WO2020144734A1 - アーク地絡検出装置 - Google Patents
アーク地絡検出装置 Download PDFInfo
- Publication number
- WO2020144734A1 WO2020144734A1 PCT/JP2019/000147 JP2019000147W WO2020144734A1 WO 2020144734 A1 WO2020144734 A1 WO 2020144734A1 JP 2019000147 W JP2019000147 W JP 2019000147W WO 2020144734 A1 WO2020144734 A1 WO 2020144734A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ground fault
- current
- arc
- arc ground
- detection device
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/16—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/08—Locating faults in cables, transmission lines, or networks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/12—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
- G01R31/1227—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
- G01R31/1263—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
- G01R31/1272—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/50—Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
- G01R31/52—Testing for short-circuits, leakage current or ground faults
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H1/00—Details of emergency protective circuit arrangements
- H02H1/0007—Details of emergency protective circuit arrangements concerning the detecting means
- H02H1/0015—Using arc detectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/20—Instruments transformers
- H01F38/22—Instruments transformers for single phase ac
- H01F38/28—Current transformers
Definitions
- the present application relates to an arc ground fault detection device.
- Patent Document 1 As a method of detecting a ground fault, which is one of the distribution line accidents, and the position where the fault occurs, a method of detecting the magnitude of zero-phase current and zero-phase voltage is known (for example, Patent Document 1).
- a zero-phase voltage provided on the secondary side of the distribution transformer in order to identify a ground fault accident location that has occurred on the secondary side of the distribution transformer.
- a detector and zero-phase current detector, and an instrument current transformer provided on each phase of the power cable on the secondary side of the distribution transformer are provided, and the ground fault location is identified from the zero-phase voltage and each current value. doing.
- the zero-phase voltage and each current value are extracted by the bandpass filter only for the specific AC component (for example, commercial frequency 60 Hz) and used for the detection process.
- Patent Document 2 a method of detecting a ground fault in a power conversion device connected to a solar power generation system that is one of renewable energy is disclosed (for example, Patent Document 2).
- a ground fault is generated from a voltage sensor that detects a voltage supplied from a solar power generation system that is a DC power source and an AC leakage current that is output from the DC power source to a commercial system via a power conversion device. It has been proposed to accurately detect a ground fault in a photovoltaic power generation system that has a generated voltage fluctuation by a detection method.
- an arc ground fault cannot be detected in the DC system because a bandpass filter handles currents and voltages of a specific frequency and low frequency. Also, in the ground fault detection method of Patent Document 2, the fluctuation of the voltage supplied from the photovoltaic power generation system and the fluctuation of the AC leakage current converted by the power conversion device are used while considering the generated voltage fluctuation. It detects a ground fault and does not target the detection of an arc ground fault.
- a micro arc is constantly generated, and the arc current appears in the high frequency region rather than the normal ground fault.
- the background noise is larger than in the low frequency region, and if it overlaps with the noise, there is a problem that it is difficult to detect the arc current and the arc ground fault.
- the present application discloses a technique for solving the above problems, and an object thereof is to provide an arc ground fault detection device for detecting an arc ground fault generated in a power supply line connected to a DC system. To do.
- An arc ground fault detection device disclosed in the present application includes a current transformer that measures a current of a power supply line that connects a DC system and a load, an A/D conversion unit that converts the measured current into a digital signal, and a conversion.
- An arithmetic processing unit that arithmetically processes the digital signal obtained by the arithmetic operation, and in the arithmetic processing unit, the supply over a range of a predetermined frequency of 0.1 kHz or more converted by the A/D conversion unit.
- the current signal of the electric wire and the initial current signal for each frequency in the predetermined frequency range converted by the A/D conversion unit acquired in advance are compared to detect an arc ground fault.
- the presence or absence of an arc ground fault is detected by calculating a highly accurate arc ground fault current with background noise removed.
- FIG. 3 is a hardware configuration diagram of the arc ground fault detection device according to the first embodiment.
- 5 is a flowchart showing a procedure for detecting an arc ground fault using the arc ground fault detection device according to the first embodiment. It is a spectrum figure which shows the relationship between an arc ground fault current and background noise.
- 7 is a flowchart showing a procedure for detecting an arc ground fault using the arc ground fault detection device according to the second embodiment.
- 9 is a flowchart showing a procedure of detecting an arc ground fault by using the arc ground fault detection device according to the third embodiment.
- Embodiment 1 the arc ground fault detection apparatus according to the first embodiment will be described with reference to FIG.
- the DC system 1 is not grounded, has high resistance grounding, or is in a non-insulated state.
- a load 4 is connected to a power supply line (feeder) 2 branched from the DC system 1.
- detection of an arc ground fault 6 generated in the power supply line 2 with respect to the ground 5 will be described.
- the ground fault current flowing through the power supply line 2 is measured by the zero-phase current transformer (ZCT) 3 and input to the ground fault current measuring unit 10 of the arc ground fault detection device 100.
- ZCT zero-phase current transformer
- the arc ground fault detection device 100 includes a ground fault current measurement unit 10, an A/D conversion unit 20, an arithmetic processing unit 30, a storage unit 40, an output unit 50, and a communication circuit which are connected to a zero-phase current transformer (ZCT) 3. 60 is provided.
- the ground fault current input to the ground fault current measuring unit 10 is converted (amplified) into a signal level necessary for the next processing in the A/D conversion unit 20, and is digitalized in the A/D conversion unit 20. Converted to a signal.
- the data converted into a digital signal is arithmetically processed by the arithmetic processing unit 30 to make an abnormality determination (determination of arc ground fault).
- the load 4 may be a single load or a plurality of loads, or may be a load to which electric power converted into alternating current by a power converter (not shown) connected to the power supply line 2 is supplied. ..
- the storage unit 40 is connected to the arithmetic processing unit 30 and exchanges data with the arithmetic processing unit 30.
- the output unit 50 outputs signals such as an abnormal state (occurrence of an arc ground fault) and a warning from the arithmetic processing unit 30 to the outside.
- the arc ground fault detection device 100 is often incorporated in another instrument such as a protective relay, and in that case, the signal from the output unit 50 is transmitted to the main protective relay.
- the external monitoring device 200 is composed of a PC (personal computer) or the like and is connected to one or a plurality of arc ground fault detection devices 100, and receives information of the arithmetic processing unit 30 via the communication circuit 60 as appropriate.
- the operation status of the arc ground fault detection device 100 is monitored.
- the connection between the external monitoring device 200 and the communication circuit 60 of the arc ground fault detection device 100 may be performed by using a cable or wirelessly.
- a network may be configured between the plurality of arc ground fault detection devices 100 to connect via the Internet.
- the arc ground fault detection device 100 When the arc ground fault detection device 100 is incorporated into another instrument such as a protective relay as described above, it is not necessary to provide the arc ground fault detection device 100 itself with the communication circuit 60, and the arc ground fault detection device 100 is connected to the monitoring device 200. You don't even have to
- FIG. 2 is a diagram showing a hardware configuration example of the arc ground fault detection device 100. It is composed of a processor 110 and a storage device 120.
- the storage device 120 includes a volatile storage device such as a random access memory (RAM) and a non-volatile auxiliary storage device such as a flash memory. Further, an auxiliary storage device such as a hard disk may be provided instead of the flash memory.
- the processor 110 executes the program input from the storage device 120. In this case, the program is input from the auxiliary storage device to the processor 110 via a volatile storage device (EEPROM: Electrically Erasable Programmable Read Only Memory).
- EEPROM Electrically Erasable Programmable Read Only Memory
- the processor 110 may output data such as a calculation result to the volatile storage device of the storage device 120, or may store the data in the auxiliary storage device via the volatile storage device.
- the processor 110 may be provided with various logic circuits such as an ASIC (Application Specific Integrated Circuit), an IC (Integrated Circuit), and a DSP (Digital Signal Processor), and various signal processing circuits as an arithmetic processing device.
- ASIC Application Specific Integrated Circuit
- IC Integrated Circuit
- DSP Digital Signal Processor
- the ground fault current is measured by the zero-phase current transformer (ZCT) 3, and the measured ground fault current is measured.
- the fault current is input to the ground fault current measuring unit 10.
- the A/D conversion unit 20 samples and converts it into a discretized digital signal (step S2). At this time, a digital signal over a predetermined frequency range of 0.1 kHz or higher is acquired. The frequency range is set in advance.
- the digital signal that has been discretized over a predetermined frequency range is arithmetically processed by a Fast Fourier Transform (FFT), and a power spectrum component (initial value) SECin of each frequency is obtained. Is calculated (step S3).
- the calculated power spectrum component is stored in the storage unit 40 as initial value data (step S4).
- the ground fault current is measured by the zero-phase current transformer (ZCT) 3, and the measured ground fault current is input to the ground fault current measuring unit 10.
- the A/D conversion unit 20 samples and converts it into a discretized digital signal (step S5).
- a digital signal over a predetermined frequency range of 0.1 kHz or higher is acquired.
- the arithmetic processing unit 30 arithmetically processes the discrete digital signal over a predetermined frequency range by FFT to calculate the power spectrum component (during operation) SECop of each frequency (step S6). At each frequency, the power spectrum component (initial value) SECin is subtracted from the power spectrum component (during operation) SECop to calculate the power spectrum component (true value) SECtr of each frequency (step S7).
- the arc ground fault current with background noise removed is calculated (step S8). If the calculated arc ground fault current exceeds a preset threshold value, it is determined that an arc ground fault has occurred (YES in step S9), an abnormal signal or the like is output from the output unit 50, and a warning is issued (step S10). ).
- step S8 If the arc ground fault current calculated in step S8 does not exceed the preset threshold value (NO in step S9), return to the ground fault current measurement in the zero-phase current transformer (ZCT) 3.
- a signal is obtained by FFT.
- the zero-phase current transformer (ZCT) 3 is provided in the power supply line 2 connected to the DC system, and the ground fault current is measured.
- the arc ground fault current with high precision with background noise removed is calculated. By doing so, it becomes possible to detect whether or not an arc ground fault has occurred.
- Embodiment 2 the method of performing FFT processing on a signal of 0.1 kHz or more and in a predetermined frequency range has been described, but the frequency band when an arc ground fault occurs is mainly 0.1 to 100 kHz. , 0.1 kHz or more and a digital signal over a predetermined frequency range, preferably a predetermined frequency range of 0.1 to 100 kHz, is used to reduce the calculation load and reduce the arc ground fault.
- the detection accuracy can be improved by performing the above detection.
- a processing method of arc ground fault current detection with a narrowed frequency range in arc ground fault detection apparatus 100 of FIG. 1 shown in Embodiment 1 will be described.
- FIG. 4 is a spectrum diagram showing the relationship between the arc ground fault current and the background noise.
- the horizontal axis represents frequency and the vertical axis represents current value.
- the current value when an arc is generated is shown by a solid line, and the background value where no arc is generated is shown by a broken line.
- the noise that is the background appears in a state having discrete peaks, and the arc ground fault current gradually attenuates as the frequency increases. From this figure, although the arc ground fault current and noise are superimposed, the region where the arc ground fault current should be detected is generally larger than 0 and in the range of 150 kHz, preferably in the range of 0.1 to 150 kHz, and more preferably 0.
- the range is from 1 to 100 kHz. If the arc ground fault current is detected by narrowing down to this frequency range, the calculation load can be reduced and the detection accuracy can be improved by narrowing down the detection to the arc ground fault. It turns out that it will be possible.
- the ground fault current is measured by the zero-phase current transformer (ZCT) 3, and the measured ground fault current is input to the ground fault current measuring unit 10.
- ZCT zero-phase current transformer
- the A/D conversion unit 20 samples and converts it into a discretized digital signal (step S5).
- a digital signal over a predetermined frequency range of 0.1 kHz or higher is acquired.
- the arithmetic processing unit 30 arithmetically processes the discrete digital signal over a predetermined frequency range by FFT to calculate the power spectrum component (during operation) SECop of each frequency (step S6). At each frequency, the power spectrum component (initial value) SECin is subtracted from the power spectrum component (during operation) SECop to calculate the power spectrum component (true value) SECtr of each frequency (step S7a).
- the power spectrum components (true value) SECtr of each frequency are narrowed down (step S7b).
- the arc ground fault current with background noise removed is calculated (step S8). If the calculated arc ground fault current exceeds a preset threshold value, it is determined that an arc ground fault has occurred (YES in step S9), an abnormal signal or the like is output from the output unit 50, and a warning is issued (step S10). ).
- the zero-phase current transformer (ZCT) 3 is provided in the power supply line 2 connected to the DC system, the ground fault current is measured, and the spectrum component processed by the FFT and the FFT are processed. It is possible to detect whether or not an arc ground fault has occurred by calculating a highly accurate arc ground fault current from which background noise has been removed, using the difference from the processed initial signal spectrum component. At that time, the signal processing is performed on the current signal in the frequency range of 0.1 to 150 kHz or 0.1 to 100 kHz, so that the calculation load can be reduced and the arc ground fault can be detected at high speed. It is possible to improve the detection accuracy.
- Embodiment 3 the arc ground fault detection apparatus according to the second embodiment will be described with reference to FIG.
- the DC system is ungrounded or has high resistance grounding, but in the present embodiment, an example in which one side is grounded as in a DC system of railway equipment will be described.
- FIG. 6 in the DC system 1, one line is grounded.
- a load 4 is connected to a power supply line (feeder) 2 branched from the DC system 1.
- CT current transformer
- detection of an arc ground fault 6 generated in the ground 5 by the power supply line 2 will be described.
- the current flowing through each phase of the power supply line 2 is measured by the current transformer (CT) 3a and input to the current measuring unit 10a of the arc ground fault detection device 100.
- the arc ground fault detection device 100 includes a current measurement unit 10a connected to the current transformer (CT) 3a, an A/D conversion unit 20, an arithmetic processing unit 30, a storage unit 40, an output unit 50, and a communication circuit 60.
- the current measuring unit 10a calculates the difference between the input currents of the respective phases, and the difference current is converted (amplified) into a signal level required for processing in the next A/D conversion unit 20. At 20, it is converted into a discretized digital signal. The data converted into a digital signal is arithmetically processed by the arithmetic processing unit 30 to make an abnormality determination (determination of arc ground fault).
- the load 4 may be a single load or a plurality of loads, and may be a load to which electric power converted into alternating current by a power converter (not shown) connected to the power supply line 2 is supplied. Further, the configurations of the arithmetic processing unit 30, the storage unit 40, the output unit 50, and the communication circuit 60 are the same as those in the first embodiment, and thus the description thereof will be omitted. The transmission of information to the external monitoring device 200 via the communication circuit 60 and the communication method between the communication circuit 60 and the monitoring device 200 are also the same as those in the first embodiment.
- the hardware configuration of the arc ground fault detection device 100 is similar to that of the first embodiment.
- the ground fault current is directly measured by the zero-phase current transformer (ZCT), but as described above, in the third embodiment, it is measured by the current transformer (CT) provided in each phase.
- the difference is that, using the current, specifically, the ground fault current is calculated from the difference between the currents of the respective phases.
- the current of each phase is measured by the current transformer (CT) 3a, and the measured current is Input to the current measuring unit 10a.
- the current measuring unit 10a calculates the ground fault current from the difference between the currents of the respective phases and converts it into a signal of a predetermined level.
- the signal converted to a predetermined level is sampled by the A/D converter 20 and converted into a discretized digital signal (step S102). At this time, a digital signal over a predetermined frequency range of 0.1 kHz or higher is acquired.
- the arithmetic processing unit 30 arithmetically processes the digital signal that has been discretized over a predetermined frequency range by FFT, and calculates the power spectrum component (initial value) SECin of each frequency (step S103).
- the calculated power spectrum component is stored in the storage unit 40 as initial value data (step S104).
- the current of each phase is measured by the current transformer (CT) 3a, and the measured current is input to the current measuring unit 10a.
- the current measuring unit 10a calculates the ground fault current from the difference between the currents of the respective phases and converts it into a signal of a predetermined level.
- the signal converted to a predetermined level is sampled by the A/D converter 20 and converted into a discretized digital signal (step S105). At this time, similarly to the acquisition of the initial value, a digital signal over a predetermined frequency range of 0.1 kHz or higher is acquired.
- the arithmetic processing unit 30 arithmetically processes the discretized digital signal over a predetermined frequency range by FFT to calculate the power spectrum component (during operation) SECop of each frequency (step S106). At each frequency, the power spectrum component (initial value) SECin is subtracted from the power spectrum component (during operation) SECop to calculate the power spectrum component (true value) SECtr of each frequency (step S107).
- the arc ground fault current from which the background noise is removed is calculated (step S108). If the calculated arc ground fault current exceeds a preset threshold value, it is determined that an arc ground fault has occurred (YES in step S109), an abnormal signal or the like is output from the output unit 50, and a warning is issued (step S110). ).
- step S108 If the arc ground current calculated in step S108 does not exceed the preset threshold value (NO in step S109), return to current measurement in the current transformer (CT) 3a.
- the arc ground fault can be detected with high accuracy as in the first embodiment even for the power supply line connected to the DC system in which one line is grounded. This is possible and has the same effect as that of the first embodiment.
- the arc ground fault current is detected by narrowing down to a frequency range of preferably 0.1 to 150 kHz, more preferably 0.1 to 100 kHz. It is possible to improve the detection accuracy by reducing the calculation load and performing the detection focused on the arc ground fault.
- the arithmetic processing unit 30 uses an FPGA (Field Programmable Gate Array) to execute the FFT arithmetic processing on the FPGA.
- FPGA Field Programmable Gate Array
- the FPGA is an arithmetic processing unit that is freely programmable and can be read from the storage unit 40 to change or update the program. Therefore, not only the FFT calculation processing but also the arc ground fault occurrence is caused by the input of the digital signal which is sampled and discretized by the A/D conversion unit 20 and the initial value is read from the storage unit 40. It is possible to incorporate processing up to the determination.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Emergency Protection Circuit Devices (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
Abstract
Description
また、特許文献2の地絡検出方法においても、生成電圧変動を考慮しつつ太陽光発電システムから供給される電圧の変動と電力変換装置で変換された交流の漏洩電流の変動とを用いて地絡検出を行うもので、アーク地絡の検出を対象としていない。
以下、実施の形態1に係るアーク地絡検出装置について図1を用いて説明する。
図において、直流系統1は、接地されていないあるいは高抵抗接地、もしくは非絶縁の状態である。直流系統1から分岐した給電線(フィーダ)2には負荷4が接続されているが、本実施の形態では給電線2でグランド5に対し発生したアーク地絡6の検出について説明する。給電線2を流れる地絡電流は零相変流器(ZCT)3で計測され、アーク地絡検出装置100の地絡電流計測部10に入力される。アーク地絡検出装置100は、零相変流器(ZCT)3に接続された地絡電流計測部10、A/D変換部20、演算処理部30、記憶部40、出力部50、通信回路60を備える。
地絡電流計測部10に入力された地絡電流は、次のA/D変換部20での処理に必要な信号レベルに変換(増幅)され、A/D変換部20で離散化されたデジタル信号に変換される。デジタル信号に変換されたデータは、演算処理部30で演算処理され、異常判定(アーク地絡の判定)を行う。
なお、負荷4は単独であっても複数であってもよく、また給電線2に接続された電力変換器(図示せず)により交流に変換された電力が供給される負荷であってもよい。
出力部50は演算処理部30からの異常状態(アーク地絡発生)および警告等の信号を外部に出力する。
アーク地絡検出装置100は、保護継電器等他の計器に組み込まれることも多く、その場合、出力部50からの信号は主体の保護継電器へ送信される。
本実施の形態におけるアーク地絡検出のためには、給電線2のバックグラウンドノイズを取得し、計測する地絡電流から除去する必要がある。そのため、まず給電線2の初期状態の地絡電流を計測する。
零相変流器(ZCT)3で地絡電流を計測し、計測された地絡電流を地絡電流計測部10に入力する。地絡電流計測部10で所定レベルの信号に変換後、A/D変換部20でサンプリングし、離散化されたデジタル信号に変換する(ステップS5)。この時、初期値の取得時と同様に、0.1kHz以上の所定の周波数範囲に亘るデジタル信号を取得する。
各周波数において、パワースペクトル成分(運転時)SECopからパワースペクトル成分(初期値)SECinを減算し、各周波数のパワースペクトル成分(真値)SECtrを算出する(ステップS7)。
算出されたアーク地絡電流が予め設定された閾値を超えていれば、アーク地絡発生と判断し(ステップS9においてYES)、出力部50より異常信号等を出力し、警告を発する(ステップS10)。
上述の実施の形態1では、0.1kHz以上であって所定の周波数範囲の信号をFFT処理する方法について説明したが、アーク地絡発生時の周波数帯域は0.1から100kHzが主であるため、0.1kHz以上であって所定の周波数範囲、好ましくは0.1から100kHzの所定の周波数範囲に亘るデジタル信号に絞って演算処理することで、演算負荷を軽減すると共に、アーク地絡に絞った検出をすることで検出精度を向上させることが可能となる。本実施の形態では、実施の形態1で示した図1のアーク地絡検出装置100において周波数範囲を絞ったアーク地絡電流検出の処理方法について説明する。
なお、図5のフローチャートにおいて、ステップS1からステップS4までの初期状態の地絡電流の検出および記憶は図3と同様であるので説明を省略する。
零相変流器(ZCT)3で地絡電流を計測し、計測された地絡電流を地絡電流計測部10に入力する。地絡電流計測部10で所定レベルの信号に変換後、A/D変換部20でサンプリングし、離散化されたデジタル信号に変換する(ステップS5)。この時、初期値の取得時と同様に、0.1kHz以上の予め定められた所定の周波数範囲に亘るデジタル信号を取得する。
各周波数において、パワースペクトル成分(運転時)SECopからパワースペクトル成分(初期値)SECinを減算し、各周波数のパワースペクトル成分(真値)SECtrを算出する(ステップS7a)。
0.1から150kHzあるいは0.1から100kHzの周波数範囲に亘るパワースペクトル成分(真値)SECtr-aをFFT逆変換することにより、バックグラウンドノイズの除去されたアーク地絡電流を算出する(ステップS8)。
算出されたアーク地絡電流が予め設定された閾値を超えていれば、アーク地絡発生と判断し(ステップS9においてYES)、出力部50より異常信号等を出力し、警告を発する(ステップS10)。
以下、実施の形態2に係るアーク地絡検出装置について図6を用いて説明する。
実施の形態1では、直流系統は非接地または高抵抗接地であったが、本実施の形態では例えば鉄道設備の直流系統のように片側が接地されている場合の例について説明する。
電流計測部10aでは入力された各相の電流の差分を算出し、その差分電流が次のA/D変換部20での処理に必要な信号レベルに変換(増幅)され、A/D変換部20で離散化されたデジタル信号に変換される。デジタル信号に変換されたデータは、演算処理部30で演算処理され、異常判定(アーク地絡の判定)を行う。
また、演算処理部30、記憶部40、出力部50、通信回路60の構成は実施の形態1と同様であるので、説明を省略する。通信回路60を介した外部の監視装置200への情報の送信、通信回路60と監視装置200への通信方法についても実施の形態1と同様である。アーク地絡検出装置100のハードウエア構成も実施の形態1と同様である。
変流器(CT)3aで各相の電流を計測し、計測された電流を電流計測部10aに入力する。電流計測部10aにおいて各相の電流の差分から地絡電流を算出し、所定レベルの信号に変換する。所定レベルに変換された信号をA/D変換部20でサンプリングし、離散化されたデジタル信号に変換する(ステップS105)。この時、初期値の取得時と同様に、0.1kHz以上の所定の周波数範囲に亘るデジタル信号を取得する。
各周波数において、パワースペクトル成分(運転時)SECopからパワースペクトル成分(初期値)SECinを減算し、各周波数のパワースペクトル成分(真値)SECtrを算出する(ステップS107)。
算出されたアーク地絡電流が予め設定された閾値を超えていれば、アーク地絡発生と判断し(ステップS109においてYES)、出力部50より異常信号等を出力し、警告を発する(ステップS110)。
従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Claims (5)
- 直流系統と負荷とを接続する給電線の電流を計測する変流器と、
計測された電流をデジタル信号に変換するA/D変換部と、
変換されたデジタル信号を演算処理する演算処理部と、を備え、
前記演算処理部において、
前記A/D変換部で変換された0.1kHz以上の予め定められた所定の周波数の範囲に亘る前記給電線の電流信号と、予め取得された前記A/D変換部で変換された前記所定の周波数の範囲の周波数毎の初期電流信号とを比較し、アーク地絡を検出するアーク地絡検出装置。 - 前記演算処理部において、
前記A/D変換部で変換されたデジタル信号に対しフーリエ変換処理を行う請求項1に記載のアーク地絡検出装置。 - 前記所定の周波数の範囲が、0.1kHzから150kHzの範囲であることを特徴とする請求項1または2に記載のアーク地絡検出装置。
- 前記直流系統が非絶縁または高抵抗接地の場合、前記変流器として零相変流器を用い、前記給電線の地絡電流を検出する請求項1から3のいずれか1項に記載のアーク地絡検出装置。
- 前記直流系統の一方の線路が接地されている場合、前記変流器により前記給電線の各相の電流を検出する請求項1から3のいずれか1項に記載のアーク地絡検出装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112019006585.8T DE112019006585T5 (de) | 2019-01-08 | 2019-01-08 | Lichtbogen-erdungsfehler-detektionseinrichtung |
PCT/JP2019/000147 WO2020144734A1 (ja) | 2019-01-08 | 2019-01-08 | アーク地絡検出装置 |
KR1020217020694A KR102688840B1 (ko) | 2019-01-08 | 2019-01-08 | 아크 지락 검출 장치 및 아크 지락 검출 방법 |
CN201980085880.8A CN113228443B (zh) | 2019-01-08 | 2019-01-08 | 电弧接地检测装置及电弧接地检测方法 |
JP2019521845A JP6567230B1 (ja) | 2019-01-08 | 2019-01-08 | アーク地絡の検出方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/000147 WO2020144734A1 (ja) | 2019-01-08 | 2019-01-08 | アーク地絡検出装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020144734A1 true WO2020144734A1 (ja) | 2020-07-16 |
Family
ID=67766666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/000147 WO2020144734A1 (ja) | 2019-01-08 | 2019-01-08 | アーク地絡検出装置 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6567230B1 (ja) |
KR (1) | KR102688840B1 (ja) |
CN (1) | CN113228443B (ja) |
DE (1) | DE112019006585T5 (ja) |
WO (1) | WO2020144734A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115777071A (zh) * | 2020-08-26 | 2023-03-10 | 松下知识产权经营株式会社 | 电弧检测装置、电弧检测系统、电弧检测方法、以及程序 |
CN111913041A (zh) * | 2020-09-02 | 2020-11-10 | 安徽一天电能质量技术有限公司 | 一种交流开关柜弧光检测系统及其方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011196810A (ja) * | 2010-03-19 | 2011-10-06 | Kansai Electric Power Co Inc:The | 直流回路の漏電検出システムおよび方法 |
JP2014128191A (ja) * | 2012-12-26 | 2014-07-07 | General Electric Co <Ge> | エネルギー変換システムの地絡及び絶縁劣化状態を検索する方法 |
WO2016132781A1 (ja) * | 2015-02-18 | 2016-08-25 | オムロン株式会社 | アーク検出装置およびアーク検出方法 |
WO2017221493A1 (ja) * | 2016-06-21 | 2017-12-28 | 三菱電機株式会社 | 直流電気回路保護装置およびアーク検出方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012141232A (ja) | 2011-01-04 | 2012-07-26 | Chugoku Electric Power Co Inc:The | 配電用変圧器2次側地絡検出システム |
JP6604230B2 (ja) | 2016-02-25 | 2019-11-13 | 住友電気工業株式会社 | 電力変換装置および地絡検出方法 |
KR101869273B1 (ko) * | 2018-02-28 | 2018-07-19 | (주)세명이앤씨 | 태양광 모듈에 장착된 아크 및 누설 전류 검출 및 차단 장치 |
-
2019
- 2019-01-08 JP JP2019521845A patent/JP6567230B1/ja active Active
- 2019-01-08 DE DE112019006585.8T patent/DE112019006585T5/de active Pending
- 2019-01-08 WO PCT/JP2019/000147 patent/WO2020144734A1/ja active Application Filing
- 2019-01-08 CN CN201980085880.8A patent/CN113228443B/zh active Active
- 2019-01-08 KR KR1020217020694A patent/KR102688840B1/ko active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011196810A (ja) * | 2010-03-19 | 2011-10-06 | Kansai Electric Power Co Inc:The | 直流回路の漏電検出システムおよび方法 |
JP2014128191A (ja) * | 2012-12-26 | 2014-07-07 | General Electric Co <Ge> | エネルギー変換システムの地絡及び絶縁劣化状態を検索する方法 |
WO2016132781A1 (ja) * | 2015-02-18 | 2016-08-25 | オムロン株式会社 | アーク検出装置およびアーク検出方法 |
WO2017221493A1 (ja) * | 2016-06-21 | 2017-12-28 | 三菱電機株式会社 | 直流電気回路保護装置およびアーク検出方法 |
Also Published As
Publication number | Publication date |
---|---|
DE112019006585T5 (de) | 2021-12-23 |
CN113228443B (zh) | 2024-10-08 |
JPWO2020144734A1 (ja) | 2021-02-18 |
JP6567230B1 (ja) | 2019-08-28 |
KR20210096241A (ko) | 2021-08-04 |
KR102688840B1 (ko) | 2024-07-29 |
CN113228443A (zh) | 2021-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8823307B2 (en) | System for detecting internal winding faults of a synchronous generator, computer program product and method | |
US7196884B2 (en) | Apparatus and method for detecting the loss of a current transformer connection coupling a current differential relay to an element of a power system | |
EP2192416B1 (en) | Method and apparatus for detecting a phase-to-earth fault | |
CN102985836B (zh) | 用于供电网的快速距离保护的方法和设备 | |
US8680872B2 (en) | Identification of false positives in high impedance fault detection | |
KR101352204B1 (ko) | 배전 계통에서 발생하는 전력 품질 외란의 원인 판별 장치 및 방법 | |
RU2631025C2 (ru) | Обнаружение направления слабоустойчивого короткого замыкания на землю среднего напряжения с помощью линейной корреляции | |
US8736297B2 (en) | Method for production of a fault signal, and an electrical protective device | |
CN109596956B (zh) | 直流串联电弧检测方法及装置 | |
WO2020144734A1 (ja) | アーク地絡検出装置 | |
CN106165230B (zh) | 差分保护方法和差分保护装置 | |
US8045307B2 (en) | Faulted phase decision method between current and voltage based delta phase selectors | |
US20210194235A1 (en) | Arc detection circuit, breaker system, connection box system, power conditioner, micro inverter, dc optimizer, and arc detection method | |
JP7214854B2 (ja) | 電力システムの少なくとも1つの回路遮断器を制御するための方法および装置 | |
JP5020508B2 (ja) | 地絡方向検出装置 | |
KR101787885B1 (ko) | 전압계측 오차 보상장치 | |
KR101882908B1 (ko) | 멀티레벨 컨버터 hvdc 시스템에서 dc 사고 감지 장치 및 방법 | |
CA2698848A1 (en) | An efficient method for calculating the dot product in fault detection algorithms | |
JP5163452B2 (ja) | 微地絡検出装置及び微地絡検出方法 | |
JP4353840B2 (ja) | 電路の部分放電検出方法 | |
JP4121979B2 (ja) | 非接地電路の絶縁監視方法とその装置 | |
JP4921246B2 (ja) | 地絡距離継電器 | |
JP4926146B2 (ja) | 単独運転検出方法および単独運転検出装置 | |
KR100498557B1 (ko) | 지락 검출 회로 | |
JP2010014610A (ja) | 電動機システムの絶縁劣化診断装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019521845 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19908449 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20217020694 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19908449 Country of ref document: EP Kind code of ref document: A1 |