WO2020144734A1 - アーク地絡検出装置 - Google Patents

アーク地絡検出装置 Download PDF

Info

Publication number
WO2020144734A1
WO2020144734A1 PCT/JP2019/000147 JP2019000147W WO2020144734A1 WO 2020144734 A1 WO2020144734 A1 WO 2020144734A1 JP 2019000147 W JP2019000147 W JP 2019000147W WO 2020144734 A1 WO2020144734 A1 WO 2020144734A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground fault
current
arc
arc ground
detection device
Prior art date
Application number
PCT/JP2019/000147
Other languages
English (en)
French (fr)
Inventor
俊彦 宮内
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112019006585.8T priority Critical patent/DE112019006585T5/de
Priority to PCT/JP2019/000147 priority patent/WO2020144734A1/ja
Priority to KR1020217020694A priority patent/KR102688840B1/ko
Priority to CN201980085880.8A priority patent/CN113228443B/zh
Priority to JP2019521845A priority patent/JP6567230B1/ja
Publication of WO2020144734A1 publication Critical patent/WO2020144734A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1272Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • H02H1/0015Using arc detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers

Definitions

  • the present application relates to an arc ground fault detection device.
  • Patent Document 1 As a method of detecting a ground fault, which is one of the distribution line accidents, and the position where the fault occurs, a method of detecting the magnitude of zero-phase current and zero-phase voltage is known (for example, Patent Document 1).
  • a zero-phase voltage provided on the secondary side of the distribution transformer in order to identify a ground fault accident location that has occurred on the secondary side of the distribution transformer.
  • a detector and zero-phase current detector, and an instrument current transformer provided on each phase of the power cable on the secondary side of the distribution transformer are provided, and the ground fault location is identified from the zero-phase voltage and each current value. doing.
  • the zero-phase voltage and each current value are extracted by the bandpass filter only for the specific AC component (for example, commercial frequency 60 Hz) and used for the detection process.
  • Patent Document 2 a method of detecting a ground fault in a power conversion device connected to a solar power generation system that is one of renewable energy is disclosed (for example, Patent Document 2).
  • a ground fault is generated from a voltage sensor that detects a voltage supplied from a solar power generation system that is a DC power source and an AC leakage current that is output from the DC power source to a commercial system via a power conversion device. It has been proposed to accurately detect a ground fault in a photovoltaic power generation system that has a generated voltage fluctuation by a detection method.
  • an arc ground fault cannot be detected in the DC system because a bandpass filter handles currents and voltages of a specific frequency and low frequency. Also, in the ground fault detection method of Patent Document 2, the fluctuation of the voltage supplied from the photovoltaic power generation system and the fluctuation of the AC leakage current converted by the power conversion device are used while considering the generated voltage fluctuation. It detects a ground fault and does not target the detection of an arc ground fault.
  • a micro arc is constantly generated, and the arc current appears in the high frequency region rather than the normal ground fault.
  • the background noise is larger than in the low frequency region, and if it overlaps with the noise, there is a problem that it is difficult to detect the arc current and the arc ground fault.
  • the present application discloses a technique for solving the above problems, and an object thereof is to provide an arc ground fault detection device for detecting an arc ground fault generated in a power supply line connected to a DC system. To do.
  • An arc ground fault detection device disclosed in the present application includes a current transformer that measures a current of a power supply line that connects a DC system and a load, an A/D conversion unit that converts the measured current into a digital signal, and a conversion.
  • An arithmetic processing unit that arithmetically processes the digital signal obtained by the arithmetic operation, and in the arithmetic processing unit, the supply over a range of a predetermined frequency of 0.1 kHz or more converted by the A/D conversion unit.
  • the current signal of the electric wire and the initial current signal for each frequency in the predetermined frequency range converted by the A/D conversion unit acquired in advance are compared to detect an arc ground fault.
  • the presence or absence of an arc ground fault is detected by calculating a highly accurate arc ground fault current with background noise removed.
  • FIG. 3 is a hardware configuration diagram of the arc ground fault detection device according to the first embodiment.
  • 5 is a flowchart showing a procedure for detecting an arc ground fault using the arc ground fault detection device according to the first embodiment. It is a spectrum figure which shows the relationship between an arc ground fault current and background noise.
  • 7 is a flowchart showing a procedure for detecting an arc ground fault using the arc ground fault detection device according to the second embodiment.
  • 9 is a flowchart showing a procedure of detecting an arc ground fault by using the arc ground fault detection device according to the third embodiment.
  • Embodiment 1 the arc ground fault detection apparatus according to the first embodiment will be described with reference to FIG.
  • the DC system 1 is not grounded, has high resistance grounding, or is in a non-insulated state.
  • a load 4 is connected to a power supply line (feeder) 2 branched from the DC system 1.
  • detection of an arc ground fault 6 generated in the power supply line 2 with respect to the ground 5 will be described.
  • the ground fault current flowing through the power supply line 2 is measured by the zero-phase current transformer (ZCT) 3 and input to the ground fault current measuring unit 10 of the arc ground fault detection device 100.
  • ZCT zero-phase current transformer
  • the arc ground fault detection device 100 includes a ground fault current measurement unit 10, an A/D conversion unit 20, an arithmetic processing unit 30, a storage unit 40, an output unit 50, and a communication circuit which are connected to a zero-phase current transformer (ZCT) 3. 60 is provided.
  • the ground fault current input to the ground fault current measuring unit 10 is converted (amplified) into a signal level necessary for the next processing in the A/D conversion unit 20, and is digitalized in the A/D conversion unit 20. Converted to a signal.
  • the data converted into a digital signal is arithmetically processed by the arithmetic processing unit 30 to make an abnormality determination (determination of arc ground fault).
  • the load 4 may be a single load or a plurality of loads, or may be a load to which electric power converted into alternating current by a power converter (not shown) connected to the power supply line 2 is supplied. ..
  • the storage unit 40 is connected to the arithmetic processing unit 30 and exchanges data with the arithmetic processing unit 30.
  • the output unit 50 outputs signals such as an abnormal state (occurrence of an arc ground fault) and a warning from the arithmetic processing unit 30 to the outside.
  • the arc ground fault detection device 100 is often incorporated in another instrument such as a protective relay, and in that case, the signal from the output unit 50 is transmitted to the main protective relay.
  • the external monitoring device 200 is composed of a PC (personal computer) or the like and is connected to one or a plurality of arc ground fault detection devices 100, and receives information of the arithmetic processing unit 30 via the communication circuit 60 as appropriate.
  • the operation status of the arc ground fault detection device 100 is monitored.
  • the connection between the external monitoring device 200 and the communication circuit 60 of the arc ground fault detection device 100 may be performed by using a cable or wirelessly.
  • a network may be configured between the plurality of arc ground fault detection devices 100 to connect via the Internet.
  • the arc ground fault detection device 100 When the arc ground fault detection device 100 is incorporated into another instrument such as a protective relay as described above, it is not necessary to provide the arc ground fault detection device 100 itself with the communication circuit 60, and the arc ground fault detection device 100 is connected to the monitoring device 200. You don't even have to
  • FIG. 2 is a diagram showing a hardware configuration example of the arc ground fault detection device 100. It is composed of a processor 110 and a storage device 120.
  • the storage device 120 includes a volatile storage device such as a random access memory (RAM) and a non-volatile auxiliary storage device such as a flash memory. Further, an auxiliary storage device such as a hard disk may be provided instead of the flash memory.
  • the processor 110 executes the program input from the storage device 120. In this case, the program is input from the auxiliary storage device to the processor 110 via a volatile storage device (EEPROM: Electrically Erasable Programmable Read Only Memory).
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • the processor 110 may output data such as a calculation result to the volatile storage device of the storage device 120, or may store the data in the auxiliary storage device via the volatile storage device.
  • the processor 110 may be provided with various logic circuits such as an ASIC (Application Specific Integrated Circuit), an IC (Integrated Circuit), and a DSP (Digital Signal Processor), and various signal processing circuits as an arithmetic processing device.
  • ASIC Application Specific Integrated Circuit
  • IC Integrated Circuit
  • DSP Digital Signal Processor
  • the ground fault current is measured by the zero-phase current transformer (ZCT) 3, and the measured ground fault current is measured.
  • the fault current is input to the ground fault current measuring unit 10.
  • the A/D conversion unit 20 samples and converts it into a discretized digital signal (step S2). At this time, a digital signal over a predetermined frequency range of 0.1 kHz or higher is acquired. The frequency range is set in advance.
  • the digital signal that has been discretized over a predetermined frequency range is arithmetically processed by a Fast Fourier Transform (FFT), and a power spectrum component (initial value) SECin of each frequency is obtained. Is calculated (step S3).
  • the calculated power spectrum component is stored in the storage unit 40 as initial value data (step S4).
  • the ground fault current is measured by the zero-phase current transformer (ZCT) 3, and the measured ground fault current is input to the ground fault current measuring unit 10.
  • the A/D conversion unit 20 samples and converts it into a discretized digital signal (step S5).
  • a digital signal over a predetermined frequency range of 0.1 kHz or higher is acquired.
  • the arithmetic processing unit 30 arithmetically processes the discrete digital signal over a predetermined frequency range by FFT to calculate the power spectrum component (during operation) SECop of each frequency (step S6). At each frequency, the power spectrum component (initial value) SECin is subtracted from the power spectrum component (during operation) SECop to calculate the power spectrum component (true value) SECtr of each frequency (step S7).
  • the arc ground fault current with background noise removed is calculated (step S8). If the calculated arc ground fault current exceeds a preset threshold value, it is determined that an arc ground fault has occurred (YES in step S9), an abnormal signal or the like is output from the output unit 50, and a warning is issued (step S10). ).
  • step S8 If the arc ground fault current calculated in step S8 does not exceed the preset threshold value (NO in step S9), return to the ground fault current measurement in the zero-phase current transformer (ZCT) 3.
  • a signal is obtained by FFT.
  • the zero-phase current transformer (ZCT) 3 is provided in the power supply line 2 connected to the DC system, and the ground fault current is measured.
  • the arc ground fault current with high precision with background noise removed is calculated. By doing so, it becomes possible to detect whether or not an arc ground fault has occurred.
  • Embodiment 2 the method of performing FFT processing on a signal of 0.1 kHz or more and in a predetermined frequency range has been described, but the frequency band when an arc ground fault occurs is mainly 0.1 to 100 kHz. , 0.1 kHz or more and a digital signal over a predetermined frequency range, preferably a predetermined frequency range of 0.1 to 100 kHz, is used to reduce the calculation load and reduce the arc ground fault.
  • the detection accuracy can be improved by performing the above detection.
  • a processing method of arc ground fault current detection with a narrowed frequency range in arc ground fault detection apparatus 100 of FIG. 1 shown in Embodiment 1 will be described.
  • FIG. 4 is a spectrum diagram showing the relationship between the arc ground fault current and the background noise.
  • the horizontal axis represents frequency and the vertical axis represents current value.
  • the current value when an arc is generated is shown by a solid line, and the background value where no arc is generated is shown by a broken line.
  • the noise that is the background appears in a state having discrete peaks, and the arc ground fault current gradually attenuates as the frequency increases. From this figure, although the arc ground fault current and noise are superimposed, the region where the arc ground fault current should be detected is generally larger than 0 and in the range of 150 kHz, preferably in the range of 0.1 to 150 kHz, and more preferably 0.
  • the range is from 1 to 100 kHz. If the arc ground fault current is detected by narrowing down to this frequency range, the calculation load can be reduced and the detection accuracy can be improved by narrowing down the detection to the arc ground fault. It turns out that it will be possible.
  • the ground fault current is measured by the zero-phase current transformer (ZCT) 3, and the measured ground fault current is input to the ground fault current measuring unit 10.
  • ZCT zero-phase current transformer
  • the A/D conversion unit 20 samples and converts it into a discretized digital signal (step S5).
  • a digital signal over a predetermined frequency range of 0.1 kHz or higher is acquired.
  • the arithmetic processing unit 30 arithmetically processes the discrete digital signal over a predetermined frequency range by FFT to calculate the power spectrum component (during operation) SECop of each frequency (step S6). At each frequency, the power spectrum component (initial value) SECin is subtracted from the power spectrum component (during operation) SECop to calculate the power spectrum component (true value) SECtr of each frequency (step S7a).
  • the power spectrum components (true value) SECtr of each frequency are narrowed down (step S7b).
  • the arc ground fault current with background noise removed is calculated (step S8). If the calculated arc ground fault current exceeds a preset threshold value, it is determined that an arc ground fault has occurred (YES in step S9), an abnormal signal or the like is output from the output unit 50, and a warning is issued (step S10). ).
  • the zero-phase current transformer (ZCT) 3 is provided in the power supply line 2 connected to the DC system, the ground fault current is measured, and the spectrum component processed by the FFT and the FFT are processed. It is possible to detect whether or not an arc ground fault has occurred by calculating a highly accurate arc ground fault current from which background noise has been removed, using the difference from the processed initial signal spectrum component. At that time, the signal processing is performed on the current signal in the frequency range of 0.1 to 150 kHz or 0.1 to 100 kHz, so that the calculation load can be reduced and the arc ground fault can be detected at high speed. It is possible to improve the detection accuracy.
  • Embodiment 3 the arc ground fault detection apparatus according to the second embodiment will be described with reference to FIG.
  • the DC system is ungrounded or has high resistance grounding, but in the present embodiment, an example in which one side is grounded as in a DC system of railway equipment will be described.
  • FIG. 6 in the DC system 1, one line is grounded.
  • a load 4 is connected to a power supply line (feeder) 2 branched from the DC system 1.
  • CT current transformer
  • detection of an arc ground fault 6 generated in the ground 5 by the power supply line 2 will be described.
  • the current flowing through each phase of the power supply line 2 is measured by the current transformer (CT) 3a and input to the current measuring unit 10a of the arc ground fault detection device 100.
  • the arc ground fault detection device 100 includes a current measurement unit 10a connected to the current transformer (CT) 3a, an A/D conversion unit 20, an arithmetic processing unit 30, a storage unit 40, an output unit 50, and a communication circuit 60.
  • the current measuring unit 10a calculates the difference between the input currents of the respective phases, and the difference current is converted (amplified) into a signal level required for processing in the next A/D conversion unit 20. At 20, it is converted into a discretized digital signal. The data converted into a digital signal is arithmetically processed by the arithmetic processing unit 30 to make an abnormality determination (determination of arc ground fault).
  • the load 4 may be a single load or a plurality of loads, and may be a load to which electric power converted into alternating current by a power converter (not shown) connected to the power supply line 2 is supplied. Further, the configurations of the arithmetic processing unit 30, the storage unit 40, the output unit 50, and the communication circuit 60 are the same as those in the first embodiment, and thus the description thereof will be omitted. The transmission of information to the external monitoring device 200 via the communication circuit 60 and the communication method between the communication circuit 60 and the monitoring device 200 are also the same as those in the first embodiment.
  • the hardware configuration of the arc ground fault detection device 100 is similar to that of the first embodiment.
  • the ground fault current is directly measured by the zero-phase current transformer (ZCT), but as described above, in the third embodiment, it is measured by the current transformer (CT) provided in each phase.
  • the difference is that, using the current, specifically, the ground fault current is calculated from the difference between the currents of the respective phases.
  • the current of each phase is measured by the current transformer (CT) 3a, and the measured current is Input to the current measuring unit 10a.
  • the current measuring unit 10a calculates the ground fault current from the difference between the currents of the respective phases and converts it into a signal of a predetermined level.
  • the signal converted to a predetermined level is sampled by the A/D converter 20 and converted into a discretized digital signal (step S102). At this time, a digital signal over a predetermined frequency range of 0.1 kHz or higher is acquired.
  • the arithmetic processing unit 30 arithmetically processes the digital signal that has been discretized over a predetermined frequency range by FFT, and calculates the power spectrum component (initial value) SECin of each frequency (step S103).
  • the calculated power spectrum component is stored in the storage unit 40 as initial value data (step S104).
  • the current of each phase is measured by the current transformer (CT) 3a, and the measured current is input to the current measuring unit 10a.
  • the current measuring unit 10a calculates the ground fault current from the difference between the currents of the respective phases and converts it into a signal of a predetermined level.
  • the signal converted to a predetermined level is sampled by the A/D converter 20 and converted into a discretized digital signal (step S105). At this time, similarly to the acquisition of the initial value, a digital signal over a predetermined frequency range of 0.1 kHz or higher is acquired.
  • the arithmetic processing unit 30 arithmetically processes the discretized digital signal over a predetermined frequency range by FFT to calculate the power spectrum component (during operation) SECop of each frequency (step S106). At each frequency, the power spectrum component (initial value) SECin is subtracted from the power spectrum component (during operation) SECop to calculate the power spectrum component (true value) SECtr of each frequency (step S107).
  • the arc ground fault current from which the background noise is removed is calculated (step S108). If the calculated arc ground fault current exceeds a preset threshold value, it is determined that an arc ground fault has occurred (YES in step S109), an abnormal signal or the like is output from the output unit 50, and a warning is issued (step S110). ).
  • step S108 If the arc ground current calculated in step S108 does not exceed the preset threshold value (NO in step S109), return to current measurement in the current transformer (CT) 3a.
  • the arc ground fault can be detected with high accuracy as in the first embodiment even for the power supply line connected to the DC system in which one line is grounded. This is possible and has the same effect as that of the first embodiment.
  • the arc ground fault current is detected by narrowing down to a frequency range of preferably 0.1 to 150 kHz, more preferably 0.1 to 100 kHz. It is possible to improve the detection accuracy by reducing the calculation load and performing the detection focused on the arc ground fault.
  • the arithmetic processing unit 30 uses an FPGA (Field Programmable Gate Array) to execute the FFT arithmetic processing on the FPGA.
  • FPGA Field Programmable Gate Array
  • the FPGA is an arithmetic processing unit that is freely programmable and can be read from the storage unit 40 to change or update the program. Therefore, not only the FFT calculation processing but also the arc ground fault occurrence is caused by the input of the digital signal which is sampled and discretized by the A/D conversion unit 20 and the initial value is read from the storage unit 40. It is possible to incorporate processing up to the determination.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

直流系統(1)と負荷(4)とを接続する給電線(2)の電流を計測する変流器(3)で計測された電流をデジタル信号に変換するA/D変換部(20)と、変換されたデジタル信号を演算処理する演算処理部(30)と、を備えたアーク地絡検出装置(100)であって、演算処理部(30)では、A/D変換部(20)で変換された0.1kHz以上の所定の周波数の範囲に亘る前記給電線の電流信号をFFT信号処理し、予め取得された前記A/D変換部(20)で変換されFFT信号処理された所定の周波数範囲の周波数毎の初期電流信号と比較し、アーク地絡電流を検出しアーク地絡発生の有無を判断する。

Description

アーク地絡検出装置
 本願は、アーク地絡検出装置に関する。
 配電線事故の1つである地絡事故およびその発生位置を検出する手法として、零相電流および零相電圧の大きさを検出する方法等が知られている(例えば特許文献1)。この特許文献1に記載の地絡検出システムにおいては、配電用変圧器の2次側で発生した地絡事故箇所を特定するために、配電用変圧器の2次側に設けられた零相電圧検出器と零相電流検出器、および配電用変圧器の2次側の電力ケーブルの各相に設けられた計器用変流器を備え、零相電圧と各電流値とから地絡箇所を特定している。この時、零相電圧および各電流値はバンドパスフィルターによって、特定交流成分(たとえば、商用周波数60Hz)のみ抽出されて検出処理に用いられている。
 また、再生可能エネルギの1つである太陽光発電システムに接続された電力変換装置において、地絡を検出する手法も開示されている(例えば、特許文献2)。特許文献2によれば、直流電源である太陽光発電システムから供給される電圧を検出する電圧センサと、直流電源から電力変換装置を介して商用系統に出力する交流の漏洩電流とから地絡を検出する手法により、生成電圧変動のある太陽光発電システムに対し、精度よく地絡を検出することが提案されている。
特開2012-141232号公報(図1、段落0014から0020等参照) 特開2017-153272号公報
 特許文献1の地絡検出システムでは、バンドバスフィルターによって特定周波数かつ低周波数の電流および電圧を扱うため直流系統におけるアーク地絡の検出を行うことができない。
 また、特許文献2の地絡検出方法においても、生成電圧変動を考慮しつつ太陽光発電システムから供給される電圧の変動と電力変換装置で変換された交流の漏洩電流の変動とを用いて地絡検出を行うもので、アーク地絡の検出を対象としていない。
 直流系統においては、微小アークが常時発生しており、アーク電流は通常の地絡より高周波領域に現れる。しかし、高周波領域においては低周波領域よりバックグラウンドノイズが大きく、ノイズに重なってしまうとアーク電流の検出及びアーク地絡の検出が困難という課題があった。
 本願は、上記の課題を解決するための技術を開示するものであり、直流系統に接続される給電線に発生するアーク地絡を検出するためのアーク地絡検出装置を提供することを目的とする。
 本願に開示されるアーク地絡検出装置は、直流系統と負荷とを接続する給電線の電流を計測する変流器と、計測された電流をデジタル信号に変換するA/D変換部と、変換されたデジタル信号を演算処理する演算処理部と、を備え、前記演算処理部において、前記A/D変換部で変換された0.1kHz以上の予め定められた所定の周波数の範囲に亘る前記給電線の電流信号と、予め取得された前記A/D変換部で変換された前記所定の周波数の範囲の周波数毎の初期電流信号とを比較し、アーク地絡を検出するものである。
 本願に開示されるアーク地絡検出装置によれば、バックグラウンドノイズの除去された精度の高いアーク地絡電流を算出することで、アーク地絡発生有無を検出する。
実施の形態1に係るアーク地絡検出装置を示す構成図である。 実施の形態1に係るアーク地絡検出装置のハードウエア構成図である。 実施の形態1に係るアーク地絡検出装置を用いてアーク地絡を検出する手順を示すフローチャートである。 アーク地絡電流とバックグラウンドノイズとの関係を示すスペクトル図である。 実施の形態2に係るアーク地絡検出装置を用いてアーク地絡を検出する手順を示すフローチャートである。 実施の形態3に係るアーク地絡検出装置を示す構成図である。 実施の形態3に係るアーク地絡検出装置を用いてアーク地絡を検出する手順を示すフローチャートである。
 以下、本実施の形態について図を参照して説明する。なお、各図中、同一符号は、同一または相当部分を示すものとする。
実施の形態1.
 以下、実施の形態1に係るアーク地絡検出装置について図1を用いて説明する。
 図において、直流系統1は、接地されていないあるいは高抵抗接地、もしくは非絶縁の状態である。直流系統1から分岐した給電線(フィーダ)2には負荷4が接続されているが、本実施の形態では給電線2でグランド5に対し発生したアーク地絡6の検出について説明する。給電線2を流れる地絡電流は零相変流器(ZCT)3で計測され、アーク地絡検出装置100の地絡電流計測部10に入力される。アーク地絡検出装置100は、零相変流器(ZCT)3に接続された地絡電流計測部10、A/D変換部20、演算処理部30、記憶部40、出力部50、通信回路60を備える。
 地絡電流計測部10に入力された地絡電流は、次のA/D変換部20での処理に必要な信号レベルに変換(増幅)され、A/D変換部20で離散化されたデジタル信号に変換される。デジタル信号に変換されたデータは、演算処理部30で演算処理され、異常判定(アーク地絡の判定)を行う。
 なお、負荷4は単独であっても複数であってもよく、また給電線2に接続された電力変換器(図示せず)により交流に変換された電力が供給される負荷であってもよい。
 記憶部40は、演算処理部30に接続され、演算処理部30とデータのやり取りを行う。
 出力部50は演算処理部30からの異常状態(アーク地絡発生)および警告等の信号を外部に出力する。
 アーク地絡検出装置100は、保護継電器等他の計器に組み込まれることも多く、その場合、出力部50からの信号は主体の保護継電器へ送信される。
 外部の監視装置200はPC(パーソナルコンピュータ)等から構成され、1つあるいは複数のアーク地絡検出装置100に接続されており、演算処理部30の情報を通信回路60を介して適宜受信するとともにアーク地絡検出装置100の動作状況を監視する。この外部の監視装置200とアーク地絡検出装置100の通信回路60との接続は、ケーブルを用いてもよいし、無線によるものであってもよい。複数のアーク地絡検出装置100との間にネットワークを構成してインターネットを介した接続であってもよい。
 なお、上述のようにアーク地絡検出装置100が保護継電器等他の計器に組み込まれる場合は、アーク地絡検出装置100自身に通信回路60を具備する必要はなく、また監視装置200に接続される必要もない。
 図2は、アーク地絡検出装置100のハードウエアの構成例を示した図である。プロセッサ110と記憶装置120から構成される。記憶装置120は図示していないが、ランダムアクセスメモリ(RAM:Random Access Memory)等の揮発性記憶装置と、フラッシュメモリ等の不揮発性の補助記憶装置とを具備する。また、フラッシュメモリの代わりにハードディスクの補助記憶装置を具備してもよい。プロセッサ110は、記憶装置120から入力されたプログラムを実行する。この場合、補助記憶装置から揮発性記憶装置(EEPROM:Electrically Erasable Programmable Read Only Memory)介してプロセッサ110にプログラムが入力される。また、プロセッサ110は、演算結果等のデータを記憶装置120の揮発性記憶装置に出力してもよいし、揮発性記憶装置を介して補助記憶装置にデータを保存してもよい。プロセッサ110は、演算処理装置として、ASIC(Application Specific Integrated Circuit)、IC(Integrated Circuit)、DSP(Digital Signal Processor)等各種の論理回路、及び各種の信号処理回路等が備えられてもよい。
 次に、このアーク地絡検出装置100を用いたアーク地絡検出方法について、図3のフローチャートに従って説明する。
 本実施の形態におけるアーク地絡検出のためには、給電線2のバックグラウンドノイズを取得し、計測する地絡電流から除去する必要がある。そのため、まず給電線2の初期状態の地絡電流を計測する。
 給電線2の初期状態である初期地絡電流が記憶部40に記憶されていない場合(ステップS1でNO)、零相変流器(ZCT)3で地絡電流を計測し、計測された地絡電流を地絡電流計測部10に入力する。地絡電流計測部10で所定レベルの信号に変換後、A/D変換部20でサンプリングし、離散化されたデジタル信号に変換する(ステップS2)。この時、0.1kHz以上の所定の周波数範囲に亘るデジタル信号を取得する。周波数範囲は予め定めておく。
 演算処理部30では、所定の周波数範囲に亘る離散化されたデジタル信号を、高速フーリエ変換(Fast Fourier Transform:以下、FFTと称す)により演算処理し、各周波数のパワースペクトル成分(初期値)SECinを算出する(ステップS3)。算出されたパワースペクトル成分は初期値データとして記憶部40に記憶する(ステップS4)。
 次に、負荷4の運転時の動作について、説明する。
 零相変流器(ZCT)3で地絡電流を計測し、計測された地絡電流を地絡電流計測部10に入力する。地絡電流計測部10で所定レベルの信号に変換後、A/D変換部20でサンプリングし、離散化されたデジタル信号に変換する(ステップS5)。この時、初期値の取得時と同様に、0.1kHz以上の所定の周波数範囲に亘るデジタル信号を取得する。
 演算処理部30では、所定の周波数範囲に亘る離散化されたデジタル信号を、FFTにより演算処理し、各周波数のパワースペクトル成分(運転時)SECopを算出する(ステップS6)。
 各周波数において、パワースペクトル成分(運転時)SECopからパワースペクトル成分(初期値)SECinを減算し、各周波数のパワースペクトル成分(真値)SECtrを算出する(ステップS7)。
 所定の周波数範囲に亘るパワースペクトル成分(真値)SECtrをFFT逆変換することにより、バックグラウンドノイズの除去されたアーク地絡電流を算出する(ステップS8)。
 算出されたアーク地絡電流が予め設定された閾値を超えていれば、アーク地絡発生と判断し(ステップS9においてYES)、出力部50より異常信号等を出力し、警告を発する(ステップS10)。
 ステップS8で算出されたアーク地絡電流が予め設定された閾値を超えていない場(ステップS9においてNO)、零相変流器(ZCT)3での地絡電流計測に戻る。
 零相変流器(ZCT)3で計測された地絡電流と初期地絡電流との差分を用いて、アーク地絡電流を算出してアーク地絡の発生を判断するよりも、FFTで信号処理後のスペクトルを用い、スペクトル成分での初期値との差分を解析することで、アーク地絡時に発生するアーク地絡電流の周波数成分のみを検出するので、精度の高いアーク地絡の検出が容易となる。
 以上のように、実施の形態1によれば、直流系統に接続された給電線2に零相変流器(ZCT)3を設けて地絡電流を計測し、0.1kHz以上であって予め定められた所定の周波数範囲の信号をFFTで処理したスペクトル成分とFFT処理された初期の信号スペクトル成分との差分を用いることで、バックグラウンドノイズの除去された精度の高いアーク地絡電流を算出することで、アーク地絡発生有無を検出することが可能となる。
実施の形態2.
 上述の実施の形態1では、0.1kHz以上であって所定の周波数範囲の信号をFFT処理する方法について説明したが、アーク地絡発生時の周波数帯域は0.1から100kHzが主であるため、0.1kHz以上であって所定の周波数範囲、好ましくは0.1から100kHzの所定の周波数範囲に亘るデジタル信号に絞って演算処理することで、演算負荷を軽減すると共に、アーク地絡に絞った検出をすることで検出精度を向上させることが可能となる。本実施の形態では、実施の形態1で示した図1のアーク地絡検出装置100において周波数範囲を絞ったアーク地絡電流検出の処理方法について説明する。
 図4は、アーク地絡電流とバックグラウンドノイズとの関係を示すスペクトル図である。横軸は周波数、縦軸は電流値である。アーク発生時の電流値は実線で、アークが発生していないバックグラウンドの値を破線で示している。図で示した0から200kHzの範囲では、バックグラウンドであるノイズは離散的にピークをもつ様相で出現し、アーク地絡電流は周波数の増加とともに徐々に減衰している。この図より、アーク地絡電流とノイズが重畳するが、アーク地絡電流を検出すべき領域は概ね、0より大きく150kHzの範囲、好ましくは0.1から150kHzの範囲であり、さらに好ましくは0.1から100kHzの範囲であり、この周波数範囲に絞ってアーク地絡電流の検出を行えば、演算負荷を軽減すると共に、アーク地絡に絞った検出をすることで検出精度を向上させることが可能となることがわかる。
 周波数範囲に絞って、アーク地絡検出を行う方法について、図5のフローチャートに従って説明する。
 なお、図5のフローチャートにおいて、ステップS1からステップS4までの初期状態の地絡電流の検出および記憶は図3と同様であるので説明を省略する。
 負荷4の運転時の動作について、説明する。
 零相変流器(ZCT)3で地絡電流を計測し、計測された地絡電流を地絡電流計測部10に入力する。地絡電流計測部10で所定レベルの信号に変換後、A/D変換部20でサンプリングし、離散化されたデジタル信号に変換する(ステップS5)。この時、初期値の取得時と同様に、0.1kHz以上の予め定められた所定の周波数範囲に亘るデジタル信号を取得する。
 演算処理部30では、所定の周波数範囲に亘る離散化されたデジタル信号を、FFTにより演算処理し、各周波数のパワースペクトル成分(運転時)SECopを算出する(ステップS6)。
 各周波数において、パワースペクトル成分(運転時)SECopからパワースペクトル成分(初期値)SECinを減算し、各周波数のパワースペクトル成分(真値)SECtrを算出する(ステップS7a)。
 各周波数のパワースペクトル成分(真値)SECtrのうち、0.1から150kHzあるいは0.1から100kHzの周波数範囲のパワースペクトル成分(真値)SECtr-aに絞り込む(ステップS7b)。
 0.1から150kHzあるいは0.1から100kHzの周波数範囲に亘るパワースペクトル成分(真値)SECtr-aをFFT逆変換することにより、バックグラウンドノイズの除去されたアーク地絡電流を算出する(ステップS8)。
 算出されたアーク地絡電流が予め設定された閾値を超えていれば、アーク地絡発生と判断し(ステップS9においてYES)、出力部50より異常信号等を出力し、警告を発する(ステップS10)。
 以上のように、実施の形態2によれば、直流系統に接続された給電線2に零相変流器(ZCT)3を設けて地絡電流を計測し、FFTで処理したスペクトル成分とFFT処理された初期の信号スペクトル成分との差分を用い、バックグラウンドノイズの除去された精度の高いアーク地絡電流を算出することで、アーク地絡発生有無を検出することが可能となる。その際に0.1から150kHzあるいは0.1から100kHzの周波数範囲の電流信号について信号処理するようにしたので、演算負荷を軽減すると共に、アーク地絡を高速に検出でき、またアーク地絡の検出精度を向上させることが可能となる。
実施の形態3.
 以下、実施の形態2に係るアーク地絡検出装置について図6を用いて説明する。
 実施の形態1では、直流系統は非接地または高抵抗接地であったが、本実施の形態では例えば鉄道設備の直流系統のように片側が接地されている場合の例について説明する。
 図6において、直流系統1は、一方の線路が接地されている。直流系統1から分岐した給電線(フィーダ)2には負荷4が接続されているが、本実施の形態においても給電線2でグランド5に対し発生したアーク地絡6の検出について説明する。給電線2の各相を流れる電流は変流器(CT)3aで計測され、アーク地絡検出装置100の電流計測部10aに入力される。アーク地絡検出装置100は、変流器(CT)3aに接続された電流計測部10a、A/D変換部20、演算処理部30、記憶部40、出力部50、通信回路60を備える。
 電流計測部10aでは入力された各相の電流の差分を算出し、その差分電流が次のA/D変換部20での処理に必要な信号レベルに変換(増幅)され、A/D変換部20で離散化されたデジタル信号に変換される。デジタル信号に変換されたデータは、演算処理部30で演算処理され、異常判定(アーク地絡の判定)を行う。
 なお、負荷4は単独であっても複数であってもよく、給電線2に接続された電力変換器(図示せず)で交流に変換された電力が供給される負荷であってもよい。
 また、演算処理部30、記憶部40、出力部50、通信回路60の構成は実施の形態1と同様であるので、説明を省略する。通信回路60を介した外部の監視装置200への情報の送信、通信回路60と監視装置200への通信方法についても実施の形態1と同様である。アーク地絡検出装置100のハードウエア構成も実施の形態1と同様である。
 本実施の形態1では零相変流器(ZCT)で地絡電流を直接計測したが、上述の通り本実施の形態3では、各相に設けられた変流器(CT)で計測された電流を用いて、具体的には各相の電流の差分から地絡電流を算出する点で相違する。
 次に、このアーク地絡検出装置100を用いたアーク地絡検出方法について、図7のフローチャートに従って説明する。
 給電線2の初期状態である初期地絡電流が記憶部40に記憶されていない場合(ステップS101でNO)、変流器(CT)3aで各相の電流を計測し、計測された電流を電流計測部10aに入力する。電流計測部10aにおいて各相の電流の差分から地絡電流を算出し、所定レベルの信号に変換する。所定レベルに変換された信号をA/D変換部20でサンプリングし、離散化されたデジタル信号に変換する(ステップS102)。この時、0.1kHz以上の所定の周波数範囲に亘るデジタル信号を取得する。
 演算処理部30では、所定の周波数範囲に亘る離散化されたデジタル信号を、FFTにより演算処理し、各周波数のパワースペクトル成分(初期値)SECinを算出する(ステップS103)。算出されたパワースペクトル成分は初期値データとして記憶部40に記憶する(ステップS104)。
 次に、負荷4の運転時の動作について、説明する。
 変流器(CT)3aで各相の電流を計測し、計測された電流を電流計測部10aに入力する。電流計測部10aにおいて各相の電流の差分から地絡電流を算出し、所定レベルの信号に変換する。所定レベルに変換された信号をA/D変換部20でサンプリングし、離散化されたデジタル信号に変換する(ステップS105)。この時、初期値の取得時と同様に、0.1kHz以上の所定の周波数範囲に亘るデジタル信号を取得する。
 演算処理部30では、所定の周波数範囲に亘る離散化されたデジタル信号を、FFTにより演算処理し、各周波数のパワースペクトル成分(運転時)SECopを算出する(ステップS106)。
 各周波数において、パワースペクトル成分(運転時)SECopからパワースペクトル成分(初期値)SECinを減算し、各周波数のパワースペクトル成分(真値)SECtrを算出する(ステップS107)。
 所定の周波数範囲に亘るパワースペクトル成分(真値)SECtrをFFT逆変換することにより、バックグラウンドノイズの除去されたアーク地絡電流を算出する(ステップS108)。
 算出されたアーク地絡電流が予め設定された閾値を超えていれば、アーク地絡発生と判断し(ステップS109においてYES)、出力部50より異常信号等を出力し、警告を発する(ステップS110)。
 ステップS108で算出されたアーク地絡電流が予め設定された閾値を超えていない場(ステップS109においてNO)、変流器(CT)3aでの電流計測に戻る。
 以上のように、実施の形態3によれば、一方の線路が接地されている直流系統に接続された給電線に対しても、実施の形態1と同様に高い精度でアーク地絡の検出が可能であり、実施の形態1と同様の効果を奏する。
 実施の形態3においても、実施の形態2のように、好ましくは0.1から150kHzの範囲、さらに好ましくは0.1から100kHzの範囲の周波数範囲に絞ってアーク地絡電流の検出を行えば、演算負荷を軽減すると共に、アーク地絡に絞った検出をすることで検出精度を向上させることが可能となる。
 上述の実施の形態1から3では、FFTの演算処理はソフトウエア上で実行することを前提としたが、演算処理部30に、FPGA(Field Programmable Gate Array)を用いて、FPGAで実行するようにしてもよい。FPGAは、自由にプログラム可能であり、また記憶部40から読み込んでプログラムを変更、更新することも可能な演算処理装置である。そのため、A/D変換部20でサンプリングし、離散化されたデジタル信号が入力されることにより、また記憶部40から初期値を読み込むことにより、FFTの演算処理のみならず、アーク地絡発生の判断までの処理を組み込むことが可能となる。
 以上のように、本開示によれば、直流系統に接続される給電線のアーク地絡を検出することができるので、本開示による技術を上述した太陽光発電システムのような直流系統である再生可能エネルギシステムおよび鉄道設備に適用することでそれぞれにおいて信頼性の高い配電系統の構築が可能となる。
 本開示は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
 1:直流系統、 2:給電線(フィーダ)、 3:零相変流器(ZCT)、 3a:変流器(CT)、 4:負荷、 5:グランド、 6:アーク地絡、 10:地絡電流計測部、 10a:電流計測部、 20:A/D変換部、 30:演算処理部、 40:記憶部、 50:出力部、 60:通信回路、 100:アーク地絡検出装置、 110:プロセッサ、 120:記憶装置、 200:監視装置。

Claims (5)

  1.  直流系統と負荷とを接続する給電線の電流を計測する変流器と、
    計測された電流をデジタル信号に変換するA/D変換部と、
    変換されたデジタル信号を演算処理する演算処理部と、を備え、
    前記演算処理部において、
     前記A/D変換部で変換された0.1kHz以上の予め定められた所定の周波数の範囲に亘る前記給電線の電流信号と、予め取得された前記A/D変換部で変換された前記所定の周波数の範囲の周波数毎の初期電流信号とを比較し、アーク地絡を検出するアーク地絡検出装置。
  2.  前記演算処理部において、
    前記A/D変換部で変換されたデジタル信号に対しフーリエ変換処理を行う請求項1に記載のアーク地絡検出装置。
  3.  前記所定の周波数の範囲が、0.1kHzから150kHzの範囲であることを特徴とする請求項1または2に記載のアーク地絡検出装置。
  4.  前記直流系統が非絶縁または高抵抗接地の場合、前記変流器として零相変流器を用い、前記給電線の地絡電流を検出する請求項1から3のいずれか1項に記載のアーク地絡検出装置。
  5.  前記直流系統の一方の線路が接地されている場合、前記変流器により前記給電線の各相の電流を検出する請求項1から3のいずれか1項に記載のアーク地絡検出装置。
PCT/JP2019/000147 2019-01-08 2019-01-08 アーク地絡検出装置 WO2020144734A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112019006585.8T DE112019006585T5 (de) 2019-01-08 2019-01-08 Lichtbogen-erdungsfehler-detektionseinrichtung
PCT/JP2019/000147 WO2020144734A1 (ja) 2019-01-08 2019-01-08 アーク地絡検出装置
KR1020217020694A KR102688840B1 (ko) 2019-01-08 2019-01-08 아크 지락 검출 장치 및 아크 지락 검출 방법
CN201980085880.8A CN113228443B (zh) 2019-01-08 2019-01-08 电弧接地检测装置及电弧接地检测方法
JP2019521845A JP6567230B1 (ja) 2019-01-08 2019-01-08 アーク地絡の検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/000147 WO2020144734A1 (ja) 2019-01-08 2019-01-08 アーク地絡検出装置

Publications (1)

Publication Number Publication Date
WO2020144734A1 true WO2020144734A1 (ja) 2020-07-16

Family

ID=67766666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000147 WO2020144734A1 (ja) 2019-01-08 2019-01-08 アーク地絡検出装置

Country Status (5)

Country Link
JP (1) JP6567230B1 (ja)
KR (1) KR102688840B1 (ja)
CN (1) CN113228443B (ja)
DE (1) DE112019006585T5 (ja)
WO (1) WO2020144734A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115777071A (zh) * 2020-08-26 2023-03-10 松下知识产权经营株式会社 电弧检测装置、电弧检测系统、电弧检测方法、以及程序
CN111913041A (zh) * 2020-09-02 2020-11-10 安徽一天电能质量技术有限公司 一种交流开关柜弧光检测系统及其方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196810A (ja) * 2010-03-19 2011-10-06 Kansai Electric Power Co Inc:The 直流回路の漏電検出システムおよび方法
JP2014128191A (ja) * 2012-12-26 2014-07-07 General Electric Co <Ge> エネルギー変換システムの地絡及び絶縁劣化状態を検索する方法
WO2016132781A1 (ja) * 2015-02-18 2016-08-25 オムロン株式会社 アーク検出装置およびアーク検出方法
WO2017221493A1 (ja) * 2016-06-21 2017-12-28 三菱電機株式会社 直流電気回路保護装置およびアーク検出方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012141232A (ja) 2011-01-04 2012-07-26 Chugoku Electric Power Co Inc:The 配電用変圧器2次側地絡検出システム
JP6604230B2 (ja) 2016-02-25 2019-11-13 住友電気工業株式会社 電力変換装置および地絡検出方法
KR101869273B1 (ko) * 2018-02-28 2018-07-19 (주)세명이앤씨 태양광 모듈에 장착된 아크 및 누설 전류 검출 및 차단 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196810A (ja) * 2010-03-19 2011-10-06 Kansai Electric Power Co Inc:The 直流回路の漏電検出システムおよび方法
JP2014128191A (ja) * 2012-12-26 2014-07-07 General Electric Co <Ge> エネルギー変換システムの地絡及び絶縁劣化状態を検索する方法
WO2016132781A1 (ja) * 2015-02-18 2016-08-25 オムロン株式会社 アーク検出装置およびアーク検出方法
WO2017221493A1 (ja) * 2016-06-21 2017-12-28 三菱電機株式会社 直流電気回路保護装置およびアーク検出方法

Also Published As

Publication number Publication date
DE112019006585T5 (de) 2021-12-23
CN113228443B (zh) 2024-10-08
JPWO2020144734A1 (ja) 2021-02-18
JP6567230B1 (ja) 2019-08-28
KR20210096241A (ko) 2021-08-04
KR102688840B1 (ko) 2024-07-29
CN113228443A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
US8823307B2 (en) System for detecting internal winding faults of a synchronous generator, computer program product and method
US7196884B2 (en) Apparatus and method for detecting the loss of a current transformer connection coupling a current differential relay to an element of a power system
EP2192416B1 (en) Method and apparatus for detecting a phase-to-earth fault
CN102985836B (zh) 用于供电网的快速距离保护的方法和设备
US8680872B2 (en) Identification of false positives in high impedance fault detection
KR101352204B1 (ko) 배전 계통에서 발생하는 전력 품질 외란의 원인 판별 장치 및 방법
RU2631025C2 (ru) Обнаружение направления слабоустойчивого короткого замыкания на землю среднего напряжения с помощью линейной корреляции
US8736297B2 (en) Method for production of a fault signal, and an electrical protective device
CN109596956B (zh) 直流串联电弧检测方法及装置
WO2020144734A1 (ja) アーク地絡検出装置
CN106165230B (zh) 差分保护方法和差分保护装置
US8045307B2 (en) Faulted phase decision method between current and voltage based delta phase selectors
US20210194235A1 (en) Arc detection circuit, breaker system, connection box system, power conditioner, micro inverter, dc optimizer, and arc detection method
JP7214854B2 (ja) 電力システムの少なくとも1つの回路遮断器を制御するための方法および装置
JP5020508B2 (ja) 地絡方向検出装置
KR101787885B1 (ko) 전압계측 오차 보상장치
KR101882908B1 (ko) 멀티레벨 컨버터 hvdc 시스템에서 dc 사고 감지 장치 및 방법
CA2698848A1 (en) An efficient method for calculating the dot product in fault detection algorithms
JP5163452B2 (ja) 微地絡検出装置及び微地絡検出方法
JP4353840B2 (ja) 電路の部分放電検出方法
JP4121979B2 (ja) 非接地電路の絶縁監視方法とその装置
JP4921246B2 (ja) 地絡距離継電器
JP4926146B2 (ja) 単独運転検出方法および単独運転検出装置
KR100498557B1 (ko) 지락 검출 회로
JP2010014610A (ja) 電動機システムの絶縁劣化診断装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019521845

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908449

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217020694

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19908449

Country of ref document: EP

Kind code of ref document: A1