WO2020147437A1 - 一种天线面阵、安检装置以及安检方法 - Google Patents

一种天线面阵、安检装置以及安检方法 Download PDF

Info

Publication number
WO2020147437A1
WO2020147437A1 PCT/CN2019/121757 CN2019121757W WO2020147437A1 WO 2020147437 A1 WO2020147437 A1 WO 2020147437A1 CN 2019121757 W CN2019121757 W CN 2019121757W WO 2020147437 A1 WO2020147437 A1 WO 2020147437A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
antenna array
preset
security inspection
shaped
Prior art date
Application number
PCT/CN2019/121757
Other languages
English (en)
French (fr)
Inventor
黄雄伟
祁春超
Original Assignee
河北华讯方舟太赫兹技术有限公司
深圳市华讯方舟太赫兹科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河北华讯方舟太赫兹技术有限公司, 深圳市华讯方舟太赫兹科技有限公司 filed Critical 河北华讯方舟太赫兹技术有限公司
Publication of WO2020147437A1 publication Critical patent/WO2020147437A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/20Detecting, e.g. by using light barriers using multiple transmitters or receivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems

Definitions

  • This application relates to the field of security inspection technology, and in particular to an antenna array, security inspection device and security inspection method.
  • terahertz radiation can be used as a signal source for object imaging, just like other radiation such as visible light, infrared and X-rays.
  • terahertz radiation has see-through, low-energy, non-destructive and spectral resolution characteristics, which makes it have unique characteristics and applications in the imaging field.
  • terahertz imaging methods have been developed, such as terahertz time-domain spectral imaging technology, continuous terahertz wave imaging, and terahertz wave time-of-flight imaging.
  • This application provides an antenna array, a security inspection device, and a security inspection method.
  • the main technical problem to be solved is how to reduce the manufacturing cost of the planar security inspection instrument, reduce the amount of processed data, and increase the data processing speed.
  • this application provides an antenna array, which is applied to a planar security inspection instrument, and the antenna array at least includes:
  • the main body board is provided with a plurality of preset positions, and the plurality of preset positions includes a first preset position and a second preset position;
  • the first antenna array group is set at the first preset position according to preset conditions
  • the second antenna array is arranged at the second preset position
  • the second preset position and the first preset position are spaced apart, so that the second antenna array and the first antenna array group are spaced apart.
  • the present application also provides a security inspection device, which includes a main body frame, a scan driver and the antenna array as described above;
  • the antenna area array and the scan driver are respectively arranged on the side surface of the main frame, and the antenna area array is coupled with the scan driver;
  • the scan driver drives the antenna array to scan the object to be inspected to obtain a scanned image.
  • this application also provides a security inspection method, which is applied to the above antenna array;
  • the security check method includes:
  • the beneficial effect of the present application is that the antenna array of the present application is provided with multiple preset positions, wherein the multiple preset positions include a first preset position and a second preset position; A first antenna array group is provided at a preset position, a second antenna array is provided at a second preset position, and antenna arrays are not provided at the remaining preset positions; therefore, the first antenna array group and the second antenna array There is a blank position between them to reduce the manufacturing cost of the planar security inspection device; the number of antenna arrays is reduced, and the amount of data that the planar security inspection device needs to process is relatively reduced, and the data processing speed for generating scanned images is relatively faster.
  • FIG. 1 is a schematic structural diagram of an embodiment of an antenna array of the present application
  • FIG. 2 is a schematic structural diagram of another embodiment of the antenna array of the present application.
  • FIG. 3 is a schematic structural diagram of an embodiment of an antenna array block of the present application.
  • FIG. 4 is a schematic structural diagram of an embodiment of an L-shaped antenna according to the present application.
  • Figure 5 is a schematic structural diagram of an embodiment of the security inspection device of the present application.
  • FIG. 6 is a schematic flowchart of an embodiment of the security inspection method of the present application.
  • FIG. 1 is a schematic structural diagram of an embodiment of the antenna area array of the present application.
  • the antenna area array 100 at least includes a main body plate 11, a first antenna array group 12 and a second antenna array 13.
  • the main board 11 is used to lay the antenna array, and the main board 11 is perpendicular to the ground, so that the terahertz signal emitted by the laid antenna array can be directly transmitted to the body of the subject to be inspected.
  • the length of the main body plate 11 is set to 2.04m to 2.16m.
  • the height of the antenna array 100 can cover the height of a normal human body, and the antenna array on the antenna array 100 emits Terahertz signals can cover the body area in the vertical direction to obtain more accurate security data.
  • a plurality of preset positions are provided on the main body plate 11, for example, a first preset position 111 and a second preset position 112 are provided on the main body plate 11.
  • the first antenna array group 12 is set at the first preset position 111 according to preset conditions; the second antenna array 13 is set at the second preset position 112.
  • the second preset position 112 and the first preset position 111 are spaced apart, so that the second antenna array 13 and the first antenna array group 12 are spaced apart.
  • the second antenna array 13 and the first antenna array group 12 are spaced apart, that is, the main board 11 does not need to be covered with antenna arrays, so as to reduce the manufacturing cost of the planar security inspection device; on the other hand, the number of antenna arrays is reduced.
  • the amount of data to be processed by the planar security inspection device is also relatively reduced, and the data processing speed for generating scanned images is relatively faster.
  • the first antenna array group 12 includes three columns of the first antenna array 121, wherein the size of the first antenna array 121 is the same as the size of the second antenna array 13.
  • the preset condition of this embodiment may be the setting mode of the first seven-digit Barker code "1110010” or the setting mode of the second seven-digit Barker code "0100111".
  • the first antenna array group 12 and the The two antenna arrays 13 are arranged on the main board 11 according to the first seven-digit Barker code "1110010" setting mode.
  • the first antenna array group 12 and the second antenna array 13 can also be arranged on the main board 11 according to the second seven-digit Barker code "0100111” setting mode, as shown in FIG. 2, which is the application A schematic structural diagram of another embodiment of the antenna array.
  • the position where the first antenna array group 12 is arranged on the main board 11 is the first preset position 111
  • the position where the second antenna array 13 is arranged is the second preset position 112.
  • a first position, a second position, a third position, a fourth position, a fifth position, a sixth position, and a seventh position are sequentially provided on the main body board 11 from left to right, that is, the plurality of preset positions include the first position The first position, the second position, the third position, the fourth position, the fifth position, the sixth position and the seventh position, the above-mentioned first position, second position, third position, fourth position, fifth position, and sixth position
  • the area and size of the area of the position and the seventh position can be the same.
  • the three columns of the first antenna array 121 are respectively set at the first position, the second position and the third position according to the setting mode of "1110010".
  • the first position, the second position and the third position It is the first preset position 111; the second antenna array 13 is set at the sixth position according to the setting mode of “1110010”.
  • the sixth position is the second preset position 112.
  • the three-column first antenna array 121 is set at the fifth position, the sixth position and the seventh position according to the setting mode of "0100111".
  • the fifth position, the sixth position and the seventh position The position is the first preset position 111; the second antenna array 13 is set at the second position according to the setting method of “0100111”.
  • the second position is the second preset position 112.
  • a blank position is set between the first preset position 111 and the second preset position 112, and the blank position is twice the size of the second preset position 112.
  • the first antenna array 121 and the second antenna array 13 are respectively composed of a plurality of antenna array blocks 14. As shown in FIG. 3, the shape of the antenna array block 14 is square, and the side length of the antenna array block 14 is 0.14m ⁇ 0.18m For example, the side length of the antenna array block 14 can be set to 0.16 m.
  • the antenna array block 14 is composed of four first L-shaped antennas 141 and two second L-shaped antennas 142. Specifically, the edge of each antenna block 14 is formed by splicing four first L-shaped antennas 141. The second L-shaped antenna 142 is arranged in a square surrounded by the four first L-shaped antennas 141.
  • the first L-shaped antenna 141 and the second L-shaped antenna 142 further include a receiving antenna 1431 and a transmitting antenna 1432.
  • the receiving antenna 1431 of the first L-shaped antenna 141 is spliced with the receiving antenna 1431 of the adjacent first L-shaped antenna 141, and the transmitting antenna 1432 of the first L-shaped antenna 141 is spliced with the transmitting antenna 1432 of the adjacent first L-shaped antenna.
  • the receiving antenna 1431 of the second L-shaped antenna 142 is spliced with the transmitting antennas 1432 of the two first L-shaped antennas 142, and the transmitting antenna 1432 of the second L-shaped antenna 142 is spliced with the receiving antennas 1431 of the two first L-shaped antennas.
  • the receiving antenna 1431 is provided with at least two receiving antenna array elements 1433
  • the transmitting antenna 1432 is provided with at least two transmitting antenna array elements 1434.
  • the number of the receiving antenna array elements 1433 and the transmitting antenna is the same.
  • 10 receiving antenna array elements 1433 are provided on the receiving antenna 1431, and 10 transmitting antenna array elements 1434 are provided on the transmitting antenna 1432.
  • an equivalent phase area 1435 is generated in the area formed by the receiving antenna 1431 and the transmitting antenna 1432, and the equivalent phase area 1435 includes 10*10 equivalent phases.
  • each antenna block 14 is composed of four first L-shaped antennas 141 and two second L-shaped antennas 142, the equivalent phase number of one antenna block 14 is 10*10*6. If the first antenna array 121 or the second antenna array 13 respectively consists of 13 antenna array blocks 14, the first antenna array 121 or the second antenna array 13 has (10*10*6)*13 equivalent phases in total.
  • each column of the antenna array is controlled by the upper electromechanical control switch, and the antenna array blocks 14 of the first antenna array 121 and the second antenna array 13 complete the reception and transmission of terahertz signals in sequence from top to bottom.
  • the antenna array 100 of the present application is composed of a four-column antenna array, and the arrangement and combination of the four-column antenna array adopts the arrangement manner of FIG. 1 or FIG. 2.
  • the antenna array 100 in Figure 1 or Figure 2 on the one hand, compared with the rotating scanning terahertz security detector, it can reduce the scanning sampling time; on the other hand, the antenna array uses 7-bit Barker code for sparse sampling
  • the antenna array 100 using sparsely sampled security data can reduce the amount of processed data and increase the data processing speed, and the use of sparse imaging processing in the subsequent frequency domain processing can effectively reduce the data processing time And reduce the complexity of the processing system.
  • the present application also proposes a security inspection device 200.
  • a security inspection device 200 For details, please refer to FIG. 5, which is a schematic structural diagram of an embodiment of the security inspection device of the present application.
  • the security inspection device 200 of this embodiment includes a main body frame 21, a scan driver 22 and an antenna array 23.
  • the antenna area array 23 of this embodiment may be the antenna area array 100 in the foregoing embodiment, and details are not described herein again.
  • the antenna array 23 and the scan driver 22 are respectively arranged on the side of the main frame 21, and the antenna array 23 is coupled with the scan driver 22.
  • the scan driver 22 drives the antenna array 23 to scan the object to be inspected to obtain a scanned image.
  • FIG. 6 is a schematic flowchart of an embodiment of the security inspection method of the present application.
  • S11 Collect sampling data of the object to be inspected, and perform azimuthal sparse representation of the sampling data to obtain sparse representation of the sampling data.
  • the body of the plane array antenna imaging area at any point p n (x n, y n , z n) is sampled, the sampled data to obtain the object to be examined.
  • the scattering intensity is ⁇ n
  • the echo signal at p n received by the antenna at time t is:
  • (x a , y a , z a ) are the coordinates of the antenna receiving the echo signal, and are the corresponding wave number representation of the distance at time t.
  • the sampled data after the distance Fourier transform is expressed as:
  • the antenna array performs azimuthal sparse representation of the sampled data, and the specific calculation formula is:
  • F is the wavenumber domain spectrum of the spatial domain scattering intensity ⁇ n
  • is the frequency domain sparse vector of the azimuth scattering intensity to the target
  • is the azimuth observation matrix
  • S14 Perform interference processing on the scanned image according to the reference image, and perform sparse reconstruction on the scanned image after interference processing to obtain a three-dimensional frequency spectrum of the scanned image.
  • the antenna array uses part of the fully sampled data in the sampled data to reconstruct the spatial domain reference image data ⁇ -ref, and perform interference processing on the complex image data ⁇ formed by the sampled data to achieve data compression.
  • the image after interference processing is:
  • the antenna array performs sparse reconstruction of the scanned image after interference processing to obtain the complex image three-dimensional spectrum ⁇ -new, the specific calculation formula is:
  • ⁇ new is the three-dimensional frequency spectrum of the scanned image.
  • P is the coordinates of the scanned image.
  • S15 Perform sinc interpolation processing on the three-dimensional spectrum, and perform a three-dimensional inverse Fourier transform on the processed three-dimensional spectrum to obtain a three-dimensional image.
  • the antenna array performs stolt interpolation processing on the three-dimensional frequency spectrum, and performs a 3-D inverse Fourier transform to obtain a well-focused three-dimensional complex image of the human body for security inspection.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供了一种天线面阵、安检装置以及安检方法。该天线面阵应用于平面式安检仪,天线面阵至少包括:主体板,设置有多个预设位置,多个预设位置包括第一预设位置和第二预设位置;第一天线阵列组,根据预设条件设置在第一预设位置上;第二天线阵列,设置在第二预设位置上;其中,第二预设位置与第一预设位置间隔设置,以使得第二天线阵列与第一天线阵列组间隔设置。通过上述天线面阵,能够减少平面式安检仪的制造成本、减少处理数据量和增快数据处理速度。

Description

一种天线面阵、安检装置以及安检方法 技术领域
本申请涉及安检技术领域,特别是涉及一种天线面阵、安检装置以及安检方法。
背景技术
太赫兹辐射作为一种光源,与可见光、红外和X射线等其它辐射一样,可以作为物体成像的信号源。而且太赫兹辐射具有透视性、低能无损性和光谱分辨特性,使其在成像领域具有独特的特性和应用。目前已发展有多种太赫兹成像方法,如太赫兹时域光谱成像技术、连续太赫兹波成像和太赫兹波飞行时间成像等。
然而由于太赫兹时域光谱成像技术的每个像素点包含的是整个太赫兹脉冲的时域波形,现有技术的平面式太赫兹安检仪为了更完整、更精确的数据,一般在平板上铺满天线阵列。但这种制造方式需要较高的成本,获取的数据量庞大,导致在数据处理效率低下,速度慢。
技术解决方案
本申请提供了一种天线面阵、安检装置以及安检方法,主要解决的技术问题是如何减少平面式安检仪的制造成本、减少处理数据量和增快数据处理速度。
为解决上述技术问题,本申请提供了一种天线面阵,所述天线面阵应用于平面式安检仪,所述天线面阵至少包括:
主体板,设置有多个预设位置,所述多个预设位置包括第一预设位置和第二预设位置;
第一天线阵列组,根据预设条件设置在所述第一预设位置上;
第二天线阵列,设置在所述第二预设位置上;
其中,所述第二预设位置与所述第一预设位置间隔设置,以使得所述第二天线阵列与所述第一天线阵列组间隔设置。
为解决上述技术问题,本申请还提供了一种安检装置,所述安检装置包括主体框架、扫描驱动器和如上述的天线面阵;
其中,所述天线面阵和所述扫描驱动器分别设置在所述主体框架的侧面, 且所述天线面阵与所述扫描驱动器耦接;
当待检对象在所述主体框架内时,所述扫描驱动器驱动所述天线面阵对所述待检对象进行扫描,得到扫描图像。
为解决上述技术问题,本申请还提供了一种安检方法,所述安检方法应用于上述的天线面阵;
所述安检方法包括:
采集待检对象的采样数据,并对所述采样数据进行方位向稀疏表示,以得到稀疏表示后的采样数据;
将所述稀疏表示后的采样数据进行成像,得到扫描图像;
将部分所述稀疏表示后的采样数据进行成像,得到参考图像;
根据所述参考图像对所述扫描图像进行干涉处理,并对所述干涉处理后的扫描图像进行稀疏重建,得到所述扫描图像的三维频谱;
对所述三维频谱进行sinc插值处理,并对处理后的所述三维频谱进行三维逆傅里叶变换,以得到三维图像。
与现有技术相比,本申请的有益效果是:本申请的天线面阵设置有多个预设位置,其中,多个预设位置包括第一预设位置和第二预设位置;在第一预设位置上设置有第一天线阵列组,第二预设位置上设置有第二天线阵列,其余的预设位置均不设置天线阵列;因此,在第一天线阵列组和第二天线阵列之间设置有空白位置,以此减少平面式安检仪的制造成本;天线阵列的数量减少,平面式安检仪需要处理的数据量也相对减少,生成扫描图像的数据处理速度也相对增快。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是本申请天线面阵一实施例的结构示意图;
图2是本申请天线面阵另一实施例的结构示意图;
图3是本申请天线阵块一实施例的结构示意图;
图4是本申请L型天线一实施例的结构示意图;
图5是本申请安检装置一实施例的结构示意图;
图6是本申请安检方法一实施例的流程示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请提出了一种天线面阵100,具体请参见图1,图1是本申请天线面阵一实施例的结构示意图。
如图1所示,天线面阵100至少包括主体板11、第一天线阵列组12和第二天线阵列13。
其中,主体板11用于铺设天线阵列,主体板11与地面垂直,以使铺设的天线阵列发出的太赫兹信号能够直接传输到待检对象身体上。主体板11的长度设置为2.04m~2.16m,例如,当主体板11的高度设置为2.08m时,天线面阵100的高度能够覆盖正常人体的高度,天线面阵100上的天线阵列发出的太赫兹信号能够覆盖垂直方向上的人体区域,以获得更准确的安检数据。
进一步地,主体板11上设置有多个预设位置,例如,主体板11上设置有第一预设位置111和第二预设位置112。
第一天线阵列组12,根据预设条件设置在第一预设位置111上;第二天线阵列13,设置在第二预设位置112上。其中,第二预设位置112与第一预设位置111间隔设置,以使第二天线阵列13与第一天线阵列组12间隔设置。
一方面,第二天线阵列13与第一天线阵列组12间隔设置,即主体板11上无需铺满天线阵列,以此减少平面式安检仪的制造成本;另一方面,天线阵列的数量减少,平面式安检仪需要处理的数据量也相对减少,生成扫描图像的数据处理速度也相对增快。
进一步地,第一天线阵列组12包括三列第一天线阵列121,其中,第一天线阵列121的尺寸与第二天线阵列13的尺寸相同。
进一步地,本实施例的预设条件可以为第一七位巴克码“1110010”设置方式或者第二七位巴克码“0100111”设置方式,如图1所示,第一天线阵列组12和第二天线阵列13根据第一七位巴克码“1110010”设置方式设置在主体板11 上。在其它实施例中,第一天线阵列组12和第二天线阵列13也可以根据第二七位巴克码“0100111”设置方式设置在主体板11上,如图2所示,图2是本申请天线面阵的另一实施例的结构示意图。在上述设置方式中,主体板11上设置第一天线阵列组12的位置为第一预设位置111,而设置第二天线阵列13的位置则为第二预设位置112。
具体地,主体板11上从左往右依次设置有第一位置、第二位置、第三位置、第四位置、第五位置、第六位置和第七位置,即多个预设位置包括第一位置、第二位置、第三位置、第四位置、第五位置、第六位置和第七位置,上述第一位置、第二位置、第三位置、第四位置、第五位置、第六位置和第七位置的区域面积和尺寸均可相同。如图1所示,三列第一天线阵列121分别按照“1110010”的设置方式设置在第一位置、第二位置和第三位置上,此时,第一位置、第二位置和第三位置为第一预设位置111;第二天线阵列13按照“1110010”的设置方式设置在第六位置上,此时,第六位置为第二预设位置112。
或者,如图2所示,三列第一天线阵列121按照“0100111”的设置方式设置在第五位置、第六位置和第七位置上,此时,第五位置、第六位置和第七位置为第一预设位置111;第二天线阵列13按照“0100111”的设置方式设置在第二位置上,此时,第二位置为第二预设位置112。
在上述两种设置方式中,第一预设位置111和第二预设位置112之间设置有空白位置,其中,空白位置的大小为第二预设位置112的两倍。
第一天线阵列121和第二天线阵列13分别由多个天线阵块14组成,如图3所示,天线阵块14的形状为正方形,且天线阵块14的边长为0.14m~0.18m,例如,天线阵块14的边长可以设置为0.16m。
天线阵块14由四个第一L型天线141和两个第二L型天线142组成,具体地,每个天线阵块14的边缘由四个第一L型天线141拼接而成,两个第二L型天线142设置在四个第一L型天线141围成的正方形内。
具体地,第一L型天线141和第二L型天线142进一步包括接收天线1431和发射天线1432。
第一L型天线141的接收天线1431与相邻的第一L型天线141的接收天线1431拼接,第一L型天线141的发射天线1432与相邻的第一L型天线的发射天线1432拼接。第二L型天线142的接收天线1431与两个第一L型天线142的发射天线1432拼接,第二L型天线142的发射天线1432与两个第一L型天 线的接收天线1431拼接。
进一步地,如图4所示,接收天线1431上设置有至少两个接收天线阵元1433,发射天线1432上设置有至少两个发射天线阵元1434,其中,接收天线阵元1433的数量与发射天线阵元1434的数量相同。
例如,接收天线1431上设置有10个接收天线阵元1433,发射天线1432上设置有10个发射天线阵元1434。此时,在接收天线1431和发射天线1432形成的区域中产生一个等效相位区域1435,等效相位区域1435包括10*10个等效相位。
由于每个天线阵块14由四个第一L型天线141和两个第二L型天线142组成,一个天线阵块14的等效相位数为10*10*6个。若第一天线阵列121或第二天线阵列13分别由13个天线阵块14组成,则第一天线阵列121或第二天线阵列13共有(10*10*6)*13个等效相位。
进一步地,每列天线阵列通过上位机电控开关控制,第一天线阵列121和第二天线阵列13的天线阵块14从上往下依次完成太赫兹信号的接收和发射。
由上述描述可见,本申请的天线面阵100采用四列天线阵列组成,四列天线阵列的排列组合采用图1或图2的排列方式。使用图1或图2中的二维稀疏排列的天线面阵100,一方面相较于旋转扫描式太赫兹安检仪,可以减少扫描的采样时间;另一方面天线阵列采用7位巴克码稀疏采样方式排列组合,这种排列方式的天线面阵100使用稀疏采样的安检数据可以减少处理数据量,增快数据处理速度,而且在后续的频域处理中使用稀疏成像处理,可有效减少数据处理时间和降低处理系统的复杂度。
基于上述实施例的天线面阵,本申请还提出了一种安检装置200,具体请参见图5,图5是本申请安检装置一实施例的结构示意图。
本实施例的安检装置200包括主体框架21、扫描驱动器22和天线面阵23。其中,本实施例的天线面阵23可为上述实施例中的天线面阵100,在此不再赘述。
具体地,天线面阵23和扫描驱动器22分别设置在主体框架21的侧面,且天线面阵23与扫描驱动器22耦接。
当待检对象在主体框架21内时,扫描驱动器22驱动天线面阵23对待检对象进行扫描,以得到扫描图像。
基于上述实施例的天线面阵,本申请还提出了一种安检方法,具体请参见 图6,图6是本申请安检方法一实施例的流程示意图。
本实施例的安检方法具体包括以下步骤:
S11:采集待检对象的采样数据,并对采样数据进行方位向稀疏表示,以得到稀疏表示后的采样数据。
其中,当待检对象在主体框架内时,天线面阵对人体成像区域任意一点p n(x n,y n,z n)进行采样,以获取待检对象的采样数据。
若太赫兹信号经过待检对象之后,散射强度为为σ n,t时刻时天线接收p n处的回波信号为:
Figure PCTCN2019121757-appb-000001
Figure PCTCN2019121757-appb-000002
其中,(x a,y a,z a)为接收回波信号的天线的坐标,为t时刻距离向对应的波数表示。距离向傅里叶变换后的采样数据表达为:
Figure PCTCN2019121757-appb-000003
Figure PCTCN2019121757-appb-000004
进一步地,天线面阵对采样数据进行方位向稀疏表示,具体计算公式为:
S ij=φα
Figure PCTCN2019121757-appb-000005
Figure PCTCN2019121757-appb-000006
其中,F为空间域散强度σ n的波数域谱,α为方位向目标散射强度的频域稀疏向量;φ为方位向的观测矩阵。
S12:将稀疏表示后的采样数据进行成像,得到扫描图像。
S13:将部分稀疏表示后的采样数据进行成像,得到参考图像。
S14:根据参考图像对扫描图像进行干涉处理,并对干涉处理后的扫描图像进行稀疏重建,得到扫描图像的三维频谱。
其中,天线面阵使用采样数据中部分满采样数据,重建空间域参考图像数据σ-ref,对采样数据构成的复图像数据σ进行干涉处理,以实现数据压缩。干涉处理后的图像为:
Figure PCTCN2019121757-appb-000007
进一步地,天线面阵对干涉处理后的扫描图像进行稀疏重建,得到复图像三维频谱α-new,具体计算公式为:
Figure PCTCN2019121757-appb-000008
P=diag{exp(j∠σ ref)}
其中,α new为所述扫描图像的三维频谱。P为所述扫描图像的坐标。
S15:对三维频谱进行sinc插值处理,并对处理后的三维频谱进行三维逆傅里叶变换,以得到三维图像。
其中,天线面阵对三维频谱进行stolt插值处理,并进行3-D逆傅里叶变换得到聚焦良好的人体安检三维复图像。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种天线面阵,其特征在于,所述天线面阵应用于平面式安检仪,所述天线面阵至少包括:
    主体板,设置有多个预设位置,所述多个预设位置包括第一预设位置和第二预设位置;
    第一天线阵列组,根据预设条件设置在所述第一预设位置上;
    第二天线阵列,设置在所述第二预设位置上;
    其中,所述第二预设位置与所述第一预设位置间隔设置,以使得所述第二天线阵列与所述第一天线阵列组间隔设置。
  2. 根据权利要求1所述的天线面阵,其特征在于,所述第一天线阵列组至少包括三个第一天线阵列;
    所述第一天线阵列和所述第二天线阵列分别由多个天线阵块组成,所述天线阵块的形状为正方形,且边长为0.14m~0.18m。
  3. 根据权利要求2所述的天线面阵,其特征在于,所述天线阵块由四个第一L型天线和两个第二L型天线组成;
    所述天线阵块的边缘由四个所述第一L型天线拼接而成,两个所述第二L型天线设置在四个所述第一L型天线围成的所述正方形内。
  4. 根据权利要求3所述的天线面阵,其特征在于,所述第一L型天线和所述第二L型天线分别包括接收天线和发射天线;
    所述第一L型天线的接收天线与相邻的所述第一L型天线的接收天线拼接,所述第一L型天线的发射天线与相邻的所述第一L型天线的发射天线拼接;
    所述第二L型天线的接收天线与两个所述第一L型天线的发射天线拼接,所述第二L型天线的发射天线与两个所述第一L型天线的接收天线拼接。
  5. 根据权利要求4所述的天线面阵,其特征在于,所述接收天线设置有至少两个接收天线阵元,所述发射天线设置有至少两个发射天线阵元。
  6. 根据权利要求1所述的天线面阵,其特征在于,所述主体板上从左往右依次设置有第一位置、第二位置、第三位置、第四位置、第五位置、第六位置和第七位置,其中,所述预设条件为第一七位巴克码或者第二七位巴克码;
    所述第一天线阵列组根据所述第一七位巴克码设置在所述第一位置、所述第二位置和所述第三位置上,所述第二天线阵列设置在所述第六位置上;其中, 所述第一预设位置包括所述第一位置、所述第二位置和所述第三位置,所述第二预设位置为所述第六位置;
    或者,所述第一天线阵列组根据所述第二七位巴克码将所述第一天线阵列组设置在所述第五位置、所述第六位置和所述第七位置上,所述第二天线阵列设置在所述第二位置上;其中,所述第一预设位置包括所述第五位置、所述第六位置和所述第七位置,所述第二预设位置为所述第二位置。
  7. 一种安检装置,其特征在于,所述安检装置包括主体框架、扫描驱动器和如上述权利要求1~6中任一项所述的天线面阵;
    其中,所述天线面阵和所述扫描驱动器分别设置在所述主体框架的侧面,且所述天线面阵与所述扫描驱动器耦接;
    当待检对象在所述主体框架内时,所述扫描驱动器驱动所述天线面阵对所述待检对象进行扫描,以得到扫描图像。
  8. 一种安检方法,其特征在于,所述安检方法应用于上述权利要求1~6中任一项所述的天线面阵;
    所述安检方法包括:
    采集待检对象的采样数据,并对所述采样数据进行方位向稀疏表示,以得到稀疏表示后的采样数据;
    将所述稀疏表示后的采样数据进行成像,得到扫描图像;
    将部分所述稀疏表示后的采样数据进行成像,得到参考图像;
    根据所述参考图像对所述扫描图像进行干涉处理,并对所述干涉处理后的扫描图像进行稀疏重建,得到所述扫描图像的三维频谱;
    对所述三维频谱进行sinc插值处理,并对处理后的所述三维频谱进行三维逆傅里叶变换,以得到三维图像。
  9. 根据权利要求8所述的安检方法,其特征在于,所述对所述采样数据进行方位向稀疏表示的计算公式为:
    S ij=φα
    Figure PCTCN2019121757-appb-100001
    Figure PCTCN2019121757-appb-100002
    其中,F为空间域散强度σ n的波数域谱,α为方位向目标散射强度的频域稀疏向量;φ为方位向的观测矩阵。
  10. 根据权利要求9所述的安检方法,其特征在于,所述根据所述参考图像 对所述扫描图像进行干涉处理的计算公式为:
    Figure PCTCN2019121757-appb-100003
    所述对所述干涉处理后的扫描图像进行稀疏重建的步骤,进一步包括:
    所述稀疏重建的计算公式为:
    Figure PCTCN2019121757-appb-100004
    P=diag{exp(j∠σ ref)}
    其中,α new为所述扫描图像的三维频谱。P为所述扫描图像的坐标。
PCT/CN2019/121757 2019-01-14 2019-11-28 一种天线面阵、安检装置以及安检方法 WO2020147437A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910033521.X 2019-01-14
CN201910033521.XA CN109786977A (zh) 2019-01-14 2019-01-14 一种天线面阵、安检装置以及安检方法

Publications (1)

Publication Number Publication Date
WO2020147437A1 true WO2020147437A1 (zh) 2020-07-23

Family

ID=66500504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121757 WO2020147437A1 (zh) 2019-01-14 2019-11-28 一种天线面阵、安检装置以及安检方法

Country Status (2)

Country Link
CN (1) CN109786977A (zh)
WO (1) WO2020147437A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109786977A (zh) * 2019-01-14 2019-05-21 河北华讯方舟太赫兹技术有限公司 一种天线面阵、安检装置以及安检方法
CN110609330B (zh) * 2019-09-06 2021-03-26 北京理工大学 一种稀疏阵列实波束电扫描快速成像系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2567255A1 (de) * 2010-05-07 2013-03-13 Smiths Heimann GmbH Vorrichtung zur überprüfung eines objektes, insbesondere zur kontrolle von personen auf verdächtige gegenstände
CN103698762A (zh) * 2013-12-30 2014-04-02 北京无线电计量测试研究所 一种虚轴式毫米波人体安检系统
CN106707275A (zh) * 2016-05-10 2017-05-24 电子科技大学 一种稀疏线阵平面扫描主动毫米波成像方法
CN207426169U (zh) * 2017-10-20 2018-05-29 中国工程物理研究院电子工程研究所 一种用于太赫兹和毫米波人体安检仪的双极化天线阵列
CN109786977A (zh) * 2019-01-14 2019-05-21 河北华讯方舟太赫兹技术有限公司 一种天线面阵、安检装置以及安检方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102393536B (zh) * 2011-10-30 2014-10-22 北京无线电计量测试研究所 一种人体安检系统利用频分空分技术的扫描方法
JP6377000B2 (ja) * 2015-03-25 2018-08-22 パナソニック株式会社 レーダ装置
CN106546983B (zh) * 2015-09-17 2021-11-12 松下电器产业株式会社 雷达装置
CN105762533A (zh) * 2016-04-15 2016-07-13 中国电子科技集团公司第三十八研究所 基于模块化的8单元l形子阵的应用方法及其应用装置
CN206098713U (zh) * 2016-10-26 2017-04-12 成都锐芯盛通电子科技有限公司 一种宽扫描角高增益微带天线及其构成的阵列天线
CN106556874B (zh) * 2016-10-31 2018-10-23 华讯方舟科技有限公司 一种近距离微波成像方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2567255A1 (de) * 2010-05-07 2013-03-13 Smiths Heimann GmbH Vorrichtung zur überprüfung eines objektes, insbesondere zur kontrolle von personen auf verdächtige gegenstände
CN103698762A (zh) * 2013-12-30 2014-04-02 北京无线电计量测试研究所 一种虚轴式毫米波人体安检系统
CN106707275A (zh) * 2016-05-10 2017-05-24 电子科技大学 一种稀疏线阵平面扫描主动毫米波成像方法
CN207426169U (zh) * 2017-10-20 2018-05-29 中国工程物理研究院电子工程研究所 一种用于太赫兹和毫米波人体安检仪的双极化天线阵列
CN109786977A (zh) * 2019-01-14 2019-05-21 河北华讯方舟太赫兹技术有限公司 一种天线面阵、安检装置以及安检方法

Also Published As

Publication number Publication date
CN109786977A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
WO2017198162A1 (zh) 基于合成孔径雷达成像的三维图像重建方法及装置
WO2018196254A1 (zh) 一种微波成像系统的幅相校正方法及系统
CN109725317B (zh) 一种基于一维综合孔径微波辐射计的海面亮温成像仿真方法
WO2018076884A1 (zh) 一种近距离微波成像方法及系统
CN108872985B (zh) 一种近场圆周sar快速三维成像方法
WO2020147437A1 (zh) 一种天线面阵、安检装置以及安检方法
WO2020147438A1 (zh) 一种安检系统以及安检方法
CN109799546A (zh) 用于主动式毫米波安检成像的多发多收天线阵列布置、人体安检设备和人体安检方法
CN110596646A (zh) 一种基于mimo体制的提高雷达角度分辨率的布局及方法
CN110837128B (zh) 一种柱面阵列雷达的成像方法
US9482753B2 (en) Split row-column addressing method for three-dimensional ultrasound imaging
CN110837127B (zh) 一种基于柱面雷达成像装置的稀疏天线布局方法
CN109782366A (zh) 用于主动式毫米波安检成像的多发多收天线阵列布置、人体安检设备和方法
CN102520408B (zh) 一种圆柱阵面三维成像系统的三维成像方法
CN109521401A (zh) 一种合成孔径成像的快速波束形成方法
CN104133213A (zh) 一种结合rm算法与bp算法的柱面近场三维rcs成像方法
CN108107428B (zh) 用于mimo阵列的相移偏移成像方法及装置
CN105259557A (zh) 一种多频率发射波束形成方法及应用
CN111537997B (zh) 一种基于mimo和压缩感知技术的三维雷达成像方法
CN102798858B (zh) 全息型主动式微波成像方法
RU2007147884A (ru) Способ формирования изображений в многоканальных ртлс и рлс
CN209433033U (zh) 用于主动式毫米波安检成像的多发多收天线阵列布置结构和人体安检设备
CN209433032U (zh) 用于主动式毫米波安检成像的多发多收天线阵列布置结构和人体安检设备
Wang et al. Near-field synthetic spectrum imaging algorithm based on single-frequency sparse MIMO array
CN108761433B (zh) 一种使用mimo声纳差合阵处理的高分辨成像方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909881

Country of ref document: EP

Kind code of ref document: A1