396
Other languages
English (en)
French (fr)
Inventor
刘文祺
孙中元
薛金祥
董超
周翔
隋凯
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/042,143 priority Critical patent/US11404526B2/en
Publication of WO2020147656A1 publication Critical patent/WO2020147656A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N39/00Integrated devices, or assemblies of multiple devices, comprising at least one piezoelectric, electrostrictive or magnetostrictive element covered by groups H10N30/00 – H10N35/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates

Definitions

  • the present invention relates to the field of display technology, in particular, to a display substrate and a display device.
  • the stretchable area has denser wiring, such as copper, titanium, aluminum, molybdenum, nano-silver or metal oxide conductive wires, the conductive wires often break during the stretching process Or the problem that it is difficult to return to the original state at the end of stretching, which seriously affects the normal display of the stretchable display panel.
  • denser wiring such as copper, titanium, aluminum, molybdenum, nano-silver or metal oxide conductive wires
  • the present invention provides a display substrate and a display device.
  • the display substrate can prevent the wiring in the circuit from being broken when the substrate is deformed or cannot be restored to the original state before the deformation, thereby well achieving the deformability of the display substrate and simultaneously
  • the normal display of the display substrate during the deformation process is further conducive to the promotion and use of the deformable display substrate.
  • the present invention provides a display substrate, including a base and a plurality of display units arranged on the base, the display substrate further including a signal line and a control unit,
  • the signal line is used to connect two adjacent display units among the plurality of display units;
  • At least part of the signal line is made of shape memory material, and this part will deform to different degrees under different excitation conditions;
  • the control unit is used to detect the deformation of the substrate, and apply the corresponding excitation condition to the signal line according to the deformation of the substrate, so that the signal line is in a deformation compatible with the deformation of the substrate status.
  • control unit is connected to the signal line, and the control unit is configured to detect the stress on the signal line caused by the deformation of the substrate, so as to apply the corresponding stress to the signal line according to the stress. Incentive conditions.
  • the signal line uses a magneto-induced shape memory material, and the magneto-induced shape memory material has different deformation states under different magnetic field strengths.
  • the magneto-induced shape memory material includes any one of nickel manganese gallium alloy, nickel iron gallium alloy, iron palladium alloy, iron nickel cobalt titanium alloy, cobalt nickel alloy, and cobalt manganese alloy.
  • control unit includes a piezoelectric sensing unit, a magnetic field generating unit, and a control unit.
  • the control unit is connected to the piezoelectric sensing unit and the magnetic field generating unit, and the piezoelectric sensing unit can sense the Stress and convert it into a first current signal, and provide the first current signal to the control part;
  • the control unit is configured to receive the first current signal and process it to obtain a second current signal, and provide the second current signal to the magnetic field generating unit;
  • the magnetic field generating unit can generate a corresponding magnitude of the magnetic field intensity according to the second current signal.
  • the deformation of the substrate becomes the stretching or shrinking of the substrate in any direction in its plane.
  • the deformation state of the signal line is stretched or contracted along the deformation direction of the substrate in the plane where the substrate is located.
  • the piezoelectric sensing portion and the plurality of display units are located on the same side of the substrate, and the magnetic field generating portion is located on a side of the substrate away from the plurality of display units.
  • the orthographic projection of the control unit on the substrate is located between the orthographic projections of any two adjacent display units among the plurality of display units on the substrate.
  • a connecting line is provided between the piezoelectric sensing part and the control part for providing the first current signal to the control part, and the connecting line is the same as the signal line. Material.
  • the display unit includes an organic electroluminescence device.
  • the present invention also provides a display device including the above-mentioned display substrate.
  • the display substrate provided by the present invention uses shape memory materials that can deform under excitation conditions for at least part of the signal lines, and applies excitation conditions to the signal lines through the control unit, so that the signal lines can follow
  • the deformation of the base adapts to the topographical change.
  • the wiring in the circuit can be prevented from being broken when the substrate is deformed or cannot be restored to the original state before the deformation, thus achieving a good performance of the display substrate. It can be deformed, and at the same time, the normal display of the display substrate during the deformation process is realized, which is beneficial to the promotion and use of the deformable display substrate.
  • the display device provided by the present invention adopts the above-mentioned display substrate, so that the display device can maintain normal display during the deformation process, thereby improving the quality of the deformable display device.
  • FIG. 1 is a top view of a partial structure of a display substrate in an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of the structure of the substrate taken along the AA′ section line in FIG. 1;
  • Fig. 3 is a schematic diagram of the control principle of the control unit in Fig. 1;
  • Figure 4 is a schematic diagram of the structure of a coil type electromagnet
  • Figure 5 is a schematic diagram of a magnetic field formed by two horseshoe-shaped electromagnets
  • FIG. 6 is a schematic top view of the state of the signal line of the display substrate when no magnetic field is applied in the embodiment of the present invention.
  • FIG. 7 is a schematic top view of the state of the signal line of the display substrate when a certain magnetic field is applied in the embodiment of the present invention.
  • the embodiment of the present invention provides a display substrate, as shown in FIGS. 1 to 3, which includes a base 1 and a plurality of display units 2 arranged on the base 1, and also includes a signal line 3 and a control unit 4, and the signal line 3 is used for Connect two adjacent display units 2 among the multiple display units 2; at least part of the signal line 3 is made of shape memory material, and this part will undergo different degrees of deformation under different excitation conditions; the control unit 4 is used for detection
  • the deformation of the substrate 1 and corresponding excitation conditions are applied to the signal line 3 according to the deformation of the substrate 1 so that the signal line 3 is in a deformed state adapted to the deformation of the substrate 1.
  • the base 1 is formed of a twistable, bendable, and foldable material, for example, the base 1 is made of polydimethylsiloxane (PDMS) or a deformable rubber material.
  • PDMS polydimethylsiloxane
  • making the signal line 3 in a deformed state adapted to the deformation of the substrate 1 means that the signal line 3 is in a state of being stretched with the stretching of the substrate 1 or contracted with the shrinking of the substrate 1; the amount of deformation of the signal line 3 It is positively related to the deformation of base 1.
  • the signal line 3 By making at least part of the signal line 3 adopt a shape memory material that can deform under excitation conditions, and applying excitation conditions to the signal line 3 through the control unit 4, the signal line 3 can be adapted to the topographical change following the deformation of the substrate 1.
  • the wiring in the circuit can be prevented from being broken when the substrate is deformed or cannot be restored to the original state before the deformation, so that the deformability of the display substrate is well realized, and the display substrate is The normal display during the deformation process further facilitates the popularization and use of the deformable display substrate.
  • the orthographic projection of the signal line 3 and the control unit 4 on the substrate 1 is located in the interval between the orthographic projections of the display unit 2 on the substrate 1, and the signal line 3 is used to transmit control signals when the display unit 2 is displaying And display signal.
  • the control unit 4 is connected to the signal line 3, and the control unit 4 is used to detect the stress on the signal line 3 caused by the deformation of the substrate 1, so as to apply corresponding excitation conditions to the signal line 3 according to the stress. In this case, the deformation state of the signal line 3 can be controlled more accurately.
  • the signal line 3 adopts a magneto-induced shape memory material, which has different deformation states under different magnetic field strengths.
  • the signal line 3 can be prepared by a preparation process of magnetron sputtering.
  • the magnetic field strength of the magnetic field is proportional to the degree of deformation of the magnetic shape memory material.
  • the magnetic field that determines the magnetic field strength can also make the signal line 3 have different deformation states within a certain deformation degree range.
  • the magnetic shape memory material includes any one of nickel-manganese-gallium alloy, nickel-iron-gallium alloy, iron-palladium alloy, iron-nickel-cobalt-titanium alloy, cobalt-nickel alloy, and cobalt-manganese alloy.
  • the magnetic shape memory material can also be other magnetic shape memory materials besides the above materials.
  • the above-mentioned shape memory alloy has a larger recoverable strain than ordinary metals, up to about 10%, and the strain of ordinary alloys is only about 0.2%.
  • the control unit 4 includes a piezoelectric sensing unit 41, a magnetic field generating unit 42, and a control unit 43.
  • the control unit 43 connects the piezoelectric sensing unit 41 and the magnetic field generating unit 42.
  • the piezoelectric sensing unit 41 can sense stress and It is converted into a first current signal, and the first current signal is provided to the control unit 43.
  • the control unit 43 is configured to receive the first current signal and process it to obtain a second current signal, and provide the second current signal to the magnetic field generating unit 42.
  • the magnetic field generating unit 42 can generate a corresponding magnitude of the magnetic field intensity according to the second current signal.
  • the piezoelectric sensor 41 adopts a piezoelectric sensor that can sense stress and convert the stress into a current signal for output.
  • the piezoelectric sensor is composed of two electrodes 410 and a piezoelectric material layer 411 arranged between the two electrodes 410.
  • the electrode 410 is made of materials such as titanium, aluminum, molybdenum or nano silver
  • the piezoelectric material layer 411 is made of such as polyvinylidene fluoride. Vinyl (PVDF) material. Both the electrode 410 and the piezoelectric material layer 411 can be prepared by inkjet printing.
  • the piezoelectric induction principle of the piezoelectric sensor is a relatively mature technology, and will not be repeated here.
  • the magnetic field generating section 42 uses a coil type electromagnet as shown in FIG. 4, that is, an electromagnet formed by inserting an iron core into an energized coil (such as a solenoid).
  • the working principle and method of the coil type electromagnet are: the energized solenoid itself constitutes a magnetic field; when the iron core is inserted into the energized solenoid, the iron core is magnetized by the magnetic field of the energized solenoid, and the magnetized iron core is also It becomes a magnet, so that the magnetic field of the energized solenoid and the magnetic field of the iron core are superimposed on each other, so that the magnetism of the coil type electromagnet is greatly enhanced.
  • the iron core is usually made into a horseshoe shape, and the coil is wound on the horseshoe-shaped iron core to form a horseshoe-shaped electromagnet.
  • the coiled electromagnet is composed of two horseshoe-shaped electromagnets. The winding direction of the coil on the iron core of the horseshoe-shaped electromagnet is opposite. If the winding directions of the coils on the upper and lower horseshoe-shaped electromagnet iron cores are the same, the magnetization of the two coils on the iron core will cancel each other, so that the iron core is not magnetic.
  • the iron core of the coil type electromagnet is made of soft iron instead of steel, because after the soft iron is magnetized, its magnetic strength can change with the current in the coil, and the coil can be demagnetized when the power is turned off. Therefore, the strength of the electromagnet's magnetism can be controlled by the magnitude of the current in the coil; once the steel is magnetized, it will remain magnetic for a long time and cannot be demagnetized, so that the strength of its magnetism cannot be controlled by the magnitude of the current.
  • an electromagnet can also be constructed by simply using an energized coil (such as a solenoid).
  • the energized solenoid itself can form a magnetic field, and the relationship between the direction of the current in the energized solenoid and the direction of the magnetic field formed by the energized solenoid can be determined by Ampere's law (also called the right-handed spiral law).
  • the magnetic line of induction outside the energized solenoid is emitted from the north pole of the solenoid and returns to the south pole.
  • the direction of the magnetic field inside the energized solenoid is from the south pole of the solenoid to the north pole.
  • control unit 43 adopts a central processing unit (CPU), and the CPU is provided outside the display substrate.
  • An analog-to-digital conversion circuit is provided inside the CPU, which can convert the analog first current signal into a digital second current signal, so that the current signal can more accurately control the magnitude of the magnetic field of the magnetic field generator 42.
  • the deformation of the substrate 1 becomes the stretching or shrinking of the substrate 1 in any direction in its plane.
  • the deformation state of the signal line 3 is its stretching or shrinking along the deformation direction of the substrate 1 in the plane of the substrate 1.
  • the deformation of the substrate 1 can also be the stretching, shrinking or twisting of the substrate 1 in any plane in space.
  • the deformation state of the signal line 3 can also be the deformation of the signal line 3 in the space following the deformation of the substrate 1. Stretching, shrinking or twisting in any direction.
  • the piezoelectric sensing portion 41 and the plurality of display units 2 are located on the same side of the substrate 1, and the magnetic field generating portion 42 is located on the side of the substrate 1 away from the multiple display units 2.
  • the magnetic field generating part 42 is arranged adjacent to the substrate 1, which is beneficial for the magnetic field to act on the signal line 3.
  • the piezoelectric sensing portion 41 and the plurality of display units 2 are first fabricated on a hard substrate such as a glass substrate, and then the piezoelectric sensing portion 41 and the display unit 2 are separated from the hard substrate. , And then use an adhesive 5 such as optical acrylic glue (OCA glue) to bond the piezoelectric sensor 41 and the display unit 2 to the base 1, so that the base 1 becomes the backing film of the display substrate.
  • OCA glue optical acrylic glue
  • the base 1 is deformable Therefore, the use of the base 1 is beneficial to realize a deformable display substrate.
  • the rigid substrate can be adapted to various process conditions in the preparation process of the display unit 2 on the display substrate. Therefore, the display unit 2 needs to be prepared on the rigid substrate first.
  • the orthographic projection of the control unit 4 on the substrate 1 is located between the orthographic projections of any two adjacent display units 2 among the plurality of display units 2 on the substrate 1, and is located between the orthographic projections of the two display units 2 The middle of the interval between the regions.
  • the magnetic field generated by the magnetic field generating portion 42 in the control unit 4 can have a more balanced effect on the magnetic field of the magnetic shape memory material signal line 3, thereby facilitating the normal deformation of the signal line 3.
  • a connecting wire 6 is provided between the piezoelectric sensing part 41 and the control part 43, which is used to provide the first current signal to the control part 43.
  • the connecting wire 6 can be made of the same material as the signal wire 3.
  • the connecting wire 6 between the control unit 4 and the signal line 3 can also be deformed correspondingly under the action of the magnetic field, so as to prevent the connecting wire 6 from being torn off, so that the control unit 4 can normally control the signal line 3 Telescopic deformation.
  • the control unit 4 can be connected to the signal line 3 through a connecting line 6, and the wiring of the connecting line 6 and the signal line 3 at least partially overlap, so that the connecting line 6 and the signal line 3 can be in the magnetic field. Under the action of the corresponding topography, the connecting wire 6 is more effectively prevented from being torn off.
  • connecting wire 6 between the control unit 4 and the signal wire 3 can also be made of non-magnetic shape memory materials, such as titanium, aluminum, or molybdenum.
  • the specific control principle and process of the control unit 4 are as follows: when the display substrate is stretched, the piezoelectric sensor senses the magnitude of the stress on the signal line 3, and combines the stress Converted into the first current signal and fed back to the CPU. The CPU performs analog-to-digital conversion processing on the first current signal, and feeds back the second current signal obtained after processing to the electromagnet.
  • the first current signal increases, and the magnetic field increases.
  • the magnetostatic force of the unfavorably oriented martensite variant in the signal line 3 is used by the magnetic field to promote the favorable orientation of the martensite variant to grow and merge.
  • Orientation variant (shown as the movement of the twin boundary), which causes the signal line 3 to produce a macroscopic deformation; the deformation of the signal line 3 can be changed by the magnitude of the magnetic field strength, and the twin boundary will return back when the magnetic field strength is reduced or removed. initial position.
  • the control unit 4 controls the deformation of the signal line 3 in the same principle as above.
  • the display unit 2 includes an organic electroluminescence device. Since the organic electroluminescence device can realize flexible display of the display substrate, such a display unit 2 is more suitable for a deformable display substrate. Of course, the display unit 2 may also be other devices suitable for flexible display.
  • the display substrate provided in this embodiment uses a shape memory material that can deform under excitation conditions for at least part of the signal line, and the control unit applies excitation conditions to the signal line to enable The signal line adapts to the topographical change with the deformation of the substrate.
  • the control unit applies excitation conditions to the signal line to enable The signal line adapts to the topographical change with the deformation of the substrate.
  • it can prevent the wiring in the circuit from being broken when the substrate is deformed or unable to restore the original state before the deformation, thereby achieving a good realization
  • the deformability of the display substrate simultaneously realizes the normal display of the display substrate during the deformation process, thereby facilitating the popularization and use of the deformable display substrate.
  • An embodiment of the present invention provides a display device including the display substrate in the above-mentioned embodiment.
  • the display device can still maintain a normal display during the deformation process, which improves the quality of the deformable display device.
  • the display panel provided by the present invention can be any product or component with display function such as OLED panel, OLED TV, display, mobile phone, navigator, etc., and can also be a semi-finished product or component of the above-mentioned product or component with display function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示基板和显示装置。显示基板包括基底(1)和设置在基底(1)上的多个显示单元(2),还包括信号线(3)和控制单元(4),信号线(3)用于连接多个显示单元(2)中相邻的两个显示单元(2);信号线(3)的至少部分采用形状记忆材料,且形状记忆材料在不同的激励条件下,会发生不同程度的形变;控制单元(4)用于检测基底(1)的形变,并根据基底(1)的形变对信号线(3)施加相应的激励条件,以使信号线(3)处于与基底(1)的形变相适应的形变状态。

Description

显示基板和显示装置
相关申请的交叉引用
本申请要求于2019年1月14日提交至中国知识产权局,发明名称为“一种显示基板和显示装置”的中国专利申请NO.201910032912.X的优先权,其所公开的内容以引用的方式合并于此。
技术领域
本发明涉及显示技术领域,具体地,涉及一种显示基板和显示装置。
背景技术
随着显示技术的高速发展,可拉伸概念逐渐成为了研究的热点,同时OLED显示器的技术发展逐步成熟,使可拉伸显示慢慢变成了现实。
对于可拉伸显示面板,由于可拉伸区域会有比较密集的布线,如铜、钛、铝、钼、纳米银或金属氧化物导电线,在拉伸过程中,经常会出现导电线的断裂或拉伸结束时很难恢复到原状的问题,严重影响可拉伸显示面板的正常显示。
发明内容
本发明针对现有技术中存在的上述技术问题,提供一种显示基板和显示装置。该显示基板相对于现有可变形的显示基板,能够避免电路中的布线在基板形变时被拉断或者无法恢复形变前的原状态,从而很好地实现了显示基板的可变形,同时实现了显示基板在形变过程中的正常显示,进而有利于该可变形显示基板的推广和使用。
本发明提供一种显示基板,包括基底和设置在所述基底上的 多个显示单元,所述显示基板还包括信号线和控制单元,
所述信号线用于连接所述多个显示单元中相邻的两个所述显示单元;
所述信号线的至少部分采用形状记忆材料,且该部分在不同的激励条件下,会发生不同程度的形变;
所述控制单元用于检测所述基底的形变,并根据所述基底的形变对所述信号线施加相应的所述激励条件,以使所述信号线处于与所述基底的形变相适应的形变状态。
可选地,所述控制单元连接所述信号线,所述控制单元用于检测所述基底的形变使所述信号线受到的应力,以根据所述应力对所述信号线施加相应的所述激励条件。
可选地,所述信号线采用磁致形状记忆材料,所述磁致形状记忆材料在不同的磁场强度下具有不同的形变状态。
可选地,所述磁致形状记忆材料包括镍锰镓合金、镍铁镓合金、铁钯合金、铁镍钴钛合金、钴镍合金和钴锰合金中的任意一种。
可选地,所述控制单元包括压电感应部、磁场产生部和控制部,所述控制部连接所述压电感应部和所述磁场产生部,所述压电感应部能感测所述应力并将其转换为第一电流信号,且将所述第一电流信号提供给所述控制部;
所述控制部用于接收所述第一电流信号并对其进行处理得到第二电流信号,且将所述第二电流信号提供给所述磁场产生部;
所述磁场产生部能根据所述第二电流信号产生相应大小的磁场强度。
可选地,所述基底的形变为所述基底在其所在平面内沿任意方向的拉伸或收缩。
可选地,所述信号线的形变状态为其在所述基底所在平面内沿所述基底形变方向的拉伸或收缩。
可选地,所述压电感应部与所述多个显示单元位于所述基底的同一侧,所述磁场产生部位于所述基底的背离所述多个显示单 元的一侧。
可选地,所述控制单元在所述基底上的正投影位于所述多个显示单元中任意相邻的两个所述显示单元在所述基底上的正投影之间。
可选地,所述压电感应部与所述控制部之间设置有连接线,其用于向所述控制部提供所述第一电流信号,所述连接线采用与所述信号线相同的材质。
可选地,所述显示单元包括有机电致发光器件。
本发明还提供一种显示装置,包括上述显示基板。
本发明的有益效果:本发明所提供的显示基板,通过使信号线的至少部分采用在激励条件下能发生形变的形状记忆材料,并通过控制单元对信号线施加激励条件,能使信号线随着基底的形变相适应地形变,相对于现有可变形的显示基板,能够避免电路中的布线在基板形变时被拉断或者无法恢复形变前的原状态,从而很好地实现了显示基板的可变形,同时实现了显示基板在形变过程中的正常显示,进而有利于该可变形显示基板的推广和使用。
本发明所提供的显示装置,通过采用上述显示基板,使该显示装置在形变过程中仍能保持正常显示,从而提升了该可形变的显示装置的品质。
附图说明
图1为本发明实施例中显示基板的局部结构俯视图;
图2为图1中显示基板沿AA′剖切线的结构剖视图;
图3为图1中控制单元的控制原理示意图;
图4为线圈式电磁铁的结构示意图;
图5为由两个马蹄形电磁铁形成磁场的示意图;
图6为本发明实施例中显示基板信号线在未施加磁场时的状态俯视示意图;
图7为本发明实施例中显示基板信号线在施加一定磁场时的状态俯视示意图。
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明所提供的一种显示基板和显示装置作进一步详细描述。
本发明实施例提供一种显示基板,如图1-图3所示,包括基底1和设置在基底1上的多个显示单元2,还包括信号线3和控制单元4,信号线3用于连接多个显示单元2中相邻的两个显示单元2;信号线3的至少部分采用形状记忆材料,且该部分在不同的激励条件下,会发生不同程度的形变;控制单元4用于检测基底1的形变,并根据基底1的形变对信号线3施加相应的激励条件,以使信号线3处于与基底1的形变相适应的形变状态。
其中,基底1采用可扭曲、可弯曲、可折叠材料形成,如基底1采用聚二甲基硅氧烷(PDMS)或可变形橡胶材料。这里,使信号线3处于与基底1的形变相适应的形变状态是指信号线3处于随基底1的拉伸而拉伸,或者随基底1的收缩而收缩的状态;信号线3的形变量与基底1的形变量正相关。
通过使信号线3的至少部分采用在激励条件下能发生形变的形状记忆材料,并通过控制单元4对信号线3施加激励条件,能使信号线3随着基底1的形变相适应地形变。相对于现有可变形的显示基板,能够避免电路中的布线在基板形变时被拉断或者无法恢复形变前的原状态,从而很好地实现了显示基板的可变形,同时实现了显示基板在形变过程中的正常显示,进而有利于该可变形显示基板的推广和使用。
本实施例中,信号线3和控制单元4在基底1上的正投影位于显示单元2在基底1上的正投影之间的间隔区域,信号线3用于在显示单元2显示时传输控制信号和显示信号。
其中,控制单元4连接信号线3,控制单元4用于检测基底1的形变使信号线3受到的应力,以根据应力对信号线3施加相 应的激励条件。在此情况下,可以更精确地控制信号线3的形变状态。
优选的,本实施例中,信号线3采用磁致形状记忆材料,磁致形状记忆材料在不同的磁场强度下具有不同的形变状态。其中,信号线3可以通过磁控溅射的制备工艺制备形成。
进一步优选的,磁场的磁场强度与磁致形状记忆材料的形变程度成正比。
需要说明的是,相比于磁场强度与信号线3形变程度成正比的情况,确定磁场强度的磁场也能使信号线3在一定的形变程度范围内具有不同的形变状态。
本实施例中,磁致形状记忆材料包括镍锰镓合金、镍铁镓合金、铁钯合金、铁镍钴钛合金、钴镍合金和钴锰合金中的任意一种。当然,磁致形状记忆材料也可以是除上述材料之外的其他磁致形状记忆材料。其中,上述形状记忆合金拥有比普通金属更大的可恢复应变量,最大可达到10%左右,普通合金的应变量只有0.2%左右。
本实施例中,控制单元4包括压电感应部41、磁场产生部42和控制部43,控制部43连接压电感应部41和磁场产生部42,压电感应部41能感测应力并将其转换为第一电流信号,且将第一电流信号提供给控制部43。控制部43用于接收第一电流信号并对其进行处理得到第二电流信号,且将第二电流信号提供给磁场产生部42。磁场产生部42能根据第二电流信号产生相应大小的磁场强度。
其中,压电感应部41采用能感测应力并将应力转换为电流信号输出的压电感应器。压电感应器由两个电极410和设置于两个电极410之间的压电材料层411构成,电极410采用钛、铝、钼或纳米银等材料,压电材料层411采用如聚偏氟乙烯(PVDF)材料。电极410和压电材料层411均可以通过喷墨打印的方法制备形成。压电感应器的压电感应原理为比较成熟的技术,此处不再赘述。
磁场产生部42采用如图4所示的线圈式电磁铁,即在通电线圈(如螺线管)内插入铁芯构成的电磁铁。线圈式电磁铁的工作原理及方式为:通电螺线管本身构成了一个磁场;当在通电螺线管内部插入铁芯后,铁芯被通电螺线管的磁场磁化,磁化后的铁芯也变成了一个磁体,这样由通电螺线管磁场和铁芯磁场互相叠加,从而使线圈式电磁铁的磁性大大增强。为了使电磁铁的磁性更强,通常将铁芯制成马蹄形,线圈绕制于马蹄形铁芯上构成马蹄形电磁铁,如图5所示,线圈式电磁铁由上下两个马蹄形电磁铁构成,上下马蹄形电磁铁的铁芯上线圈的绕向相反,如一边顺时针绕制,另一边必须逆时针绕制。如果上下马蹄形电磁铁铁芯上线圈的绕向相同,两线圈对铁芯的磁化作用将相互抵消,使铁芯不显磁性。
另外,线圈式电磁铁的铁芯采用软铁制做,而不能采用钢,因为软铁在磁化后,其磁性的强弱能够随着线圈中电流的大小而变化,且线圈断电即可退磁,所以能够通过线圈中电流的大小控制电磁铁磁性的强弱;而钢一旦被磁化后,将长期保持磁性而不能退磁,从而导致其磁性的强弱不能用电流的大小控制。
需要说明的是,单纯采用通电线圈(如螺线管)也能构成电磁铁。通电螺线管本身能构成磁场,通电螺线管中电流的方向与通电螺线管构成的磁场方向的关系可以用安培定则(也叫右手螺旋定则)确定。通电螺线管外部的磁感线是从螺线管的北极发出并回到南极,在通电螺线管内部的磁场方向是从螺线管的南极指向北极。
本实施例中,控制部43采用中央处理器(CPU),CPU设置在显示基板的外部。CPU内部设置有模数转换电路,能将模拟的第一电流信号转换为数字的第二电流信号,从而使电流信号对磁场产生部42磁场大小的控制更加精准。
本实施例中,基底1的形变为基底1在其所在平面内沿任意方向的拉伸或收缩。信号线3的形变状态为其在基底1所在平面内沿基底1形变方向的拉伸或收缩。
需要说明的是,基底1的形变也可以为基底1在空间中任意平面内的拉伸、收缩或扭曲,相应地,信号线3的形变状态也可以为信号线3随基底1的形变在空间中任意方向上的拉伸、收缩或扭曲。
本实施例中,优选的,压电感应部41与多个显示单元2位于基底1的同一侧,磁场产生部42位于基底1的背离多个显示单元2的一侧。优选地,磁场产生部42贴着基底1设置,如此有利于磁场对信号线3作用。
另外,在显示基板制备工艺中,压电感应部41与多个显示单元2先制作在硬质衬底如玻璃衬底上,然后将压电感应部41和显示单元2与硬质衬底剥离,再采用粘合剂5如光学亚克力胶(OCA胶)将压电感应部41和显示单元2与基底1贴合在一起,从而使基底1成为该显示基板的背膜,由于基底1可变形,所以采用该基底1有利于实现可变形显示基板。硬质衬底相对于可变形基底1能够适应于显示基板上显示单元2制备工艺中的各种工艺条件,因此需要先将显示单元2制备到硬质衬底上。
进一步优选的,控制单元4在基底1上的正投影位于多个显示单元2中任意相邻的两个显示单元2在基底1上的正投影之间,且位于两个显示单元2的正投影之间的间隔区域的中间位置。如此设置,能使控制单元4中磁场产生部42所产生的磁场对磁致形状记忆材料信号线3的磁场作用更加平衡,从而有利于信号线3的正常形变。
本实施例中,压电感应部41与控制部43之间设置有连接线6,其用于向控制部43提供第一电流信号。连接线6可以采用与信号线3相同的材质。如此设置,能使控制单元4与信号线3之间的连接线6也能在磁场的作用下相应形变,从而避免该连接线6被扯断,进而使控制单元4能够正常控制信号线3的伸缩形变。可选地,如图1所示,控制单元4可以通过连接线6与信号线3连接,连接线6与信号线3的布线至少部分地重合,以此连接线6与信号线3可以在磁场的作用下相应地形变,更有效地避 免该连接线6被扯断。
需要说明的是,控制单元4与信号线3之间的连接线6也可以采用非磁致形状记忆材料,如采用钛、铝或钼等材料。
本实施例中,如图6和图7所示,控制单元4的具体控制原理及过程为:当显示基板拉伸时,压电感应器感测信号线3受到应力的大小,并将该应力转换为第一电流信号反馈给CPU。CPU对第一电流信号进行模数转换处理,将处理后获得的第二电流信号反馈给电磁铁。当显示基板拉伸时,第一电流信号增大,磁场增大,利用磁场对信号线3中不利取向马氏体变体的静磁力,促使有利取向的马氏体变体长大并吞并不利取向的变体(表现为孪晶界的移动),从而使信号线3产生宏观变形;信号线3的形变量可以通过磁场强度大小改变,当磁场强度减小或撤去时孪晶界又回到初始位置。当显示基板收缩时,控制单元4控制信号线3形变的原理同上。
本实施例中,显示单元2包括有机电致发光器件。由于有机电致发光器件能够实现显示基板的柔性显示,所以这样的显示单元2更加适应于能形变的显示基板。当然,显示单元2也可以是其他的能适应于柔性显示的器件。
本实施例的有益效果:本实施例中所提供的显示基板,通过使信号线的至少部分采用在激励条件下能发生形变的形状记忆材料,并通过控制单元对信号线施加激励条件,能使信号线随着基底的形变相适应地形变,相对于现有可变形的显示基板,能够避免电路中的布线在基板形变时被拉断或者无法恢复形变前的原状态,从而很好地实现了显示基板的可变形,同时实现了显示基板在形变过程中的正常显示,进而有利于该可变形显示基板的推广和使用。
本发明实施例提供一种显示装置,包括上述实施例中的显示基板。
通过采用上述实施例中的显示基板,使该显示装置在形变过 程中仍能保持正常显示,提升了该可形变的显示装置的品质。
本发明所提供的显示面板可以为OLED面板、OLED电视、显示器、手机、导航仪等任何具有显示功能的产品或部件,也可以为上述具有显示功能的产品或部件的半成品件。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (12)

  1. 一种显示基板,包括基底和设置在所述基底上的多个显示单元,其中,所述显示基板还包括信号线和控制单元,
    所述信号线用于连接所述多个显示单元中相邻的两个所述显示单元;
    所述信号线的至少部分采用形状记忆材料,且该部分在不同的激励条件下,会发生不同程度的形变;
    所述控制单元用于检测所述基底的形变,并根据所述基底的形变对所述信号线施加相应的所述激励条件,以使所述信号线处于与所述基底的形变相适应的形变状态。
  2. 根据权利要求1所述的显示基板,其中,所述控制单元连接所述信号线,所述控制单元用于检测所述基底的形变使所述信号线受到的应力,以根据所述应力对所述信号线施加相应的所述激励条件。
  3. 根据权利要求2所述的显示基板,其中,所述信号线采用磁致形状记忆材料,所述磁致形状记忆材料在不同的磁场强度下具有不同的形变状态。
  4. 根据权利要求3所述的显示基板,其中,所述磁致形状记忆材料包括镍锰镓合金、镍铁镓合金、铁钯合金、铁镍钴钛合金、钴镍合金和钴锰合金中的任意一种。
  5. 根据权利要求3所述的显示基板,其中,所述控制单元包括压电感应部、磁场产生部和控制部,所述控制部连接所述压电感应部和所述磁场产生部,所述压电感应部能感测所述应力并将其转换为第一电流信号,且将所述第一电流信号提供给所述控制部;
    所述控制部用于接收所述第一电流信号并对其进行处理得 到第二电流信号,且将所述第二电流信号提供给所述磁场产生部;
    所述磁场产生部能根据所述第二电流信号产生相应大小的磁场强度。
  6. 根据权利要求5所述的显示基板,其中,所述基底的形变为所述基底在其所在平面内沿任意方向的拉伸或收缩。
  7. 根据权利要求6所述的显示基板,其中,所述信号线的形变状态为其在所述基底所在平面内沿所述基底形变方向的拉伸或收缩。
  8. 根据权利要求5所述的显示基板,其中,所述压电感应部与所述多个显示单元位于所述基底的同一侧,所述磁场产生部位于所述基底的背离所述多个显示单元的一侧。
  9. 根据权利要求1-8任意一项所述的显示基板,其中,所述控制单元在所述基底上的正投影位于所述多个显示单元中任意相邻的两个所述显示单元在所述基底上的正投影之间。
  10. 根据权利要求5所述的显示基板,其中,所述压电感应部与所述控制部之间设置有连接线,其用于向所述控制部提供所述第一电流信号,所述连接线采用与所述信号线相同的材质。
  11. 根据权利要求1所述的显示基板,其中,所述显示单元包括有机电致发光器件。
  12. 一种显示装置,其中,包括权利要求1-11任意一项所述的显示基板。
PCT/CN2020/071396 2019-01-14 2020-01-10 显示基板和显示装置 WO2020147656A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/042,143 US11404526B2 (en) 2019-01-14 2020-01-10 Display substrate and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910032912.X 2019-01-14
CN201910032912.XA CN109754717B (zh) 2019-01-14 2019-01-14 一种显示基板和显示装置

Publications (1)

Publication Number Publication Date
WO2020147656A1 true WO2020147656A1 (zh) 2020-07-23

Family

ID=66404619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071396 WO2020147656A1 (zh) 2019-01-14 2020-01-10 显示基板和显示装置

Country Status (3)

Country Link
US (1) US11404526B2 (zh)
CN (1) CN109754717B (zh)
WO (1) WO2020147656A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109754717B (zh) 2019-01-14 2020-08-14 京东方科技集团股份有限公司 一种显示基板和显示装置
CN112269485B (zh) * 2020-09-16 2022-10-28 昆山国显光电有限公司 一种显示面板及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150018730A (ko) * 2013-08-09 2015-02-24 주식회사 넥스플러스 디스플레이 장치
CN104751773A (zh) * 2013-12-27 2015-07-01 昆山工研院新型平板显示技术中心有限公司 一种柔性显示器及其制造方法
CN105761616A (zh) * 2014-12-17 2016-07-13 昆山工研院新型平板显示技术中心有限公司 柔性显示屏的控制方法
CN107170374A (zh) * 2017-06-29 2017-09-15 武汉天马微电子有限公司 柔性显示面板及柔性显示装置
CN108470523A (zh) * 2018-05-18 2018-08-31 京东方科技集团股份有限公司 柔性元件、柔性显示设备及其制作方法
CN108665810A (zh) * 2018-05-31 2018-10-16 昆山国显光电有限公司 金属线、显示屏、金属线制作方法和金属线修复方法
CN109754717A (zh) * 2019-01-14 2019-05-14 京东方科技集团股份有限公司 一种显示基板和显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10026721B2 (en) * 2015-06-30 2018-07-17 Apple Inc. Electronic devices with soft input-output components
CN105228335B (zh) * 2015-08-26 2018-05-01 昆山工研院新型平板显示技术中心有限公司 柔性线路板及其制造方法和显示装置
CN105449124B (zh) * 2015-12-01 2018-01-23 昆山工研院新型平板显示技术中心有限公司 柔性显示装置及其制备方法
KR102462941B1 (ko) * 2016-01-26 2022-11-03 삼성디스플레이 주식회사 표시 장치
US20180081441A1 (en) * 2016-09-20 2018-03-22 Apple Inc. Integrated Haptic Output and Touch Input System
CN208189187U (zh) * 2018-06-13 2018-12-04 云谷(固安)科技有限公司 一种可拉伸显示屏
CN108986668A (zh) * 2018-09-07 2018-12-11 信利光电股份有限公司 一种柔性显示面板、制作方法及显示装置
KR20200081945A (ko) * 2018-12-28 2020-07-08 엘지디스플레이 주식회사 스트레쳐블 표시장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150018730A (ko) * 2013-08-09 2015-02-24 주식회사 넥스플러스 디스플레이 장치
CN104751773A (zh) * 2013-12-27 2015-07-01 昆山工研院新型平板显示技术中心有限公司 一种柔性显示器及其制造方法
CN105761616A (zh) * 2014-12-17 2016-07-13 昆山工研院新型平板显示技术中心有限公司 柔性显示屏的控制方法
CN107170374A (zh) * 2017-06-29 2017-09-15 武汉天马微电子有限公司 柔性显示面板及柔性显示装置
CN108470523A (zh) * 2018-05-18 2018-08-31 京东方科技集团股份有限公司 柔性元件、柔性显示设备及其制作方法
CN108665810A (zh) * 2018-05-31 2018-10-16 昆山国显光电有限公司 金属线、显示屏、金属线制作方法和金属线修复方法
CN109754717A (zh) * 2019-01-14 2019-05-14 京东方科技集团股份有限公司 一种显示基板和显示装置

Also Published As

Publication number Publication date
US20210020731A1 (en) 2021-01-21
US11404526B2 (en) 2022-08-02
CN109754717A (zh) 2019-05-14
CN109754717B (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
WO2020147656A1 (zh) 显示基板和显示装置
Makarov et al. Shapeable magnetoelectronics
EP1548762A3 (en) Magnetoresistive element, magnetic head, magnetic reproducing apparatus, and magnetic memory
JP7198220B2 (ja) 表示パネル
AU2003256913A1 (en) Amorphous alloys for magnetic devices
CN104052329B (zh) 一种柔性发电电源及其柔性显示屏
TW201044359A (en) Shift register
CN111244010A (zh) 一种led芯片、显示面板的组装设备及组装方法
CN106468969A (zh) 驱动电路以及具有触控面板的显示面板的驱动方法
TW201239850A (en) Digital display with integrated computing circuit
WO2009072550A1 (ja) 量子ドットを用いた電子装置
CN104931164B (zh) 柔性拉力传感器
CN106662957A (zh) 传感器面板、输入设备和显示设备
CN106655874A (zh) 一种可变形柔性纳米发电机、制备方法及制成的传感器
TW201516387A (zh) 應變感測元件,壓力感測器,麥克風,血壓感測器,及觸控面板
CN106648277B (zh) 电子装置及其制造方法和操作方法、电子复写系统
CN108632702A (zh) 一种耳机底座及无线耳机
CN107634029A (zh) 一种芯片的转移方法
Chen et al. Development and characterization of a highly sensitive magnetic electronic skin for intelligent manipulators
KR20220033858A (ko) 자구벽 이동에 기반한 스핀 토크 다수결 게이트
KR101260247B1 (ko) 평면 형상 변형 방법 및 그 장치
CN107437534A (zh) 可拉伸电子系统
KR102558899B1 (ko) 표시장치 및 이의 제어방법
KR20160105161A (ko) 투명하고 신축성 있는 전기 자극기 및 이의 제조 방법
CN113872412B (zh) 显示面板和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20741318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20741318

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20741318

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20741318

Country of ref document: EP

Kind code of ref document: A1