WO2020147525A1 - 吗啉基喹唑啉化合物的制备方法及其中间体 - Google Patents

吗啉基喹唑啉化合物的制备方法及其中间体 Download PDF

Info

Publication number
WO2020147525A1
WO2020147525A1 PCT/CN2019/127763 CN2019127763W WO2020147525A1 WO 2020147525 A1 WO2020147525 A1 WO 2020147525A1 CN 2019127763 W CN2019127763 W CN 2019127763W WO 2020147525 A1 WO2020147525 A1 WO 2020147525A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
reaction
solvent
palladium
preparation
Prior art date
Application number
PCT/CN2019/127763
Other languages
English (en)
French (fr)
Inventor
许祖盛
李纪志
吴剑峰
楼杨通
Original Assignee
上海璎黎药业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海璎黎药业有限公司 filed Critical 上海璎黎药业有限公司
Priority to JP2021541182A priority Critical patent/JP7038263B2/ja
Priority to KR1020217025800A priority patent/KR102405055B1/ko
Priority to EP19910900.0A priority patent/EP3912978B1/en
Priority to CA3126738A priority patent/CA3126738C/en
Priority to US17/423,153 priority patent/US11505542B2/en
Publication of WO2020147525A1 publication Critical patent/WO2020147525A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • C07D239/72Quinazolines; Hydrogenated quinazolines
    • C07D239/95Quinazolines; Hydrogenated quinazolines with hetero atoms directly attached in positions 2 and 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • C07D239/72Quinazolines; Hydrogenated quinazolines
    • C07D239/78Quinazolines; Hydrogenated quinazolines with hetero atoms directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol

Definitions

  • the invention relates to a preparation method of a morpholinyl quinazoline compound and an intermediate thereof.
  • Morpholine quinazoline compound YY-20394 its chemical structure is It has the activity of inhibiting phosphatidylinositol 3-kinase ⁇ (PI3K ⁇ ).
  • PI3K ⁇ is an intracellular phosphatidylinositol kinase that can catalyze the phosphorylation of the 3-hydroxyl of phosphatidylinositol.
  • PI3K can be divided into type I, type II and type III kinases, and the most widely studied is the type I PI3K that can be activated by cell surface receptors.
  • Class I PI3Ks in mammalian cells are divided into Class Ia and Class Ib according to their structure and receptors. They transmit signals from tyrosine kinase-coupled receptors and G protein-coupled receptors, respectively.
  • Class Ia PI3K includes PI3K ⁇ , PI3K ⁇ , PI3K ⁇ subtypes, and Class Ib PI3K includes PI3K ⁇ subtypes (Trends. Biochem. Sci., 1997, 22, 267-272).
  • Class Ia PI3K is a dimeric protein composed of the catalytic subunit p110 and the regulatory subunit p85. It has the dual activities of lipid kinase and protein kinase (Nat. Rev. Cancer 2002, 2,489-501), and is considered to be involved in cell proliferation. It is related to the occurrence of cancer, immune diseases and diseases involving inflammation.
  • Patent WO2015055071A1 discloses compound YY-20394 and its preparation method.
  • 2-amino-5-fluorobenzoic acid is used as a raw material to synthesize the trichloro intermediate I-11 through a three-step reaction, and then the product YY-20394 is converted through a four-step reaction.
  • This route is mainly suitable for the modification of the chemical structure of medicines, but in the reaction step of compound I-11 to compound I-11-a, the selectivity is poor, and there are many impurities generated. The yield of compound I11-a is only 28%. Conducive to industrial production.
  • the invention provides a preparation method and intermediates of morpholinoquinazoline compounds which are different from the prior art.
  • the preparation method has high yield and good selectivity, avoids the production of by-products at the 2-position of the quinazoline ring, improves the selectivity of the Suzuki reaction at the 4-position of the quinazoline ring, and is simple to operate, and the reaction conditions are mild and suitable Industrial production.
  • the present invention is realized through the following technical solutions.
  • the present invention provides a method for preparing a compound represented by formula V, which comprises the following steps:
  • R 1 and R 2 are independently H or (-Ms); M is Or -BF 3 K;
  • X 1 is Cl or Br
  • X 2 is halogen, (-OTf) or
  • R 3 is C 1-4 alkyl
  • R 4a , R 4b , R 4c , R 4d and R 4e are independently H, C 1-6 alkyl, nitro or halogen.
  • the C 1-4 alkyl group is preferably methyl, ethyl, n-propyl, isopropyl, n-butyl, Or tert-butyl, more preferably methyl.
  • the halogen is preferably Cl, Br and I, more preferably Cl.
  • the halogen is independently preferably Cl, Br or I.
  • the C 1-6 alkyl group is independently preferably a C 1-3 alkyl group, more preferably a methyl group, an ethyl group, a n-propyl group or an isopropyl group, Methyl group is more preferable.
  • the M is Preferred
  • the X 1 is chlorine.
  • the X 2 is halogen
  • R 4a , R 4b , R 4d and R 4e are independently H.
  • R 4c is preferably nitro or C 1-6 alkyl, more preferably C 1-6 alkyl.
  • the Suzuki reaction may be a conventional reaction of this type of reaction in the art.
  • the palladium catalyst may be a conventional palladium catalyst for such reactions in the art, preferably tetrakis(triphenylphosphine)palladium (Pd(PPh 3 ) 4 ), palladium acetate Pd(OAc) 2 , bis( Triphenylphosphine) palladium dichloride (PdCl 2 (PPh 3 ) 2 ), bis(tri-o-methylphenylphosphine) palladium(II) dichloride (PdCl 2 [P(o-tol) 3 ] 2 ) , Three (dibenzylideneacetone) two palladium (Pd 2 (dba) 3 ), two (tri-tert-butylphosphine) palladium (Pd[P(t-Bu) 3 ] 2 ), [1,1'-double (Diphenylphosphino)ferrocene]palladium dichloride (PdCl 2 (dppf))
  • the palladium catalyst can also react in the presence of a ligand.
  • the ligand may be a conventional ligand for such reactions in the field, preferably triphenylphosphonium (PPh 3 ), tri-o-methylphenylphosphonium (P(o-tol) 3 ), tri-tert-butyl tetrafluoroborate Phosphine, 2-dicyclohexylphosphine-2',4',6'-triisopropylbiphenyl (x-Phos), 2-dicyclohexylphosphine-2',6'-dimethoxy-biphenyl (s-Phos) and one or more of 2-dicyclohexylphosphine-2',6'-diisopropoxy-1,1'-biphenyl (Ru-Phos).
  • Phos triphenylphosphonium
  • P(o-tol) 3 tri-o-methylphenylphosphonium
  • Phosphine 2-dic
  • the molar ratio of the palladium catalyst to the compound IV may be 0.01-0.5, preferably 0.02-0.2, such as 0.06.
  • the solvent may be a conventional solvent of this type of reaction in the art, preferably a mixed solvent of an organic solvent and water.
  • the organic solvent may be a conventional organic solvent for such reactions in the field, preferably one or more of aromatic hydrocarbon solvents, alcohol solvents, chlorinated hydrocarbon solvents and ether solvents, more preferably aromatic hydrocarbon solvents and Mixed solvent of alcohol solvents.
  • the aromatic hydrocarbon solvent and alcohol solvent are preferably toluene and isopropanol.
  • the volume ratio of the aromatic hydrocarbon solvent to the alcohol solvent is preferably 1:1 to 5:1, more preferably 3:1 to 5:1, for example 4:1.
  • the volume ratio of the organic solvent to the water may be a conventional volume ratio of this type of reaction in the art, preferably 1:1-10:1, more preferably 5:1-10:1.
  • the amount of the mixed solvent may not be specifically limited, as long as it does not affect the progress of the reaction.
  • the alkaline reagent may be a conventional alkaline reagent for this type of reaction in the art, preferably alkali metal carbonate, alkali metal fluoride salt, alkali metal phosphate, alkali metal tert-butoxide and alkali One or more of metal hydroxides.
  • the alkali metal carbonate may be one or more of sodium carbonate, potassium carbonate and cesium carbonate, preferably potassium carbonate.
  • the alkali metal fluoride salt may be potassium fluoride.
  • the alkali metal phosphate may be potassium phosphate.
  • the alkali metal tert-butoxide may be sodium tert-butoxide and/or potassium tert-butoxide.
  • the alkali metal hydroxide may be one or more of sodium hydroxide, potassium hydroxide and lithium hydroxide.
  • the molar ratio of the alkaline reagent to the compound IV may be 1-10, such as 1.2, or 1.7, preferably 2-10, such as 9.
  • the molar ratio of the compound S to the compound IV may be 0.9-3, preferably 0.9-1.5, such as 1.0, or 1.2.
  • the temperature of the Suzuki reaction can be a conventional temperature for such reactions in the art, preferably 0-130°C, more preferably 20-70°C, such as 45°C, or 70°C.
  • the Suzuki reaction can be carried out under a protective gas.
  • the protective gas may be a conventional protective gas for such reactions in the art, such as nitrogen, or argon.
  • the monitoring method of the progress of the Suzuki reaction can be monitored by such conventional monitoring methods in the art (for example, TLC, or for example, LC-MS). Generally, the complete disappearance or no reaction of the compound IV is used as the end point of the reaction.
  • the time of the Suzuki reaction is preferably 1-18h, such as 12h, for example 7h, and for example 1h.
  • the compound S is preferably
  • the compound IV is preferably
  • the following post-processing steps may also be included: cooling the reaction solution after the reaction to room temperature, extraction, concentration, and column chromatography.
  • the preparation method of the compound represented by formula V may also include the preparation method of the compound IV, which is method 1 or method 2:
  • Method 1 It includes the following steps: subject compound III, and "phosphorus oxyhalide and/or phosphorous halide" to the following halogenation reaction to obtain the compound IV;
  • Method 2 It includes the following steps: under the action of an alkaline reagent, the compound III and the sulfonylation reagent are subjected to a nucleophilic substitution reaction of the following formula in an organic solvent to obtain the compound IV;
  • the sulfonylation reagent is
  • R 3 , R 4a , R 4b , R 4c , R 4d , R 4e , X 1 and X 2 are the same as described above;
  • the halogenation reaction can be a conventional halogenation reaction of this type of reaction in the art.
  • the halogenation reaction is preferably a neat reaction without a solvent.
  • the halogen in the "phosphorus oxytrihalide and/or phosphorus halide" is a halogen, and the halogen is preferably Cl, Br or I, and more preferably Cl.
  • the molar ratio of the "phosphorus trihalide and/or phosphorus halide" to the compound III may be greater than or equal to 1, preferably 1-30, such as 20, or 10, for example.
  • the temperature of the halogenation reaction can be a conventional temperature of this type of reaction in the art, preferably 20-130°C, preferably 60-110°C, for example 105°C.
  • Method 1 the method for monitoring the progress of the halogenation reaction can be monitored by such conventional monitoring methods in the art (such as TLC, or for example, LC-MS), and the complete disappearance of the compound III is generally used as the end point of the reaction.
  • the time of the halogenation reaction is preferably 2-24, for example, 3h.
  • the following post-treatment steps may be further included: quenching, extracting, washing and concentrating the reaction liquid after the halogenation reaction is completed.
  • reaction solution in the post-treatment step, may be concentrated before the quenching.
  • the quenching method in the post-treatment step, can be a conventional method of this type of reaction in the art, preferably the method of adding water, and more preferably the method of adding ice-water.
  • the extraction operation and conditions can be conventional operations and conditions for such reactions in the art.
  • the organic solvent for extraction may be a chlorinated hydrocarbon solvent, preferably dichloromethane.
  • the water washing in the post-treatment step, can be a conventional water washing of this type of reaction in the art, preferably saturated sodium chloride water washing.
  • the operation and conditions of the concentration may be conventional operations and conditions of this type of reaction in the art, such as concentration under reduced pressure.
  • the alkaline reagent may be a conventional alkaline reagent for such reactions in the art, preferably an organic weak base and/or an inorganic weak base salt, and more preferably an organic weak base.
  • the organic weak base may be a tertiary amine organic weak base and/or a pyridine organic weak base.
  • the tertiary amine organic weak base is preferably triethylamine (TEA) and/or N,N-diisopropylethylamine (DIPEA).
  • the inorganic weak base salt may be an alkali metal carbonate, more preferably potassium carbonate.
  • the molar ratio of the sulfonylating reagent to the compound III can be a conventional molar ratio of this type of reaction in the art, preferably 1 to 1.5, for example 1.
  • the organic solvent may be a conventional organic solvent for such reactions in the art, preferably one or more of nitrile solvents, chlorinated hydrocarbon solvents and ether solvents.
  • the nitrile solvent is preferably acetonitrile.
  • the chlorinated hydrocarbon solvent is preferably dichloromethane and/or chloroform.
  • the ether solvent is preferably one or more of tetrahydrofuran, 1,4-dioxane and ethylene glycol dimethyl ether.
  • the amount of the organic solvent may not be specifically limited as long as it does not affect the progress of the reaction.
  • the volume-mass ratio of the organic solvent to the compound III may be 5-15 mL/g, for example, 10 mL/g. g.
  • Method 2 the progress of the reaction can be monitored by a conventional monitoring method of this type of reaction in the art (such as TLC, or LC-MS), and the complete disappearance of the compound III is generally used as the end point of the reaction.
  • the reaction time is preferably 0.5-5h, for example 2h.
  • the temperature of the nucleophilic substitution reaction can be a conventional temperature of this type of reaction in the art, and can be 0 to 130°C, or 50 to 100°C, such as 70°C, or 80°C.
  • the following post-treatment steps may be further included: cooling the reaction solution after the reaction to room temperature, adding water to precipitate a solid, filtering and drying.
  • the compound III is preferably
  • the preparation method of the compound represented by formula V may further include the following steps: in an organic solvent, compound II and compound A are subjected to a nucleophilic substitution reaction of the following formula to obtain compound III;
  • the conditions for the nucleophilic substitution reaction may be conventional reaction conditions for such reactions in the art.
  • the organic solvent may be a conventional organic solvent in such reactions in the art, preferably a polar aprotic solvent.
  • the polar aprotic solvent may be an amide solvent.
  • the amide solvent may be N,N-dimethylformamide (DMF) and/or N,N-dimethylacetamide (DMAC), preferably N,N-dimethylacetamide.
  • the amount of the organic solvent may not be specifically limited as long as it does not affect the progress of the reaction.
  • the volume mass ratio of the organic solvent to the compound II is 5-15 mL/g, for example 10mL/g.
  • the molar ratio of the compound A to the compound II can be a conventional molar ratio in such reactions in the art, and can be 1-10, or 1-3, such as 2.4.
  • the temperature of the nucleophilic substitution reaction may be a conventional temperature of this type of reaction in the art, preferably 20-100°C, for example 85°C.
  • the monitoring method for the progress of the nucleophilic substitution reaction can be monitored by such conventional monitoring methods in the art (for example, TLC, or for example, LC-MS), and the complete disappearance of the compound II is generally used as the end point of the reaction.
  • the time of the nucleophilic substitution reaction is preferably 1 to 24 hours, more preferably 1 to 5 hours, such as 2 hours.
  • the compound II is preferably
  • the following post-treatment steps may also be included: cooling the reaction solution after the completion of the nucleophilic substitution reaction to room temperature, adding water to precipitate a solid, filtering and drying.
  • the preparation method of the compound represented by formula V may further include the following steps: under the action of an alkaline reagent, the compound I is reacted in a solvent with the following formula to obtain the compound II, that is,
  • the reaction conditions can be conventional reaction conditions in such reactions in the art.
  • the solvent may be a conventional solvent for this type of reaction in the art, preferably a mixed solvent of an organic solvent and water.
  • the organic solvent may be a conventional organic solvent in such reactions in the art, preferably one or more of nitrile solvents, ketone solvents, ether solvents and amide solvents, preferably nitrile solvents.
  • the nitrile solvent is preferably acetonitrile.
  • the amount of the solvent may not be specifically limited as long as it does not affect the progress of the reaction.
  • the alkaline reagent may be a conventional alkaline reagent for this type of reaction in the art, preferably an inorganic strong base.
  • the strong inorganic base may be one or more of sodium hydroxide, potassium hydroxide, lithium hydroxide and calcium hydroxide, preferably sodium hydroxide.
  • the molar ratio of the alkaline reagent to the compound I can be a conventional molar ratio in such reactions in the art, preferably 1-20, for example 4.
  • the temperature of the reaction may be a conventional temperature of this type of reaction in the art, preferably 0-80°C, for example 45°C.
  • the monitoring method for the progress of the substitution reaction can be monitored by such conventional monitoring methods in the art (for example, TLC, or for example, LC-MS), and the complete disappearance of the compound I is generally taken as the end point of the reaction.
  • the reaction time is preferably 8 to 18 hours, for example 12 hours.
  • the following post-treatment steps may also be included: cooling the reaction liquid after the reaction to room temperature, adjusting the pH value of the reaction liquid to 5-6, filtering and drying.
  • the present invention also provides a preparation method of the compound represented by formula YY-20394, which comprises the following steps:
  • Step S1 Under the action of a palladium catalyst and an alkaline reagent, the compound S and compound IV are subjected to the Suzuki reaction of the following formula in a solvent to obtain compound V;
  • Step S2 Under the action of an alkaline reagent, the methanesulfonyl chloride and the compound V are reacted in an organic solvent with the following formula to obtain the compound VI;
  • Step S3 Under the condition of palladium catalyst and ligand, under the action of alkaline reagent, carry out coupling reaction of compound VII and said compound VI in a solvent to obtain compound YY-20394;
  • step S2 the reaction conditions can be conventional reaction conditions of this type of reaction in the art, and the following conditions are preferred in the present invention:
  • the alkaline reagent is preferably a weak organic base.
  • the weak organic base may be a conventional weak organic base for such reactions in the art.
  • the organic weak base may be a pyridine organic weak base and/or a tertiary amine organic weak base, preferably a pyridine organic weak base.
  • the pyridine organic weak base may be pyridine.
  • step S2 the molar ratio of the methanesulfonyl chloride to the compound V may be 1-5, such as 2.
  • step S2 the molar ratio of the alkaline reagent to the compound V may be 3-25, such as 23.
  • the organic solvent is preferably a chlorinated hydrocarbon solvent.
  • the halogenated hydrocarbon solvent is preferably dichloromethane.
  • the reaction temperature may be 10-50°C.
  • step S2 the method for monitoring the progress of the reaction can be monitored by such conventional monitoring methods in the art (for example, TLC, or for example, LC-MS), and the complete disappearance of the compound V is generally used as the end point of the reaction.
  • the reaction time is preferably 1 to 24 hours.
  • step S2 the compound V is preferably
  • step S2 after the reaction is completed, the following post-processing steps may be further included: quenching, filtering and beating the reaction liquid after the reaction.
  • step S3 the coupling reaction can be a conventional coupling reaction in the art.
  • the palladium catalyst may be a conventional palladium catalyst for such reactions in the art, preferably tetrakis(triphenylphosphine)palladium (Pd(PPh 3 ) 4 ), palladium acetate Pd(OAc) 2 , bis(triphenyl) Phosphine) palladium dichloride (PdCl 2 (PPh 3 ) 2 ), bis(tri-o-methylphenylphosphine) palladium(II) dichloride (PdCl 2 [P(o-tol) 3 ] 2 ), three (Dibenzylideneacetone) two palladium (Pd 2 (dba) 3 ), two (tri-tert-butylphosphine) palladium (Pd(P(t-Bu) 3 ] 2 ), [1,1'-bis(two Phenylphosphino)ferrocene]palladium dichloride (PdCl 2 (dppf)) and [
  • the molar ratio of the palladium catalyst to the compound VI may be 0.01 to 0.2, such as 0.1.
  • the ligand may be a conventional ligand for such reactions in the art, preferably triphenylphosphonium (PPh 3 ), tri-o-methylphenylphosphonium (P(o-tol) 3 ), tetrafluoroboric acid Tri-tert-butylphosphine, 2-dicyclohexylphosphine-2',4',6'-triisopropylbiphenyl (x-Phos), 2-dicyclohexylphosphine-2',6'-dimethoxy One or more of s-Phos and 2-dicyclohexylphosphine-2',6'-diisopropoxy-1,1'-biphenyl (Ru-Phos), preferably 2-Dicyclohexylphosphine-2',4',6'-triisopropylbiphenyl.
  • Phos triphenylphosphonium
  • P(o-tol) 3 tri-o-methylphenylphospho
  • step S3 the molar ratio of the ligand to the compound VI may be 0.02-0.4, such as 0.2.
  • the alkaline reagent may be a conventional alkaline reagent for this type of reaction in the art, preferably alkali metal carbonate, alkali metal fluoride salt, alkali metal phosphate, alkali metal tert-butoxide, and alkali metal hydrogen.
  • alkali metal carbonate may be one or more of sodium carbonate, potassium carbonate and cesium carbonate, preferably cesium carbonate (Cs 2 CO 3 ).
  • the alkali metal fluoride salt may be potassium fluoride.
  • the alkali metal phosphate may be potassium phosphate.
  • the alkali metal tert-butoxide may be sodium tert-butoxide and/or potassium tert-butoxide.
  • the alkali metal hydroxide may be one or more of sodium hydroxide, potassium hydroxide and lithium hydroxide.
  • the molar ratio of the alkaline reagent to the compound VI may be 1-20, for example, 3, for example 6, for example, for example 10, for example, for example 15, or for example, for example 20.
  • the molar ratio of the compound VII to the compound VI may be 0.8-6, preferably 1-3, such as 5, or 1.5.
  • the solvent may be a conventional solvent for such reactions in the art, preferably a mixed solvent of a water-soluble organic solvent and water.
  • the water-soluble organic solvent may be a conventional water-soluble organic solvent in such reactions in the art.
  • the water-soluble organic solvent is preferably an ether solvent and/or an alcohol solvent, and more preferably an ether solvent.
  • the ether solvent is preferably one or more of tetrahydrofuran (THF), 1,4-dioxane and ethylene glycol dimethyl ether, more preferably tetrahydrofuran.
  • the volume ratio of the organic solvent to water may be a conventional volume ratio in the art, preferably 1:1-15:1, more preferably 3:1-15:1, such as 10:1, or 4:1.
  • the reaction method of the coupling reaction may be a conventional reaction method of this type of reaction in the art, may be a conventional heating method for coupling reaction, or may be a microwave condition for coupling reaction.
  • the temperature of the coupling reaction may be 30-130°C, preferably 80-120°C.
  • the coupling reaction time may be 2-16h, for example 12h.
  • the temperature of the coupling reaction may be 50-120°C.
  • the coupling reaction time may be 5-16h, for example 8h, or for example 12h.
  • step S3 the compound VI is preferably
  • the coupling reaction can also be carried out under protective gas.
  • the protective gas may be a conventional protective gas in the field, such as nitrogen, or argon.
  • step S3 after the coupling reaction is completed, the following post-treatment steps may also be included: extracting, washing, concentrating and chromatographic separation of the reaction solution after the reaction.
  • the present invention also provides a compound represented by formula IV:
  • X 1 and X 2 are the same as described above.
  • the compound IV is preferably More preferred
  • the present invention also provides a method for preparing the compound represented by formula IV, which includes method 1 or method 2:
  • Method 1 It includes the following steps: subject compound III, and "phosphorus oxyhalide and/or phosphorous halide" to the following halogenation reaction to obtain the compound IV;
  • Method 2 It includes the following steps: under the action of a basic reagent, the compound III and the sulfonylation reagent are subjected to a nucleophilic substitution reaction of the following formula in an organic solvent to obtain the compound IV;
  • the reagent is
  • R 3 , R 4a , R 4b , R 4c , R 4d , R 4e , X 1 and X 2 are the same as described above;
  • the present invention also provides a compound III:
  • X 1 is Cl or Br.
  • the compound III is preferably
  • the present invention also provides a preparation method of the compound III, which includes the following steps: in an organic solvent, the compound II and the compound A are subjected to a nucleophilic substitution reaction of the following formula to obtain the compound III;
  • X 1 is Cl or Br.
  • the present invention also provides a compound represented by formula II:
  • the invention also provides a compound represented by formula V-2:
  • R 1 and R 2 are independently H or
  • the compound V-2 is preferably
  • room temperature refers to the ambient temperature, which is 10°C to 35°C.
  • overnight means 8-16 hours.
  • water-soluble organic solvent means that solvent molecules usually contain polar groups, such as -OH, -SO 3 H, -NH 2 , -NHR, -COOH, -CN, -CO-,- CONH 2 -group, and the carbon chain is less than 8 carbons.
  • polar groups such as -OH, -SO 3 H, -NH 2 , -NHR, -COOH, -CN, -CO-,- CONH 2 -group
  • Acetone, acetonitrile and N,N-dimethylformamide are common "water-soluble organic solvents”.
  • the reagents and raw materials used in the present invention are commercially available.
  • the positive and progressive effect of the present invention is that the preparation method of the morpholinoquinazoline compound of the present invention improves the selectivity of the Suzuki reaction at the 4-position of the quinazoline ring, and solves the problem of more by-products in the reaction. High rate, simple operation, mild reaction conditions, suitable for industrial production.
  • reaction solution Heat to 80°C and react for 12 hours. After the reaction was completed, the solvent was removed by concentration, diluted hydrochloric acid (2N) was added, water was added, and extraction was performed with ethyl acetate. The organic phase was concentrated to obtain compound T-21 (0.54 g, 96% yield).
  • Triethylamine (1.2g, 11.85mmol) was added to the dichloromethane (10mL) solution of compound S-11 (1g, 4.00mmol), and MsCl (0.92g, 8.03) was slowly added to the reaction solution under ice water bath. mmol). After the addition, the reaction solution was stirred overnight at room temperature. The reaction solution was concentrated to dryness, water was added, and extracted with ethyl acetate. The organic phase was dried with anhydrous sodium sulfate and concentrated to obtain compound T-12 (1.6 g, 98% yield).
  • reaction solution compound IV-11 has been completely converted, and the content of compound V-11 was 72.59% (wavelength 214nm ), 99.03% (wavelength 254nm).
  • reaction solution was spin-dried, water was added, and the mixture was extracted with ethyl acetate (25 mL).
  • Example 24 The compound IV-11 in Example 24 was replaced with compound I-11 (91 mg, 0.36 mmol, 1 equiv). Suzuki reaction was performed according to the conditions of Example 24. The reaction solution was stirred at 35-40° C. for 1 h, and the reaction solution was taken for LC- MS detection showed that the content of compound V-12 in the reaction solution was 28.64% (wavelength 214nm), 35.39% (wavelength 254nm), and a large amount of reactants I-11 and S-11 were present. The reaction solution continued to react at 35-40°C and stirred overnight. The reaction solution was taken for LC-MS detection.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Health & Medical Sciences (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

本公开涉及一种吗啉基喹唑啉化合物的制备方法及其中间体。所述吗啉基喹唑啉化合物的制备方法包括以下步骤:步骤S1:将化合物S和化合物IV,进行如下式的Suzuki反应,得到化合物V;步骤S2:将甲基磺酰氯和所述化合物V在有机溶剂中进行如下式反应,得到化合物VI;步骤S3:将化合物VII和所述化合物VI在溶剂中,进行如下式的偶联反应,得到化合物YY-20394。该制备方法收率较高,选择性较好,且操作简便,反应条件温和,适合工业化生产。

Description

吗啉基喹唑啉化合物的制备方法及其中间体
本申请要求申请日为2019年1月16日的中国专利申请2019100409181的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及一种吗啉基喹唑啉化合物的制备方法及其中间体。
背景技术
吗啉基喹唑啉化合物YY-20394,其化学结构为
Figure PCTCN2019127763-appb-000001
具有抑制磷脂酰肌醇3-激酶δ(PI3Kδ)的活性。
PI3Kδ是一种胞内磷酸酰肌醇激酶,可催化磷脂酰肌醇的3位羟基磷酸化。PI3K可分为I类、II类和III类激酶,而研究最广泛的是能被细胞表面受体所激活的I类PI3K。哺乳动物细胞中I类PI3K根据结构和受体又分为Ia类和Ib类,它们分别传递来自酪氨酸激酶-偶联受体和G蛋白-偶联受体的信号。Ia类PI3K包括PI3Kα、PI3Kβ、PI3Kδ亚型,Ib类PI3K包括PI3Kγ亚型(Trends.Biochem.Sci.,1997,22,267-272)。Ia类PI3K是由催化亚单位p110和调节亚单位p85所组成的二聚体蛋白,具有类脂激酶和蛋白激酶的双重活性(Nat.Rev.Cancer 2002,2,489-501),被认为与细胞增殖和癌症发生,免疫疾病和涉及炎症的疾病相关。
专利WO2015055071A1公开了化合物YY-20394及其制备方法。在该专利中,以2-氨基-5-氟苯甲酸为原料,通过3步反应合成三氯中间体I-11,进而通过四步反应转化得到产物YY-20394。此路线主要适合药物化学结构改造,但是在化合物I-11生成化合物I-11-a的反应步骤,选择性较差,生成的杂质较多,化合物I11-a的收率仅为28%,不利于工业化生产。
Figure PCTCN2019127763-appb-000002
鉴于此,亟须开发一种化合物YY-20394的制备方法,该制备方法收率较高,选择性较好,能够避免喹唑啉环上2位副产物产生,且操作简便,反应条件温和,适合工业化生产。
发明内容
本发明提供了一种与现有技术不同的吗啉基喹唑啉类化合物的制备方法及其中间体。该制备方法收率较高,选择性较好,避免了喹唑啉环上2位副产物产生,提高了喹唑啉环4位发生Suzuki反应的选择性,且操作简便,反应条件温和,适合工业化生产。
本发明通过以下技术方案来实现。
本发明提供了一种如式V所示的化合物的制备方法,其包括以下步骤:
在钯催化剂和碱性试剂作用下,将化合物S和化合物IV在溶剂中进行如下式的Suzuki反应,得到化合物V,即可;
Figure PCTCN2019127763-appb-000003
其中,R 1和R 2独立地为H或
Figure PCTCN2019127763-appb-000004
(-Ms);M为
Figure PCTCN2019127763-appb-000005
或-BF 3K;
X 1为Cl或Br;
X 2为卤素、
Figure PCTCN2019127763-appb-000006
(-OTf)或
Figure PCTCN2019127763-appb-000007
R 3为C 1-4烷基;
R 4a、R 4b、R 4c、R 4d和R 4e独立地为H、C 1-6烷基、硝基或卤素。
R 3中,所述C 1-4烷基优选甲基、乙基、正丙基、异丙基、正丁基、
Figure PCTCN2019127763-appb-000008
或叔丁基,更优选甲基。
X 2中,所述卤素优选Cl、Br和I,更优选Cl。
R 4a、R 4b、R 4c、R 4d和R 4e中,所述卤素独立地优选Cl、Br或I。
R 4a、R 4b、R 4c、R 4d和R 4e中,所述C 1-6烷基独立地优选C 1-3烷基,进一步优选甲基、乙基、正丙基或异丙基,更进一步优选甲基。
在某一技术方案中,所述M为
Figure PCTCN2019127763-appb-000009
优选
Figure PCTCN2019127763-appb-000010
在某一技术方案中,所述X 1为氯。
在某一技术方案中,所述X 2为卤素、
Figure PCTCN2019127763-appb-000011
优选
Figure PCTCN2019127763-appb-000012
在某一技术方案中,R 4a、R 4b、R 4d和R 4e独立地为H。
在某一技术方案中,R 4c优选硝基或C 1-6烷基,更优选C 1-6烷基。
在某一技术方案中,当X 2
Figure PCTCN2019127763-appb-000013
时,所述
Figure PCTCN2019127763-appb-000014
Figure PCTCN2019127763-appb-000015
(-OTs)。
所述Suzuki反应可为本领域此类反应常规的反应。
所述Suzuki反应中,所述钯催化剂可为本领域此类反应常规的钯催化剂,优选四(三苯基膦)钯(Pd(PPh 3) 4)、醋酸钯Pd(OAc) 2、二(三苯基膦)二氯化钯(PdCl 2(PPh 3) 2)、双(三邻甲基苯基膦)二氯化钯(II)(PdCl 2[P(o-tol) 3] 2)、三(二亚苄基丙酮)二钯(Pd 2(dba) 3)、二(三叔丁基膦)钯(Pd[P(t-Bu) 3] 2)、[1,1'-双(二苯基膦基)二茂 铁]二氯化钯(PdCl 2(dppf))和[1,1'-双(二苯基膦基)二茂铁]二氯化钯二氯甲烷络合物(PdCl 2(dppf)DCM)中的一种或多种,更优选四(三苯基膦)钯。
所述Suzuki反应中,所述钯催化剂还可在配体存在下进行反应。所述配体可为本领域此类反应常规的配体,优选三苯基磷(PPh 3)、三邻甲基苯基磷(P(o-tol) 3)、四氟硼酸三叔丁基膦、2-二环己基膦-2',4',6'-三异丙基联苯(x-Phos)、2-二环己基膦-2',6'-二甲氧基-联苯(s-Phos)和2-二环己基膦-2',6'-二异丙氧基-1,1'-联苯(Ru-Phos)中的一种或多种。
所述Suzuki反应中,所述钯催化剂与所述化合物IV的摩尔比值可为0.01-0.5,优选0.02~0.2,例如0.06。
所述Suzuki反应中,所述溶剂可为本领域此类反应常规的溶剂,优选有机溶剂和水的混合溶剂。所述有机溶剂可为本领域此类反应常规的有机溶剂,优选芳香烃类溶剂、醇类溶剂、氯代烃类溶剂和醚类溶剂中的一种或多种,更优选芳香烃类溶剂和醇类溶剂的混合溶剂。所述芳香烃类溶剂和醇类溶剂优选甲苯和异丙醇。所述芳香烃类溶剂与醇类溶剂的体积比优选1:1~5:1,更优选3:1~5:1,例如4:1。所述有机溶剂与所述水的体积比可为本领域此类反应常规的体积比,优选1:1~10:1,更优选5:1~10:1。
所述Suzuki反应中,所述混合溶剂的用量可不做具体的限定,只要不影响反应进行即可。
所述Suzuki反应中,所述碱性试剂可为本领域此类反应常规的碱性试剂,优选碱金属碳酸盐、碱金属氟化盐、碱金属磷酸盐、碱金属叔丁醇盐和碱金属氢氧化物中的一种或多种。所述碱金属碳酸盐可为碳酸钠、碳酸钾和碳酸铯中一种或多种,优选碳酸钾。所述碱金属氟化盐可为氟化钾。所述碱金属磷酸盐可为磷酸钾。所述碱金属叔丁醇盐可为叔丁醇钠和/或叔丁醇钾。所述碱金属氢氧化物可为氢氧化钠、氢氧化钾和氢氧化锂中的一种或多种。
所述Suzuki反应中,所述碱性试剂与所述化合物IV的摩尔比值可为1~10,例如1.2,又例如1.7,优选2~10,例如9。
所述Suzuki反应中,所述化合物S与所述化合物IV的摩尔比值可为0.9~3,优选0.9~1.5,例如1.0,又例如1.2。
所述Suzuki反应中,所述Suzuki反应的温度可为本领域此类反应常规的温度,优选0~130℃,更优选20~70℃,例如45℃,又例如70℃。
所述Suzuki反应可在保护气体下进行反应。所述保护气体可为本领域此类反应常规的保护气体,例如氮气,又例如氩气。
所述Suzuki反应的进程的监测方法可采用本领域此类常规的监测方法(例如TLC,又例如LC-MS)进行监测,一般以所述化合物IV完全消失或者不再反应作为反应的终点。所述Suzuki反应的时间优选1~18h,例如12h,又例如7h,再例如1h。
所述Suzuki反应中,所述化合物S优选
Figure PCTCN2019127763-appb-000016
Figure PCTCN2019127763-appb-000017
所述Suzuki反应中,所述化合物IV优选
Figure PCTCN2019127763-appb-000018
Figure PCTCN2019127763-appb-000019
所述Suzuki反应结束后,还可包括以下后处理步骤:将反应结束后的反应液冷却至室温,萃取、浓缩和柱层析。
所述如式V所示的化合物的制备方法,其还可包括所述化合物IV的制备方法,其为方法1或方法2:
方法1:其包括以下步骤:将化合物III,和,“三卤氧磷和/或卤化磷”进行如下式卤化反应,得到所述化合物IV,即可;
方法2:其包括以下步骤:在碱性试剂作用下,将化合物III和磺酰化试剂在有机溶剂中进行如下式的亲核取代反应,得到所述化合物IV,即可;
所述磺酰化试剂为
Figure PCTCN2019127763-appb-000020
Figure PCTCN2019127763-appb-000021
其中,R 3、R 4a、R 4b、R 4c、R 4d、R 4e、X 1和X 2的定义均同前所述;
当X 2为卤素时,所述化合物IV的制备方法为方法1;
当X 2
Figure PCTCN2019127763-appb-000022
时,所述化合物IV的制备方法为方法2。
方法1中,所述卤化反应可为本领域此类反应常规的卤化反应。
方法1中,所述卤化反应优选在无溶剂下反应(neat reaction)。
方法1中,所述“三卤氧磷和/或卤化磷”中的卤为卤素,所述卤素优选Cl、Br或I,更优选Cl。
方法1中,所述“三卤氧磷和/或卤化磷”与所述化合物III的摩尔比值可为大于等于1,优选1~30,例如20,又例如10。
方法1中,所述卤化反应的温度可为本领域此类反应的常规的温度,优选20~130℃,优选60~110℃,例如105℃。
方法1中,所述卤化反应的进程的监测方法可采用本领域此类常规的监测方法(例如TLC,又例如LC-MS)进行监测,一般以所述化合物III完全消失作为反应的终点。所述卤化反应的时间优选2~24,例如3h。
方法1中,所述卤化反应结束后,还可包括以下后处理步骤:将卤化反应结束后的反应液,淬灭、萃取、水洗和浓缩。
方法1中,所述的后处理步骤中,所述淬灭前可将所述反应液进行浓缩处理。
方法1中,所述的后处理步骤中,所述淬灭的方式可采用本领域此类反应的常规的方式,优选采用加入水的方式,更优选采用加入冰-水的方式。
方法1中,所述的后处理步骤中,所述萃取的操作和条件可为本领域此类反应的常规操作和条件。所述萃取的有机溶剂可为氯代烃类溶剂,优选二氯甲烷。
方法1中,所述的后处理步骤中,所述水洗可为本领域此类反应的常规水洗,优选采用饱和氯化钠水洗。
方法1中,所述的后处理步骤中,所述浓缩的操作和条件可为本领域此类反应的常 规操作和条件,例如减压浓缩。
方法2中,所述碱性试剂可为本领域此类反应常规的碱性试剂,优选有机弱碱和/或无机弱碱盐,更优选有机弱碱。所述有机弱碱可为叔胺类有机弱碱和/或吡啶类有机弱碱。所述叔胺类有机弱碱优选三乙胺(TEA)和/或N,N-二异丙基乙胺(DIPEA)。所述无机弱碱盐可为碱金属碳酸盐,进一步优选碳酸钾。
方法2中,当所述磺酰化试剂为
Figure PCTCN2019127763-appb-000023
时,所述
Figure PCTCN2019127763-appb-000024
优选
Figure PCTCN2019127763-appb-000025
方法2中,当所述磺酰化试剂为
Figure PCTCN2019127763-appb-000026
时,所述
Figure PCTCN2019127763-appb-000027
优选
Figure PCTCN2019127763-appb-000028
方法2中,所述磺酰化试剂与所述化合物III的摩尔比值可为本领域此类反应常规的摩尔比值,优选1~1.5,例如1。
方法2中,所述有机溶剂可为本领域此类反应常规的有机溶剂,优选腈类溶剂、氯代烃类溶剂和醚类溶剂中的一种或多种。所述腈类溶剂优选乙腈。所述氯代烃类溶剂优选二氯甲烷和/或氯仿。所述醚类溶剂优选四氢呋喃、1,4-二氧六环和乙二醇二甲醚中的一种或多种。
方法2中,所述有机溶剂的用量可不做具体限定,只要不影响反应进行即可,例如,所述有机溶剂与所述化合物III的体积质量比可为5~15mL/g,例如,10mL/g。
方法2中,所述反应的进程的监测方法可采用本领域此类反应常规的监测方法(例如TLC,又例如LC-MS)进行监测,一般以所述化合物III完全消失作为反应的终点。所述反应的时间优选0.5~5h,例如2h。
方法2中,所述亲核取代反应的温度可为本领域此类反应的常规的温度,可为0~130℃,又可为50~100℃,例如70℃,又例如80℃。
方法2中,所述亲核取代反应结束后,还可包括以下后处理步骤:将反应结束后的反应液冷却至室温,加水至析出固体、过滤和干燥。
所述化合物III优选
Figure PCTCN2019127763-appb-000029
所述如式V所示的化合物的制备方法,其还可包括以下步骤:在有机溶剂中,将化合物II和化合物A进行如下式的亲核取代反应,得到所述化合物III,即可;
Figure PCTCN2019127763-appb-000030
所述亲核取代反应的条件可为本领域此类反应常规的反应条件。
所述亲核取代反应中,所述有机溶剂可为本领域此类反应中的常规有机溶剂,优选极性非质子性溶剂。所述极性非质子性溶剂可为酰胺类溶剂。所述酰胺类溶剂可为N,N-二甲基甲酰胺(DMF)和/或N,N-二甲基乙酰胺(DMAC),优选N,N-二甲基乙酰胺。
所述亲核取代反应中,所述有机溶剂的用量可不做具体限定,只要不影响反应进行即可,例如,所述有机溶剂与所述化合物II的体积质量比为5~15mL/g,例如10mL/g。
所述亲核取代反应中,所述化合物A与所述化合物II的摩尔比值可为本领域此类反应中的常规摩尔比值,又可为1~10,还可为1~3,例如2.4。
其中,所述亲核取代反应的温度可为本领域此类反应的常规的温度,优选20~100℃,例如85℃。
所述亲核取代反应的进程的监测方法可采用本领域此类常规的监测方法(例如TLC,又例如LC-MS)进行监测,一般以所述化合物II完全消失作为反应的终点。所述亲核取代反应的时间优选1~24h,更优选1~5h,例如2h。
其中,所述化合物II优选
Figure PCTCN2019127763-appb-000031
所述亲核取代反应结束后,还可包括以下后处理步骤:将亲核取代反应结束后的反应液冷却至室温,加水至析出固体、过滤和干燥。
所述如式V所示的化合物的制备方法,其还可包括以下步骤:在碱性试剂作用下,将化合物I在溶剂中进行如下式反应,得到所述化合物II,即可,
Figure PCTCN2019127763-appb-000032
所述反应的条件可为本领域此类反应中的常规反应条件。
其中,所述溶剂可为本领域此类反应常规的溶剂,优选有机溶剂和水的混合溶剂。 所述有机溶剂可为本领域此类反应中的常规有机溶剂,优选腈类溶剂、酮类溶剂、醚类溶剂和酰胺类溶剂中的一种或多种,优选腈类溶剂。所述腈类溶剂优选乙腈。
其中,所述溶剂的用量可不做具体限定,只要不影响反应进行即可。
其中,所述碱性试剂可为本领域此类反应常规的碱性试剂,优选无机强碱。所述无机强碱可为氢氧化钠、氢氧化钾、氢氧化锂和氢氧化钙中的一种或多种,优选氢氧化钠。
其中,所述碱性试剂与所述化合物I的摩尔比值可为本领域此类反应中的常规摩尔比值,优选1~20,例如4。
其中,所述反应的温度可为本领域此类反应的常规的温度,优选0~80℃,例如45℃。
其中,所述取代反应的进程的监测方法可采用本领域此类常规的监测方法(例如TLC,又例如LC-MS)进行监测,一般以所述化合物I完全消失作为反应的终点。所述反应的时间优选8~18小时,例如12小时。
所述反应结束后,还可包括以下后处理步骤:将反应结束后的反应液冷却至室温,将反应液的pH值调节至5~6,过滤和干燥。
本发明还提供了一种如式YY-20394所示的化合物的制备方法,其包括以下步骤:
步骤S1:在钯催化剂和碱性试剂作用下,将化合物S和化合物IV在溶剂中,进行如下式的Suzuki反应,得到化合物V,即可;
步骤S2:在碱性试剂作用下,将甲基磺酰氯和所述化合物V在有机溶剂中进行如下式反应,得到化合物VI,即可;
步骤S3:在钯催化剂和配体条件下,碱性试剂作用下,将化合物VII和所述化合物VI在溶剂中,进行如下式的偶联反应,得到化合物YY-20394,即可;
Figure PCTCN2019127763-appb-000033
其中,X 1、X 2、R 1和R 2的定义均同前所述;当所述化合物V中R 1和R 2同时为
Figure PCTCN2019127763-appb-000034
所述化合物V不经步骤S2直接进行步骤S3的偶联反应;所述化合物V的制备方法的条件和操作同上所述。
所述的如式YY-20394所示的化合物的制备方法中,当所述化合物V中R 1和R 2不同时为H或
Figure PCTCN2019127763-appb-000035
所述化合物V可不经步骤S2直接进行步骤S3的偶联反应。
步骤S2中,所述反应的条件可为本领域此类反应常规的反应条件,本发明优选以下条件:
步骤S2中,所述碱性试剂优选有机弱碱。所述有机弱碱可为本领域此类反应常规的有机弱碱。所述有机弱碱可为吡啶类有机弱碱和/或叔胺类有机弱碱,优选吡啶类有机弱碱。所述吡啶类有机弱碱可为吡啶。
步骤S2中,所述甲基磺酰氯与所述化合物V的摩尔比值可为1~5,例如2。
步骤S2中,所述碱性试剂与所述化合物V的摩尔比值可为3~25,例如23。
步骤S2中,所述有机溶剂优选氯代烃类溶剂。所述卤代烃类溶剂优选二氯甲烷。
步骤S2中,所述反应温度可为10~50℃。
步骤S2中,所述反应的进程的监测方法可采用本领域此类常规的监测方法(例如TLC,又例如LC-MS)进行监测,一般以所述化合物V完全消失作为反应的终点。所述 反应的时间优选1~24h。
步骤S2中,所述化合物V优选
Figure PCTCN2019127763-appb-000036
步骤S2中,所述反应结束后,还可包括以下后处理步骤:将反应结束后的反应液,淬灭、过滤和打浆。
步骤S3中,所述偶联反应可为本领域常规的偶联反应。
步骤S3中,所述钯催化剂可为本领域此类反应常规的钯催化剂,优选四(三苯基膦)钯(Pd(PPh 3) 4)、醋酸钯Pd(OAc) 2、二(三苯基膦)二氯化钯(PdCl 2(PPh 3) 2)、双(三邻甲基苯基膦)二氯化钯(II)(PdCl 2[P(o-tol) 3] 2)、三(二亚苄基丙酮)二钯(Pd 2(dba) 3)、二(三叔丁基膦)钯(Pd[P(t-Bu) 3] 2)、[1,1'-双(二苯基膦基)二茂铁]二氯化钯(PdCl 2(dppf))和[1,1'-双(二苯基膦基)二茂铁]二氯化钯二氯甲烷络合物(PdCl 2(dppf)DCM)中的一种或多种,更优选醋酸钯。
步骤S3中,所述钯催化剂与所述化合物VI的摩尔比值可为0.01~0.2,例如0.1。
步骤S3中,所述配体可为本领域此类反应常规的配体,优选三苯基磷(PPh 3)、三邻甲基苯基磷(P(o-tol) 3)、四氟硼酸三叔丁基膦、2-二环己基膦-2',4',6'-三异丙基联苯(x-Phos)、2-二环己基膦-2',6'-二甲氧基-联苯(s-Phos)和2-二环己基膦-2',6'-二异丙氧基-1,1'-联苯(Ru-Phos)中的一种或多种,优选2-二环己基膦-2',4',6'-三异丙基联苯。
步骤S3中,所述配体与所述化合物VI的摩尔比值可为0.02~0.4,例如0.2。
步骤S3中,所述碱性试剂可为本领域此类反应常规的碱性试剂,优选碱金属碳酸盐、碱金属氟化盐、碱金属磷酸盐、碱金属叔丁醇盐和碱金属氢氧化物中的一种或多种。所述碱金属碳酸盐可为碳酸钠、碳酸钾和碳酸铯中一种或多种,优选碳酸铯(Cs 2CO 3)。所述碱金属氟化盐可为氟化钾。所述碱金属磷酸盐可为磷酸钾。所述叔丁醇碱金属盐可为叔丁醇钠和/或叔丁醇钾。所述碱金属氢氧化物可为氢氧化钠、氢氧化钾和氢氧化锂中的一种或多种。
步骤S3中,所述碱性试剂与所述化合物VI的摩尔比值可为1~20,例如3,又例如6,再例如10,再例如15,再例如20。
步骤S3中,所述化合物VII与所述化合物VI的摩尔比值可为0.8~6,优选1-3,例 如5,又例如1.5。
步骤S3中,所述溶剂可为本领域此类反应常规的溶剂,优选水溶性有机溶剂与水的混合溶剂。所述水溶性有机溶剂可为本领域此类反应中常规的水溶性有机溶剂。所述水溶性有机溶剂优选醚类溶剂和/或醇类溶剂,更优选醚类溶剂。所述醚类溶剂优选四氢呋喃(THF)、1,4-二氧六环和乙二醇二甲醚中的一种或多种,更优选四氢呋喃。所述有机溶剂与水的体积比可为本领域常规的体积比,优选1:1~15:1,更优选3:1~15:1,例如10:1,又例如4:1。
步骤S3中,所述偶联反应的反应方式可为本领域此类反应常规的反应方式,可为常规的加热方式进行偶联反应,又可为微波条件进行偶联反应。
当所述偶联反应为常规的加热方式时,所述偶联反应的温度可为30~130℃,优选80~120℃。所述偶联反应的时间可为2~16h,例如12h。
当所述偶联反应为微波反应时,所述偶联反应的温度可为50~120℃。所述偶联反应的时间可为5~16h,例如8h,又例如12h。
步骤S3中,所述化合物VI优选
Figure PCTCN2019127763-appb-000037
步骤S3中,所述偶联反应还可在保护气体下进行反应。所述保护气体可为本领域常规的保护气体,例如氮气,又例如氩气。
步骤S3中,所述偶联反应结束后,还可包括以下后处理步骤:将反应结束后的反应液,萃取、水洗、浓缩和层析分离。
本发明还提供了一种如式IV所示的化合物:
Figure PCTCN2019127763-appb-000038
其中,X 1和X 2均同前所述。
所述化合物IV优选
Figure PCTCN2019127763-appb-000039
Figure PCTCN2019127763-appb-000040
Figure PCTCN2019127763-appb-000041
更优选
Figure PCTCN2019127763-appb-000042
Figure PCTCN2019127763-appb-000043
本发明还提供了一种所述如式IV所示的化合物的制备方法,其包括方法1或方法2:
方法1:其包括以下步骤:将化合物III,和,“三卤氧磷和/或卤化磷”进行如下式卤化反应,得到所述化合物IV,即可;
方法2:其包括以下步骤:在碱性试剂作用下,将化合物III和磺酰化试剂在有机溶剂中进行如下式的亲核取代反应,得到所述化合物IV,即可;所述磺酰化试剂为
Figure PCTCN2019127763-appb-000044
Figure PCTCN2019127763-appb-000045
Figure PCTCN2019127763-appb-000046
其中,R 3、R 4a、R 4b、R 4c、R 4d、R 4e、X 1和X 2的定义均同前所述;
当X 2为卤素时,所述化合物IV的制备方法为方法1;
当X 2
Figure PCTCN2019127763-appb-000047
时,所述化合物IV的制备方法为方法2。
上述反应中,方法1和方法2的条件均同前所述。
本发明还提供了一种所述化合物III:
Figure PCTCN2019127763-appb-000048
其中,X 1为Cl或Br。
所述化合物III优选
Figure PCTCN2019127763-appb-000049
本发明还提供了一种所述化合物III的制备方法,其包括以下步骤:在有机溶剂中,将化合物II与化合物A进行如下式的亲核取代反应,得到所述化合物III,即可;
Figure PCTCN2019127763-appb-000050
其中,X 1为Cl或Br。
其中,所述的亲核取代反应的条件均同前所述。
本发明还提供了一种如式II所示的化合物:
Figure PCTCN2019127763-appb-000051
本发明还提供了一种如式V-2所示的化合物:
Figure PCTCN2019127763-appb-000052
其中,R 1和R 2独立地为H或
Figure PCTCN2019127763-appb-000053
所述化合物V-2优选
Figure PCTCN2019127763-appb-000054
上述化合物的制备方法可以进行随意组合,从而得到如式III、IV、V或YY-20394所示的化合物的合成路线(例如I→II→III→IV→V→VI→YY-20394,II→III→IV→V→VI→YY-20394,I→II→III→IV→V,I→II→III→IV,II→III→IV,I→II→III,等等)。
本发明中,所使用如下缩写:
THF=四氢呋喃;t-Bu=叔丁基;DCM=二氯甲烷;NCS=N-氯代琥珀酰亚胺;Ts=对甲苯磺酰基;Ns=对硝基甲苯磺酰基;Ms=甲磺酰基;Tf=三氟甲磺酰基;Ac=乙酰基;DIPEA=二异丙基乙基胺;DMF=N,N-二甲基甲酰胺;DMAC=N,N-二甲基乙酰胺;DMSO=二甲基亚砜;dba=二亚苄基丙酮;dppf=1,1'-双(二苯基膦)二茂铁;x-Phos=2-二环己基膦-2',4',6'-三异丙基联苯;s-Phos=2-二环己基膦-2',6'-二甲氧基-联苯;Ru-Phos=2-二环己基膦-2',6'-二异丙氧基-1,1'-联苯;g=克;mg=毫克;mL=毫升;mol=摩尔;mmol=毫摩尔;h=小时;LCMS=液相-质谱联用MS=质谱;ESI=电喷雾电离;m/z=质荷比; 1H NMR=核磁共振;MHz=兆赫兹;brs=宽单峰;d=双重峰;t=三重峰;q=四重峰;m=多重峰;dd=双二重峰; J=耦合常数;N=摩尔每升。
本发明中,“室温”指环境温度,为10℃-35℃。
本发明中,“过夜”是指8-16小时。
本发明中,“水溶性有机溶剂”是指溶剂分子中通常含有极性基团,例如如-OH、-SO 3H、-NH 2、-NHR、-COOH、-CN、-CO-、-CONH 2-基团,且碳链在8个碳以下。丙酮、乙腈和N,N-二甲基甲酰胺均为常见的“水溶性有机溶剂”。
在不违背本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:本发明的吗啉基喹唑啉类化合物的制备方法,提高了喹唑啉环4位发生Suzuki反应的选择性,解决了反应中副产物较多的问题,收率较高,且操作简便,反应条件温和,适合工业化生产。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
实施例1 化合物I-11的合成
Figure PCTCN2019127763-appb-000055
将2-氨基-5-氟苯甲酸(100.2g,0.65mol)溶于DMF(600mL)中,室温搅拌下,分批加入NCS(104.5g,0.78mol)。加毕,室温搅拌过夜。往反应液中加入水(1200mL),析出固体。过滤,滤饼水洗,干燥,用二氯甲烷打浆,过滤,干燥,得到化合物I-11-1(85.1g,70%收率)为灰白色固体。LC-MS(ESI):m/z=190.0[M+H] +.
往反应瓶中加入I-11-1(25.0g,0.13mol),尿素(119.1g,1.98mol),升温到180℃下反应8h。反应液冷却至约100℃,加入水打浆2h。过滤,滤饼再用水打浆两次,过滤,干燥,得到化合物I-11-2(26.7g,94%收率)为棕色固体直接用于下一步反应。LC-MS(ESI):m/z=215.0[M+H] +.
往反应瓶中加入I-11-2(20.0g,0.093mol),三氯氧磷(160g,1.04mol),在50℃以下,滴加DIPEA(24.0g,0.19mol)。加毕,升温到110℃反应2h。反应液浓缩,用甲苯 带2次。再加入少量甲苯,慢慢滴加到水中,控制温度小于40℃。加毕,继续搅拌0.5h,分层,水层用甲苯萃取。合并甲苯相,饱和氯化钠洗,无水硫酸镁干燥,浓缩,用正庚烷打浆,过滤,干燥,得到化合物I-11(19.9g,85%收率)为类白色固体。LC-MS(ESI):m/z=251.1[M+H] +.
实施例2 化合物II-11的合成
Figure PCTCN2019127763-appb-000056
在室温下,将化合物I-11(5g,0.020mol)的乙腈(70mL)溶液中加入氢氧化钠溶液(2N,40mL)。加毕,反应液在45℃下搅拌过夜。反应液冷却至室温,再在冰水浴下,慢慢加入盐酸溶液(2N,42mL),调节pH值到5-6,固体析出。过滤,滤饼用水洗,干燥得到化合物II-11(4.1g,89%收率)为类白色固体。LC-MS(ESI):m/z=232.9[M+H] +1H NMR(400MHz,DMSO-d 6):δ13.63(brs,1H),8.06(dd,1H,J=2.8,8.4Hz),7.78(dd,1H,J=2.8,8.0Hz).
实施例3 化合物III-11的合成
Figure PCTCN2019127763-appb-000057
在室温下,往化合物II-11(3g,0.013mol)的DMAC(30mL)溶液中,加入吗啉(2.7g,0.031mol)。加毕,反应液在85℃下搅拌2h。反应液冷却至室温,再在冰水浴下,加入水(70mL),固体析出。过滤,滤饼用水洗,干燥,得到化合物III-11(3.2g,88%收率)为浅黄色固体。LC-MS(ESI):m/z=284.1[M+H] +1H NMR(400MHz,DMSO-d 6):δ11.69(brs,1H),7.81(dd,J=8.4Hz,2.8Hz 1H),7.59(dd,J=8.0Hz,2.8Hz 1H),3.55-3.80(m,8H).
实施例4 化合物IV-11的合成
Figure PCTCN2019127763-appb-000058
在室温下,往化合物III-11(36.0g,0.13mol)的乙腈(360mL)中,分别加入碳酸钾(24g,0.17mol),对甲苯磺酰氯(24.0g,0.13mol)。加毕,在80℃下搅拌2h。反应液冷却至室温,再在冰水浴下往反应液中滴加水,控制温度小于25℃。滴加完毕,继续搅拌1h。过滤,滤饼用水洗,干燥,得到化合物IV-11(48g,86%收率)为黄色固体。LC-MS(ESI):m/z=438.0[M+H] +.
实施例5 化合物V-11的合成
Figure PCTCN2019127763-appb-000059
往反应瓶分别加入化合物IV-11(157.0g,0.36mol),S-11(81.5g,0.33mol),碳酸钠(345.5g,3.26mol),甲苯(3.5L),异丙醇(1.2L),水(1.6L),氮气置换三次,在氮气保护下,加入四三苯基膦钯(18.8g,0.016mol)。加毕,反应液在35-40℃下搅拌1h。反应液冷却至室温,分层,水相用甲苯萃取。合并甲苯相,浓缩到一定程度,加入正庚烷,过滤,硅胶柱纯化,得到化合物V-11(115g,91%收率)为黄色固体。 1H NMR(400MHz,CDCl 3):δ7.94(d,J=2.8Hz,1H),7.63(dd,J=8.0Hz,2.8Hz,1H),7.55(dd,J=9.2Hz,2.8Hz,1H),7.24-7.27(m,1H),4.11(s,3H),3.90-4.06(m,6H),3.84(t,J=5.2Hz,4H).
实施例6 化合物VI-11的合成
Figure PCTCN2019127763-appb-000060
在冰盐浴下,往化合物V-11(110g,0.28mol)的吡啶(550g,6.59mol)溶剂中,滴加甲磺酰氯(63.8g,0.56mol)。加毕,反应液室温搅拌至反应完全。往反应液中小心加入水(1100mL),过滤,滤饼水洗,干燥,用二氯甲烷打浆,过滤,干燥得到化合物VI-11(105.0g,80%收率)为黄色固体。LC-MS(ESI):m/z=468.1[M+H] +1H NMR(400MHz,DMSO-d 6):δ9.53(s,1H),8.43(d,J=2.4Hz,1H),8.07(dd,J=11.2Hz,2.4Hz;1H),8.03(d, J=2.4Hz,1H),7.57(dd,J=9.2Hz,2.4Hz;1H),4.04(s,3H),3.92-3.86(m,4H),3.74-3.72(m,4H),.3.12(s,3H).
实施例7 化合物VI-11的合成
Figure PCTCN2019127763-appb-000061
在0-10℃下,往化合物S-11(2.0g,8mmol)的吡啶(20mL)溶液中慢慢滴加甲磺酰氯(1.24mL,16.0mmol),加毕,反应液室温搅拌过夜。浓缩吡啶,往剩余物中加入饱和碳酸氢钠(20mL)和二氯甲烷(40mL),有机相分开,水相用二氯甲烷萃取。合并有机相,饱和氯化钠洗,无水硫酸钠干燥,浓缩,得到化合物T-11(4.29g,100%收率)为黄色油状物。LC-MS(ESI):m/z=329.2[M+H] +.
往反应瓶中分别加入化合物T-11[352mg,0.65mmol(按61%纯度计算)],IV-11(281mg,0.64mmol),碳酸钠(0.102g,0.96mmol),四三苯基膦钯(74mg,0.064mmol),甲苯/异丙醇/水混合液(体积比4/1/1,8mL),加毕,反应液氮气置换,在60℃下搅拌4h。反应液浓缩,剩余物用二氯甲烷萃取,有机相用饱和氯化钠洗,无水硫酸钠干燥,浓缩,用二氯甲烷打浆,过滤,得到化合物VI-11(170mg,53%收率)为黄色固体。LC-MS(ESI):m/z=468.1[M+H] +.
实施例8 化合物VII-11的合成
Figure PCTCN2019127763-appb-000062
往反应瓶中分别加入P-11(100g,0.70mol),Q-21(127.5g,0.63mol),乙腈(100g),碘化钾(6g,0.036mol)。加毕,反应液在80℃下搅拌过夜。反应液浓缩,用乙腈热打浆,过滤,干燥,得到化合物VII-11(140.0g,98%)为类白色固体。 1H NMR(400MHz,D 2O):δ3.51(d,J=12.8Hz,2H),2.80(t,J=12.8Hz,2H),2.05-2.22(m,2H),1.90(d,J=13.2Hz,2H),1.40-1.62(m,3H),1.12(s,6H).
实施例9 化合物YY-20394的合成
Figure PCTCN2019127763-appb-000063
在室温下,往反应瓶中分别加入化合物VI-11(35g,0.075mol),化合物VII-11(34g,0.15mol),碳酸铯(244g,0.75),x-Phos(3.55g,0.0074mol),THF与水的混合液(10/1v/v,385mL),醋酸钯(0.84g,0.0037mol)。混合物用氮气置换三次,在80℃下搅拌过夜。反应液冷却至室温,浓缩除去THF,剩余物用DCM萃取。有机相用饱和氯化钠洗,无水硫酸钠干燥,浓缩,硅胶柱纯化,乙醇打浆,过滤,干燥,得到化合物YY-20394(26g,59%收率)为黄色固体。LC-MS(ESI):m/z=589.3[M+H] +1H NMR(500MHz,DMSO-d 6)δ9.53(brs,1H),8.35(d,J=2.0Hz,1H),8.01(d,J=2.4Hz,1H),7.61(dd,J=9.6Hz,2.4Hz,1H),7.39(dd,J=9.6Hz,2.4Hz,1H),4.05(s,4H),3.87(s,2H),3.82-3.81(m,4H),3.73-3.72(m,4H),3.13(s,3H),2.94(d,J=10.8Hz,1H),2.04-1.98(m,2H),1.66(d,J=11.6Hz,2H),1.36-1.64(m,2H),1.21-1.18(m,1H),1.21-1.18(m,1H),1.04(s,6H).
实施例10 化合物V-11的合成
Figure PCTCN2019127763-appb-000064
在冰水浴下,往化合物III-11(1.0g,3.52mmol)的乙腈(10mL)溶液中,滴加甲磺酰氯(0.55mL,7.06mmol),再滴加DIPEA(1.33mL,7.76mmol)。加毕,混合物在室温搅拌2h。往反应液中加入冰水(15mL)并搅拌10min,过滤,滤饼水洗,干燥得到化合物IV-12(3.01g,100%)。
在室温下,往反应瓶中分别加入化合物IV-12(3.01g,3.52mmol),化合物S-11(0.88g,3.52mmol),碳酸钠(0.56g,5.30mmol),四三苯基膦钯(408mg,0.353mmol),甲苯/异丙醇/水混合液(体积比4/1/1,15mL),加毕,反应液氮气置换,在30℃下搅拌2h,45℃下过夜。反应液浓缩,往剩余物中加入二氯甲烷(40mL)和水(20mL),二氯甲烷相分开,水相用二氯甲烷萃取。合并有机相,用饱和氯化钠洗,无水硫酸钠干燥,浓缩,硅胶 柱纯化得到化合物V-11(1.02g,74%收率)为黄色固体。LC-MS(ESI):m/z=390.2[M+H] +.
实施例11 化合物V-11的合成
Figure PCTCN2019127763-appb-000065
在冰水浴下,往化合物III-11(0.28g,0.99mmol)的二氯甲烷(10mL)溶液中,加入DIPEA(0.26g,2.0mmol),再滴加三氟甲磺酸酐(0.56g,2.0mmmol)。加毕,混合物在冰水浴下搅拌2h。往反应液中加入冰水(20mL),用二氯甲烷(20*3mL)萃取,有机相用无水硫酸钠干燥,浓缩,得到化合物IV-13(0.18g,44%收率)为褐色固体。LC-MS(ESI):m/z=416.1[M+H] +.
在室温下,往反应瓶中分别加入化合物IV-13(0.18g,0.43mmol),化合物S11(0.2g,0.8mmol),碳酸钠(0.1g,1.0mmol),四三苯基膦钯(33mg,0.028mmol),甲苯/异丙醇/水混合液(体积比4/1/1,6mL),加毕,反应液氮气置换,在70℃下搅拌6h。反应液浓缩,加入乙酸乙酯(8mL),过滤,滤液浓缩,通过制备TLC纯化(石油醚/乙酸乙酯=1/1),得到化合物V-11(0.09g,53%收率)。LC-MS(ESI):m/z=390.1[M+H] +.
实施例12 化合物V-11的合成
Figure PCTCN2019127763-appb-000066
将化合物III-11(1.0g,3.52mmol)的三氯氧磷(10mL)混合液在105℃下搅拌3h。反应液浓缩,甲苯带两次,往剩余物中加入冰水(15mL),搅拌10min后用二氯甲烷萃取。有机相用饱和氯化钠洗,浓缩,得到化合物IV-14(1.13g,100%收率)为黄色固体。
在室温下,往反应瓶中分别加入化合物IV-14(1.13g,3.52mmol),化合物S-11(0.97g,3.88mmol),碳酸钠(0.66g,6.23mmol),四三苯基膦钯(408mg,0.353mmol),甲苯/异丙醇/水混合液(体积比4/1/1,60mL),加毕,反应液氮气置换,在80℃下搅拌过夜。反应液浓缩,往剩余物中加入二氯甲烷(50mL)和水(20mL),二氯甲烷相分开,水相用二氯甲烷萃取。合并有机相,用饱和氯化钠洗,无水硫酸钠干燥,浓缩,硅胶柱纯化得到化合物V-11(1.21g,88%收率)为黄色固体。LC-MS(ESI):m/z=390.2[M+H] +.
实施例13 化合物VI-11的合成
Figure PCTCN2019127763-appb-000067
在室温下,往反应瓶中加入化合物T-11(520mg,0.97mmol)(按61%纯度计算,同实施例7),氟氢化钾(494mg,6.34mmol),1,4-二氧六环/水(体积比10/1,4mL),加毕,混合物在室温搅拌1h。反应液过滤,滤饼用1,4-二氧六环洗,合并滤液,浓缩,干燥得到化合物T-31(480mg,100%收率)为浅黄色油状物。
往反应瓶中分别加入化合物T-31(480mg,0.97mmol),化合物IV-11(395mg,0.90mmol),碳酸铯(340mg,1.35mmol),醋酸钯(10mg,0.045mmol),x-Phos(43mg,0.09mmol),THF/H 2O(体积比1/1,8mL),混合物用氮气置换,在60℃下搅拌2h。反应液浓缩,剩余物用二氯甲烷萃取,有机相用饱和氯化钠洗,无水硫酸钠干燥,浓缩,用二氯甲烷打浆,过滤,干燥得到化合物VI-11(280mg,62%收率)。LC-MS(ESI):m/z=468.1[M+H] +.
实施例14 化合物V-11的合成
Figure PCTCN2019127763-appb-000068
将化合物S-11(1.25g,5.00mmol),高碘酸钠(3.2g,15.00mmol),醋酸铵(1.1g,15.00mmol)分别加入到反应瓶中,再分别加入丙酮(40mL),水(10mL),加热至80℃下搅拌反应12小时。反应结束,反应液浓缩,加入水(30mL),用EA(50mL*3)萃取。浓缩有机相,得到化合物S-21(0.66g,78%收率)。LC-MS(ESI):m/z=169.3[M+H] +.
向反应瓶中加入化合物IV-11(1.2g,2.74mmol),S-21(0.51g,3.04mmol),碳酸钠(0.4g,3.77mmol),甲苯(16mL),异丙醇(4mL)及水(4mL)。搅拌,用氮气置换,向反应瓶中加入四三苯基膦钯(0.1g,0.09mmol),再次用氮气置换,升温至60℃反应12h。反应液浓缩,加水(60mL),过滤,干燥,得到粗产物0.76g。用(石油醚/乙酸乙酯=1/1) (40mL)打浆,柱层析纯化(石油醚/乙酸乙酯=1/1)得到化合物V-11(0.46g,43%)。LC-MS(ESI):m/z=390.1[M+H] +.
实施例15 化合物VI-11的合成
Figure PCTCN2019127763-appb-000069
往化合物T-11(0.74g,2.26mmol)的丙酮(15mL)溶液中加入高碘酸钠(1.45g,6.78mmol)和醋酸铵(0.87g,11.3mmol)的水(5mL)溶液,反应液加热至80℃下反应12小时。反应结束,浓缩除去溶剂,加入稀盐酸(2N),加入水,用乙酸乙酯萃取。浓缩有机相,得到化合物T-21(0.54g,96%收率)。
向反应瓶中加入化合物IV-11(0.5g,1.14mmol),T-21(423mg,1.72mmol),四三苯基膦钯(132mg,0.114mmol),碳酸钠(363mg,3.42mmol),甲苯(16mL),异丙醇(4mL)及水(4mL)。反应液用氮气置换,升温至60℃反应过夜。旋干,加入水,用乙酸乙酯萃取。有机相再用水洗,无水硫酸钠干燥,浓缩后,粗品经柱层析(DCM:MeOH=50:1至20:1)纯化得到化合物VI-11(290mg,54%收率)。LC-MS(ESI):m/z=468.1[M+H] +.
实施例16 化合物YY-20394的合成
Figure PCTCN2019127763-appb-000070
向化合物S-11(1g,4.00mmol)的二氯甲烷(10mL)溶液中加入三乙胺(1.2g,11.85mmol),在冰水浴下,往反应液中慢慢加入MsCl(0.92g,8.03mmol)。加毕,反应液在室温条件下搅拌过夜。反应液浓缩干,加入水,用乙酸乙酯萃取,有机相用无水硫酸钠干燥,浓缩,得到化合物T-12(1.6g,98%收率)。
向反应瓶中分别加入化合物IV-11(500mg,1.14mmol),T-12(697mg,1.72mmol), 四(三苯基膦)钯(132mg,0.114mmol),碳酸钠(363mg,3.42mmol),甲苯(16mL),异丙醇(4mL)及水(4mL)。反应液用氮气置换后,升温至60℃反应过夜。反应液浓缩干,加入水,用乙酸乙酯萃取,有机相再用水洗,无水硫酸钠干燥,浓缩后,粗品经柱层析(PE:EA=1:1)纯化得到化合物VI-12(350mg,56%收率)。LC-MS(ESI):m/z=546.1[M+H] +.
往10mL微波管中加入化合物VI-12(93mg,0.17mmol),VII-11(192mg,0.85mmol),醋酸钯(4mg,0.017mmol),x-phos(16mg,0.034mmol),碳酸铯(166mg,0.51mmol),THF(1.4mL)及水(0.35mL)。微波管用氮气置换,升温至80℃反应过夜。反应液浓缩干,加入水,用乙酸乙酯萃取。有机相用水洗,无水硫酸钠干燥,浓缩,粗品经制备TLC纯化(DCM:MeOH=30:1)得到化合物YY-20394(80mg,80%收率)为黄色固体。LC-MS(ESI):m/z=589.3[M+H] +.
实施例17 化合物I-21的合成
Figure PCTCN2019127763-appb-000071
将2-氨基-5-氟苯甲酸(10g,64.5mmol)溶于DMF(50mL)中,室温搅拌下,分批加入NBS(12.6g,70.9mmol)。加毕,室温搅拌过夜。往反应液中加入水(120mL),固体析出,过滤,滤饼水洗,干燥,得到化合物I-21-1(15g,100%)为黄色固体。LC-MS(ESI):m/z=234.1[M+H]+.
往反应瓶中加入I-21-1(15g,64.1mmol),尿素(38.5g,641mmol),升温到180℃下反应5h。反应液冷却至约100℃时,加入水,打浆2h。过滤,滤饼再用水打浆两次,过滤,干燥,得到化合物I-21-2(16g,96%)为黄色固体,直接用于下一步反应。LC-MS(ESI):m/z=259.0[M+H] +.
往反应瓶中加入I-21-2(16g,61.8mmol),三氯氧磷(95g,618mmol),在室温条件下,滴加DIPEA(16g,123.6mmol)。加毕,升温到110℃反应2h。反应液浓缩,将浓缩物缓慢倒入冰水中,搅拌10min,过滤,滤饼干燥,得到化合物I-21(19g,100%)。
实施例18 化合物II-21的合成
Figure PCTCN2019127763-appb-000072
在室温下,将化合物I-21(19g,64.2mmol)的乙腈(240mL)溶液中加入氢氧化钠溶液(2N,128mL)。加毕,反应液在45℃下搅拌过夜,冷却至室温,再在冰水浴下,慢慢加入盐酸溶液(2N),调节pH值到5-6,固体析出,过滤,滤饼用水洗,干燥,得到化合物II-21(10.3g,58%)。LC-MS(ESI):m/z=277.0[M+H] +.
实施例19 化合物III-21的合成
Figure PCTCN2019127763-appb-000073
在室温下,往化合物II-21(10.3g,37.1mmol)的DMAC(60mL)溶液中,加入吗啉(8.1g,92.8mmol)。加毕,反应液在85℃下搅拌2h。反应液冷却至室温,再在冰水浴下,加入水(70mL),固体析出。过滤,滤饼干燥,得到化合物III-21(8g,66%)。LC-MS(ESI):m/z=328.1[M+H] +.
实施例20 化合物IV-21的合成
Figure PCTCN2019127763-appb-000074
在室温下,往化合物III-21(0.5g,1.52mmol)的乙腈(10mL)中,分别加入碳酸钾(274mg,1.98mmol)和对甲苯磺酰氯(290mg,1.52mol)。加毕,在80℃下搅拌2h。反应液冷却至室温,再在冰水浴下往反应液中滴加水,控制温度小于25℃。滴加完毕,继续搅拌1h。过滤,滤饼用水洗,干燥,得到化合物IV-21(650mg,88%)为黄色固体。LC-MS(ESI):m/z=482.1[M+H] +.
实施例21 化合物V-21的合成
Figure PCTCN2019127763-appb-000075
向反应瓶中加入IV-21(200mg,0.41mmol),化合物S-11(104mg,0.41mmol),四(三苯基膦)钯(47mg,0.041mmol),碳酸钠(130mg,1.23mmol),甲苯(7.5mL),异丙 醇(2.5mL)及水(3mL),反应液用氮气置换后,升温至40℃反应下搅拌4小时。旋干,加入水,乙酸乙酯萃取,有机相再用水洗,无水硫酸钠干燥,浓缩后,粗品经柱层析(PE:EA=3:1)纯化得到化合物V-21(140mg,78%)为黄色固体。LC-MS(ESI):m/z=434.1[M+H] +.
实施例22 化合物VI-21的合成
Figure PCTCN2019127763-appb-000076
在冰浴条件下向V-21(140mg,0.32mmol)的吡啶(5mL)溶液中加入MsCl(37mg,0.32mmol)。反应液在室温条件下搅拌过夜,旋干,加入水,用乙酸乙酯萃取,有机相用无水硫酸钠干燥,旋干,得到化合物VI-21为黄色固体(160mg,97%)。LC-MS(ESI):m/z=512.1[M+H] +.
实施例23 化合物YY-20394的合成
Figure PCTCN2019127763-appb-000077
往10mL微波管中加入化合物VI-21(140mg,0.27mmol),化合物VII-11(308mg,1.37mmol),醋酸钯(6mg,0.027mmol),x-phos(26mg,0.054mmol),碳酸铯(264mg,0.81mmol),THF(2mL)及水(0.5mL),微波管用氮气置换。升温至80℃反应过夜。反应液旋干,加入水,用乙酸乙酯萃取,有机相再用水洗,无水硫酸钠干燥,浓缩,粗品经制备TLC纯化(DCM:MeOH=30:1)得到YY-20394为黄色固体(80mg,50%)。LC-MS(ESI):m/z=589.4[M+H] +.
实施例24 化合物V-11的合成
Figure PCTCN2019127763-appb-000078
往反应瓶分别加入化合物IV-11(159mg,0.36mmol,1equiv),S-11(100mg,0.40mmol,1.1equiv),碳酸钠(385mg,3.63mmol,10equiv),甲苯(4.3mL),异丙醇(1.5mL)和水(2mL),氮气置换三次,在氮气保护下,加入四(三苯基膦)钯(21mg,0.018mmol,0.05equiv)。加毕,反应液在35-40℃下搅拌1h,取反应液进行LC-MS检测,经检测,反应液中,化合物IV-11已经转化完全,化合物V-11的含量为72.59%(波长214nm),99.03%(波长254nm)。反应结束后,将反应液旋干,加入水,用乙酸乙酯(25mL)萃取,有机相旋干,硅胶柱层析(PE:EA=2:1)纯化得到化合物V-11,黄色固体,142mg,92%收率,纯度85.41%(波长214nm),91.71%(波长254nm)(此收率为按照LCMS图谱中波长254nm下纯度91.71%折算后的收率)。
对比例1
Figure PCTCN2019127763-appb-000079
将实施例24中化合物IV-11替换为化合物I-11(91mg,0.36mmol,1equiv)按照实施例24的条件进行Suzuki反应,反应液在35-40℃下搅拌1h,取反应液进行LC-MS检测,经检测,反应液化合物V-12含量为28.64%(波长214nm),35.39%(波长254nm),还有大量反应物I-11和S-11存在。反应液在35-40℃下继续反应,搅拌过夜,取反应液进行LC-MS检测,经检测,反应液中,还有部分反应物I-11和S-11存在,化合物V-12的含量为35.28%(波长214nm),65.04%(波长254nm)。反应结束后,将反应液旋干,加入水,用乙酸乙酯(25mL)萃取,有机相旋干,柱层析(PE:EA=4:1)纯化得到化合物V-12,黄色固体,73mg,50%收率,纯度:84.62%(波长214nm),96.08%(波长254nm)(此收率为按照LCMS图谱中波长254nm下纯度96.08%折算后的收率)。
本对比例比较了化合物I-11与化合物IV-11在相同条件下进行Suzuki反应,其反应 结果总结在表1中。
表1
Figure PCTCN2019127763-appb-000080
备注:表1中“/”表示没有进行此项。
由表1中的结果可知,在相同条件下,喹啉环2位的取代基的种类,影响Suzuki反应的速率、进程、效果和收率。底物IV-11相比于底物I-11(即专利WO2015055071A1中公开的喹啉环上2位为氯的化合物)反应时间可缩短至1小时,收率提高了42%,从而提高了生产效率,降低了成产成本,这在现有技术基础上均是无法预期的。本申请的发明人,经过不断地尝试和筛选,创造性地发现底物IV-11在进行Suzuki反应,该反应可在短时间内得到较高的收率,而且还避免了喹啉环上2位上的副反应的发生,更利于后处理。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改。因此,本发明的保护范围由所附权利要求书限定。

Claims (12)

  1. 一种如式V所示的化合物的制备方法,其特征在于,其包括以下步骤:
    在钯催化剂和碱性试剂作用下,将化合物S和化合物IV在溶剂中进行如下式的Suzuki反应,得到化合物V,即可;
    Figure PCTCN2019127763-appb-100001
    其中,R 1和R 2独立地为H或
    Figure PCTCN2019127763-appb-100002
    M为
    Figure PCTCN2019127763-appb-100003
    或-BF 3K;X 1为Cl或Br;X 2为卤素、
    Figure PCTCN2019127763-appb-100004
    R 3为C 1-4烷基;R 4a、R 4b、R 4c、R 4d和R 4e独立地为H、C 1-6烷基、硝基或卤素。
  2. 如权利要求1所述的制备方法,其特征在于,X 2中,所述卤素为Cl、Br和I,优选Cl;
    和/或,R 3中,所述C 1-4烷基为甲基、乙基、正丙基、异丙基、正丁基、
    Figure PCTCN2019127763-appb-100005
    或叔丁基,优选甲基;
    和/或,R 4a、R 4b、R 4c、R 4d和R 4e中,所述卤素独立地为Cl、Br或I;
    和/或,R 4a、R 4b、R 4c、R 4d和R 4e中,所述C 1-6烷基独立地为C 1-3烷基,进一步优选甲基、乙基、正丙基或异丙基,更进一步优选甲基。
  3. 如权利要求1所述的制备方法,其特征在于,所述M为
    Figure PCTCN2019127763-appb-100006
    优选
    Figure PCTCN2019127763-appb-100007
    和/或,X 1为氯;
    和/或,X 2为卤素、
    Figure PCTCN2019127763-appb-100008
    优选
    Figure PCTCN2019127763-appb-100009
    进一步优选
    Figure PCTCN2019127763-appb-100010
    和/或,R 4a、R 4b、R 4d和R 4e独立地为H。
  4. 如权利要求1所述的制备方法,其特征在于,所述Suzuki反应中,所述钯催化剂为四(三苯基膦)钯、醋酸钯、二(三苯基膦)二氯化钯、双(三邻甲基苯基膦)二氯化钯(II)、三(二亚苄基丙酮)二钯、二(三叔丁基膦)钯(Pd[P(t-Bu) 3] 2)、[1,1'-双(二苯基膦基)二茂铁]二氯化钯和[1,1'-双(二苯基膦基)二茂铁]二氯化钯二氯甲烷络合物中的一种或多种,优选四(三苯基膦)钯;
    和/或,所述Suzuki反应中,当所述钯催化剂在配体存在下进行反应时;所述配体为三苯基磷、三邻甲基苯基磷、四氟硼酸三叔丁基膦、2-二环己基膦-2',4',6'-三异丙基联苯、2-二环己基膦-2',6'-二甲氧基-联苯和2-二环己基膦-2',6'-二异丙氧基-1,1'-联苯中的一种或多种;
    和/或,所述Suzuki反应中,所述钯催化剂与所述化合物IV的摩尔比值为0.01-0.5,优选0.02~0.2;
    和/或,所述Suzuki反应中,所述溶剂为有机溶剂和水的混合溶剂;所述有机溶剂为芳香烃类溶剂、醇类溶剂、氯代烃类溶剂和醚类溶剂中的一种或多种,优选芳香烃类溶剂和醇类溶剂的混合溶剂;所述有机溶剂与所述水的体积比为1:1~10:1,优选5:1~10:1;
    和/或,所述Suzuki反应中,所述碱性试剂为碱金属碳酸盐、碱金属氟化盐、碱金属磷酸盐、碱金属叔丁醇盐和碱金属氢氧化物中的一种或多种;
    和/或,所述Suzuki反应中,所述碱性试剂与所述化合物IV的摩尔比值为1~10,优选2~10;
    和/或,所述Suzuki反应中,所述化合物S与所述化合物IV的摩尔比值为0.9~3,优选0.9~1.5;
    和/或,所述Suzuki反应中,所述Suzuki反应的温度为0~130℃,优选20~70℃;
    和/或,所述Suzuki反应在保护气体下进行反应;
    和/或,所述Suzuki反应中,所述化合物S为
    Figure PCTCN2019127763-appb-100011
    Figure PCTCN2019127763-appb-100012
    和/或,所述Suzuki反应中,所述化合物IV为
    Figure PCTCN2019127763-appb-100013
    Figure PCTCN2019127763-appb-100014
  5. 如权利要求1~4至少一项所述的制备方法,其特征在于,其还包括所述化合物IV的制备方法,其为方法1或方法2:
    方法1:其包括以下步骤:将化合物III,和,“三卤氧磷和/或卤化磷”进行如下式卤化反应,得到所述化合物IV,即可;
    方法2:其包括以下步骤:在碱性试剂作用下,将化合物III和磺酰化试剂在有机溶剂中进行如下式的亲核取代反应,得到所述化合物IV,即可;
    所述磺酰化试剂为
    Figure PCTCN2019127763-appb-100015
    Figure PCTCN2019127763-appb-100016
    当X 2为卤素时,所述化合物IV的制备方法为方法1;
    当X 2
    Figure PCTCN2019127763-appb-100017
    时,所述化合物IV的制备方法为方法2。
  6. 如权利要求5所述的制备方法,其特征在于,方法1中,所述卤化反应为在无溶剂下反应;
    和/或,所述“三卤氧磷和/或卤化磷”中的卤为卤素,所述卤素为Cl、Br或I,优选Cl;
    和/或,方法1中,所述“三卤氧磷和/或卤化磷”与所述化合物III的摩尔比值为大于等于1,优选1~30;
    和/或,方法1中,所述卤化反应的温度为20~130℃,优选60~110℃;
    和/或,方法2中,所述碱性试剂为有机弱碱和/或无机弱碱盐,所述有机弱碱优选叔胺类有机弱碱和/或吡啶类有机弱碱;所述无机弱碱盐优选碱金属碳酸盐;
    和/或,方法2中,当所述磺酰化试剂为
    Figure PCTCN2019127763-appb-100018
    时,所述
    Figure PCTCN2019127763-appb-100019
    Figure PCTCN2019127763-appb-100020
    和/或,方法2中,当所述磺酰化试剂为
    Figure PCTCN2019127763-appb-100021
    时,所述
    Figure PCTCN2019127763-appb-100022
    Figure PCTCN2019127763-appb-100023
    和/或,方法2中,所述磺酰化试剂与所述化合物III的摩尔比为1~1.5;
    和/或,方法2中,所述有机溶剂为腈类溶剂、氯代烃类溶剂和醚类溶剂中的一种或多种;
    和/或,方法2中,所述有机溶剂与所述化合物III的体积质量比为5~15mL/g。
  7. 如权利要求5或6所述的制备方法,其特征在于,其还包括以下步骤:在有机溶剂中,将化合物II和化合物A进行如下式的亲核取代反应,得到所述化合物III,即可;
    Figure PCTCN2019127763-appb-100024
  8. 如权利要求5~7至少一项所述的制备方法,其特征在于,其还包括以下步骤:在碱性试剂作用下,将化合物I在溶剂中进行如下式反应,得到所述化合物II,即可;
    Figure PCTCN2019127763-appb-100025
  9. 一种如式YY-20394所示的化合物的制备方法,其特征在于,其包括以下步骤:
    步骤S1:在钯催化剂和碱性试剂作用下,将化合物S和化合物IV在溶剂中,进行如下式的Suzuki反应,得到所述化合物V,即可;
    步骤S2:在碱性试剂作用下,将甲基磺酰氯和所述化合物V在有机溶剂中进行如下式反应,得到化合物VI,即可;
    步骤S3:在钯催化剂和配体条件下,碱性试剂作用下,将化合物VII和所述化合物VI,在溶剂中,进行如下式的偶联反应,得到化合物YY-20394,即可;
    Figure PCTCN2019127763-appb-100026
    其中,当所述化合物V中R 1和R 2同时为
    Figure PCTCN2019127763-appb-100027
    所述化合物V不经步骤S2直接进行步骤S3的偶联反应;
    步骤S1中,所述化合物V的制备方法的条件和操作如权利要求1~8至少一项所述。
  10. 如权利要求9所述的制备方法,其特征在于,所述的如式YY-20394所示的化合物的制备方法中,当所述化合物V中R 1和R 2不同时为H或
    Figure PCTCN2019127763-appb-100028
    所述化合物V不经 步骤S2直接进行步骤S3的偶联反应;
    和/或,步骤S2中,所述碱性试剂为有机弱碱;所述有机弱碱优选吡啶类有机弱碱和/或叔胺类有机弱碱,更优选吡啶类有机弱碱,更进一步优选吡啶;
    和/或,步骤S2中,所述甲基磺酰氯与所述化合物V的摩尔比值为1~5;
    和/或,步骤S2中,所述碱性试剂与所述化合物V的摩尔比值为3~25;
    和/或,步骤S2中,所述有机溶剂为氯代烃类溶剂,进一步优选二氯甲烷;
    和/或,步骤S2中,所述反应温度为10~50℃;
    和/或,步骤S2中,所述化合物V为
    Figure PCTCN2019127763-appb-100029
    和/或,步骤S3中,所述钯催化剂为四(三苯基膦)钯、醋酸钯、二(三苯基膦)二氯化钯、双(三邻甲苯膦)二氯化钯(II)、三(二亚苄基丙酮)二钯、二(三叔丁基膦)钯(Pd[P(t-Bu) 3] 2)、[1,1'-双(二苯基膦基)二茂铁]二氯化钯和[1,1'-双(二苯基膦基)二茂铁]二氯化钯二氯甲烷络合物中的一种或多种,优选醋酸钯;
    和/或,步骤S3中,所述钯催化剂与所述化合物VI的摩尔比值为0.01~0.2;
    和/或,步骤S3中,所述配体为三苯基磷、三邻甲基苯基磷、四氟硼酸三叔丁基膦、2-二环己基膦-2',4',6'-三异丙基联苯、2-二环己基膦-2',6'-二甲氧基-联苯和2-二环己基磷-2',6'-二异丙氧基-1,1'-联苯中的一种或多种,优选2-二环己基膦-2',4',6'-三异丙基联苯;
    和/或,步骤S3中,所述配体与所述化合物VI的摩尔比值为0.02~0.4;
    和/或,步骤S3中,所述碱性试剂为碱金属碳酸盐、碱金属氟化盐、碱金属磷酸盐、碱金属叔丁醇盐和碱金属氢氧化物中的一种或多种;
    和/或,步骤S3中,所述碱性试剂与所述化合物VI的摩尔比值为1~20;
    和/或,步骤S3中,所述化合物VII与所述化合物VI的摩尔比值为0.8~6,优选1-3;
    和/或,步骤S3中,所述溶剂为水溶性有机溶剂和水的混合溶剂;所述有机溶剂为水溶性有机溶剂;所述水溶性有机溶剂优选醚类溶剂和/或醇类溶剂,更优选醚类溶剂,更进一步优选四氢呋喃、1,4-二氧六环和乙二醇二甲醚中的一种或多种,再进一步优选四氢呋喃;所述水溶性有机溶剂与水的体积比为1:1~15:1,优选3:1~15:1;
    和/或,步骤S3中,所述化合物VI为
    Figure PCTCN2019127763-appb-100030
    和/或,步骤S3中,所述偶联反应在保护气体下进行反应,所述保护气体为氮气或氩气。
  11. 一种如式IV所示的化合物:
    Figure PCTCN2019127763-appb-100031
    其中,X 1和X 2的定义均如权利要求1~5至少一项所述;
    或,一种如式III所示的化合物:
    Figure PCTCN2019127763-appb-100032
    其中,X 1为Cl或Br;
    或,如式II所示的化合物:
    Figure PCTCN2019127763-appb-100033
    或,如式V-2所示的化合物:
    Figure PCTCN2019127763-appb-100034
    其中,R 1和R 2独立地为H或
    Figure PCTCN2019127763-appb-100035
  12. 如权利要求11所述化合物IV或所述如式V-2所示的化合物,其特征在于,所述化合物IV为
    Figure PCTCN2019127763-appb-100036
    Figure PCTCN2019127763-appb-100037
    或,所述如式V-2所示的化合物为
    Figure PCTCN2019127763-appb-100038
PCT/CN2019/127763 2019-01-16 2019-12-24 吗啉基喹唑啉化合物的制备方法及其中间体 WO2020147525A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021541182A JP7038263B2 (ja) 2019-01-16 2019-12-24 モルホリノキナゾリン化合物の製造方法及びその中間体
KR1020217025800A KR102405055B1 (ko) 2019-01-16 2019-12-24 모르폴리노퀴나졸린 화합물의 제조방법 및 이의 중간체
EP19910900.0A EP3912978B1 (en) 2019-01-16 2019-12-24 Preparation method for morpholinquinazoline compound and midbody thereof
CA3126738A CA3126738C (en) 2019-01-16 2019-12-24 Preparation method for morpholinquinazoline compound and midbody thereof
US17/423,153 US11505542B2 (en) 2019-01-16 2019-12-24 Preparation method for morpholinquinazoline compound and intermediates thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910040918.1 2019-01-16
CN201910040918 2019-01-16

Publications (1)

Publication Number Publication Date
WO2020147525A1 true WO2020147525A1 (zh) 2020-07-23

Family

ID=71613083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127763 WO2020147525A1 (zh) 2019-01-16 2019-12-24 吗啉基喹唑啉化合物的制备方法及其中间体

Country Status (7)

Country Link
US (1) US11505542B2 (zh)
EP (1) EP3912978B1 (zh)
JP (1) JP7038263B2 (zh)
KR (1) KR102405055B1 (zh)
CN (1) CN111440142B (zh)
CA (1) CA3126738C (zh)
WO (1) WO2020147525A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115120596A (zh) * 2021-03-26 2022-09-30 上海璎黎药业有限公司 一种喹唑啉化合物及药物组合物的应用
CN115120732A (zh) * 2021-03-26 2022-09-30 上海璎黎药业有限公司 一种喹唑啉化合物的药物组合物及其制备方法
CN115252620A (zh) * 2021-04-30 2022-11-01 上海璎黎药业有限公司 一种喹唑啉化合物及药物组合物的应用
CN114478465B (zh) * 2021-12-03 2023-04-25 上海皓元生物医药科技有限公司 一种肝外胆道毒素的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010059627A1 (en) * 2008-11-19 2010-05-27 Wyeth Llc Polar quinazolines as liver x receptors ( lxrs ) modulators
WO2015055071A1 (zh) 2013-10-16 2015-04-23 上海璎黎药业有限公司 稠合杂环化合物、其制备方法、药物组合物和用途
WO2016164675A1 (en) * 2015-04-10 2016-10-13 Araxes Pharma Llc Substituted quinazoline compounds and methods of use thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JO3589B1 (ar) * 2014-08-06 2020-07-05 Novartis Ag مثبطات كيناز البروتين c وطرق استخداماتها

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010059627A1 (en) * 2008-11-19 2010-05-27 Wyeth Llc Polar quinazolines as liver x receptors ( lxrs ) modulators
WO2015055071A1 (zh) 2013-10-16 2015-04-23 上海璎黎药业有限公司 稠合杂环化合物、其制备方法、药物组合物和用途
CN106831721A (zh) * 2013-10-16 2017-06-13 上海璎黎药业有限公司 稠合杂环化合物、其制备方法、药物组合物和用途
WO2016164675A1 (en) * 2015-04-10 2016-10-13 Araxes Pharma Llc Substituted quinazoline compounds and methods of use thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HEPPELL JACOB T. ET AL.: "Functionalization of Quinazolin-4-ones Part 3: Synthesis, Structures Elucidation, DNA-PK, PI3K, and Cytotoxicity of Novel 8-Aryl-2-morpholino-quinazolin-4-ones", JOURNAL OF HETEROCYCLIC CHEMISTRY, vol. 56, 28 November 2018 (2018-11-28), pages 124 - 141, XP055718974 *
NAT. REV. CANCER, vol. 2, 2002, pages 489 - 501
POSPISILOVA MONIKA ET AL.: "Novel quinazolin-4-one derivatives as potentiating agents of doxorubicin cytotoxicity", BIOORGANIC CHEMISTRY, vol. 82, 6 October 2018 (2018-10-06), pages 204 - 210, XP055718973 *
See also references of EP3912978A4
TRENDS. BIOCHEM. SCI., vol. 22, 1997, pages 267 - 272

Also Published As

Publication number Publication date
EP3912978B1 (en) 2023-02-15
KR20210114999A (ko) 2021-09-24
JP2022508494A (ja) 2022-01-19
CA3126738C (en) 2022-03-15
US11505542B2 (en) 2022-11-22
CA3126738A1 (en) 2020-07-23
EP3912978A1 (en) 2021-11-24
KR102405055B1 (ko) 2022-06-07
CN111440142B (zh) 2021-06-18
CN111440142A (zh) 2020-07-24
EP3912978A4 (en) 2022-03-09
US20220127248A1 (en) 2022-04-28
JP7038263B2 (ja) 2022-03-17

Similar Documents

Publication Publication Date Title
WO2020147525A1 (zh) 吗啉基喹唑啉化合物的制备方法及其中间体
CN106061966B (zh) 用作溴区结构域抑制剂的双环杂环衍生物
CN102134214B (zh) 异吲哚酮化合物及其作为代谢性谷氨酸受体增效剂的用途
US20060270686A1 (en) Anti-cancer agents and uses thereof
WO2005035503A1 (ja) 新規イソキノリン誘導体
WO2008008059A1 (en) Anti-cancer agents ans uses thereof
CN110885320B (zh) 叔胺化合物的制备方法
WO2019091450A1 (zh) 一种苯并呋喃衍生物的制备方法
CN107176955A (zh) 一种巴瑞替尼的制备方法
EP2079696A2 (en) Kinase inhibitors
EP2223925A1 (en) Kinase inhibitors
CN114736191B (zh) 特普替尼中间体及其制备方法和应用
CN117561259A (zh) 含氮多环稠环类化合物的制备方法及其中间体和用途
EP2081930A2 (en) Kinase inhibitors
CN110606842B (zh) 吡啶胺基嘧啶衍生物的制备方法及其中间体
WO2015097122A1 (en) Benzene sulfonamides as ccr9 inhibitors
TWI830876B (zh) 6-(1-丙烯醯基呱啶-4-基)-2-(4-苯氧基苯基)尼克醯胺的製備工藝
CN108017522B (zh) 一种2,6-二溴苯甲磺酰氯的制备工艺
TW202029963A (zh) 1,2,3,4-四氫喹㗁啉衍生物及其製備方法和應用
WO2023142985A1 (zh) 一种抑制TGF-β的抗肿瘤药物的制备方法
EP1742628A1 (en) Alternative forms of the phosphodiesterase-4 inhibitor n-cyclopropyl-1-{3-¬(1-oxidopryidin-3-yl)ethynyl|phenyl}-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxyamide
JP2000309585A (ja) 6−置換ヘテロキノリンカルボン酸誘導体とその付加塩及びそれらの製造方法
CN108623619B (zh) 制备C-Met酪氨酸激酶抑制剂的方法
CN107235910B (zh) 一种尼洛胺的合成方法
CN118317959A (zh) 一种抑制TGF-β的抗肿瘤药物的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910900

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3126738

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021541182

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217025800

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019910900

Country of ref document: EP

Effective date: 20210816