WO2020147550A1 - 一种异型断面试验水槽设计方法及其应用 - Google Patents

一种异型断面试验水槽设计方法及其应用 Download PDF

Info

Publication number
WO2020147550A1
WO2020147550A1 PCT/CN2019/129019 CN2019129019W WO2020147550A1 WO 2020147550 A1 WO2020147550 A1 WO 2020147550A1 CN 2019129019 W CN2019129019 W CN 2019129019W WO 2020147550 A1 WO2020147550 A1 WO 2020147550A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
chute
test
section
cross
Prior art date
Application number
PCT/CN2019/129019
Other languages
English (en)
French (fr)
Inventor
陈剑刚
王喜安
陈华勇
陈晓清
唐金波
赵万玉
王涛
刘文润
龚兴隆
金科
Original Assignee
中国科学院、水利部成都山地灾害与环境研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院、水利部成都山地灾害与环境研究所 filed Critical 中国科学院、水利部成都山地灾害与环境研究所
Priority to US17/267,349 priority Critical patent/US11828672B2/en
Publication of WO2020147550A1 publication Critical patent/WO2020147550A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M10/00Hydrodynamic testing; Arrangements in or on ship-testing tanks or water tunnels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B1/00Equipment or apparatus for, or methods of, general hydraulic engineering, e.g. protection of constructions against ice-strains
    • E02B1/02Hydraulic models

Definitions

  • the invention relates to a design method and application of a special-shaped section test flume with a fixed hydraulic radius, which is suitable for engineering simulation test research and belongs to the fields of water conservancy engineering optimization design and debris flow disaster prevention and reduction.
  • the flume simulation test is one of the commonly used methods to study the movement characteristics of clear water flow, high sand flow, and debris flow.
  • the control accuracy of the sink test device and the measurement accuracy of the test instrument are important factors that affect the accuracy of the test results. Therefore, the parameter control method and accuracy of the sink simulation test and the equipment accuracy of the measuring instrument need to be continuously improved and improved.
  • the cross section of the simulation test device for clear water flow, high sand flow and debris flow flume is mainly rectangular.
  • the relationship between the hydraulic radius of the flow section and the water depth (mud depth) and groove width during the test is as follows:
  • R is the hydraulic radius
  • h is the water depth (mud depth)
  • b is the width of the tank.
  • the hydraulic radius changes with the water depth (mud depth) in the tank. Therefore, the existing way to control the hydraulic radius of the flow section is to control the water depth (mud depth).
  • the main method of controlling the water depth (mud depth) is electric tailgate control; Xu Ming et al.
  • the existing method of calculating the hydraulic radius of the flow section is very dependent on the water depth (mud depth).
  • the measurement accuracy of the water depth (mud depth) has a great influence on the calculation accuracy of the hydraulic radius, especially in the high sand flow and During the debris flow test, the fluid depth is more difficult to accurately measure, which has a greater impact on the test results.
  • the purpose of the present invention is to address the shortcomings of the prior art, from the perspective of optimizing the test section of the test tank, to provide a design method for a special-shaped section test tank with a fixed hydraulic radius, which can control the hydraulic radius of the flow section to not follow the water depth (mud depth). ) Can eliminate the influence of water depth (mud depth) on the hydraulic radius of the flow section.
  • the test tank designed by this method can ensure that the hydraulic radius of each flow section in the test section is equal and constant during the test.
  • the present invention proposes a design method for a special-shaped section test water tank.
  • the cross-section of the existing water tank is mainly rectangular.
  • the present invention designs the cross-section of the water tank as a special-shaped section, as shown in Figures 2-4.
  • the special-shaped cross-section test water tank includes a lower tank composed of a tank bottom and a tank wall, and an upper tank located above the lower tank (the upper tank has only tank walls and no bottom); the lower edge of the upper tank and the tank wall of the lower tank The upper edge is connected, the cross section of the lower groove is rectangular, semi-circular, or triangular (correspondingly, the special-shaped section is divided into flat-bottomed special-shaped section, round-bottomed special-shaped section and pointed-bottom special-shaped section), and the groove wall of the upper groove is Two axisymmetric curves.
  • A is the flow area
  • is the wet circumference
  • h is the depth of the water (mud depth)
  • d is the depth of the lower trough
  • S bottom is the flow cross-sectional area of the lower trough
  • l bottom is the flow of the lower trough.
  • g'(y) is the derivative function of g(x).
  • C is the undetermined coefficient.
  • Other parameters are the same as before.
  • the function f can be expressed as:
  • formula 5 can be expressed as:
  • R is the design hydraulic radius of the tank in m
  • C is the undetermined coefficient
  • b is the width of the lower tank in m
  • B is the width of the tank in m.
  • the design method steps of the special-shaped section test water tank are as follows:
  • R design hydraulic radius of the special-shaped section test tank, in m, determined by step (1);
  • the design method of the special-shaped section test flume proposed in the present invention can be used to design a flume whose simulated test fluid is a clean water flow, or a high-sandy water flow, or a mud-rock flow, and can be used to design a flume with a slope of 5%-30% for the simulation test.
  • the lower trough width b, lower trough depth d, trough width B and upper trough wall curve equations are used to make a special-shaped section test trough.
  • the manufactured special-shaped section test tank is overlapped with other components as shown in Figure 1 as a special-shaped section test tank device with a fixed hydraulic radius; the specific structure is: the special-shaped section test tank is connected to the hopper through the tank inlet valve upwards, and downwards The tailing tank is connected, and the special-shaped section test tank is supported by the tank support, and the slope of the tank can be adjusted by the tank slope regulator.
  • the speed camera and LED shadowless lamp are installed above the special-shaped section test tank.
  • a special-shaped section test water tank with a fixed hydraulic radius is designed.
  • the hydraulic radius R of the test fluid flow section increases with the increase of the water depth (mud depth) h;
  • the value of the hydraulic radius R of the test fluid flow-through section is R 0 ;
  • the special shape of the upper groove causes the test fluid to pass
  • the increase of the flow section ⁇ S is always R 0 times the increase of the wet cycle ⁇ l, so that the value of the hydraulic radius R of the flow section of the test fluid remains unchanged at R 0 .
  • the value of the hydraulic radius R of the test fluid flow section remains R 0 unchanged, and does not change with the water depth (mud depth). It does not change with the change of the position of the flow section, and keeps everywhere equal and constant. This is the so-called constant hydraulic radius.
  • the beneficial effect of the present invention is: the present invention designs the cross-section of the test water tank into a special-shaped section, so that the hydraulic radius of the flow section in the test does not change with the change of the water depth (mud depth), which plays a control variable It solves the problem that the hydraulic radius of the flow section of the existing rectangular test flume is difficult to control, and provides convenience for exploring the relationship between the average velocity of the clear water flow, the high sand flow and the debris flow section as well as other kinematic parameters and the hydraulic radius of the flow section. .
  • Figure 1 is a schematic diagram of the structure of a special-shaped section test water tank device.
  • Figure 2 is a schematic diagram of the cross-sectional structure of a flat-bottomed shaped cross-section test water tank.
  • Figure 3 is a schematic diagram of the cross-sectional structure of the round-bottomed shaped cross-section test water tank.
  • Fig. 4 is a schematic diagram of the cross-sectional structure of a test tank with a pointed bottom profiled cross-section.
  • the special-shaped section test tank 5 in the constructed test tank device includes a lower tank 1 composed of a tank bottom and a tank wall, and an upper tank 2 located above the lower tank 1; the lower edge of the upper tank 2 and the tank wall of the lower tank 1 The upper edges are connected, the cross-sectional shape of the lower groove 1 is rectangular, semicircular, or triangular, and the groove walls of the upper groove 2 are two axisymmetric curves.
  • the design method steps of the special-shaped cross-section test tank 5 are as follows:
  • the design hydraulic radius R of the three special-shaped cross-section test tanks 5 determines the design hydraulic radius R of the three special-shaped cross-section test tanks 5 to be 0.05m, 0.1m, 0.15m, respectively; according to the test site, select the three lower tanks 1 to have a width b of 0.25m, 0.4m, 0.45m; the length of the three special-shaped section test tanks 5 are all 20m.
  • the cross-sectional shape of the lower tank 1 is triangle (as shown in Figure 4), and then R and b are substituted formula
  • the calculated depth d of the lower trough 1 is 0.167m.
  • the cross-sectional shape of the lower tank 1 is semicircular (as shown in Figure 3), and then b is substituted into it
  • the design hydraulic radius R and the width b of the lower groove 1 obtained in the first step are respectively substituted into the formula
  • the calculated three undetermined coefficients C are arcosh (2.5), arcosh (2), arcosh (1.5).
  • the design hydraulic radius R of the three special-shaped section test tanks 5 determined in the first step, the width b of the three lower tanks 1 and the three undetermined coefficients C determined in the second step are determined in the third step
  • the width B of the three water tanks is substituted into the following formula
  • the first special-shaped section test tank 5 is:
  • the second special-shaped section test tank 5 is:
  • the third special-shaped section test tank 5 is:
  • three special-shaped section test troughs 5 are made. Attach the manufactured special-shaped section test water tank 5 as shown in Figure 1 with the hopper 3, the water tank entrance gate 4, the special-shaped section test water tank 5, the water tank bracket 6, the water tank slope adjuster 7, the speed camera 8, the LED shadowless lamp 9 and the tailing pool. 10 lap joints, as three special-shaped section test sink devices with fixed hydraulic radius.
  • the test fluid enters the special-shaped cross-section test tank 5 from the hopper 3 through the water tank inlet valve 4.
  • the special-shaped cross-section test tank 5 is supported by the water tank bracket 6.
  • the lower end of the water tank bracket 6 is equipped with a water tank slope adjuster 7, which is used to adjust the slope of the water tank at 5%-30 % Change.
  • the speed camera 8 records the speed of the test fluid.
  • the test fluid passes through the entire special-shaped section test water tank 5 and enters the tailing tank 10 through the outlet of the water tank.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种异型断面试验水槽设计方法及其应用。异型断面试验水槽包括下槽(1)和上槽(2),上槽(2)的下缘与下槽(1)的槽壁上缘相接,下槽(1)的横断面形状为矩形、或半圆形、或三角形,上槽(2)的槽壁为两条轴对称曲线。异型断面试验水槽设计方法包括:首先确定水槽的设计水力半径R、下槽宽度b,然后计算得到下槽深度d、水槽宽度B,最后计算得到上槽(2)的槽壁曲线方程。该方法将试验水槽的横截面设计成异型断面,使得试验中过流断面水力半径不随水深(泥深)的改变而改变,起到了控制变量的作用,解决了现有矩形试验水槽过流断面水力半径难以控制的问题,为探究清水水流、高含沙水流和泥石流截面平均流速以及其他运动学参数与过流断面水力半径的关系提供了便利。

Description

一种异型断面试验水槽设计方法及其应用 技术领域
本发明涉及一种定水力半径的异型断面试验水槽设计方法及其应用,适用于工程模拟试验研究,属于水利工程优化设计和泥石流防灾减灾领域。
背景技术
水槽模拟试验是研究清水水流、高含沙水流、以及泥石流运动特征的常用方法之一。水槽试验装置的控制精度和测试仪器的测量精度是影响试验成果精确度的重要因素,因此水槽模拟试验的参数控制方式和精度以及测量仪器的设备精度需要不断地改进与提高。
目前,清水水流、高含沙水流和泥石流水槽模拟试验装置的断面以矩形为主,试验过程中过流断面水力半径与水深(泥深)和槽宽的关系为:
Figure PCTCN2019129019-appb-000001
式中,R为水力半径,h为水深(泥深),b为水槽宽。在试验水槽宽度固定的情况下,水力半径随着水槽中水深(泥深)的变化而变化,因此现有的控制过流断面水力半径的方式是控制水深(泥深)。目前,控制水深(泥深)的主要方法是电动尾门控制;许明等还提出了一种用于水力学和泥沙动力学的无尾门试验水槽(CN200910062236.7),通过总水量的变化直接影响水槽试验段的水深。但这些通过调节水深(泥深)来实现控制水力半径的方法在高含沙水流和泥石流水槽试验中并不适用。原因在于:尾门会使固体物质沉积,从而改变流体的性质;通过总水量控制水槽试验段的水深(泥深)也是十分困难的,因为高含沙水流和泥石流并非均质流体,在试验过程中的水深(泥深)波动是在所难免的。另 一方面,现有的计算过流断面的水力半径的方式十分依赖水深(泥深),水深(泥深)的测量精度对水力半径的计算精度影响很大,尤其是在高含沙水流和泥石流试验过程中,流体深度更是难以精确的测量,对试验的结果影响较大。
发明内容
本发明的目的就是针对现有技术的不足,从试验水槽试验段断面优化的角度出发,提供一种定水力半径的异型断面试验水槽设计方法,可以控制过流断面的水力半径不随水深(泥深)的变化而变化,能够消除水深(泥深)对过流断面水力半径的影响,采用该方法设计得到的试验水槽可以保证试验过程中试验段各过流断面的水力半径相等且恒定。
为实现上述目的,本发明的技术方案是:
本发明提出一种异型断面试验水槽设计方法,现有水槽的横截面主要为矩形,本发明将水槽横截面设计成异型断面,如附图2-4所示。所述异型断面试验水槽包括由槽底和槽壁组成的下槽,以及位于下槽上方的上槽(上槽仅有槽壁、没有槽底);上槽的下缘与下槽的槽壁上缘相接,下槽的横断面形状为矩形、或半圆形、或三角形(相应的,异型断面分为平底异型断面、圆底异型断面和尖底异型断面),上槽的槽壁为两条轴对称曲线。
所述上槽的槽壁曲线方程的推导过程如下:
槽壁曲线所在直角坐标系如图2所示,由y=f(x)表示。在第一象限内,槽壁曲线还可以表示为x=g(y),x≥0,f和g互为反函数。在水深(泥深)为h(h≥d)时,另过流断面水力半径为定值R:
Figure PCTCN2019129019-appb-000002
公式一中,A为过流面积,χ为湿周,h为水深(泥深),d为下槽深度,S 为下槽部分的过流断面面积,l 为下槽部分的过流断面湿周,g’(y)为g(x)的导函数。
对公式一化简得:
Figure PCTCN2019129019-appb-000003
由于水深(泥深)等于下槽深度(即h=d)时,过流断面水力半径为R,所以S =Rl ,对公式二求解积分方程得:
Figure PCTCN2019129019-appb-000004
式中C为待定系数。其他参数同前。
在第一象限内,由于函数f和g互为反函数,所以函数f可表示为:
Figure PCTCN2019129019-appb-000005
从而得到槽壁曲线方程:
Figure PCTCN2019129019-appb-000006
在水槽宽度B的范围内,公式五可以表示为:
Figure PCTCN2019129019-appb-000007
式中,R为水槽的设计水力半径、单位m,C为待定系数,b为下槽宽度、单位m,B为水槽宽度,单位m。
具体而言,所述异型断面试验水槽的设计方法步骤如下:
(一)根据试验设计,确定异型断面试验水槽的设计水力半径R、单位m;
根据试验场地,选定下槽宽度b、单位m,同时满足b>2R;
当2R<b<4R,则下槽的横断面形状为矩形,然后将R、b代入公式
Figure PCTCN2019129019-appb-000008
计算得到下槽深度d、单位m;
当b=4R,则下槽的横断面形状为半圆形,然后将b代入公式d=b/2,计算得到下槽深度d、单位m;
当b>4R,则下槽的横断面形状为三角形,然后将R、b代入公式
Figure PCTCN2019129019-appb-000009
计算得到下槽深度d、单位m;
(二)将步骤(一)中得到的设计水力半径R、下槽宽度b代入公式
Figure PCTCN2019129019-appb-000010
计算得到待定系数C;
(三)将步骤(一)中得到的下槽宽度b代入公式B=k·b,计算得到水槽宽度B、单位m,式中k为系数、取值为3-5;
(四)通过以下公式计算得到上槽的槽壁曲线方程
Figure PCTCN2019129019-appb-000011
式中,R—异型断面试验水槽的设计水力半径,单位m,由步骤(一)确定;
C—待定系数,由步骤(二)确定;
B—水槽宽度,单位m,由步骤(三)确定;
b—下槽宽度,单位m,由步骤(一)确定。
本发明提出的异型断面试验水槽设计方法可用于设计模拟试验流体为清水水流、或高含沙水流、或泥石流的水槽,可用于设计模拟试验坡度为5%-30%的水槽。根据前述步骤(一)、步骤(三)和步骤(四)所得的下槽宽度b、下槽深 度d、水槽宽度B和上槽的槽壁曲线方程制作异型断面试验水槽。将制作好的异型断面试验水槽按图1所示与其他构件搭接,作为定水力半径的异型断面试验水槽装置;具体结构为:异型断面试验水槽向上通过水槽入口阀门与料斗连通,向下与尾料池相连,异型断面试验水槽由水槽支架支撑,并可以通过水槽坡度调节器调节水槽坡度,异型断面试验水槽上方安装有测速相机和LED无影灯。
根据本发明的异型断面试验水槽设计方法设计得到定水力半径的异型断面试验水槽。在该水槽中,当水深(泥深)小于下槽的深度(即h<d)时,试验流体过流断面水力半径R随着水深(泥深)h的增加而增加;当水深(泥深)等于下槽的深度(即h=d)时,试验流体过流断面水力半径R的值为R 0;当水深(泥深)h进一步增加时,由于上槽的特殊形状,使得试验流体过流断面的增加量△S始终为湿周增加量△l的R 0倍,从而使得试验流体过流断面水力半径R的值保持为R 0不变。即当试验水深(泥深)大于等于下槽的深度(即h≥d)时,试验流体过流断面水力半径R的值保持为R 0不变,不随水深(泥深)的变化而变化,也不随过流断面的位置变化而变化,保持处处相等且恒定,这就是所谓的定水力半径。
与现有技术相比,本发明的有益效果是:本发明将试验水槽的横截面设计成异型断面,使得试验中过流断面水力半径不随水深(泥深)的改变而改变,起到了控制变量的作用,解决了现有矩形试验水槽过流断面水力半径难以控制的问题,为探究清水水流、高含沙水流和泥石流截面平均流速以及其他运动学参数与过流断面水力半径的关系提供了便利。
附图说明
图1是异型断面试验水槽装置的结构示意图。
图2是平底异型断面试验水槽的横断面结构示意图。
图3是圆底异型断面试验水槽的横断面结构示意图。
图4是尖底异型断面试验水槽的横断面结构示意图。
图中标号如下:
1下槽                         2上槽
3料斗                         4水槽入口闸门
5异型断面试验水槽             6水槽支架
7水槽坡度调节器               8测速相机
9 LED无影灯                   10尾料池
b下槽宽度                     d下槽深度
B水槽宽度                     h水深(泥深)
具体实施方式
下面结合附图,对本发明的优选实施例作进一步的描述。
如图1、图2、图3、图4所示。为探究泥石流截面平均流速与过流断面水力半径关系,拟采用本发明提出的异型断面试验水槽设计方法制作三个异型断面试验水槽5,然后搭建三个试验水槽装置。
搭建的试验水槽装置中所述异型断面试验水槽5包括由槽底和槽壁组成的下槽1,以及位于下槽1上方的上槽2;上槽2的下缘与下槽1的槽壁上缘相接,下槽1的横断面形状为矩形、或半圆形、或三角形,上槽2的槽壁为两条轴对称曲线。所述异型断面试验水槽5的设计方法步骤如下:
第一步,根据试验设计,确定三个异型断面试验水槽5的设计水力半径R分别为0.05m、0.1m、0.15m;根据试验场地,选定三个下槽1宽度b分别为0.25m、 0.4m、0.45m;三个异型断面试验水槽5的长度均为20m。
针对第一个异型断面试验水槽5,由于b=0.25m、R=0.05m,满足b>4R,则下槽1的横断面形状为三角形(如图4所示),然后将R、b代入公式
Figure PCTCN2019129019-appb-000012
计算得到下槽1深度d为0.167m。
针对第二个异型断面试验水槽5,由于b=0.4m、R=0.1m,满足b=4R,则下槽1的横断面形状为半圆形(如图3所示),然后将b代入公式d=b/2,计算得到下槽1深度d为0.2m。
针对第三个异型断面试验水槽5,由于b=0.45m、R=0.15m,满足2R<b<4R,则下槽1的横断面形状为矩形(如图2所示),然后将R、b代入公式
Figure PCTCN2019129019-appb-000013
计算得到下槽1深度d为0.45m。
第二步,将第一步中得到的设计水力半径R、下槽1宽度b分别代入公式
Figure PCTCN2019129019-appb-000014
计算得到三个待定系数C分别为arcosh(2.5)、arcosh(2)、arcosh(1.5)。
第三步,针对第一个异型断面试验水槽5,根据试验场地条件选定系数k为5,将第一步中得到的下槽1宽度b代入公式B=k·b,计算得到水槽宽度B为1.25m。针对第二个异型断面试验水槽5,根据试验场地条件选定系数k为4,将第一步中得到的下槽1宽度b代入公式B=k·b,计算得到水槽宽度B为1.6m。针对第三个异型断面试验水槽5,根据试验场地条件选定系数k为3,将第一步中得到的下槽1宽度b代入公式B=k·b,计算得到水槽宽度B为1.35m。
第四步,将第一步中确定的三个异型断面试验水槽5的设计水力半径R、三个下槽1宽度b,第二步中确定的三个待定系数C,及第三步中确定的三个水槽宽度B,分别代入以下公式,
Figure PCTCN2019129019-appb-000015
计算得到三个上槽2的槽壁曲线方程
第一个异型断面试验水槽5为:
Figure PCTCN2019129019-appb-000016
第二个异型断面试验水槽5为:
Figure PCTCN2019129019-appb-000017
第三个异型断面试验水槽5为:
Figure PCTCN2019129019-appb-000018
根据第一步、第三步和第四步所得的下槽宽度b、下槽深度d、水槽宽度B和上槽的槽壁曲线方程制作三个异型断面试验水槽5。将制作好的异型断面试验水槽5按图1所示与料斗3、水槽入口闸门4、异型断面试验水槽5、水槽支架6、水槽坡度调节器7、测速相机8、LED无影灯9及尾料池10搭接,作为三个定水力半径的异型断面试验水槽装置。
试验流体由料斗3通过水槽入口阀门4进入异型断面试验水槽5,异型断面试验水槽5由水槽支架6支撑,水槽支架6下端安装有水槽坡度调节器7、用于调节水槽坡度在5%-30%范围内变化。试验流体进入异型断面试验水槽5以后,在LED无影灯9的配合下,测速相机8记录试验流体的速度。试验流体通过整个异型断面试验水槽5,经水槽出口进入尾料池10。

Claims (3)

  1. 一种异型断面试验水槽设计方法,其特征在于:所述异型断面试验水槽(5)包括由槽底和槽壁组成的下槽(1),以及位于下槽(1)上方的上槽(2);上槽(2)的下缘与下槽(1)的槽壁上缘相接,下槽(1)的横断面形状为矩形、或半圆形、或三角形,上槽(2)的槽壁为两条轴对称曲线;所述异型断面试验水槽(5)的设计方法步骤如下:
    (一)根据试验设计,确定异型断面试验水槽(5)的设计水力半径R、单位m;根据试验场地,选定下槽(1)宽度b、单位m,同时满足b>2R;
    当2R<b<4R,则下槽(1)的横断面形状为矩形,然后将R、b代入公式
    Figure PCTCN2019129019-appb-100001
    计算得到下槽(1)深度d、单位m;
    当b=4R,则下槽(1)的横断面形状为半圆形,然后将b代入公式d=b/2,计算得到下槽(1)深度d、单位m;
    当b>4R,则下槽(1)的横断面形状为三角形,然后将R、b代入公式
    Figure PCTCN2019129019-appb-100002
    计算得到下槽(1)深度d、单位m;
    (二)将步骤(一)中得到的设计水力半径R、下槽(1)宽度b代入公式
    Figure PCTCN2019129019-appb-100003
    计算得到待定系数C;
    (三)将步骤(一)中得到的下槽(1)宽度b代入公式B=k·b,计算得到水槽宽度B、单位m,式中k为系数、取值为3-5;
    (四)通过以下公式计算得到上槽(2)的槽壁曲线方程
    Figure PCTCN2019129019-appb-100004
    式中,R—异型断面试验水槽(5)的设计水力半径,单位m,由步骤(一) 确定;
    C—待定系数,由步骤(二)确定;
    B—水槽宽度,单位m,由步骤(三)确定;
    b—下槽(1)宽度,单位m,由步骤(一)确定。
  2. 如权利要求1所述的异型断面试验水槽设计方法的应用,其特征在于:用于设计模拟试验流体为清水水流、或高含沙水流、或泥石流的水槽。
  3. 如权利要求1所述的异型断面试验水槽设计方法的应用,其特征在于:用于设计模拟试验坡度为5%-30%的水槽。
PCT/CN2019/129019 2019-01-14 2019-12-27 一种异型断面试验水槽设计方法及其应用 WO2020147550A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/267,349 US11828672B2 (en) 2019-01-14 2019-12-27 Designing method of test flume with special-shaped cross section and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910030436.8A CN109632256B (zh) 2019-01-14 2019-01-14 一种异型断面试验水槽设计方法及其应用
CN201910030436.8 2019-01-14

Publications (1)

Publication Number Publication Date
WO2020147550A1 true WO2020147550A1 (zh) 2020-07-23

Family

ID=66060613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129019 WO2020147550A1 (zh) 2019-01-14 2019-12-27 一种异型断面试验水槽设计方法及其应用

Country Status (3)

Country Link
US (1) US11828672B2 (zh)
CN (1) CN109632256B (zh)
WO (1) WO2020147550A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112697391A (zh) * 2020-12-15 2021-04-23 上海交通大学 一种观测旋转水槽内的水下碎屑流形态的实验装置
CN113074905A (zh) * 2021-03-18 2021-07-06 中国科学院、水利部成都山地灾害与环境研究所 面向水槽实验的泥石流冲击力测量方法
CN114892588A (zh) * 2022-06-12 2022-08-12 中铁十四局集团第二工程有限公司 一种台阶状泄洪排沙模型试验装置及试验方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109632256B (zh) * 2019-01-14 2020-06-02 中国科学院、水利部成都山地灾害与环境研究所 一种异型断面试验水槽设计方法及其应用
CN110726652B (zh) * 2019-11-15 2020-07-28 中国地质大学(北京) 模拟盐构造控制下的深水浊积水道沉积特征的水槽实验装置
CN114441135B (zh) * 2022-01-28 2023-11-17 福建农林大学 一种测量坡面薄层水流深度的试验装置及其工作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU887967A1 (ru) * 1980-04-25 1981-12-07 Войсковая Часть 13073 Устройство дл имитации перепада уровней в створе модели
KR20070082152A (ko) * 2006-02-15 2007-08-21 정태화 피씨 수로암거 구조
CN101265699A (zh) * 2008-05-12 2008-09-17 中国科学院水利部成都山地灾害与环境研究所 粘性泥石流三角形底排导槽水力最佳断面设计方法及应用
CN101435191A (zh) * 2008-12-09 2009-05-20 中国科学院水利部成都山地灾害与环境研究所 粘性泥石流斜墙v型排导槽水力最佳断面设计方法及应用
CN101561344A (zh) * 2009-05-26 2009-10-21 长江水利委员会长江科学院 用于水力学和泥沙动力学的无尾门试验水槽
CN204286746U (zh) * 2014-12-17 2015-04-22 安徽理工大学 一种多类型水力参数测定装置
CN104535295A (zh) * 2015-01-26 2015-04-22 山东科技大学 一种用于模拟坡面流水力要素的多功能实验装置及其实验方法
CN109632256A (zh) * 2019-01-14 2019-04-16 中国科学院、水利部成都山地灾害与环境研究所 一种异型断面试验水槽设计方法及其应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9457290B2 (en) * 2011-02-04 2016-10-04 Kenneth Douglas Hill Wave simulator for board sports
KR101195409B1 (ko) * 2012-04-10 2012-11-05 한국지질자원연구원 수막현상 재현형 토석류 모형시험장치
CN104132000B (zh) * 2014-07-30 2015-05-20 扬州大学 一种水力性能优异的肘形进水流道及其应用方法
CN105787225B (zh) * 2016-05-10 2018-11-13 重庆大学 一种梯形截面旋流沉砂池进水渠设计方法
CN107958095B (zh) * 2016-10-18 2020-10-16 济南大学 一种二分之五次方抛物线形明渠及其水力最优断面
KR101881909B1 (ko) * 2017-02-22 2018-07-27 한국생산기술연구원 고효율 저유체 유발 진동 단일채널펌프의 설계방법
CN107798172B (zh) * 2017-09-28 2018-12-11 黑龙江省水利水电勘测设计研究院 一种灌排两用渠道断面设计方法、装置及设备
CN109165402B (zh) * 2018-07-11 2022-10-04 济南大学 一种求解通用幂函数形明渠水力最优断面的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU887967A1 (ru) * 1980-04-25 1981-12-07 Войсковая Часть 13073 Устройство дл имитации перепада уровней в створе модели
KR20070082152A (ko) * 2006-02-15 2007-08-21 정태화 피씨 수로암거 구조
CN101265699A (zh) * 2008-05-12 2008-09-17 中国科学院水利部成都山地灾害与环境研究所 粘性泥石流三角形底排导槽水力最佳断面设计方法及应用
CN101435191A (zh) * 2008-12-09 2009-05-20 中国科学院水利部成都山地灾害与环境研究所 粘性泥石流斜墙v型排导槽水力最佳断面设计方法及应用
CN101561344A (zh) * 2009-05-26 2009-10-21 长江水利委员会长江科学院 用于水力学和泥沙动力学的无尾门试验水槽
CN204286746U (zh) * 2014-12-17 2015-04-22 安徽理工大学 一种多类型水力参数测定装置
CN104535295A (zh) * 2015-01-26 2015-04-22 山东科技大学 一种用于模拟坡面流水力要素的多功能实验装置及其实验方法
CN109632256A (zh) * 2019-01-14 2019-04-16 中国科学院、水利部成都山地灾害与环境研究所 一种异型断面试验水槽设计方法及其应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112697391A (zh) * 2020-12-15 2021-04-23 上海交通大学 一种观测旋转水槽内的水下碎屑流形态的实验装置
CN113074905A (zh) * 2021-03-18 2021-07-06 中国科学院、水利部成都山地灾害与环境研究所 面向水槽实验的泥石流冲击力测量方法
CN114892588A (zh) * 2022-06-12 2022-08-12 中铁十四局集团第二工程有限公司 一种台阶状泄洪排沙模型试验装置及试验方法
CN114892588B (zh) * 2022-06-12 2023-10-13 中铁十四局集团第二工程有限公司 一种台阶状泄洪排沙模型试验装置及试验方法

Also Published As

Publication number Publication date
CN109632256A (zh) 2019-04-16
US20210293660A1 (en) 2021-09-23
US11828672B2 (en) 2023-11-28
CN109632256B (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
WO2020147550A1 (zh) 一种异型断面试验水槽设计方法及其应用
McCorquodale et al. Effects of hydraulic and solids loading on clarifier performance
CN203011668U (zh) 一种可调节坡度的矩形水槽模拟底泥侵蚀和传输特征的装置
CN111642449B (zh) 一种变坡式鱼类游泳能力测试水槽
CN106918369A (zh) 一种用于水电站压力主管流量测量的装置及测量方法
CN107132023A (zh) 平坡水槽试验系统
CN103472062A (zh) 一种基于水循环系统的空化空蚀实验平台
CN103759918B (zh) 评估仿生射流表面平板减阻效果的试验装置及方法
James Hydraulic structures
Ma et al. Overland flow resistance and its components for slope surfaces covered with gravel and grass
CN104632185B (zh) 超高含水油井多相流计量装置
CN209296060U (zh) 一种自动测流的矩形无喉量水槽
CN205205951U (zh) 一种双水槽下水管道后置结构
CN205858315U (zh) 一种气井井口气液两相计量装置
CN103743591B (zh) 一种泥沙溶液采样装置及采样方法
Sanchez et al. Fluid dynamics and secondary currents in an asymmetrical rectangular canal with sidewall streamwise rib
Sanchez et al. Hydraulics of an asymmetrical flume with sidewall rib to assist with fish passage
CN107844150A (zh) 一种装置和基于该装置的流量监测和最大流量控制方法及防倒灌方法
Korkmaz et al. Numerical and Experimental Modeling of Flow Over a Broad-Crested Weir
CN110132716A (zh) 一种可调节式引流冲刷腐蚀测试系统
CN111189504A (zh) 一种分级测量式流量监测井及流量测量方法
CN110174256A (zh) 溢流砖模流试验装置
CN204626324U (zh) 一种阻水建筑物水工模型试验的量测装置
CN106197942B (zh) 一种气液混流实验装置
CN202913993U (zh) 防沉砂泥浆流量测量槽

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19910063

Country of ref document: EP

Kind code of ref document: A1