WO2020147051A1 - 一种传输数据的方法和终端设备 - Google Patents

一种传输数据的方法和终端设备 Download PDF

Info

Publication number
WO2020147051A1
WO2020147051A1 PCT/CN2019/072053 CN2019072053W WO2020147051A1 WO 2020147051 A1 WO2020147051 A1 WO 2020147051A1 CN 2019072053 W CN2019072053 W CN 2019072053W WO 2020147051 A1 WO2020147051 A1 WO 2020147051A1
Authority
WO
WIPO (PCT)
Prior art keywords
rlc entity
terminal device
target
carrier
rlc
Prior art date
Application number
PCT/CN2019/072053
Other languages
English (en)
French (fr)
Inventor
石聪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202111601942.1A priority Critical patent/CN114222331B/zh
Priority to EP19910738.4A priority patent/EP3893547B1/en
Priority to CN201980080718.7A priority patent/CN113170357A/zh
Priority to EP24170205.9A priority patent/EP4376481A3/en
Priority to PCT/CN2019/072053 priority patent/WO2020147051A1/zh
Publication of WO2020147051A1 publication Critical patent/WO2020147051A1/zh
Priority to US17/369,604 priority patent/US20210336732A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/12Flow control between communication endpoints using signalling between network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular to a method and terminal device for transmitting data.
  • the duplication data function of the Packet Data Convergence Protocol can be used to transmit the duplicated data and improve the reliability of data transmission.
  • the PDCP layer first copies data to obtain two PDCP protocol data units (PDCP Protocol Data Unit, PDU), and maps the two PDCP PDU copied data to different radio link control (Radio Link Control, RLC) entities.
  • RLC Radio Link Control
  • the RLC entity may carry the PDCP PDU through a corresponding logical channel, where the logical channel is configured with a corresponding set of available carriers.
  • the embodiments of the present application provide a data transmission method and terminal device, which can improve data transmission performance.
  • a method for transmitting data includes: in the case of determining to change the radio link control RLC entity that transmits the packet data convergence protocol PDCP protocol data unit PDU, the terminal device determines the data transmission method used to transmit the PDCP PDU The target carrier used by the target RLC entity and/or the logical channel of the target RLC entity.
  • a terminal device configured to execute the foregoing first aspect or any possible implementation of the first aspect.
  • the terminal device includes a unit for executing the foregoing first aspect or any possible implementation of the first aspect.
  • a terminal device in a third aspect, includes a processor and a memory.
  • the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or each implementation manner thereof.
  • a chip for implementing the method in the above first aspect or each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the method as described in the first aspect or various implementations thereof.
  • a computer-readable storage medium for storing a computer program that causes a computer to execute the method in the first aspect or its various implementations.
  • a computer program product including computer program instructions, which cause the computer to execute the method in the first aspect or its various implementations.
  • a computer program which when run on a computer, causes the computer to execute the method in the first aspect or its various implementations.
  • the terminal device can determine the target RLC entity or target carrier for subsequent PDCP PDU transmission when the RLC entity is changed, so that it can submit data to the target RLC entity and indicate other RLC entities other than the target RLC entity Discarding the copied PDCP PDU, etc., and performing subsequent data transmission through the target carrier, can improve the reliability of data transmission.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Figure 2 is a schematic block diagram of the protocol architecture of the replication data transmission mode.
  • FIG. 3 is a schematic diagram of a method for transmitting data provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a data transmission manner in a carrier aggregation scenario.
  • Fig. 5 is a schematic diagram of a data transmission mode in a dual connection scenario.
  • Fig. 6 is a schematic diagram of RLC entity and carrier selection according to an embodiment of the present application.
  • Fig. 7 is a schematic diagram of RLC entity and carrier selection according to another embodiment of the present application.
  • Fig. 8 is a schematic diagram of an implementation manner of discarding replicated data according to an embodiment of the present application.
  • Fig. 9 is a schematic diagram of RLC entity and carrier selection according to still another embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a terminal device according to another embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • Fig. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • the network devices surrounding the terminal device 130 in FIG. 1 include a main network device 110 and at least one auxiliary network device 120.
  • the auxiliary network device 120 is respectively connected to the main network device 110 to form a dual connection (DC), and is connected to the terminal device 130 to provide services for it.
  • DC dual connection
  • the terminal device 130 may simultaneously establish a connection through the main network device 110 and the auxiliary network device 120.
  • the connection established between the terminal device 130 and the main network device 110 is the main connection
  • the connection established between the terminal device 130 and the auxiliary network device 120 is the auxiliary connection.
  • the control signaling of the terminal device 130 may be transmitted through the main connection
  • the data of the terminal device may be transmitted through the main connection and the auxiliary connection at the same time, or may be transmitted only through the auxiliary connection.
  • the main network device 110 may be an LTE network device, and the auxiliary network device 120 may be an NR network device.
  • the main network device 110 may be an NR network device, and the auxiliary network device 120 may be an LTE network device.
  • both the main network device 110 and the auxiliary network device 120 are NR network devices.
  • the embodiments of this application do not limit the application scenarios of the technical solutions.
  • the main network device 110 may also be a GSM network device, a CDMA network device, etc.
  • the auxiliary network device 120 may also be a GSM network device, a CDMA network device, etc.
  • the main network device 110 may be, for example, a Macrocell
  • the auxiliary network device 120 may be, for example, a Microcell, Picocell, or Femtocell.
  • the Packet Data Convergence Protocol can support the data replication function, that is, use the PDCP data replication function, so that the copied data corresponds to two or more Bearer, and ultimately ensure that multiple duplicated identical PDCP protocol data units (Protocol Data Unit, PDU) can be transmitted on aggregated carriers of different physical layers, thereby achieving frequency diversity gain and improving data transmission reliability.
  • PDCP Packet Data Convergence Protocol
  • PDU Protocol Data Unit
  • Terminal equipment in the embodiments of this application includes but is not limited to connection via wired lines, such as via public switched telephone networks (PSTN), digital subscriber lines (Digital Subscriber Line, DSL), digital cables, and direct cable connections ; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or another terminal device set to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal”, or “mobile terminal”.
  • Examples of mobile terminals include, but are not limited to, satellite or cellular telephones; Personal Communication Systems (PCS) terminals that can combine cellular radiotelephones with data processing, facsimile, and data communication capabilities; may include radiotelephones, pagers, Internet/internal PDA with networked access, web browser, notepad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palm-type receivers or others including radiotelephone transceivers Electronic device.
  • Terminal equipment can refer to access terminal, user equipment (User Equipment), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or User device.
  • Access terminals can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, wireless local loop (Wireless Local Loop, WLL) stations, personal digital processing (Personal Digital Assistant (PDA), wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in PLMNs that will evolve in the future, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the communication system 100 may further include other network entities such as a network controller, a mobility management entity, etc. This embodiment of the present application does not limit this.
  • CG Cell Group
  • the protocol architecture of the replication data transmission mode can be as shown in DRB 2 in Figure 2.
  • the replication data transmission method uses a split bearer protocol architecture.
  • the Packet Data Convergence Protocol (PDCP) is located in a certain CG (Master CG (Master CG, MCG) or Secondary CG (Secondary CG, SCG)).
  • PDCP copies the PDCP protocol data unit (Protocol Data Unit, PDU) into two identical copies, for example, one is a PDCP PDU, and the other is a duplicate (Duplicated) PDCP PDU.
  • the two PDCP PDUs are controlled by radio link (Radio Link) of different CGs.
  • the Control, RLC) layer and the Media Access Control (MAC) layer reach the corresponding MAC and RLC layer of the terminal device (downlink) or base station (uplink) through the air interface, and finally converge to PDCP, which is monitored by the PDCP layer
  • the two PDCPs are the same duplicate version, that is, one of them is discarded and the other is delivered to the higher layer.
  • the two bearers connecting RLC and MAC under PDCP are called split bearers. If PDCP is located in MCG, it is MCG Split Bearer, and if PDCP is located in SCG, it is split bearer. SCG Split Bearer.
  • two PDCP PDUs are transmitted through different CGs, which can achieve the purpose of frequency diversity gain, and thus can improve the reliability of data transmission.
  • a bearer configured with a copy data transmission function (also called a radio bearer (Data Radio Bearer, DRB)), it can be dynamically activated or deactivated through a MAC control element (CE). -activate) The data replication and transmission function of a certain bearer.
  • DRB Data Radio Bearer
  • MCG and SCG can respectively send MAC CE to activate or deactivate the data copy function of a certain split bearer of the terminal device, or only MCG or SCG can send MAC CE.
  • a path that can be used by the uplink (UL) can be configured through radio resource control (Radio Resource Control, RRC).
  • RRC Radio Resource Control
  • the terminal device can choose whether to send data from the MCG or the SCG according to the RRC configuration.
  • the protocol architecture of the replication data transmission mode in the CA scenario may be as shown in DRB 1 or DRB 3 in FIG. 2.
  • the replication data transmission method adopts the CA protocol architecture. Specifically, the data generated by the PDCP layer (PDU and PDU replication data) are respectively transmitted to two different RLC entities, and these two different RLC entities pass the same MAC layer. Entities are mapped to different physical layer carriers. It can be understood that in the embodiment of the application, the data generated by the PDCP layer (PDU and PDU duplicate data) are respectively mapped to different physical layer carriers through two different RLC entities, which can achieve the purpose of frequency diversity gain, and then Can improve the reliability of data transmission.
  • the method used is to configure logical channel priority (Logical Channel Prioritization, LCP) for the logical channels of the RLC entity Restrictions, specifically, in the logical channel configuration, configure an allowed serving cell (allowedServingCells), when the replication data transmission function is activated, the corresponding data packet can only be transmitted through the resources obtained on the allowedServingCells. That is, the data of the logical channel can only be transmitted on the corresponding carrier.
  • LCP Logical Channel Prioritization
  • radio bearer PDCP entity when a radio bearer PDCP entity is associated with more RLC entities, for example, 3 or 4, in order to ensure the reliability of data transmission, different logical channels need to be configured with different carriers, and the number of carrier sets Limited, which may lead to insufficient number of available carrier sets, and how to perform subsequent data transmission when the copy data transmission function is deactivated, for example, which RLC entity to submit the data to, and on which carrier to perform data transmission to improve data Transmission reliability is an urgent problem to be solved.
  • FIG. 3 is a schematic flowchart of a method for transmitting data according to an embodiment of the present application. The method may be executed by a terminal device in the communication system shown in FIG. 1. As shown in FIG. 3, the method 200 includes:
  • the terminal device determines to change the radio link control RLC entity that transmits the PDCP protocol data unit PDU of the packet data convergence protocol;
  • the terminal device determines a target RLC entity used to transmit the PDCP PDU and/or a target carrier used by a logical channel of the target RLC entity.
  • a PDCP entity of a radio bearer is associated with at least two RLC entities. These RLC entities may correspond to the same MAC entity and correspond to a CA scenario.
  • Figure 4 is an example of a CA scenario; or Corresponding to different MAC entities, corresponding to the DC scenario, Figure 5 is an example of the DC scenario.
  • the PDCP entity of the terminal device can copy the PDCP PDU into at least two copies, and then submit the at least two PDCP PDUs to at least two RLC entities.
  • the PDCP entity can send the sequence number The PDCP PDU with SN of 1 is duplicated to obtain PDCP PDU 1a and PDCP PDU 1b, and then the PDCP PDU 1a and PDCP PDU 1b are delivered to the RLC1 entity and the RLC2 entity for transmission.
  • the network device can configure the logical channels of the at least two RLC entities associated with the PDCP entity to correspond to the corresponding carrier set, which corresponds to the allowedServingCell mentioned above, which means that the data on the logical channel only Can be transmitted in the corresponding carrier set.
  • the data of the logical channel of RLC1 can only be transmitted in the carrier set 1 (CC SET#1)
  • the data of the logical channel of RLC2 can only be transmitted in the carrier set 2 (CC SET#2)
  • each carrier set includes one or more carriers.
  • the carrier sets of logical channel configurations of different RLC entities associated with the same PDCP entity may partially overlap or all overlap, thereby avoiding the problem of insufficient carriers when the number of RLC entities increases.
  • the carrier set 3 of the logical channel configuration of RLC3 and the carrier set 4 of the logical channel configuration of RLC4 shown in FIG. 4 may be partly or completely the same.
  • the RLC entity used to transmit replicated data can have the following combinations:
  • RLC1, RLC2 RLC1, RLC3
  • RLC1, RLC4 RLC2, RLC3
  • RLC2, RLC4 RLC2, RLC4
  • RLC1, RLC2, RLC3 the RLC entities that can be used to transmit replicated data at the same time are: (RLC1, RLC2, RLC3), (RLC1, RLC2, RLC4);
  • the activation/deactivation instruction when used to deactivate the copy data transmission function, the activation/deactivation instruction may also be called a deactivation instruction, or when the activation/deactivation instruction When the activation instruction is used to activate the copy data transmission function, the activation/deactivation instruction may also be referred to as an activation instruction.
  • which RLC entity the terminal device uses to perform replication data transmission may be configured by the network device.
  • the network device may be configured to transmit replication through RRC signaling or activation/deactivation instructions.
  • the target RLC entity of the data may be configured by the network device.
  • the network device may instruct the terminal device to use RLC1 and RLC2 for transmitting replicated data.
  • these two RLC entities can be referred to as active RLC entities or RLC entities for transmitting replicated data.
  • the activation/deactivation indication signaling may be a MAC CE.
  • the first byte of the MAC CE may be used to indicate the activation or deactivation of the DRB identity (Identity, ID)
  • the second byte of the MAC CE is used to indicate the activation of the RLC entity, that is, the ID of the logical channel corresponding to the RLC entity can be configured to indicate the activation of the RLC entity, or the second byte corresponds to a bitmap ( bitmap)
  • the bitmap can correspond to one or a group of logical channel IDs, by setting the value of each bit in the bitmap to indicate activation or deactivation of the corresponding logical channel, that is, activation or deactivation of the logical channel corresponding
  • the value is 1
  • the RLC entity corresponding to the logical channel may be instructed to activate
  • when the value is 0, the RLC entity corresponding to the logical channel may be instructed to deactivate, or it may be through other downlink messages or It is indicated by signaling, which is not limited in the embodiment of the present application.
  • the at least two RLC entities when at least two RLC entities are activated to transmit replicated data, the at least two RLC entities only transmit replicated data on the carriers in the corresponding carrier set, for example, if RLC1 And RLC2 are used to transmit replicated data, then the data of the logical channel of RLC1 is only transmitted in the carrier of carrier set 1, and the data of the logical channel of RLC2 is only transmitted in the carrier of carrier set 2, so as to ensure that the replicated data is in different Transmission in the carrier to improve the reliability of data transmission.
  • the terminal device when at least two RLC entities are activated to transmit replicated data, the terminal device can determine which carriers to transmit replicated data according to whether the at least two RLC entities belong to the same MAC entity. Data, for example, if MCG MAC RLC1 and SCG MAC RLC1 are used to transmit replicated data, these two RLC entities belong to different MAC entities and must correspond to different carriers. In this case, the terminal device can determine the target carrier The configured carrier set is not used. For example, the terminal device can determine the target carrier for transmitting the copied data among all the carriers under the MCG.
  • the S210 includes but is not limited to the following two situations:
  • the terminal device can determine the RLC entity that needs to change the PDCP PDU when receiving the activation/deactivation instruction of the radio bearer data copy function sent by the network device, for example, when receiving the deactivation instruction of the network device, determine The RLC entity used to transmit non-replicated data, or when receiving an activation instruction from a network device, determine the RLC entity used to transmit replicated data.
  • the PDCP entity stops copying PDCP PDUs, and there may be one or at least two RLC entities that can be used to transmit non-replicated data.
  • the network device can configure which RLC entities of the terminal device can be used to transmit non-replicated data.
  • the deactivation instruction when the network device sends a deactivation instruction to the terminal device, the deactivation instruction carries the information of the RLC entity and is used to instruct the terminal.
  • the PDCP entity of the device stops copying the PDCP PDU, and at the same time indicates the subsequent RLC entities used to transmit non-replicated data, such as the RLC1 entity and the RLC2 entity.
  • Case 2 When the terminal device receives the activation/deactivation instruction of the radio bearer data copy function sent by the network device, it can determine that the RLC entity that transmits the copied PDCP PDU needs to be changed, that is, the RLC entity that transmits the copied PDCP PDU is changed from the current one. Change at least two RLC entities of at least two other RLC entities to continue to transmit replicated data. For example, for the example shown in Figure 4, the network device can configure to change the RLC entity that transmits replicated data from RLC1 and RLC2 to RLC2 and RLC3 . It should be understood that the RLC entity before the change and the RLC entity after the change may be partly the same, or may be completely different.
  • Embodiment 1 Corresponding situation 1 and CA scenario:
  • S220 may specifically include:
  • the terminal device determines that the target RLC entity used to transmit the PDCP PDU is the master RLC entity.
  • the PDCP entity of the terminal device can send PDCP PDU Submit to the master RLC entity.
  • the master RLC entity may include one or more RLC entities among the RLC entities associated with the PDCP entity of the radio bearer, that is, there may be one RLC entity for subsequent transmission of non-replicated data Or more.
  • the primary RLC entity includes a first RLC entity and a second RLC entity
  • the logical channel of the first RLC entity is configured with a third carrier set
  • the logic of the second RLC entity Channel configuration of the fourth carrier set, the third carrier set and the fourth carrier set do not overlap, or the third carrier set and the fourth carrier set at least partially overlap, that is, the first RLC entity and the
  • the logical channels of the second RLC entity may be mapped to the same carrier set, or may be mapped to a different carrier set.
  • a PDCP is associated with four RLC entities.
  • the four RLC entities can be used to transmit replicated data.
  • the primary RLC entity is the RLC1 entity.
  • RLC1 entities are used to transmit non-replicated data.
  • the master RLC entity may be configured by a network device.
  • the network device may configure the master RLC entity through RRC signaling or activation/deactivation signaling.
  • the network device may be activated during activation.
  • /Deactivation signaling carries the information of the primary RLC.
  • the network device may include the identity of the primary RLC entity in the second byte of the MAC CE, that is, the LCID, or the second byte is one Bitmap, corresponding to one or a group of LCID.
  • the first byte of the MAC CE includes the ID of the deactivated DRB, as shown in Table 1.
  • the main RLC can also adopt other configuration methods or indication methods.
  • the main RLC entity can be agreed upon by the protocol. For example, it may be agreed that the RLC entity corresponding to the logical channel whose LC ID is 0 is the primary RLC entity, which is not limited in the embodiment of the present application.
  • the terminal device determines that the primary RLC entity is RLC1.
  • the terminal device may transmit non-replicated data according to the master RLC entity configured by the RRC signaling after deactivating the replication data function, that is, non-replicated data Submit to the main RLC entity configured by RRC signaling.
  • the network device may be configured with a main path, which indicates a logical channel, and the logical channel corresponds to an RLC entity.
  • the network device is configured with a main RLC entity, that is, the main path corresponds to The RLC entity is the main RLC entity.
  • the method 200 may further include:
  • the PDCP entity of the terminal device instructs other RLC entities except the target RLC entity to discard the copied PDCP PDU.
  • the PDCP entity of the radio bearer stops copying PDCP PDUs, and can further instruct the RLC entities associated with the radio bearer to discard other RLC entities other than the primary RLC entity
  • the copied PDCP PDU can avoid redundant transmission of data.
  • the PDCP entity of the radio bearer may instruct at least one RLC entity to discard the copied PDCP PDU.
  • the at least one RLC entity may It is configured by the network device.
  • the network device can configure the RLC entity that discards the copied data after deactivating the copy data function through RRC signaling.
  • the available carrier set of the logical channel of an RLC entity may have the following configuration modes:
  • the logical channel is configured with a first set of carriers and a second set of carriers, where the first set of carriers is used for scenarios where the copy data function is activated, that is, when the RLC entity corresponding to the logical channel can be used to transmit copied data
  • the second carrier set is used in a scenario where the data replication function is deactivated, that is, a scenario where the RLC entity corresponding to the logical channel is not used to transmit replicated data.
  • the terminal device can according to whether the RLC entity can transmit replicated data, Determine which set of available carriers to use.
  • the logical channel can be configured with the first carrier set, and the logical channel of the RLC entity is also configured with an indication information (for example, 1-bit indication information), according to the indication information of the logical channel, it is determined whether the configuration can be used when deactivating the data copy function
  • the first set of carriers For example, when the indication information is 1, the indication can be used, and when the indication information is 0, the indication cannot be used. Then the terminal device may use the carriers in the first carrier set for data transmission when the indication information indicates that it can be used, and when the indication information indicates that it cannot be used, use the carriers in the second carrier set for data transmission.
  • the logical channel can be configured with a first carrier set, and it is determined whether to use the first carrier set according to a preset rule. For example, when the data copy function is activated, the logical channel can use the configured first carrier set. When the data copy function is deactivated, another carrier set, such as the second carrier set, is used for data transmission.
  • the second carrier set may include all carriers in the first carrier set, and also include other carriers.
  • the second carrier set may be associated with the radio bearer The union of the carrier sets corresponding to the logical channels.
  • the PDCP entity of the terminal device can deliver the PDCP PDU to the master RLC entity, and can further instruct the non-master RLC entity to discard the copied PDCP PDU, thereby avoiding data Redundant transmission to improve transmission efficiency.
  • the data on the logical channel of the RLC entity of the terminal device can determine the carrier used for data transmission in a larger carrier set (for example, the second carrier set), that is, The logical channel of the RLC entity can use more carriers to transmit non-replicated data, even if it is configured with a corresponding carrier set, which can improve data transmission performance.
  • a larger carrier set for example, the second carrier set
  • Embodiment 2 Corresponding to case 1 and DC scene
  • the terminal device can also determine the target RLC entity in a similar manner to Embodiment 1, that is, determine the main RLC entity as the target RLC entity, and then deliver the PDCP PDU to the main RLC entity.
  • the target RLC entity in a similar manner to Embodiment 1, that is, determine the main RLC entity as the target RLC entity, and then deliver the PDCP PDU to the main RLC entity.
  • S220 may specifically include:
  • the terminal device determines the target RLC entity according to the data volume of the PDCP layer and the total data volume of the RLC layer associated with the radio bearer.
  • the transmission of PDCP PDU becomes split bearer mode, and the PDCP entity stops copying the PDCP PDU, and then according to the total data volume of the PDCP layer and the RLC associated with the PDCP The data volume of the layer determines which RLC entity the PDCP PDU is delivered to.
  • the data volume of all RLCs associated with the PDCP can be counted, or only the data currently used for transmitting non-replicated data can be counted.
  • the target RLC entity is the primary RLC entity or the secondary RLC entity, that is, the total data volume
  • the PDCP entity of the terminal device can deliver the PDCP PDU to any RLC entity of the primary RLC entity or the secondary RLC entity; or if the data volume of the PDCP layer and the total data volume of the RLC layer associated with the radio bearer If the sum is less than the preset threshold, it is determined that the target RLC entity is the master RLC entity, that is, when the total data volume is not large, the PDCP entity of the terminal device can only deliver the PDCP PDU to the master RLC entity.
  • the method 200 further includes:
  • the network device can configure the primary RLC entity and the secondary RLC entity for the terminal device. It should be understood that the primary RLC entity and the secondary RLC entity may be configured through the same signaling, or may be configured through different signaling. The application embodiment does not limit this.
  • the second configuration signaling is the activation/deactivation instruction or RRC signaling.
  • the network device may include the master RLC entity and the MAC CE used to deactivate the copy data function.
  • the information of the secondary RLC entity may carry the information of the primary RLC entity and the secondary RLC entity in the second byte or the third byte of the MAC CE.
  • the network identification may be in Configure the secondary RLC entity in the PDCP configuration of RRC signaling, that is, configure the secondary path (secondaryPath): as follows:
  • an indication field primaryOrSecondaryRLC is added to the RLC bearer configuration of the RRC signaling, It is used to indicate that the RLC entity corresponding to the RLC bearer is a primary RLC entity or a secondary RLC entity, as shown below:
  • the PDCP entity of the terminal device may also instruct the RLC entity that is not used to transmit non-replicated data to discard the replicated PDCP PDU, so as to avoid redundant transmission of data and improve transmission performance.
  • the available carrier set of the logical channel of an RLC entity can adopt the foregoing configuration methods.
  • the RLC entities that can be used to transmit non-replicated data can belong to the same MAC entity or can also belong to different MAC entities, but for non-replicated data transmission, it is not necessary Transmission is limited to different carriers. Therefore, in order to improve the utilization rate of the carrier, the carrier selection can be carried out in a similar manner in Embodiment 1. That is, the carrier selection can be performed on a larger carrier instead of the configured carrier set.
  • the target carrier for transmitting data is determined in the set, for example, the target carrier is determined in the union of the carrier sets corresponding to all the associated logical channels (that is, the second carrier set mentioned above).
  • the PDCP entity of the terminal device can determine which RLC entity to deliver the PDCP PDU to according to the total data volume of the PDCP and RLC layers. For example, the total data volume can be compared When large, it is determined to be submitted to the primary RLC entity or the secondary RLC entity, that is, both the primary RLC entity and the secondary RLC entity are used to transmit non-replicated data, or when the total amount of data is small, it is determined to be submitted to the primary RLC entity, that is, only the primary RLC entity is used For transferring non-replicated data.
  • the PDCP entity may also instruct the RLC entity not used to transmit non-replicated data to discard the copied PDCP PDU, thereby avoiding redundant transmission of data and improving transmission efficiency.
  • the data on the logical channel of the RLC entity of the terminal device can determine the carrier used for data transmission in a larger carrier set (for example, the second carrier set), that is, The logical channel of the RLC entity can use more carriers to transmit non-replicated data, even if it is configured with a corresponding carrier set, which can improve data transmission performance.
  • a larger carrier set for example, the second carrier set
  • Embodiment 2 is equivalent to the special processing of Embodiment 1.
  • the difference from Embodiment 1 is that RLC entities may belong to different MAC entities.
  • the data on the logical channels of these RLC entities is not Need to be restricted by LCP.
  • the network device needs to configure the primary RLC entity and the secondary RLC entity, which can be used when the total data volume is large, and the terminal device knows that it should From which RLC entities to transmit non-replicated data.
  • Embodiment 3 Corresponding to case 2 and CA scenario.
  • the terminal device may receive indication signaling sent by the network device, where the indication signaling is used to indicate to change the RLC entity used for data transmission.
  • the indication information may include the identity of the changed RLC entity.
  • the indication signaling may be activation/deactivation signaling, RRC signaling, or other downlink messages or signaling, that is, the network device may activate/deactivate signaling during the activation/deactivation process.
  • the deactivation signaling carries the identity of the changed RLC entity.
  • S220 may include: the terminal device determines that the changed RLC entity is the target RLC entity for transmitting the copied PDCP PDU.
  • the RLC entities currently used to transmit replicated data are the RLC1 entity and the RLC2 entity.
  • the terminal device After receiving the indication signaling of the network device to change the RLC entity, the terminal device can determine that the changed RLC entity is the RLC2 entity In this case, it can be considered that the status of the PDCP copy data function remains unchanged, but the subsequent RLC entity used to transmit the copied data is changed.
  • the PDCP entity of the terminal device instructs the RLC entity before the change to discard the copied PDCP PDU, thereby avoiding redundant data transmission and improving data transmission performance.
  • the PDCP entity instructs whether the RLC entity before the change has lost complex data can adopt the following three implementation modes:
  • the PDCP entity can instruct the RLC entity to discard all replicated PDCP PDUs. For example, for the example shown in FIG. 7, the PDCP entity may instruct the RLC1 entity to discard all copied PDCP PDUs.
  • the PDCP entity can instruct the RLC entity to discard all replicated PDCP PDUs. Furthermore, the instructed RLC entity can notify the PDCP entity of which replicated PDCP PDUs Discarded, for example, the RLC entity may indicate to the PDCP entity the SN number of the discarded PDCP PDU. Therefore, the PDCP entity can resubmit these discarded PDCP PDUs to the changed RLC entity for subsequent data transmission.
  • the RLC entities used to transmit replicated data before the change are RLC1 and RLC2 entities, and the RLC entities after the change are RLC2 and RLC3 entities, then the PDCP entity can determine that the RLC1 entity is no longer used for transmission Copy data, so that in S1, the PDCP entity can instruct the RLC1 entity to discard the copied PDCP PDUs. Further, in S2, the RLC1 entity can reply to the PDCP entity which PDCP PDUs are discarded, so that in S3, the The PDCP entity can deliver the discarded PDCP PDU to the changed RLC entity, that is, the RLC3 entity, to ensure reliable data transmission.
  • Method 3 If a certain RLC entity is no longer used to transmit replicated data, the copied PDCP PDU of the RLC entity may not be discarded.
  • the changed RLC entity is used to transmit the replicated PDCP PDU received from the PDCP entity.
  • the RLC1 entity may not discard the copied PDCP PDU, but the PDCP entity no longer sends the copied PDCP PDU to the RLC1 entity.
  • the data of the logical channel of the RLC entity of the terminal device can be based on the configured carrier
  • the set determines the target carrier for transmitting the replicated data, that is, the data on the logical channel is only transmitted through the carriers in the carrier set configured for the logical channel.
  • the data of the logical channel of the RLC entity of the terminal device can be in a larger carrier set, such as all
  • the union of the carrier sets of the associated logical channel configuration determines the target carrier, which can ensure that more carriers are used for data transmission and can improve data transmission efficiency.
  • the PDCP entity of the terminal device can submit the PDCP PDU to the changed RLC entity.
  • the PDCP entity can also indicate the change
  • the previous RLC entity discards the copied PDCP PDU, thereby avoiding redundant transmission of data and improving transmission efficiency.
  • the data on the logical channel of the RLC entity of the terminal device can be in a larger carrier set (for example, the second carrier set Determine the carrier used for data transmission in ), that is, the logical channel of the RLC entity can use more carriers to transmit non-replicated data, even if it is configured with the corresponding carrier set, the data transmission performance can be improved; for the case where the data replication function is activated
  • the data on the logical channel of the RLC entity of the terminal device is only replicated data transmission through the carrier in the carrier set configured by the logical channel, thereby ensuring the reliability of data transmission.
  • the changed RLC entity includes a third RLC entity and a fourth RLC entity
  • the logical channel of the third RLC entity is configured with a third carrier set
  • the logical channel of the fourth RLC entity is configured with fourth The carrier set, the third carrier set and the fourth carrier set do not overlap, so that it can be ensured that the logical channels of the RLC used to transmit the replicated data are mapped to different carrier sets.
  • Embodiment 4 Corresponding situation 2 and DC scene
  • Embodiment 3 the selection of target RLC entities in the DC scenario, the discarding of replicated data, and other related processing can refer to the description of Embodiment 3.
  • Embodiment 3 The difference from Embodiment 3 is that in the DC scenario, multiple RLC entities may correspond to different MAC entities, so , The specific implementation of carrier selection is slightly different.
  • the set of carriers used for data transmission on the logical channel of the RLC entity needs to be restricted to ensure that the replicated data is transmitted through different carriers, thereby improving Reliability of data transmission.
  • the RLC entities used to transmit replicated data belong to different MAC entities, the data on the logical channels of the RLC entities must be transmitted through different carriers, and there is no need to consider the carrier set of the logical channel configuration.
  • S220 may include:
  • the terminal device determines the target carrier according to whether the changed RLC entity belongs to the same medium access control MAC entity.
  • the changed RLC entity belongs to the same MAC entity, determine the target carrier used by the logical channel of the target RLC entity in the carrier set of the logical channel configuration of the changed RLC entity;
  • the target carrier used by the logical channel of the changed RLC entity is determined in a second carrier set, where the second carrier set and the changed RLC
  • the entity's logical channel configuration has different carrier sets, and the second carrier set includes more carriers than the first carrier set.
  • the second carrier set is a union of carrier sets configured for all logical channels.
  • the changed RLC entity belongs to the same MAC entity, the data on the changed logical channel is only transmitted on the carriers in the carrier set of the logical channel configuration. If the changed RLC entity does not belong to the same MAC entity , The data on the changed logical channel can use more carriers for data transmission, thereby improving the transmission performance.
  • the RLC entities currently used to transmit replicated data are the RLC1 and RLC2 entities of the MCG.
  • the terminal device After receiving the indication signaling of the network device to change the RLC entity, the terminal device can determine that the changed RLC entity is The RLC2 entity of the MCG and the RLC1 entity of the SCG can use the RLC2 entity of the MCG and the RLC1 entity of the SCG to transmit the copied data.
  • the RLC2 entity of the MCG and the RLC1 entity of the SCG belong to different MAC entities, in this case, it is not necessary to limit the data on the logical channel of the RLC entity to be transmitted only in the carrier set configured by the logical channel, but can be in a larger
  • the carrier set for example, the union of the carrier sets of all logical channel configurations selects the carrier used for data transmission.
  • the changed RLC entity is used to transmit non-replicated data, it is not necessary to restrict the data on the logical channel of the RLC entity to be transmitted only in the carrier set configured by the logical channel, but can be in a larger
  • the carrier set for example, the union of the carrier sets of all logical channel configurations selects the carrier used for data transmission.
  • the embodiments of the present application may allow the logical channels of the RLC entities associated with the same MAC entity to be mapped to the same or part of the same carrier set, thereby solving the problem of When RLC entities increase, the available carriers are insufficient.
  • the PDCP entity of the terminal device may instruct the RLC entity not used to transmit non-replicated data to discard the copied PDCP PDU, thereby improving transmission efficiency.
  • the RLC entity used to transmit replicated data is changed, it is possible to determine which carriers are transmitted on according to whether the changed RLC entity belongs to the same MAC entity. For example, if it belongs to the same MAC entity, the data of the logical channel of the RLC entity is only It is transmitted on the carriers in the configured carrier set, or, if it belongs to different MAC entities, the data of the logical channel of the RLC entity can select the carrier in a larger carrier set.
  • the aforementioned behavior of the terminal device can be applied to the network device, that is, in downlink transmission, the network device can also select the RLC entity or the carrier according to the aforementioned behavior of the terminal device. For brevity, I won't repeat it here.
  • FIG. 10 is a schematic structural diagram of a terminal device according to an embodiment of the present application. As shown in FIG. 10, the terminal device 300 includes:
  • the determining module 310 is used to determine the radio link control RLC entity that changes the transmission of the PDCP protocol data unit PDU; and, determine the target RLC entity used to transmit the PDCP PDU and/or the logic of the target RLC entity The target carrier used by the channel.
  • the terminal device 300 further includes:
  • the communication module 310 is configured to receive an activation/deactivation instruction sent by a network device, where the activation/deactivation instruction is used to deactivate the data copy function of the radio bearer;
  • the determining module 310 is configured to determine, according to the activation/deactivation instruction, the RLC entity that changes the transmission of the PDCP PDU.
  • the determining module 310 is specifically configured to:
  • the primary RLC entity is determined as the target RLC entity for transmitting the PDCP PDU.
  • the communication module 320 is further configured to:
  • the first configuration signaling is the activation/deactivation instruction or radio resource control RRC signaling.
  • the activation/deactivation instruction if the first configuration signaling is RRC signaling, and the activation/deactivation instruction also configures the primary path, if the activation/deactivation instruction and the RRC signaling Let the indicated main path be different, and the terminal device determines the main path according to the activation/deactivation instruction.
  • the determining module 310 is further configured to:
  • the determining module 310 is further configured to:
  • the target RLC entity as the primary RLC entity or the secondary RLC entity
  • the communication module 320 is further configured to:
  • the second configuration signaling is the activation/deactivation instruction or RRC signaling.
  • the secondary RLC entity is configured by RRC signaling, and the RLC entity associated with the radio bearer includes only two RLC entities, configure all RLC entities in the PDCP configuration of the RRC signaling.
  • the secondary RLC entity is configured by RRC signaling, and the RLC entity associated with the radio bearer includes at least three RLC entities, an indication field is added to the RLC bearer configuration of the RRC signaling to indicate the RLC
  • the RLC entity corresponding to the bearer is a primary RLC entity or a secondary RLC entity.
  • the communication module 320 is further configured to:
  • the PDCP layer instructs other RLC entities except the target RLC entity to discard the copied PDCP PDU.
  • the determining module 310 is further configured to:
  • the target carrier is determined in a second carrier set, wherein the logical channel of the target RLC entity is configured with a first carrier set, and the second carrier set is different from the first carrier set.
  • the determining module 310 is further configured to:
  • the target carrier is determined in a second carrier set, wherein the logical channel of the target RLC entity is configured with a first carrier set and the second carrier set, and the first carrier set is used to activate the data copy function Data transmission.
  • the second carrier set is used for data transmission when the data copy function is deactivated.
  • the determining module 310 is further configured to:
  • the target carrier is determined according to the logical channel indication information, wherein the logical channel of the target RLC entity is configured with a first set of carriers, and the logical channel indication information is used to indicate whether the data copy function can be used when deactivating the data copy function.
  • the first carrier set is used to indicate whether the data copy function can be used when deactivating the data copy function.
  • the determining module 310 is further configured to:
  • the target carrier is determined in the first carrier set
  • the target carrier is determined in a second carrier set, where the first carrier set and the first carrier The collection is different.
  • the second carrier set is a union of carrier sets configured for all logical channels.
  • the determining module 310 is further configured to:
  • the determining module 310 is further configured to:
  • the changed RLC entity is the target RLC entity for transmitting the copied PDCP PDU.
  • the terminal device further includes:
  • the communication module 320 is configured to deliver the copied PDCP PDU to the changed RLC entity at the PDCP layer.
  • the communication module 320 is further configured to:
  • the PDCP layer instructs the RLC entity before the change to discard the copied PDCP PDU.
  • the communication module 320 is further configured to:
  • the discarded PDCP PDU is delivered to the changed RLC entity.
  • the determining module 310 is further configured to:
  • the target carrier is determined according to whether the changed RLC entity belongs to the same medium access control MAC entity.
  • the determining module 310 is further configured to:
  • the changed RLC entity belongs to the same MAC entity, determine the target carrier used by the logical channel of the target RLC entity in the carrier set of the logical channel configuration of the changed RLC entity; or
  • the target carrier used by the logical channel of the changed RLC entity is determined in a second carrier set, where the second carrier set and the changed RLC
  • the entity's logical channel configuration has different carrier sets.
  • the second carrier set is a union of carrier sets configured for all logical channels.
  • the terminal device further includes:
  • the communication module 320 is configured to receive indication signaling sent by a network device, where the indication signaling is used to change the RLC entity used to transmit replicated data.
  • the indication signaling is used to indicate the identity of the changed RLC entity.
  • the indication signaling is activation and deactivation signaling, and the activation and deactivation signaling is used to activate or deactivate the data copy function of the radio bearer.
  • the target RLC entity includes at least two RLC entities, the at least two RLC entities include a first RLC entity and a second RLC entity, and the logical channel configuration of the first RLC entity There is a third carrier set, the logical channel of the second RLC entity configures a fourth carrier set, the third carrier set and the fourth carrier set do not overlap, or the third carrier set and the fourth carrier The sets overlap at least partially.
  • the changed RLC entity includes a third RLC entity and a fourth RLC entity
  • the logical channel of the third RLC entity is configured with a third carrier set
  • the fourth RLC entity The logical channel of is configured with a fourth carrier set, and the third carrier set and the fourth carrier set do not overlap.
  • terminal device 300 may correspond to the terminal device in the method embodiment of the present application, and the above and other operations and/or functions of each unit in the terminal device 300 are to implement the method shown in FIG. 2 respectively.
  • the corresponding process of the terminal equipment in 200 will not be repeated here.
  • FIG. 11 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device 600 shown in FIG. 11 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 can call and run a computer program from the memory 620 to implement the method in the embodiments of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may specifically be a mobile terminal/terminal device according to an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, for simplicity And will not be repeated here.
  • FIG. 12 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 700 shown in FIG. 12 includes a processor 710, and the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 can call and run a computer program from the memory 720 to implement the method in the embodiments of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the chip 700 may further include an input interface 730.
  • the processor 710 can control the input interface 730 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. No longer.
  • chips mentioned in the embodiments of the present application may also be referred to as system-level chips, system chips, chip systems, or system-on-chip chips.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments may be completed by instructions in the form of hardware integrated logic circuits or software in the processor.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the art, such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, an electrically erasable programmable memory, and a register.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiments of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data) SDRAM (DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memories in the embodiments of the present application are intended to include but are not limited to these and any other suitable types of memories.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiments of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiments of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiments of the present application.
  • the computer-readable storage medium may be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiments of the present application For the sake of brevity, I will not repeat them here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application. Repeat again.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, For brevity, I will not repeat them here.
  • the embodiment of the application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is allowed to execute the corresponding process implemented by the network device in each method of the embodiment of the present application. And will not be repeated here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes each method in the embodiment of the present application. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

一种传输数据的方法和终端设备,能够提升数据传输性能,该方法包括:终端设备确定变更传输分组数据汇聚协议PDCP协议数据单元PDU的无线链路控制RLC实体;所述终端设备确定用于传输所述PDCP PDU的目标RLC实体和/或所述目标RLC实体的逻辑信道所使用的目标载波。

Description

一种传输数据的方法和终端设备 技术领域
本申请实施例涉及通信领域,具体涉及一种传输数据的方法和终端设备。
背景技术
在新无线(New Radio,NR)系统中,可以使用分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)的复制(duplication)数据功能来传输复制数据,提高数据传输的可靠性。具体地,PDCP层首先进行数据复制得到两个PDCP协议数据单元(PDCP Protocol Data Unit,PDU),将该两个PDCP PDU复制数据分别映射到不同的无线链路控制(Radio Link Control,RLC)实体(Entity),进一步地,RLC实体可以通过对应的逻辑信道承载该PDCP PDU,其中,逻辑信道配置有对应的可用载波集合。
为了提高传输可靠性,不同的逻辑信道通常配置不同的载波,这样,当逻辑信道的数量增多时,会存在载波数量不够的问题,另外,当网络设备去激活无线承载的复制数据传输功能时,如何使用载波进行非复制数据传输以提升数据传输性能是一项继续解决的问题。
发明内容
本申请实施例提供一种传输数据的方法和终端设备,能够提升数据传输性能。
第一方面,提供了一种传输数据的方法,包括:在确定变更传输分组数据汇聚协议PDCP协议数据单元PDU的无线链路控制RLC实体的情况下,终端设备确定用于传输所述PDCP PDU的目标RLC实体和/或所述目标RLC实体的逻辑信道所使用的目标载波。
第二方面,提供了一种终端设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该终端设备包括用于执行上述第一方面或第一方面的任一可能的实现方式中的方法的单元。
第三方面,提供了一种终端设备,该终端设备包括:包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第四方面,提供了一种芯片,用于实现上述第一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面或其各实现方式中的方法。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面或其各实现方式中的方法。
第七方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面或其各实现方式中的方法。
基于上述技术方案,终端设备可以在变更RLC实体的情况下,确定后续传输PDCP PDU的目标RLC实体或目标载波,从而可以向该目标RLC实体递交数据,指示除目标RLC实体之外的其他RLC实体将已复制的PDCP PDU丢弃等,以及通过该目标载波进行后续的数据传输,从而能够提升数据传输可靠性。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图。
图2是复制数据传输方式的协议架构的示意性框图。
图3是本申请实施例提供的一种传输数据的方法的示意性图。
图4是载波聚合场景中的数据传输方式的示意性图。
图5是双连接场景中的数据传输方式的示意性图。
图6是根据本申请一个实施例的RLC实体和载波选择的示意图。
图7是根据本申请另一个实施例的RLC实体和载波选择的示意图。
图8是根据本申请一个实施例的丢弃复制数据的一种实现方式的示意图。
图9是根据本申请再一实施例的RLC实体和载波选择的示意图。
图10是本申请实施例提供的一种终端设备的示意性框图。
图11是本申请另一实施例提供的一种终端设备的示意性框图。
图12是本申请实施例提供的一种芯片的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
图1是本申请实施例的一个应用场景的示意图。图1中的终端设备130周围的网络设备包括主网络设备110和至少一个辅助网络设备120。该辅助网络设备120分别与主网络设备110相连,构成多连接(Dual Connection,DC),并分别与终端设备130连接为其提供服务。
具体地,终端设备130可以通过主网络设备110和辅助网络设备120同时建立连接。终端设备130和主网络设备110建立的连接为主连接,终端设备130与辅助网络设备120建立的连接为辅连接。终端设备130的控制信令可以通过主连接进行传输,而终端设备的数据可以通过主连接以及辅连接同时进行传输,也可以只通过辅连接进行传输。
在一个实施例中,该主网络设备110可以为LTE网络设备,该辅助网络设备120可以为NR网络设备。或者,该主网络设备110可以为NR网络设备,辅助网络设备120可以为LTE网络设备。或者,该主网络设备110和该辅助网络设备120都为NR网络设备。但是,本申请实施例对技术方案的应用场景不作限定。
例如,该主网络设备110还可以为GSM网络设备,CDMA网络设备等,该辅助网络设备120也可以为GSM网络设备,CDMA网络设备等。
又例如,主网络设备110例如可以是宏基站(Macrocell),辅助网络设备120例如可以为微蜂窝基站(Microcell)、微微蜂窝基站(Picocell)、毫微微蜂窝基站(Femtocell)。
在载波聚合(Carrier Aggregation,CA)场景下,分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)可以支持数据复制功能,即利用PDCP的复制数据功能,从而使复制的数据对应到两个或者多个承载,并最终保证复制的多个相同PDCP协议数据单元(Protocol Data Unit,PDU)能够在不同物理层聚合载波上面传输,从而达到频率分集增益以提高数据传输可靠性。
本申请实施例的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的 关系。
下面结合图2,对本申请实施例中的DC和CA场景下的复制数据的传输方法进行简单介绍。
在双连接(Dual Connection,DC)场景下,多个网络节点(小区组(Cell Group,CG))可以为终端设备服务,小区组和终端设备之间可以进行复制数据的传输。应理解,在本申请实施例中,CG可以等同于网络节点或网络设备等。
具体地,在DC场景下,复制数据传输方式的协议架构可以如图2中的DRB 2所示。复制数据传输方式采用的是分裂承载(split bearer)的协议架构。对于上下行来说,分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)位于某一个CG(主CG(Master CG,MCG)或者辅CG(Secondary CG,SCG))。PDCP将PDCP协议数据单元(Protocol Data Unit,PDU)复制为相同的两份,比如一个是PDCP PDU,一个是复制(Duplicated)PDCP PDU,两份PDCP PDU经过不同CG的无线链路控制(Radio Link Control,RLC)层以及媒体接入控制(Media Access Control,MAC)层,在经过空口到达终端设备(下行)或者基站(上行)相应的MAC以及RLC层,最后再汇聚到PDCP,PDCP层监测到两个PDCP为相同的复制版本,即丢弃其中一个,将另外一个递交到高层。
可选地,本申请实施例中将PDCP下面分别连接RLC和MAC的这两个承载称为分叉承载(split bearer),如果PDCP位于MCG,则为MCG Split Bearer,如果PDCP位于SCG,则为SCG Split Bearer。
在本申请实施例中,两份PDCP PDU经过不同CG进行传输,能够达到频率分集增益的目的,进而能够提高数据传输的可靠性。
应理解,对于配置了复制数据传输功能的承载(也可以称为无线承载(Data Radio Bearer,DRB)),可以通过MAC控制单元(Control Element,CE)动态的激活(activate)或者去激活(de-activate)某一个承载的数据复制传输功能。对于DC的情况,MCG和SCG可以分别发送MAC CE来激活或者去激活终端设备的某一个split bearer的复制数据功能,或者仅由MCG或SCG来发送MAC CE。
此外,针对split bearer,可以通过无线资源控制(Radio Resource Control,RRC)配置上行(UL)可以使用的路径。具体地,终端设备可以根据RRC配置选择是从MCG发送数据,还是从SCG发送数据。
在CA场景下的复制数据传输方式的协议架构可以如图2中的DRB 1或DRB3所示。复制数据传输方式采用的是CA的协议架构,具体地,PDCP层生成的数据(PDU和PDU的复制数据)分别传输到两个不同的RLC实体,这两个不同的RLC实体通过相同的MAC层实体映射到不同的物理层载波。可以理解,在本申请实施例中,PDCP层所生成的数据(PDU和PDU的复制数据)分别通过两个不同的RLC实体映射到不同的物理层载波上,能够达到频率分集增益的目的,进而能够提高数据传输的可靠性。
为了提高数据传输的可靠性,复数数据通常需要被限制在不同的载波上传输,对于DC场景,由于不同的RLC实体对应不同的MAC实体,这样,复制的PDCP PDU必然会通过不同的载波传输,但是,对于CA场景,不同的RLC实体对应同一MAC实体,为了保证复制的PDCP PDU在不同的载波上传输,采用的方式是给RLC实体的逻辑信道配置逻辑信道优先级(Logical Channel Prioritization,LCP)限制,具体地,在逻辑信道配置中,配置一个允许的服务小区(allowedServingCells),当复制数据传输功能激活时,相应的数据包只能通过allowedServingCells上获得的资源来传输。即逻辑信道的数据只能在对应的载波上传输,通过该LCP限制,能够保证不同RLC实体的复制数据即使通过一个MAC实体传输也能在不同的载波上传输。
但是,当一个无线承载的PDCP实体关联更多个RLC实体,例如,3个或4个时,要想保证数据传输的可靠性,需要给不同的逻辑信道配置不同的载波,而载波集合的数量有限,可能导致可用的载波集合数量不够,并且,在去激活复制数据传输功能时,后续的数据传输如何进行,例如,将数据递交至哪个RLC实体,以及在哪个载波上进行数据传输以提升数据传输可靠性都是一项亟需解决的问题。
图3是根据本申请实施例的传输数据的方法的示意性流程图,该方法可以由图1所示的通信系统中的终端设备执行,如图3所示,该方法200包括:
S210,终端设备确定变更传输分组数据汇聚协议PDCP协议数据单元PDU的无线链路控制RLC实体;
S220,所述终端设备确定用于传输所述PDCP PDU的目标RLC实体和/或所述目标RLC实体的逻辑信道所使用的目标载波。
应理解,在本申请实施例中,一个无线承载的PDCP实体关联至少两个RLC实体,这些RLC实体可以对应同一个MAC实体,对应CA场景,图4为CA场景的一种示例;或者也可以对应不同的MAC实体,对应DC场景,图5为DC场景的一种示例。
在CA场景中,终端设备的PDCP实体可以将PDCP PDU复制为至少两份,然后将该至少两份PDCP PDU递交至至少两个RLC实体,例如,如图4所示,PDCP实体可以将序列号SN为1的PDCP PDU复制两份,得到PDCP PDU 1a和PDCP PDU 1b,然后将PDCP PDU 1a和PDCP PDU 1b分别递交至RLC1实体和RLC2实体进行传输。
在本申请实施例中,网络设备可以配置PDCP实体关联的所述至少两个RLC实体的逻辑信道对应相应的载波集合,对应于前文所述的allowedServingCell,也就意味着该逻辑信道上的数据只能在对应的载波集合中传输。例如,如图4所示,RLC1的逻辑信道的数据只能在载波集合1(CC SET#1)中的载波中传输,RLC2的逻辑信道的数据只能在载波集合2(CC SET#2)中的载波中传输,其中,每个载波集合中包括一个或多个载波。
可选地,在本申请实施例中,同一PDCP实体关联的不同RLC实体的逻辑信道配置的载波集合可以部分重合或全部重合,从而能够避免RLC实体增多时载波不够的问题。
例如,图4所示的RLC3的逻辑信道配置的载波集合3和RLC4的逻辑信道配置的载波集合4可以部分或全部相同。
为了保证数据传输的可靠性,即保证复制数据通过不同的载波传输,在本申请实施例中,当两个RLC实体的逻辑信道配置的载波集合部分或全部相同时,这两个RLC实体不能同时用于传输复制的PDCP PDU。假设RLC3和RLC4的逻辑信道配置的载波集合部分或者完全相同,则对于图4所示的示例而言,用于传输复制数据的RLC实体可以具有如下几种组合方式:
1、若配置两个RLC实体用于传输复制数据,则能够同时用于传输复制数据的RLC实体的组合为:(RLC1,RLC2),(RLC1,RLC3),(RLC1,RLC4),(RLC2,RLC3),(RLC2,RLC4);
2、若配置三个RLC实体用于传输复制数据,则能够同时用于传输复制数据的RLC实体为:(RLC1,RLC2,RLC3),(RLC1,RLC2,RLC4);
3、若配置四个RLC实体用于传输复制数据,此情况下,没有RLC实体能传输复制数据。
需要说明的是,在本申请实施例中,当所述激活/去激活指令用于去激活复制数据传输功能时,该激活/去激活指令也可以称为去激活指令,或当该激活/去激活指令用于激活复制数据传输功能时,该激活/去激活指令也可以称为激活指令。
可选地,在本申请实施例中,终端设备采用哪个RLC实体进行复制数据传输可以是由网络设备配置的,例如,网络设备可以通过RRC信令或激活/去激活指令,配置用于传输复制数据的目标RLC实体。
例如,对于图4所示的例子,网络设备可以指示终端设备采用RLC1和RLC2用于传输复制数据,此情况下,这两个RLC实体可称为激活RLC实体或者用于传输复制数据的RLC实体,在一些实施例中,所述激活/去激活指示信令可以为MAC CE,作为示例而非限定,可以在MAC CE的第一个字节用于指示激活或去激活的DRB标识(Identity,ID),在MAC CE的第二个字节用于指示激活RLC实体,即可以通过配置RLC实体对应的逻辑信道的ID来指示激活RLC实体,)或者该第二个字节对应一个比特图(bitmap),该比特图可以对应一个或者一组逻辑信道ID,通过设置该比特图中的每个比特的取值来指示激活或去激活对应的逻辑信道,也就是激活或去激活该逻辑信道对应的RLC实体,例如,可以在取值为1时,指示激活该逻辑信道对应的RLC实体,在取值为0时,指示去激活该逻辑信道对应的RLC实体,或者也可以通过其他下行消息或信令来指示,本申请实施例对此不作限定。
在本申请实施例中,对于CA场景,当激活了至少两个RLC实体用于传输复制数据时,该至少两个RLC实体只在对应的载波集合中的载波中传输复制数据,例如,若RLC1和RLC2用于传输复制数据,则RLC1的逻辑信道的数据只在载波集合1中的载波中传输,RLC2的逻辑信道的数据只在载波集合2的载波中传输,从而能够保证复制数据在不同的载波中传输,以提升数据传输的可靠性。
在本申请实施例中,对于DC场景,当激活了至少两个RLC实体用于传输复制数据时,该终端设备可以根据该至少两个RLC实体是否属于同一MAC实体,确定在哪些载波上传输复制数据,例如,若MCG MAC的RLC1和SCG MAC的RLC1用于传输复制数据,这两个RLC实体属于不同的MAC实体,必然对应不同的载波,此情况下,该终端设备在确定目标载波时可以不使用配置的载波集合,例如,终端设备可以在MCG下的所有载波中确定传输复制数据的目标载波。
在本申请实施例中,所述S210包括但不限于如下两种情况:
情况1:终端设备可以在接收到网络设备发送的无线承载的复制数据功能的激活/去激活指令时,确定需要变更PDCP PDU的RLC实体,例如,在接收到网络设备的去激活指令时,确定用于传输非复制数据的RLC实体,或者在接收到网络设备的激活指令时,确定用于传输复制数据的RLC实体。
应理解,在本申请实施例中,在去激活无线承载的复制数据功能后,PDCP实体停止复制PDCP PDU,能够用于传输非复制数据的RLC实体可以有一个或至少两个,在一些实施例中,网络设备可 以配置终端设备的哪些RLC实体能够用于传输非复制数据,例如,网络设备可以在向终端设备发送去激活指令时,在该去激活指令携带RLC实体的信息,用于指示终端设备的PDCP实体停止复制PDCP PDU,同时也指示后续用于传输非复制数据的RLC实体,例如RLC1实体和RLC2实体。
情况2:终端设备可以在接收到网络设备发送的无线承载的复制数据功能的激活/去激活指令时,确定需要变更传输复制的PDCP PDU的RLC实体,即将传输复制的PDCP PDU的RLC实体从当前的至少两个RLC实体,变更为其他至少两个RLC实体继续传输复制数据,例如,对于图4所示示例,网络设备可以配置将传输复制数据的RLC实体从RLC1和RLC2,变更为RLC2和RLC3。应理解,变更前的RLC实体和变更后的RLC实体可以部分相同,或者也可以完全不同。
应理解,本申请实施例主要基于以上述两种情况说明变更RLC实体的后续行为,在发生RLC实体的其他变更行为时,可以参考上述两种情况给出的实施例,本申请实施例并不限于此。
以下,结合上述两种情况,以及CA和DC两种场景,说明在变更RLC实体的后续行为,例如,递交的RLC实体的选择,载波的选择等。
实施例1:对应情况1和CA场景:
作为一个该实施例1的一个实施例,S220可以具体包括:
所述终端设备确定用于传输所述PDCP PDU的目标RLC实体为主RLC实体。
具体而言,在CA场景中,一个PDCP实体关联的多个RLC实体对应同一个MAC实体,作为一个实施例,在去激活无线承载的复制数据功能后,该终端设备的PDCP实体可以将PDCP PDU递交至主RLC实体,可选地,该主RLC实体可以包括所述无线承载的PDCP实体所关联的RLC实体中一个或多个RLC实体,即后续用于传输非复制数据的RLC实体可以有一个或多个。
应理解,在本申请实施例中,所述主RLC实体包括第一RLC实体和第二RLC实体,所述第一RLC实体的逻辑信道配置有第三载波集合,所述第二RLC实体的逻辑信道配置第四载波集合,所述第三载波集合和所述第四载波集合不重叠,或所述第三载波集合和所述第四载波集合至少部分重叠,即实施第一RLC实体和所述第二RLC实体的逻辑信道可以映射到相同的载波集合,也可以映射到不同的载波集合。
例如,如图6所示,一个PDCP关联四个RLC实体,在复制数据功能激活时,该四个RLC实体都可以用于传输复制数据,主RLC实体为RLC1实体,在复制数据功能去激活时,只有RLC1实体用于传输非复制数据。
可选地,所述主RLC实体可以是网络设备配置的,在一些实施例中,网络设备可以通过RRC信令或激活/去激活信令配置所述主RLC实体,例如,网络设备可以在激活/去激活信令携带该主RLC的信息,作为示例而非限定,网络设备可以在MAC CE的第二个字节中包括主RLC实体的标识,也即LCID,或者第二个字节为一个比特图,对应一个或者一组LCID。在MAC CE的第一个字节中包括去激活的DRB的ID,如1表所示,当然该主RLC也可以采用其他配置方式或指示方式,例如,该主RLC实体可以是协议约定的,例如,可以约定LC ID为0的逻辑信道对应的RLC实体为主RLC实体,本申请实施例对此不作限定。
表1
Figure PCTCN2019072053-appb-000001
可选地,在一些实施例中,若该RRC信令和该激活/去激活指令都配置了该主RLC实体,若RRC信令和激活/去激活指令配置的主RLC实体不同时,根据该激活/去激活指令确定主RLC实体,例如,RRC配置的主RLC实体为RLC2,而该激活/去激活指令配置的主RLC实体为RLC1,则该终端设备确定主RLC实体为RLC1。
可选地,若该激活/去激活信令未配置该主RLC实体时,该终端设备可以在去激活复制数据功能后,根据RRC信令配置的主RLC实体传输非复制数据,即将非复制数据递交至RRC信令所配置的主RLC实体上。
应理解,在一些实施例中,网络设备可能配置的是主路径,该主路径指示逻辑信道,逻辑信道对应RLC实体,此情况下,可以认为网络设备配置了主RLC实体,即主路径对应的RLC实体为主RLC实体。
可选地,作为一个实施例,所述方法200还可以包括:
所述终端设备的PDCP实体指示除所述目标RLC实体外的其他RLC实体丢弃复制的PDCP PDU。
具体而言,去激活无线承载的复制数据功能之后,该无线承载的PDCP实体停止复制PDCP PDU,还可以进一步指示该无线承载关联的RLC实体中除所述主RLC实体之外的其他RLC实体丢弃已复 制的PDCP PDU,从而可以避免数据的冗余传输。
可选地,作为另一个实施例,去激活无线承载的复制数据功能之后,所述无线承载的PDCP实体可以指示至少一个RLC实体丢弃复制的PDCP PDU,可选地,所述至少一个RLC实体可以是网络设备配置的,例如,网络设备可以通过RRC信令配置在去激活复制数据功能之后丢弃复制数据的RLC实体。
以下结合具体实施例,说明CA场景下,去激活复制数据传输之后的载波选择问题。
作为示例而非限定,在本申请实施例中,一个RLC实体的逻辑信道的可用载波集合可以具有如下几种配置方式:
方式1:逻辑信道配置有第一载波集合和第二载波集合,其中,所述第一载波集合用于复制数据功能激活的场景,即当该逻辑信道对应的RLC实体能够用于传输复制数据的场景,所述第二载波集合用于复制数据功能去激活的场景,即当该逻辑信道对应的RLC实体不用于传输复制数据的场景,这样,终端设备可以根据该RLC实体是否能够传输复制数据,确定使用哪个可用载波集合。
方式2:逻辑信道可以配置有第一载波集合,RLC实体的逻辑信道还配置一个指示信息(例如1比特的指示信息),根据逻辑信道的指示信息确定在去激活复制数据功能时是否能够使用配置的所述第一载波集合。例如,在指示信息为1的时候,指示可以使用,指示信息为0的时候,指示不能使用。则该终端设备可以在该指示信息指示能够使用时,使用该第一载波集合中的载波进行数据传输,在该指示信息指示不能使用时,使用第二载波集合中的载波进行数据传输。
方式3:逻辑信道可以配置有第一载波集合,根据预设规则确定是否使用该第一载波集合,例如,在复制数据功能激活的时候,该逻辑信道可以使用配置的该第一载波集合,在复制数据功能去激活的时候,使用另一载波集合,例如第二载波集合进行数据传输。
可选地,在一些实施例中,所述第二载波集合可以包括第一载波集合中的所有载波,还包括其他载波,作为一个实施例,所述第二载波集合可以为所述无线承载关联的逻辑信道对应的载波集合的并集。
综合上述实施例1,在复制数据功能去激活的情况下,终端设备的PDCP实体可以将PDCP PDU递交至主RLC实体,进一步还可以指示非主RLC实体丢弃已复制的PDCP PDU,从而能够避免数据的冗余传输,提高传输效率。
另一方面,在复制数据功能去激活的情况下,终端设备的RLC实体的逻辑信道上的数据可以在更大的载波集合(例如,第二载波集合)中确定用于数据传输的载波,即RLC实体的逻辑信道可以使用更多的载波传输非复制数据,即使其配置了对应的载波集合,能够提升数据传输性能。
实施例2:对应情况1和DC场景
在实施例2中,该终端设备也可以采用实施例1类似的方式确定目标RLC实体,即将主RLC实体确定为目标RLC实体,然后将PDCP PDU递交至主RLC实体,相关描述请参考实施例1,这里不再赘述。
作为另一实施例,S220可以具体包括:
所述终端设备根据PDCP层的数据量和所述无线承载关联的RLC层的总数据量,确定所述目标RLC实体。
具体地,对于DC场景,在复制数据功能去激活之后,PDCP PDU的传输就变成了split bearer模式,PDCP实体停止复制PDCP PDU,然后根据PDCP层的总的数据量以及所述PDCP关联的RLC层的数据量,确定将PDCP PDU递交至哪个RLC实体。
应理解,在本申请实施例中,在确定PDCP层的数据量和RLC层的数据量的时候,可以统计该PDCP关联的所有RLC的数据量,或者也可以只统计当前用于传输非复制数据的RLC实体的数据量。还应理解,RLC的数据量可以为等待第一次传输的数据量。
例如,若PDCP层的数据量和所述无线承载关联的RLC层的总数据量之和大于或等于预设门限,确定所述目标RLC实体为主RLC实体或辅RLC实体,即在总数据量较大时,该终端设备的PDCP实体可以将PDCP PDU递交至主RLC实体或辅RLC实体中的任一RLC实体;或若PDCP层的数据量和所述无线承载关联的RLC层的总数据量之和小于所述预设门限,确定所述目标RLC实体为主RLC实体,即在总数据量不大时,该终端设备的PDCP实体可以将PDCP PDU只递交至主RLC实体。
可选地,在本申请实施例中,所述方法200还包括:
接收所述网络设备发送的第二配置信令,所述第二配置信令用于配置所述主RLC实体和所述辅RLC实体。
即网络设备可以给终端设备配置该主RLC实体和辅RLC实体,应理解,该主RLC实体和辅RLC实体可以是通过同一个信令配置的,或者可以是通过不同的信令配置的,本申请实施例对此不作限定。
可选地,所述第二配置信令为所述激活/去激活指令或RRC信令,例如,网络设备可以在用于去激活复制数据功能的MAC CE中包括所述主RLC实体和所述辅RLC实体的信息,作为示例而非限定,可以在MAC CE的第二个字节或第三个字节携带该主RLC实体和辅RLC实体的信息。
作为一个实施例,若所述辅RLC实体由RRC信令配置,并且所述无线承载关联的RLC实体只包括两个RLC实体,即一个主RLC实体和一个辅RLC实体,所述网络识别可以在RRC信令的PDCP配置中配置所述辅RLC实体,即配置辅路径(secondaryPath):如下所示:
Figure PCTCN2019072053-appb-000002
作为一个实施例,若所述辅RLC实体由RRC信令配置,并且所述无线承载关联的RLC实体包括至少三个RLC实体,在所述RRC信令的RLC承载配置中新增指示域primaryOrSecondaryRLC,用于指示所述RLC承载对应的RLC实体为主RLC实体或辅RLC实体,如下所示:
primaryOrSecondaryRLC BOOLEAN OPTIONAL,--Need N
与实施例1类似,该终端设备的PDCP实体也可以指示不用于传输非复制数据的RLC实体丢弃已复制的PDCP PDU,避免数据的冗余传输,提升传输性能。
以下结合具体实施例,说明DC场景下,去激活复制数据传输之后的载波选择问题。
与实施例1类似,一个RLC实体的逻辑信道的可用载波集合可以采用前述的几种配置方式。与实施例1不同的是,去激活复制数据功能之后,能够用于传输非复制数据的RLC实体可以属于同一MAC实体或者也可以属于不同的MAC实体,但是对于非复制数据传输而言,因为不必限制在不同的载波上传输,因此,为了提高载波的使用率,可以采用实施例1中类似的方式进行载波选择,即可以不根据配置的载波集合进行载波选择,而是可以在更大的载波集合中确定传输数据的目标载波,例如,在关联的所有逻辑信道对应的载波集合的并集(即前文所述的第二载波集合)中确定所述目标载波。
综合上述实施例2,在复制数据功能去激活的情况下,终端设备的PDCP实体可以根据PDCP和RLC层的总数据量,确定将PDCP PDU递交至哪个RLC实体,例如,可以在总数据量较大时确定递交至主RLC实体或辅RLC实体,即主RLC实体和辅RLC实体都用于传输非复制数据,或者在总数据量较小时,确定递交至主RLC实体,即只有主RLC实体用于传输非复制数据。同时,该PDCP实体也可以指示不用于传输非复制数据的RLC实体丢弃已复制的PDCP PDU,从而能够避免数据的冗余传输,提高传输效率。
另一方面,在复制数据功能去激活的情况下,终端设备的RLC实体的逻辑信道上的数据可以在更大的载波集合(例如,第二载波集合)中确定用于数据传输的载波,即RLC实体的逻辑信道可以使用更多的载波传输非复制数据,即使其配置了对应的载波集合,能够提升数据传输性能。
应理解,实施例2相当于对实施例1的特殊处理,跟实施例1不同的地方在于,RLC实体有可能属于不同MAC实体,在这种情况下,这些RLC实体的逻辑信道上的数据不需要受LCP限制。同时,当复制数据功能去激活时,可以回退到split bearer的操作,此情况下,网络设备需要配置主RLC实体和辅RLC实体,用于可以在总数据量较大时,终端设备知道应该从哪些RLC实体传输非复制数据。
实施例3:对应情况2和CA场景。
在该实施例3中,终端设备可以接收网络设备发送的指示信令,所述指示信令用于指示变更用于传输数据的RLC实体。可选地,所述指示信息可以包括变更后的RLC实体的标识。
可以理解,在变更RLC实体之后,实际上复制数据功能的状态不同,假设在变更RLC实体之前,复制数据功能处于激活状态,则变更RLC后,该复制数据功能仍然处于激活状态,只是变更了传输复制数据的RLC实体,(记为情况2.1);或者,若变更RLC实体之前,复制数据功能处于非激活状态,则变更RLC实体之后,该复制数据功能依然处于非激活状态,只是变更了传输非复制数据的RLC实体(记为情况2.2)。
可选地,在一些实施例中,所述指示信令可以为激活/去激活信令为RRC信令,或者其他下行消息或信令,也就是说,所述网络设备可以在所述激活/去激活信令中携带所述变更后的RLC实体的标识。
对于情况2.1,作为一个可选的实施例,S220可以包括:所述终端设备确定变更后的RLC实体为用于传输复制的PDCP PDU的目标RLC实体。
例如,如图7所示,当前用于传输复制数据的RLC实体为RLC1实体和RLC2实体,在接收到网络设备变更RLC实体的指示信令后,终端设备可以确定变更后的RLC实体为RLC2实体和RLC3实体,从而可以使用RLC2实体和RLC3实体进行复制数据的传输,此情况可以认为PDCP的复制数 据功能的状态不变,只是变更了后续用于传输复制数据的RLC实体。
进一步地,所述终端设备的PDCP实体指示变更前的RLC实体丢弃复制的所述PDCP PDU,从而能够避免数据的冗余传输,提升数据传输性能。
可选地,在变更RLC实体后,PDCP实体指示变更前的RLC实体是否丢失复数数据可以采用如下三种实现方式:
方式1:如果某个RLC实体不再用于传输复制数据,则PDCP实体可以指示该RLC实体丢弃所有复制的PDCP PDU。例如,对于图7所示的示例,PDCP实体可以指示RLC1实体丢弃所有复制的PDCP PDU。
方式2:如果某个RLC实体不再用于传输复制数据,则PDCP实体可以指示该RLC实体丢弃所有复制的PDCP PDU,进一步地,被指示的该RLC实体可以向通知PDCP实体哪些复制的PDCP PDU被丢弃,例如,该RLC实体可以向PDCP实体指示丢弃的PDCP PDU的SN号。从而PDCP实体可以将这些丢弃的PDCP PDU重新递交到变更后的RLC实体进行后续的数据传输。
例如,如图8所示,变更前用于传输复制数据的RLC实体为RLC1实体和RLC2实体,变更后的RLC实体为RLC2实体和RLC3实体,则该PDCP实体可以确定RLC1实体不再用于传输复制数据,从而在S1中,该PDCP实体可以指示RLC1实体丢弃已复制的PDCP PDU,进一步地,在S2中,该RLC1实体可以向PDCP实体回复哪些PDCP PDU被丢弃了,从而在S3中,该PDCP实体可以将被丢弃的PDCP PDU递交至变更后的RLC实体,即RLC3实体,保证数据的可靠传输。
方式3:如果某个RLC实体不再用于传输复制数据,该RLC实体的已经复制的PDCP PDU也可以不丢弃,变更后的RLC实体用于传输从PDCP实体接收的复制PDCP PDU例如,对于图7所示的示例,该RLC1实体可以不丢弃复制的PDCP PDU,只是PDCP实体不再向该RLC1实体发送复制的PDCP PDU。
以下结合具体实施例,说明CA场景下,变更RLC实体之后的载波选择问题。
对于情况2.1,由于变更后的RLC实体用于传输复制数据,为了保证数据传输的可靠性,即通过不同的载波传输复制数据,则该终端设备的RLC实体的逻辑信道的数据可以根据配置的载波集合确定传输复制数据的目标载波,即逻辑信道上的数据只通过该逻辑信道配置的载波集合中的载波进行复制数据传输。
对于情况2.2,由于变更后的RLC实体用于传输非复制数据,因此,不必限定是否通过不同的载波传输,因此,终端设备的RLC实体的逻辑信道的数据可以在更大的载波集合,例如所有关联的逻辑信道配置的载波集合的并集中确定目标载波,从而能够保证使用更多的载波进行数据传输,能够提升数据传输效率。
综合上述实施例3,在变更RLC实体的情况下,终端设备的PDCP实体可以将PDCP PDU递交至变更后的RLC实体,对于复制数据功能激活情况下的变更RLC实体,该PDCP实体还可以指示变更前的RLC实体丢弃已复制的PDCP PDU,从而能够避免数据的冗余传输,提高传输效率。
另一方面,在变更RLC实体的情况下,对于复制数据功能去激活情况下的变更RLC实体,终端设备的RLC实体的逻辑信道上的数据可以在更大的载波集合(例如,第二载波集合)中确定用于数据传输的载波,即RLC实体的逻辑信道可以使用更多的载波传输非复制数据,即使其配置了对应的载波集合,能够提升数据传输性能;对于复制数据功能激活情况下的变更RLC实体,终端设备的RLC实体的逻辑信道上的数据只通过该逻辑信道配置的载波集合中的载波进行复制数据传输,从而保证数据传输的可靠性。
应理解,若所述变更后的RLC实体包括第三RLC实体和第四RLC实体,所述第三RLC实体的逻辑信道配置有第三载波集合,所述第四RLC实体的逻辑信道配置第四载波集合,所述第三载波集合和所述第四载波集合不重叠,从而能够保证用于传输复制数据的RLC的逻辑信道映射到不同的载波集合。
实施例4:对应情况2和DC场景
应理解,DC场景中的目标RLC实体选择,复制数据丢弃等相关处理可以参考实施3的描述,与实施例3不同的是,由于DC场景中,多个RLC实体可能对应不同的MAC实体,因此,在载波选择时的具体实现稍有不同。
由上文描述可知,当用于传输复制数据的RLC实体属于同一MAC实体时,需要限制RLC实体的逻辑信道上的数据传输所使用的载波集合,以保证通过不同的载波传输复制数据,从而提升数据传输的可靠性,而当用于传输复制数据的RLC实体属于不同MAC实体时,RLC实体的逻辑信道上的数据必然通过不同的载波传输,此时不必考虑逻辑信道配置的载波集合。
对于上述情况2.2,作为一个实施例,S220可以包括:
所述终端设备根据变更后的RLC实体是否属于同一媒体接入控制MAC实体,确定所述目标载波。
例如,若变更后的RLC实体属于同一MAC实体,在所述变更后的RLC实体的逻辑信道配置的载波集合中确定所述目标RLC实体的逻辑信道所使用的目标载波;或
若变更后的RLC实体属于不同的MAC实体,在第二载波集合中确定所述变更后的RLC实体的逻辑信道所使用的目标载波,其中,所述第二载波集合与所述变更后的RLC实体的逻辑信道配置的载波集合不同,所述第二载波集合比第一载波集合包括更多个载波。可选地,所述第二载波集合为所有逻辑信道配置的载波集合的并集。
也就是说,若变更后的RLC实体属于同一MAC实体,则变更后的逻辑信道上的数据只在该逻辑信道配置的载波集合中的载波中传输,若变更后的RLC实体不属于同一MAC实体,则变更后的逻辑信道上的数据可以使用更多的载波中进行数据传输,从而能够提升传输性能。
例如,如图9所示,当前用于传输复制数据的RLC实体为MCG的RLC1实体和RLC2实体,在接收到网络设备变更RLC实体的指示信令后,终端设备可以确定变更后的RLC实体为MCG的RLC2实体和SCG的RLC1实体,从而可以使用MCG的RLC2实体和SCG的RLC1实体进行复制数据的传输。由于MCG的RLC2实体和SCG的RLC1实体属于不同的MAC实体,此情况下,可以不必限制RLC实体的逻辑信道上的数据只在该逻辑信道配置的载波集合中传输,而是可以在更大的载波集合,例如,所有逻辑信道配置的载波集合的并集中选择用于数据传输的载波。
对于上述情况2.1,由于变更后的RLC实体用于传输非复制数据,因此,可以不必限制RLC实体的逻辑信道上的数据只在该逻辑信道配置的载波集合中传输,而是可以在更大的载波集合,例如,所有逻辑信道配置的载波集合的并集中选择用于数据传输的载波。
综合上述实施例,在一个PDCP实体关联至少两个RLC实体时,本申请实施例可以允许关联到同一个MAC实体的RLC实体的逻辑信道映射到相同的或者部分相同的载波集合,从而能够解决在RLC实体增多时,可用载波不够的问题。
在去激活复制数据功能时,终端设备的PDCP实体可以指示不用于传输非复制数据的RLC实体丢弃已复制的PDCP PDU,从而能够提升传输效率。
在用于传输复制数据的RLC实体发生变更时,可以根据变更后的RLC实体是否属于同一MAC实体,确定在哪些载波上传输,例如,若属于同一MAC实体,则RLC实体的逻辑信道的数据只在配置的载波集合中的载波上传输,或者,若属于不同MAC实体,则RLC实体的逻辑信道的数据可以在更大的载波集合选择载波。
可选地,本一些实施例中,终端设备的上述行为可以应用于网络设备,即在下行传输中,网络设备也可以根据终端设备的上述行为进行RLC实体的选择或载波的选择,为了简洁,这里不再赘述。
上文结合图3至9,详细描述了本申请的方法实施例,下文结合图10至图12,描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图10是根据本申请实施例的终端设备的示意性结构图,如图10所示,该终端设备300包括:
确定模块310,用于确定变更传输分组数据汇聚协议PDCP协议数据单元PDU的无线链路控制RLC实体;以及,确定用于传输所述PDCP PDU的目标RLC实体和/或所述目标RLC实体的逻辑信道所使用的目标载波。
可选地,在一些实施例中,所述终端设备300还包括:
通信模块310,用于接收网络设备发送的激活/去激活指令,所述激活/去激活指令用于去激活无线承载的复制数据功能;
所述确定模块310用于:根据所述激活/去激活指令,确定变更传输所述PDCP PDU的RLC实体。
可选地,在一些实施例中,所述确定模块310具体用于:
将主RLC实体确定为用于传输所述PDCP PDU的目标RLC实体。
可选地,在一些实施例中,所述通信模块320还用于:
接收所述网络设备发送的第一配置信令,所述第一配置信令用于配置所述主RLC实体。
可选地,在一些实施例中,所述第一配置信令为所述激活/去激活指令或无线资源控制RRC信令。
可选地,在一些实施例中,若第一配置信令为RRC信令,且所述激活/去激活指令也配置了所述主路径,若所述激活/去激活指令和所述RRC信令指示的主路径不同,所述终端设备根据所述激活/去激活指令确定所述主路径。
可选地,在一些实施例中,所述确定模块310还用于:
根据PDCP层的数据量和所述无线承载关联的RLC层的总数据量,确定所述目标RLC实体。
可选地,在一些实施例中,所述确定模块310还用于:
若PDCP层的数据量和所述无线承载关联的RLC层的总数据量之和大于或等于预设门限,确定 所述目标RLC实体为主RLC实体或辅RLC实体;或
若PDCP层的数据量和所述无线承载关联的RLC层的总数据量之和小于所述预设门限,确定所述目标RLC实体为主RLC实体。
可选地,在一些实施例中,所述通信模块320还用于:
接收所述网络设备发送的第二配置信令,所述第二配置信令用于配置所述主RLC实体和所述辅RLC实体。
可选地,在一些实施例中,所述第二配置信令为所述激活/去激活指令或RRC信令。
可选地,在一些实施例中,若所述辅RLC实体由RRC信令配置,并且所述无线承载关联的RLC实体只包括两个RLC实体,在所述RRC信令的PDCP配置中配置所述辅RLC实体;或者
若所述辅RLC实体由RRC信令配置,并且所述无线承载关联的RLC实体包括至少三个RLC实体,在所述RRC信令的RLC承载配置中新增指示域,用于指示所述RLC承载对应的RLC实体为主RLC实体或辅RLC实体。
可选地,在一些实施例中,所述通信模块320还用于:
在PDCP层指示除所述目标RLC实体外的其他RLC实体丢弃复制的PDCP PDU。
可选地,在一些实施例中,所述确定模块310还用于:
在第二载波集合中确定所述目标载波,其中,所述目标RLC实体的逻辑信道配置有第一载波集合,所述第二载波集合和所述第一载波集合不同。
可选地,在一些实施例中,所述确定模块310还用于:
在第二载波集合中确定所述目标载波,其中,所述目标RLC实体的逻辑信道配置有第一载波集合和所述第二载波集合,所述第一载波集合用于激活复制数据功能时的数据传输,所述第二载波集合用于去激活复制数据功能时的数据传输。
可选地,在一些实施例中,所述确定模块310还用于:
根据逻辑信道指示信息,确定所述目标载波,其中,所述目标RLC实体的逻辑信道配置有第一载波集合,所述逻辑信道指示信息用于指示在去激活复制数据功能时是否能够使用所述第一载波集合。
可选地,在一些实施例中,所述确定模块310还用于:
若所述逻辑信道指示信息指示在去激活复制数据功能时能够使用所述第一载波集合,在第一载波集合中确定所述目标载波;或
若所述逻辑信道指示信息指示在去激活复制数据功能时不能使用所述第一载波集合,在第二载波集合中确定所述目标载波,其中,所述第一载波集合和所述第一载波集合不同。
可选地,所述第二载波集合为所有逻辑信道配置的载波集合的并集。
可选地,在一些实施例中,所述确定模块310还用于:
确定变更用于传输复制的PDCP PDU的RLC实体。
可选地,在一些实施例中,所述确定模块310还用于:
确定变更后的RLC实体为用于传输复制的PDCP PDU的目标RLC实体。
可选地,在一些实施例中,所述终端设备还包括:
通信模块320,用于在PDCP层将复制的PDCP PDU递交至所述变更后的RLC实体。
可选地,在一些实施例中,所述通信模块320还用于:
在PDCP层指示变更前的RLC实体丢弃复制的所述PDCP PDU。
可选地,在一些实施例中,所述通信模块320还用于:
在PDCP层接收所述变更前的RLC实体发送的指示信息,所述指示信息用于指示被丢弃的PDCP PDU;
在PDCP层根据所述指示信息,将所述被丢弃的PDCP PDU递交至所述变更后的RLC实体。
可选地,在一些实施例中,所述确定模块310还用于:
根据变更后的RLC实体是否属于同一媒体接入控制MAC实体,确定所述目标载波。
可选地,在一些实施例中,所述确定模块310还用于:
若变更后的RLC实体属于同一MAC实体,在所述变更后的RLC实体的逻辑信道配置的载波集合中确定所述目标RLC实体的逻辑信道所使用的目标载波;或
若变更后的RLC实体属于不同的MAC实体,在第二载波集合中确定所述变更后的RLC实体的逻辑信道所使用的目标载波,其中,所述第二载波集合与所述变更后的RLC实体的逻辑信道配置的载波集合不同。
可选地,所述第二载波集合为所有逻辑信道配置的载波集合的并集。
可选地,在一些实施例中,所述终端设备还包括:
通信模块320,用于接收网络设备发送的指示信令,所述指示信令用于变更用于传输复制数据的RLC实体。
可选地,在一些实施例中,所述指示信令用于指示变更后的RLC实体的标识。
可选地,在一些实施例中,所述指示信令为激活去激活信令,所述激活去激活信令用于激活或去激活所述无线承载的复制数据功能。
可选地,在一些实施例中,所述目标RLC实体包括至少两个RLC实体,所述至少两个RLC实体包括第一RLC实体和第二RLC实体,所述第一RLC实体的逻辑信道配置有第三载波集合,所述第二RLC实体的逻辑信道配置第四载波集合,所述第三载波集合和所述第四载波集合不重叠,或所述第三载波集合和所述第四载波集合至少部分重叠。
可选地,在一些实施例中,所述变更后的RLC实体包括第三RLC实体和第四RLC实体,所述第三RLC实体的逻辑信道配置有第三载波集合,所述第四RLC实体的逻辑信道配置第四载波集合,所述第三载波集合和所述第四载波集合不重叠。
应理解,根据本申请实施例的终端设备300可对应于本申请方法实施例中的终端设备,并且终端设备300中的各个单元的上述和其它操作和/或功能分别为了实现图2所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图11是本申请实施例提供的一种通信设备600示意性结构图。图11所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图11所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图12是本申请实施例的芯片的示意性结构图。图12所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图12所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可 编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分 或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (65)

  1. 一种传输数据的方法,其特征在于,包括:
    终端设备确定变更传输分组数据汇聚协议PDCP协议数据单元PDU的无线链路控制RLC实体;
    所述终端设备确定用于传输所述PDCP PDU的目标RLC实体和/或所述目标RLC实体的逻辑信道所使用的目标载波。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备确定变更传输分组数据汇聚协议PDCP协议数据单元PDU的无线链路控制RLC实体,包括:
    所述终端设备接收网络设备发送的激活/去激活指令,所述激活/去激活指令用于去激活无线承载的复制数据功能;
    所述终端设备根据所述激活/去激活指令,确定变更传输所述PDCP PDU的RLC实体。
  3. 根据权利要求2所述的方法,其特征在于,所述终端设备确定用于传输所述PDCP PDU的目标RLC实体和/或所述目标RLC实体的逻辑信道所使用的目标载波,包括:
    所述终端设备将主RLC实体确定为用于传输所述PDCP PDU的所述目标RLC实体。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的第一配置信令,所述第一配置信令用于配置所述主RLC实体。
  5. 根据权利要求4所述的方法,其特征在于,所述第一配置信令为所述激活/去激活指令或无线资源控制RRC信令。
  6. 根据权利要求5所述的方法,其特征在于,若第一配置信令为RRC信令,且所述激活/去激活指令也配置了所述主路径,若所述激活/去激活指令和所述RRC信令指示的主路径不同,所述终端设备根据所述激活/去激活指令确定所述主路径。
  7. 根据权利要求2所述的方法,其特征在于,所述终端设备确定用于传输所述PDCP PDU的目标RLC实体和/或所述目标RLC实体的逻辑信道所使用的目标载波,包括:
    所述终端设备根据PDCP层的数据量和所述无线承载关联的RLC层的总数据量,确定所述目标RLC实体。
  8. 根据权利要求7所述的方法,其特征在于,所述终端设备根据PDCP层的数据量和所述无线承载关联的RLC层的总数据量,确定所述目标RLC实体,包括:
    若PDCP层的数据量和所述无线承载关联的RLC层的总数据量之和大于或等于预设门限,确定所述目标RLC实体为主RLC实体或辅RLC实体;或
    若PDCP层的数据量和所述无线承载关联的RLC层的总数据量之和小于所述预设门限,确定所述目标RLC实体为主RLC实体。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的第二配置信令,所述第二配置信令用于配置所述主RLC实体和所述辅RLC实体。
  10. 根据权利要求9所述的方法,其特征在于,所述第二配置信令为所述激活/去激活指令或RRC信令。
  11. 根据权利要求10所述的方法,其特征在于,若所述辅RLC实体由RRC信令配置,并且所述无线承载关联的RLC实体只包括两个RLC实体,在所述RRC信令的PDCP配置中配置所述辅RLC实体;或者
    若所述辅RLC实体由RRC信令配置,并且所述无线承载关联的RLC实体包括至少三个RLC实体,在所述RRC信令的RLC承载配置中新增指示域,用于指示所述RLC承载对应的RLC实体为主RLC实体或辅RLC实体。
  12. 根据权利要求2至11中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备的PDCP实体指示除所述目标RLC实体外的其他RLC实体丢弃复制的PDCP PDU。
  13. 根据权利要求2至12中任一项所述的方法,其特征在于,所述终端设备确定用于传输所述PDCP PDU的目标RLC实体和/或所述目标RLC实体的逻辑信道所使用的目标载波,包括:
    所述终端设备在第二载波集合中确定所述目标载波,其中,所述目标RLC实体的逻辑信道配置有第一载波集合,所述第二载波集合和所述第一载波集合不同。
  14. 根据权利要求2至12中任一项所述的方法,其特征在于,所述终端设备确定用于传输所述PDCP PDU的目标RLC实体和/或所述目标RLC实体的逻辑信道所使用的目标载波,包括:
    所述终端设备第二载波集合中确定所述目标载波,其中,所述目标RLC实体的逻辑信道配置有第一载波集合和所述第二载波集合,所述第一载波集合用于激活复制数据功能时的数据传输,所述第 二载波集合用于去激活复制数据功能时的数据传输。
  15. 根据权利要求2至12中任一项所述的方法,其特征在于,所述终端设备确定用于传输所述PDCP PDU的目标RLC实体和/或所述目标RLC实体的逻辑信道所使用的目标载波,包括:
    所述终端设备根据逻辑信道指示信息,确定所述目标载波,其中,所述目标RLC实体的逻辑信道配置有第一载波集合,所述逻辑信道指示信息用于指示在去激活复制数据功能时是否能够使用所述第一载波集合。
  16. 根据权利要求15所述的方法,其特征在于,所述终端设备根据逻辑信道指示信息,确定所述目标载波,包括:
    若所述逻辑信道指示信息指示在去激活复制数据功能时能够使用所述第一载波集合,所述终端设备在第一载波集合中确定所述目标载波;或
    若所述逻辑信道指示信息指示在去激活复制数据功能时不能使用所述第一载波集合,所述终端设备在第二载波集合中确定所述目标载波,其中,所述第一载波集合和所述第一载波集合不同。
  17. 根据权利要求13、14或16所述的方法,其特征在于,所述第二载波集合为所有逻辑信道配置的载波集合的并集。
  18. 根据权利要求1所述的方法,其特征在于,所述终端设备确定变更传输分组数据汇聚协议PDCP协议数据单元PDU的无线链路控制RLC实体,包括:
    所述终端设备确定变更用于传输复制的PDCP PDU的RLC实体。
  19. 根据权利要求18所述的方法,其特征在于,所述终端设备确定用于传输所述PDCP PDU的目标RLC实体和/或所述目标RLC实体的逻辑信道所使用的目标载波,包括:
    所述终端设备确定变更后的RLC实体为用于传输复制的PDCP PDU的目标RLC实体。
  20. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    所述终端设备的PDCP实体将复制的PDCP PDU递交至所述变更后的RLC实体。
  21. 根据权利要求19或20所述的方法,其特征在于,所述方法还包括:
    所述终端设备的PDCP实体指示变更前的RLC实体丢弃复制的所述PDCP PDU。
  22. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    所述终端设备的PDCP实体接收所述变更前的RLC实体发送的指示信息,所述指示信息用于指示被丢弃的PDCP PDU;
    所述终端设备的PDCP实体根据所述指示信息,将所述被丢弃的PDCP PDU递交至所述变更后的RLC实体。
  23. 根据权利要求18至22中任一项所述的方法,其特征在于,所述终端设备确定用于传输所述PDCP PDU的目标RLC实体和/或所述目标RLC实体的逻辑信道所使用的目标载波,包括:
    所述终端设备根据变更后的RLC实体是否属于同一媒体接入控制MAC实体,确定所述目标载波。
  24. 根据权利要求23所述的方法,其特征在于,所述终端设备根据变更后的RLC实体是否属于同一媒体接入控制MAC实体,确定所述目标载波,包括:
    若变更后的RLC实体属于同一MAC实体,在所述变更后的RLC实体的逻辑信道配置的载波集合中确定所述目标RLC实体的逻辑信道所使用的目标载波;或
    若变更后的RLC实体属于不同的MAC实体,在第二载波集合中确定所述变更后的RLC实体的逻辑信道所使用的目标载波,其中,所述第二载波集合与所述变更后的RLC实体的逻辑信道配置的载波集合不同。
  25. 根据权利要求24所述的方法,其特征在于,所述第二载波集合为所有逻辑信道配置的载波集合的并集。
  26. 根据权利要求18至25中任一项所述的方法,其特征在于,所述终端设备确定变更用于传输复制的PDCP PDU的RLC实体,包括:
    所述终端设备接收网络设备发送的指示信令,所述指示信令用于变更用于传输复制数据的RLC实体。
  27. 根据权利要求26所述的方法,其特征在于,所述指示信令用于指示变更后的RLC实体的标识。
  28. 根据权利要求26或27所述的方法,其特征在于,所述指示信令为激活/去激活信令,所述激活/去激活信令用于激活或去激活所述无线承载的复制数据功能。
  29. 根据权利要求3至17中任一项所述的方法,其特征在于,所述目标RLC实体包括至少两个RLC实体,所述至少两个RLC实体包括第一RLC实体和第二RLC实体,所述第一RLC实体的逻辑信道配置有第三载波集合,所述第二RLC实体的逻辑信道配置第四载波集合,所述第三载波集合和 所述第四载波集合不重叠,或所述第三载波集合和所述第四载波集合至少部分重叠。
  30. 根据权利要求18至28中任一项所述的方法,其特征在于,所述变更后的RLC实体包括第三RLC实体和第四RLC实体,所述第三RLC实体的逻辑信道配置有第三载波集合,所述第四RLC实体的逻辑信道配置第四载波集合,所述第三载波集合和所述第四载波集合不重叠。
  31. 一种终端设备,其特征在于,包括:
    确定模块,用于确定变更传输分组数据汇聚协议PDCP协议数据单元PDU的无线链路控制RLC实体;以及,确定用于传输所述PDCP PDU的目标RLC实体和/或所述目标RLC实体的逻辑信道所使用的目标载波。
  32. 根据权利要求31所述的终端设备,其特征在于,所述终端设备还包括:
    通信模块,用于接收网络设备发送的激活/去激活指令,所述激活/去激活指令用于去激活无线承载的复制数据功能;
    所述确定模块,用于根据所述激活/去激活指令,确定变更传输所述PDCP PDU的RLC实体。
  33. 根据权利要求32所述的终端设备,其特征在于,所述确定模块具体用于:
    将主RLC实体确定为用于传输所述PDCP PDU的目标RLC实体。
  34. 根据权利要求33所述的终端设备,其特征在于,所述通信模块还用于:
    接收所述网络设备发送的第一配置信令,所述第一配置信令用于配置所述主RLC实体。
  35. 根据权利要求34所述的终端设备,其特征在于,所述第一配置信令为所述激活/去激活指令或无线资源控制RRC信令。
  36. 根据权利要求35所述的终端设备,其特征在于,若第一配置信令为RRC信令,且所述激活/去激活指令也配置了所述主路径,若所述激活/去激活指令和所述RRC信令指示的主路径不同,所述终端设备根据所述激活/去激活指令确定所述主路径。
  37. 根据权利要求32所述的终端设备,其特征在于,所述确定模块还用于:
    根据PDCP层的数据量和所述无线承载关联的RLC层的总数据量,确定所述目标RLC实体。
  38. 根据权利要求37所述的终端设备,其特征在于,所述确定模块还用于:
    若PDCP层的数据量和所述无线承载关联的RLC层的总数据量之和大于或等于预设门限,确定所述目标RLC实体为主RLC实体或辅RLC实体;或
    若PDCP层的数据量和所述无线承载关联的RLC层的总数据量之和小于所述预设门限,确定所述目标RLC实体为主RLC实体。
  39. 根据权利要求38所述的终端设备,其特征在于,所述通信模块还用于:
    接收所述网络设备发送的第二配置信令,所述第二配置信令用于配置所述主RLC实体和所述辅RLC实体。
  40. 根据权利要求39所述的终端设备,其特征在于,所述第二配置信令为所述激活/去激活指令或RRC信令。
  41. 根据权利要求40所述的终端设备,其特征在于,若所述辅RLC实体由RRC信令配置,并且所述无线承载关联的RLC实体只包括两个RLC实体,在所述RRC信令的PDCP配置中配置所述辅RLC实体;或者
    若所述辅RLC实体由RRC信令配置,并且所述无线承载关联的RLC实体包括至少三个RLC实体,在所述RRC信令的RLC承载配置中新增指示域,用于指示所述RLC承载对应的RLC实体为主RLC实体或辅RLC实体。
  42. 根据权利要求32至41中任一项所述的终端设备,其特征在于,所述通信模块还用于:
    在PDCP层指示除所述目标RLC实体外的其他RLC实体丢弃复制的PDCP PDU。
  43. 根据权利要求32至42中任一项所述的终端设备,其特征在于,所述确定模块还用于:
    在第二载波集合中确定所述目标载波,其中,所述目标RLC实体的逻辑信道配置有第一载波集合,所述第二载波集合和所述第一载波集合不同。
  44. 根据权利要求32至42中任一项所述的终端设备,其特征在于,所述确定模块还用于:
    在第二载波集合中确定所述目标载波,其中,所述目标RLC实体的逻辑信道配置有第一载波集合和所述第二载波集合,所述第一载波集合用于激活复制数据功能时的数据传输,所述第二载波集合用于去激活复制数据功能时的数据传输。
  45. 根据权利要求32至42中任一项所述的终端设备,其特征在于,所述确定模块还用于:
    根据逻辑信道指示信息,确定所述目标载波,其中,所述目标RLC实体的逻辑信道配置有第一载波集合,所述逻辑信道指示信息用于指示在去激活复制数据功能时是否能够使用所述第一载波集合。
  46. 根据权利要求45所述的终端设备,其特征在于,所述确定模块还用于:
    若所述逻辑信道指示信息指示在去激活复制数据功能时能够使用所述第一载波集合,在第一载波集合中确定所述目标载波;或
    若所述逻辑信道指示信息指示在去激活复制数据功能时不能使用所述第一载波集合,在第二载波集合中确定所述目标载波,其中,所述第一载波集合和所述第一载波集合不同。
  47. 根据权利要求43、44或46所述的终端设备,其特征在于,所述第二载波集合为所有逻辑信道配置的载波集合的并集。
  48. 根据权利要求31所述的终端设备,其特征在于,所述确定模块还用于:
    确定变更用于传输复制的PDCP PDU的RLC实体。
  49. 根据权利要求48所述的终端设备,其特征在于,所述确定模块还用于:
    确定变更后的RLC实体为用于传输复制的PDCP PDU的目标RLC实体。
  50. 根据权利要求49所述的终端设备,其特征在于,所述终端设备还包括:
    通信模块,用于在PDCP层将复制的PDCP PDU递交至所述变更后的RLC实体。
  51. 根据权利要求50所述的终端设备,其特征在于,所述通信模块还用于:
    在PDCP层指示变更前的RLC实体丢弃复制的所述PDCP PDU。
  52. 根据权利要求51所述的终端设备,其特征在于,所述通信模块还用于:
    在PDCP层接收所述变更前的RLC实体发送的指示信息,所述指示信息用于指示被丢弃的PDCP PDU;
    在PDCP层根据所述指示信息,将所述被丢弃的PDCP PDU递交至所述变更后的RLC实体。
  53. 根据权利要求48至52中任一项所述的终端设备,其特征在于,所述确定模块还用于:
    根据变更后的RLC实体是否属于同一媒体接入控制MAC实体,确定所述目标载波。
  54. 根据权利要求53所述的终端设备,其特征在于,所述确定模块还用于:
    若变更后的RLC实体属于同一MAC实体,在所述变更后的RLC实体的逻辑信道配置的载波集合中确定所述目标RLC实体的逻辑信道所使用的目标载波;或
    若变更后的RLC实体属于不同的MAC实体,在第二载波集合中确定所述变更后的RLC实体的逻辑信道所使用的目标载波,其中,所述第二载波集合与所述变更后的RLC实体的逻辑信道配置的载波集合不同。
  55. 根据权利要求54所述的终端设备,其特征在于,所述第二载波集合为所有逻辑信道配置的载波集合的并集。
  56. 根据权利要求48至55中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    通信模块,用于接收网络设备发送的指示信令,所述指示信令用于变更用于传输复制数据的RLC实体。
  57. 根据权利要求56所述的终端设备,其特征在于,所述指示信令用于指示变更后的RLC实体的标识。
  58. 根据权利要求56或57所述的终端设备,其特征在于,所述指示信令为激活去激活信令,所述激活去激活信令用于激活或去激活所述无线承载的复制数据功能。
  59. 根据权利要求33至47中任一项所述的终端设备,其特征在于,所述目标RLC实体包括至少两个RLC实体,所述至少两个RLC实体包括第一RLC实体和第二RLC实体,所述第一RLC实体的逻辑信道配置有第三载波集合,所述第二RLC实体的逻辑信道配置第四载波集合,所述第三载波集合和所述第四载波集合不重叠,或所述第三载波集合和所述第四载波集合至少部分重叠。
  60. 根据权利要求48至58中任一项所述的终端设备,其特征在于,所述变更后的RLC实体包括第三RLC实体和第四RLC实体,所述第三RLC实体的逻辑信道配置有第三载波集合,所述第四RLC实体的逻辑信道配置第四载波集合,所述第三载波集合和所述第四载波集合不重叠。
  61. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至30中任一项所述的方法。
  62. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至30中任一项所述的方法。
  63. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至30中任一项所述的方法。
  64. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至30中任一项所述的方法。
  65. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至30中任一项所述的方法。
PCT/CN2019/072053 2019-01-16 2019-01-16 一种传输数据的方法和终端设备 WO2020147051A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202111601942.1A CN114222331B (zh) 2019-01-16 2019-01-16 一种传输数据的方法和终端设备
EP19910738.4A EP3893547B1 (en) 2019-01-16 2019-01-16 Data transmission methods, terminal device and network device
CN201980080718.7A CN113170357A (zh) 2019-01-16 2019-01-16 一种传输数据的方法和终端设备
EP24170205.9A EP4376481A3 (en) 2019-01-16 2019-01-16 Data transmission methods, terminal device and network device
PCT/CN2019/072053 WO2020147051A1 (zh) 2019-01-16 2019-01-16 一种传输数据的方法和终端设备
US17/369,604 US20210336732A1 (en) 2019-01-16 2021-07-07 Method for data transmission and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/072053 WO2020147051A1 (zh) 2019-01-16 2019-01-16 一种传输数据的方法和终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/369,604 Continuation US20210336732A1 (en) 2019-01-16 2021-07-07 Method for data transmission and terminal device

Publications (1)

Publication Number Publication Date
WO2020147051A1 true WO2020147051A1 (zh) 2020-07-23

Family

ID=71613007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072053 WO2020147051A1 (zh) 2019-01-16 2019-01-16 一种传输数据的方法和终端设备

Country Status (4)

Country Link
US (1) US20210336732A1 (zh)
EP (2) EP4376481A3 (zh)
CN (2) CN113170357A (zh)
WO (1) WO2020147051A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024120320A1 (zh) * 2022-12-09 2024-06-13 维沃移动通信有限公司 传输控制方法、装置、网络侧设备及终端设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110461041B (zh) * 2018-05-07 2021-05-11 维沃移动通信有限公司 一种操作控制方法、移动通信终端及网络侧设备
WO2020032612A1 (en) * 2018-08-10 2020-02-13 Lg Electronics Inc. Method and apparatus for triggering transmission carrier reselection procedure for deactivated duplication in wireless communication system
CN111835477B (zh) * 2019-04-22 2022-04-05 华为技术有限公司 一种通信方法及设备
CN118120283A (zh) * 2021-12-21 2024-05-31 Oppo广东移动通信有限公司 数据传输方法、装置、计算机设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108370304A (zh) * 2017-06-20 2018-08-03 北京小米移动软件有限公司 关闭、开启数据包汇聚协议包复制功能的方法及装置
CN108401484A (zh) * 2017-08-21 2018-08-14 北京小米移动软件有限公司 数据传输方法及装置
CN108810990A (zh) * 2017-05-05 2018-11-13 中兴通讯股份有限公司 一种数据包复制功能的控制方法和装置、通信设备
WO2018221926A1 (en) * 2017-06-02 2018-12-06 Lg Electronics Inc. Apparatus and method for performing packet duplication

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101707762B1 (ko) * 2013-05-10 2017-02-16 후지쯔 가부시끼가이샤 무선 통신 방법, 무선 통신 시스템 및 무선국
CN105101293A (zh) * 2014-04-30 2015-11-25 夏普株式会社 Pdcp发送实体、辅基站、用户设备及其方法
CN106958123B (zh) * 2016-01-12 2020-01-14 青岛海尔洗衣机有限公司 一种粉末絮凝剂或洗衣粉的即时混合投料漏斗及洗衣机
CN107426776B (zh) * 2016-05-24 2024-06-04 华为技术有限公司 QoS控制方法及设备
CN107733577B (zh) * 2016-08-11 2020-06-02 华为技术有限公司 进行重传处理的方法和装置
CN108617029B (zh) * 2016-12-30 2023-05-12 夏普株式会社 无线承载配置方法、及相应的ue和基站
US10716156B2 (en) * 2017-02-02 2020-07-14 Lg Electronics Inc. Method and device for transmitting data unit
US10728878B2 (en) * 2017-06-22 2020-07-28 FB Innovation Company Limited Systems, devices, and methods for packet data convergence protocol packet data unit duplication
EP3738249B1 (en) * 2018-01-10 2023-03-01 FG Innovation Company Limited Methods and devices for packet data convergence protocol (pdcp) data transmission in wireless communication systems
US20200404696A1 (en) * 2018-01-11 2020-12-24 Lg Electronics Inc. Communication device, processing device and method for transmitting uplink data
US10869223B2 (en) * 2018-02-13 2020-12-15 Samsung Electronics Co., Ltd. Method and apparatus for efficient operation upon packet duplication activation and deactivation in next generation wireless communication system
JP7301065B2 (ja) * 2018-10-30 2023-06-30 京セラ株式会社 無線通信方法及び装置
JP2022518226A (ja) * 2019-01-18 2022-03-14 鴻穎創新有限公司 次世代無線ネットワークにおけるパケットデータ収束プロトコルの複製
US11134415B2 (en) * 2019-03-27 2021-09-28 Samsung Electronics Co., Ltd. Method and apparatus for processing PDCP control data in system supporting high-reliability low-latency service

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108810990A (zh) * 2017-05-05 2018-11-13 中兴通讯股份有限公司 一种数据包复制功能的控制方法和装置、通信设备
WO2018221926A1 (en) * 2017-06-02 2018-12-06 Lg Electronics Inc. Apparatus and method for performing packet duplication
CN108370304A (zh) * 2017-06-20 2018-08-03 北京小米移动软件有限公司 关闭、开启数据包汇聚协议包复制功能的方法及装置
CN108401484A (zh) * 2017-08-21 2018-08-14 北京小米移动软件有限公司 数据传输方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RAPPORTEURNOKIA ET AL.: "3GPP TSG-RAN WG2 Meeting #104 R2-1816419", LOGICAL CHANNEL RESTRICTIONS CLARIFICATIONS AND CORRECTION, 16 November 2018 (2018-11-16), XP051480382 *
See also references of EP3893547A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024120320A1 (zh) * 2022-12-09 2024-06-13 维沃移动通信有限公司 传输控制方法、装置、网络侧设备及终端设备

Also Published As

Publication number Publication date
EP3893547B1 (en) 2024-05-08
EP4376481A3 (en) 2024-07-24
CN114222331A (zh) 2022-03-22
EP3893547A1 (en) 2021-10-13
CN113170357A (zh) 2021-07-23
EP4376481A2 (en) 2024-05-29
US20210336732A1 (en) 2021-10-28
CN114222331B (zh) 2023-07-07
EP3893547A4 (en) 2021-12-29

Similar Documents

Publication Publication Date Title
WO2020147051A1 (zh) 一种传输数据的方法和终端设备
US11778689B2 (en) Method and device for processing data
WO2020147053A1 (zh) 数据传输的方法和通信设备
US20200245189A1 (en) Data transmission method, terminal device and network device
WO2020087258A1 (zh) 指示pdcp复制数据的状态的方法、终端设备和网络设备
WO2019061151A1 (zh) 切换路径的方法和终端设备
WO2020147056A1 (zh) 用于复制数据传输的方法和设备
WO2021016778A1 (zh) 一种传输资源选择方法、网络设备、用户设备
TW202014015A (zh) 傳輸訊息的方法和終端設備
WO2020051919A1 (zh) 一种资源确定及配置方法、装置、终端、网络设备
WO2020093399A1 (zh) 无线通信方法、网络设备和终端设备
WO2019127289A1 (zh) 传输数据的方法和终端设备
WO2020147054A1 (zh) 一种数据复制传输的指示方法、终端设备及网络设备
US20210250810A1 (en) Data replication transmission configuration method, apparatus, chip, and computer program
WO2021016790A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022021413A1 (zh) 一种密钥生成方法及装置、终端设备、网络设备
WO2021073021A1 (zh) 传输数据的方法、终端设备和网络设备
WO2021195928A1 (zh) 上报功率回退信息的方法及装置、终端设备、网络设备
WO2021127943A1 (zh) 无线通信方法和终端设备
WO2020029292A1 (zh) 一种信息指示方法及装置、终端
WO2020082327A1 (zh) 一种切换过程中的信令交互方法及装置、网络设备
WO2020164019A1 (zh) 一种承载配置方法及装置、网络设备
TW202027471A (zh) 一種資料傳輸方法及網路設備
WO2022067719A1 (zh) 一种控制scg状态的方法及装置、网络设备
WO2021102968A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910738

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019910738

Country of ref document: EP

Effective date: 20210706

NENP Non-entry into the national phase

Ref country code: DE