WO2020146979A1 - 致动器及其制备方法、操作方法、可移动装置 - Google Patents

致动器及其制备方法、操作方法、可移动装置 Download PDF

Info

Publication number
WO2020146979A1
WO2020146979A1 PCT/CN2019/071640 CN2019071640W WO2020146979A1 WO 2020146979 A1 WO2020146979 A1 WO 2020146979A1 CN 2019071640 W CN2019071640 W CN 2019071640W WO 2020146979 A1 WO2020146979 A1 WO 2020146979A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting device
layer
deformation
wavelength
Prior art date
Application number
PCT/CN2019/071640
Other languages
English (en)
French (fr)
Inventor
曾苏伟
姚固
王玉
朱儒晖
邹清华
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/754,570 priority Critical patent/US11434128B2/en
Priority to PCT/CN2019/071640 priority patent/WO2020146979A1/zh
Priority to CN201980000063.8A priority patent/CN111699152B/zh
Publication of WO2020146979A1 publication Critical patent/WO2020146979A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0018Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
    • B81B3/0029Transducers for transforming light into mechanical energy or viceversa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/0019Flexible or deformable structures not provided for in groups B81C1/00142 - B81C1/00182
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/008Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for characterised by the actuating element
    • F03G7/016Photosensitive actuators, e.g. using the principle of Crookes radiometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof

Definitions

  • the embodiments of the present disclosure relate to an actuator, a preparation method thereof, an operation method, and a movable device.
  • An actuator is a device that can move under driving to generate a driving (pushing or pulling) effect, for example, it can be combined with other functional devices.
  • the actuator can drive the functional device loaded on it in a predetermined direction or path according to a control command, thereby transporting the functional device to a predetermined location.
  • actuators include driving elements using electric, magnetic or mechanical structures to drive. These driving elements are usually installed inside the actuator and have a certain structure.
  • Some embodiments of the present disclosure provide an actuator that includes a photo-deformable layer and a first driving unit; the first driving unit includes at least one first light-emitting device that is combined with the light
  • the first side of the deformable layer can emit first light of a first wavelength and irradiate the photo deformable layer; the photo deformable layer can undergo first deformation under the irradiation of the first light.
  • the actuator provided by at least one embodiment of the present disclosure further includes a second driving unit, the second driving unit includes at least one second light emitting device, and the second light emitting device is coupled to the second side of the photodeformable layer ,
  • the second light of the first wavelength can be emitted and irradiated on the photo-deformation layer, and the first side and the second side of the photo-deformation layer are opposite to each other.
  • the first driving unit further includes at least one third light-emitting device, and the third light-emitting device is coupled to the first side of the photodeformable layer.
  • the third light of the second wavelength is emitted and irradiated onto the photo-deformation layer; the deformed photo-deformation layer undergoes a second deformation under the irradiation of the third light of the second wavelength, and the first wavelength is different At the second wavelength, the deformation directions of the first deformation and the second deformation are opposite.
  • the actuator provided by at least one embodiment of the present disclosure further includes a second driving unit, the second driving unit includes at least one second light emitting device and at least one fourth light emitting device, the second light emitting device and the fourth light emitting device
  • a light-emitting device is coupled to the second side of the photo-deformable layer, the second light-emitting device can emit a second light of a first wavelength and irradiate the photo-deformable layer, and the fourth light-emitting device can emit a second wavelength
  • the fourth light is irradiated on the photo-deformation layer, and the first side and the second side of the photo-deformation layer are opposite to each other.
  • the first driving unit includes a plurality of first light emitting devices and a plurality of third light emitting devices
  • the second driving unit includes a plurality of second light emitting devices and A fourth light-emitting device; in a direction parallel to the extension of the photodeformable layer, the first light-emitting device and the third light-emitting device are arranged crosswise, and the second light-emitting device and the fourth light-emitting device are staggered .
  • the first light-emitting device and the fourth light-emitting device overlap each other, and the second The light emitting device and the third light emitting device overlap each other.
  • the first driving unit further includes at least one fifth light-emitting device, and the fifth light-emitting device is coupled to the second side of the photodeformable layer.
  • the fifth light of the second wavelength is emitted and irradiated on the photo-deformation layer, and the photo-deformation layer undergoes a second deformation under the irradiation of the fifth light of the second wavelength, and the first wavelength is different from
  • the deformation directions of the first deformation and the second deformation are opposite, and the first side and the second side of the photodeformable layer are opposite to each other.
  • the actuator provided by at least one embodiment of the present disclosure further includes a second driving unit that includes at least one sixth light emitting device and at least one seventh light emitting device; the sixth light emitting device is combined with the The second side of the photo-deformation layer can emit sixth light of the first wavelength and irradiate the photo-deformation layer, and the seventh light-emitting device is combined with the first side of the photo-deformation layer.
  • the seventh light of the second wavelength is emitted and irradiated on the photo-deformation layer; in the direction perpendicular to the layer of the photo-deformation layer, the sixth light-emitting device and the seventh light-emitting device overlap each other.
  • the material of the photodeformable layer includes: azobenzene, triphenylmethane derivatives, cinnamic acid group-containing copolymers, benzospiropirin Or polyethylene polymer.
  • the light emitting device included in the first driving unit and/or the second driving unit is a light emitting diode device, and the light emitting diode device includes a flexible substrate.
  • the light emitting diode device further includes a flexible packaging layer, and is attached to the surface of the photodeformable layer through the flexible packaging layer.
  • the first wavelength is shorter than the second wavelength.
  • the first wavelength is a blue wavelength or an ultraviolet wavelength
  • the second wavelength is an infrared wavelength
  • At least one embodiment of the present disclosure provides a movable device including any of the above-mentioned actuators to drive the movable device.
  • the movable device provided by at least one embodiment of the present disclosure further includes a controller that controls at least the light-emitting state of the first light-emitting device in the actuator, thereby controlling the actuator to drive.
  • the movable device provided by at least one embodiment of the present disclosure further includes an image sensor, and the image sensor is used to photograph the external environment of the movable device.
  • At least one embodiment of the present disclosure provides a method for manufacturing an actuator, including: providing a photo-deformable layer; arranging a first driving unit on the photo-deformable layer, and the first driving unit includes at least one first luminous Device, and the first light-emitting device is coupled to the first side of the photo-deformable layer; wherein, the first light-emitting device can emit first light of a first wavelength, and the photo-deformable layer is on the first side The first deformation can occur under light irradiation.
  • the first driving unit further includes another light-emitting device; the manufacturing method further includes: bonding the other light-emitting device to the photodeformable layer The first side or the second side; wherein the other light-emitting device can emit a second light of a second wavelength, the photo-deformable layer undergoes a second deformation under the irradiation of the second light, and the first The wavelength is different from the second wavelength, the deformation directions of the first deformation and the second deformation are opposite, and the first side and the second side of the photodeformable layer are opposite to each other.
  • the photodeformation layer includes azobenzene; forming the photodeformation layer includes: dissolving azobenzene monomer in a solvent; and forming azobenzene on a substrate. Benzene monomer layer; contacting the azobenzene monomer layer with an azobenzene crosslinking agent to crosslink the azobenzene in the azobenzene monomer layer.
  • the azobenzene monomer layer is formed on the substrate by an inkjet printing method, and the azobenzene monomer layer is formed by an inkjet printing method.
  • Spray the azobenzene crosslinking agent is applied to the substrate by an inkjet printing method.
  • At least one embodiment of the present disclosure provides an operating method of any one of the above-mentioned actuators, including: controlling a first light emitting device of a first driving unit to emit first light of a first wavelength, so that the photodeformable layer generates a first light A deformation; controlling the first light emitting device of the first driving unit to stop emitting light, so that the photodeformable layer undergoes a second deformation, and the first deformation and the second deformation are opposite.
  • the first driving unit further includes another light emitting device, and the another light emitting device is coupled to the first side or the second side of the photodeformable layer;
  • the first side and the second side of the photo-deformable layer are opposite to each other;
  • the operation method further includes: controlling the another light-emitting device to emit second light of a second wavelength, so that the photo-deformable layer generates second light.
  • the first wavelength is different from the second wavelength, and the deformation directions of the first deformation and the second deformation are opposite.
  • Fig. 1A is a first schematic cross-sectional view of an actuator provided by some embodiments of the present disclosure
  • FIG. 1B is a schematic diagram of the deformation process of the actuator in FIG. 1A;
  • FIG. 1C is a schematic plan view of the actuator in FIG. 1A;
  • FIG. 2A is a second schematic cross-sectional view of an actuator provided by some embodiments of the disclosure.
  • FIG. 2B is a schematic diagram of the deformation process of the actuator in FIG. 2A;
  • 3A is a third schematic cross-sectional view of an actuator provided by some embodiments of the disclosure.
  • FIG. 3B is a schematic diagram of the deformation process of the actuator in FIG. 3A;
  • FIG. 4A is a schematic cross-sectional view four of the actuator provided by some embodiments of the present disclosure.
  • FIG. 4B is a schematic diagram of the deformation process of the actuator in FIG. 4A;
  • FIG. 5 is a schematic cross-sectional view five of the actuator provided by some embodiments of the disclosure.
  • 6A is a sixth schematic cross-sectional view of an actuator provided by some embodiments of the disclosure.
  • FIG. 6B is a schematic diagram of the deformation process of the actuator in FIG. 6A;
  • Fig. 7A is a seventh schematic cross-sectional view of an actuator provided by some embodiments of the present disclosure.
  • FIG. 7B is a schematic diagram of the deformation process of the actuator in FIG. 7A;
  • FIG. 8A is a schematic cross-sectional view of an actuator provided by some embodiments of the disclosure.
  • FIG. 8B is a schematic diagram of the deformation process of the actuator in FIG. 8A;
  • Fig. 9A is a ninth cross-sectional schematic view of an actuator provided by some embodiments of the present disclosure.
  • FIG. 9B is a schematic diagram of the deformation process of the actuator in FIG. 9A;
  • FIG. 10A is a tenth schematic cross-sectional view of an actuator provided by some embodiments of the disclosure.
  • FIG. 10B is a schematic diagram of the deformation process of the actuator in FIG. 10A;
  • Figure 11 is a schematic cross-sectional view of an actuator provided by some embodiments of the present disclosure.
  • FIG. 12 is a schematic diagram of a movable device provided by some embodiments of the disclosure.
  • FIG. 13 is a preparation flow chart of the actuator provided by some embodiments of the disclosure.
  • FIG. 14 is a preparation flow chart of the photodeformable layer of the actuator provided by some embodiments of the disclosure.
  • FIG. 16 is a flowchart of another operating method of an actuator provided by some embodiments of the disclosure.
  • actuators usually include driving elements using electric, magnetic, or mechanical structures for driving. These driving elements are usually installed inside the actuator and have a certain structure. These structures are often large in size, making the actuators unable to be miniaturized, so they cannot be applied to micro-robots in fields such as medical treatment and flaw detection, and the actuators are often difficult to produce micro-movements, that is, they cannot move in tiny spaces. Or unable to perform small distance movement, etc.
  • At least one embodiment of the present disclosure provides an actuator that includes a photo-deformable layer and a first driving unit; the first driving unit includes at least one first light-emitting device, and the first light-emitting device is combined with the photo-deformable layer On the first side, the first light of the first wavelength can be emitted and irradiated on the photo-deformation layer; the photo-deformation layer can undergo first deformation under the irradiation of the first light.
  • At least one embodiment of the present disclosure provides a movable device including the above-mentioned actuator to drive the movable device to move.
  • At least one embodiment of the present disclosure provides a method for manufacturing an actuator, including: providing a photo-deformation layer; and disposing a first driving unit on the photo-deformation layer, the first driving unit including at least one first light-emitting device, and The first light-emitting device is coupled to the first side of the photo-deformable layer; the first light-emitting device can emit first light of a first wavelength, and the photo-deformable layer can undergo first deformation under the irradiation of the first light.
  • At least one embodiment of the present disclosure provides an operating method of the above-mentioned actuator, including: controlling a first light emitting device of a first driving unit to emit first light of a first wavelength to cause a first deformation of the photodeformable layer; The first light-emitting device of a driving unit stops emitting light, causing the photo-deformable layer to undergo a second deformation, and the first deformation is opposite to the second deformation.
  • FIG. 1A is a schematic cross-sectional view of the actuator
  • FIG. 1C is a schematic plan view of the actuator
  • FIG. 1A is a cut along line AA in FIG. 1C .
  • the actuator 100 includes a photodeformable layer 101 and a first driving unit 102.
  • the first driving unit 102 includes at least one first light-emitting device 1021, the first light-emitting device 1021 is coupled to the first side of the photo-deformable layer 101 (shown as the upper side of the photo-deformable layer 101 in the figure), and the first light-emitting device 1021 can emit the first light of the first wavelength ⁇ 1 and irradiate it on the photo-deformable layer 101, that is, irradiate it on the first side of the photo-deformable layer 101, and the photo-deformable layer 101 can undergo the first light irradiation under the first light.
  • a deformation which causes the entire actuator 100 to undergo a first deformation along with the photo-deformable layer 101, so that the first deformation can be used to generate a driving effect.
  • the first driving unit includes a plurality of first light-emitting devices, and each of the first light-emitting devices can emit first light of a first wavelength and irradiate the photo-deformable layer.
  • the plurality of first light emitting devices may be of the same specification.
  • the geometric size is the same; for example, the physical specifications (luminous intensity, luminous time) are the same.
  • At least some of the first light emitting devices in the plurality of first light emitting devices have different specifications. For example, different geometric sizes (length, width, height); for example, different physical specifications (luminous intensity, luminous time), etc.
  • the cross-sectional shape of the photo-deformable layer may be rectangular, trapezoidal, arc, or the like.
  • the photo-deformable layer 101 when the first light-emitting device 1021 stops irradiating the first light of the first wavelength ⁇ 1, the photo-deformable layer 101 is no longer irradiated with light and a second deformation occurs.
  • This second deformation is the same as the first deformation.
  • the deformation direction (at least part of the deformation direction in the direction perpendicular to the photodeformable layer) is opposite.
  • the photo-deformable layer 101 can be restored to its original state (initial state) before the first deformation occurs through the second deformation, so that the entire actuator 100 will also be in a flat state as the photo-deformable layer 101 returns to its original state.
  • the second variant can also be used to generate a driving effect.
  • FIG. 1B shows the deformation process of the actuator 100.
  • the actuator 100 does not deform under no light irradiation and is in a flat state.
  • the actuator 100 produces a first deformation to the side irradiated with the first light, that is, upwards as shown in the figure. Deformed.
  • the actuator 100 returns to its original state and assumes a straight state.
  • the actuator in addition to the first drive unit, the actuator further includes a second drive unit.
  • the second driving unit includes at least one second light emitting device, the second light emitting device is coupled to the second side of the photo deformable layer (the first side and the second side of the photo deformable layer are opposite to each other), and the second light emitting device can emit The second light of one wavelength is irradiated on the photo-deformable layer.
  • the actuator provided by this embodiment can produce bilateral deformation.
  • the second driving unit includes a plurality of second light-emitting devices, and each of the second light-emitting devices can emit second light of a first wavelength and irradiate the photodeformable layer.
  • multiple second light emitting devices may be of the same specification.
  • the geometric size is the same; for example, the physical specifications (luminous intensity, luminous time) are the same.
  • At least some of the second light emitting devices in the plurality of second light emitting devices have different specifications. For example, different geometric sizes (length, width, height); for example, different physical specifications (luminous intensity, luminous time), etc.
  • the first light emitting device and the second light emitting device may be of the same specification, or may be of different specifications.
  • the first light-emitting device and the second light-emitting device are at least partially overlapped in a direction perpendicular to the photodeformable layer.
  • the first light emitting device and the second light emitting device do not overlap in a direction perpendicular to the photodeformable layer.
  • the actuator 200 includes a photodeformable layer 201, a first driving unit 202, and a second driving unit 203.
  • the first driving unit 202 and the second driving unit 203 sandwich the photodeformable layer 201 and face each other.
  • the first driving unit 202 includes at least one first light-emitting device 2021.
  • the first light-emitting device 2021 is coupled to the first side of the photo-deformable layer 201 (shown as the upper side of the photo-deformable layer 201 in the figure), and the first light-emitting device 2021 can emit the first light of the first wavelength ⁇ 1 and irradiate it on the first side of the photo-deformable layer 201, and the photo-deformable layer 201 can undergo first deformation under the irradiation of the first light of the first light-emitting device 2021, for example In the embodiment shown in FIG. 2A, it is an upward deformation.
  • the second driving unit 203 includes at least one second light-emitting device 2031.
  • the second light-emitting device 2031 is combined with the second side of the photo-deformable layer 201 (shown as the lower side of the photo-deformable layer 201 in the figure), and is connected to the first light-emitting device.
  • the element 2021 is opposite, and the second light-emitting device 2031 can also emit second light of the first wavelength ⁇ 1 and irradiate it on the second side of the photo-deformable layer 201.
  • the photo-deformable layer 201 is on the second side of the second light-emitting device 2031. Another deformation may occur under irradiation, and the deformation direction is opposite to the deformation direction of the first deformation, for example, downward deformation in the embodiment shown in FIG. 2A. Therefore, the actuator 200 provided in this embodiment can deform on both sides of the photo-deformable layer 201.
  • FIG. 2B shows the deformation process of the actuator 200.
  • the actuator 200 does not deform under no light irradiation, and is in a flat state.
  • the actuator 100 deforms toward the side irradiated by the first light, that is, deforms upward as shown in the figure.
  • the actuator 200 returns to its original state. That is, it is straight.
  • the actuator 200 deforms toward the side irradiated with the second light, that is, it deforms downward as shown in the figure. .
  • the actuator 200 stops emitting light, the actuator 200 returns to its original state and assumes a straight state.
  • the actuator 200 can deform on both sides to diversify the movement modes of the actuator 200.
  • the driving action can be symmetrical with respect to the extension direction of the actuator 200 (the horizontal direction in the figure). of.
  • the first driving unit also includes at least one third light-emitting device.
  • the third light-emitting device is combined with the first side of the photodeformable layer to emit the first light-emitting device.
  • the third light of two wavelengths is irradiated on the photodeformation layer; the first wavelength and the second wavelength are different, and the deformed photodeformation layer undergoes a second deformation under the irradiation of the third light of the second wavelength, the first deformation
  • the direction of deformation is opposite to the second deformation.
  • the deformed photo-deformable layer can be restored to its original shape or accelerated to its original shape under the irradiation of the third light of the second wavelength.
  • the first driving unit includes a plurality of third light-emitting devices, and each third light-emitting device can emit third light of the second wavelength and irradiate the photodeformable layer.
  • the plurality of third light emitting devices may be of the same specification.
  • the geometric size is the same; for example, the physical specifications (luminous intensity, luminous time) are the same.
  • the third light-emitting devices in the plurality of third light-emitting devices have different specifications. For example, different geometric sizes (length, width, height); for example, different physical specifications (luminous intensity, luminous time), etc.
  • the first light-emitting device and the third light-emitting device may be of the same specification or different specifications.
  • the actuator 300 includes a photodeformable layer 301 and a first driving unit 302.
  • the first driving unit 302 includes at least one first light emitting device 3021 and at least one third light emitting device 3022, and the first light emitting device 3021 and the third light emitting device 3022 are arranged in parallel with each other.
  • the first light-emitting device 3021 is coupled to the first side of the photo-deformable layer 301 (shown as the upper side of the photo-deformable layer 301 in the figure), and the first light-emitting device 3021 can emit the first light of the first wavelength ⁇ 1 and irradiate it to On the first side of the photo-deformation layer 301, the photo-deformation layer 301 may undergo a first deformation under the irradiation of the first light of the first light-emitting device 3021.
  • the third light emitting device 3022 is combined with the first side of the photo-deformable layer 301, and can emit third light of the second wavelength ⁇ 2 and irradiate the first side of the photo-deformable layer 301.
  • the photo-deformable layer 301 may be irradiated to substantially the same position, or the light irradiated regions of the first light-emitting device 3021 and the third light-emitting device 3022 mostly overlap; or, in at least one example, the first light-emitting device 3021 and the The three light emitting devices 3022 are slightly inclined with respect to the first side surface of the photodeformable layer 301, so that the light irradiation areas of the two overlap with each other.
  • the photodeformable layer 301 undergoing the first deformation can undergo a second deformation under the irradiation of the third light of the second wavelength ⁇ 2, and the deformation directions of the first deformation and the second deformation are opposite.
  • the deformed photo-deformable layer 301 can undergo the inverse deformation of the first deformation under the irradiation of the third light of the second wavelength ⁇ 2, so that the photo-deformable layer 301 can be restored to its original shape, thereby generating a driving effect.
  • the deformed actuator 300 can speed up its restoration under the irradiation of the third light of the second wavelength ⁇ 2, thereby increasing the deformation speed of the actuator 300.
  • FIG. 3B shows the deformation process of the actuator 300.
  • the actuator 300 does not deform under no light irradiation and is in a flat state.
  • the actuator 300 deforms to the side irradiated by the first light, that is, as shown in the figure The upward deformation.
  • the actuator 300 generates a second deformation.
  • the deformation direction is opposite to that of the first deformation.
  • the actuator 300 can be restored from the first deformation to its original shape and assume a straight state, thereby generating a driving effect.
  • the third light of the second wavelength ⁇ 2 can accelerate the restoration of the actuator 300 to its original state compared to non-light irradiation.
  • the actuator includes a first driving unit and a second driving unit
  • the first driving unit includes at least one first light emitting device and at least one third light emitting device
  • the second driving unit includes at least one second light emitting device
  • at least one fourth light-emitting device the second light-emitting device and the fourth light-emitting device are combined on the second side of the photo-deformable layer (the first side and the second side of the photo-deformable layer are opposite to each other), the second light-emitting device can emit The second light of the first wavelength is irradiated on the photo-deformation layer, and the fourth light-emitting device can emit the fourth light of the second wavelength and irradiate the photo-deformation layer.
  • the second driving unit includes a plurality of fourth light emitting devices, and each fourth light emitting device can emit fourth light of the second wavelength and irradiate the photodeformable layer.
  • multiple fourth light emitting devices may be of the same specification.
  • the geometric size is the same; for example, the physical specifications (luminous intensity, luminous time) are the same.
  • the fourth light-emitting devices among the plurality of fourth light-emitting devices have different specifications. For example, different geometric sizes (length, width, height); for example, different physical specifications (luminous intensity, luminous time), etc.
  • the second light emitting device and the fourth light emitting device may be of the same specification, or may be of different specifications.
  • the third light-emitting device and the fourth light-emitting device at least partially overlap in a direction perpendicular to the photodeformable layer.
  • the third light-emitting device and the fourth light-emitting device do not overlap in a direction perpendicular to the photodeformable layer.
  • the actuator 400 includes a photodeformable layer 401, a first driving unit 402, and a second driving unit 403.
  • the first driving unit 402 and the second driving unit 403 sandwich the photodeformable layer 401 and face each other.
  • the first driving unit 402 includes at least one first light emitting device 4021 and at least one third light emitting device 4022.
  • the first light-emitting device 4021 and the third light-emitting device 4022 are combined on the first side of the photo-deformable layer 401 (shown as the upper side of the photo-deformable layer 401 in the figure), and the first light-emitting device 4021 can emit light of the first wavelength ⁇ 1
  • the first light is irradiated on the photo-deformation layer 401, and the photo-deformation layer 401 can undergo a first deformation under the irradiation of the first light of the first light-emitting device 3021.
  • the third light-emitting device 4022 can emit third light of the second wavelength ⁇ 2 and irradiate the photo-deformable layer 401; the deformed photo-deformable layer 401 undergoes second deformation under the irradiation of the third light of the second wavelength ⁇ 2, The directions of the first deformation and the second deformation are opposite.
  • the second driving unit 403 includes at least one second light emitting device 4031 and at least one fourth light emitting device 4032.
  • the second light emitting device 4031 and the fourth light emitting device 4032 are combined on the second side of the photodeformable layer 401 (shown in the figure as The lower side of the photo-deformable layer 401), the second light-emitting device can emit the second light of the first wavelength ⁇ 1 and irradiate the photo-deformable layer 401, and the photo-deformable layer 401 can be irradiated with the second light of the first wavelength ⁇ 1
  • the third deformation can occur below.
  • the fourth light-emitting device can emit fourth light of the second wavelength ⁇ 2 and irradiate it onto the photo-deformable layer 401.
  • the deformed photo-deformable layer 401 undergoes a fourth deformation under the irradiation of the fourth light of the second wavelength ⁇ 2.
  • the deformation directions of the fourth deformation and the third deformation are opposite
  • the photo-deformable layer 401 of the actuator 400 can be driven by the first driving unit 402 and the second driving unit 403 to undergo opposite deformations, thereby generating a driving effect, and the actuator 400 is deforming. It can be restored to its original state quickly.
  • FIG. 4B shows the deformation process of the actuator 400.
  • the actuator 400 does not deform under no light irradiation and is in a flat state.
  • the actuator 400 When the first light-emitting device 4021 emits the first light of the first wavelength ⁇ 1 and irradiates the photo-deformable layer 401, the actuator 400 generates a first deformation to the side irradiated by the first light, that is, upwards as shown in the figure. Deformed.
  • the actuator 400 When the first light-emitting device 4021 stops emitting light, and the third light-emitting device 4022 emits third light of the second wavelength ⁇ 2 and irradiates the photo-deformable layer 401, the actuator 400 generates a second deformation, which is similar to the first The deformation direction of the deformation is opposite, for example, the actuator 400 can be restored from the first deformation to a straight state.
  • the actuator 400 When the third light emitting device 4031 emits the third light of the first wavelength ⁇ 1 and irradiates the photo-deformable layer 401, the actuator 400 generates a third deformation to the side irradiated with the third light, that is, downward as shown in the figure. Deformed.
  • the actuator 400 When the third light-emitting device 4031 stops emitting light, and the fourth light-emitting device 4032 emits fourth light of the second wavelength ⁇ 2 and irradiates the photo-deformable layer 401, the actuator 400 generates a fourth deformation, which is similar to the third
  • the deformation direction of the deformation is opposite, for example, the actuator 400 can be restored from the third deformation to the original state and assume a straight state. This can also make the generated driving action symmetrical with respect to the extension direction of the actuator 400 (the horizontal direction in the figure).
  • the first light emitting device 5021 and the third light emitting device 5022 included in the first driving unit 502 of the actuator 500 can be arranged obliquely so that the first light emitting device 5021 and the third light emitting device
  • the light emitted by 5022 can basically irradiate the same part of the photo-deformable layer 501 to accelerate the recovery process of the deformed actuator 500.
  • the second light emitting device 5031 and the fourth light emitting device 5032 included in the second driving unit 503 can also be arranged obliquely, so that the light emitted by the second light emitting device 5031 and the fourth light emitting device 5032 can basically irradiate the photodeformable layer 501 To accelerate the recovery process of the deformed actuator 500.
  • the deformation process of the actuator 500 is basically the same as that of the actuator 400, and will not be repeated here.
  • the first driving unit includes a plurality of first light emitting devices and a plurality of third light emitting devices
  • the second driving unit includes a plurality of second light emitting devices and a fourth light emitting device; In the extension direction of, the first light-emitting device and the third light-emitting device are staggered, and the second light-emitting device and the fourth light-emitting device are staggered.
  • the first driving unit 602 includes a plurality of first light emitting devices 6021 and a plurality of third light emitting devices 6022 arranged in a staggered manner.
  • the unit 603 includes a plurality of second light emitting devices 6031 and fourth light emitting devices 6032 arranged alternately. In the direction perpendicular to the layer of the photodeformable layer 601, the first light emitting device 6021 and the second light emitting device 6031 overlap each other, and the third light emitting device 6022 and the fourth light emitting device 6032 overlap each other.
  • the actuator 600 can perform multiple sub-movements along with the photodeformable layer 601, thereby generating a motion state similar to flagellar peristalsis.
  • the plurality of first light emitting devices 6021 and the plurality of third light emitting devices 6022 arranged in a staggered manner are uniformly distributed.
  • the plurality of second light emitting devices 6031 and the plurality of fourth light emitting devices 6032 arranged in a staggered manner are uniformly distributed.
  • the distance between adjacent first and third light emitting devices 6021 and 6022 is the same as the distance between adjacent second and fourth light emitting devices 6031 and 6032.
  • FIG. 6B shows the deformation process of the actuator 600.
  • the actuator 600 does not deform under no light irradiation and is in a flat state.
  • the actuator 600 may deform the "first wave shape" shown in the upper part of FIG. 6B, for example.
  • the actuator 600 returns to its original shape and assumes a straight state.
  • the actuator 600 can deform the "second wave shape" shown in the lower part of FIG. 6B, for example, The "second wave shape" has the opposite shape to the "first wave shape".
  • the actuator 600 returns to its original shape and assumes a straight state, thereby driving effect. At this time, the actuator 600 can generate a motion state similar to flagella.
  • the first driving unit 702 includes a plurality of first light emitting devices 7021 and a plurality of third light emitting devices 7022 arranged in a staggered manner.
  • the unit 703 includes a plurality of second light emitting devices 7031 and a plurality of fourth light emitting devices 7032 arranged in a staggered manner. In the direction perpendicular to the level of the photodeformable layer 701, the first light emitting device 7021 and the fourth light emitting device 7032 overlap each other, and the third light emitting device 7022 and the second light emitting device 7031 overlap each other.
  • the plurality of first light emitting devices 7021 and the plurality of third light emitting devices 7022 arranged in a staggered arrangement are uniformly distributed.
  • the plurality of second light emitting devices 7031 and the plurality of fourth light emitting devices 7032 arranged in a staggered manner are uniformly distributed.
  • the distance between adjacent first and third light emitting devices 7021 and 7022 is the same as the distance between adjacent second and fourth light emitting devices 7031 and 7032.
  • FIG. 7B shows the deformation process of the actuator 700.
  • the actuator 700 does not deform under no light irradiation and is in a flat state.
  • the plurality of first light emitting devices 7021 of the first driving unit 702 emits first light of the first wavelength ⁇ 1
  • the plurality of second light emitting devices 7031 of the second driving unit 703 emits second light of the first wavelength ⁇ 1
  • the actuator 700 can produce a "third wave shape" deformation as shown in FIG. 7B, for example.
  • the first light emitting device 7021 and the second light emitting device 7031 stop emitting light, and the plurality of third light emitting devices 7022 of the first driving unit 702 emit the third light of the second wavelength ⁇ 2, and the plurality of fourth light of the second driving unit 703
  • the actuator 600 returns to its original shape and assumes a straight state, thereby generating a driving effect.
  • the actuator 700 can also generate a motion state similar to flagella.
  • the oppositely arranged light-emitting devices can respectively emit light of the first wavelength ⁇ 1 and the second wavelength ⁇ 2 and irradiate them on substantially the same part of the photodeformable layer 701, so this arrangement can make the light-emitting device
  • the deformation of the photo-deformable layer 701 can be more sensitively controlled, and the movement state of the actuator 700 can be more sensitively controlled.
  • the first driving unit may include oppositely arranged light emitting devices that emit different lights.
  • the first driving unit 802 includes at least one first light emitting device 8021 and at least one fifth light emitting device 8025.
  • the first light-emitting device 8021 is coupled to the first side of the photo-deformable layer 801 (shown as the upper side of the photo-deformable layer 801 in the figure).
  • the first light-emitting device 8021 can emit the first light of the first wavelength ⁇ 1 and irradiate it to On the first side of the photo-deformable layer 801, the fifth light-emitting device 8025 is combined with the second side of the photo-deformable layer 801 (shown as the lower side of the photo-deformable layer 801), which can emit a second wavelength ⁇ 2 The fifth light is irradiated on the second side of the photo-deformable layer 801.
  • the photo-deformable layer 801 undergoes a first deformation under the irradiation of the first light of the first wavelength ⁇ 1, that is, the upward deformation shown in the figure.
  • the photo-deformable layer 801 undergoes a second deformation under the irradiation of the fifth light of the second wavelength ⁇ 2, and the deformation directions of the first deformation and the second deformation are opposite.
  • the photo-deformable layer 801 that has undergone the first deformation returns to its original shape under the irradiation of the fifth light of the second wavelength ⁇ 2, and assumes a flat state, thereby generating a driving effect.
  • the oppositely arranged light-emitting devices can respectively emit light of the first wavelength ⁇ 1 and the second wavelength ⁇ 2 and irradiate them on substantially the same part of the photodeformable layer 801, so this arrangement can make the light-emitting device more sensitive To control the deformation of the photo-deformable layer 801, and then more sensitively control the motion state of the actuator 800.
  • the first driving unit 902 includes a plurality of first light emitting devices 9021 and a plurality of fifth light emitting devices 9025.
  • a plurality of first light-emitting devices 9021 are combined on the first side of the photo-deformable layer 901 (shown as the upper side of the photo-deformable layer 901 in the figure), and the first light-emitting device 9021 can emit first light of the first wavelength ⁇ 1 and Irradiated on the first side of the photo-deformable layer 901, a plurality of fifth light-emitting devices 9025 are combined on the second side of the photo-deformable layer 901 (shown as the lower side of the photo-deformable layer 901 in the figure), and the fifth light-emitting The device 9025 can emit the fifth light of the second wavelength ⁇ 2 and irradiate it on the second side of the photodeformable layer 901. For example, in a direction perpendicular to the level of the photo
  • the actuator 900 generates a plurality of first sub-deformations under the condition of the first light of the first wavelength ⁇ 1 emitted by the plurality of first light-emitting devices 9021, forming a "fourth wave” as shown in FIG. 9B.
  • the actuator 900 generates multiple second sub-deformations under the condition of the fifth light of the second wavelength ⁇ 2 emitted by the plurality of fifth light-emitting devices 9025, and the deformation directions of the first sub-deformation and the second sub-deformation are opposite .
  • the actuator 900 deformed in the "fourth wave shape” returns to its original shape under the irradiation of the fifth light of the second wavelength ⁇ 2, and assumes a straight state, thereby generating a driving effect.
  • the actuator 1000 includes a photo-deformable layer 1001, a first driving unit 1002, and a second driving unit 1003.
  • the first driving unit 1002 and the second driving unit 1003 are arranged in parallel with each other along the extending direction of the photodeformable layer 1001 (the horizontal direction in the figure).
  • the first driving unit 1002 includes at least one first light emitting device 10021 and at least one fifth light emitting device 10025.
  • the first light-emitting device 10021 is coupled to the first side of the photo-deformable layer 1001 (shown as the upper side of the photo-deformable layer 1001 in the figure), and the first light-emitting device 10021 can emit the first light of the first wavelength ⁇ 1 and irradiate it to
  • On the first side of the photo deformable layer 1001, a plurality of fifth light emitting devices 10025 are combined on the second side of the photo deformable layer 1001 (shown as the lower side of the photo deformable layer 1001 in the figure), and the fifth light emitting device 10025
  • the fifth light of the second wavelength ⁇ 2 can be emitted and irradiated on the second side of the photodeformable layer 1001.
  • the second driving unit 1003 includes at least one sixth light emitting device 10036 and at least one seventh light emitting device 10037.
  • the sixth light-emitting device 10036 is combined with the second side of the photo-deformable layer 1001, and can emit the sixth light of the first wavelength ⁇ 1 and irradiate the second side of the photo-deformable layer 1001.
  • the seventh light-emitting device 10037 is combined with the photo-deformable layer 1001.
  • the first side of the deformable layer 1001 can emit the seventh light of the second wavelength ⁇ 2 and irradiate the first side of the photo deformable layer 1001.
  • the sixth light-emitting device 10036 and the seventh light-emitting device 10037 overlap each other.
  • the actuator 1000 undergoes a first deformation when the first light emitting device 10021 emits the first light of the first wavelength ⁇ 1, and the sixth light emitting device 10036 emits the sixth light of the first wavelength ⁇ 1, forming
  • the actuator 1000 emits fifth light of the second wavelength ⁇ 2 at the fifth light emitting device 10025, and the seventh light emitting device 10037 emits the seventh light of the second wavelength ⁇ 2.
  • the second deformation occurs, and the directions of the first deformation and the second deformation are opposite.
  • the actuator 1000 deformed in the "fifth wave shape” returns to its original shape under the irradiation of the fifth light and the seventh light of the second wavelength ⁇ 2, and assumes a straight state, thereby generating a driving effect.
  • the material of the photodeformation layer includes azobenzene, triphenylmethane derivatives, cinnamic acid group-containing copolymers, benzospirin or polyethylene polymer, etc., or The combination of these materials. These materials will produce different deformation under different light, and then achieve the effect of photo-induced deformation.
  • the first wavelength is different from the second wavelength, for example, the first wavelength is shorter than the second wavelength; and, the first wavelength and the second wavelength may be a specific wavelength value or may be Wavelength range.
  • the first wavelength is a blue wavelength or an ultraviolet wavelength
  • the second wavelength is an infrared wavelength.
  • some photodeformable materials containing azobenzene will undergo cis-trans isomerization under the light of blue wavelength or ultraviolet wavelength, so the surface of the irradiated material will shrink and the material will be exposed to light.
  • azobenzene reversely reacts. At this time, the surface of the contracted material will expand, so the bending deformation will return to its original shape.
  • some photodeformable materials containing triphenylmethane derivatives will expand under the irradiation of light of ultraviolet wavelength, so that the material will deform; the expansion will be restored after the irradiation of light of ultraviolet wavelength is removed. Thus the material returns to its original state.
  • some copolymers containing cinnamic acid groups will change their cross-linked structure under the irradiation of light with a wavelength greater than 260nm, resulting in deformation of the entire material.
  • the cross-linking structure will change. The structure will return to its original shape, and the material will return to its original shape.
  • some photo-deformable materials containing benzospiropirin will stretch when irradiated by light of ultraviolet wavelength, so that the material will deform; after the irradiation of light of ultraviolet wavelength is removed, the stretch will be restored, thereby The material is restored to its original state.
  • some photodeformable materials containing polyethylene polymer have shape memory, and will deform to a certain extent under the irradiation of light of ultraviolet wavelength. After the irradiation of light of ultraviolet wavelength is removed, the photodeformable material recovers Undisturbed.
  • the material of the photo-deformable layer is not limited to the above examples, and can also include other photo-deformable materials, and according to different deformation principles of different materials, the first wavelength and the second wavelength can also be selected from other ranges.
  • the wavelength is not limited in the embodiment of the present disclosure.
  • the light emitting device included in the first driving unit and/or the second driving unit may be a light emitting diode device, such as an organic light emitting diode (OLED) device or a quantum dot light emitting diode (QLED) device, Micro LED (MicroLED) devices, sub-millimeter light emitting diodes (Mini LED), etc.
  • the light emitting diode device includes a flexible substrate, for example, an OLED is directly prepared on the flexible substrate, and the inorganic LED can be attached and mounted on the flexible substrate by a transfer method or the like.
  • the material of the flexible substrate is a transparent material, such as organic materials such as polyimide, polycarbonate, polyethersulfone, and polyethylene terephthalate.
  • the light emitting diode device further includes a flexible packaging layer, and the light emitting diode device is attached to the surface of the photodeformable layer through the flexible packaging layer.
  • the material of the flexible encapsulation layer is also a transparent material, such as inorganic materials such as SiN X and SiCN, or organic materials such as polyimide, polycarbonate, polyethersulfone, and polyethylene terephthalate. Therefore, the light-emitting diode device is flexible as a whole, and can better match the deformation of the photodeformable layer.
  • the light emitting diode device having the above-mentioned structure is embodied in an actuator 800 as shown in FIG. 8A for exemplary description.
  • the first light emitting device 8021 of the first driving unit 802 includes a flexible substrate 8020 and a flexible packaging layer 8120.
  • the first light emitting device 8021 is attached to the first side of the photodeformable layer 801 through the flexible packaging layer 8120.
  • the second light emitting device 8031 of the first driving unit 803 includes a flexible substrate 8030 and a flexible packaging layer 8130.
  • the second light emitting device 8031 is attached to the second side of the photodeformable layer 801 through the flexible packaging layer 8130. Therefore, the actuator 800 is flexible as a whole, which makes the movement of the actuator 800 more flexible.
  • the actuator provided by the embodiment of the present disclosure includes a light-emitting device combined with a photo-deformable layer.
  • the actuator uses whether the light-emitting device emits light or emits different light to control the deformation state of the photo-deformable layer, and generate a driving effect to achieve Movement of the actuator.
  • the light-emitting device is flexible and small in size, can realize the miniaturization of the actuator, and can also control the motion state of the actuator more flexibly to realize the micro motion of the actuator, for example, the actuator can move in a small space Or perform small distance exercises.
  • At least one embodiment of the present disclosure provides a movable device.
  • the movable device 20 includes at least one actuator (shown as an actuator 100 in the figure) provided by an embodiment of the present disclosure to drive the movable device. ⁇ 20 ⁇ Device 20.
  • the movable device 20 can be moved by the drive of the actuator 100.
  • the movable device 20 may further include a controller 21, and the controller 20 may at least control the light emitting state of the first light emitting device in the actuator 100, thereby controlling the actuator 100 to drive.
  • the controller 21 may also control the light-emitting state of these light-emitting devices, for example,
  • the movement of the movable device 20 can be flexibly controlled.
  • the light emitting state includes whether each light emitting device emits light, the intensity of light emission, the time of light emission, the order of light emission, and the like.
  • the controller 21 may be any control unit with data processing capability and/or program execution capability, such as a central processing unit (CPU), a digital signal processor (DSP), a single-chip microcomputer, etc.
  • the controller 21 may further include a storage unit that stores control programs of the light emitting devices of the movable device 20 in different motion modes, and the like.
  • the storage unit may be a storage medium of any form, such as a volatile memory or a non-volatile memory, etc., such as a semiconductor memory or a magnetic medium memory.
  • the movable device 20 further includes an image sensor 22 that is used to photograph the external environment of the movable device 20.
  • the image sensor 22 may be used to photograph the surrounding environment of the movable device 20 during the movement.
  • the image sensor 22 may be any type of sensor such as a CCD image sensor, a CMOS image sensor, or a CIS image sensor, and may work in the visible light waveband or the infrared light waveband, which is not limited in the embodiments of the present disclosure.
  • the movable device 20 further includes an information transmission unit 23, which can transmit information wirelessly, can send and receive data and/or instructions, etc., and the information transmission unit 23 can communicate with the controller 21 signal connection.
  • an instruction can be input to the controller 21 in a wireless manner to control the movement state of the movable device 20.
  • the information transmission unit 23 is also signally connected to the image sensor 22, so that the image captured by the image sensor 22 can be transmitted in real time, and the image can be received by the receiving end, thereby facilitating the user to monitor.
  • the information transmission unit 23 may be a communication unit based on various wireless communication standards such as WIFI, Bluetooth, ZigBee, 2G/3G/4G/5G mobile communication.
  • the movable device 20 further includes a power source 24, which at least powers the actuator 100.
  • the power source 24 can also power the image sensor 22 and the information transmission unit 23.
  • the power source 24 may be a primary battery, a rechargeable battery, or the like.
  • FIG. 12 only exemplarily shows that the movable device 20 includes a controller 21, an image sensor 22, an information transmission unit 23, and a power supply 24.
  • the above-mentioned components included in the movable device 20 may be arranged at different positions of the movable device 20 according to requirements, or may further include other functional components, such as a light source for emitting light for shooting images, etc. The embodiment of the present disclosure does not limit this.
  • the movable device 20 provided by some embodiments of the present disclosure can be used in the field of medical equipment. Since it can be miniaturized, it can be used as a micro robot that can enter the human body for monitoring and treatment.
  • the movable device 20 can enter the inside of the human body from a blood vessel of the human body, and use the image sensor 22 to obtain an image of the inside of the human body, thereby providing reference data for medical diagnosis.
  • the movable device 20 can carry medicines into the inside of the human body and release the medicines to the lesion, thereby realizing treatment and the like.
  • At least one embodiment of the present disclosure provides a manufacturing method of an actuator. As shown in FIG. 13, the manufacturing method includes step S101 and step S102.
  • Step S101 Provide a photo-deformable layer.
  • the photodeformation layer can be purchased or self-made.
  • the photo-deformation layer including azobenzene as an example, the preparation of the photo-deformation layer will be described in detail.
  • forming a photodeformable layer including azobenzene includes steps S1011-step S1013.
  • Step S1011 Dissolve the azobenzene monomer in a solvent.
  • the molecular formula of the azobenzene monomer used in this example is as follows:
  • the solvent used in this example is a volatile organic solvent, such as cyclohexanone, acetone, methylene chloride and other organic solvents.
  • the proportion of the azobenzene monomer dissolved in the organic solvent can be selected according to the solubility of the azobenzene monomer in the selected solvent and the thickness of the azobenzene monomer to be formed. This example does not do this. limited.
  • Step S1012 forming an azobenzene monomer layer on the substrate.
  • the azobenzene monomer layer can be formed on the substrate by an inkjet printing method.
  • the formation thickness of the azobenzene monomer layer can be selected according to deformation requirements, etc., which is not limited in this example.
  • Step S1013 contacting the azobenzene monomer layer with an azobenzene crosslinking agent to crosslink the azobenzene in the azobenzene monomer layer.
  • the molecular formula of the crosslinking agent used in this example is as follows:
  • the crosslinking agent is also used after being dissolved in a solvent.
  • the crosslinking agent is dissolved in the same organic solvent as azobenzene.
  • the molar content of the azobenzene crosslinking agent dissolved in the organic solvent is about twice the molar content of the azobenzene dissolved in the organic solvent, so that the azobenzene in the azobenzene monomer layer can be fully crosslinked .
  • the azobenzene crosslinking agent can be sprayed on the azobenzene monomer layer by an inkjet printing method to contact the azobenzene monomer layer with the azobenzene crosslinking agent, so that the Azobenzene cross-linked.
  • the crosslinked azobenzene material can be cured by heating or the like to form a photodeformable layer.
  • Step S102 setting a first driving unit on the photodeformation layer.
  • the first driving unit is formed first, and then the first driving unit is disposed on the photodeformable layer.
  • the method for forming the first driving unit will be introduced.
  • forming the first light-emitting device includes forming a light-emitting structure and a driving circuit that controls the light-emitting structure to emit light.
  • the driving circuit includes, for example, a thin film transistor having a switching function.
  • forming a light emitting structure includes forming a first electrode, a second electrode, and a light emitting layer between the first electrode and the second electrode.
  • the formation of thin film transistors includes the formation of functional layers such as gates, active layers, source and drain electrodes.
  • a patterning process can be used to sequentially form functional layers such as the gate, active layer, source and drain electrodes of the thin film transistor on the flexible substrate.
  • the flexible substrate may be formed of a flexible transparent material, such as polyimide, polycarbonate, polyethersulfone, polyethylene terephthalate and other organic materials.
  • a patterning process includes photoresist formation, exposure, development, and etching.
  • the first electrode, the light emitting layer, and the second electrode of the light emitting structure are sequentially formed.
  • the first electrode is formed of metal materials such as Al, Ni, Co.
  • the first electrode can be formed by sputtering or evaporation.
  • a light-emitting layer is formed on the first electrode by evaporation or inkjet printing.
  • the light-emitting layer can be selected as a material that can emit light of a specific color according to requirements.
  • the light-emitting layer is selected as a material that can emit first light of a first wavelength.
  • one or more of a hole injection layer (HIL), a hole transport layer (HTL), an electron transport layer (EHL), and an electron injection layer (EIL) may also be formed before and after the formation of the light emitting layer, To enhance the luminous effect.
  • HIL hole injection layer
  • HTL hole transport layer
  • EHL electron transport layer
  • EIL electron injection layer
  • the second electrode may be formed of metals such as Ag and Mg or their alloys, or metal oxides such as IZO.
  • the first light-emitting device is packaged with a transparent flexible packaging material using a method such as deposition to form a flexible packaging layer.
  • the packaging material includes inorganic materials such as SiN X and SiCN, or organic materials such as polyimide, polycarbonate, polyethersulfone, and polyethylene terephthalate.
  • an adhesive is used to attach the first light emitting diode device to the surface of the photodeformable layer through the flexible packaging layer.
  • the first light emitting device is bonded to the first side of the photodeformable layer.
  • the first light emitting diode device is fixed to the surface of the photodeformable layer through the flexible packaging layer through a mechanical structure, such as a snap-fit structure, a plug-in structure, and the like.
  • the first light emitting device is bonded to the first side of the photodeformable layer.
  • the first light-emitting device coupled to the first side of the photo-deformable layer can emit first light of the first wavelength, and the photo-deformable layer can undergo first deformation under the irradiation of the first light.
  • an actuator as shown in Fig. 1A is formed.
  • the first driving unit further includes another light-emitting device.
  • another light-emitting device may be formed by substantially the same method as the first light-emitting device, and then the other light-emitting device may be combined with the photo-deformable layer. The first side or the second side.
  • another light-emitting device is formed to emit second light of a second wavelength, and the photo-deformable layer undergoes a second deformation under the irradiation of the second light, and the first deformation and the second deformation have opposite deformation directions.
  • the first deformed actuator can be restored to its original state.
  • the actuator shown in FIG. 2A the case where another light-emitting diode device is attached to the first side of the photodeformable layer
  • the actuator shown in FIG. 8A the other light-emitting diode device is attached In the case of the second side of the photodeformable layer.
  • more light-emitting devices can be formed on the first side and the second side of the photo-deformable layer, and these light-emitting devices can also be formed by the above method and combined with the first side and the second side of the photo-deformable layer. /Or second side.
  • multiple light-emitting devices located on the same side of the photodeformable layer can be formed on the same flexible substrate using the same manufacturing process and packaged with the same packaging layer to simplify the manufacturing process.
  • At least one embodiment of the present disclosure provides an operating method of an actuator provided by an embodiment of the present disclosure. As shown in FIG. 15, the operating method includes step S201-step S202:
  • Step S201 controlling the first light emitting device of the first driving unit to emit the first light of the first wavelength.
  • the photo-deformable layer can undergo first deformation.
  • Step S202 controlling the first light emitting device of the first driving unit to stop emitting light.
  • the photo-deformable layer can undergo a second deformation, and the first deformation is opposite to the second deformation.
  • the first deformed photo-deformable layer can be restored to its original shape without light irradiation.
  • the first driving unit further includes another light-emitting device, and the other light-emitting device is coupled to the first side or the second side of the photo-deformable layer (the first side and the second side of the photo-deformable layer). Relative to each other), at this time, the operating method of the actuator may further include step S203.
  • Step S203 controlling another light emitting device to emit second light of the second wavelength.
  • the photo-deformable layer can accelerate the second deformation.
  • the photo-deformable layer undergoing the first deformation can quickly return to its original shape under the irradiation of the second light of the second wavelength, thereby increasing the movement speed of the actuator.
  • the light-emitting state of these light-emitting devices can be selectively controlled to cause various deformations of the photo-deformable layer, thereby flexibly controlling the photo-deformation layer The deformed form, and then realize the flexible control of the motion state of the actuator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Combustion & Propulsion (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Micromachines (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种致动器(100)及其制备方法、操作方法、可移动装置(20)。致动器(100)包括光致变形层(101)和第一驱动单元(102),第一驱动单元(102)包括至少一个第一发光器件(1021),第一发光器件(1021)结合于光致变形层(101)的第一侧,第一发光器件(1021)可发出第一波长(λ1)的第一光并照射到光致变形层(101)上;光致变形层(101)在第一光的照射下可发生第一变形。

Description

致动器及其制备方法、操作方法、可移动装置 技术领域
本公开的实施例涉及一种致动器及其制备方法、操作方法、可移动装置。
背景技术
致动器是一种在驱动下可进行运动从而产生驱动(推动或拉动)作用的器件,例如可以与其他功能器件结合。致动器可以根据控制指令将负载于其上的功能器件按照预定方向或路径驱动,从而将功能器件运输到预定位置。通常来说,致动器包括利用电、磁或者机械结构的驱动元件来进行驱动。这些驱动元件通常安装在致动器内部,并具有一定的构造。
发明内容
本公开一些实施例提供一种致动器,该致动器包括光致变形层和第一驱动单元;第一驱动单元包括至少一个第一发光器件,所述第一发光器件结合于所述光致变形层的第一侧,可发出第一波长的第一光并照射到所述光致变形层上;所述光致变形层在所述第一光的照射下可发生第一变形。
例如,本公开至少一实施例提供的致动器还包括第二驱动单元,第二驱动单元包括至少一个第二发光器件,所述第二发光器件结合于所述光致变形层的第二侧,可发出第一波长的第二光并照射到所述光致变形层上,所述光致变形层的第一侧和第二侧彼此相对。
例如,本公开至少一实施例提供的致动器中,所述第一驱动单元还包括至少一个第三发光器件,所述第三发光器件结合于所述光致变形层的第一侧,可发出第二波长的第三光并照射到光致变形层上;发生变形的所述光致变形层在所述第二波长的第三光的照射下发生第二变形,所述第一波长不同于所述第二波长,所述第一变形和所述第二变形的变形方向相反。
例如,本公开至少一实施例提供的致动器还包括第二驱动单元,第二驱动单元包括至少一个第二发光器件和至少一个第四发光器件,所述第二发光器件和所述第四发光器件结合于所述光致变形层的第二侧,所述第二发光器件可发出第一波长的第二光并照射到光致变形层上,所述第四发光器件可发 出第二波长的第四光并照射到光致变形层上,所述光致变形层的第一侧和第二侧彼此相对。
例如,本公开至少一实施例提供的致动器中,所述第一驱动单元包括多个第一发光器件和多个第三发光器件,所述第二驱动单元包括多个第二发光器件和第四发光器件;在平行于所述光致变形层的延伸方向上,所述第一发光器件和所述第三发光器件交叉布置,所述第二发光器件和所述第四发光器件交错布置。
例如,本公开至少一实施例提供的致动器中,在垂直于所述光致变形层的层面的方向上,所述第一发光器件和所述第四发光器件彼此重叠,所述第二发光器件和所述第三发光器件彼此重叠。
例如,本公开至少一实施例提供的致动器中,所述第一驱动单元还包括至少一个第五发光器件,所述第五发光器件结合于所述光致变形层的第二侧,可发出第二波长的第五光并照射到所述光致变形层上,所述光致变形层在所述第二波长的第五光的照射下发生第二变形,所述第一波长不同于所述第二波长,所述第一变形和所述第二变形的变形方向相反,所述光致变形层的第一侧和第二侧彼此相对。
例如,本公开至少一实施例提供的致动器还包括第二驱动单元,所述第二驱动单元包括至少一个第六发光器件和至少一个第七发光器件;所述第六发光器件结合于所述光致变形层的第二侧,可发出第一波长的第六光并照射到所述光致变形层上,所述第七发光器件结合于所述光致变形层的第一侧,可发出第二波长的第七光并照射到所述光致变形层上;在垂直于所述光致变形层的层面的方向上,所述第六发光器件和所述第七发光器件彼此重叠。
例如,本公开至少一实施例提供的致动器中,所述光致变形层的材料包括:偶氮苯、三苯基甲烷衍生物、含肉桂酸基团的共聚物、苯并螺吡楠或聚乙烯聚合物。
例如,本公开至少一实施例提供的致动器中,所述第一驱动单元和/或所述第二驱动单元包括的发光器件为发光二极管器件,所述发光二极管器件包括柔性衬底。
例如,本公开至少一实施例提供的致动器中,所述发光二极管器件还包括柔性封装层,且通过所述柔性封装层贴附在所述光致变形层的表面。
例如,本公开至少一实施例提供的致动器中,所述第一波长短于所述第 二波长。
例如,本公开至少一实施例提供的致动器中,所述第一波长为蓝光波长或紫外光波长,所述第二波长为红外光波长。
本公开至少一实施例提供一种可移动装置,包括上述任一的致动器以驱动所述可移动装置。
例如,本公开至少一实施例提供的可移动装置还包括控制器,所述控制器至少控制所述致动器中的第一发光器件的发光状态,从而控制所述致动器进行驱动。
例如,本公开至少一实施例提供的可移动装置还包括图像传感器,所述图像传感器用于拍摄所述可移动装置的外部环境。
本公开至少一实施例提供一种致动器的制备方法,包括:提供光致变形层;在所述光致变形层上设置第一驱动单元,所述第一驱动单元包括至少一个第一发光器件,且将所述第一发光器件结合于所述光致变形层的第一侧;其中,第一发光器件可发出第一波长的第一光,所述光致变形层在所述第一光的照射下可发生第一变形。
例如,本公开至少一实施例提供的制备方法中,所述第一驱动单元还包括另一发光器件;所述制备方法还包括:将所述另一发光器件结合于所述光致变形层的第一侧或第二侧;其中,所述另一发光器件可发出第二波长的第二光,所述光致变形层在所述第二光的照射下发生第二变形,所述第一波长不同于所述第二波长,所述第一变形和所述第二变形的变形方向相反,所述光致变形层的第一侧和第二侧彼此相对。
例如,本公开至少一实施例提供的制备方法中,所述光致变形层包括偶氮苯;形成所述光致变形层包括:将偶氮苯单体溶于溶剂;在基底上形成偶氮苯单体层;将所述偶氮苯单体层与偶氮苯交联剂接触以使所述偶氮苯单体层中的偶氮苯交联。
例如,本公开至少一实施例提供的制备方法中,采用喷墨打印法在所述基底上形成所述偶氮苯单体层,并采用喷墨打印法在所述偶氮苯单体层上喷洒所述偶氮苯交联剂。
本公开至少一实施例提供一种上述任一的致动器的操作方法,包括:控制第一驱动单元的第一发光器件发出第一波长的第一光,使所述光致变形层发生第一变形;控制所述第一驱动单元的第一发光器件停止发光,使所述光 致变形层发生第二变形,第一变形和第二变形相反。
例如,本公开至少一实施例提供的操作方法中,所述第一驱动单元还包括另一发光器件,所述另一发光器件结合于所述光致变形层的第一侧或第二侧;所述光致变形层的第一侧和第二侧彼此相对;所述操作方法还包括:控制所述另一发光器件发出第二波长的第二光,使所述光致变形层发生第二变形,所述第一波长不同于所述第二波长,所述第一变形和所述第二变形的变形方向相反。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1A为本公开一些实施例提供的致动器的截面示意图一;
图1B为图1A中的致动器的形变过程示意图;
图1C为图1A中的致动器的平面示意图;
图2A为本公开一些实施例提供的致动器的截面示意图二;
图2B为图2A中的致动器的形变过程示意图;
图3A为本公开一些实施例提供的致动器的截面示意图三;
图3B为图3A中的致动器的形变过程示意图;
图4A为本公开一些实施例提供的致动器的示截面意图四;
图4B为图4A中的致动器的形变过程示意图;
图5为本公开一些实施例提供的致动器的截面示意图五;
图6A为本公开一些实施例提供的致动器的截面示意图六;
图6B为图6A中的致动器的形变过程示意图;
图7A为本公开一些实施例提供的致动器的截面示意图七;
图7B为图7A中的致动器的形变过程示意图;
图8A为本公开一些实施例提供的致动器的截面示意图八;
图8B为图8A中的致动器的形变过程示意图;
图9A为本公开一些实施例提供的致动器的截面示意图九;
图9B为图9A中的致动器的形变过程示意图;
图10A为本公开一些实施例提供的致动器的截面示意图十;
图10B为图10A中的致动器的形变过程示意图;
图11为本公开一些实施例提供的致动器的截面示意图十一;
图12为本公开一些实施例提供的可移动装置的示意图;
图13为本公开一些实施例提供的致动器的制备流程图;
图14为本公开一些实施例提供的致动器的光致变形层的制备流程图;
图15为本公开一些实施例提供的致动器的操作方法的流程图;以及
图16为本公开一些实施例提供的另一致动器的操作方法的流程图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
目前,致动器通常包括利用电、磁或者机械结构的驱动元件来进行驱动。这些驱动元件通常安装在致动器内部,并具有一定的构造。这些构造往往体积较大,使得致动器无法进行微型化设计,因此无法应用于例如医疗、探伤等领域中的微型机器人,并且致动器往往也难以产生微运动,即无法在微小空间内运动或者无法进行微小距离运动等。
本公开至少一实施例提供一种致动器,该致动器包括光致变形层和第一驱动单元;第一驱动单元包括至少一个第一发光器件,第一发光器件结合于光致变形层的第一侧,可发出第一波长的第一光并照射到光致变形层上;光 致变形层在第一光的照射下可发生第一变形。
本公开至少一实施例提供一种可移动装置,包括上述致动器以驱动可移动装置产生移动。
本公开至少一实施例提供一种致动器的制备方法,包括:提供光致变形层;在光致变形层上设置第一驱动单元,第一驱动单元包括至少一个第一发光器件,且将第一发光器件结合于光致变形层的第一侧;第一发光器件可发出第一波长的第一光,光致变形层在第一光的照射下可发生第一变形。
本公开至少一实施例提供一种上述致动器的操作方法,包括:控制第一驱动单元的第一发光器件发出第一波长的第一光,使光致变形层发生第一变形;控制第一驱动单元的第一发光器件停止发光,使光致变形层发生第二变形,第一变形和第二变形相反。
下面通过几个具体的实施例对本公开的致动器及其制备方法、操作方法、可移动装置进行说明。
本公开至少一实施例提供一种致动器,图1A为该致动器的截面示意图,图1C为该致动器的平面示意图,其中图1A是沿图1C中的线A-A剖切得到的。如图1A所示,致动器100包括光致变形层101和第一驱动单元102。第一驱动单元102包括至少一个第一发光器件1021,第一发光器件1021结合于光致变形层101的第一侧(图中示出为光致变形层101的上侧),第一发光器件1021可发出第一波长λ1的第一光并照射到光致变形层101上,即照射到光致变形层101的第一侧上,光致变形层101在第一光的照射下可发生第一变形,这使得致动器100整体也随着光致变形层101发生第一变形,从而该第一变形可以用于产生驱动作用。
例如,在一些实施例中,第一驱动单元包括多个第一发光器件,每个第一发光器件可发出第一波长的第一光并照射到光致变形层上。
例如,在一些实施例中,多个第一发光器件可以是相同规格的。例如几何大小(长、宽、高)相同;例如,物理规格(发光强度、发光时间)相同等。
例如,在一些实施例中,多个第一发光器件中的至少部分第一发光器件是不同规格的。例如几何大小(长、宽、高)不同;例如,物理规格(发光强度、发光时间)不同等。
例如,光致变形层的剖面形状可以为长方形、梯形、弧形等。
例如,在一些实施例中,当第一发光器件1021停止照射第一波长λ1的第一光时,光致变形层101不再被光照射从而发生第二变形,该第二变形与第一变形的变形方向(至少部分地在垂直于光致变形层的方向上的变形方向)相反。例如,光致变形层101可以通过第二变形恢复到发生第一变形之前的原状(初始状态),使得致动器100整体也随着光致变形层101恢复原状,呈现平直状态,从而该第二变形也可以用于产生驱动作用。
图1B示出了致动器100的形变过程。例如,如图1B所示,致动器100在无光照射下不产生变形,为平直状态。当第一发光器件1021发出第一波长λ1的第一光并照射到光致变形层101时,致动器100向第一光照射的一侧产生第一变形,即产生如图所示的向上变形。当第一发光器件1021停止发光时,致动器100恢复原状,呈现平直状态。
在一些实施例中,除了第一驱动单元之外,致动器还包括第二驱动单元。第二驱动单元包括至少一个第二发光器件,第二发光器件结合于光致变形层的第二侧(光致变形层的第一侧和第二侧彼此相对),第二发光器件可发出第一波长的第二光并照射到光致变形层上。该实施例提供的致动器可以产生双侧变形。
例如,在一些实施例中,第二驱动单元包括多个第二发光器件,每个第二发光器件可发出第一波长的第二光并照射到光致变形层上。
例如,在一些实施例中,多个第二发光器件可以是相同规格的。例如几何大小(长、宽、高)相同;例如,物理规格(发光强度、发光时间)相同等。
例如,在一些实施例中,多个第二发光器件中的至少部分第二发光器件是不同规格的。例如几何大小(长、宽、高)不同;例如,物理规格(发光强度、发光时间)不同等。
例如,第一发光器件和第二发光器件可以是相同规格的,也可以是不同规格的。
例如,在一些实施例中,第一发光器件和第二发光器件在垂直于光致变形层的方向上至少是部分重叠的。
例如,在一些实施例中,第一发光器件和第二发光器件在垂直于光致变形层的方向上是不重叠的。
例如,如图2A所示,致动器200包括光致变形层201、第一驱动单元202和第二驱动单元203。第一驱动单元202和第二驱动单元203夹着光致变形层201且彼此相对。第一驱动单元202包括至少一个第一发光器件2021,第一发光器件2021结合于光致变形层201的第一侧(图中示出为光致变形层201的上侧),第一发光器件2021可发出第一波长λ1的第一光并照射到光致变形层201的第一侧上,光致变形层201在第一发光器件2021的第一光的照射下可发生第一变形,例如在图2A示出的实施例中为向上的变形。第二驱动单元203包括至少一个第二发光器件2031,第二发光器件2031结合于光致变形层201的第二侧(图中示出为光致变形层201的下侧),与第一发光元件2021相对,第二发光器件2031也可发出第一波长λ1的第二光并照射到光致变形层201的第二侧上,光致变形层201在第二发光器件2031的第二光的照射下可发生另一变形,该变形方向与第一变形的变形方向相反,例如在图2A示出的实施例中为向下的变形。由此,本实施例提供的致动器200可随着光致变形层201产生双侧变形。
图2B示出了致动器200的形变过程。例如,如图2B所示,致动器200在无光照射下不产生变形,为平直状态。当第一发光器件2021发出第一波长λ1的第一光并照射到光致变形层201时,致动器100向第一光照射的一侧产生变形,即产生如图所示的向上变形。当第一发光器件1021停止发光时,致动器200恢复原状。即呈现平直状态。当第二发光器件2031发出第一波长λ1的第二光并照射到光致变形层201时,致动器200向第二光照射的一侧产生变形,即产生如图所示的向下变形。当第二发光器件2031停止发光时,致动器200恢复原状,呈现平直状态。由此,致动器200可以产生双侧变形,使致动器200的运动方式多元化,例如本实施例可以使得驱动作用相对于致动器200的延伸方向(图中的水平方向)是对称的。
在一些实施例中,第一驱动单元除了包括第一发光器件之外,第一驱动单元还包括至少一个第三发光器件,第三发光器件结合于光致变形层的第一侧,可发出第二波长的第三光并照射到光致变形层上;第一波长和第二波长不同,发生变形的光致变形层在第二波长的第三光的照射下发生第二变形,第一变形和第二变形的变形方向相反。该实施例中,发生变形的光致变形层在第二波长的第三光的照射下可恢复原状或加快恢复原状。
例如,在一些实施例中,第一驱动单元包括多个第三发光器件,每个第三发光器件可发出第二波长的第三光并照射到光致变形层上。
例如,在一些实施例中,多个第三发光器件可以是相同规格的。例如几何大小(长、宽、高)相同;例如,物理规格(发光强度、发光时间)相同等。
例如,在一些实施例中,多个第三发光器件中的至少部分第三发光器件是不同规格的。例如几何大小(长、宽、高)不同;例如,物理规格(发光强度、发光时间)不同等。
例如,第一发光器件和第三发光器件可以是相同规格的,也可以是不同规格的。
例如,如图3A所示,致动器300包括光致变形层301和第一驱动单元302。第一驱动单元302包括至少一个第一发光器件3021和至少一个第三发光器件3022,第一发光器件3021和第三发光器件3022彼此并列设置。第一发光器件3021结合于光致变形层301的第一侧(图中示出为光致变形层301的上侧),第一发光器件3021可发出第一波长λ1的第一光并照射到光致变形层301的第一侧上,光致变形层301在第一发光器件3021的第一光的照射下可发生第一变形。第三发光器件3022结合于光致变形层301的第一侧,可发出第二波长λ2的第三光并照射到光致变形层301的第一侧上。由于点光源或线光源等光照的分散性,虽然第一发光器件3021和第三发光器件3022设置在光致变形层301的不同位置,但是第一发光器件3021和第三发光器件3022发出的光可以照射到光致变形层301基本相同的位置,或第一发光器件3021和第三发光器件3022的光照射区域大部分重叠;或者,在至少一个示例中,可以使得第一发光器件3021和第三发光器件3022相对于光致变形层301的第一侧表面略微倾斜,从而使得二者的光照射区域彼此重叠。此时,发生第一变形的光致变形层301在第二波长λ2的第三光的照射下可发生第二变形,第一变形和第二变形的变形方向相反。例如,发生变形的光致变形层301在第二波长λ2的第三光的照射下可发生第一变形的逆变形,从而光致变形层301可恢复原状,从而产生驱动作用。例如,本实施例中,发生变形的致动器300可在第二波长λ2的第三光的照射下可加快恢复原状,从而提高致动器300的变形速度。
图3B示出了致动器300的形变过程。例如,如图3B所示,致动器300 在无光照射下不产生变形,为平直状态。当第一发光器件3021发出第一波长λ1的第一光并照射到光致变形层301的第一侧时,致动器300向第一光照射的一侧产生变形,即产生如图所示的向上变形。当第一发光器件4021停止发光,并且第三发光器件3022发出第二波长λ2的第三光并照射到光致变形层301的第一侧时,致动器300产生第二变形,该第二变形与第一变形的变形方向相反,例如可以使致动器300从第一变形恢复原状,呈现平直状态,从而产生驱动作用。例如,该实施例中,第二波长λ2的第三光相比于无光照射可加速致动器300恢复原状。
在一些实施例中,致动器包括第一驱动单元和第二驱动单元,第一驱动单元包括至少一个第一发光器件和至少一个第三发光器件,第二驱动单元包括至少一个第二发光器件和至少一个第四发光器件,第二发光器件和第四发光器件结合于光致变形层的第二侧(光致变形层的第一侧和第二侧彼此相对),第二发光器件可发出第一波长的第二光并照射到光致变形层上,第四发光器件可发出第二波长的第四光并照射到光致变形层上。
例如,在一些实施例中,第二驱动单元包括多个第四发光器件,每个第四发光器件可发出第二波长的第四光并照射到光致变形层上。
例如,在一些实施例中,多个第四发光器件可以是相同规格的。例如几何大小(长、宽、高)相同;例如,物理规格(发光强度、发光时间)相同等。
例如,在一些实施例中,多个第四发光器件中的至少部分第四发光器件是不同规格的。例如几何大小(长、宽、高)不同;例如,物理规格(发光强度、发光时间)不同等。
例如,第二发光器件和第四发光器件可以是相同规格的,也可以是不同规格的。
例如,在一些实施例中,第三发光器件和第四发光器件在垂直于光致变形层的方向上至少是部分重叠的。
例如,在一些实施例中,第三发光器件和第四发光器件在垂直于光致变形层的方向上是不重叠的。
例如,如图4A所示,致动器400包括光致变形层401、第一驱动单元402和第二驱动单元403。第一驱动单元402和第二驱动单元403夹着光致变形层401且彼此相对。
第一驱动单元402包括至少一个第一发光器件4021和至少一个第三发光器件4022。第一发光器件4021和第三发光器件4022结合于光致变形层401的第一侧(图中示出为光致变形层401的上侧),第一发光器件4021可发出第一波长λ1的第一光并照射到光致变形层401上,光致变形层401在第一发光器件3021的第一光的照射下可发生第一变形。第三发光器件4022可发出第二波长λ2的第三光并照射到光致变形层401上;发生变形的光致变形层401在第二波长λ2的第三光的照射下发生第二变形,第一变形和第二变形的变形方向相反。
第二驱动单元403包括至少一个第二发光器件4031和至少一个第四发光器件4032,第二发光器件4031和第四发光器件4032结合于光致变形层401的第二侧(图中示出为光致变形层401的下侧),第二发光器件可发出第一波长λ1的第二光并照射到光致变形层401上,光致变形层401在第一波长λ1的第二光的照射下可发生第三变形。第四发光器件可发出第二波长λ2的第四光并照射到光致变形层401上,发生变形的光致变形层401在第二波长λ2的第四光的照射下发生第四变形,第四变形和第三变形的变形方向相反。
该实施例中,致动器400的光致变形层401可以分别在第一驱动单元402和第二驱动单元403的驱动下,进行相反的变形,从而产生驱动作用,并且致动器400在变形后可较快恢复原状。
图4B示出了致动器400的形变过程。例如,如图4B所示,致动器400在无光照射下不产生变形,为平直状态。
当第一发光器件4021发出第一波长λ1的第一光并照射到光致变形层401时,致动器400向第一光照射的一侧产生第一变形,即产生如图所示的向上变形。当第一发光器件4021停止发光,并且第三发光器件4022发出第二波长λ2的第三光并照射到光致变形层401时,致动器400产生第二变形,该第二变形与第一变形的变形方向相反,例如可以使致动器400从第一变形恢复原状,呈现平直状态。
当第三发光器件4031发出第一波长λ1的第三光并照射到光致变形层401时,致动器400向第三光照射的一侧产生第三变形,即如图所示的向下变形。当第三发光器件4031停止发光,并且第四发光器件4032发出第二波长λ2的第四光并照射到光致变形层401时,致动器400产生第四变形,该 第四变形与第三变形的变形方向相反,例如可以使致动器400从第三变形恢复原状,呈现平直状态。这样还可以使得所产生的驱动作用相对于致动器400的延伸方向(图中的水平方向)是对称的。
在至少一个示例中,如图5所示,致动器500的第一驱动单元502包括的第一发光器件5021和第三发光器件5022可以倾斜设置,使得第一发光器件5021和第三发光器件5022发出的光可以基本照射到光致变形层501的相同部位,以加速变形的致动器500的恢复过程。又例如,第二驱动单元503包括的第二发光器件5031和第四发光器件5032也可以倾斜设置,使得第二发光器件5031和第四发光器件5032发出的光可以基本照射到光致变形层501的相同部位,以加速变形的致动器500的恢复过程。
上述示例中,致动器500的变形过程与致动器400基本相同,在此不再赘述。
在至少一个实施例中,第一驱动单元包括多个第一发光器件和多个第三发光器件,第二驱动单元包括多个第二发光器件和第四发光器件;在平行于光致变形层的延伸方向上,第一发光器件和第三发光器件交错布置,第二发光器件和第四发光器件交错布置。
例如,在一些实施例中,如图6A所示,在致动器600中,第一驱动单元602包括交错排布的多个第一发光器件6021和多个第三发光器件6022,第二驱动单元603包括交错排布的多个第二发光器件6031和第四发光器件6032。在垂直于光致变形层601的层面的方向上,第一发光器件6021和第二发光器件6031彼此重叠,第三发光器件6022和第四发光器件6032彼此重叠。该实施例中,致动器600可以随着光致变形层601进行多个子运动,从而产生类似于鞭毛蠕动的运动状态。
例如,在一些实施例中,交错排布的多个第一发光器件6021和多个第三发光器件6022是均匀分布的。
例如,在一些实施例中,交错排布的多个第二发光器件6031和多个第四发光器件6032是均匀分布的。
例如,在一些实施例中,相邻的第一发光器件6021和第三发光器件6022的间距与相邻的第二发光器件6031和第四发光器件6032的间距相同。
图6B示出了致动器600的形变过程。例如,如图6B所示,致动器600在无光照射下不产生变形,为平直状态。例如,在第一驱动单元602的多个 第一发光器件6021发出第一波长λ1的第一光时,致动器600例如可以产生图6B中上方示出的“第一波浪形”变形。在第一发光器件6021停止发光,并且第一驱动单元602的多个第三发光器件6022发出第二波长λ2的第三光时,致动器600恢复原状,呈现平直状态。例如,在第二驱动单元603的多个第二发光器件6031发出第一波长λ1的第二光时,致动器600例如可以产生图6B中下方示出的“第二波浪形”变形,“第二波浪形”与“第一波浪形”的形状相反。在第二发光器件6031停止发光,并且第二驱动单元603的多个第四发光器件6032发出第二波长λ2的第四光时,致动器600恢复原状,呈现平直状态,由此产生驱动作用。此时,致动器600可以产生类似于鞭毛蠕动的运动状态。
例如,在一些实施例中,如图7A所示,在致动器700中,第一驱动单元702包括交错排布的多个第一发光器件7021和多个第三发光器件7022,第二驱动单元703包括交错排布的多个第二发光器件7031和多个第四发光器件7032。在垂直于光致变形层701的层面的方向上,第一发光器件7021和第四发光器件7032彼此重叠,第三发光器件7022和第二发光器件7031彼此重叠。
例如,在一些实施例中,交错排布的多个第一发光器件7021和多个第三发光器件7022是均匀分布的。
例如,在一些实施例中,交错排布的多个第二发光器件7031和多个第四发光器件7032是均匀分布的。
例如,在一些实施例中,相邻的第一发光器件7021和第三发光器件7022的间距与相邻的第二发光器件7031和第四发光器件7032的间距相同。
图7B示出了致动器700的形变过程。例如,如图7B所示,致动器700在无光照射下不产生变形,为平直状态。例如,在第一驱动单元702的多个第一发光器件7021发出第一波长λ1的第一光,并且第二驱动单元703的多个第二发光器件7031发出第一波长λ1的第二光时,致动器700例如可以产生如图7B所示的“第三波浪形”变形。在第一发光器件7021和第二发光器件7031停止发光,并且第一驱动单元702的多个第三发光器件7022发出第二波长λ2的第三光,以及第二驱动单元703的多个第四发光器件7032发出第二波长λ2的第四光时,致动器600恢复原状,呈现平直状态,由此产生驱动作用。
该实施例中,致动器700也可以产生类似于鞭毛蠕动的运动状态。另外,在致动器700中,相对设置的发光器件可以分别发出第一波长λ1和第二波长λ2的光并照射到光致变形层701的基本相同的部位上,因此该设置可以使发光器件更灵敏的控制光致变形层701的变形,进而更灵敏的控制致动器700的运动状态。
在一些实施例中,第一驱动单元可以包括相对设置的发不同光的发光器件。例如,如图8A所示,在致动器800中,第一驱动单元802包括至少一个第一发光器件8021和至少一个第五发光器件8025。第一发光器件8021结合于光致变形层801的第一侧(图中示出为光致变形层801的上侧),第一发光器件8021可发出第一波长λ1的第一光并照射到光致变形层801的第一侧上,第五发光器件8025结合于光致变形层801的第二侧(图中示出为光致变形层801的下侧),可发出第二波长λ2的第五光并照射到光致变形层801的第二侧上。
如图8B所示,光致变形层801在第一波长λ1的第一光的照射下发生第一变形,即图中示出的向上变形。光致变形层801在第二波长λ2的第五光的照射下发生第二变形,第一变形和第二变形的变形方向相反。例如,发生了第一变形的光致变形层801在第二波长λ2的第五光的照射下恢复原状,呈现平直状态,由此产生驱动作用。在致动器800中,相对设置的发光器件可以分别发出第一波长λ1和第二波长λ2的光并照射到光致变形层801的基本相同的部位上,因此该设置可以使发光器件更灵敏的控制光致变形层801的变形,进而更灵敏的控制致动器800的运动状态。
在一些实施例中,如图9A所示,在致动器900中,第一驱动单元902包括多个第一发光器件9021和多个第五发光器件9025。多个第一发光器件9021结合于光致变形层901的第一侧(图中示出为光致变形层901的上侧),第一发光器件9021可发出第一波长λ1的第一光并照射到光致变形层901的第一侧上,多个第五发光器件9025结合于光致变形层901的第二侧(图中示出为光致变形层901的下侧),第五发光器件9025可发出第二波长λ2的第五光并照射到光致变形层901的第二侧上。例如,在垂直于光致变形层901的层面的方向上,第一发光器件9021和第五发光器件9025彼此重叠。
如图9B所示,致动器900在多个第一发光器件9021发出的第一波长λ1的第一光的情况下发生多个第一子变形,形成如图9B所示的“第四波浪形” 变形,致动器900在多个第五发光器件9025发出的第二波长λ2的第五光的情况下发生多个第二子变形,第一子变形和第二子变形的变形方向相反。例如,发生了“第四波浪形”变形的致动器900在第二波长λ2的第五光的照射下恢复原状,呈现平直状态,由此产生驱动作用。
在一些实施例中,如图10A所示,致动器1000包括光致变形层1001、第一驱动单元1002和第二驱动单元1003。第一驱动单元1002和第二驱动单元1003沿着光致变形层1001的延伸方向(图中的水平方向)彼此并列设置。
第一驱动单元1002包括至少一个第一发光器件10021和至少一个第五发光器件10025。第一发光器件10021结合于光致变形层1001的第一侧(图中示出为光致变形层1001的上侧),第一发光器件10021可发出第一波长λ1的第一光并照射到光致变形层1001的第一侧上,多个第五发光器件10025结合于光致变形层1001的第二侧(图中示出为光致变形层1001的下侧),第五发光器件10025可发出第二波长λ2的第五光并照射到光致变形层1001的第二侧上。
第二驱动单元1003包括至少一个第六发光器件10036和至少一个第七发光器件10037。第六发光器件10036结合于光致变形层1001的第二侧,可发出第一波长λ1的第六光并照射到光致变形层1001的第二侧上,第七发光器件10037结合于光致变形层1001的第一侧,可发出第二波长λ2的第七光并照射到光致变形层1001的第一侧上。例如,在垂直于光致变形层1001的层面的方向上,第六发光器件10036和第七发光器件10037彼此重叠。
如图10B所示,致动器1000在第一发光器件10021发出第一波长λ1的第一光,并且第六发光器件10036发出第一波长λ1的第六光的情况下发生第一变形,形成如图10B所示的“第五波浪形”变形,致动器1000在第五发光器件10025发出第二波长λ2的第五光,并且第七发光器件10037发出第二波长λ2的第七光的情况下发生第二变形,第一变形和第二变形的变形方向相反。例如,发生了“第五波浪形”变形的致动器1000在第二波长λ2的第五光以及第七光的照射下恢复原状,呈现平直状态,由此产生驱动作用。
例如,在上述任一实施例中,光致变形层的材料包括偶氮苯、三苯基甲烷衍生物、含肉桂酸基团的共聚物、苯并螺吡楠或聚乙烯聚合物等,或这些材料的组合。这些材料在不同的光照下会产生不同的形变,进而达到光致变形的效果。
例如,在上述任一实施例中,第一波长不同于第二波长,例如第一波长短于第二波长;并且,第一波长和第二波长可以是某个具体的波长值,也可以为波长范围。例如,第一波长为蓝光波长或紫外光波长,第二波长为红外光波长。此时,光致变形层可以分别在第一波长的光以及第二波长的光的照射下进行变形与恢复。
例如,一些含有偶氮苯的光致变形材料在例如蓝光波长或紫外光波长的光的照射下,偶氮苯发生顺反异构,因此被照射的材料表面会产生收缩,从而材料会向光照的一侧产生弯曲变形;该变形了的材料在例如无光或者红外光波长的光的照射下,偶氮苯发生逆反应,此时,收缩的材料表面会产生膨胀,因此弯曲变形会恢复原状。
例如,一些含有三苯基甲烷衍生物的光致变形材料在例如紫外光波长的光的照射下会产生膨胀,从而材料产生变形;在撤去紫外光波长的光的照射后,该膨胀会恢复,从而材料恢复原状。
例如,一些含有肉桂酸基团的共聚物在波长大于260nm的光的照射下,其交联结构会发生变化,导致材料整体发生变形,反之,在波长小于260nm的光的照射下,其交联结构会恢复到初始形态,进而材料整体恢复原状。
例如,一些含有苯并螺吡楠的光致变形材料在例如紫外光波长的光的照射下会产生伸展,从而材料产生变形;在撤去紫外光波长的光的照射后,该伸展会恢复,从而材料恢复原状。
例如,一些含有聚乙烯聚合物的光致变形材料具有形状记忆性,在例如紫外光波长的光的照射下会产生一定的变形,在撤去紫外光波长的光的照射后,光致变形材料恢复原状。
本公开的实施例中,光致变形层的材料不局限于上述示例,也可以包括其他光致变形材料,并且根据不同材料的不同变形原理,第一波长与第二波长也可以选取其他范围的波长,本公开的实施例对此不做限定。
例如,在上述任一实施例中,第一驱动单元和/或第二驱动单元所包括的发光器件可以为发光二极管器件,例如有机发光二极管(OLED)器件或者量子点发光二极管(QLED)器件、微型发光二极管(MicroLED)器件、次毫米发光二极管(Mini LED)等。例如,该发光二极管器件包括柔性衬底,例如OLED直接制备在该柔性衬底上,该无机LED可以通过转印方法等贴附安装在该柔性衬底上。例如,柔性衬底的材料为透明材料,例如包括聚酰 亚胺、聚碳酸脂、聚醚砜、聚对苯二甲酸乙二脂等有机材料。例如,该发光二极管器件还包括柔性封装层,且发光二极管器件通过柔性封装层贴附在光致变形层的表面。例如,柔性封装层的材料也为透明材料,例如包括SiN X,SiCN等无机材料,或者聚酰亚胺、聚碳酸脂、聚醚砜、聚对苯二甲酸乙二脂等有机材料。由此,该发光二极管器件整体具有柔性,可以更好的匹配光致变形层的变形。
例如,将具有上述结构的发光二极管器件体现在如图8A所示的致动器800进行示例性说明。如图11所示,第一驱动单元802的第一发光器件8021包括柔性衬底8020以及柔性封装层8120,第一发光器件8021通过柔性封装层8120贴附在光致变形层801的第一侧。第一驱动单元803的第二发光器件8031包括柔性衬底8030以及柔性封装层8130,第二发光器件8031通过柔性封装层8130贴附在光致变形层801的第二侧。因此,致动器800整体上具有柔性,使致动器800的运动更灵活。
本公开实施例提供的致动器包括与光致变形层结合的发光器件,该致动器利用发光器件发光与否或发出不同的光来控制光致变形层的变形状态,产生驱动作用,实现致动器的运动。该发光器件具有柔性且尺寸微小,可实现致动器的微型化,还可以更灵活地控制致动器的运动状态,实现致动器的微运动,例如,致动器可以在微小空间内运动或者进行微小距离运动。
本公开至少一实施例提供一种可移动装置,如图12所示,可移动装置20包括至少一个本公开实施例提供的致动器(图中示出为致动器100)以驱动可移动装置20。可移动装置20可以在致动器100的驱动下进行移动。
例如,可移动装置20还可以包括控制器21,控制器20至少可以控制致动器100中的第一发光器件的发光状态,从而控制致动器100进行驱动。例如,当致动器100中存在其他发光器件,例如存在第二发光器件或/和第三发光器件或/和第四发光器件等时,控制器21例如还可以控制这些发光器件的发光状态,从而灵活控制可移动装置20的移动。
例如,发光状态包括每个发光器件是否发光、发光的强度、发光的时间、发光的顺序等。
例如,在一些实施例中,控制器21可以是任何具有数据处理能力和/或程序执行能力的控制单元,例如中央处理单元(CPU)、数字信号处理器(DSP)、单片机等。例如,控制器21还可以包括存储单元,该存储单元存 储可移动装置20在不同运动模式下的发光器件的控制程序等。例如,该存储单元可以为任意形式的存储介质,例如易失性存储器或非易失性存储器等,例如半导体存储器或磁性介质存储器等。
例如,在一些实施例中,可移动装置20还包括图像传感器22,图像传感器22用于拍摄可移动装置20的外部环境。例如,在可移动装置20运动的过程中,图像传感器22可用于拍摄可移动装置20在运动过程中周边环境。例如,图像传感器22可以为CCD图像传感器、CMOS图像传感器或者CIS图像传感器等任意形式的传感器,可以工作于可见光波段内或者红外光波段内,本公开的实施例对此不做限定。
例如,在一些实施例中,可移动装置20还包括信息传输单元23,信息传输单元23可通过无线方式传输信息,可以发送和接收数据和/或指令等,且信息传输单元23可与控制器21信号连接。例如,可以通过无线的方式对控制器21输入指令,以控制可移动装置20的运动状态。例如,信息传输单元23还与图像传感器22信号连接,从而可以实时传输图像传感器22所拍摄到的图像,该图像可以被接收端接收,从而方便用户进行监控。例如,信息传输单元23可以基于WIFI、蓝牙、ZigBee、2G/3G/4G/5G移动通信等各种无线通信标准的通信单元。
例如,在一些实施例中,可移动装置20还包括电源24,电源24至少为致动器100供电,例如,电源24还可以为图像传感器22以及信息传输单元23供电。例如,电源24可以为一次电池或可充电电池等。
需要注意的是,图12仅示例性示出可移动装置20包括控制器21、图像传感器22、信息传输单元23以及电源24等结构。本公开的实施例中,可移动装置20所包括的上述部件可以根据需求设置在可移动装置20的不同位置,或者还可以进一步包括其他功能部件,例如用于发出拍摄图像用的光的光源等,本公开的实施例对此不做限定。
例如,本公开一些实施例提供的可移动装置20可用于医疗器械领域,由于其可微型化,因此可以作为可进入人体内部进行监测与治疗的微型机器人。例如,可移动装置20可从人体血管进入人体内部,并利用图像传感器22获取人体内部图像,从而为医疗诊断提供参考数据。又例如,可移动装置20可搭载药物进入人体内部,并将药物释放到病灶部位,从而实现治疗等。
本公开至少一实施例提供一种致动器的制备方法,如图13所示,该制 备方法包括步骤S101和步骤S102。
步骤S101:提供光致变形层。
例如,光致变形层可以是购买的,也可以是自制的。例如,以光致变形层包括偶氮苯为例,对制备光致变形层进行详细介绍。
例如,在一个示例中,如图14所示,形成包括偶氮苯的光致变形层包括步骤S1011-步骤S1013。
步骤S1011:将偶氮苯单体溶于溶剂。
例如,本示例采用的偶氮苯单体的分子式如下:
Figure PCTCN2019071640-appb-000001
例如,本示例采用的溶剂为易挥发的有机溶剂,例如采用环己酮、丙酮、二氯甲烷等有机溶剂。
本示例中,偶氮苯单体溶于有机溶剂的比例可以根据偶氮苯单体在所选溶剂中的溶解性以及偶氮苯单体所要形成的厚度等进行选择,本示例对此不做限定。
步骤S1012:在基底上形成偶氮苯单体层。
例如,将偶氮苯单体溶于溶剂后,可以采用喷墨打印法在基底上形成偶氮苯单体层。
本示例中,偶氮苯单体层的形成厚度可以根据变形需求等进行选择,本示例对此不做限定。
步骤S1013:将偶氮苯单体层与偶氮苯交联剂接触以使偶氮苯单体层中的偶氮苯交联。
例如,本示例采用的交联剂分子式如下:
Figure PCTCN2019071640-appb-000002
例如,交联剂也溶于溶剂后进行使用,例如交联剂溶于与偶氮苯相同的有机溶剂中。例如,偶氮苯交联剂溶于有机溶剂中的摩尔含量为偶氮苯溶于有机溶剂中的摩尔含量的约二倍,从而使得偶氮苯单体层中的偶氮苯可以充分交联。
例如,可以采用喷墨打印法在偶氮苯单体层上喷洒偶氮苯交联剂,以将偶氮苯单体层与偶氮苯交联剂接触,使得偶氮苯单体层中的偶氮苯交联。
例如,在偶氮苯交联完成后,可以通过加热等方式将交联的偶氮苯材料固化,以形成光致变形层。
步骤S102:在光致变形层上设置第一驱动单元。
例如,首先形成第一驱动单元,然后将第一驱动单元设置在光致变形层上。
下面,以第一驱动单元包括一个第一发光器件,且第一发光器件为有机发光器件为例,对第一驱动单元的形成方法进行介绍。
例如,形成第一发光器件包括形成发光结构以及控制发光结构发光的驱动电路,该驱动电路例如包括具有开关功能的薄膜晶体管。例如,形成发光结构包括形成第一电极、第二电极以及第一电极和第二电极之间的发光层。形成薄膜晶体管包括形成栅极、有源层、源漏电极等功能层。
例如,可以在柔性衬底上采用构图工艺依次形成薄膜晶体管的栅极、有源层以及源漏电极等功能层。例如,柔性衬底可以采用具有柔性的透明材料形成,例如采用聚酰亚胺、聚碳酸脂、聚醚砜、聚对苯二甲酸乙二脂等有机材料形成。例如,一次构图工艺包括光刻胶的形成、曝光、显影以及刻蚀等工序。
例如,在薄膜晶体管形成后,依次形成发光结构的第一电极、发光层以及第二电极。例如,第一电极采用Al、Ni、Co等金属材料形成。例如,可以采用溅射或者蒸镀等方式形成第一电极。然后,在第一电极上采用蒸镀或者喷墨打印的方法形成发光层。该发光层可以根据需求选择为可发出特定颜色光的材料。例如,本示例中,发光层选择为可发出第一波长的第一光的材料。例如,在一些示例中,形成发光层前后还可以形成空穴注入层(HIL)、空穴传输层(HTL)、电子传输层(EHL)、电子注入层(EIL)的一种或多种,以增强发光效果。例如,在发光层形成后,可以采用蒸镀或者溅射等方法形成形成第二电极,第二电极例如采用Ag、Mg等金属或其合金,或者IZO等金属氧化物形成。
例如,在第一发光器件形成后,采用沉积等方法利用透明的柔性封装材料对第一发光器件进行封装,以形成柔性封装层。例如,该封装材料包括SiN X,SiCN等无机材料,或者聚酰亚胺、聚碳酸脂、聚醚砜、聚对苯二甲酸乙二脂等有机材料。
例如,在封装完成后,使用粘结剂,将第一发光二极管器件通过柔性封 装层贴附在光致变形层的表面。例如,将第一发光器件结合于光致变形层的第一侧。
例如,在封装完成后,通过机械结构,例如卡合结构、插接结构等,将第一发光二极管器件通过柔性封装层固定到光致变形层的表面。例如,将第一发光器件结合于光致变形层的第一侧。
该示例中,结合于光致变形层第一侧的第一发光器件可发出第一波长的第一光,并且光致变形层在第一光的照射下可发生第一变形。由此形成如图1A所示的致动器。
例如,在一些实施例中,第一驱动单元还包括另一发光器件,例如,可以采用与第一发光器件基本相同的方法形成另一发光器件,然后将另一发光器件结合于光致变形层的第一侧或第二侧。
例如,另一发光器件形成为可发出第二波长的第二光,光致变形层在第二光的照射下发生第二变形,第一变形和第二变形的变形方向相反。例如,在第二波长的第二光的照射下,发生第一变形的致动器可恢复原状。由此形成如图2A的致动器(另一发光二极管器件贴附在光致变形层的第一侧的情况),或者形成如图8A所示的致动器(另一发光二极管器件贴附在光致变形层的第二侧的情况)。
例如,在一些实施例中,光致变形层的第一侧和第二侧还可以形成更多个发光器件,这些发光器件同样可以采用上述方法形成并结合于光致变形层的第一侧和/或第二侧。例如,位于光致变形层同一侧的多个发光器件可以在同一柔性衬底上采用同一次制备工艺形成,并采用同一封装层封装,以简化制备工艺。
本公开至少一实施例提供一种本公开实施例提供的致动器的操作方法,如图15所示,该操作方法包括步骤S201-步骤S202:
步骤S201:控制第一驱动单元的第一发光器件发出第一波长的第一光。
在上述控制下,光致变形层可以发生第一变形。
步骤S202:控制第一驱动单元的第一发光器件停止发光。
在上述控制下,光致变形层可以发生第二变形,第一变形和第二变形相反。例如,发生第一变形的光致变形层无光照射的情况下可恢复原状。
例如,在一些实施例中,第一驱动单元还包括另一发光器件,另一发光器件结合于光致变形层的第一侧或第二侧(光致变形层的第一侧和第二侧彼 此相对),此时致动器的操作方法还可以包括步骤S203。
步骤S203:控制另一发光器件发出第二波长的第二光。
在上述控制下,光致变形层可以加快发生第二变形。例如,发生第一变形的光致变形层可以在第二波长的第二光的照射下可以快速恢复原状,从而提高致动器的运动速度。
例如,在光致变形层的两侧分别包括多个发光器件的情况下,可以选择性控制这些发光器件的发光状态,使光致变形层发生各种不同的变形,从而灵活控制光致变形层的变形形态,进而实现灵活控制致动器的运动状态。
还有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”或者可以存在中间元件。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (22)

  1. 一种致动器,包括:
    光致变形层;
    第一驱动单元,包括至少一个第一发光器件,其中,所述第一发光器件结合于所述光致变形层的第一侧,可发出第一波长的第一光并照射到所述光致变形层上;
    所述光致变形层在所述第一光的照射下可发生第一变形。
  2. 根据权利要求1所述的致动器,还包括:
    第二驱动单元,包括至少一个第二发光器件,其中,所述第二发光器件结合于所述光致变形层的第二侧,可发出所述第一波长的第二光并照射到所述光致变形层上,所述光致变形层的第一侧和第二侧彼此相对。
  3. 根据权利要求1所述的致动器,其中,所述第一驱动单元还包括至少一个第三发光器件,所述第三发光器件结合于所述光致变形层的第一侧,可发出第二波长的第三光并照射到光致变形层上;
    发生变形的所述光致变形层在所述第二波长的第三光的照射下发生第二变形,所述第一波长不同于所述第二波长,所述第一变形和所述第二变形的变形方向相反。
  4. 根据权利要求3所述的致动器,还包括:
    第二驱动单元,包括至少一个第二发光器件和至少一个第四发光器件,其中,所述第二发光器件和所述第四发光器件结合于所述光致变形层的第二侧,所述第二发光器件可发出所述第一波长的第二光并照射到光致变形层上,所述第四发光器件可发出所述第二波长的第四光并照射到光致变形层上,所述光致变形层的第一侧和第二侧彼此相对。
  5. 根据权利要求4所述的致动器,其中,所述第一驱动单元包括多个第一发光器件和多个第三发光器件,所述第二驱动单元包括多个第二发光器件和第四发光器件;
    在平行于所述光致变形层的延伸方向上,所述第一发光器件和所述第三发光器件交错布置,所述第二发光器件和所述第四发光器件交错布置。
  6. 根据权利要求5所述的致动器,其中,在垂直于所述光致变形层的层面的方向上,所述第一发光器件和所述第四发光器件彼此重叠,所述第二 发光器件和所述第三发光器件彼此重叠。
  7. 根据权利要求1所述的致动器,其中,所述第一驱动单元还包括至少一个第五发光器件,所述第五发光器件结合于所述光致变形层的第二侧,可发出第二波长的第五光并照射到所述光致变形层上,
    所述光致变形层在所述第二波长的第五光的照射下发生第二变形,
    所述第一波长不同于所述第二波长,所述第一变形和所述第二变形的变形方向相反,所述光致变形层的第一侧和第二侧彼此相对。
  8. 根据权利要求7所述的致动器,还包括第二驱动单元,其中,所述第二驱动单元包括至少一个第六发光器件和至少一个第七发光器件;
    所述第六发光器件结合于所述光致变形层的第二侧,可发出所述第一波长的第六光并照射到所述光致变形层上,
    所述第七发光器件结合于所述光致变形层的第一侧,可发出所述第二波长的第七光并照射到所述光致变形层上;
    在垂直于所述光致变形层的层面的方向上,所述第六发光器件和所述第七发光器件彼此重叠。
  9. 根据权利要求1-8任一所述的致动器,其中,所述光致变形层的材料包括:偶氮苯、三苯基甲烷衍生物、含肉桂酸基团的共聚物、苯并螺吡楠或聚乙烯聚合物。
  10. 根据权利要求1-9任一所述的致动器,其中,所述第一驱动单元包括的发光器件为发光二极管器件,所述发光二极管器件包括柔性衬底。
  11. 根据权利要求2、4-6和8任一所述的致动器,其中,所述第二驱动单元包括的发光器件为发光二极管器件,所述发光二极管器件包括柔性衬底。
  12. 根据权利要求10或11所述的致动器,其中,所述发光二极管器件还包括柔性封装层,且通过所述柔性封装层贴附在所述光致变形层的表面。
  13. 根据权利要求3-8任一所述的致动器,其中,所述第一波长为蓝光波长或紫外光波长,所述第二波长为红外光波长。
  14. 一种可移动装置,包括至少一个如权利要求1-13任一所述的致动器以驱动所述可移动装置。
  15. 根据权利要求14所述的可移动装置,还包括控制器,其中,所述控制器至少控制所述致动器中的第一发光器件的发光状态,从而控制所述致 动器进行驱动。
  16. 根据权利要求15所述的可移动装置,还包括图像传感器,其中,所述图像传感器用于拍摄所述可移动装置的外部环境。
  17. 一种致动器的制备方法,包括:
    提供光致变形层;
    在所述光致变形层上设置第一驱动单元,所述第一驱动单元包括至少一个第一发光器件,且将所述第一发光器件结合于所述光致变形层的第一侧;
    其中,第一发光器件可发出第一波长的第一光,所述光致变形层在所述第一光的照射下可发生第一变形。
  18. 根据权利要求17所述的制备方法,其中,所述第一驱动单元还包括另一发光器件;所述制备方法还包括:
    将所述另一发光器件结合于所述光致变形层的第一侧或第二侧;
    其中,所述另一发光器件可发出第二波长的第二光,所述光致变形层在所述第二光的照射下发生第二变形,所述第一波长不同于所述第二波长,所述第一变形和所述第二变形的变形方向相反,所述光致变形层的第一侧和第二侧彼此相对。
  19. 根据权利要求17所述的制备方法,其中,所述光致变形层包括偶氮苯;
    形成所述光致变形层包括:
    将偶氮苯单体溶于溶剂;
    在基底上形成偶氮苯单体层;
    将所述偶氮苯单体层与偶氮苯交联剂接触以使所述偶氮苯单体层中的偶氮苯交联。
  20. 根据权利要求19所述的制备方法,其中,采用喷墨打印法在所述基底上形成所述偶氮苯单体层,并采用喷墨打印法在所述偶氮苯单体层上喷洒所述偶氮苯交联剂。
  21. 一种如权利要求1的致动器的操作方法,包括:
    控制第一驱动单元的第一发光器件发出第一波长的第一光,使所述光致变形层发生第一变形;
    控制所述第一驱动单元的第一发光器件停止发光,使所述光致变形层发生第二变形,第一变形和第二变形相反。
  22. 根据权利要求21所述的操作方法,其中,所述第一驱动单元还包括另一发光器件,所述另一发光器件结合于所述光致变形层的第一侧或第二侧;所述光致变形层的第一侧和第二侧彼此相对;
    所述操作方法还包括:
    控制所述另一发光器件发出第二波长的第二光,使所述光致变形层发生第二变形,其中,所述第一波长不同于所述第二波长,所述第一变形和所述第二变形的变形方向相反。
PCT/CN2019/071640 2019-01-14 2019-01-14 致动器及其制备方法、操作方法、可移动装置 WO2020146979A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/754,570 US11434128B2 (en) 2019-01-14 2019-01-14 Actuator and manufacture method thereof, operation method thereof, and movable device
PCT/CN2019/071640 WO2020146979A1 (zh) 2019-01-14 2019-01-14 致动器及其制备方法、操作方法、可移动装置
CN201980000063.8A CN111699152B (zh) 2019-01-14 2019-01-14 致动器及其制备方法、操作方法、可移动装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/071640 WO2020146979A1 (zh) 2019-01-14 2019-01-14 致动器及其制备方法、操作方法、可移动装置

Publications (1)

Publication Number Publication Date
WO2020146979A1 true WO2020146979A1 (zh) 2020-07-23

Family

ID=71613508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071640 WO2020146979A1 (zh) 2019-01-14 2019-01-14 致动器及其制备方法、操作方法、可移动装置

Country Status (3)

Country Link
US (1) US11434128B2 (zh)
CN (1) CN111699152B (zh)
WO (1) WO2020146979A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114334780A (zh) * 2021-12-29 2022-04-12 Tcl华星光电技术有限公司 Led面板的制备方法
WO2023171760A1 (ja) * 2022-03-10 2023-09-14 日産化学株式会社 位相差膜用組成物及び単層位相差材
WO2024162343A1 (ja) * 2023-01-31 2024-08-08 日産化学株式会社 単層位相差材及び位相差フィルム

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101516764A (zh) * 2006-09-20 2009-08-26 皇家飞利浦电子股份有限公司 在生物芯片或生物系统中使用的微致动器器件
US20120175529A1 (en) * 2011-01-06 2012-07-12 The Government of United States of America, as represented by the Secretary of the Navy Photoresponsive Nanoparticles as Light-Driven Nanoscale Actuators
CN102615885A (zh) * 2012-03-23 2012-08-01 复旦大学 可逆光致变形液晶高分子和碳纳米管复合薄膜的制备方法
CN204352378U (zh) * 2014-07-10 2015-05-27 中华映管股份有限公司 光疗装置
CN105411010A (zh) * 2016-01-07 2016-03-23 云南中烟工业有限责任公司 一种采用光致可逆形变层的电子烟防漏油装置和防漏油方法
CN106910432A (zh) * 2017-05-10 2017-06-30 京东方科技集团股份有限公司 一种柔性显示装置及其控制方法
CN107291245A (zh) * 2017-07-05 2017-10-24 京东方科技集团股份有限公司 一种触控显示面板、触控方法及显示装置
CN108258019A (zh) * 2018-01-15 2018-07-06 京东方科技集团股份有限公司 一种柔性可控oled显示装置及制作方法、显示设备
CN108711371A (zh) * 2018-05-18 2018-10-26 京东方科技集团股份有限公司 用于柔性显示面板的形变驱动模块、柔性显示装置
WO2018219745A1 (en) * 2017-06-01 2018-12-06 Philips Lighting Holding B.V. A collimator device, a lighting device, a lamp and a luminaire

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100567455C (zh) * 2007-03-15 2009-12-09 复旦大学 一种光致形变液晶高分子材料及其制备方法
JP5380921B2 (ja) * 2008-06-25 2014-01-08 コニカミノルタ株式会社 光駆動型アクチュエータ
JP2013245296A (ja) * 2012-05-25 2013-12-09 Daiken Iki Kk 架橋型液晶高分子材料の変形方法、光駆動型成形体
KR101519519B1 (ko) * 2013-09-17 2015-05-12 국립대학법인 울산과학기술대학교 산학협력단 신축성 배선을 이용하여 형성된 무 베젤 디스플레이 장치 및 그 제조 방법
CN104519347B (zh) * 2014-12-10 2017-03-01 北京智谷睿拓技术服务有限公司 光场显示控制方法和装置、光场显示设备
CN104537975B (zh) * 2015-01-16 2018-09-04 北京智谷睿拓技术服务有限公司 显示控制方法和装置、显示设备
CN107316624B (zh) * 2017-07-17 2019-12-03 京东方科技集团股份有限公司 显示器件及其显示亮度的调整方法
CN109509720B (zh) * 2017-09-15 2021-03-02 京东方科技集团股份有限公司 基板支撑装置、显示面板制造设备和基板支撑方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101516764A (zh) * 2006-09-20 2009-08-26 皇家飞利浦电子股份有限公司 在生物芯片或生物系统中使用的微致动器器件
US20120175529A1 (en) * 2011-01-06 2012-07-12 The Government of United States of America, as represented by the Secretary of the Navy Photoresponsive Nanoparticles as Light-Driven Nanoscale Actuators
CN102615885A (zh) * 2012-03-23 2012-08-01 复旦大学 可逆光致变形液晶高分子和碳纳米管复合薄膜的制备方法
CN204352378U (zh) * 2014-07-10 2015-05-27 中华映管股份有限公司 光疗装置
CN105411010A (zh) * 2016-01-07 2016-03-23 云南中烟工业有限责任公司 一种采用光致可逆形变层的电子烟防漏油装置和防漏油方法
CN106910432A (zh) * 2017-05-10 2017-06-30 京东方科技集团股份有限公司 一种柔性显示装置及其控制方法
WO2018219745A1 (en) * 2017-06-01 2018-12-06 Philips Lighting Holding B.V. A collimator device, a lighting device, a lamp and a luminaire
CN107291245A (zh) * 2017-07-05 2017-10-24 京东方科技集团股份有限公司 一种触控显示面板、触控方法及显示装置
CN108258019A (zh) * 2018-01-15 2018-07-06 京东方科技集团股份有限公司 一种柔性可控oled显示装置及制作方法、显示设备
CN108711371A (zh) * 2018-05-18 2018-10-26 京东方科技集团股份有限公司 用于柔性显示面板的形变驱动模块、柔性显示装置

Also Published As

Publication number Publication date
US11434128B2 (en) 2022-09-06
CN111699152B (zh) 2024-01-19
CN111699152A (zh) 2020-09-22
US20210221672A1 (en) 2021-07-22

Similar Documents

Publication Publication Date Title
WO2020146979A1 (zh) 致动器及其制备方法、操作方法、可移动装置
US11980064B2 (en) Display apparatus and method of manufacturing the same
TWI580027B (zh) 有機發光顯示裝置及製造有機發光顯示裝置之方法
US7423374B2 (en) Organic electroluminescent display element, display device having the same, and manufacturing method of the same
US9070900B2 (en) Method of manufacturing display, and display
KR101002662B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
EP3751615A1 (en) Display device
JP2010161050A (ja) 有機発光表示装置及びその製造方法
US20140070179A1 (en) Organic light emitting display device having improved auxiliary light emitting layer structure and manufacturing method thereof
WO2020148601A1 (ja) 表示システム、表示装置、発光装置
KR102562604B1 (ko) 플렉시블 전계발광 표시장치
KR20190135173A (ko) 플렉시블 전계발광 표시장치
US20160172421A1 (en) Display unit, method of manufacturing the same, and electronic apparatus
KR102117849B1 (ko) 유기 발광 표시 패널 및 이의 제조 방법
KR20210058433A (ko) 플렉서블 유기발광 표시장치
JP2008277063A (ja) 有機エレクトロルミネッセンス表示装置およびその製造方法
US10950682B2 (en) Method for manufacturing organic electroluminescent device
CN111628069B (zh) 电子设备以及将发光元件附接至衬底的方法
JP2006066861A (ja) レーザ熱転写装置
WO2015029203A1 (ja) 有機発光装置
KR102426616B1 (ko) 플렉시블 전계발광 표시장치
US20160104856A1 (en) Organic light-emitting illumination apparatus
KR20150145835A (ko) 디스플레이 장치의 열처리 장치 및 이를 이용한 열처리 방법
CN115548072A (zh) 柔性有机发光显示设备
KR20190060275A (ko) 플렉시블 전계발광 표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19910859

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19910859

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19910859

Country of ref document: EP

Kind code of ref document: A1