WO2020146995A1 - 一种基于lte的无源雷达系统 - Google Patents

一种基于lte的无源雷达系统 Download PDF

Info

Publication number
WO2020146995A1
WO2020146995A1 PCT/CN2019/071690 CN2019071690W WO2020146995A1 WO 2020146995 A1 WO2020146995 A1 WO 2020146995A1 CN 2019071690 W CN2019071690 W CN 2019071690W WO 2020146995 A1 WO2020146995 A1 WO 2020146995A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing unit
signal processing
lte
analog
path channel
Prior art date
Application number
PCT/CN2019/071690
Other languages
English (en)
French (fr)
Inventor
冯大权
王春琦
何春龙
郭重涛
丁晓欢
刘灿彬
伍威成
陈铭辉
翁凯亮
冉慧
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2019/071690 priority Critical patent/WO2020146995A1/zh
Publication of WO2020146995A1 publication Critical patent/WO2020146995A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Definitions

  • the present invention relates to the technical field of radar communication, in particular to a passive radar system based on LTE.
  • Traditional active radar uses radar to emit electromagnetic waves to irradiate targets and receive their echoes to detect targets and obtain information such as the distance, range resolution, azimuth, and height from the target to the point of electromagnetic wave emission.
  • the detected target can receive the transmission signal of the traditional active radar to realize reverse detection and reconnaissance. Therefore, the traditional radar has poor concealment and anti-interference ability.
  • passive radars do not emit beams themselves, but detect targets by receiving the beams emitted by the other radar or illuminating source, which has good concealment and anti-interference ability.
  • signal sources that can be used as the radiation source of passive radar systems, such as TV broadcasting, FM radio, digital video, audio broadcasting, satellite, wireless email, global mobile communication system and global microwave access interoperability, etc. .
  • the range resolution of a passive radar system has a greater relationship with the bandwidth of the illumination source used.
  • the high range resolution is conducive to accurate target positioning.
  • the aforementioned signal source as an illumination source cannot significantly improve the range resolution of a passive radar system.
  • the main purpose of the present invention is to propose a passive radar system based on LTE to solve the problem that the illumination source used in the passive radar system in the prior art cannot significantly improve the range resolution.
  • the first aspect of the embodiments of the present invention provides an LTE-based passive radar system, which is applied to the detection of moving targets.
  • the LTE-based passive radar system includes a direct path channel, a reflected path channel, and a modulus. converter;
  • the receiving end of the direct path channel includes a first antenna, and the first antenna receives the direct path reference signal of the LTE base station;
  • the receiving end of the reflection path channel includes a second antenna, and the second antenna receives the echo signal reflected from the moving target;
  • the output end of the direct path channel and the output end of the reflection path channel are both connected to the analog-to-digital converter
  • the analog-to-digital converter obtains a digital data set of a moving target according to the direct path reference signal and the echo signal, and performs cross-blur coherence processing.
  • the LTE-based passive radar system further includes a local oscillator
  • the direct path channel further includes a first signal processing unit, the receiving end of the first signal processing unit is connected to the output end of the first antenna, and the output end of the first signal processing unit is connected to the analog-to-digital conversion The receiver connection of the device;
  • the reflection path channel further includes a second signal processing unit, the receiving end of the second signal processing unit is connected to the output end of the second antenna, and the output end of the second signal processing unit is connected to the analog-to-digital conversion The receiver connection of the device;
  • the first signal processing unit and the second signal processing unit are connected through the local oscillator.
  • the first signal processing unit and the second signal processing unit both include a low noise amplifier, a band pass filter, a mixer, a low noise amplifier, and a low pass filter connected in sequence;
  • the output terminal of the low-pass filter of the first signal processing unit as the output terminal of the first signal processing unit, is connected to the receiving terminal of the analog-to-digital converter;
  • the output end of the low-pass filter of the second signal processing unit as the output end of the second signal processing unit, is connected to the receiving end of the analog-to-digital converter;
  • the mixer of the first signal processing unit and the mixer of the second signal processing unit are connected through the local oscillator.
  • the analog-to-digital converter performs formatting processing on the direct path reference signal
  • the analog-to-digital converter also performs formatting processing on the echo signal.
  • the LTE-based passive radar system further includes a storage unit
  • the storage unit performs random sampling on the digital data set, and stores the digital data obtained by the random sampling.
  • the digital data set includes the speed of the moving target.
  • the LTE-based passive radar system proposed in the embodiment of the present invention includes two parallel channels.
  • the direct path channel receives the direct path reference signal transmitted from the LTE base station transmitter through the first antenna
  • the reflected path channel receives the movement from the LTE base station through the second antenna.
  • the echo signal reflected by the target The direct path channel and the reflected path channel output the direct path reference signal and the echo signal to the analog-to-digital converter for processing, and finally obtain the digital data set of the moving target.
  • the direct path reference signal transmitted and the echo signal reflected from the moving target are all LTE baseband signals, and the LTE baseband signal has an ultra-wide bandwidth, which is in the range of 1.4-20MHz , which can achieve a higher range resolution and improve the validity of the data when the passive radar system detects two short-range targets.
  • FIG. 1 is a schematic structural diagram of an LTE-based passive radar system provided by Embodiment 1 of the present invention
  • Embodiment 1 of the present invention is a schematic diagram of moving target detection provided by Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural diagram of an LTE-based passive radar system provided by Embodiment 2 of the present invention.
  • FIG. 4 is a schematic diagram of an LTE-based passive radar signal processing solution provided by Embodiment 2 of the present invention.
  • an embodiment of the present invention provides a passive radar system 100 based on LTE (Long Term Evolution), which is applied to the detection of moving targets.
  • the passive radar system 100 based on LTE includes but is not limited to direct Path channel 10, reflection path channel 20, and analog-to-digital converter 30.
  • the receiving end of the direct path channel 10 includes the first antenna 11, and the direct path channel 10 can receive the direct path reference signal of the LTE base station through the first antenna 11;
  • the receiving end of the reflection path channel 20 includes a second antenna 21, and the reflection path channel 20 can receive the echo signal reflected from the moving target through the second antenna 21;
  • the output end of the direct path channel and the output end of the reflection path channel are both connected to an analog-to-digital converter.
  • the LTE base station is used as the illumination source of the external passive radar system
  • the transmitted signal is the LTE baseband signal
  • the direct path reference signal and the echo signal are the LTE baseband signal.
  • the LTE baseband signal transmitted by the LTE base station is directly received by the first antenna and also received by the moving target. After the moving target receives the LTE baseband signal transmitted by the LTE base station, it reflects part of the LTE baseband signal to the passive radar system to make the first antenna Two antennas receive this reflected echo signal.
  • the LTE-based passive radar system can detect multiple moving targets; when there are two targets, the minimum distance required between the two targets is called the range resolution R. If two The target is collinear with the bistatic angle bisector L, according to the definition of distance resolution:
  • C and B are the speed of light and the bandwidth of the LTE baseband signal
  • is the bistatic angle, which is defined as the angle between the base station, the moving target and the receiver with the moving target as the vertex.
  • the analog-to-digital converter 30 obtains the digital data set of the moving target according to the direct path reference signal and the echo signal, and performs cross-blur coherence processing.
  • the two LTE signals received by the direct path channel and the reflected path channel are not completely the same as the two parameters of time delay and Doppler shift due to the different hardware devices used in the two signals. In fact, these two parameters will determine the distance and speed of the detected moving target. Therefore, a cross ambiguity function (CAF) is applied, which is the matched response of the joint time delay and Doppler shift of the LTE signal that matches it.
  • CAF cross ambiguity function
  • the digital data set of the moving target includes information such as the distance, range resolution, azimuth, and height from the moving target to the LTE base station.
  • the LTE-based passive radar system provided in the embodiment of the present invention may further include a storage unit.
  • the storage unit performs random sampling on the digital data set, and stores the digital data obtained by random sampling.
  • the digital data set of the moving target is the speed of the moving target. According to the speed of the moving target, combined with other existing conditions, digital data such as the orientation and distance of the moving target can also be calculated accordingly.
  • the velocities V T1 and V T2 of moving target A and moving target B are as shown in Figure 2 respectively, where ⁇ 1 and ⁇ 2 are the velocity radial angles of moving target A and moving target B, and ⁇ 3 is Radar angle.
  • the velocity resolution ⁇ V can be calculated, which is defined as the difference between the two target velocity vectors projected on the bistatic bisector.
  • the formula is:
  • the velocity resolution can be used to calculate the Doppler resolution, and the Doppler resolution determines the degree of radar observation of targets with different radial velocities.
  • the Doppler resolution is determined by the coherent integration time of the receiver, and the degree of Doppler separation between the two target echoes on the receiver is given by the following formula:
  • ⁇ f d is the Doppler resolution
  • T is the coherent integration time
  • f dT1 and f dT2 are the received Doppler echoes from moving target A and moving target B, respectively, defined as:
  • V T1 cos( ⁇ 1)-V T2 cos( ⁇ 2) is the velocity resolution ⁇ V calculated above.
  • the LTE-based passive radar system provided by the embodiment of the present invention includes two parallel channels.
  • the direct path channel receives the direct path reference signal transmitted from the LTE base station transmitter through the first antenna, and the reflected path channel receives the moving path through the second antenna.
  • the direct path channel and the reflected path channel output the direct path reference signal and the echo signal to the analog-to-digital converter for processing, and finally obtain the digital data set of the moving target.
  • the direct path reference signal transmitted and the echo signal reflected from the moving target are all LTE baseband signals, and the LTE baseband signal has an ultra-wide bandwidth, which is in the range of 1.4-20MHz In this way, a higher range resolution can be achieved, and the data effectiveness of the LTE-based passive radar system when detecting two short-range targets can be improved.
  • the LTE-based passive radar system 100 may further include a local oscillator 40, and the direct path channel 10 may also include a first signal.
  • the processing unit 12 and the reflection path channel 21 further include a second signal processing unit 22.
  • the receiving end of the first signal processing unit 12 is connected to the output end of the first antenna 11.
  • the first signal processing unit 12 receives the direct path reference signal from the first antenna 11, and compares the direct path reference signal
  • the output end of the first signal processing unit 12 is connected to the receiving end of the analog-to-digital converter 30, and the analog-to-digital converter 30 obtains and stores a digital data set according to the processed direct path reference signal;
  • the receiving end of the second signal processing unit 22 is connected to the output end of the second antenna 21.
  • the second signal processing unit 22 accesses the echo signal from the second antenna 21 and processes the echo signal.
  • the second signal processing unit 22 The output end of the analog-to-digital converter 30 is connected to the receiving end of the analog-to-digital converter 30.
  • the analog-to-digital converter 30 obtains and stores a digital data set according to the processed echo signal; the first signal processing unit 12 and the second signal processing unit 22 perform local oscillation ⁇ 40 Connects.
  • the first signal processing unit and the second signal processing unit have the same structure, and the connections between the structures are the same.
  • the first signal processing unit 12 includes a low noise amplifier 121, a band pass filter 122, a mixer 123, a low noise amplifier 124, and a low pass filter 125 connected in sequence;
  • the second signal processing unit 22 includes a low-noise amplifier 221, a band-pass filter 222, a mixer 223, a low-noise amplifier 224, and a low-pass filter 225 with the same structure as the first signal processing unit 12 and connected in sequence;
  • the output terminal of the low-pass filter 125 of the first signal processing unit 12, as the output terminal of the first signal processing unit 12, is connected to the receiving terminal of the analog-to-digital converter 30;
  • the output terminal of the low-pass filter 225 of the second signal processing unit 22 serves as the output terminal of the second signal processing unit 22 and is connected to the receiving terminal of the analog-to-digital converter 30;
  • the mixer 123 of the first signal processing unit 12 and the mixer 223 of the second signal processing unit 22 are connected through a local oscillator 40.
  • the local oscillator is used to heterodyne the mixer and down-convert the signal output by the mixer to baseband.
  • low noise amplifiers are used to amplify the received radio frequency RF signals
  • Band pass filter used to select the desired LTE downlink frequency band.
  • the amplifier is used to amplify the baseband signal to provide sufficient gain for the LTE baseband signal before using a low-pass filter to filter out unwanted frequencies.
  • the two LTE baseband signals received by the direct path channel and the reflected path channel are both stored in a long data set that requires a large number of processors, which may take a long time to process. Therefore, before performing cross-blur coherence processing, both channels need data formatting.
  • the embodiment of the present invention also exemplarily shows a diagram of a passive radar signal processing scheme based on LTE.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种基于LTE的无源雷达系统(100),适用于雷达通信技术领域,提供了应用于运动目标的探测,包括直接路径信道(10)、反射路径信道(20)和模数转换器(30);直接路径信道(10)的接收端包括第一天线(11),第一天线(11)接收LTE基站的直接路径参考信号;反射路径信道(20)的接收端包括第二天线(21),第二天线(21)接收从运动目标反射的回波信号;直接路径信道(10)的输出端和反射路径信道(20)的输出端均与模数转换器(30)连接;模数转换器(30)根据直接路径参考信号和回波信号,获得运动目标的数字数据集,并进行交叉模糊相干处理。基于LTE的无源雷达系统(100)能够实现较高的距离分辨率,提高无源雷达系统(100)探测两个近距离目标时数据的有效性。

Description

一种基于LTE的无源雷达系统 技术领域
本发明涉及雷达通信技术领域,尤其涉及一种基于LTE的无源雷达系统。
背景技术
传统的有源雷达利用雷达发射电磁波对目标进行照射并接收其回波,来探测目标,获得目标至电磁波发射点的距离、距离分辨率、方位、高度等信息。而被探测目标可以接收到传统的有源雷达的发射信号,从而实现反向探测侦察,因此传统雷达的隐蔽性和抗干扰能力差。相对地,无源雷达自身不发射波束,而是通过接受对方雷达发射或照射源发送的波束来探测目标,具有较好的隐蔽性和抗干扰能力。目前,有多种信号源都可以作为无源雷达系统的照射源,如电视广播、FM收音机、数字视频、音频广播、卫星、无线电子邮件、全球移动通信系统和全球微波接入互操作性等。
无源雷达系统的距离分辨率与所采用的照射源的带宽有较大的关系,距离分辨率高,有利于对目标的精确定位。然而,上述的信号源作为照射源不能明显提高无源雷达系统的距离分辨率。
发明内容
本发明的主要目的在于提出一种基于LTE的无源雷达系统,以解决现有技术中无源雷达系统所采用的照射源不能明显提高距离分辨率的问题。
为实现上述目的,本发明实施例第一方面提供一种基于LTE的无源雷达系统,应用于运动目标的探测,所述基于LTE的无源雷达系统包括直接路径信道、反射路径信道和模数转换器;
所述直接路径信道的接收端包括第一天线,所述第一天线接收LTE基站的直接路径参考信号;
所述反射路径信道的接收端包括第二天线,所述第二天线接收从运动目标反射的回波信号;
所述直接路径信道的输出端和所述反射路径信道的输出端均与所述模数转换器连接;
所述模数转换器根据所述直接路径参考信号和所述回波信号,获得运动目标的数字数据集,并进行交叉模糊相干处理。
可选地,基于LTE的无源雷达系统还包括本地振荡器;
所述直接路径信道还包括第一信号处理单元,所述第一信号处理单元的接收端与所述第一天线的输出端连接,所述第一信号处理单元的输出端与所述模数转换器的接收端连接;
所述反射路径信道还包括第二信号处理单元,所述第二信号处理单元的接收端与所述第二天线的输出端连接,所述第二信号处理单元的输出端与所述模数转换器的接收端连接;
所述第一信号处理单元与所述第二信号处理单元通过所述本地振荡器连接。
可选地,所述第一信号处理单元和第二信号处理单元均包括依次连接的低噪声放大器、带通滤波器、混频器、低噪声放大器和低通滤波器;
所述第一信号处理单元的低通滤波器的输出端,作为所述第一信号处理单元的输出端,与所述所述模数转换器的接收端连接;
所述第二信号处理单元低通滤波器的输出端,作为所述第二信号处理单元的输出端,与所述所述模数转换器的接收端连接;
所述第一信号处理单元的混频器与所述第二信号处理单元的混频器通过所述本地振荡器连接。
可选地,所述模数转换器对所述直接路径参考信号进行格式化处理;
所述模数转换器还对所述回波信号进行格式化处理。
可选地,基于LTE的无源雷达系统还包括存储单元;
所述存储单元对所述数字数据集,进行随机采样,并存储所述随机采样获得的数字数据。
可选地,所述数字数据集包括所述运动目标的速度。
本发明实施例提出的基于LTE的无源雷达系统,包含两个并行信道,直接路径信道通过第一天线接收从LTE基站发射机发射的直接路径参考信号,反射路径信道通过第二天线接收从运动目标反射的回波信号。直接路径信道和反射路径信道将直接路径参考信号和回波信号输出至模数转换器中进行处理,最终获得运动目标的数字数据集。其中,通过使用LTE基站作为照射源,其发射的直接路径参考信号、以及从运动目标反射的回波信号均为LTE基带信号,而LTE基带信号有超宽的带宽,其在1.4-20MHz范围内,从而可以实现较高的距离分辨率,提高无源雷达系统探测两个近距离目标时数据的有效性。
附图说明
图1为本发明实施例一提供的基于LTE的无源雷达系统的结构示意图;
图2为本发明实施例一提供的运动目标探测示意图;
图3为本发明实施例二提供的基于LTE的无源雷达系统的结构示意图;
图4为本发明实施例二提供的基于LTE的无源雷达信号处理方案示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限 定本发明。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
在本文中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本发明的说明,其本身并没有特定的意义。因此,"模块"与"部件"可以混合地使用。
在后续的描述中,发明实施例序号仅仅为了描述,不代表实施例的优劣。
实施例一
如图1所示,本发明实施例提供一种基于LTE(Long Term Evolution,长期演进)的无源雷达系统100,应用于运动目标的探测,基于LTE的无源雷达系统100包括但不限于直接路径信道10、反射路径信道20和模数转换器30。
在本发明实施例中,直接路径信道10的接收端包括第一天线11,直接路径信道10可以通过第一天线11接收LTE基站的直接路径参考信号;
反射路径信道20的接收端包括第二天线21,反射路径信道20可以通过第二天线21接收从运动目标反射的回波信号;
直接路径信道的输出端和反射路径信道的输出端均与模数转换器连接。
在具体应用中,LTE基站作为外置于无源雷达系统的照射源,所发射的信号为LTE基带信号,则直接路径参考信号和回波信号为LTE基带信号。LTE基站发射的LTE基带信号被第一天线直接接收,也被运动目标所接收,且运动目标接收到LTE基站所发射的LTE基带信号后,将反射部分LTE基带信号至无源雷达系统,使第二天线接收此反射的回波信号。
在实际应用中,基于LTE的无源雷达系统探测的运动目标可以为多个; 当目标为两个时,两个目标之间所需的最小距离间隔称为距离分辨率R,若假设两个目标与双基地角平分线L共线,根据距离分辨率的定义:
Figure PCTCN2019071690-appb-000001
其中,C和B分别是光速和LTE基带信号的带宽,β是双基地角,它被定义为以运动目标作为顶点,基站、运动目标和接收器之间的角度。
从定义可知,雷达中使用的波段带宽越大,距离分辨率越好。而LTE基带信号与其它信号照射源相比,具有更好的距离分辨率,有助于两个近距离目标的识别。
在本发明实施例中,模数转换器30根据直接路径参考信号和回波信号,获得运动目标的数字数据集,并进行交叉模糊相干处理。
在具体应用中,直接路径信道和反射路径信道接收的两路LTE信号,由于两路信号所采用的硬件设备不完全一样,导致时间延迟和多普勒频移两个参数不完全一致。实际上,这两个参数将决定检测到的移动目标的距离和速度。因此,应用交叉模糊度函数(CAF),其是与其匹配的LTE信号的联合时间延迟和多普勒频移的匹配的响应。
在具体应用中,运动目标的数字数据集包括运动目标至LTE基站的距离、距离分辨率、方位、高度等信息。
在一个实施例中,本发明实施例提供的基于LTE的无源雷达系统还可以包括存储单元。
其中,存储单元对数字数据集,进行随机采样,并存储随机采样获得的数字数据。
在一个实施例中,运动目标的数字数据集为运动目标的速度,根据运动目标的速度,结合其他已经条件,还可以相应计算出运动目标的方位、距离等数字数据。
例如,探测两个运动目标时,运动目标A和运动目标B速度V T1和V T2 分别如图2所示,其中α1和α2分别是运动目标A和运动目标B的速度径向角,α3为雷达角。
根据运动目标A和运动目标B速度V T1和V T2,可以计算速度分辨率△V,定义为投射到双基地平分线上的两个目标速度矢量之间的差值,公式为:
ΔV=V T1cos(α1)-V T2cos(α2);
速度分辨率可用于多普勒分辨率的计算,而多普勒分辨率决定了雷达观测不同径向速度目标的程度。
其中,多普勒分辨率由接收机的相干积分时间确定,其中接收机上两个目标回波之间的多普勒分离程度由下式给出:
Figure PCTCN2019071690-appb-000002
△f d是多普勒分辨率,T是相干积分时间。f dT1和f dT2分别是来自运动目标A和运动目标B的接收多普勒回波,定义为:
Figure PCTCN2019071690-appb-000003
假设这运动目标A和运动目标B处于同一位置,则它们为双基地角平分线L上的同一点,得出多普勒分辨率△f d
Figure PCTCN2019071690-appb-000004
其中,V T1cos(α1)-V T2cos(α2)为上述计算的速度分辨率△V。
本发明实施例提供的基于LTE的无源雷达系统,包含两个并行信道,直接路径信道通过第一天线接收从LTE基站发射机发射的直接路径参考信号,反射路径信道通过第二天线接收从运动目标反射的回波信号。直接路径信道和反射路径信道将直接路径参考信号和回波信号输出至模数转换器中进行处理,最终获得运动目标的数字数据集。其中,通过使用LTE基站作为照射源,其发射的直接路径参考信号、以及从运动目标反射的回波信号均为LTE基带信号,而LTE基带信号有超宽的带宽,其在1.4-20MHz范围内,从而可以实现较高的 距离分辨率,提高基于LTE的无源雷达系统探测两个近距离目标时数据的有效性。
实施例二
如图3所示,在实施例一所提供的基于LTE的无源雷达系统100的基础上,基于LTE的无源雷达系统100还可以包括本地振荡器40、直接路径信道10还包括第一信号处理单元12、反射路径信道21还包括第二信号处理单元22。
在本发明实施例中,第一信号处理单元12的接收端与第一天线11的输出端连接,第一信号处理单元12从第一天线11接入直接路径参考信号,并对直接路径参考信号进行处理,第一信号处理单元12的输出端与模数转换器30的接收端连接,模数转换器30根据处理后的直接路径参考信号,获得并存储数字数据集;
第二信号处理单元22的接收端与第二天线21的输出端连接,第二信号处理单元22从第二天线21接入回波信号,并对回波信号进行处理,第二信号处理单元22的输出端与模数转换器30的接收端连接,模数转换器30根据处理后的回波信,获得并存储数字数据集;第一信号处理单元12与第二信号处理单元22通过本地振荡器40连接。
在一个实施例中,第一信号处理单元和第二信号处理单元具有相同的结构,且结构之间的连接方式相同。
如图3所示,在本发明实施例中,第一信号处理单元12包括依次连接的低噪声放大器121、带通滤波器122、混频器123、低噪声放大器124和低通滤波器125;第二信号处理单元22包括与第一信号处理单元12相同结构的、依次连接的低噪声放大器221、带通滤波器222、混频器223、低噪声放大器224和低通滤波器225;
其中,第一信号处理单元12的低通滤波器125的输出端,作为第一信号 处理单元12的输出端,与模数转换器30的接收端连接;
第二信号处理单元22的低通滤波器225的输出端,作为第二信号处理单元22的输出端,与模数转换器30的接收端连接;
第一信号处理单元12的混频器123与第二信号处理单元22的混频器223通过本地振荡器40连接。
在具体应用中,本地振荡器,用于对混频器进行外差,使混频器输出的信号下变频到基带。
在具体应用中,低噪声放大器,用于放大接收的射频RF信号;
带通滤波器,用于选择期望的LTE下行链路频带。
放大器,用于放大基带信号,以在使用低通滤波器滤除不需要的频率之前为LTE基带信号提供足够的增益。
在一个实施例中,直接路径信道和反射路径信道接收的两路LTE基带信号都保存在需要大量处理器的长数据集中,这可能需要很长时间来处理。因此,在进行交叉模糊相干处理之前,两个通道都需要数据格式化。
在具体应用中,还可以使用其他数据处理模块、单元或处理器,对直接路径参考信号和回波信号进行格式化处理,本发明实施例不对其作具体限定。
如图4所示,本发明实施例还示例性的示出了基于LTE的无源雷达信号处理方案图。
图4中,数据格式化和交叉模糊相干处理均在模数转换器中完成,交叉模糊相干处理后获得的基于目标运动的数字数据集用于目标探测。
以上所述实施例仅用以说明本发明的技术方案,而非对其限制;尽管前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。

Claims (6)

  1. 一种基于LTE的无源雷达系统,其特征在于,应用于运动目标的探测,所述基于LTE的无源雷达系统包括直接路径信道、反射路径信道和模数转换器;
    所述直接路径信道的接收端包括第一天线,所述第一天线接收LTE基站的直接路径参考信号;
    所述反射路径信道的接收端包括第二天线,所述第二天线接收从运动目标反射的回波信号;
    所述直接路径信道的输出端和所述反射路径信道的输出端均与所述模数转换器连接;
    所述模数转换器根据所述直接路径参考信号和所述回波信号,获得运动目标的数字数据集,并进行交叉模糊相干处理。
  2. 如权利要求1所述的基于LTE的无源雷达系统,其特征在于,还包括本地振荡器;
    所述直接路径信道还包括第一信号处理单元,所述第一信号处理单元的接收端与所述第一天线的输出端连接,所述第一信号处理单元的输出端与所述模数转换器的接收端连接;
    所述反射路径信道还包括第二信号处理单元,所述第二信号处理单元的接收端与所述第二天线的输出端连接,所述第二信号处理单元的输出端与所述模数转换器的接收端连接;
    所述第一信号处理单元与所述第二信号处理单元通过所述本地振荡器连接。
  3. 如权利要求2所述的基于LTE的无源雷达系统,其特征在于,所述第一信号处理单元和第二信号处理单元均包括依次连接的低噪声放大器、带通滤波器、混频器、低噪声放大器和低通滤波器;
    所述第一信号处理单元的低通滤波器的输出端,作为所述第一信号处理单元的输出端,与所述所述模数转换器的接收端连接;
    所述第二信号处理单元的低通滤波器的输出端,作为所述第二信号处理单元的输出端,与所述所述模数转换器的接收端连接;
    所述第一信号处理单元的混频器与所述第二信号处理单元的混频器通过所述本地振荡器连接。
  4. 如权利要求1至3任一项所述的基于LTE的无源雷达系统,其特征在于,所述模数转换器对所述直接路径参考信号进行格式化处理;
    所述模数转换器还对所述回波信号进行格式化处理。
  5. 如权利要求1所述的基于LTE的无源雷达系统,其特征在于,还包括存储单元;
    所述存储单元对所述数字数据集,进行随机采样,并存储所述随机采样获得的数字数据。
  6. 如权利要求1所述的基于LTE的无源雷达系统,其特征在于,所述数字数据集包括所述运动目标的速度。
PCT/CN2019/071690 2019-01-15 2019-01-15 一种基于lte的无源雷达系统 WO2020146995A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/071690 WO2020146995A1 (zh) 2019-01-15 2019-01-15 一种基于lte的无源雷达系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/071690 WO2020146995A1 (zh) 2019-01-15 2019-01-15 一种基于lte的无源雷达系统

Publications (1)

Publication Number Publication Date
WO2020146995A1 true WO2020146995A1 (zh) 2020-07-23

Family

ID=71613079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071690 WO2020146995A1 (zh) 2019-01-15 2019-01-15 一种基于lte的无源雷达系统

Country Status (1)

Country Link
WO (1) WO2020146995A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010099268A1 (en) * 2009-02-25 2010-09-02 Xanthia Global Limited Wireless physiology monitor
CN101986169A (zh) * 2010-08-10 2011-03-16 重庆星熠导航设备有限公司 基于蜂窝移动通信基站及其网络的分布式无源探测系统
CN102176010A (zh) * 2011-01-21 2011-09-07 西安电子科技大学 基于多发单收的无源雷达定位跟踪系统及定位跟踪方法
CN102707272A (zh) * 2012-06-13 2012-10-03 西安电子科技大学 基于gpu的外辐射源雷达信号实时处理系统及处理方法
CN102819016A (zh) * 2011-06-07 2012-12-12 中国人民解放军海军航空工程学院 利用导航雷达信号探测低空目标的被动探测系统及方法
CN107941369A (zh) * 2017-11-24 2018-04-20 广东电网有限责任公司东莞供电局 一种基于声表面波的开关柜多点、低串扰温度测量装置
CN108957417A (zh) * 2018-04-28 2018-12-07 天津大学 基于lte外辐射源的被动雷达探测方法及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010099268A1 (en) * 2009-02-25 2010-09-02 Xanthia Global Limited Wireless physiology monitor
CN101986169A (zh) * 2010-08-10 2011-03-16 重庆星熠导航设备有限公司 基于蜂窝移动通信基站及其网络的分布式无源探测系统
CN102176010A (zh) * 2011-01-21 2011-09-07 西安电子科技大学 基于多发单收的无源雷达定位跟踪系统及定位跟踪方法
CN102819016A (zh) * 2011-06-07 2012-12-12 中国人民解放军海军航空工程学院 利用导航雷达信号探测低空目标的被动探测系统及方法
CN102707272A (zh) * 2012-06-13 2012-10-03 西安电子科技大学 基于gpu的外辐射源雷达信号实时处理系统及处理方法
CN107941369A (zh) * 2017-11-24 2018-04-20 广东电网有限责任公司东莞供电局 一种基于声表面波的开关柜多点、低串扰温度测量装置
CN108957417A (zh) * 2018-04-28 2018-12-07 天津大学 基于lte外辐射源的被动雷达探测方法及系统

Similar Documents

Publication Publication Date Title
US8237604B2 (en) Virtual beam forming in ultra wideband systems
CN101625262B (zh) 一种基于毫米波雷达的非空气传导语音探测仪
US2687520A (en) Radar range measuring system
CN110007277B (zh) 雷达通信一体化系统及该系统的扩容方法
Schoenenberger et al. Principles of independent receivers for use with co-operative radar transmitters
KR100940918B1 (ko) 음영지역 탐지를 위한 펄스 압축 레이더의 펄스 파형 송신방법, 이를 이용한 펄스 압축 레이더 및 레이더 네트워크
RU2315332C1 (ru) Радиолокационная станция
Samczynski et al. Passive radars utilizing pulse radars as illuminators of opportunity
WO2020146995A1 (zh) 一种基于lte的无源雷达系统
Bączyk et al. The impact of reference channel SNR on targets detection by passive radars using DVB-T signals
CN209486294U (zh) 一种基于lte的无源雷达系统
CN113759376B (zh) 一种自主探测成像一体化雷达装置
JP7428726B2 (ja) 特に車両で使用するためのコヒーレントなマルチスタティックレーダシステム
CN106154255A (zh) 一种消除距离盲区的近程警戒雷达
Tang et al. Small phased array radar based on AD9361 For UAV detection
CN106291527A (zh) 基于固定指向天线宽波束测角的雷达装置
CN215894934U (zh) 一种有源龙伯透镜雷达对抗系统
JP2016057207A (ja) レーダシステム、レーダ装置及び受信レーダ装置
Diao et al. Compact millimeter wave architecture dedicated to object detection using dual band—dual polarization and impulse method
CN113687313B (zh) 一种基于双反射面天线的星载x+s双频sar系统
Baixiao et al. Experimental system and experimental results for coast-ship Bi/multistatic ground-wave over-the-horizon radar
WO2022166241A1 (zh) 干扰侦听方法、装置及雷达
Wang et al. Detection and tracking of multiple human targets with an uwb monopulse radar
CN209028207U (zh) 雷达及具有该雷达的船舶交通导航系统
CN117148393A (zh) 基于gnss外辐射源的全极化空中目标探测装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01.12.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19910323

Country of ref document: EP

Kind code of ref document: A1