WO2020144944A1 - 通信制御装置、通信制御方法及びコンピュータプログラム - Google Patents

通信制御装置、通信制御方法及びコンピュータプログラム Download PDF

Info

Publication number
WO2020144944A1
WO2020144944A1 PCT/JP2019/045374 JP2019045374W WO2020144944A1 WO 2020144944 A1 WO2020144944 A1 WO 2020144944A1 JP 2019045374 W JP2019045374 W JP 2019045374W WO 2020144944 A1 WO2020144944 A1 WO 2020144944A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication control
control device
information
slot
iab
Prior art date
Application number
PCT/JP2019/045374
Other languages
English (en)
French (fr)
Inventor
博允 内山
直紀 草島
大輝 松田
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201980087622.3A priority Critical patent/CN113261321A/zh
Priority to EP19909015.0A priority patent/EP3910979A4/en
Priority to US17/309,897 priority patent/US20220078751A1/en
Priority to JP2020565604A priority patent/JP7447809B2/ja
Publication of WO2020144944A1 publication Critical patent/WO2020144944A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present disclosure relates to a communication control device, a communication control method, and a computer program.
  • IoT Internet of Things
  • 3GPP Third Generation Partnership Project
  • MTC Machine Type Communication
  • NB-IoT Narrow Band IoT
  • Patent Document 1 discloses a technique in which a terminal device in a cell relays communication between a terminal device outside the cell and a base station.
  • IAB Integrated Access and Backhaul link
  • a terminal that relays communication such as a relay node
  • the local environment changes more dynamically, so it is expected that the wireless communication environment will also change significantly due to factors such as reflection and interference. Therefore, resource allocation in consideration of the fluctuation is required.
  • an acquisition unit that acquires information about a slot setting and a slot rewritable in the setting from another communication control device, and information about a radio environment around the own station, and the radio environment.
  • a communication control device comprising: a setting unit that selects and rewrites a slot to be rewritten from the rewritable slots based on information; and a communication control unit that executes communication based on the slot rewritten by the setting unit.
  • the processor acquires information about a slot setting and a rewritable slot in the setting from another communication control device, and information about a radio wave environment around the own station,
  • a communication control method including: selecting and rewriting a slot to be rewritten from the rewritable slots based on the information on the radio wave environment; and executing communication based on the rewritten slot. To be done.
  • the computer acquires information about a slot setting and a rewritable slot in the setting from another communication control device, and information about a radio wave environment around the own station, Provided is a computer program for selecting a rewriting slot from the rewritable slots based on the information on the radio wave environment and rewriting, and executing communication based on the rewritten slot. To be done.
  • FIG. 4 is an explanatory diagram illustrating an outline of an operation of the communication control device according to the embodiment of the present disclosure.
  • FIG. 4 is an explanatory diagram illustrating an outline of an operation of the communication control device according to the embodiment of the present disclosure.
  • 9 is a flowchart illustrating an operation example of the embodiment of the present disclosure.
  • 9 is a flowchart illustrating an operation example of the embodiment of the present disclosure.
  • 9 is a flowchart illustrating an operation example of the embodiment of the present disclosure.
  • It is a block diagram which shows the 1st example of schematic structure of eNB.
  • It is a block diagram which shows the 2nd example of schematic structure of eNB.
  • It is a block diagram showing an example of a schematic structure of a smart phone.
  • It is a block diagram showing an example of a schematic structure of a car navigation device.
  • FIG. 1 is an explanatory diagram showing an outline of IAB.
  • FIG. 1 shows three base stations 100a, 100b, 100c and terminals 200a, 200b, 200c that communicate with each base station 100a, 100b, 100c.
  • the base station 100a is connected to the core network by an optical fiber cable, and a backhaul link is established with the base stations 100b and 100c.
  • the terminal 200a has an access link established not only with the base station 100a but also with the base station 100b.
  • IAB is also considering a communication relay.
  • IAB not only conventional TDM (Time Division Multiplexing), but also FDM (Frequency Division Multiplexing) and SDM (Space Division Multiplexing) are used to create backhaul links. Make the access links orthogonal.
  • IAB communication using millimeter waves is particularly assumed. Although communication using millimeter waves has a problem of coverage, by using relay communication such as IAB, coverage can be efficiently expanded in communication using millimeter waves.
  • IAB multi-hop is also assumed, and mesh type arrangement is also assumed.
  • FIG. 2 is an explanatory diagram showing an example of the IAB use case.
  • the IAB is not only a network configuration using millimeter wave communication, but also, for example, vehicle tethering in which an IAB node is mounted on a car, a moving cell in which an IAB node is mounted on a train, and an IAB node is mounted on a flying body such as a drone. It can also be applied to drone cells.
  • IAB is expected to be applied to IoT communication.
  • the IAB can also be applied to wearable tethering communication for connecting a smartphone and a wearable device.
  • the IAB can also be applied to other areas such as medical care and factory automation.
  • the use case shown in FIG. 2 is only an example, and IAB can be applied to other use cases than the use case shown in FIG.
  • FIG. 3 is an explanatory diagram showing an example of IAB architecture.
  • the IAB-donor is assumed to be a base station such as gNB and is connected to the core network (CN).
  • the IAB-donor has a centralized unit (CU) and a base station function (Distributed Unit; DU).
  • An IAB-node (relay node) exists under the control of the IAB-donor, and the IAB-nodes are wirelessly connected while forming a plurality of multi-hops.
  • Each IAB-node is connected to a user terminal (UE) by an access link.
  • the IAB-node may be connected to multiple IAB-nodes to improve the redundancy of the backhaul link.
  • the IAB-node is composed of a user terminal function (Mobile Terminal; MT) and a base station function (Distributed Unit; DU). That is, in downlink reception and uplink transmission in the backhaul link, the IAB-node operates as MT, and in downlink transmission and uplink reception, the IAB-node operates as DU. From the user terminal, the IAB-node looks like a normal base station, so that even a legacy terminal can connect to the IAB network. Note that the IAB-node is not limited to the case where it is composed of MT and DU.
  • the IAB-node may be configured by an MT that receives a downlink from a higher-level IAB-node and an MT that transmits a side link.
  • the IAB-node may have both DU and MT functions. In that case, since the uplink transmission of the IAB node operates as MT, the uplink resource to be used is assigned by the parent IAB-node. On the other hand, the downlink transmission of the IAB node operates as a DU, so the downlink resource to be used is more allocated by its own IAB-node.
  • FIG. 4 is an explanatory diagram showing the IAB-node relationship.
  • the IAB-node normally holds a link between the parent IAB-parent and the child IAB-IAB-child. It also holds a link with a normal user terminal.
  • the link between IABs is a backhaul link and the link for user terminals is an access link.
  • the IAB-donor allocates all resources, the Centralized manner, the IAB-Node manages the resources by itself, and the parent IAB-node manages the resources of the child IAB-node, the Hierarchal manner. , Can be mentioned. Centralized manner, Distributed manner, and Hierarchal manner may be used in combination. For example, a method in which the IAB-donor determines the frame format configuration of the uplink and the downlink to some extent, leaves an area that can be set in each IAB-node, and rewrites the frame format by the individual judgment of the IAB-node. Is also possible.
  • IAB-nodes may have mobility in the future.
  • the wireless communication environment since the local environment changes more dynamically, it is expected that the wireless communication environment will also greatly change due to factors such as radio wave reflection and interference.
  • the IAB resource allocation it is expected that the slot format is set to some extent by the IAB-donor to determine the uplink and downlink configurations.
  • the IAB-node communicates using the slot format setting specified by the IAB-donor.
  • the IAB-donor may not be able to correctly recognize the local wireless communication environment of the IAB-node. That is, more flexible resource allocation change is required in the local area.
  • resources such as Distributed manner are allocated, the coordination between adjacent IAB-nodes may not be successful and interference may occur. Therefore, there is a demand for a mechanism capable of dynamically changing the allocation locally according to the surrounding environment, based on the slot format set to some extent by the IAB-donor.
  • the present inventor devises a technique capable of dynamically changing the allocation locally according to the surrounding environment, based on the slot format set to some extent by the IAB-donor. I arrived.
  • FIG. 5 is a block diagram showing an example of the configuration of the communication control device 100 according to the present embodiment.
  • the communication control device 100 is an example of an IAB-donor or an IAB-node, and referring to FIG. 5, the communication control device 100 includes an antenna unit 110, a wireless communication unit 120, a network communication unit 130, a storage unit 140, and a control unit 150. Equipped with.
  • Antenna unit 110 The antenna unit 110 radiates the signal output by the wireless communication unit 120 into space as a radio wave. The antenna unit 110 also converts radio waves in space into a signal and outputs the signal to the wireless communication unit 120.
  • the antenna unit 110 has a plurality of antenna elements and can form a beam.
  • the wireless communication unit 120 sends and receives signals. For example, the wireless communication unit 120 transmits a downlink signal to the terminal device and receives an uplink signal from the terminal device.
  • the wireless communication unit 120 can form a plurality of beams by the antenna unit 110 and communicate with the terminal device.
  • the antenna unit 110 and the wireless communication unit 120 are configured to include a plurality of antenna panels 70 of the analog-digital hybrid antenna architecture described above with reference to FIG.
  • the antenna unit 110 corresponds to the antenna 72.
  • the wireless communication unit 120 corresponds to the digital circuit 50, the analog circuit 60, and the phase shifter 71.
  • the network communication unit 130 transmits and receives information.
  • the network communication unit 130 transmits information to other nodes and receives information from other nodes.
  • the other node includes another base station and a core network node.
  • Storage unit 140 The storage unit 140 temporarily or permanently stores a program and various data for the operation of the communication control device 100.
  • Control unit 150 controls the overall operation of the communication control device 100 and provides various functions of the communication control device 100.
  • the control unit 150 includes a setting unit 151 and a communication control unit 153.
  • the setting unit 151 performs various settings relating to wireless communication between the communication control device 100 and another communication control device 100, or between the communication control device 100 and the terminal device 200.
  • the communication control unit 153 executes a communication control process for transmitting a signal from the wireless communication unit 120 based on the setting of the setting unit 151.
  • the wireless communication unit 120 acquires from the other communication control device 100 (IAB-node) the information about the slot settings and the rewritable slots in the settings, and the information about the radio environment around the own station. Therefore, the wireless communication unit 120 can function as an example of the acquisition unit according to the present disclosure.
  • the setting unit 151 selects and rewrites the slot to be rewritten from the rewritable slots based on the information on the radio wave environment acquired by the wireless communication unit 120. Then, the communication control unit 153 executes wireless communication based on the slot rewritten by the setting unit 151.
  • the control unit 150 may further include other components other than these components. That is, the control unit 150 can perform operations other than the operations of these components.
  • FIG. 6 is a block diagram showing an example of the configuration of the terminal device 200 according to the present embodiment.
  • the terminal device 200 includes an antenna unit 210, a wireless communication unit 220, a storage unit 230, and a control unit 240.
  • the antenna unit 210 radiates the signal output from the wireless communication unit 220 into space as a radio wave.
  • the antenna unit 210 also converts radio waves in the space into a signal and outputs the signal to the wireless communication unit 220.
  • the antenna unit 210 has a plurality of antenna elements and can form a beam.
  • the wireless communication unit 220 transmits and receives signals. For example, the wireless communication unit 220 receives a downlink signal from the base station and transmits an uplink signal to the base station.
  • the wireless communication unit 220 can form a plurality of beams by the antenna unit 210 and communicate with the base station.
  • the antenna unit 210 and the wireless communication unit 220 are configured to include a plurality of antenna panels 70 of the analog-digital hybrid antenna architecture described above with reference to FIG.
  • the antenna unit 210 corresponds to the antenna 72.
  • the wireless communication unit 220 corresponds to the digital circuit 50, the analog circuit 60, and the phase shifter 71.
  • Storage unit 230 The storage unit 230 temporarily or permanently stores a program and various data for the operation of the terminal device 200.
  • Control unit 240 controls the overall operation of the terminal device 200 and provides various functions of the terminal device 200.
  • the control unit 240 includes an acquisition unit 241 and a communication control unit 243.
  • the acquisition unit 241 acquires information transmitted from the communication control device 100 by wireless communication between the communication control device 100 and the terminal device 200.
  • the communication control unit 243 executes communication control processing for transmitting a signal from the wireless communication unit 220 based on the information acquired by the acquisition unit 241.
  • the control unit 240 may further include other components other than these components. That is, the control unit 240 can perform operations other than the operations of these components.
  • the communication control device 100 according to the embodiment of the present disclosure is characterized in that the slot format setting set in the IAB-node is rewritten using the surrounding environment recognition.
  • FIG. 7 is an explanatory diagram showing an outline of the operation of the communication control device 100 according to the embodiment of the present disclosure.
  • the communication control device 100 according to the embodiment of the present disclosure executes three operations of (1) slot format setting, (2) peripheral environment recognition, and (3) slot rewriting.
  • slot format setting a setting for the communication control device 100
  • peripheral environment recognition a registered trademark of the communication control device 100
  • slot rewriting a registered trademark of the communication control device 100
  • the operation of the communication control device 100 will be described step by step.
  • the slot format configuration is set by the IAB-donor. At this time, the IAB-donor sets the UL/DL/F configuration to semi-static. Other than the IAB-donor, the setting may be performed by the IAB-parent or a representative node in the IAB-node.
  • the side link resource is a resource used for the IAB-node link serving as the MT.
  • Flexible resources may include any of downlink resources, uplink resources, and side link resources.
  • a link for DU that is, a link for IAB-child
  • downlink (DL) resources, uplink (UL) resources, side link (SL) resources, and flexible resources are included.
  • the side link resource is a resource used for the IAB-node link serving as the MT.
  • Flexible resources may include any of downlink resources, uplink resources, side link resources, and Not available resources (resources that are not used for links for NA and IAB-child).
  • Hard is a resource that can always be used by the DU for IAB-child.
  • Soft is a resource that is explicitly and/or implicitly controlled by IAB-parent whether or not the resource can be used by the DU for IAB-child. Further, Hard may be a resource that cannot be rewritten by the IAB-node, and Soft may be a resource that is rewritable by the IAB-node.
  • the IAB-node dynamically recognizes the surrounding environment to dynamically rewrite the slot format in the IAB-node.
  • the IAB-node is capable of rewriting the slot format for the slot assigned as Soft (rewritable slot).
  • the measurement or the like for environment recognition may be configured from the IAB-donor to the IAB-node, or may be preconfigured to the IAB-node.
  • the configuration from the IAB-donor is set using, for example, RRC signaling.
  • the IAB-node sets a measurement interval, a measurement width, a measurement target (a measurement target band, a measurement target IAB-node, etc.) and the like as a measurement window.
  • the signaling cycle for recognizing the surrounding environment and the transmission triggering may be set by the IAB-donor and notified to the IAB-node.
  • the configurations from these IAB-donors are set using RRC signaling.
  • the IAB-donor may set the signaling configuration for another IAB-node to the IAB-node.
  • the IAB-node can handle this by sending a reconfiguration request to the IAB-donor side.
  • the IAB-node is an information acquisition link used when recognizing the surrounding environment, and is obtained from the IAB-parent (the IAB-node connected by the uplink) and the IAB-child (the IAB-node connected by the downlink). Information obtained from a neighboring IAB (an IAB-node connected by a side link or an IAB-node not linked to the own station), information obtained from a surrounding wireless environment, and the like.
  • the IAB-node can obtain assigned slot format information, currently used slot format information, and future slot format information (including rewriting schedule information) as information obtained from these links.
  • the IAB-node includes location information of the IAB-node, received power level, RSRP (Reference Signals Received Power), RSSI (Received Signal Strength Indication), and RSRQ (Reference Signal Received Quality) as information obtained from these links. Available. Further, the IAB-node can obtain the interference level of radio waves and the radio frequency usage rate (how much resource is used with respect to the allocated frequency resource) as information obtained from these links.
  • RSRP Reference Signals Received Power
  • RSSI Receiveived Signal Strength Indication
  • RSRQ Reference Signal Received Quality
  • the IAB-node can obtain whether or not it is a frequency use point (that is, the location of the frequency resource) in order to consider the in-band emission as the information obtained from these links. Further, the IAB-node can obtain the number of link hops (what hop node is counted from the IAB-donor) as information obtained from these links.
  • the IAB-node can obtain information on beamforming as information obtained from these links.
  • Information regarding beamforming may include the direction of beamforming, precoding used, Rank indicator information, MIMO mode, number of antennas, and the like.
  • the IAB-node uses information about beamforming, especially to obtain information about the space in which the beam is used.
  • the IAB-node can also obtain information regarding the occurrence of interference in other communication control devices, for example, information regarding ACK/NACK, as information obtained from these links.
  • information regarding ACK/NACK is used by the IAB-node to recognize how much interference is occurring depending on the ratio of ACK/NACK.
  • the IAB-node can obtain the IAB-capability information as the information obtained from these links.
  • the IAB-capability information includes, for example, whether it has the capability of spatial multiplexing (SDM), whether it has the capability of frequency multiplexing (FDM), the number of MIMO streaming used, the number of remaining MIMO streaming, and backhaul.
  • SDM spatial multiplexing
  • FDM frequency multiplexing
  • the IAB-node can obtain the traffic information and packet information that are being communicated as the information obtained from these links.
  • the traffic information and packet information in communication may include, for example, priority information and traffic volume.
  • the IAB-donor or another IAB-node may be notified of the rewritten result.
  • the IAB-node may rewrite the slot semi-persistently. That is, the IAB-node may notify the IAB-donor or another IAB-node by setting a valid period.
  • the IAB-node may select the rewriting slot according to the ratio of the D slot and the U slot. For example, if the number of D slots is larger, the IAB-node may rewrite a rewritable D slot into a U slot. The IAB-node may also change the frequency resource to be used when rewriting the slot. Further, the IAB-node may also change the beamforming setting when rewriting the slot.
  • the IAB-node may execute the rewriting in consideration of the link priority when rewriting the slot. For example, the IAB-node may determine the priority by using the high-priority information that must be sent without fail, and rewrite the slot according to the determined priority. Further, for example, the IAB-node may decide which of the other IAB-nodes should be prioritized, and rewrite the slot based on the priority. Further, for example, when the IAB-node needs to execute a handover or a specific procedure, the IAB-node may rewrite the slot based on the desired processing.
  • the IAB-node may execute traffic rewriting by QoS when rewriting the slot. Also, the IAB-node may perform rewriting so as to reduce the packet error rate when rewriting the slot. When rewriting the slot, the IAB-node may perform rewriting by rewriting so as to minimize its interference. When rewriting the slot, the IAB-node may perform rewriting so as to minimize interference with the IAB-node or the terminal device of the communication partner. When rewriting a slot, the IAB-node may perform the rewriting so as to maximize the capacity of the network.
  • the IAB-node may execute rewriting for the purpose of backhaul link switching when rewriting the slot. That is, when a plurality of IAB-nodes and a backhaul link are connected, the IAB-node adjusts the slots between the links so as to preferentially use one of the backhaul links, and executes rewriting. May be.
  • FIG. 8 is an explanatory diagram showing an outline of the operation of the communication control device 100 according to the embodiment of the present disclosure.
  • FIG. 8 shows an outline of the case where the IAB-node sends a slot format reconfiguration request to the IAB-donor.
  • the IAB-node executes environment recognition to determine whether the slot format needs to be rewritten. If the rewriting is necessary as a result of the environmental recognition, the IAB-node rewrites the slot format as it is, if the rewriting of the slot format is possible.
  • the IAB-node sends a Slot format reconfiguration request to the IAB-donor (which may be the parent or representatives of multiple parents). After that, the slot format is updated in the IAB-donor, and the slot format is reallocated to the IAB node.
  • step S101 the node which is the IAB-donor determines the slot format (step S101), and notifies the determined slot format to the IAB-Parent, IAB-node, IAB-child and Neighbor IAB-node (steps S102, S103 and S104). , S105).
  • Each of the IAB-Parent, IAB-node, and IAB-child notified of the slot format by the IAB-donor sets the slot format according to the notification (steps S106, S107, S108).
  • the IAB-node measures the surrounding wireless environment (step S109). Further, the IAB-node receives a notification of the slot format usage status from the IAB-Parent, IAB-child, and Neighbor IAB-node (steps S110, S111, S112). Then, the IAB-node determines the rewriting of the slot format based on the measurement result of the surrounding wireless environment and the notification of the use status of the slot format (step S113).
  • the IAB-node determines that the correspondence is insufficient only by rewriting the slot format, the IAB-node sends a slot format reconfiguration request to the IAB-donor (step S114).
  • the IAB-donor resets the slot format based on the slot format reset request from the IAB-node (step S115), and sets the reset slot format to IAB-Parent, IAB-node, IAB-child, and Neighbor. Notify the IAB-node (steps S116, S117, S118, S119).
  • Each of the IAB-Parent, IAB-node, and IAB-child notified of the slot format by the IAB-donor sets the slot format according to the notification (steps S120, S121, S122).
  • the IAB-node measures the surrounding wireless environment (step S123). Further, the IAB-node receives a notification of the use status of the slot format from the IAB-Parent, IAB-child, and Neighbor IAB-node (steps S124, S125, S126). Then, the IAB-node determines the rewriting of the slot format based on the measurement result of the surrounding wireless environment and the notification of the use status of the slot format (step S127).
  • the IAB-node rewrites the assigned slot format (step S128). At this time, the IAB-node executes rewriting of the slot format for the slot assigned as Soft (rewritable slot).
  • the wireless environment measurement around the IAB-node and the use status of the parent IAB-node, the child IAB-node, and the peripheral IAB-node slot format are obtained.
  • the IAB-node may obtain other information as described above.
  • FIG. 10 is a flowchart showing an operation example of the communication control device 100 according to the embodiment of the present disclosure. Here, an operation example when the communication control device 100 operates as an IAB-node is shown.
  • the IAB-node executes environmental recognition (step S131), and determines whether or not it is possible by rewriting the slot format (step S132). If the result of determination in step S132 is that the slot format can be rewritten (step S132, Yes), the IAB-node executes rewriting of the slot format (step S133).
  • the IAB-donor parent may be representative of multiple parents
  • Slot format reconfiguration request Is transmitted step S134. After that, the slot format is updated in the IAB-donor, and the slot format is reallocated to the IAB node (step S135).
  • the communication control device 100 may be realized as an eNB (evolved Node B) of any type such as a macro eNB or a small eNB.
  • a small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB or a home (femto) eNB.
  • the communication control device 100 may be realized as another type of base station such as a NodeB or a BTS (Base Transceiver Station).
  • the communication control device 100 may include a main body (also referred to as a base station device) that controls wireless communication, and one or more RRHs (Remote Radio Heads) arranged in a location different from the main body.
  • RRHs Remote Radio Heads
  • various types of terminals described below may operate as the communication control device 100 by temporarily or semi-permanently executing the base station function.
  • the terminal device 200 is a smartphone, a tablet PC (Personal Computer), a notebook PC, a portable game terminal, a mobile terminal such as a portable/dongle type mobile router or a digital camera, or an in-vehicle terminal such as a car navigation device. May be realized as.
  • the terminal device 200 may be realized as a terminal that performs M2M (Machine To Machine) communication (also referred to as an MTC (Machine Type Communication) terminal).
  • the terminal device 200 may be a wireless communication module mounted on these terminals (for example, an integrated circuit module configured by one die).
  • FIG. 11 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology according to the present disclosure can be applied.
  • the eNB 800 has one or more antennas 810 and a base station device 820. Each antenna 810 and the base station device 820 can be connected to each other via an RF cable.
  • Each of the antennas 810 has a single or a plurality of antenna elements (for example, a plurality of antenna elements forming a MIMO antenna), and is used by the base station apparatus 820 for transmitting and receiving radio signals.
  • the eNB 800 includes a plurality of antennas 810 as illustrated in FIG. 11, and the plurality of antennas 810 may correspond to a plurality of frequency bands used by the eNB 800, respectively.
  • FIG. 11 shows an example in which the eNB 800 has a plurality of antennas 810, the eNB 800 may have a single antenna 810.
  • the base station device 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be, for example, a CPU or a DSP, and operates various functions of the upper layer of the base station device 820. For example, the controller 821 generates a data packet from the data in the signal processed by the wireless communication interface 825, and transfers the generated packet via the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors, and may transfer the generated bundled packet. Further, the controller 821 is a logic for executing control such as radio resource control (Radio Resource Control), radio bearer control (Radio Bearer Control), mobility management (Mobility Management), admission control (Admission Control) or scheduling (Scheduling). It may have a general function.
  • Radio Resource Control Radio Resource Control
  • Radio Bearer Control Radio Bearer Control
  • Mobility Management Mobility Management
  • Admission Control Admission Control
  • scheduling scheduling
  • the control may be executed in cooperation with the surrounding eNB or core network node.
  • the memory 822 includes a RAM and a ROM, and stores a program executed by the controller 821 and various control data (for example, a terminal list, transmission power data, scheduling data, etc.).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824. Controller 821 may communicate with core network nodes or other eNBs via network interface 823. In that case, the eNB 800 and the core network node or another eNB may be connected to each other by a logical interface (for example, the S1 interface or the X2 interface).
  • the network interface 823 may be a wired communication interface or a wireless communication interface for wireless backhaul. When the network interface 823 is a wireless communication interface, the network interface 823 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 825.
  • the wireless communication interface 825 supports a cellular communication method such as LTE (Long Term Evolution) or LTE-Advanced, and provides a wireless connection to a terminal located in the cell of the eNB 800 via the antenna 810.
  • the wireless communication interface 825 may typically include a baseband (BB) processor 826, an RF circuit 827, and the like.
  • the BB processor 826 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and each layer (for example, L1, MAC (Medium Access Control), RLC (Radio Link Control), and PDCP). (Packet Data Convergence Protocol)) various signal processing is executed.
  • L1, MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • the BB processor 826 may have some or all of the logical functions described above instead of the controller 821.
  • the BB processor 826 may be a module that includes a memory that stores a communication control program, a processor that executes the program, and a related circuit. The function of the BB processor 826 may be changed by updating the program. Good.
  • the module may be a card or a blade inserted into the slot of the base station device 820, or a chip mounted on the card or the blade.
  • the RF circuit 827 may include a mixer, a filter, an amplifier, and the like, and transmits and receives wireless signals via the antenna 810.
  • the wireless communication interface 825 includes a plurality of BB processors 826 as shown in FIG. 11, and the plurality of BB processors 826 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. Further, the wireless communication interface 825 may include a plurality of RF circuits 827 as shown in FIG. 11, and the plurality of RF circuits 827 may correspond to a plurality of antenna elements, respectively. Note that FIG. 11 illustrates an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, but the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. But it's okay.
  • the eNB 800 includes a module including a part (eg, the BB processor 826) or all of the wireless communication interface 825 and/or the controller 821, and the one or more components may be mounted in the module. Good.
  • the module stores a program for causing the processor to function as the one or more constituent elements (in other words, a program for causing the processor to execute the operation of the one or more constituent elements). You may run the program.
  • a program for causing the processor to function as one or more components described above is installed in the eNB 800, and the wireless communication interface 825 (for example, the BB processor 826) and/or the controller 821 executes the program.
  • the eNB 800, the base station device 820, or the module may be provided as an apparatus including the one or more constituent elements, and a program for causing a processor to function as the one or more constituent elements is provided. May be.
  • a readable recording medium recording the above program may be provided.
  • the wireless communication unit 120 described with reference to FIG. 5 may be mounted in the wireless communication interface 825 (for example, the RF circuit 827).
  • the antenna unit 110 may be mounted on the antenna 810.
  • the network communication unit 130 may be implemented in the controller 821 and/or the network interface 823.
  • the storage unit 140 may be implemented in the memory 822.
  • FIG. 12 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology according to the present disclosure can be applied.
  • the eNB 830 has one or more antennas 840, a base station device 850, and an RRH 860.
  • Each antenna 840 and RRH 860 may be connected to each other via an RF cable.
  • the base station device 850 and the RRH 860 can be connected to each other by a high speed line such as an optical fiber cable.
  • Each of the antennas 840 has a single or a plurality of antenna elements (for example, a plurality of antenna elements forming a MIMO antenna), and is used for transmitting and receiving radio signals by the RRH 860.
  • the eNB 830 includes a plurality of antennas 840 as illustrated in FIG. 12, and the plurality of antennas 840 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example.
  • FIG. 12 shows an example in which the eNB 830 has a plurality of antennas 840, the eNB 830 may have a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports a cellular communication method such as LTE or LTE-Advanced, and provides a wireless connection to a terminal located in a sector corresponding to the RRH860 via the RRH860 and the antenna 840.
  • the wireless communication interface 855 may typically include a BB processor 856 or the like.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 11 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 includes a plurality of BB processors 856 as shown in FIG.
  • the wireless communication interface 855 may include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (radio communication interface 855) to the RRH 860.
  • the connection interface 857 may be a communication module for communication on the high-speed line connecting the base station device 850 (radio communication interface 855) and the RRH 860.
  • the RRH 860 also includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (radio communication interface 863) to the base station device 850.
  • the connection interface 861 may be a communication module for communication on the high speed line.
  • the wireless communication interface 863 sends and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may typically include an RF circuit 864 or the like.
  • the RF circuit 864 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a wireless signal through the antenna 840.
  • the wireless communication interface 863 includes a plurality of RF circuits 864 as shown in FIG. 12, and the plurality of RF circuits 864 may correspond to a plurality of antenna elements, respectively. Note that FIG. 12 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, but the wireless communication interface 863 may include a single RF circuit 864.
  • one or more components included in the control unit 150 described with reference to FIG. 5 are wireless communication interfaces 855 and/or It may be implemented in the wireless communication interface 863. Alternatively, at least some of these components may be implemented in controller 851.
  • the eNB 830 includes a module including a part (for example, the BB processor 856) or all of the wireless communication interface 855 and/or the controller 851, and the one or more components may be mounted in the module. Good.
  • the module stores a program for causing the processor to function as the one or more constituent elements (in other words, a program for causing the processor to execute the operation of the one or more constituent elements).
  • a program for causing a processor to function as one or more components described above is installed in the eNB 830, and the wireless communication interface 855 (for example, the BB processor 856) and/or the controller 851 executes the program.
  • the eNB 830, the base station device 850, or the module may be provided as an apparatus including the one or more constituent elements, and a program for causing a processor to function as the one or more constituent elements is provided. May be.
  • a readable recording medium recording the above program may be provided.
  • the wireless communication unit 120 described with reference to FIG. 5 may be implemented in the wireless communication interface 863 (for example, the RF circuit 864). Further, the antenna unit 110 may be mounted on the antenna 840. Further, the network communication unit 130 may be implemented in the controller 851 and/or the network interface 853. The storage unit 140 may be implemented in the memory 852.
  • FIG. 13 is a block diagram showing an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure can be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, and one or more antenna switches 915. It comprises one or more antennas 916, a bus 917, a battery 918 and an auxiliary controller 919.
  • the processor 901 may be, for example, a CPU or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900.
  • the memory 902 includes RAM and ROM, and stores programs and data executed by the processor 901.
  • the storage 903 may include a storage medium such as a semiconductor memory or a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
  • the camera 906 has an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and generates a captured image.
  • the sensor 907 may include a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor, for example.
  • the microphone 908 converts a voice input to the smartphone 900 into a voice signal.
  • the input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button or a switch, and receives an operation or information input from the user.
  • the display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays the output image of the smartphone 900.
  • the speaker 911 converts the audio signal output from the smartphone 900 into audio.
  • the wireless communication interface 912 supports a cellular communication system such as LTE or LTE-Advanced and executes wireless communication.
  • the wireless communication interface 912 may typically include a BB processor 913, an RF circuit 914, and the like.
  • the BB processor 913 may perform, for example, encoding/decoding, modulation/demodulation, multiplexing/demultiplexing, and the like, and performs various signal processing for wireless communication.
  • the RF circuit 914 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a wireless signal through the antenna 916.
  • the wireless communication interface 912 may be a one-chip module in which the BB processor 913 and the RF circuit 914 are integrated.
  • the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 as shown in FIG. 13.
  • FIG. 13 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 includes a single BB processor 913 or a single RF circuit 914. But it's okay.
  • the wireless communication interface 912 may support other types of wireless communication systems such as a short-range wireless communication system, a close proximity wireless communication system, or a wireless LAN (Local Area Network) system in addition to the cellular communication system, In that case, the BB processor 913 and the RF circuit 914 for each wireless communication system may be included.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 between a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 912.
  • Each of the antennas 916 has a single or a plurality of antenna elements (for example, a plurality of antenna elements forming a MIMO antenna), and is used for transmitting and receiving radio signals by the radio communication interface 912.
  • the smartphone 900 may have a plurality of antennas 916 as shown in FIG. 13. Note that FIG. 13 illustrates an example in which the smartphone 900 has a plurality of antennas 916, but the smartphone 900 may have a single antenna 916.
  • the smartphone 900 may include an antenna 916 for each wireless communication system.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, the memory 902, the storage 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other. ..
  • the battery 918 supplies power to each block of the smartphone 900 shown in FIG. 13 via a power supply line partially shown by a broken line in the figure.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode, for example.
  • the smartphone 900 illustrated in FIG. 13 one or more components (acquisition unit 241 and/or communication control unit 243) included in the control unit 240 described with reference to FIG. 6 are implemented in the wireless communication interface 912. May be. Alternatively, at least some of these components may be implemented in processor 901 or auxiliary controller 919.
  • the smartphone 900 includes a module including a part (for example, the BB processor 913) or all of the wireless communication interface 912, the processor 901, and/or the auxiliary controller 919, and the one or more constituent elements in the module. May be implemented.
  • the module stores a program for causing the processor to function as the one or more constituent elements (in other words, a program for causing the processor to execute the operation of the one or more constituent elements).
  • a program for causing a processor to function as the one or more components is installed in the smartphone 900, and the wireless communication interface 912 (for example, the BB processor 913), the processor 901, and/or the auxiliary controller 919 is included in the program. You may run the program.
  • the smartphone 900 or the module may be provided as a device including the one or more components, and a program for causing the processor to function as the one or more components may be provided.
  • a readable recording medium recording the above program may be provided.
  • the wireless communication unit 220 described with reference to FIG. 6 may be implemented in the wireless communication interface 912 (for example, the RF circuit 914).
  • the antenna unit 210 may be mounted on the antenna 916.
  • the storage unit 230 may be implemented in the memory 902.
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931 and wireless communication.
  • An interface 933, one or more antenna switches 936, one or more antennas 937 and a battery 938 are provided.
  • the processor 921 may be, for example, a CPU or a SoC, and controls the navigation function and other functions of the car navigation device 920.
  • the memory 922 includes RAM and ROM and stores programs and data executed by the processor 921.
  • the GPS module 924 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • the sensor 925 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor, for example.
  • the data interface 926 is connected to the vehicle-mounted network 941 via, for example, a terminal (not shown) and acquires data generated on the vehicle side such as vehicle speed data.
  • the content player 927 plays back the content stored in the storage medium (for example, CD or DVD) inserted in the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and receives an operation or information input from the user.
  • the display device 930 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of reproduced content.
  • the speaker 931 outputs the navigation function or the sound of the reproduced content.
  • the wireless communication interface 933 supports a cellular communication method such as LTE or LTE-Advanced and executes wireless communication.
  • the wireless communication interface 933 may typically include a BB processor 934, an RF circuit 935, and the like.
  • the BB processor 934 may perform, for example, encoding/decoding, modulation/demodulation, multiplexing/demultiplexing, and the like, and perform various signal processing for wireless communication.
  • the RF circuit 935 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a wireless signal through the antenna 937.
  • the wireless communication interface 933 may be a one-chip module in which the BB processor 934 and the RF circuit 935 are integrated.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 as shown in FIG.
  • FIG. 14 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 includes a single BB processor 934 or a single RF circuit 935. But it's okay.
  • the wireless communication interface 933 may support other types of wireless communication systems such as a short-range wireless communication system, a close proximity wireless communication system, and a wireless LAN system in addition to the cellular communication system.
  • a BB processor 934 and an RF circuit 935 for each communication method may be included.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 between a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 933.
  • Each of the antennas 937 has a single or a plurality of antenna elements (for example, a plurality of antenna elements forming a MIMO antenna), and is used for transmitting and receiving radio signals by the radio communication interface 933.
  • the car navigation device 920 may have a plurality of antennas 937 as shown in FIG. Although FIG. 14 shows an example in which the car navigation device 920 has a plurality of antennas 937, the car navigation device 920 may have a single antenna 937.
  • the car navigation device 920 may include an antenna 937 for each wireless communication system.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to each block of the car navigation device 920 shown in FIG. 14 via a power supply line partially shown by a broken line in the figure. Further, the battery 938 stores electric power supplied from the vehicle side.
  • the car navigation device 920 includes a module including a part (for example, the BB processor 934) or all of the wireless communication interface 933 and/or the processor 921, and the one or more components described above are mounted in the module. May be.
  • the module stores a program for causing the processor to function as the one or more constituent elements (in other words, a program for causing the processor to execute the operation of the one or more constituent elements). You may run the program.
  • a program for causing the processor to function as the one or more components is installed in the car navigation device 920, and the wireless communication interface 933 (eg, BB processor 934) and/or the processor 921 executes the program.
  • the car navigation device 920 or the module may be provided as the device including the one or more constituent elements, and the program for causing the processor to function as the one or more constituent elements may be provided.
  • a readable recording medium recording the above program may be provided.
  • the wireless communication unit 220 described with reference to FIG. 6 may be implemented in the wireless communication interface 933 (for example, the RF circuit 935).
  • the antenna unit 210 may be mounted on the antenna 937.
  • the storage unit 230 may be implemented in the memory 922.
  • the technology according to the present disclosure may be realized as an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941 and a vehicle-side module 942.
  • the vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the vehicle-mounted network 941.
  • a communication control device 100 capable of efficiently allocating resources in consideration of a change in local environment when a terminal that relays communication has mobility. To be done. Also, according to the embodiment of the present disclosure, there is provided a communication control device 100 capable of rewriting a slot format in consideration of a change in local environment when a terminal relaying communication has mobility. ..
  • each step in the processing executed by each device in this specification does not necessarily have to be processed in time series in the order described as a sequence diagram or a flowchart.
  • each step in the process executed by each device may be processed in an order different from the order described as the flowchart, or may be processed in parallel.
  • the effects described in the present specification are merely explanatory or exemplifying ones, and are not limiting. That is, the technique according to the present disclosure may have other effects that are apparent to those skilled in the art from the description of the present specification, in addition to or instead of the above effects.
  • An acquisition unit that acquires information about a slot setting and a rewritable slot in the setting from another communication control device, and information about a radio wave environment around the own station, A setting unit for selecting and rewriting a slot to be rewritten from the rewritable slots based on the information on the radio wave environment, A communication control unit that executes communication based on the slot rewritten by the setting unit; And a communication control device.
  • the communication control device acquires, as the information on the radio wave environment, a setting of a slot assigned to another communication control device with which the local station communicates by uplink.
  • the communication control device according to any one of (1) to (5), wherein the acquisition unit acquires position information of another communication control device as the information regarding the radio wave environment. (7) The communication control device according to any one of (1) to (5), wherein the acquisition unit acquires, as the information related to the radio wave environment, information on a communication resource usage rate of another communication control device. (8) The communication control device according to any one of (1) to (5), wherein the acquisition unit acquires, as the information on the radio wave environment, information on beamforming of another communication control device. (9) The communication control device according to any one of (1) to (5), wherein the acquisition unit acquires, as the information on the radio wave environment, information on the occurrence of interference in another communication control device.
  • the communication control device (10) The communication control device according to (9), wherein the information regarding the occurrence of the interference is information regarding an occurrence rate of ACK and NACK.
  • the acquisition unit acquires, as the information on the radio wave environment, information on the capability of another communication control device.
  • the setting unit selects a slot to be rewritten in consideration of a priority of a link with another device.
  • the setting unit selects a slot to be rewritten in consideration of traffic quality.
  • the communication control device according to any one of (1) to (11), wherein the setting unit selects a slot to be rewritten so as to reduce a packet error rate.
  • the setting unit selects a slot to be rewritten so as to minimize interference of its own station.
  • the setting unit selects a slot to be rewritten so as to minimize interference with a communication partner.
  • the communication control unit performs control to notify another device of information regarding the rewritten slot.
  • the processor Acquiring information about slot settings and rewritable slots in the settings, and information about the radio environment around the own station from another communication control device, Selecting and rewriting a slot to be rewritten from the rewritable slots based on the information on the radio environment, Performing communication based on the rewritten slot, And a communication control method.
  • On the computer Acquiring information about slot settings and rewritable slots in the settings, and information about the radio environment around the own station from another communication control device, Selecting and rewriting a slot to be rewritten from the rewritable slots based on the information on the radio environment, Performing communication based on the rewritten slot, A computer program that causes a computer to execute.

Abstract

他の通信制御装置からスロットの設定及び前記設定の中で書き換え可能なスロットに関する情報、並びに、自局の周囲の電波環境に関する情報を取得する取得部と、前記電波環境に関する情報に基づいて、前記書き換え可能なスロットの中から書き換えるスロットを選択して書き換える設定部と、前記設定部が書き換えたスロットに基づいて通信を実行する通信制御部と、を備える、通信制御装置が提供される。

Description

通信制御装置、通信制御方法及びコンピュータプログラム
 本開示は、通信制御装置、通信制御方法及びコンピュータプログラムに関する。
 近年、IoT(Internet of Things)関連の開発が盛んに行われている。IoTでは、様々な物がネットワークに接続されて情報交換を行うため、無線通信が重要な技術テーマになっている。そのため、3GPP(Third Generation Partnership Project)では、MTC(Machine Type Communication)及びNB-IoT(Narrow Band IoT)といった、小パケット、低消費電力又は低コストを実現するIoT向け通信の規格化が行われている。
 IoT向け通信においては、なるべく低消費電力で広いカバレッジが確保されることが望ましい。ただし、典型的には、消費電力とカバレッジとの間にはトレードオフの関係があるため、カバレッジを広く確保しようとすると、どうしても消費電力が多くなってしまう。そこで、低消費電力と広いカバレッジとを両立させるための技術のひとつとして、基地局のようなエンティティを持つリレーノードによる通信のリレーが検討されている。
 例えば、下記特許文献1では、セル内の端末装置がセル外の端末装置と基地局との通信をリレーする技術が開示されている。
 また近年ではIAB(Integrated Access and Backhaul link)と呼ばれる、バックホールリンクとアクセスリンクの統合を目的とした通信が提案され、IABにおいても通信のリレーが検討されている。
特開2016-96489号公報
 リレーノードのような、通信をリレーする端末がモビリティを有する場合、ローカルの環境がより動的に変化するため、無線通信環境も反射や干渉といった要素により大きく変動することが予想される。従って、その変動を考慮したリソースの割り当てが求められる。
 そこで、本開示では、通信をリレーする端末がモビリティを有する場合を考慮し、ローカルの環境の変動を考慮したリソースを効率的に割り当てることが可能な、新規かつ改良された通信制御装置、通信制御方法及びコンピュータプログラムを提案する。
 本開示によれば、他の通信制御装置からスロットの設定及び前記設定の中で書き換え可能なスロットに関する情報、並びに、自局の周囲の電波環境に関する情報を取得する取得部と、前記電波環境に関する情報に基づいて、前記書き換え可能なスロットの中から書き換えるスロットを選択して書き換える設定部と、前記設定部が書き換えたスロットに基づいて通信を実行する通信制御部と、を備える、通信制御装置が提供される。
 また、本開示によれば、プロセッサが、他の通信制御装置からスロットの設定及び前記設定の中で書き換え可能なスロットに関する情報、並びに、自局の周囲の電波環境に関する情報を取得することと、前記電波環境に関する情報に基づいて、前記書き換え可能なスロットの中から書き換えるスロットを選択して書き換えることと、書き換えられた前記スロットに基づいて通信を実行することと、を含む、通信制御方法が提供される。
 また、本開示によれば、コンピュータに、他の通信制御装置からスロットの設定及び前記設定の中で書き換え可能なスロットに関する情報、並びに、自局の周囲の電波環境に関する情報を取得することと、前記電波環境に関する情報に基づいて、前記書き換え可能なスロットの中から書き換えるスロットを選択して書き換えることと、書き換えられた前記スロットに基づいて通信を実行することと、を実行させる、コンピュータプログラムが提供される。
IABの概要を示す説明図である。 IABのユースケース例を示す説明図である。 IABのアーキテクチャ例を示す説明図である。 IAB-nodeの関係を示す説明図である。 本実施形態に係る通信制御装置の構成の一例を示すブロック図である。 本実施形態に係る端末装置の構成の一例を示すブロック図である。 本開示の実施の形態に係る通信制御装置の動作の概要を示す説明図である。 本開示の実施の形態に係る通信制御装置の動作の概要を示す説明図である。 本開示の実施の形態の動作例を示す流れ図である。 本開示の実施の形態の動作例を示す流れ図である。 本開示の実施の形態の動作例を示す流れ図である。 eNBの概略的な構成の第1の例を示すブロック図である。 eNBの概略的な構成の第2の例を示すブロック図である。 スマートフォンの概略的な構成の一例を示すブロック図である。 カーナビゲーション装置の概略的な構成の一例を示すブロック図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.本開示の実施の形態
  1.1.経緯
  1.2.構成例
  1.3.動作例
 2.応用例
 3.まとめ
 <1.本開示の実施の形態>
 [1.1.経緯]
 本開示の実施の形態について詳細に説明する前に、まず本開示の実施の形態に至った経緯について説明する。
 近年、IABと呼ばれる、バックホールリンクとアクセスリンクの統合を目的とした通信が提案されている。図1は、IABの概要を示す説明図である。図1には3つの基地局100a、100b、100cと、各基地局100a、100b、100cと通信する端末200a、200b、200cが示されている。基地局100aは、光ファイバケーブルでコアネットワークと接続しており、基地局100b、100cとの間でバックホールリンクが確立されている。図1の例では、端末200aは、基地局100aだけでなく、基地局100bとの間でアクセスリンクが確立されている。
 IABにおいても通信のリレーが検討されている。IABでは、従来のTDM(Time Division Multiplexing;時分割多重化)だけでなくFDM(Frequency Division Multiplexing;周波数分割多重化)、SDM(Space Division Multiplexing;空間分割多重化)を用いて、バックホールリンクとアクセスリンクを直交させる。IABでは、特にミリ波を用いた通信を想定している。ミリ波を用いた通信はカバレッジが問題となるが、IABのようなリレー通信を用いることで、ミリ波を用いた通信においてカバレッジの拡大を効率的に行えるようになる。IABではマルチホップも想定しており、メッシュタイプの配置も想定されている。
 図2は、IABのユースケース例を示す説明図である。IABはミリ波通信を用いたネットワーク構成だけでなく、例えば車にIABノードを載せた車両テザリング(Vehicle tethering)や電車にIABノードを載せたムービングセル、ドローンなどの飛行体にIABノードを載せたドローンセルなどにも適用することができる。その他にも、IABはIoT向け通信にも適用することが想定される。特にIABは、スマートフォンとウェアラブル機器を接続するウェアラブル向けテザリング通信などにも適用することが可能である。IABは、その他にも医療やファクトリーオートメーションといった領域にも適用することが可能となる。もちろん図2に示したユースケースは一例に過ぎず、図2に示したユースケース以外にもIABは適用されうる。
 図3は、IABのアーキテクチャ例を示す説明図である。IAB-donorは、gNBのような基地局が想定されており、コアネットワーク(CN)と接続されている。IAB-donorは、中央機能(Centralized Unit;CU)と、基地局機能(Distributed Unit;DU)を有する。IAB-donorの配下にIAB-node(リレーノード)が存在し、IAB-nodeが複数マルチホップを構成しながら無線にて接続されていく。各IAB-nodeは、ユーザ端末(UE)とアクセスリンクで接続する。IAB-nodeは、バックホールリンクの冗長性を向上させるために、複数のIAB-nodeと接続してもよい。IAB-nodeはユーザ端末の機能(Mobile Terminal;MT)と基地局機能(Distributed Unit;DU)から構成される。つまり、バックホールリンクにおいてダウンリンク受信、アップリンク送信の際は、IAB-nodeはMTとして動作し、ダウンリンク送信、アップリンク受信の際はIAB-nodeはDUとして動作する。ユーザ端末からは、IAB-nodeは通常の基地局のように見えるため、レガシー端末であってもIABネットワークに接続することが可能である。なお、IAB-nodeはMT及びDUから構成される場合に限られない。IAB-nodeは、上位のIAB-nodeからのダウンリンクを受信するMTと、サイドリンクを送信するMTとからなる構成であってもよい。
 IAB-nodeは、DUとMTの機能を両方具有している場合がある。その場合、IAB nodeのアップリンク送信はMTとして動作するため、使用するアップリンクリソースは、親のIAB-nodeより割り当てられる。一方でIAB nodeのダウンリンク送信はDUとして動作するため、使用するダウンリンクリソースは、自身のIAB-nodeによりより割り当てられる。図4は、IAB-nodeの関係を示す説明図である。IAB-nodeは、通常、親IABであるIAB-parentと、子IABであるIAB-childとのリンクを保有する。また、通常のユーザ端末とのリンクも保有する。IAB間のリンクはバックホールリンクであり、ユーザ端末向けのリンクはアクセスリンクとなる。
 リソース割り当てを行う際には、まずリソース管理者の定義を行う必要がある。IABにおいては、IAB-donorが全てのリソース割り当てを行うCentralized mannerと、IAB-Nodeが各自でリソースを管理するDistributed mannerと、親IAB-nodeが子のIAB-nodeのリソースを管理するHierarchal mannerと、が挙げられる。Centralized manner、Distributed manner、及びHierarchal mannerは、組み合わせて使用されてもよい。例えばアップリンクとダウンリンクとのフレームフォーマット構成をある程度IAB-donorが決定し、各IAB-nodeにおいて設定できるエリアを残しておき、IAB-nodeの各自の判断でフレームフォーマットの書き換えを行うようなやり方も可能である。
 IABでは、将来的にIAB-nodeがモビリティを持つことが考えられる。この場合、ローカルの環境がより動的に変化するため、電波の反射や干渉といった要素により無線通信環境も大きく変動することが予想される。一方で、IABのリソース割当では、ある程度スロットフォーマットをIAB-donorで設定し、アップリンク及びダウンリンクの構成を決定することが予想される。
 IAB-nodeはIAB-donorにより指示されたスロットフォーマット設定を用いて通信を行う。この場合、比較的大きなIABネットワークを想定すると、IAB-donorがIAB-nodeのローカル無線通信環境を正しく認識できない場合がでてくる。つまり、より柔軟なリソース割当変更がローカルエリアには求められる。一方で、Distributed mannerのようなリソース割り当てを行ってしまうと、隣接IAB-node間での調整がうまくいかず、干渉が発生してしまう可能性がある。そのため、IAB-donorによりある程度設定したスロットフォーマットをベースに、ローカルで周辺の環境に応じて動的に割り当て変更を行うことができる仕組みが求められる。
 そこで本件開示者は、以下で説明するように、IAB-donorによりある程度設定したスロットフォーマットをベースに、ローカルで周辺の環境に応じて動的に割り当て変更を行うことが可能な技術を考案するに至った。
 [1.2.構成例]
 (1.2.1.通信制御装置の構成例)
 図5は、本実施形態に係る通信制御装置100の構成の一例を示すブロック図である。通信制御装置100はIAB-donorやIAB-nodeの一例であり、図5を参照すると、通信制御装置100は、アンテナ部110、無線通信部120、ネットワーク通信部130、記憶部140及び制御部150を備える。
 (1)アンテナ部110
 アンテナ部110は、無線通信部120により出力される信号を電波として空間に放射する。また、アンテナ部110は、空間の電波を信号に変換し、当該信号を無線通信部120へ出力する。
 とりわけ、本実施形態では、アンテナ部110は、複数のアンテナ素子を有し、ビームを形成することが可能である。
 (2)無線通信部120
 無線通信部120は、信号を送受信する。例えば、無線通信部120は、端末装置へのダウンリンク信号を送信し、端末装置からのアップリンク信号を受信する。
 とりわけ、本実施形態では、無線通信部120は、アンテナ部110により複数のビームを形成して端末装置と通信することが可能である。
 ここで、本実施形態では、アンテナ部110及び無線通信部120は、図6を参照して上記説明した、アナログ-デジタルハイブリットアンテナアーキテクチャのアンテナパネル70を複数含んで構成される。例えば、アンテナ部110は、アンテナ72に相当する。また、例えば、無線通信部120は、デジタル回路50、アナログ回路60、及びフェイズシフター71に相当する。
 (3)ネットワーク通信部130
 ネットワーク通信部130は、情報を送受信する。例えば、ネットワーク通信部130は、他のノードへの情報を送信し、他のノードからの情報を受信する。例えば、上記他のノードは、他の基地局及びコアネットワークノードを含む。
 (4)記憶部140
 記憶部140は、通信制御装置100の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。
 (5)制御部150
 制御部150は、通信制御装置100全体の動作を制御して、通信制御装置100の様々な機能を提供する。本実施形態では、制御部150は、設定部151と、通信制御部153と、を含んで構成される。
 設定部151は、通信制御装置100と、別の通信制御装置100との間、または、通信制御装置100と端末装置200との間の無線通信に関する種々の設定を行う。通信制御部153は、設定部151の設定に基づいて無線通信部120から信号を送出するための通信制御処理を実行する。
 例えば、無線通信部120は、他の通信制御装置100(IAB-node)からスロットの設定及び設定の中で書き換え可能なスロットに関する情報、並びに、自局の周囲の電波環境に関する情報を取得する。従って無線通信部120は、本開示の取得部の一例として機能しうる。設定部151は、無線通信部120が取得した電波環境に関する情報に基づいて、書き換え可能なスロットの中から書き換えるスロットを選択して書き換える。そして通信制御部153は、設定部151が書き換えたスロットに基づいて無線通信を実行する。
 制御部150は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、制御部150は、これらの構成要素の動作以外の動作も行い得る。
 (1.2.2.端末装置の構成例)
 図6は、本実施形態に係る端末装置200の構成の一例を示すブロック図である。図6を参照すると、端末装置200は、アンテナ部210、無線通信部220、記憶部230及び制御部240を備える。
 (1)アンテナ部210
 アンテナ部210は、無線通信部220により出力される信号を電波として空間に放射する。また、アンテナ部210は、空間の電波を信号に変換し、当該信号を無線通信部220へ出力する。
 とりわけ、本実施形態では、アンテナ部210は、複数のアンテナ素子を有し、ビームを形成することが可能である。
 (2)無線通信部220
 無線通信部220は、信号を送受信する。例えば、無線通信部220は、基地局からのダウンリンク信号を受信し、基地局へのアップリンク信号を送信する。
 とりわけ、本実施形態では、無線通信部220は、アンテナ部210により複数のビームを形成して基地局と通信することが可能である。
 ここで、本実施形態では、アンテナ部210及び無線通信部220は、図6を参照して上記説明した、アナログ-デジタルハイブリットアンテナアーキテクチャのアンテナパネル70を複数含んで構成される。例えば、アンテナ部210は、アンテナ72に相当する。また、例えば、無線通信部220は、デジタル回路50、アナログ回路60、及びフェイズシフター71に相当する。
 (3)記憶部230
 記憶部230は、端末装置200の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。
 (4)制御部240
 制御部240は、端末装置200全体の動作を制御して、端末装置200の様々な機能を提供する。本実施形態では、制御部240は、取得部241と、通信制御部243と、を含んで構成される。
 取得部241は、通信制御装置100と端末装置200との間の無線通信によって通信制御装置100から送信される情報を取得する。通信制御部243は、取得部241が取得した情報に基づいて無線通信部220から信号を送出するための通信制御処理を実行する。
 制御部240は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、制御部240は、これらの構成要素の動作以外の動作も行い得る。
 [1.3.動作例]
 続いて、本開示の実施の形態に係る通信制御装置100の動作例について説明する。本開示の実施の形態に係る通信制御装置100は、IAB-nodeにおいて設定されたスロットフォーマット設定を、周辺環境認知を用いて書き換えることを特徴とする。
 図7は、本開示の実施の形態に係る通信制御装置100の動作の概要を示す説明図である。本開示の実施の形態に係る通信制御装置100は、(1)スロットフォーマット設定、(2)周辺環境認知、(3)スロット書き換え、の3つの動作を実行する。以下、順を追って通信制御装置100の動作について説明する。
 (1)スロットフォーマット設定
 IAB-nodeは、まずIAB-donorよりSlot format configurationを設定される。この際、IAB-donorはUL/DL/Fの構成をセミスタティックに設定する。なおIAB-donor以外でも、IAB-parentや、IAB-nodeの中の代表ノードなどによって設定が行われてもよい。
 時間リソースの定義を示す。MT視点、すなわちIAB-parent向けのリンクの場合は、ダウンリンク(DL)リソース(D)、アップリンク(UL)リソース(U)、サイドリンク(SL)リソース(S)、フレキシブルリソース(F)が含まれる。サイドリンクリソースは、MTとなるIAB-nodeのリンクに用いられるリソースである。フレキシブルリソースは、ダウンリンクリソース、アップリンクリソース、サイドリンクリソースのいずれかが含まれうる。
 一方、DU視点、すなわちIAB-child向けのリンクの場合は、ダウンリンク(DL)リソース、アップリンク(UL)リソース、サイドリンク(SL)リソース、フレキシブルリソースが含まれる。サイドリンクリソースは、MTとなるIAB-nodeのリンクに用いられるリソースである。フレキシブルリソースは、ダウンリンクリソース、アップリンクリソース、サイドリンクリソース、Not availableリソース(NA,IAB-child向けのリンクに使用されないリソース)のいずれかが含まれうる。
 IAB-donor側で固定的にスロットフォーマットを割り当てることも可能であるが、IAB-node側で自由度をある程度持たせて、スロットの構成の書き換えを行える仕組みが必要となる。そこで本実施形態では、スロットフォーマットの割り当ての際に、新たにHard/Softのコンセプトを導入する。Hardとは、IAB-child向けのDUで常に使えるリソースのことである。一方Softとは、IAB-child向けのDUでリソースが使えるかどうかは明示的及び/または暗示的にIAB-parentより制御されるリソースのことである。また、HardはIAB-nodeにて書き換え不能なリソースであり、SoftとはIAB-nodeにて書き換え可能なリソースであってもよい。
 (2)周辺環境認知
 本実施形態では、IAB-nodeは、周辺環境認知を行うことで、動的にIAB-nodeにおけるスロットフォーマットの書き換えを実施する。特に本実施形態では、IAB-nodeは、Soft(書き換え可能なスロット)として割り当てられたスロットについて、スロットフォーマットの書き換えが可能である。環境認知のためのメジャメント等はIAB-donorよりIAB-nodeにコンフィギュアされてもよく、もしくはIAB-nodeにプリコンフィギュアされていてもよい。IAB-donorからのコンフィギュレーションは、例えばRRCシグナリングを用いて設定される。IAB-nodeは、測定ウィンドウ(Measurement window)として、測定を行う測定間隔、測定幅、測定対象(測定対象帯域、測定対象のIAB-node等)等を設定する。
 周辺環境認知のためのシグナリングの送信周期や、送信トリガリングはIAB-donorにより設定されてIAB-nodeに通知されてもよい。これらのIAB-donorからのコンフィギュレーションはRRCシグナリングを用いて設定される。例えば、IAB-donorがIAB-nodeに対して、他IAB-node向けのシグナリングのコンフィギュレーションを設定してもよい。
 なお、Hard割り当てにより書き換えが不可な場合であっても、IAB-nodeは、IAB-donor側に再設定リクエストを送ることで対応することも可能である。
 IAB-nodeは、周辺環境認知を行うときの情報入手リンクとして、IAB-parent(アップリンクで接続するIAB-node)から得られる情報、IAB-child(ダウンリンクで接続するIAB-node)から得られる情報、近隣のIAB(サイドリンクで接続するIAB-node、または自局とリンクされていないIAB-node)から得られる情報、周辺無線環境から得られる情報、などがあり得る。IAB-nodeは、これらのリンクから入手する情報として、割り当てられたスロットフォーマット情報、現在使用しているスロットフォーマット情報、将来使用するスロットフォーマット情報(書き換え予定情報を含む)を入手しうる。
 またIAB-nodeは、これらのリンクから入手する情報として、IAB-nodeの位置情報、受信電力レベル、RSRP(Reference Signals Received Power)、RSSI(Received Signal Strength Indication)、RSRQ(Reference Signal Received Quality)を入手しうる。またIAB-nodeは、これらのリンクから入手する情報として、電波の干渉レベル、無線周波数使用率(割り当てられた周波数リソースに対して、どれだけ割合でリソースを使っているか)を入手しうる。
 またIAB-nodeは、これらのリンクから入手する情報として、In-band emissionを考慮するために、周波数の使用箇所であるかどうか(すなわち、周波数リソースの位置)を入手しうる。またIAB-nodeは、これらのリンクから入手する情報として、リンクホップ数(IAB-donorから数えて何ホップ目のノードなのか)を入手しうる。
 またIAB-nodeは、これらのリンクから入手する情報として、ビームフォーミングに関する情報を入手しうる。ビームフォーミングに関する情報としては、ビームフォーミングの方向や使用しているPrecoding、Rank indicator情報、MIMOモード、アンテナ本数等がありうる。IAB-nodeは、特にビームを用いている空間に関する情報を得るために、ビームフォーミングに関する情報を用いる。
 またIAB-nodeは、これらのリンクから入手する情報として、他の通信制御装置での干渉の発生に関する情報、例えばACK/NACKに関する情報を入手しうる。ACK/NACKに関する情報は、ACK/NACKの割合により、どれだけ干渉が発生しているかをIAB-nodeが認識するために用いられる。
 またIAB-nodeは、これらのリンクから入手する情報として、IAB-nodeのケイパビリティ(IAB-capability)情報を入手しうる。IAB-capability情報としては、例えば、空間多重(SDM)できる能力があるかどうか、周波数多重(FDM)できる能力があるかどうか、使用しているMIMOストリーミング数、余っているMIMOストリーミング数、バックホールリンクの太さ情報(帯域幅、キャパシティ、リダンダンシー、通信速度等)、アクセスリンクの太さ情報(帯域幅、リダンダンシー、キャパシティ、通信速度等)などがありうる。
 またIAB-nodeは、これらのリンクから入手する情報として、通信しているトラフィック情報やパケット情報を入手しうる。通信しているトラフィック情報やパケット情報としては、例えば、優先度の情報やトラフィック量などがありうる。
 (3)スロット書き換え
 IAB-nodeは、周辺環境認知を行って、設定されたスロットフォーマットの書き換えの必要が生じれば、スロットの書き換えを実行する。すなわちIAB-nodeは、必要に応じて、Softとして割り当てられたスロットをD/U/S/F/NAのいずれかに書き換えを実施する。
 IAB-nodeは、スロットを書き換えると、書き換えた結果をIAB-donorや、他のIAB-nodeに通知しても良い。IAB-nodeは、スロットの書き換えをSemi-persistentに行ってもよい。つまりIAB-nodeは、有効期間を設定してIAB-donorや、他のIAB-nodeに通知してもよい。
 IAB-nodeは、スロットを書き換える際に、DのスロットとUのスロットとの比率に応じて書き換えるスロットを選択しても良い。例えば、Dのスロットの数の方が多ければ、IAB-nodeは、書き換え可能なDのスロットをUのスロットに書き換えてもよい。IAB-nodeは、スロットを書き換える際に、使用する周波数リソースを併せて変更してもよい。また、IAB-nodeは、スロットを書き換える際に、ビームフォーミングの設定を併せて変更してもよい。
 IAB-nodeは、スロットを書き換える際に、リンクの優先度を考慮した書き換えを実行してもよい。例えばIAB-nodeは、必ず送らなければならない優先度の高い情報を用いて優先度を決定し、決定した優先度に応じてスロットの書き換えを実施してもよい。また例えば、IAB-nodeは、他のIAB-nodeとの間でどちらを優先するかを決定し、その優先順位に基づいてスロットの書き換えを実施しても良い。また例えば、IAB-nodeは、ハンドオーバーを実行したり、特定のプロシージャを実行したりする必要がある場合、それらの実行したい処理に基づいてスロットの書き換えを実施しても良い。
 IAB-nodeは、スロットを書き換える際に、トラフィックのQoSによる書き換えを実行してもよい。またIAB-nodeは、スロットを書き換える際に、パケットエラーレートを下げるように書き換えを実行してもよい。またIAB-nodeは、スロットを書き換える際に、自身の干渉を最小化するように書き換えて模様書き換えを実行してもよい。またIAB-nodeは、スロットを書き換える際に、通信相手のIAB-nodeや端末装置への干渉を最小化するように書き換えを実行してもよい。またIAB-nodeは、スロットを書き換える際に、ネットワークのキャパシティを最大化するように書き換えを実行してもよい。
 またIAB-nodeは、スロットを書き換える際に、バックホールリンク切り替えの用途で書き換えを実行してもよい。すなわちIAB-nodeは、複数のIAB-nodeとバックホールリンクとが接続されていた場合、どちらかのバックホールリンクを優先的に使用するように、リンク間でスロットを調整し、書き換えを実行してもよい。
 図8は、本開示の実施の形態に係る通信制御装置100の動作の概要を示す説明図である。図8に示したのは、IAB-nodeが、IAB-donorに対してスロットフォーマットの再設定リクエスト(Slot format reconfiguration request)を送信する場合の概要である。
 IAB-nodeはまず環境認知を実行し、スロットフォーマットの書き換えが必要かどうか判断する。環境認知の実行の結果、もし書き換えが必要であった場合、IAB-nodeは、スロットフォーマットの書き換えで対応可能であればそのままスロットフォーマットの書き換えを実施する。
 一方、スロットフォーマットの書き換えだけでは対応が不十分と判断した場合、IAB-nodeは、IAB-donor(親でもよく、複数の親の代表者でもいい)にSlot format reconfiguration requestを送信する。その後、上記IAB-donorでスロットフォーマットのアップデートが行われ、IAB nodeにスロットフォーマットの再割り当てが実施される。
 図9A、9Bは、本開示の実施の形態に係る動作例を示す流れ図である。まず、IAB-donorであるノードはスロットフォーマットを決定し(ステップS101)、決定したスロットフォーマットをIAB-Parent、IAB-node、IAB-child、Neighbor IAB-nodeに通知する(ステップS102、S103、S104、S105)。
 IAB-donorからスロットフォーマットを通知されたIAB-Parent、IAB-node、IAB-childは、それぞれ、通知に従ってスロットフォーマットを設定する(ステップS106、S107、S108)。
 その後、IAB-nodeは周辺の無線環境を測定する(ステップS109)。またIAB-nodeは、IAB-Parent、IAB-child、Neighbor IAB-nodeから、スロットフォーマットの使用状況の通知を受ける(ステップS110、S111、S112)。そして、IAB-nodeは周辺の無線環境の測定結果や、スロットフォーマットの使用状況の通知に基づいてスロットフォーマットの書き換え判定を行う(ステップS113)。
 そして、スロットフォーマットの書き換えだけでは対応が不十分と判断すると、IAB-nodeはIAB-donorに対し、スロットフォーマットの再設定リクエスト(Slot format reconfiguration request)を送信する(ステップS114)。
 IAB-donorは、IAB-nodeからのスロットフォーマットの再設定リクエストに基づいて、スロットフォーマットを再設定し(ステップS115)、再設定したスロットフォーマットをIAB-Parent、IAB-node、IAB-child、Neighbor IAB-nodeに通知する(ステップS116、S117、S118、S119)。
 IAB-donorからスロットフォーマットを通知されたIAB-Parent、IAB-node、IAB-childは、それぞれ、通知に従ってスロットフォーマットを設定する(ステップS120、S121、S122)。
 その後、IAB-nodeは周辺の無線環境を測定する(ステップS123)。またIAB-nodeは、IAB-Parent、IAB-child、Neighbor IAB-nodeから、スロットフォーマットの使用状況の通知を受ける(ステップS124、S125、S126)。そして、IAB-nodeは周辺の無線環境の測定結果や、スロットフォーマットの使用状況の通知に基づいてスロットフォーマットの書き換え判定を行う(ステップS127)。
 そして、スロットフォーマットの書き換えだけで対応が十分と判断すると、IAB-nodeは割り当てられたスロットフォーマットの書き換えを実施する(ステップS128)。この際、IAB-nodeはSoft(書き換え可能なスロット)として割り当てられたスロットについて、スロットフォーマットの書き換えを実行する。
 なお図9A、9Bに示した例では、環境認知として、IAB-node周辺の無線環境測定並びに親IAB-node、子IAB-node及び周辺IAB-nodeのスロットフォーマットの使用状況を得ているが、これは一例であり、IAB-nodeは、上述したようにその他の情報を得ても良い。
 図10は、本開示の実施の形態に係る通信制御装置100の動作例を示す流れ図である。ここでは、通信制御装置100がIAB-nodeとして動作する場合の動作例を示す。
 IAB-nodeはまず環境認知を実行し(ステップS131)、スロットフォーマットの書き換えで対応が可能かどうか判断する(ステップS132)。ステップS132の判断の結果、スロットフォーマットの書き換えで対応が可能である場合(ステップS132、Yes)、IAB-nodeは、スロットフォーマットの書き換えを実施する(ステップS133)。
 一方、スロットフォーマットの書き換えだけでは対応が不可能と判断した場合(ステップS132、No)、IAB-nodeは、IAB-donor(親でもよく、複数の親の代表者でもいい)にSlot format reconfiguration requestを送信する(ステップS134)。その後、上記IAB-donorでスロットフォーマットのアップデートが行われ、IAB nodeにスロットフォーマットの再割り当てが実施される(ステップS135)。
 <2.応用例>
 本開示に係る技術は、様々な製品へ応用可能である。
 例えば、通信制御装置100は、マクロeNB又はスモールeNBなどのいずれかの種類のeNB(evolved Node B)として実現されてもよい。スモールeNBは、ピコeNB、マイクロeNB又はホーム(フェムト)eNBなどの、マクロセルよりも小さいセルをカバーするeNBであってよい。その代わりに、通信制御装置100は、NodeB又はBTS(Base Transceiver Station)などの他の種類の基地局として実現されてもよい。通信制御装置100は、無線通信を制御する本体(基地局装置ともいう)と、本体とは別の場所に配置される1つ以上のRRH(Remote Radio Head)とを含んでもよい。また、後述する様々な種類の端末が一時的に又は半永続的に基地局機能を実行することにより、通信制御装置100として動作してもよい。
 また、例えば、端末装置200は、スマートフォン、タブレットPC(Personal Computer)、ノートPC、携帯型ゲーム端末、携帯型/ドングル型のモバイルルータ若しくはデジタルカメラなどのモバイル端末、又はカーナビゲーション装置などの車載端末として実現されてもよい。また、端末装置200は、M2M(Machine To Machine)通信を行う端末(MTC(Machine Type Communication)端末ともいう)として実現されてもよい。さらに、端末装置200は、これら端末に搭載される無線通信モジュール(例えば、1つのダイで構成される集積回路モジュール)であってもよい。
 [2.1.基地局に関する応用例]
   (第1の応用例)
 図11は、本開示に係る技術が適用され得るeNBの概略的な構成の第1の例を示すブロック図である。eNB800は、1つ以上のアンテナ810、及び基地局装置820を有する。各アンテナ810及び基地局装置820は、RFケーブルを介して互いに接続され得る。
 アンテナ810の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、基地局装置820による無線信号の送受信のために使用される。eNB800は、図11に示したように複数のアンテナ810を有し、複数のアンテナ810は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図11にはeNB800が複数のアンテナ810を有する例を示したが、eNB800は単一のアンテナ810を有してもよい。
 基地局装置820は、コントローラ821、メモリ822、ネットワークインタフェース823及び無線通信インタフェース825を備える。
 コントローラ821は、例えばCPU又はDSPであってよく、基地局装置820の上位レイヤの様々な機能を動作させる。例えば、コントローラ821は、無線通信インタフェース825により処理された信号内のデータからデータパケットを生成し、生成したパケットをネットワークインタフェース823を介して転送する。コントローラ821は、複数のベースバンドプロセッサからのデータをバンドリングすることによりバンドルドパケットを生成し、生成したバンドルドパケットを転送してもよい。また、コントローラ821は、無線リソース管理(Radio Resource Control)、無線ベアラ制御(Radio Bearer Control)、移動性管理(Mobility Management)、流入制御(Admission Control)又はスケジューリング(Scheduling)などの制御を実行する論理的な機能を有してもよい。また、当該制御は、周辺のeNB又はコアネットワークノードと連携して実行されてもよい。メモリ822は、RAM及びROMを含み、コントローラ821により実行されるプログラム、及び様々な制御データ(例えば、端末リスト、送信電力データ及びスケジューリングデータなど)を記憶する。
 ネットワークインタフェース823は、基地局装置820をコアネットワーク824に接続するための通信インタフェースである。コントローラ821は、ネットワークインタフェース823を介して、コアネットワークノード又は他のeNBと通信してもよい。その場合に、eNB800と、コアネットワークノード又は他のeNBとは、論理的なインタフェース(例えば、S1インタフェース又はX2インタフェース)により互いに接続されてもよい。ネットワークインタフェース823は、有線通信インタフェースであってもよく、又は無線バックホールのための無線通信インタフェースであってもよい。ネットワークインタフェース823が無線通信インタフェースである場合、ネットワークインタフェース823は、無線通信インタフェース825により使用される周波数帯域よりもより高い周波数帯域を無線通信に使用してもよい。
 無線通信インタフェース825は、LTE(Long Term Evolution)又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、アンテナ810を介して、eNB800のセル内に位置する端末に無線接続を提供する。無線通信インタフェース825は、典型的には、ベースバンド(BB)プロセッサ826及びRF回路827などを含み得る。BBプロセッサ826は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、各レイヤ(例えば、L1、MAC(Medium Access Control)、RLC(Radio Link Control)及びPDCP(Packet Data Convergence Protocol))の様々な信号処理を実行する。BBプロセッサ826は、コントローラ821の代わりに、上述した論理的な機能の一部又は全部を有してもよい。BBプロセッサ826は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を含むモジュールであってもよく、BBプロセッサ826の機能は、上記プログラムのアップデートにより変更可能であってもよい。また、上記モジュールは、基地局装置820のスロットに挿入されるカード若しくはブレードであってもよく、又は上記カード若しくは上記ブレードに搭載されるチップであってもよい。一方、RF回路827は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ810を介して無線信号を送受信する。
 無線通信インタフェース825は、図11に示したように複数のBBプロセッサ826を含み、複数のBBプロセッサ826は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。また、無線通信インタフェース825は、図11に示したように複数のRF回路827を含み、複数のRF回路827は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図11には無線通信インタフェース825が複数のBBプロセッサ826及び複数のRF回路827を含む例を示したが、無線通信インタフェース825は単一のBBプロセッサ826又は単一のRF回路827を含んでもよい。
 図11に示したeNB800において、図5を参照して説明した制御部150に含まれる1つ以上の構成要素(設定部151、及び/又は通信制御部153)は、無線通信インタフェース825において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ821において実装されてもよい。一例として、eNB800は、無線通信インタフェース825の一部(例えば、BBプロセッサ826)若しくは全部、及び/又はコントローラ821を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがeNB800にインストールされ、無線通信インタフェース825(例えば、BBプロセッサ826)及び/又はコントローラ821が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてeNB800、基地局装置820又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図11に示したeNB800において、図5を参照して説明した無線通信部120は、無線通信インタフェース825(例えば、RF回路827)において実装されてもよい。また、アンテナ部110は、アンテナ810において実装されてもよい。また、ネットワーク通信部130は、コントローラ821及び/又はネットワークインタフェース823において実装されてもよい。また、記憶部140は、メモリ822において実装されてもよい。
   (第2の応用例)
 図12は、本開示に係る技術が適用され得るeNBの概略的な構成の第2の例を示すブロック図である。eNB830は、1つ以上のアンテナ840、基地局装置850、及びRRH860を有する。各アンテナ840及びRRH860は、RFケーブルを介して互いに接続され得る。また、基地局装置850及びRRH860は、光ファイバケーブルなどの高速回線で互いに接続され得る。
 アンテナ840の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、RRH860による無線信号の送受信のために使用される。eNB830は、図12に示したように複数のアンテナ840を有し、複数のアンテナ840は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図12にはeNB830が複数のアンテナ840を有する例を示したが、eNB830は単一のアンテナ840を有してもよい。
 基地局装置850は、コントローラ851、メモリ852、ネットワークインタフェース853、無線通信インタフェース855及び接続インタフェース857を備える。コントローラ851、メモリ852及びネットワークインタフェース853は、図19を参照して説明したコントローラ821、メモリ822及びネットワークインタフェース823と同様のものである。
 無線通信インタフェース855は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、RRH860及びアンテナ840を介して、RRH860に対応するセクタ内に位置する端末に無線接続を提供する。無線通信インタフェース855は、典型的には、BBプロセッサ856などを含み得る。BBプロセッサ856は、接続インタフェース857を介してRRH860のRF回路864と接続されることを除き、図11を参照して説明したBBプロセッサ826と同様のものである。無線通信インタフェース855は、図12に示したように複数のBBプロセッサ856を含み、複数のBBプロセッサ856は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図12には無線通信インタフェース855が複数のBBプロセッサ856を含む例を示したが、無線通信インタフェース855は単一のBBプロセッサ856を含んでもよい。
 接続インタフェース857は、基地局装置850(無線通信インタフェース855)をRRH860と接続するためのインタフェースである。接続インタフェース857は、基地局装置850(無線通信インタフェース855)とRRH860とを接続する上記高速回線での通信のための通信モジュールであってもよい。
 また、RRH860は、接続インタフェース861及び無線通信インタフェース863を備える。
 接続インタフェース861は、RRH860(無線通信インタフェース863)を基地局装置850と接続するためのインタフェースである。接続インタフェース861は、上記高速回線での通信のための通信モジュールであってもよい。
 無線通信インタフェース863は、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、典型的には、RF回路864などを含み得る。RF回路864は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、図12に示したように複数のRF回路864を含み、複数のRF回路864は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図12には無線通信インタフェース863が複数のRF回路864を含む例を示したが、無線通信インタフェース863は単一のRF回路864を含んでもよい。
 図12に示したeNB830において、図5を参照して説明した制御部150に含まれる1つ以上の構成要素(設定部151、及び/又は通信制御部153)は、無線通信インタフェース855及び/又は無線通信インタフェース863において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ851において実装されてもよい。一例として、eNB830は、無線通信インタフェース855の一部(例えば、BBプロセッサ856)若しくは全部、及び/又はコントローラ851を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがeNB830にインストールされ、無線通信インタフェース855(例えば、BBプロセッサ856)及び/又はコントローラ851が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてeNB830、基地局装置850又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図12に示したeNB830において、例えば、図5を参照して説明した無線通信部120は、無線通信インタフェース863(例えば、RF回路864)において実装されてもよい。また、アンテナ部110は、アンテナ840において実装されてもよい。また、ネットワーク通信部130は、コントローラ851及び/又はネットワークインタフェース853において実装されてもよい。また、記憶部140は、メモリ852において実装されてもよい。
 [2.2.端末装置に関する応用例]
   (第1の応用例)
 図13は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912、1つ以上のアンテナスイッチ915、1つ以上のアンテナ916、バス917、バッテリー918及び補助コントローラ919を備える。
 プロセッサ901は、例えばCPU又はSoC(System on Chip)であってよく、スマートフォン900のアプリケーションレイヤ及びその他のレイヤの機能を制御する。メモリ902は、RAM及びROMを含み、プロセッサ901により実行されるプログラム及びデータを記憶する。ストレージ903は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。外部接続インタフェース904は、メモリーカード又はUSB(Universal Serial Bus)デバイスなどの外付けデバイスをスマートフォン900へ接続するためのインタフェースである。
 カメラ906は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を有し、撮像画像を生成する。センサ907は、例えば、測位センサ、ジャイロセンサ、地磁気センサ及び加速度センサなどのセンサ群を含み得る。マイクロフォン908は、スマートフォン900へ入力される音声を音声信号へ変換する。入力デバイス909は、例えば、表示デバイス910の画面上へのタッチを検出するタッチセンサ、キーパッド、キーボード、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス910は、液晶ディスプレイ(LCD)又は有機発光ダイオード(OLED)ディスプレイなどの画面を有し、スマートフォン900の出力画像を表示する。スピーカ911は、スマートフォン900から出力される音声信号を音声に変換する。
 無線通信インタフェース912は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース912は、典型的には、BBプロセッサ913及びRF回路914などを含み得る。BBプロセッサ913は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路914は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ916を介して無線信号を送受信する。無線通信インタフェース912は、BBプロセッサ913及びRF回路914を集積したワンチップのモジュールであってもよい。無線通信インタフェース912は、図13に示したように複数のBBプロセッサ913及び複数のRF回路914を含んでもよい。なお、図13には無線通信インタフェース912が複数のBBプロセッサ913及び複数のRF回路914を含む例を示したが、無線通信インタフェース912は単一のBBプロセッサ913又は単一のRF回路914を含んでもよい。
 さらに、無線通信インタフェース912は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN(Local Area Network)方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ913及びRF回路914を含んでもよい。
 アンテナスイッチ915の各々は、無線通信インタフェース912に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ916の接続先を切り替える。
 アンテナ916の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース912による無線信号の送受信のために使用される。スマートフォン900は、図13に示したように複数のアンテナ916を有してもよい。なお、図13にはスマートフォン900が複数のアンテナ916を有する例を示したが、スマートフォン900は単一のアンテナ916を有してもよい。
 さらに、スマートフォン900は、無線通信方式ごとにアンテナ916を備えてもよい。その場合に、アンテナスイッチ915は、スマートフォン900の構成から省略されてもよい。
 バス917は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912及び補助コントローラ919を互いに接続する。バッテリー918は、図中に破線で部分的に示した給電ラインを介して、図13に示したスマートフォン900の各ブロックへ電力を供給する。補助コントローラ919は、例えば、スリープモードにおいて、スマートフォン900の必要最低限の機能を動作させる。
 図13に示したスマートフォン900において、図6を参照して説明した制御部240に含まれる1つ以上の構成要素(取得部241及び/又は通信制御部243)は、無線通信インタフェース912において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ901又は補助コントローラ919において実装されてもよい。一例として、スマートフォン900は、無線通信インタフェース912の一部(例えば、BBプロセッサ913)若しくは全部、プロセッサ901、及び/又は補助コントローラ919を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがスマートフォン900にインストールされ、無線通信インタフェース912(例えば、BBプロセッサ913)、プロセッサ901、及び/又は補助コントローラ919が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてスマートフォン900又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図13に示したスマートフォン900において、例えば、図6を参照して説明した無線通信部220は、無線通信インタフェース912(例えば、RF回路914)において実装されてもよい。また、アンテナ部210は、アンテナ916において実装されてもよい。また、記憶部230は、メモリ902において実装されてもよい。
   (第2の応用例)
 図14は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPS(Global Positioning System)モジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、1つ以上のアンテナスイッチ936、1つ以上のアンテナ937及びバッテリー938を備える。
 プロセッサ921は、例えばCPU又はSoCであってよく、カーナビゲーション装置920のナビゲーション機能及びその他の機能を制御する。メモリ922は、RAM及びROMを含み、プロセッサ921により実行されるプログラム及びデータを記憶する。
 GPSモジュール924は、GPS衛星から受信されるGPS信号を用いて、カーナビゲーション装置920の位置(例えば、緯度、経度及び高度)を測定する。センサ925は、例えば、ジャイロセンサ、地磁気センサ及び気圧センサなどのセンサ群を含み得る。データインタフェース926は、例えば、図示しない端子を介して車載ネットワーク941に接続され、車速データなどの車両側で生成されるデータを取得する。
 コンテンツプレーヤ927は、記憶媒体インタフェース928に挿入される記憶媒体(例えば、CD又はDVD)に記憶されているコンテンツを再生する。入力デバイス929は、例えば、表示デバイス930の画面上へのタッチを検出するタッチセンサ、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス930は、LCD又はOLEDディスプレイなどの画面を有し、ナビゲーション機能又は再生されるコンテンツの画像を表示する。スピーカ931は、ナビゲーション機能又は再生されるコンテンツの音声を出力する。
 無線通信インタフェース933は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース933は、典型的には、BBプロセッサ934及びRF回路935などを含み得る。BBプロセッサ934は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路935は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ937を介して無線信号を送受信する。無線通信インタフェース933は、BBプロセッサ934及びRF回路935を集積したワンチップのモジュールであってもよい。無線通信インタフェース933は、図14に示したように複数のBBプロセッサ934及び複数のRF回路935を含んでもよい。なお、図14には無線通信インタフェース933が複数のBBプロセッサ934及び複数のRF回路935を含む例を示したが、無線通信インタフェース933は単一のBBプロセッサ934又は単一のRF回路935を含んでもよい。
 さらに、無線通信インタフェース933は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ934及びRF回路935を含んでもよい。
 アンテナスイッチ936の各々は、無線通信インタフェース933に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ937の接続先を切り替える。
 アンテナ937の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース933による無線信号の送受信のために使用される。カーナビゲーション装置920は、図14に示したように複数のアンテナ937を有してもよい。なお、図14にはカーナビゲーション装置920が複数のアンテナ937を有する例を示したが、カーナビゲーション装置920は単一のアンテナ937を有してもよい。
 さらに、カーナビゲーション装置920は、無線通信方式ごとにアンテナ937を備えてもよい。その場合に、アンテナスイッチ936は、カーナビゲーション装置920の構成から省略されてもよい。
 バッテリー938は、図中に破線で部分的に示した給電ラインを介して、図14に示したカーナビゲーション装置920の各ブロックへ電力を供給する。また、バッテリー938は、車両側から給電される電力を蓄積する。
 図14に示したカーナビゲーション装置920において、図6を参照して説明した制御部240に含まれる1つ以上の構成要素(取得部241及び/又は通信制御部243)は、無線通信インタフェース933において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ921において実装されてもよい。一例として、カーナビゲーション装置920は、無線通信インタフェース933の一部(例えば、BBプロセッサ934)若しくは全部及び/又はプロセッサ921を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがカーナビゲーション装置920にインストールされ、無線通信インタフェース933(例えば、BBプロセッサ934)及び/又はプロセッサ921が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてカーナビゲーション装置920又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図14に示したカーナビゲーション装置920において、例えば、図6を参照して説明した無線通信部220は、無線通信インタフェース933(例えば、RF回路935)において実装されてもよい。また、アンテナ部210は、アンテナ937において実装されてもよい。また、記憶部230は、メモリ922において実装されてもよい。
 また、本開示に係る技術は、上述したカーナビゲーション装置920の1つ以上のブロックと、車載ネットワーク941と、車両側モジュール942とを含む車載システム(又は車両)940として実現されてもよい。車両側モジュール942は、車速、エンジン回転数又は故障情報などの車両側データを生成し、生成したデータを車載ネットワーク941へ出力する。
 <3.まとめ>
 以上説明したように本開示の実施の形態によれば、通信をリレーする端末がモビリティを有する場合においてローカルの環境の変動を考慮したリソースを効率的に割り当てることが可能な通信制御装置100が提供される。また本開示の実施の形態によれば、通信をリレーする端末がモビリティを有する場合においてローカルの環境の変動を考慮し、スロットフォーマットの書き換えを実施することが可能な通信制御装置100が提供される。
 本明細書の各装置が実行する処理における各ステップは、必ずしもシーケンス図またはフローチャートとして記載された順序に沿って時系列に処理する必要はない。例えば、各装置が実行する処理における各ステップは、フローチャートとして記載した順序と異なる順序で処理されても、並列的に処理されてもよい。
 また、各装置に内蔵されるCPU、ROMおよびRAMなどのハードウェアを、上述した各装置の構成と同等の機能を発揮させるためのコンピュータプログラムも作成可能である。また、該コンピュータプログラムを記憶させた記憶媒体も提供されることが可能である。また、機能ブロック図で示したそれぞれの機能ブロックをハードウェアで構成することで、一連の処理をハードウェアで実現することもできる。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 他の通信制御装置からスロットの設定及び前記設定の中で書き換え可能なスロットに関する情報、並びに、自局の周囲の電波環境に関する情報を取得する取得部と、
 前記電波環境に関する情報に基づいて、前記書き換え可能なスロットの中から書き換えるスロットを選択して書き換える設定部と、
 前記設定部が書き換えたスロットに基づいて通信を実行する通信制御部と、
を備える、通信制御装置。
(2)
 前記取得部は、前記電波環境に関する情報として、自局がアップリンクで通信する他の通信制御装置に割り当てられたスロットの設定を取得する、前記(1)に記載の通信制御装置。
(3)
 前記取得部は、前記電波環境に関する情報として、自局がダウンリンクで通信する他の通信制御装置に割り当てられたスロットの設定を取得する、前記(1)に記載の通信制御装置。
(4)
 前記取得部は、前記電波環境に関する情報として、自局がサイドリンクで通信する他の通信制御装置に割り当てられたスロットの設定を取得する、前記(1)に記載の通信制御装置。
(5)
 前記取得部は、前記電波環境に関する情報として、自局がリンクしていない近隣の他の通信制御装置に割り当てられたスロットの設定を取得する、前記(1)に記載の通信制御装置。
(6)
 前記取得部は、前記電波環境に関する情報として、他の通信制御装置の位置情報を取得する、前記(1)~(5)のいずれかに記載の通信制御装置。
(7)
 前記取得部は、前記電波環境に関する情報として、他の通信制御装置の通信リソースの使用率の情報を取得する、前記(1)~(5)のいずれかに記載の通信制御装置。
(8)
 前記取得部は、前記電波環境に関する情報として、他の通信制御装置のビームフォーミングに関する情報を取得する、前記(1)~(5)のいずれかに記載の通信制御装置。
(9)
 前記取得部は、前記電波環境に関する情報として、他の通信制御装置での干渉の発生に関する情報を取得する、前記(1)~(5)のいずれかに記載の通信制御装置。
(10)
 前記干渉の発生に関する情報は、ACK及びNACKの発生割合に関する情報である、前記(9)に記載の通信制御装置。
(11)
 前記取得部は、前記電波環境に関する情報として、他の通信制御装置の能力に関する情報を取得する、前記(1)~(10)のいずれかに記載の通信制御装置。
(12)
 前記設定部は、他の装置とのリンクの優先度を考慮して書き換えるスロットを選択する、前記(1)~(11)のいずれかに記載の通信制御装置。
(13)
 前記設定部は、トラフィックの品質を考慮して書き換えるスロットを選択する、前記(1)~(11)のいずれかに記載の通信制御装置。
(14)
 前記設定部は、パケットのエラーレートを下げるよう書き換えるスロットを選択する、前記(1)~(11)のいずれかに記載の通信制御装置。
(15)
 前記設定部は、自局の干渉を最小化するよう書き換えるスロットを選択する、前記(1)~(11)のいずれかに記載の通信制御装置。
(16)
 前記設定部は、通信相手への干渉を最小化するよう書き換えるスロットを選択する、前記(1)~(11)のいずれかに記載の通信制御装置。
(17)
 前記通信制御部は、書き換えたスロットに関する情報を他の装置へ通知する制御を行う、前記(1)~(16)のいずれかに記載の通信制御装置。
(18)
 プロセッサが、
 他の通信制御装置からスロットの設定及び前記設定の中で書き換え可能なスロットに関する情報、並びに、自局の周囲の電波環境に関する情報を取得することと、
 前記電波環境に関する情報に基づいて、前記書き換え可能なスロットの中から書き換えるスロットを選択して書き換えることと、
 書き換えられた前記スロットに基づいて通信を実行することと、
を含む、通信制御方法。
(19)
 コンピュータに、
 他の通信制御装置からスロットの設定及び前記設定の中で書き換え可能なスロットに関する情報、並びに、自局の周囲の電波環境に関する情報を取得することと、
 前記電波環境に関する情報に基づいて、前記書き換え可能なスロットの中から書き換えるスロットを選択して書き換えることと、
 書き換えられた前記スロットに基づいて通信を実行することと、
を実行させる、コンピュータプログラム。
 100  通信制御装置
 200  端末装置

Claims (19)

  1.  他の通信制御装置からスロットの設定及び前記設定の中で書き換え可能なスロットに関する情報、並びに、自局の周囲の電波環境に関する情報を取得する取得部と、
     前記電波環境に関する情報に基づいて、前記書き換え可能なスロットの中から書き換えるスロットを選択して書き換える設定部と、
     前記設定部が書き換えたスロットに基づいて通信を実行する通信制御部と、
    を備える、通信制御装置。
  2.  前記取得部は、前記電波環境に関する情報として、自局がアップリンクで通信する他の通信制御装置に割り当てられたスロットの設定を取得する、請求項1に記載の通信制御装置。
  3.  前記取得部は、前記電波環境に関する情報として、自局がダウンリンクで通信する他の通信制御装置に割り当てられたスロットの設定を取得する、請求項1に記載の通信制御装置。
  4.  前記取得部は、前記電波環境に関する情報として、自局がサイドリンクで通信する他の通信制御装置に割り当てられたスロットの設定を取得する、請求項1に記載の通信制御装置。
  5.  前記取得部は、前記電波環境に関する情報として、自局がリンクしていない近隣の他の通信制御装置に割り当てられたスロットの設定を取得する、請求項1に記載の通信制御装置。
  6.  前記取得部は、前記電波環境に関する情報として、他の通信制御装置の位置情報を取得する、請求項1に記載の通信制御装置。
  7.  前記取得部は、前記電波環境に関する情報として、他の通信制御装置の通信リソースの使用率の情報を取得する、請求項1に記載の通信制御装置。
  8.  前記取得部は、前記電波環境に関する情報として、他の通信制御装置のビームフォーミングに関する情報を取得する、請求項1に記載の通信制御装置。
  9.  前記取得部は、前記電波環境に関する情報として、他の通信制御装置での干渉の発生に関する情報を取得する、請求項1に記載の通信制御装置。
  10.  前記干渉の発生に関する情報は、ACK及びNACKの発生割合に関する情報である、請求項9に記載の通信制御装置。
  11.  前記取得部は、前記電波環境に関する情報として、他の通信制御装置の能力に関する情報を取得する、請求項1に記載の通信制御装置。
  12.  前記設定部は、他の装置とのリンクの優先度を考慮して書き換えるスロットを選択する、請求項1に記載の通信制御装置。
  13.  前記設定部は、トラフィックの品質を考慮して書き換えるスロットを選択する、請求項1に記載の通信制御装置。
  14.  前記設定部は、パケットのエラーレートを下げるよう書き換えるスロットを選択する、請求項1に記載の通信制御装置。
  15.  前記設定部は、自局の干渉を最小化するよう書き換えるスロットを選択する、請求項1に記載の通信制御装置。
  16.  前記設定部は、通信相手への干渉を最小化するよう書き換えるスロットを選択する、請求項1に記載の通信制御装置。
  17.  前記通信制御部は、書き換えたスロットに関する情報を他の装置へ通知する制御を行う、請求項1に記載の通信制御装置。
  18.  プロセッサが、
     他の通信制御装置からスロットの設定及び前記設定の中で書き換え可能なスロットに関する情報、並びに、自局の周囲の電波環境に関する情報を取得することと、
     前記電波環境に関する情報に基づいて、前記書き換え可能なスロットの中から書き換えるスロットを選択して書き換えることと、
     書き換えられた前記スロットに基づいて通信を実行することと、
    を含む、通信制御方法。
  19.  コンピュータに、
     他の通信制御装置からスロットの設定及び前記設定の中で書き換え可能なスロットに関する情報、並びに、自局の周囲の電波環境に関する情報を取得することと、
     前記電波環境に関する情報に基づいて、前記書き換え可能なスロットの中から書き換えるスロットを選択して書き換えることと、
     書き換えられた前記スロットに基づいて通信を実行することと、
    を実行させる、コンピュータプログラム。
PCT/JP2019/045374 2019-01-10 2019-11-20 通信制御装置、通信制御方法及びコンピュータプログラム WO2020144944A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980087622.3A CN113261321A (zh) 2019-01-10 2019-11-20 通信控制装置、通信控制方法及计算机程序
EP19909015.0A EP3910979A4 (en) 2019-01-10 2019-11-20 COMMUNICATIONS CONTROL DEVICE, COMMUNICATIONS CONTROL METHOD AND COMPUTER PROGRAM
US17/309,897 US20220078751A1 (en) 2019-01-10 2019-11-20 Communication control device, communication control method, and computer program
JP2020565604A JP7447809B2 (ja) 2019-01-10 2019-11-20 通信制御装置、通信制御方法及びコンピュータプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-002418 2019-01-10
JP2019002418 2019-01-10

Publications (1)

Publication Number Publication Date
WO2020144944A1 true WO2020144944A1 (ja) 2020-07-16

Family

ID=71520695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045374 WO2020144944A1 (ja) 2019-01-10 2019-11-20 通信制御装置、通信制御方法及びコンピュータプログラム

Country Status (5)

Country Link
US (1) US20220078751A1 (ja)
EP (1) EP3910979A4 (ja)
JP (1) JP7447809B2 (ja)
CN (1) CN113261321A (ja)
WO (1) WO2020144944A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022151520A (ja) * 2021-03-23 2022-10-07 スターライト テクノロジーズ リミテッド メッシュネットワークを用いたネットワーク高密度化のための統合無線アクセスバックホールデバイス

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210359829A1 (en) * 2020-05-13 2021-11-18 Qualcomm Incorporated Requesting intended time division duplex configurations
US11516102B2 (en) * 2021-02-11 2022-11-29 Verizon Patent And Licensing Inc. Systems and methods for bandwidth allocation at wireless integrated access backhaul nodes

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000253445A (ja) * 1999-02-25 2000-09-14 Nippon Telegr & Teleph Corp <Ntt> 無線回線割当方法および無線基地局装置
JP2012090283A (ja) * 2006-09-15 2012-05-10 Qualcomm Inc Wan信号伝送およびピアツーピア信号伝送をサポートする混在無線通信システムにおける電力制御および/または干渉処理に関する方法および装置
JP2012124585A (ja) * 2010-12-06 2012-06-28 Kddi Corp 通信品質推定装置、基地局装置、通信品質推定方法、及び通信品質推定プログラム
JP2013021603A (ja) * 2011-07-13 2013-01-31 Nippon Telegr & Teleph Corp <Ntt> 無線通信システムおよび無線通信方法
JP2016096489A (ja) 2014-11-17 2016-05-26 Kddi株式会社 端末装置、基地局装置および通信方法
JP2017508377A (ja) * 2014-02-13 2017-03-23 富士通株式会社 オーバーヒアリングおよびセル間通信を使用する無線リソース割り当て方法
WO2017202230A1 (en) * 2016-05-26 2017-11-30 Huawei Technologies Co., Ltd. System and method for time division duplexed multiplexing in transmission-reception point to transmission-reception point connectivity

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101730249B (zh) * 2008-10-31 2012-11-21 华为技术有限公司 一种资源配置的方法、装置和系统
TWI683557B (zh) * 2014-01-31 2020-01-21 日商新力股份有限公司 通訊裝置及方法
CN105704822B (zh) * 2014-11-28 2021-06-29 索尼公司 频谱资源管理装置和方法、无线通信设备和方法
JPWO2016163541A1 (ja) * 2015-04-09 2018-02-01 株式会社Nttドコモ ユーザ端末及び無線通信方法
US10855430B2 (en) * 2016-05-18 2020-12-01 Lg Electronics Inc. Method for transmitting uplink control information in wireless communication system, and device therefor
US10869325B2 (en) * 2016-10-07 2020-12-15 Qualcomm Incorporated Dynamic hybrid automatic repeat request timing management
US10091810B2 (en) * 2016-11-04 2018-10-02 Qualcomm Incorporated Network configured uplink control feedback for 5G new radio (NR)
EP4132212A3 (en) * 2017-06-16 2023-06-07 Beijing Xiaomi Mobile Software Co., Ltd. Distributed unit configuration update
US11425697B2 (en) * 2017-08-11 2022-08-23 Nokia Technologies Oy Dynamic management of uplink control signaling resources in wireless network
US10880761B2 (en) * 2017-09-11 2020-12-29 Qualcomm Incorporated System and method for selecting resources to transmit a beam failure recovery request
US11165545B2 (en) * 2017-10-27 2021-11-02 Qualcomm Incorporated Power control for concurrent transmissions
JP7090154B2 (ja) * 2017-11-15 2022-06-23 アイディーエーシー ホールディングス インコーポレイテッド 位相トラッキング参照信号送信
WO2019105564A1 (en) * 2017-11-30 2019-06-06 Nokia Technologies Oy Method and apparatus for backhaul in 5g networks
CN110475357A (zh) * 2018-05-11 2019-11-19 中兴通讯股份有限公司 帧结构的指示方法及装置、存储介质、处理器
WO2020013623A1 (en) * 2018-07-13 2020-01-16 Lg Electronics Inc. Method and apparatus for reducing user equipment power consumption in wireless communication system
CN112400342B (zh) * 2018-07-13 2023-07-04 中兴通讯股份有限公司 中继节点的资源预留
AU2018441785B2 (en) * 2018-09-19 2022-08-11 Nec Corporation A method, device and computer readable media for slot format configuration
CN110972266B (zh) * 2018-09-28 2022-12-30 成都华为技术有限公司 配置时隙格式的方法和通信装置
US11252715B2 (en) * 2018-11-02 2022-02-15 Qualcomm Incorporated Dynamic resource management
US11240801B2 (en) * 2018-11-02 2022-02-01 Qualcomm Incorporated Dynamic resource management
US20220015093A1 (en) * 2018-11-29 2022-01-13 Apple Inc. Resource allocation in iab networks

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000253445A (ja) * 1999-02-25 2000-09-14 Nippon Telegr & Teleph Corp <Ntt> 無線回線割当方法および無線基地局装置
JP2012090283A (ja) * 2006-09-15 2012-05-10 Qualcomm Inc Wan信号伝送およびピアツーピア信号伝送をサポートする混在無線通信システムにおける電力制御および/または干渉処理に関する方法および装置
JP2012124585A (ja) * 2010-12-06 2012-06-28 Kddi Corp 通信品質推定装置、基地局装置、通信品質推定方法、及び通信品質推定プログラム
JP2013021603A (ja) * 2011-07-13 2013-01-31 Nippon Telegr & Teleph Corp <Ntt> 無線通信システムおよび無線通信方法
JP2017508377A (ja) * 2014-02-13 2017-03-23 富士通株式会社 オーバーヒアリングおよびセル間通信を使用する無線リソース割り当て方法
JP2016096489A (ja) 2014-11-17 2016-05-26 Kddi株式会社 端末装置、基地局装置および通信方法
WO2017202230A1 (en) * 2016-05-26 2017-11-30 Huawei Technologies Co., Ltd. System and method for time division duplexed multiplexing in transmission-reception point to transmission-reception point connectivity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3910979A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022151520A (ja) * 2021-03-23 2022-10-07 スターライト テクノロジーズ リミテッド メッシュネットワークを用いたネットワーク高密度化のための統合無線アクセスバックホールデバイス

Also Published As

Publication number Publication date
JPWO2020144944A1 (ja) 2021-11-25
US20220078751A1 (en) 2022-03-10
EP3910979A4 (en) 2022-03-02
JP7447809B2 (ja) 2024-03-12
EP3910979A1 (en) 2021-11-17
CN113261321A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
US20220085876A1 (en) Communication apparatus and communication method
JP7222350B2 (ja) 通信装置及び通信方法
WO2018142784A1 (ja) リレー通信装置、基地局、方法及び記録媒体
US10944449B2 (en) Apparatus and method in wireless communication system, and computer readable storage medium
WO2019093014A1 (ja) 通信装置、通信方法、及びプログラム
JP7447809B2 (ja) 通信制御装置、通信制御方法及びコンピュータプログラム
US20210288711A1 (en) Network device, user equipment, wireless communication method and storage medium
JP6984189B2 (ja) 基地局装置、基地局装置の制御方法、端末装置及び端末装置の制御方法
JP7268955B2 (ja) 端末装置、通信方法、及びプログラム
WO2018230246A1 (ja) 通信装置、通信制御方法及びコンピュータプログラム
JP6601408B2 (ja) 通信制御装置、通信制御方法及び無線通信方法
JP2020533842A (ja) 無線通信システムに用いられる電気機器、方法及び記憶媒体
CN113678381B (zh) 基站设备、通信方法和存储介质
KR20190022672A (ko) 무선 통신 방법 및 무선 통신 디바이스
EP3860206A1 (en) Communication device
US20220338023A1 (en) Electronic device, wireless communication method, and computer readable storage medium
WO2019205169A1 (zh) 一种通信方法及装置
CN111295848B (zh) 通信设备、通信方法和程序
WO2022017303A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
KR102438410B1 (ko) 네트워크 제어 단말 및 네트워크 노드를 위한 전자 디바이스 및 방법
US20170026848A1 (en) Apparatus
WO2020144973A1 (ja) 通信装置、通信方法、及びプログラム
CN116963204A (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909015

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020565604

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019909015

Country of ref document: EP

Effective date: 20210810