WO2020143803A1 - 一种能力配置方法及装置 - Google Patents

一种能力配置方法及装置 Download PDF

Info

Publication number
WO2020143803A1
WO2020143803A1 PCT/CN2020/071529 CN2020071529W WO2020143803A1 WO 2020143803 A1 WO2020143803 A1 WO 2020143803A1 CN 2020071529 W CN2020071529 W CN 2020071529W WO 2020143803 A1 WO2020143803 A1 WO 2020143803A1
Authority
WO
WIPO (PCT)
Prior art keywords
capability
terminal device
air interface
unique
candidate set
Prior art date
Application number
PCT/CN2020/071529
Other languages
English (en)
French (fr)
Inventor
李俊超
唐浩
周国华
唐臻飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20738277.1A priority Critical patent/EP3902178B1/en
Publication of WO2020143803A1 publication Critical patent/WO2020143803A1/zh
Priority to US17/372,306 priority patent/US20210400467A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0628Diversity capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1806Go-back-N protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities

Definitions

  • This application relates to the field of communication technologies, and in particular, to a method and device for configuring capabilities.
  • 5G technology expects to support a variety of scenarios and business types simultaneously through one network.
  • Various scenarios include autonomous driving, smart cities, smart grids, smart factories, etc.; various services include enhanced mobile broadband (eMBB) services, ultra-high reliability and low latency (ultra-high reliability) and low latency latency (URLLC) business and massive machine-type communication (mMTC) business, etc.
  • eMBB enhanced mobile broadband
  • URLLC ultra-high reliability and low latency latency
  • mMTC massive machine-type communication
  • Different scenarios and/or different services often correspond to different needs.
  • eMBB services usually pursue high throughput and high spectrum efficiency
  • URLLC services usually pursue high reliability and low latency
  • mMTC services usually pursue wide coverage and large connections.
  • Using a set of parameters to support such diverse scenarios and service types at the same time cannot achieve optimal system performance.
  • 3GPP 3rd Generation Partnership Project proposes to support various scenarios and service types of 5G systems through network slices.
  • network slicing is achieved through air interface slicing.
  • the core network is divided into multiple network slices, and each network slice is carried by an air interface slicing, which is used to achieve a specific service requirement on the terminal device side.
  • Embodiments of the present application provide a capability configuration method and apparatus to solve the problem of how to define the capabilities of a terminal device when the terminal device supports multiple air interface slices.
  • an embodiment of the present application provides a capability configuration method, including: a network device sending capability configuration information to a terminal device; the capability configuration information is used to indicate a capability corresponding to an air interface slice supported by the terminal device, the The capability corresponding to the air interface slice supported by the terminal device is determined from the capability candidate set reported by the terminal device; the network device communicates with the terminal device through the air interface slice supported by the terminal device.
  • the network device configures the terminal device with the capability matching the air interface slice supported by the capability configuration information, which can ensure that the network device and the terminal device have a common understanding of the capabilities of the air interface slice supported by the terminal device, thereby solving In the case where the terminal device supports multiple air interface slices, the question of how the network device determines the capabilities of the terminal device in each air interface slice.
  • the capability candidate set includes at least one unique capability
  • the unique capability is an capability that increases as the number of air interface slices increases.
  • the capability candidate set includes a first unique capability, and the first unique capability prepares the terminal device for the corresponding physical uplink shared channel PUSCH on the first radio frequency channel for the duration T1 and uplink
  • the indicated capabilities include the first unique capability.
  • the capability candidate set includes at least one sharing capability
  • the sharing capability is a capability that does not increase as the number of air interface slices increases.
  • the capability candidate set includes a first sharing capability, and the first sharing capability is a maximum control channel blind detection capability, which is used to indicate the maximum number of control channel blind detections of the terminal device B1;
  • the capability indicated by the capability indication information includes the maximum number of blind control channel detection times B2 of the terminal device in at least two air interface slices, where B2 is less than or equal to B1.
  • an embodiment of the present application provides a communication device including a processor coupled to a memory, wherein: the memory is used to store instructions; the processor is used to execute instructions stored in the memory to execute A method in the above first aspect or any possible design of the first aspect.
  • the communication device may further include the memory.
  • the communication device may further include a transceiver for supporting the communication device to send and/or receive information in the above method.
  • the communication device may be a network device, or a device in the network device, such as a chip or a chip system, wherein the chip system includes at least one chip, and the chip system may further include other circuit structures and/or Discrete devices.
  • embodiments of the present application provide a communication device for implementing the first aspect or any method in the first aspect, including corresponding functional modules, such as a processing unit, a communication unit, etc., respectively Implement the steps in the above method.
  • an embodiment of the present application provides a capability configuration method, including: a terminal device receiving capability configuration information from a network device; the capability configuration information is used to indicate a capability corresponding to an air interface slice supported by the terminal device, the The capability corresponding to the air interface slice supported by the terminal device is determined from the capability candidate set reported by the terminal device; the terminal device uses the capability indicated by the capability configuration information on the air interface slice supported by the terminal device The network device communicates.
  • the terminal device obtains the capability configuration information from the network device.
  • the capability configuration information configures the terminal device to match the supported air interface slice capabilities, which can ensure that the network device and the terminal device have the capabilities on the air interface slice supported by the terminal device.
  • the common knowledge enables the terminal device to determine the capabilities in each air interface slice.
  • the capability candidate set includes at least one unique capability
  • the unique capability is an capability that increases as the number of air interface slices increases.
  • the capability candidate set includes a first unique capability, and the first unique capability prepares the terminal device for the corresponding physical uplink shared channel PUSCH on the first radio frequency channel for the duration T1 and uplink The bandwidth part BWP switching duration T2; the sum of the PUSCH timing duration required for the air interface slice supported by the terminal device is T3;
  • the capability indicated by the capability configuration information includes the first unique capability.
  • the capability candidate set includes at least one sharing capability
  • the sharing capability is a capability that does not increase as the number of air interface slices increases.
  • the capability candidate set includes a first sharing capability, and the first sharing capability is a maximum control channel blind detection capability, which is used to indicate the maximum number of control channel blind detections of the terminal device B1;
  • the capability indicated by the capability indication information includes the maximum number of blind control channel detection times B2 of the terminal device in at least two air interface slices, where B2 is less than or equal to B1.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor.
  • the processor is coupled to a memory.
  • the memory is used to store instructions.
  • the processor is used to execute instructions stored in the memory. Perform the method in the fourth aspect or any possible design of the fourth aspect above.
  • the communication device may further include the memory.
  • the communication device may further include a transceiver for supporting the communication device to send and/or receive information in the above method.
  • the communication device may be a terminal device or a device in the terminal device, such as a chip or a chip system, wherein the chip system includes at least one chip, and the chip system may further include other circuit structures and/or Discrete devices.
  • an embodiment of the present application provides a communication device for implementing the fourth aspect or any method in the fourth aspect, including corresponding functional modules, such as a processing unit, a communication unit, etc., respectively Implement the steps in the above method.
  • An embodiment of the present application provides a computer program product, which, when a computer reads and executes the computer program product, causes the computer to execute any one of the above-mentioned possible design methods.
  • An embodiment of the present application provides a readable storage medium, which includes a program or an instruction, and when the program or the instruction is executed, the computer is caused to execute the method in any one of the above possible designs.
  • An embodiment of the present application provides a chip, the chip is connected to a memory, and is used to read and execute a software program stored in the memory, so as to implement any one of the above possible design methods.
  • An embodiment of the present application provides a communication device, including a processor, which is used to couple with a memory, read and execute instructions in the memory, so as to implement any one of the above aspects or any one of any possible aspects Method in design.
  • An embodiment of the present application provides a communication system, including the communication device in the second aspect and the communication device in the fifth aspect.
  • FIG. 1 is a schematic diagram of a cellular mobile communication scenario applicable to the communication method of the embodiment of the present application
  • FIG. 2 is a schematic diagram of a side-link communication scenario suitable for the communication method of the embodiment of the present application
  • FIG. 3 is a schematic flowchart of a capability configuration method provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram of continuous carrier aggregation in the same frequency band provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a multi-input multi-output system provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an overlapping BWP provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the embodiments of the present application can be applied to various mobile communication systems, such as: new radio (NR) system, global mobile communication (GSM) system, code division multiple access (CDMA) ) System, wideband code division multiple access (WCDMA) system, general packet radio service (general packet radio service (GPRS), long-term evolution (LTE) system, advanced long-term evolution (advanced long) Term-evolution (LTE-A) system, universal mobile communication system (universal mobile telecommunication system, UMTS), evolved long-term evolution (evolved long term evolution, eLTE) system, future communication system and other communication systems, specifically, not here Do restrictions.
  • NR new radio
  • GSM global mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long-term evolution
  • LTE-A advanced long-term evolution
  • UMTS universal mobile communication system
  • eLTE evolved long-term evolution
  • future communication system and other communication systems specifically, not
  • the embodiments of the present application may be applicable to multiple possible communication scenarios.
  • FIG. 1 shows a schematic diagram of a cellular mobile communication scenario applicable to the communication method of the embodiment of the present application.
  • the communication system 100 includes a first device 102 and a second device 104.
  • the communication between the first device 102 and the second device 104 may use a communication protocol such as NR, which is not limited in this embodiment of the present application.
  • FIG. 1 is only a schematic structural diagram of a communication system, and the number of network devices and the number of terminal devices in the communication system are not limited in the embodiments of the present application.
  • the first device may be the terminal device 104
  • the second device may be the network device 102.
  • FIG. 2 shows a schematic diagram of a side-link communication scenario applicable to the communication method of the embodiment of the present application.
  • the communication scenario may include the second device 105 and the first device 1061 and the first device 1062.
  • FIG. 2 is only an example, and other first devices may also exist in FIG. 2.
  • the second device 105, the first device 1061, and the first device 1062 may perform data transmission through air interface resources, and the first device 1061 and the first device 1062 may perform data transmission through side link resources.
  • the first device 1061 and the first device 1062 may be terminal devices, and the second device may be a network device.
  • FIG. 1 shows a schematic diagram of a side-link communication scenario applicable to the communication method of the embodiment of the present application.
  • the communication scenario may include the second device 105 and the first device 1061 and the first device 1062.
  • FIG. 2 is only an example, and other first devices may also exist in FIG. 2.
  • the second device 105, the first device 1061, and the first device 1062 may perform data
  • a data channel for uplink data transmission between the second device 105 and the first device 1061 or the first device 1062 may be carried on an uplink (uplink, UL) carrier (such as the first UL carrier).
  • the data channel for data transmission between the first device 1061 and the first device 1062 may be carried on a side link (SL) carrier.
  • the SL carrier may be a UL carrier (such as a second UL carrier), and the first UL carrier and the second UL carrier may be the same carrier.
  • the terminal device is a device having a wireless transceiver function or a chip that can be installed in the device.
  • the device with wireless transceiver function can also be called user equipment (user equipment (UE), access terminal, user unit, user station, mobile station, remote station, remote terminal, mobile device, user terminal, user agent Or user device.
  • UE user equipment
  • the terminal devices in the embodiments of the present application may be mobile phones, tablet computers, computers with wireless transceiver functions, virtual reality (VR) terminals, and augmented reality (augmented reality) , AR) terminal, industrial control (industrial control) wireless terminal, self-driving (self driving) wireless terminal, remote medical (remote medical) wireless terminal, smart grid (smart grid) wireless terminal, Wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the embodiments of the present application do not limit application scenarios.
  • the aforementioned device with wireless transceiver function and the chip that can be provided in the device are collectively referred to as terminal device.
  • the network device may be a wireless access device under various standards, such as an evolved Node B (evolved Node B, eNB), a radio network controller (radio network controller, RNC), or a node B (Node B , NB), base station controller (BSC), base transceiver station (BTS), home base station (eg, home evolved NodeB, or home Node B, HNB), baseband unit (BBU) ), access points (AP), wireless relay nodes, wireless return nodes, transmission points (transmission and reception points, TRP or transmission points, TP) in wireless fidelity (WIFI) systems, etc.
  • eNB evolved Node B
  • RNC radio network controller
  • RNC radio network controller
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transceiver station
  • HNB home NodeB
  • BBU baseband unit
  • AP access points
  • wireless relay nodes wireless return nodes
  • transmission points transmission and reception points
  • It can also be a gNB or a transmission point (TRP or TP) in a 5G (NR) system, one or a group (including multiple antenna panels) of an antenna panel of a base station in a 5G system, or a gNB or a transmission
  • the network node of the point such as a baseband unit (BBU), or a DU under a centralized-unit-distributed (CU-DU) architecture.
  • BBU baseband unit
  • CU-DU centralized-unit-distributed
  • exemplary is used as an example, illustration or explanation. Any embodiment or design described in this application as an “example” should not be construed as being more preferred or advantageous than other embodiments or design. Rather, the term usage example is intended to present concepts in a concrete way.
  • the network architecture and business scenarios described in the embodiments of the present application are to more clearly explain the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application. With the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided by the embodiments of the present application are also applicable to similar technical problems.
  • FIG. 3 it is a schematic flowchart of a capability configuration method provided by an embodiment of the present application.
  • the method includes:
  • Step 301 The network device sends capability configuration information to the terminal device; the capability configuration information is used to indicate the capability corresponding to the air interface slice supported by the terminal device.
  • the capability corresponding to the air interface slice supported by the terminal device is determined from the capability candidate set reported by the terminal device.
  • the terminal device may report the capability candidate set of the terminal device to the network device.
  • the terminal device may not need to report the capability candidate set of the terminal device.
  • the capability candidate set may be pre-appointed between the network device and the terminal device.
  • the capabilities corresponding to the air interface slices supported by the terminal device are the pre-agreed capability candidates. Identified in the collection.
  • the air interface slice can be used to carry the network slice, and the transmission block (TB) corresponding to a specific service is carried on the specific air interface slice.
  • the air interface slice may refer to different serving cells, or different carriers, or different bandwidth parts (BWP), or may refer to different layers, or different antenna ports.
  • the serving cell is described by a high layer from the perspective of resource management or mobility management or a service unit.
  • the coverage area of each network device may be divided into one or more serving cells, and the serving cell may be regarded as consisting of a certain frequency domain resource, that is, one serving cell may include one or more carriers.
  • the concept of carrier wave is described from the perspective of signal generation at the physical layer.
  • a carrier is defined by one or more frequency points, corresponding to a continuous or non-continuous spectrum, and used to carry communication data between network devices and terminals.
  • the downlink carrier can be used for downlink transmission
  • the uplink carrier can be used for uplink transmission.
  • BWP may also be referred to as bandwidth, carrier bandwidth part, subband bandwidth, narrowband bandwidth, or other names. This application does not limit the names, and the following embodiments No distinction is made between different names. Multiple uplink bandwidth parts can be configured on one uplink carrier, and multiple downlink bandwidth parts can be configured on one downlink carrier. Or, multiple bandwidth parts involved in the embodiments of the present application may be located in the same cell or on the same carrier, or may be located in different cells or on different carriers.
  • a BWP may include K (K>0) consecutive subcarriers; or, a BWP is a frequency domain resource where N non-overlapping consecutive resource blocks (RBs) are located, and the subcarriers of the RB The interval may be 15KHz, 30KHz, 60KHz, 120KHz, 240KHz, 480KHz or other values. Or, one BWP is a frequency domain resource where M non-overlapping continuous resource block groups (RBGs) are located, and one RBG includes P consecutive RBs, and the subcarrier spacing of the RB may be 15KHz, 30KHz, 60KHz , 120KHz, 240KHz, 480KHz or other values, such as an integer multiple of 2.
  • RBGs non-overlapping continuous resource block groups
  • a TB is called a codeword after channel coding. Since the number of codewords is different from the number of transmit antennas, the codewords need to be mapped to different antennas, so the concept of layers is introduced.
  • the number of layers is equal to the rank of the channel matrix, that is, the number of data streams that can be independently transmitted in parallel.
  • the concept of an antenna port is defined from the perspective of the receiving end (downstream reception is the terminal device, and upstream reception is the network device), and a port is an independent antenna channel for the receiving end.
  • Step 302 The terminal device receives capability configuration information from the network device.
  • Step 303 The network device communicates with the terminal device through an air interface slice supported by the terminal device.
  • Step 304 The terminal device uses the capability indicated by the capability configuration information on the air interface slice supported by the terminal device to communicate with the network device.
  • the network device configures the terminal device with the capability matching the air interface slice supported by the capability configuration information, which can ensure that the network device and the terminal device have a common understanding of the capabilities of the air interface slice supported by the terminal device, thereby solving In the case where the terminal device supports multiple air interface slices, the question of how the network device determines the capabilities of the terminal device in each air interface slice.
  • the capabilities in the capability candidate set include but are not limited to one or more of the following:
  • the number of radio frequency channels that can be used when the terminal device communicates is the number of radio frequency channels that can be used when the terminal device communicates
  • FFTs fast Fourier transforms
  • DCI downlink control information
  • HARQ hybrid automatic repeat requests
  • the capabilities of the terminal device may include two types: unique capabilities and sharing capabilities.
  • the unique capability can be the capability that increases as the number of air interface slices supported by the terminal device increases, the unique capability is constrained by the capability constraint and the total capability constraint on each air interface slice, or, from another perspective, the unique capability The ability is to cover only one air interface slice.
  • the sharing capability can be a capability that does not increase with the increase in the number of air interface slices supported by the terminal device. The sharing capability is allocated on different air interface slices, or, from another perspective, the sharing capability can cover multiple (at least 2 A) The ability to slice air.
  • the capability candidate set includes at least one unique capability, or at least one shared capability, or at least one unique capability and at least one shared capability.
  • the network device may configure which capabilities of the terminal device in a given multi-slice implementation mode are shared capabilities and which capabilities are unique capabilities.
  • the terminal device may map one TB on the multiple air interface slices, one of which TB can be divided into multiple CBs.
  • the number of TB simultaneously transmitted by the terminal device can be used as a sharing capability to match multiple air interface slices.
  • the network device may be configured to map the CB included in the TB on the multiple air interface slices, respectively. With this configuration, mapping a TB onto multiple air interface slices can reduce the overhead of control signaling, and also help to increase the transmission diversity gain of the TB, thereby improving its transmission robustness.
  • the information on the multiple air interface slices can also be modulated into a longer orthogonal frequency division multiplex by an FFT (Orthogonal frequency division multiplexing, OFDM) baseband signal.
  • FFT Orthogonal frequency division multiplexing
  • the number of FFTs of the terminal device can be used as a sharing capability to match multiple air interface slices.
  • the network device may configure the number of FFT points on the multiple air interface slices, corresponding to the number of frequency domain resources (eg, subcarriers) allocated on the multiple air interface slices.
  • the information on multiple air interface slices is modulated into a longer OFDM baseband signal by an FFT, which can reduce the peak-to-average power ratio (PAPR) of the signal, reduce spectrum spread interference, and in-band Signal distortion can also improve the resolution of the time-domain signal after conversion, which is beneficial to the suppression of noise interference, thereby obtaining better transmission quality.
  • PAPR peak-to-average power ratio
  • the network device may use the number of radio frequency channels used by the terminal device as a sharing capability with multiple The air interface slices are matched.
  • the terminal device can be configured to use one radio frequency channel.
  • the radio frequency structure of the terminal device can be simplified (for example, only one power amplifier is used), and when the activated BWP of the terminal device on at least 2 carriers is relatively large, it is more conducive to energy saving of the terminal device.
  • the network device can also configure the number of radio frequency channels used by the terminal device according to the actual situation. For example, when the terminal device needs to further save energy on each carrier, that is, when the working bandwidth of the terminal device is returned to the default (default) BWP, the network device may configure the terminal device to use 2 radio frequency channels.
  • the network device can configure the terminal device to use at least 2 radio frequency channels, which can avoid the introduction of different control channel and data channel subcarrier intervals. Radio frequency switching delay improves terminal equipment throughput. In contrast, in this scenario, when the terminal device uses only one radio frequency channel, this switching delay will cause multiple symbols between the end position of the control channel and the start position of the data channel to be unusable, thereby affecting the throughput of the terminal device .
  • the capability indicated by the network device through the capability configuration information is a capability that matches the air interface slice supported by the terminal device.
  • the ability to match the air interface slice supported by the terminal device may refer to the ability to meet the needs of the air interface slice.
  • the capability candidate set of the terminal device includes a first unique capability
  • the first unique capability is a physical uplink shared channel (PUSCH) corresponding to the terminal device on the first radio frequency channel.
  • Preparation duration T1 and uplink BWP switching duration T2; the PUSCH timing duration required for the air interface slice supported by the terminal device is T3; when T3 is greater than or equal to the maximum value between T1 and T2, the The capability indicated by the capability configuration information includes the first unique capability.
  • T3 is less than the maximum value between T1 and T2
  • the capability indicated by the capability configuration information does not include the first unique capability.
  • the PUSCH timing duration may refer to the last symbol of the physical downlink control channel (PDCCH) that carries the DCI scheduling PUSCH to the beginning symbol of the cyclic prefix (CP) of the PUSCH Timing duration, PUSCH timing duration is equal to the maximum value between PUSCH preparation duration and uplink BWP switching duration; PUSCH preparation duration can refer to the time required for the terminal device to map the information to be transmitted on the PUSCH; the uplink BWP switching duration can be Refers to the length of time required for the terminal device to switch between two upstream BWPs.
  • the unit of the duration may be an OFDM symbol, or may be seconds, minutes, etc., which is not limited in this embodiment of the present application.
  • the PUSCH preparation time of the terminal device on the radio frequency channel 1 is 5 OFDM symbols, and the uplink BWP switching time is 10 OFDM symbols; the PUSCH preparation time of the terminal device on the radio frequency channel 2 is 10 OFDM symbols, and the uplink BWP switching time It is 15 OFDM symbols; the PUSCH timing duration required for the air interface slicing supported by the terminal equipment is 12 OFDM symbols.
  • the network device can instruct the terminal device to use the radio frequency channel 1 in the air interface slice for sending and receiving through the capability configuration information.
  • the capability candidate set of the terminal device includes a first sharing capability, and the first sharing capability is a maximum control channel blind detection capability, which is used to indicate the maximum number of control channel blind detection B1 of the terminal device;
  • the capability indicated by the capability indication information includes the maximum number of blind control channel detection times B2 of the terminal device in at least two air interface slices, where B2 is less than or equal to B1.
  • the maximum number of control channel blind checks of a terminal device in an air interface slice may refer to the number of blind checks corresponding to the search space set in the BWP of the terminal device in the air interface slice.
  • the terminal device supports air interface slice 1 and air interface slice 2, BWP 1 is configured in air interface slice 1, and BWP 2 is configured in air interface slice 2.
  • the number of blind detections is 10, and the search space set 3 corresponds to a maximum control channel blind detection number of 15. It is assumed that the maximum number of blind detections of the control channel of the terminal device is 44 and is allocated in the search space set 0 to 3.
  • the terminal device responds in turn to determine whether the search space sets 0 to 3 can be blind checked, and finally determines the search space set 0 and search space set 1, and the corresponding maximum number of control channel blind checks is 35 , So the terminal device only blindly detects the search space set 0 and 1.
  • the network device may configure the terminal device to have a maximum number of blind tests of 20 times in BWP1 and 20 times in BWP2.
  • the terminal device performs blind inspection, since the maximum number of blind inspections is 20 in BWP1, only the search space set 0 is blindly detected, and the search space set 1 is no longer blindly detected; similarly, due to the maximum blindness in BWP2 The number of inspections is 20, so only the search space set 2 is checked blindly, and the search space set 3 is no longer checked blindly.
  • the capabilities of the terminal device are matched with the requirements on the air interface slice supported by the terminal device, thereby ensuring that the terminal device and the network device have a common understanding of the capabilities on a given air interface slice.
  • a capability of the terminal device can be configured as a unique capability or a shared capability in different scenarios, that is, between different configurations, the shared capability and the unique capability Can be converted to each other.
  • the network device may configure one or more of the following sharing capabilities:
  • the number of radio frequency channels used The number of radio frequency channels used; the number of FFTs used by the terminal device to demodulate TB; the number of FFTs used by the terminal device to demodulate CB.
  • the network device can be configured with one or more of the following unique capabilities:
  • the terminal device occupies two component carriers (CC) in the bandwidth A by carrier aggregation: CC1 and CC2.
  • the terminal device also supports 2 air interface slices through continuous carrier aggregation in the same frequency band. Each air interface slice corresponds to a component carrier.
  • the sharing capability of the terminal device may include at least one of the following: the terminal device may use 1 radio frequency channel for transmission and reception;
  • the terminal device can use 1 FFT to demodulate 2 TBs;
  • the terminal device can use 1 FFT to demodulate 2 CBs.
  • the unique capabilities of the terminal device may include at least one of the following:
  • the number of DCIs that the terminal equipment needs to support is two;
  • the terminal equipment needs to process 2 TB in parallel;
  • the terminal equipment needs to process 2 CBs in parallel;
  • the maximum HARQ entity of terminal equipment is 2;
  • the number of CQIs to be fed back by the terminal equipment is 2.
  • the network device may be configured with one or more of the following sharing capabilities:
  • the network device can be configured with one or more of the following unique capabilities:
  • the sharing capability of the terminal device may include at least one of the following:
  • the terminal equipment can use 1 radio frequency channel to send and receive;
  • the number of DCIs that the terminal equipment needs to support is one;
  • the maximum number of control channel blind detections required by the terminal device is 44;
  • the maximum number of control channel estimates required by the terminal equipment is 56;
  • the maximum HARQ entity of the terminal equipment is 1.
  • the unique capabilities of the terminal device may include at least one of the following:
  • the terminal equipment needs to use 2 FFT to demodulate 2 TB;
  • the terminal equipment needs to use 2 FFT to demodulate 2 CB;
  • the terminal equipment needs to process 2 TB in parallel;
  • the terminal equipment needs to process 2 CBs in parallel;
  • the number of CQIs to be fed back by the terminal equipment is 2.
  • the network device may configure one or more of the following sharing capabilities:
  • the number of radio frequency channels used The number of radio frequency channels used; the maximum number of control channel blind checks; the maximum number of control channel estimates; the maximum number of HARQ entities; the number of feedback CQIs.
  • the network device can be configured with one or more of the following unique capabilities: the number of DCIs supported; the number of TBs processed in parallel; the number of CBs processed in parallel; the number of FFTs used to demodulate TB; The number of FFTs used to demodulate the CB.
  • the terminal device supports two air interface slices through two overlapping BWPs, where the subcarrier spacing of BWP1 in two overlapping BWPs is 60 kHz, and the subcarriers of BWP2 in two overlapping BWPs The interval is 30 kHz; the data channel on BWP2 is scheduled across BWP through the control channel on BWP1.
  • the sharing capabilities of the terminal device may include at least one of the following:
  • the terminal equipment can use 1 radio frequency channel to send and receive;
  • the maximum number of blind control channel control tests required by the terminal equipment is 44;
  • the maximum number of control channel estimates required by the terminal equipment is 56;
  • the maximum HARQ entity of the terminal equipment is one;
  • the number of CQIs to be fed back by the terminal equipment is 2.
  • the unique capabilities of the terminal device may include at least one of the following:
  • the number of DCIs that the terminal equipment needs to support is two;
  • the terminal equipment needs to use 2 FFT to demodulate 2 TB;
  • the terminal equipment needs to use 2 FFT to demodulate 2 CB;
  • the terminal equipment needs to process 2 TB in parallel;
  • the terminal equipment needs to process 2 CBs in parallel.
  • the capabilities of the terminal device can be configured as unique capabilities or shared capabilities in different scenarios.
  • the above is only an example, and there may be other capability configurations, which will not be illustrated one by one here.
  • the solutions of the communication method provided by the embodiments of the present application are introduced from the perspective of each network element itself and from the perspective of interaction between each network element.
  • various network elements and devices such as the foregoing wireless access network device, access and mobility management function network element, user equipment, data management function network element, and network slice selection function network element, in order to achieve the above functions, their Contains the corresponding hardware structure and/or software module to perform each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software.
  • the communication device 700 may exist in the form of software.
  • the communication device may be used to perform the actions of the network device or the terminal device in the foregoing method embodiments.
  • the communication device 700 includes a processing unit 701 and a communication unit 702.
  • the processing unit 701 is used to control and manage the operation of the communication device 700.
  • the communication unit 702 is used to support communication between the communication device 700 and other network entities.
  • the communication device 700 may also include other units, which will not be illustrated one by one here.
  • the communication device 700 may be the terminal device in any of the foregoing embodiments, or may also be a semiconductor chip provided in the terminal device.
  • the processing unit 701 and the communication unit 702 respectively perform the following steps:
  • the communication unit 702 is used to send capability configuration information to the terminal device;
  • the capability configuration information is used to indicate the capability corresponding to the air interface slice supported by the terminal device, and the capability corresponding to the air interface slice supported by the terminal device is Determined from the set of capability candidates reported by the terminal device;
  • the processing unit 701 is configured to communicate with the terminal device through an air interface slice supported by the terminal device.
  • the capability candidate set includes at least one unique capability
  • the unique capability is an capability that increases as the number of air interface slices increases.
  • the capability candidate set includes a first unique capability, and the first unique capability prepares the terminal device for the corresponding physical uplink shared channel PUSCH on the first radio frequency channel for the duration T1 and uplink
  • the bandwidth part BWP switching duration is T2; the PUSCH timing duration required for the air interface slice supported by the terminal device is T3;
  • the capability indicated by the capability configuration information includes the first unique capability.
  • the capability candidate set includes at least one sharing capability
  • the sharing capability is a capability that does not increase as the number of air interface slices increases.
  • the capability candidate set includes a first sharing capability, and the first sharing capability is a maximum control channel blind detection capability, which is used to indicate the maximum number of control channel blind detection B1 of the terminal device;
  • the capability indicated by the capability indication information includes the maximum number of blind control channel detection times B2 of the terminal device in at least two air interface slices, where B2 is less than or equal to B1.
  • the communication apparatus 700 may also be the network device in any of the foregoing embodiments, or may also be a semiconductor chip provided in the network device.
  • the processing unit 701 may support the communication apparatus 700 to perform the actions of the network device in the above method examples.
  • the processing unit 701 mainly performs the internal actions of the network device in the method example, and the communication unit 702 may support communication between the communication apparatus 700 and the terminal device.
  • the communication unit 702 executes: receiving capability configuration information from a network device; the capability configuration information is used to indicate a capability corresponding to an air interface slice supported by the terminal device, and the terminal device supports The capability corresponding to the air interface slice is determined from the capability candidate set reported by the terminal device;
  • the processing unit 701 executes: on the air interface slice supported by the terminal device, using the capability indicated by the capability configuration information to communicate with the network device.
  • the capability candidate set includes at least one unique capability
  • the unique capability is an capability that increases as the number of air interface slices increases.
  • the capability candidate set includes a first unique capability, and the first unique capability prepares the terminal device for the corresponding physical uplink shared channel PUSCH on the first radio frequency channel for the duration T1 and uplink The bandwidth part BWP switching duration T2; the sum of the PUSCH timing duration required for the air interface slice supported by the terminal device is T3;
  • the capability indicated by the capability configuration information includes the first unique capability.
  • the capability candidate set includes at least one sharing capability
  • the sharing capability is a capability that does not increase as the number of air interface slices increases.
  • the capability candidate set includes a first sharing capability, and the first sharing capability is a maximum control channel blind detection capability, which is used to indicate the maximum number of control channel blind detection B1 of the terminal device;
  • the capability indicated by the capability indication information includes the maximum number of blind control channel detection times B2 of the terminal device in at least two air interface slices, where B2 is less than or equal to B1.
  • FIG. 8 shows a schematic structural diagram of a communication device.
  • the communication device shown in FIG. 8 may be a hardware circuit implementation of the communication device shown in FIG. 7.
  • the communication device can be adapted to realize the functions of the network device or the terminal device in the above method, for details, please refer to the description in the above method embodiment.
  • the communication device 800 includes a processor 801, a memory 802, a transceiver 803, an antenna 804, and the like.
  • the processor 801 is mainly used to process communication protocols and communication data, and to control the entire wireless communication device, execute a software program, and process data of the software program, for example, to support the wireless communication device to execute the method described in the foregoing method embodiments Action etc.
  • the memory 802 is mainly used to store software programs and data.
  • the transceiver 803 is mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • the antenna 804 is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • the communication apparatus 800 may be used to implement the method corresponding to the communication device described in the foregoing method embodiments. For details, reference may be made to the description in the foregoing method embodiments, and details are not described herein again.
  • the processor 801 in the communication device 800 may also be referred to as a processing unit, and may implement a certain control function.
  • the processor 801 may be a general-purpose processor or a dedicated processor.
  • it may be a baseband processor or a central processor.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to process communication devices (eg, base stations, baseband chips, distributed units (DU) or centralized units (CU), etc.) ) Control, execute software programs, and process software program data.
  • the processor 801 may also store instructions and/or data, and the instructions and/or data may be executed by the processor, so that the communication device 800 executes the description in the foregoing method embodiments The method corresponding to the communication device.
  • the processor 801 may include a transceiver unit for implementing receiving and transmitting functions.
  • the transceiver unit may be a transceiver circuit or an interface.
  • the circuits or interfaces used to implement the receive and transmit functions can be separate or integrated.
  • the communication device 800 may include one or more memories 802, on which instructions may be stored, and the instructions may be executed on the processor, so that the communication device 800 executes the above method embodiments The method described in.
  • the memory may also store data.
  • the processor may also store instructions and/or data. The processor and the memory may be set separately or integrated together. For example, the various correspondences described in the above method embodiments may be stored in a memory or in a processor.
  • the transceiver 803 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., for implementing the transceiver function of the communication device.
  • a communication device 800 may include a processor 801 and a transceiver 803.
  • the transceiver 803 sends scheduling information at the first time domain position and sends or receives scheduling data scheduled by the scheduling information at the second time domain position; the processor 801 according to the end position of the first time domain position and/or the The capability of the terminal device determines the second time domain location.
  • the processor 801 and the transceiver 803 described in this application can be implemented in an integrated circuit (IC), analog IC, radio frequency integrated circuit RFIC, mixed-signal IC, application-specific integrated circuit (ASIC), printed circuit Printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured with various IC process technologies, such as complementary metal oxide semiconductor (CMOS), N-type metal oxide semiconductor (nMetal-oxide-semiconductor, NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor (PMOS), bipolar junction transistor (Bipolar Junction Transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • N-type metal oxide semiconductor nMetal-oxide-semiconductor
  • PMOS positive channel metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • the communication device is described by taking a network device or a terminal device as an example, the scope of the communication device described in this application is not limited to this, and the structure of the communication device may not be limited by FIG. 8.
  • the communication device may be an independent device or may be part of a larger device.
  • the device may be:
  • a set of one or more ICs may also include storage components for storing data and/or instructions;
  • ASIC such as modem (MSM)
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more available medium integrated servers, data centers, and the like.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)), or the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, a solid state disk (SSD)
  • the various illustrative logic units and circuits described in the embodiments of the present application may be implemented by a general-purpose processor, a digital signal processor, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable logic devices. Discrete gate or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the described functions.
  • the general-purpose processor may be a microprocessor, and optionally, the general-purpose processor may also be any conventional processor, controller, microcontroller, or state machine.
  • the processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration achieve.
  • the steps of the method or algorithm described in the embodiments of the present application may be directly embedded in hardware, a software unit executed by a processor, or a combination of both.
  • the software unit may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium in the art.
  • the storage medium may be connected to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be integrated into the processor.
  • the processor and the storage medium may be provided in the ASIC, and the ASIC may be provided in the terminal device.
  • the processor and the storage medium may also be provided in different components in the terminal device.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device, so that a series of operating steps are performed on the computer or other programmable device to generate computer-implemented processing, which is executed on the computer or other programmable device
  • the instructions provide steps for implementing the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and/or block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种能力配置方法及装置,其中方法包括:网络设备向终端设备发送能力配置信息;所述能力配置信息用于指示与所述终端设备支持的空口切片对应的能力,所述终端设备支持的空口切片对应的能力为从所述终端设备上报的能力候选集合中确定出的;所述网络设备通过所述终端设备支持的空口切片与所述终端设备进行通信。

Description

一种能力配置方法及装置
相关申请的交叉引用
本申请要求在2019年01月11日提交中国专利局、申请号为201910028288.6、申请名称为“一种能力配置方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种能力配置方法及装置。
背景技术
5G技术期望通过一个网络同时支持多种多样的场景和业务类型。多种多样的场景包括自动驾驶、智慧城市、智能电网、智能工厂等;多种多样的业务包括增强移动宽带(enhanced mobile broadband,eMBB)业务、超高可靠低时延(ultra-high reliability and low latency,URLLC)业务和大规模机器类通信(massive machine-type communication,mMTC)业务等。不同场景和/或不同业务往往对应不同的需求。例如,eMBB业务通常追求的是高吞吐量和高频谱效率,URLLC业务通常追求的是高可靠和低时延,mMTC业务通常追求的是广覆盖和大连接。使用一套参数同时支持这样多种多样的场景和业务类型,并不能达到最优的系统性能。例如,优化高可靠低时延往往是以降低频谱效率为代价的。因此,第三代合作伙伴计划(3rd generation partnership project,3GPP)提出通过网络切片(network slice)的方式来支持5G系统多种多样的场景和业务类型。在无线接入网层面,网络切片是通过空口切片来实现的,核心网被划分成多个网络切片,每个网络切片通过一个空口切片来承载,用来实现终端设备侧一个特定的服务需求。
然而,在终端设备可以支持多个空口切片的情况下,如何配置终端设备在每个空口切片上的能力,还没有一个明确的解决方案,是一个亟待解决的问题。
发明内容
本申请实施例提供一种能力配置方法及装置,用以解决在终端设备支持多个空口切片的情况下,如何定义终端设备的能力的问题。
第一方面,本申请实施例提供一种能力配置方法,包括:网络设备向终端设备发送能力配置信息;所述能力配置信息用于指示与所述终端设备支持的空口切片对应的能力,所述终端设备支持的空口切片对应的能力为从所述终端设备上报的能力候选集合中确定出的;所述网络设备通过所述终端设备支持的空口切片与所述终端设备进行通信。
通过上述方法,网络设备通过能力配置信息,为终端设备配置与其支持的空口切片相匹配的能力,可以保证网络设备和终端设备对于终端设备支持的空口切片上的能力有共同的认知,从而解决在终端设备支持多个空口切片的情况下,网络设备如何确定终端设备在每个空口切片中的能力的问题。
一种可能的设计中,所述能力候选集合中包括至少一个独有能力,所述独有能力为随 空口切片数量增加而增加的能力。
一种可能的设计中,所述能力候选集合中包括第一独有能力,所述第一独有能力为所述终端设备在第一射频通道上对应的物理上行共享信道PUSCH准备时长T1和上行带宽部分BWP切换时长T2;所述终端设备支持的空口切片所需的PUSCH定时时长为T3;当所述T3大于或等于所述T1与所述T2之间的最大值时,所述能力配置信息指示的能力中包括所述第一独有能力。
一种可能的设计中,所述能力候选集合中包括至少一个共享能力,所述共享能力为不随空口切片数量增加而增加的能力。
一种可能的设计中,所述能力候选集合中包括第一共享能力,所述第一共享能力为最大控制信道盲检能力,用于指示所述终端设备的最大控制信道盲检次数B1;所述能力指示信息指示的能力中包括所述终端设备在至少两个空口切片中的最大控制信道盲检次数B2,其中B2小于或等于B1。
第二方面,本申请实施例提供一种通信装置,所述通信装置包括处理器,所述处理器与存储器耦合,其中:存储器用于存储指令;处理器用于根据执行存储器存储的指令,以执行上述第一方面或第一方面中任一种可能的设计中的方法。可选的,所述通信装置还可以包括所述存储器。可选的,所述通信装置还可以包括收发器,用于支持所述通信装置进行上述方法中的信息发送和/或接收。可选的,该通信装置可以是网络设备,也可以是网络设备中的装置,如芯片或者芯片系统,其中所述芯片系统包含至少一个芯片,所述芯片系统还可以包括其他电路结构和/或分立器件。
第三方面,本申请实施例提供一种通信装置,用于实现上述第一方面或第一方面中的任意一种方法,包括相应的功能模块,例如包括处理单元、通信单元等,分别用于实现以上方法中的步骤。
第四方面,本申请实施例提供一种能力配置方法,包括:终端设备从网络设备接收能力配置信息;所述能力配置信息用于指示与所述终端设备支持的空口切片对应的能力,所述终端设备支持的空口切片对应的能力为从所述终端设备上报的能力候选集合中确定出的;所述终端设备在所述终端设备支持的空口切片上,使用所述能力配置信息指示的能力与所述网络设备进行通信。
通过上述方法,终端设备从网络设备获取能力配置信息,该能力配置信息为终端设备配置与其支持的空口切片相匹配的能力,可以保证网络设备和终端设备对于终端设备支持的空口切片上的能力有共同的认知,从而使得终端设备确定在每个空口切片中的能力。
一种可能的设计中,所述能力候选集合中包括至少一个独有能力,所述独有能力为随空口切片数量增加而增加的能力。
一种可能的设计中,所述能力候选集合中包括第一独有能力,所述第一独有能力为所述终端设备在第一射频通道上对应的物理上行共享信道PUSCH准备时长T1和上行带宽部分BWP切换时长T2;所述终端设备支持的空口切片所需的PUSCH定时时长之和为T3;
当所述T3大于或等于所述T1与所述T2之间的最大值时,所述能力配置信息指示的能力中包括所述第一独有能力。
一种可能的设计中,所述能力候选集合中包括至少一个共享能力,所述共享能力为不随空口切片数量增加而增加的能力。
一种可能的设计中,所述能力候选集合中包括第一共享能力,所述第一共享能力为最 大控制信道盲检能力,用于指示所述终端设备的最大控制信道盲检次数B1;
所述能力指示信息指示的能力中包括所述终端设备在至少两个空口切片中的最大控制信道盲检次数B2,其中B2小于或等于B1。
第五方面,本申请实施例提供一种通信装置,所述通信装置包括处理器,所述处理器与存储器耦合,其中:存储器用于存储指令;处理器用于根据执行存储器存储的指令,用于执行上述第四方面或第四方面中任一种可能的设计中的方法。可选的,所述通信装置还可以包括所述存储器。可选的,所述通信装置还可以包括收发器,用于支持所述通信装置进行上述方法中的信息发送和/或接收。可选的,该通信装置可以是终端设备,也可以是终端设备中的装置,如芯片或者芯片系统,其中所述芯片系统包含至少一个芯片,所述芯片系统还可以包括其他电路结构和/或分立器件。
第六方面,本申请实施例提供一种通信装置,用于实现上述第四方面或第四方面中的任意一种方法,包括相应的功能模块,例如包括处理单元、通信单元等,分别用于实现以上方法中的步骤。
本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述任一种可能的设计中的方法。
本申请实施例提供一种可读存储介质,包括程序或指令,当所述程序或指令被执行时,使得计算机执行上述任一种可能的设计中的方法。
本申请实施例提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述任一种可能的设计中的方法。
本申请实施例提供一种通信装置,包括处理器,所述处理器用于与存储器耦合,读取并执行所述存储器中的指令,以实现上述任一方面或任一方面中任一种可能的设计中的方法。
本申请实施例提供一种通信系统,包括上述第二方面中的通信装置和第五方面的通信装置。
附图说明
图1为适用于本申请实施例的通信方法的蜂窝移动通信场景的示意图;
图2为适用于本申请实施例的通信方法的旁链路通信场景示意图;
图3为本申请实施例提供的一种能力配置方法流程示意图;
图4为本申请实施例提供的一种同频带连续载波聚合示意图;
图5为本申请实施例提供的一种多输入多输出系统示意图;
图6为本申请实施例提供的一种重叠的BWP示意图;
图7为本申请实施例提供的一种通信装置结构示意图;
图8为本申请实施例提供的一种通信装置结构示意图。
具体实施方式
下面结合说明书附图对本申请实施例做详细描述。
本申请实施例可以应用于各种移动通信系统,例如:新无线(new radio,NR)系统、全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division  multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、先进的长期演进(advanced long term evolution,LTE-A)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、演进的长期演进(evolved long term evolution,eLTE)系统、未来通信系统等其它通信系统,具体的,在此不做限制。
本申请实施例可以适用于多种可能的通信场景,下面简单描述几种可能的通信场景。
在一个示例中,上述通信场景可以适用于蜂窝移动通信场景。图1示出了适用于本申请实施例的通信方法的蜂窝移动通信场景的示意图。如图1所示,该通信系统100包括第一设备102和第二设备104。第一设备102和第二设备104之间,可以采用NR等通信协议进行通信,本申请实施例对此并不限定。应理解,图1仅为通信系统的一个架构示意图,本申请实施例中对通信系统中网络设备的数量、终端设备的数量不作限定。当上述通信场景为蜂窝移动通信场景时,第一设备可以为终端设备104,第二设备可以为网络设备102。
在另一个示例中,上述通信场景可以适用于旁链路通信。图2示出了适用于本申请实施例的通信方法的旁链路通信场景示意图。如图2所示,该通信场景中可以包括第二设备105以及第一设备1061、第一设备1062。需要说明的是,图2只是举例说明,图2中还可以存在其他第一设备。第二设备105与第一设备1061、第一设备1062可以通过空口资源进行数据传输,第一设备1061和第一设备1062之间可以通过旁链路资源进行数据传输。其中,第一设备1061和第一设备1062可以为终端设备,第二设备可以为网络设备。图2中,以上行传输为例,第二设备105与第一设备1061或第一设备1062进行上行数据传输的数据信道可以承载在上行(uplink,UL)载波(比如第一UL载波)中。第一设备1061和第一设备1062之间进行数据传输的数据信道可以承载在旁链路(side link,SL)载波中。在一个示例中,SL载波可以为UL载波(比如第二UL载波),第一UL载波和第二UL载波可以为同一载波。
在本申请实施例中,终端设备,为具有无线收发功能的设备或可设置于该设备的芯片。其中,所述具有无线收发功能的设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、用户终端、用户代理或用户装置。在实际应用中,本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。本申请的实施例对应用场景不做限定。本申请中将前述具有无线收发功能的设备及可设置于该设备中的芯片统称为终端设备。
在本申请实施例中,网络设备可以为各种制式下无线接入设备,例如演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)或节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无 线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G(NR)系统中的gNB或传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或在集中式-分布式(central unit-distributed,CU-DU)架构下的DU等。
另外,在本申请实施例中,“示例性的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
参见图3,为本申请实施例提供的一种能力配置方法流程示意图。该方法包括:
步骤301:网络设备向终端设备发送能力配置信息;所述能力配置信息用于指示与所述终端设备支持的空口切片对应的能力。
示例性的,本申请实施例中,所述终端设备支持的空口切片对应的能力为从所述终端设备上报的能力候选集合中确定出的。在该实现方式下,网络设备在发送能力配置信息之前,终端设备可以向网络设备上报终端设备的能力候选集合。
当然,终端设备也可以不需要上报终端设备的能力候选集合,网络设备与终端设备之间可以对能力候选集合进行预先约定,此时终端设备支持的空口切片对应的能力为从预先约定的能力候选集合中确定出的。
需要说明的是,空口切片可以用来承载网络切片,对应一种特定业务的传输块(transmission block,TB)承载在特定的空口切片上。空口切片可以是指不同的服务小区,或者不同的载波,或者不同的带宽部分(bandwidth part,BWP),也可以是指不同的层,或者不同的天线端口。
应理解,服务小区是高层从资源管理或移动性管理或服务单元的角度来描述的。每个网络设备的覆盖范围可以被划分为一个或多个服务小区,且该服务小区可以看作由一定频域资源组成,即一个服务小区可以包括一个或多个载波。载波的概念是从物理层的信号产生的角度来描述的。一个载波由一个或多个频点定义,对应一段连续或非连续的频谱,用于承载网络设备和终端间的通信数据。下行载波可以用于下行传输,上行载波可以用于上行传输。
应理解,BWP也可以称为带宽、载波带宽部分(carrier bandwidth part)、子带(subband)带宽、窄带(narrowband)带宽、或者其他名称,本申请对名称并不做限定,且下述实施例对不同名称不进行区分。可以在一个上行载波上配置多个上行带宽部分,可以在一个下行载波上配置多个下行带宽部分。或者,本申请实施例涉及到的多个带宽部分可以位于同一小区内或同一载波上,也可以位于不同小区内或不同载波上。
示例性的,一个BWP可以包含连续的K(K>0)个子载波;或者,一个BWP为N个不重叠的连续的资源块(resource block,RB)所在的频域资源,该RB的子载波间隔可以为15KHz、30KHz、60KHz、120KHz、240KHz、480KHz或其他值。或者,一个BWP为M个不重叠的连续的资源块组(resource block group,RBG)所在的频域资源,一个RBG 包括P个连续的RB,该RB的子载波间隔可以为15KHz、30KHz、60KHz、120KHz、240KHz、480KHz或其他值,例如为2的整数倍。
应理解,一个TB经过信道编码处理后就称为一个码字。由于码字数量与发送天线数量不同,需要将码字映射到不同的天线上,因此引入了层的概念。层数等于信道矩阵的秩,即能够独立并行传输的数据流数量。天线端口的概念是从接收端的角度来定义的(下行的接收是终端设备,上行的接收是网络设备),一个端口对于接收端来说就是一个独立的天线信道。
步骤302:终端设备从网络设备接收能力配置信息。
步骤303:所述网络设备通过所述终端设备支持的空口切片与所述终端设备进行通信。
步骤304:所述终端设备在所述终端设备支持的空口切片上,使用所述能力配置信息指示的能力与所述网络设备进行通信。
通过上述方法,网络设备通过能力配置信息,为终端设备配置与其支持的空口切片相匹配的能力,可以保证网络设备和终端设备对于终端设备支持的空口切片上的能力有共同的认知,从而解决在终端设备支持多个空口切片的情况下,网络设备如何确定终端设备在每个空口切片中的能力的问题。
本申请实施例中,能力候选集合中的能力包括但不限于以下一项或多项:
终端设备进行通信时可以使用的射频通道的数量;
并行处理的TB数量;
并行处理的码块(code block,CB)数量;
终端设备解调TB时所使用的快速傅里叶变换(fast Fourier transfer,FFT)的数量;
终端设备解调CB时所使用的FFT的数量;
终端设备支持的下行控制信息(downlink control information,DCI)的数量;
最大控制信道盲检次数;
最大控制信道估计次数;
终端设备支持的最大混合自动重传请求(hybrid automatic repeat request,HARQ)实体数量;
终端设备需要反馈的CQI的数量。
当然,以上只是示例,能力候选集合中还可能存在其他能力,在此不再逐一举例说明。
本申请实施例中,终端设备的能力可以包括两种类型:独有能力和共享能力。其中,独有能力可以为随终端设备支持的空口切片数量增加而增加的能力,独有能力约束于在各空口切片上的能力约束和总能力约束,或者,从另一个角度来说,独有能力为仅覆盖一个空口切片的能力。相应的,共享能力可以为不随终端设备支持的空口切片数量增加而增加的能力,共享能力在不同空口切片上进行分配,或者,从另一个角度来说,共享能力为可以覆盖多个(至少2个)空口切片的能力。
结合上面的描述,本申请实施例中,能力候选集合中包括至少一个独有能力,或者包括至少一个共享能力,或者包括至少一个独有能力以及至少一个共享能力。
本申请实施例中,网络设备可以配置终端设备在给定多切片实现方式下哪些能力为共享能力,哪些能力为独有能力。示例性的,终端设备在通过多个载波或多个载波带宽部分(carrier bandwidth part,BWP)实现支持多个空口切片的场景下,可以将一个TB映射在所述多个空口切片上,其中一个TB可以划分为多个CB。此时,可以将终端设备同时传输 的TB数作为一个共享能力与多个空口切片相匹配。相应的,网络设备可以配置将该TB中包括的CB分别映射在所述多个空口切片上。通过这种配置,将一个TB映射在多个空口切片上,可以减少控制信令的开销,也有利于提高该TB的传输分集增益,进而提高其传输鲁棒性。
示例性的,终端设备在通过多个载波或多个载波BWP实现支持多个空口切片的场景下,还可以将多个空口切片上的信息通过一个FFT调制成一个较长的正交频分复用(orthogonal frequency division multiplexing,OFDM)基带信号。此时,可以将终端设备的FFT个数作为一个共享能力与多个空口切片相匹配。相应的,网络设备可以配置该在所述多个空口切片上的FFT点数,对应所述多个空口切片上分配的频域资源(例如子载波)数。通过这种配置,将多个空口切片上的信息通过一个FFT调制成一个较长的OFDM基带信号,可以降低信号峰值平均功率比(peak to average power radio,PAPR),减少频谱扩展干扰以及带内信号畸变,也可以提高变换后时域信号的分辨率,有利于对噪声干扰的抑制,从而获得更好的传输质量。
示例性的,终端设备通过同频带连续(intra-band contiguous)载波聚合(carrier aggregation,CA)方式支持多个空口切片时,网络设备可以将终端设备使用的射频通道数量作为一个共享能力与多个空口切片相匹配,此时,可以配置终端设备使用1个射频通道。通过这种配置,可以简化终端设备的射频结构(例如只使用一个功率放大器),当终端设备在至少2个载波上的激活BWP都比较大时,更有利于终端设备节能。需要说明的是,在该场景下,网络设备也可以根据实际情况配置终端设备使用的射频通道数量。举例来说,当终端设备需要在各载波上做进一步节能,即将终端设备的工作带宽回退至默认(default)BWP上时,网络设备可以配置终端设备使用2个射频通道。
再举例来说,终端设备在通过多个BWP实现支持多个空口切片的场景下,网络设备可以配置终端设备使用至少2个射频通道,这样可以避免控制信道和数据信道子载波间隔不同时引入的射频切换时延,提高终端设备吞吐量。相反,在该场景下,当终端设备只使用1个射频通道时,这种切换时延会造成控制信道结束位置和数据信道开始位置之间的多个符号不能被使用,从而影响终端设备吞吐量。
本申请实施例中,网络设备通过能力配置信息指示的能力,为与终端设备支持的空口切片相匹配的能力。与终端设备支持的空口切片相匹配的能力,可以是指能够满足空口切片的需求的能力。
举例来说,终端设备的能力候选集合中包括第一独有能力,所述第一独有能力为所述终端设备在第一射频通道上对应的物理上行共享信道(physical uplink shared channel,PUSCH)准备时长T1和上行BWP切换时长T2;所述终端设备支持的空口切片所需的PUSCH定时时长为T3;当所述T3大于或等于所述T1与所述T2之间的最大值时,所述能力配置信息指示的能力中包括所述第一独有能力。相应的,当所述T3小于所述T1与所述T2之间的最大值时,所述能力配置信息指示的能力中不包括所述第一独有能力。其中,PUSCH定时时长力可以是指,承载调度PUSCH的DCI的物理下行控制信道(physical downlink control channel,PDCCH)的最后一个符号到PUSCH的循环前缀(cyclic prefix,CP)的起始符号之间的定时时长,PUSCH定时时长等于PUSCH准备时长与上行BWP切换时长之间的最大值;PUSCH准备时长可以是指,终端设备将需要传输的信息,映射到PUSCH上所需的时长;上行BWP切换时长可以是指,终端设备在两个上行BWP之间切 换所需的时长。时长的单位可以为OFDM符号,也可以为秒或分钟等,本申请实施例对此并不限定。例如,终端设备在射频通道1上的PUSCH准备时长为5个OFDM符号,上行BWP切换时长为10个OFDM符号;终端设备在射频通道2上的PUSCH准备时长为10个OFDM符号,上行BWP切换时长为15个OFDM符号;终端设备支持的空口切片需求的PUSCH定时时长为12个OFDM符号。由于终端设备在射频通道1中,PUSCH准备时长和上行BWP切换时长之间的最大值为10个OFDM符号,满足终端设备支持的空口切片需求的12个OFDM符号的PUSCH定时时长;而终端设备在射频通道2中,PUSCH准备时长和上行BWP切换时长之间的最大值为15个OFDM符号,不满足终端设备支持的空口切片需求的12个OFDM符号的PUSCH定时时长。因此网络设备可以通过能力配置信息指示终端设备在空口切片中使用射频通道1进行收发。
再举例来说,终端设备的能力候选集合中包括第一共享能力,所述第一共享能力为最大控制信道盲检能力,用于指示所述终端设备的最大控制信道盲检次数B1;所述能力指示信息指示的能力中包括所述终端设备在至少两个空口切片中的最大控制信道盲检次数B2,其中B2小于或等于B1。其中,终端设备在一个空口切片中的最大控制信道盲检次数,可以是指,终端设备在该空口切片的BWP中的搜索空间集合,所对应的盲检次数。例如,终端设备支持空口切片1和空口切片2,空口切片1中配置了BWP1,空口切片2中配置了BWP2。在BWP1中配置了搜索空间集合0,对应最大控制信道盲检次数为15,和搜索空间集合1,对应最大控制信道盲检次数为20;在BWP2中配置了搜索空间集合2,对应最大控制信道盲检次数为10,和搜索空间集合3,对应最大控制信道盲检次数为15。假设终端设备的最大控制信道盲检次数为44次,并在搜索空间集合0~3中分配。如果按现有技术中的方法,终端设备响应依次判断搜索空间集合0~3是否可以被盲检,最终确定搜索空间集合0和搜索空间集合1,对应的最大控制信道盲检次数之和为35,因此终端设备只盲检搜索空间集合0和1。本申请实施例中,网络设备可以配置终端设备在BWP1中最大盲检次数为20次,在BWP2中最大盲检次数为20次。此时,终端设备在进行盲检时,由于在BWP1中最大盲检次数为20次,因此只盲检搜索空间集合0,不再盲检搜索空间集合1;同样的,由于在BWP2中最大盲检次数为20次,因此只盲检搜索空间集合2,不再盲检搜索空间集合3。
通过上面的方法,使得终端设备的能力与终端设备支持的空口切片上的需求相匹配,从而能够保证终端设备和网络设备对于给定空口切片上的能力有共同的认知。
进一步,可选的,本申请实施例中,终端设备的一个能力在不同场景下,可以配置为独有能力,也可以配置为共享能力,即对于不同的配置,共享能力和独有能力之间可以互相转换。
举例来说,当所述终端设备通过同频带连续载波聚合方式支持至少两个空口切片时,网络设备可以配置以下一项或多项共享能力:
使用的射频通道的数量;终端设备解调TB时所使用的FFT的数量;终端设备解调CB时所使用的FFT的数量。
相应的,在该场景下,网络设备可以配置以下一项或多项独有能力:
并行处理的TB数量;并行处理的CB数量;支持的DCI的数量;最大控制信道盲检次数;最大控制信道估计次数;终端设备支持的最大HARQ实体数量;终端设备需要反馈的CQI的数量。
例如,如图4所示,终端设备在带宽A中以载波聚合方式占用两个成员载波(component carrier,CC):CC1和CC2,终端设备还通过同频带连续载波聚合方式支持2个空口切片,每个空口切片对应一个成员载波。在该情况下,终端设备的共享能力可以包括以下至少一项:终端设备可以使用1个射频通道进行收发;
若两个成员载波上传输数据使用的子载波间隔相同,则终端设备可以使用1个FFT解调2个TB;
若两个成员载波上传输数据使用的子载波间隔相同,则终端设备可以使用1个FFT解调2个CB。
相应的,终端设备的独有能力可以包括以下至少一项:
终端设备需要支持的DCI数量为2个;
以2个成员载波对应的控制信道均为15kHz为例,终端设备需要进行的最大控制信道盲检次数为2*44=88次;
终端设备需要进行的最大控制信道估计次数为2*56=112次;
终端设备需要并行处理2个TB;
终端设备需要并行处理2个CB;
终端设备的最大HARQ实体为2个;
终端设备需要反馈的CQI数为2个。
而当所述终端设备通过多输入多输出(multiple input multiple output,MIMO)方式支持至少两个空口切片时,网络设备可以配置以下一项或多项共享能力:
使用的射频通道的数量;支持的DCI的数量;最大控制信道盲检次数;最大控制信道估计次数;终端设备支持的最大HARQ实体数量。
相应的,在该场景下,网络设备可以配置以下一项或多项独有能力:
并行处理的TB数量;并行处理的CB数量;解调传输块TB所使用的FFT的数量;解调CB所使用的FFT的数量;反馈CQI的数量。
例如,如图5所示,终端设备通过4x2(即4个发射天线x2个接收天线)MIMO方式支持两个空口切片时,终端设备的共享能力可以包括以下至少一项:
终端设备可以使用1个射频通道进行收发;
终端设备需要支持的DCI数量为1个;
以终端设备所在的成员载波对应的控制信道均为15kHz为例,终端设备需要进行的最大控制信道盲检次数为44次;
终端设备需要进行的最大控制信道估计次数为56次;
终端设备的最大HARQ实体为1个。
相应的,终端设备的独有能力可以包括以下至少一项:
终端设备需要使用2个FFT解调2个TB;
终端设备需要使用2个FFT解调2个CB;
终端设备需要并行处理2个TB;
终端设备需要并行处理2个CB;
终端设备需要反馈的CQI数为2个。
而当所述终端设备通过重叠的BWP方式支持至少两个空口切片时,网络设备可以配置以下一项或多项共享能力:
使用的射频通道的数量;最大控制信道盲检次数;最大控制信道估计次数;最大HARQ实体数量;反馈CQI的数量。
相应的,在该场景下,网络设备可以配置以下一项或多项独有能力:支持的DCI的数量;并行处理的TB数量;并行处理的CB数量;解调TB所使用的FFT的数量;解调CB所使用的FFT的数量。
例如,如图6所示,终端设备通过两个重叠的BWP支持两个空口切片,其中,两个重叠的BWP中的BWP1的子载波间隔为60kHz,两个重叠的BWP中的BWP2的子载波间隔为30kHz;BWP2上的数据信道通过BWP1上的控制信道跨BWP调度。在该场景下,终端设备的共享能力可以包括以下至少一项:
终端设备可以使用1个射频通道进行收发;
终端设备需要进行的最大控制信道盲检次数为44次;
终端设备需要进行的最大控制信道估计次数为56次;
终端设备的最大HARQ实体为1个;
终端设备需要反馈的CQI数为2个。
相应的,终端设备的独有能力可以包括以下至少一项:
终端设备需要支持的DCI数量为2个;
终端设备需要使用2个FFT解调2个TB;
终端设备需要使用2个FFT解调2个CB;
终端设备需要并行处理2个TB;
终端设备需要并行处理2个CB。
从上述举例可以看出,终端设备的能力,在不同场景下,可以配置为独有能力,也可以配置为共享能力。当然以上只是示例,还可能存在其他能力配置,在此不再逐一举例说明。
上述本申请提供的实施例中,分别从各个网元本身、以及从各个网元之间交互的角度对本申请实施例提供的通信方法的各方案进行了介绍。可以理解的是,各个网元和设备,例如上述无线接入网设备、接入及移动性管理功能网元、用户设备、数据管理功能网元和网络切片选择功能网元为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。
在采用集成的单元的情况下,如图7所示,为本申请实施例提供一种通信装置的结构示意图,该通信装置700可以以软件的形式存在。该通信装置可以用于执行上述各方法实施例中网络设备或终端设备的动作,该通信装置700包括:处理单元701和通信单元702。处理单元701用于对通信装置700的动作进行控制管理。通信单元702用于支持该通信装置700与其他网络实体的通信。该通信装置700还可以包括其它单元,在此不再逐一举例说明。
该通信装置700可以为上述任一实施例中的终端设备、或者还可以为设置在终端设备中的半导体芯片。本申请实施例中,该通信装置700执行图3所示的流程中的网络设备的动作时,处理单元701和通信单元702分别执行以下步骤:
通信单元702,用于向终端设备发送能力配置信息;所述能力配置信息用于指示与所述终端设备支持的空口切片对应的能力,所述终端设备支持的空口切片对应的能力为从所 述终端设备上报的能力候选集合中确定出的;
处理单元701,用于通过所述终端设备支持的空口切片与所述终端设备进行通信。
一种可能的设计中,所述能力候选集合中包括至少一个独有能力,所述独有能力为随空口切片数量增加而增加的能力。
一种可能的设计中,所述能力候选集合中包括第一独有能力,所述第一独有能力为所述终端设备在第一射频通道上对应的物理上行共享信道PUSCH准备时长T1和上行带宽部分BWP切换时长T2;所述终端设备支持的空口切片所需的PUSCH定时时长为T3;
当所述T3大于或等于所述T1与所述T2之间的最大值时,所述能力配置信息指示的能力中包括所述第一独有能力。
一种可能的设计中,所述能力候选集合中包括至少一个共享能力,所述共享能力为不随空口切片数量增加而增加的能力。
一种可能的设计中,所述能力候选集合中包括第一共享能力,所述第一共享能力为最大控制信道盲检能力,用于指示所述终端设备的最大控制信道盲检次数B1;
所述能力指示信息指示的能力中包括所述终端设备在至少两个空口切片中的最大控制信道盲检次数B2,其中B2小于或等于B1。
该通信装置700还可以为上述任一实施例中的网络设备、或者还可以为设置在网络设备中的半导体芯片。处理单元701可以支持通信装置700执行上文中各方法示例中网络设备的动作。或者,处理单元701主要执行方法示例中的网络设备内部动作,通信单元702可以支持通信装置700与终端设备之间的通信。
具体地,在一个实施例中,所述通信单元702执行:从网络设备接收能力配置信息;所述能力配置信息用于指示与所述终端设备支持的空口切片对应的能力,所述终端设备支持的空口切片对应的能力为从所述终端设备上报的能力候选集合中确定出的;
处理单元701执行:在所述终端设备支持的空口切片上,使用所述能力配置信息指示的能力与所述网络设备进行通信。
一种可能的设计中,所述能力候选集合中包括至少一个独有能力,所述独有能力为随空口切片数量增加而增加的能力。
一种可能的设计中,所述能力候选集合中包括第一独有能力,所述第一独有能力为所述终端设备在第一射频通道上对应的物理上行共享信道PUSCH准备时长T1和上行带宽部分BWP切换时长T2;所述终端设备支持的空口切片所需的PUSCH定时时长之和为T3;
当所述T3大于或等于所述T1与所述T2之间的最大值时,所述能力配置信息指示的能力中包括所述第一独有能力。
一种可能的设计中,所述能力候选集合中包括至少一个共享能力,所述共享能力为不随空口切片数量增加而增加的能力。
一种可能的设计中,所述能力候选集合中包括第一共享能力,所述第一共享能力为最大控制信道盲检能力,用于指示所述终端设备的最大控制信道盲检次数B1;
所述能力指示信息指示的能力中包括所述终端设备在至少两个空口切片中的最大控制信道盲检次数B2,其中B2小于或等于B1。
图8给出了一种通信装置的结构示意图。图8所示的通信装置可以为图7所示的通信装置的一种硬件电路的实现方式。该通信装置可适用于实现上述方法中网络设备或终端设备的功能,具体可以参见上述方法实施例中的说明。如图8所示,通信装置800包括处理 器801、存储器802、收发器803和天线804等。处理器801主要用于对通信协议以及通信数据进行处理,以及对整个无线通信装置进行控制,执行软件程序,处理软件程序的数据,例如用于支持无线通信装置执行上述方法实施例中所描述的动作等。存储器802主要用于存储软件程序和数据。收发器803主要用于基带信号与射频信号的转换以及对射频信号的处理。天线804主要用于收发电磁波形式的射频信号。
所述通信装置800可以用于实现上述方法实施例中描述的对应于通信设备的方法,具体可以参见上述方法实施例中的说明,在此不再赘述。
所述通信装置800中的处理器801也可以称为处理单元,可以实现一定的控制功能。所述处理器801可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,分布单元(distributed unit,DU)或集中单元(centralized unit,CU)等)进行控制,执行软件程序,处理软件程序的数据。
在一种可选的设计中,处理器801也可以存有指令和/或数据,所述指令和/或数据可以被所述处理器运行,使得所述通信装置800执行上述方法实施例中描述的对应于通信设备的方法。
在一个中可选的设计中,处理器801中可以包括用于实现接收和发送功能的收发单元。例如该收发单元可以是收发电路,或者是接口。用于实现接收和发送功能的电路或接口可以是分开的,也可以集成在一起。
可选的,所述通信装置800中可以包括一个或多个存储器802,其上可以存有指令,所述指令可在所述处理器上被运行,使得所述通信装置800执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的,处理器中也可以存储指令和/或数据。所述处理器和存储器可以单独设置,也可以集成在一起。例如,上述方法实施例中所描述的各种对应关系可以存储在存储器中,或者存储在处理器中。
可选的,所述收发器803可以称为收发单元、收发机、收发电路或者收发器等,用于实现通信装置的收发功能。
在一种可能的设计中,一种通信装置800(例如,集成电路、无线设备、电路模块,网络设备,终端等)可包括处理器801和收发器803。由收发器803在第一时域位置发送调度信息以及在第二时域位置上发送或接收调度信息调度的数据;由处理器801根据所述第一时域位置的结束位置和/或所述终端设备的能力确定第二时域位置。
本申请中描述的处理器801和收发器803可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
虽然在以上的实施例描述中,通信装置以网络设备或者终端设备为例来描述,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图8的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述设备可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据和/或指令的存储部件;
(3)ASIC,例如调制解调器(MSM);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等;
(6)其他等设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本 申请也意图包含这些改动和变型在内。

Claims (19)

  1. 一种能力配置方法,其特征在于,包括:
    网络设备向终端设备发送能力配置信息;所述能力配置信息用于指示与所述终端设备支持的空口切片对应的能力,所述终端设备支持的空口切片对应的能力为从所述终端设备上报的能力候选集合中确定出的;
    所述网络设备通过所述终端设备支持的空口切片与所述终端设备进行通信。
  2. 根据权利要求1所述的方法,其特征在于,所述能力候选集合中包括至少一个独有能力,所述独有能力为随空口切片数量增加而增加的能力。
  3. 根据权利要求1或2所述的方法,其特征在于,所述能力候选集合中包括第一独有能力,所述第一独有能力为所述终端设备在第一射频通道上对应的物理上行共享信道PUSCH准备时长T1和上行带宽部分BWP切换时长T2;所述终端设备支持的空口切片所需的PUSCH定时时长为T3;
    当所述T3大于或等于所述T1与所述T2之间的最大值时,所述能力配置信息指示的能力中包括所述第一独有能力。
  4. 根据权利要求1至3任一所述的方法,其特征在于,所述能力候选集合中包括至少一个共享能力,所述共享能力为不随空口切片数量增加而增加的能力。
  5. 根据权利要求1至4任一所述的方法,其特征在于,所述能力候选集合中包括第一共享能力,所述第一共享能力为最大控制信道盲检能力,用于指示所述终端设备的最大控制信道盲检次数B1;
    所述能力指示信息指示的能力中包括所述终端设备在至少两个空口切片中的最大控制信道盲检次数B2,其中B2小于或等于B1。
  6. 一种能力配置方法,其特征在于,包括:
    终端设备从网络设备接收能力配置信息;所述能力配置信息用于指示与所述终端设备支持的空口切片对应的能力,所述终端设备支持的空口切片对应的能力为从所述终端设备上报的能力候选集合中确定出的;
    所述终端设备在所述终端设备支持的空口切片上,使用所述能力配置信息指示的能力与所述网络设备进行通信。
  7. 根据权利要求6所述的方法,其特征在于,所述能力候选集合中包括至少一个独有能力,所述独有能力为随空口切片数量增加而增加的能力。
  8. 根据权利要求6或7所述的方法,其特征在于,所述能力候选集合中包括第一独有能力,所述第一独有能力为所述终端设备在第一射频通道上对应的物理上行共享信道PUSCH准备时长T1和上行带宽部分BWP切换时长T2;所述终端设备支持的空口切片所需的PUSCH定时时长之和为T3;
    当所述T3大于或等于所述T1与所述T2之间的最大值时,所述能力配置信息指示的能力中包括所述第一独有能力。
  9. 根据权利要求6至8任一所述的方法,其特征在于,所述能力候选集合中包括至少一个共享能力,所述共享能力为不随空口切片数量增加而增加的能力。
  10. 根据权利要求6至9任一所述的方法,其特征在于,所述能力候选集合中包括第一共享能力,所述第一共享能力为最大控制信道盲检能力,用于指示所述终端设备的最大 控制信道盲检次数B1;
    所述能力指示信息指示的能力中包括所述终端设备在至少两个空口切片中的最大控制信道盲检次数B2,其中B2小于或等于B1。
  11. 一种装置,其特征在于,用于执行如权利要求1至5中任一项网络设备执行的方法。
  12. 一种装置,其特征在于,用于执行如权利要求6至10中任一项终端设备执行的方法。
  13. 一种装置,其特征在于,所述装置包括处理器、存储器以及存储在存储器上并可在处理器上运行的指令,当所述指令被运行时,使得所述装置执行如权利要求1至5中任一项所述终端设备执行的方法。
  14. 一种装置,其特征在于,所述装置包括处理器、存储器以及存储在存储器上并可在处理器上运行的指令,当所述指令被运行时,使得所述装置执行如权利要求6至10中任一项所述网络设备执行的方法。
  15. 一种网络设备,其特征在于,包括如权利要求13所述的装置。
  16. 一种终端设备,其特征在于,包括如权利要求14所述的装置。
  17. 一种通信系统,其特征在于,包括如权利要求15所述的网络设备以及如权利要求16所述的终端设备。
  18. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至10任一项所述的方法。
  19. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行权利要求1至10任一项所述的方法。
PCT/CN2020/071529 2019-01-11 2020-01-10 一种能力配置方法及装置 WO2020143803A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20738277.1A EP3902178B1 (en) 2019-01-11 2020-01-10 Capacity configuration method and apparatus
US17/372,306 US20210400467A1 (en) 2019-01-11 2021-07-09 Capability configuration method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910028288.6A CN111435880B (zh) 2019-01-11 2019-01-11 一种能力配置方法及装置
CN201910028288.6 2019-01-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/372,306 Continuation US20210400467A1 (en) 2019-01-11 2021-07-09 Capability configuration method and apparatus

Publications (1)

Publication Number Publication Date
WO2020143803A1 true WO2020143803A1 (zh) 2020-07-16

Family

ID=71521453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071529 WO2020143803A1 (zh) 2019-01-11 2020-01-10 一种能力配置方法及装置

Country Status (4)

Country Link
US (1) US20210400467A1 (zh)
EP (1) EP3902178B1 (zh)
CN (1) CN111435880B (zh)
WO (1) WO2020143803A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7437425B2 (ja) * 2019-11-08 2024-02-22 オッポ広東移動通信有限公司 アップリンク伝送方法、電子機器及び記憶媒体
CN114554575A (zh) * 2020-11-24 2022-05-27 中国移动通信有限公司研究院 一种ifft/fft点数确定方法、装置和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106572516A (zh) * 2016-09-28 2017-04-19 华为技术有限公司 一种网络切片选择方法、终端设备及网络设备
CN107872884A (zh) * 2016-09-26 2018-04-03 电信科学技术研究院 一种随机接入资源分配和随机接入方法、设备
CN108924857A (zh) * 2017-04-18 2018-11-30 维沃移动通信有限公司 一种信息配置方法、终端及基站
US20180368053A1 (en) * 2017-06-15 2018-12-20 Hon Hai Precision Industry Co., Ltd. Method and device for network slicing

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102513274B1 (ko) * 2015-08-21 2023-03-24 삼성전자주식회사 무선 통신 시스템에서 복합 재전송을 수행하는 방법 및 장치
CN106657194B (zh) * 2015-11-02 2020-05-08 中兴通讯股份有限公司 一种网络切片能力开放的方法、装置及系统
CN110572838B (zh) * 2016-03-03 2020-08-07 华为技术有限公司 通信方法、终端设备和网络侧设备
CN107343306B (zh) * 2016-04-28 2019-03-22 中兴通讯股份有限公司 网络切片的选择方法及装置
WO2018230965A2 (ko) * 2017-06-16 2018-12-20 한국전자통신연구원 통신 시스템에서 광대역 캐리어 지원을 위한 대역폭 설정 방법
CN109121185A (zh) * 2017-06-23 2019-01-01 中兴通讯股份有限公司 网络切片子网的选择方法及装置、计算机可读存储介质
CN109391967B (zh) * 2017-08-11 2021-04-06 维沃移动通信有限公司 一种信息上报及信息处理方法、终端及网络设备
CN108810993B (zh) * 2018-04-27 2022-07-05 广州西麦科技股份有限公司 网络切片选择方法、设备、ue、控制面功能实体及介质
US11251995B2 (en) * 2018-08-10 2022-02-15 Lg Electronics Inc. Method for performing channel estimation in wireless communication system and apparatus therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107872884A (zh) * 2016-09-26 2018-04-03 电信科学技术研究院 一种随机接入资源分配和随机接入方法、设备
CN106572516A (zh) * 2016-09-28 2017-04-19 华为技术有限公司 一种网络切片选择方法、终端设备及网络设备
CN108924857A (zh) * 2017-04-18 2018-11-30 维沃移动通信有限公司 一种信息配置方法、终端及基站
US20180368053A1 (en) * 2017-06-15 2018-12-20 Hon Hai Precision Industry Co., Ltd. Method and device for network slicing

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MOTOROLA MOBILITY ET AL.: "SA WG2 Meeting #116bis S2-165185", SOLUTION: MULTIPLE INDEPENDENT SLICES PER UE, 2 September 2016 (2016-09-02), XP051155051, DOI: 20200323144245A *
See also references of EP3902178A4 *

Also Published As

Publication number Publication date
EP3902178A1 (en) 2021-10-27
CN111435880B (zh) 2021-07-20
CN111435880A (zh) 2020-07-21
US20210400467A1 (en) 2021-12-23
EP3902178B1 (en) 2024-06-19
EP3902178A4 (en) 2022-03-09

Similar Documents

Publication Publication Date Title
US11540278B2 (en) Carrier switching method, apparatus, and system for multi-carrier communication
US11924141B2 (en) Communication method, network device, and terminal device
US20210258958A1 (en) Communications Method and Apparatus
WO2021249287A1 (zh) 信息传输方法、装置及存储介质
WO2020088054A1 (zh) 通信资源的配置方法、通信装置、通信设备及存储介质
WO2023030514A1 (zh) 无线通信方法和通信装置
US20210400467A1 (en) Capability configuration method and apparatus
CN111756497B (zh) 通信方法及装置
WO2020083333A1 (zh) 通信方法和装置
WO2022141580A1 (zh) 一种通信方法及装置
WO2021168814A1 (zh) 控制信道的确定方法、装置、存储介质和处理器
US20240129805A1 (en) Wi-fi spectrum efficiency
WO2022036527A1 (zh) 上行控制信息的传输方法、通信装置及相关设备
US20240163961A1 (en) Component carrier activation and deactivation
US20220393842A1 (en) Scheduling and signalling communication resources
WO2024027766A1 (zh) 通信方法、装置及存储介质
US20230344688A1 (en) Method for symbol application, communication apparatus, and storage medium
WO2023025301A1 (zh) 一种通信方法及通信装置
WO2023137249A2 (en) Sidelink slots without symbols for automatic gain control
CN115996472A (zh) 资源配置方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020738277

Country of ref document: EP

Effective date: 20210719